WO2013017000A1 - 酸解渣再利用制备钛白粉时的预处理方法 - Google Patents

酸解渣再利用制备钛白粉时的预处理方法 Download PDF

Info

Publication number
WO2013017000A1
WO2013017000A1 PCT/CN2012/078192 CN2012078192W WO2013017000A1 WO 2013017000 A1 WO2013017000 A1 WO 2013017000A1 CN 2012078192 W CN2012078192 W CN 2012078192W WO 2013017000 A1 WO2013017000 A1 WO 2013017000A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
titanium
liquid
titanium liquid
mixed
Prior art date
Application number
PCT/CN2012/078192
Other languages
English (en)
French (fr)
Inventor
蔡平雄
常键
邓伯松
朱全芳
王国锋
Original Assignee
四川龙蟒钛业股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 四川龙蟒钛业股份有限公司 filed Critical 四川龙蟒钛业股份有限公司
Publication of WO2013017000A1 publication Critical patent/WO2013017000A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/10Obtaining titanium, zirconium or hafnium
    • C22B34/12Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/053Producing by wet processes, e.g. hydrolysing titanium salts
    • C01G23/0532Producing by wet processes, e.g. hydrolysing titanium salts by hydrolysing sulfate-containing salts
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/36Compounds of titanium
    • C09C1/3607Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/36Compounds of titanium
    • C09C1/3607Titanium dioxide
    • C09C1/3615Physical treatment, e.g. grinding, treatment with ultrasonic vibrations
    • C09C1/3623Grinding
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values
    • C01P2006/62L* (lightness axis)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values
    • C01P2006/63Optical properties, e.g. expressed in CIELAB-values a* (red-green axis)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values
    • C01P2006/64Optical properties, e.g. expressed in CIELAB-values b* (yellow-blue axis)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the invention relates to a method for reusing acid residue slag in the preparation process of titanium white, in particular to a method for pretreating the acid slag when preparing bismuth white powder by using acid hydrolysis waste residue in titanium white production process.
  • ⁇ White powder the name titanium dioxide ( ⁇ 2 ), is an important white pigment widely used in plastics, paper, printing inks, chemical fiber, rubber, cosmetics and other fields.
  • the production methods are mainly sulfuric acid method and chlorination method. Due to the source of raw materials and technology, most of the existing more than 60 titanium white production plants in China use the sulfuric acid process.
  • the sulfuric acid method is an acid hydrolysis reaction of titanium concentrate and concentrated sulfuric acid to form titanyl sulfate, and then hydrolyzed to form metatitanic acid. After the addition of metatitanic acid, the titanium dioxide product, including anatase, is obtained by calcination, intermediate pulverization and post-treatment. Type and rutile two types of titanium white products.
  • the traditional sulfuric acid production of bismuth white powder mainly includes the following processes: (1) grinding of bismuth ore; (2) strontium ore acid hydrolysis; (3) aging of solid phase obtained by acid hydrolysis; (4) curing product Leaching and sedimentation, obtaining titanium liquid and residue (the residue obtained in this step in the present invention is collectively referred to as acid hydrolysis residue or acid hydrolysis waste residue); (5) concentrated liquid crystal of mash liquid; (6) hydrolysis of titanium liquid; (7) Filtration and water washing of metatitanic acid; (8) Calcination of metatitanic acid; (9) Post-treatment of titanium dioxide.
  • the advantage of the sulfuric acid method is that the ilmenite and sulfuric acid which are easily available at low cost are used as raw materials, and the technology is mature and the equipment is simple.
  • the shortcoming is that the process is long, "three wastes" and many by-products are difficult to handle. Therefore, how to reduce the emission of waste by-products has always been an important issue in China's titanium dioxide industry.
  • the main components of the acid-decomposing slag are ilmenite, zircon, gangue, ferrous sulfate, sediment, free sulfuric acid and partially soluble titanium dioxide which are not involved in the reaction.
  • the literature reports that the main components of the acid slag of a domestic plant (using Liangguang Mine) are tested: Fe 14.9%, A1 2 0 3 22.93%, CaO 8.47%, MgO 6.3%, ⁇ 0 2 44.5%, etc.
  • the former has done some work.
  • the patent of CN101469367A uses the method of water rough selection and magnetic separation to recover the titanium white acid residue;
  • the patent of CN101161353A discloses a sulfuric acid method titanium white.
  • the method of obtaining titanium concentrate by flotation of the acid-decomposing waste it is also reported that the wet residue is mixed with concentrated sulfuric acid and then subjected to pressure acid hydrolysis in a pressure cooker or the wet residue is used as a dilution water.
  • the predecessors' use of acid-decomposed waste residue has the following disadvantages: firstly, the waste residue is treated by the beneficiation method, and the investment and cost are too large; secondly, it is difficult to decompose it by normal acid hydrolysis conditions, generally using pressurized acid hydrolysis and high The acid concentration can be carried out, which increases the cost of acid hydrolysis. Third, the precipitation of titanium dioxide obtained by acid hydrolysis is difficult and the quality is poor, and it is not suitable for the production of high-end chalk powder.
  • the ratio of acid to ore is the key parameter determining the strength and reaction degree of acid hydrolysis reaction.
  • the acidity is large, the heat release is large after the reaction, the reaction rate is fast, the reaction is severe, and the acid ore of the bismuth concentrate is acid-decomposed.
  • the ratio is controlled at 1.5-1.7, the acid ore ratio is high or low, and the reaction is exothermicly insufficient or the exothermic heat is too large to exceed the appropriate reaction temperature range, and the acid hydrolysis rate is lowered.
  • the amount of titanium in the acid residue is relatively low, and the amount of acid required is not too large. When the acid solution is to obtain a suitable F value (acid ratio), the acid toe ratio cannot be too high.
  • the concentration of the reaction acid also has a suitable value.
  • the concentration is too low, and the titanium element in the acid-decomposed slag is not sufficiently soluble to be dissolved, and the concentration is too high, not only isting acid, but also in the acid-decomposed slag.
  • Impurity elements such as silicon and calcium are also dissolved by the reaction, making it difficult to selectively extract the active components in the acid slag and separate the impurities.
  • the acid slag is pretreated to effectively recover most of the titanium element in the acid slag, and the pretreatment product can be returned to the sulphuric acid process to prepare titanium dioxide, which is a problem that the present invention seeks to solve.
  • the object of the present invention is to overcome the above drawbacks and to provide a pretreatment method for preparing titanium dioxide by reusing acid slag.
  • the pretreated product can be returned to the sulphuric acid process to prepare titanium dioxide, and most of the titanium elements in the acid slag are effectively obtained. Recycling, reducing waste emissions, and improving economic efficiency are of great significance for the effective use of resources and environmental protection.
  • the object of the present invention is achieved in that - a method for pretreating the acid slag reuse to prepare titanium dioxide, comprising the following steps:
  • the solid phase is aged at 150 ⁇ 180 ° C for 1 ⁇ 3h ;
  • the method comprises adjusting the composition of the titanium liquid to obtain a mixed titanium liquid, wherein the concentration of the mixed titanium liquid is 120 to 140 g l in terms of Ti0 2 , and the F value is 1.7 to 1.9;
  • the mixed titanium liquid is sedimented and filtered to obtain a titanium liquid, and the content of the suspension of the titanium liquid is less than 500 mg I.
  • the process of the invention is carried out under the condition of acid hydrolysis of titanium concentrate, and the reaction is carried out under boiling under the condition that the ratio of acid to mineral and acid are relatively low, so that most of the active components in the acid residue are titanium and iron.
  • the reaction is carried out, and the impurities such as silicon and calcium contained therein do not substantially react under the acid concentration of the range of the present invention, so that the impurities introduced into the titanium white production are less, and the influence on the product quality is reduced.
  • the acid solution may be prepared by mixing waste acid in a sulfuric acid method titanium white production process with a 98% acid mixture, and adjusting the mass fraction of the sulfuric acid solution by concentrating the waste acid or adding fresh concentrated sulfuric acid to satisfy the process of the invention.
  • the titanium dioxide liquid obtained by the process of the present invention can be subjected to hydrolysis, washing, rinsing, salting, calcining and post-treatment in the process of producing titanium dioxide by the sulfuric acid method, and finally obtains a titanium dioxide product.
  • the acidification rate is improved by increasing the curing temperature and prolonging the curing time, but the temperature is too high and the reaction time is too long, and the acid hydrolysis rate is not obvious. It is suitable to mature at 150 ⁇ 180 ⁇ for l ⁇ 3h. of.
  • the step c of the process is to mix the titanium concentrate acid solution titanium solution with the acid solution slag to dissolve the titanium liquid, the purpose is to improve the composition of the titanium liquid, which is beneficial to the sedimentation of the sputum and the reduction of suspended solids.
  • the acid slag has a ⁇ 0 2 mass fraction of not less than 20% and a total iron content of not less than 10% to ensure process operation and product quality stability.
  • the acid slag is Impurities such as alumina, magnesia, silica, calcium oxide, and ferrous oxide are also allowed.
  • the acid toe ratio is 0.6 to 0.9, and the sulfuric acid solution has a mass fraction of 60 to 90%.
  • the acid toe ratio is 0.7 to 0.8, and the sulfuric acid solution has a mass fraction of 70 to 80%.
  • the mass fraction of the titanium concentrate titanium titanate solution in the mixed titanium liquid obtained in the step c is 50 to 70%, and the mixed titanium liquid is obtained by mixing the liquid after the leaching and the strontium concentrate acid solution titanium solution. Titanium solution.
  • the flocculant-modified polyacrylamide is added to the pre-settling mixed titanium liquid, and the final concentration of the flocculating agent in the mixed titanium liquid is 15-30 ppm, and the addition of the flocculating agent can more effectively reduce the suspended matter content in the mixed titanium liquid, and obtain The clear titanium liquid index is more excellent.
  • titanium concentrate acid solution titanium solution of the present invention refers to an acid solution obtained by acid hydrolysis of titanium concentrate as a raw material according to the prior art, and the various titanium liquids (including mixed titanium)
  • concentration of liquid, titanium, etc. is the concentration in terms of ⁇ 2
  • the ratio of acid to mineral is the mass ratio of sulfuric acid to dry mineral of 100% by mass.
  • the invention has the beneficial effects that the acid hydrolysis slag provided by the invention can be used for the pretreatment method for preparing titanium dioxide, and the acid slag and the waste acid can be effectively reused in the chalk production process, so that the acid slag contains titanium dioxide.
  • the acid hydrolysis rate is over 80%.
  • the pretreated product can be directly used in the sulfuric acid process to prepare titanium dioxide, which can increase the recovery rate of titanium by more than 3%. Most of the titanium elements in the acid residue are effectively recovered and reduced by 30. More than % of the amount of slag, turning waste into treasure, is of great significance for the effective use of resources and environmental protection.
  • Raw materials Acid-decomposed slag particles and titanium concentrate particles, acid-decomposed slag particles and titanium concentrate particles with particle size greater than 45 microns. The proportion of particles is less than 15% (wt%).
  • Table 1 The main components and their contents are shown in Table 1:
  • the flocculant is added in the total mass of 20 ⁇ , after sedimentation for 1h, filtering to obtain titanium liquid; then cooling the titanium liquid to 16'C temperature After crystallization for 1 hour, the crystalline ferrous sulfate was removed, and then concentrated to obtain 2 liters of a concentrated titanium solution having a concentration of 230 g/L.
  • the obtained concentrated titanium liquid is hydrolyzed by autogenous seed crystal, the temperature of the titanium liquid and the bottom water is 95'C when the hydrolysis is added, and the initial reaction concentration of the titanium liquid is 182.5 g / L (concentration by Ti0 2 ), (hydrolysis to concentration) 165 g / L is regarded as the end of the reaction), after the reaction is completed, the hydrolyzed metatitanic acid is washed with 60-70 ° C hot water, and the washed filter cake is made to a concentration of 200 g / L (in terms of ⁇ 2 The concentration of the slurry, at 65 ° C, was added with concentrated sulfuric acid and trivalent titanium for bleaching, after adding, the concentration of concentrated sulfuric acid and trivalent titanium in the slurry were 70g L and 1.5g / L, respectively.
  • the process flow of the embodiment according to the total acid toe ratio of 0.6 and the reaction acid concentration of 60%, firstly, 792 g of the concentrated waste acid having a mass fraction of 50% is placed in a 5000 mL beaker, and 1000 g of dried acid slag is added while stirring. After 10 minutes, keep stirring to add 208 g of 98% concentrated sulfuric acid, then heat the material to boiling, control the heating rate, and carry out the acid hydrolysis in a micro-boiling state.
  • the reaction temperature is 130-140 C, and the reaction time is about 35 minutes to form a solid.
  • the mixture is stopped, the heating reaction is terminated, the obtained solid phase mixture is aged at a temperature for 2 hours, immersed in 1500 mL of water, and the leaching temperature is maintained at 7 QV. After immersing for 2.5 hours, 12 g of iron powder is added to continue leaching for 1.5 hours to obtain an acid.
  • the solution was about 3000 g, and the acid hydrolysis results are shown in Table 2.
  • the concentration of the mixed titanium solution is 125g/l, the F value is 1.7, and the flocculant formaldehyde is added to the mixed titanium solution.
  • Dimethylamine modified polypropylene amine after adding, the flocculant concentration is kept at 20ppm, sedimentation is 1h, and the precipitate is removed by filtration to obtain a clear titanium liquid.
  • the suspended solid content in the clear titanium liquid is less than 500ppm, and the clear liquid is crystallized at a temperature of 16 ⁇ .
  • the obtained titanium liquid is subjected to autogenous seed crystal hydrolysis.
  • the temperature of the titanium liquid and the bottom water is 95'C when the hydrolysis is added, the initial reaction concentration of the titanium liquid is 182.5 g/L, and the hydrolysis to a concentration of 165 g L is regarded as the end of the reaction, and the reaction is finished.
  • the metatitanic acid obtained by the hydrolysis is washed with hot water of 60 ⁇ 70 Torr, and the washed filter cake is slurried into a slurry of 200 g / L concentration, and concentrated sulfuric acid and trivalent titanium are successively added for bleaching at 65 Torr.
  • the concentrations of concentrated sulfuric acid and trivalent titanium in the slurry were 70 g L and 1.5 g/L, respectively, and then washed with 60 Torr of hot water.
  • the washed filter cake is slurried to a concentration of 300 g L (in terms of ⁇ 2), and then the weight ratio of ⁇ 2 ⁇ 5 ⁇ 2 is 0.2, the weight ratio of ⁇ 2 0 ⁇ ⁇ 2 is 0.28, and the weight ratio of ⁇ 1 2 0 ⁇ 0 2 is 0.26.
  • the ratio is sequentially added to the slurry by adding phosphoric acid, potassium hydroxide and aluminum sulfate for salt treatment, and the salt treated metatitanic acid is sent to a muffle furnace and calcined at a temperature of 980 ° C for 2 h, and the calcined product is subjected to surface treatment after grinding to prepare.
  • a finished pigmented rutile titanium dioxide product of 540 g was obtained, and the properties of the finished pigment are shown in Table 3.
  • the process flow of this embodiment according to the total acid toe ratio of 0.7 and the reaction acid concentration of 70%, first put 583 grams of concentrated waste acid with a mass fraction of 50% into a 5000 mL beaker, and add 1000 g of dried acid solution while stirring. After 10 minutes, the slag particles are kept mixed with 417 g of 98% concentrated sulfuric acid, then the material is heated to boiling, and the heating rate is made to carry out the acid hydrolysis in a micro-boiling state, the reaction temperature is maintained at about 140-150, and the reaction time is about 30. The solid phase mixture was formed in minutes, and the heating reaction was stopped.
  • the obtained solid phase mixture was aged at 160 ° C for 2 hours, and then immersed in 1500 mL of water to maintain the leaching temperature of 70 V. After immersing for 2.5 hours, 12 g of iron powder was added. After leaching for 1.5 h, an acid solution of about 3000 g was obtained, and the acid hydrolysis results are shown in Table 2.
  • the concentration of the mixed titanium liquid was 130 g l
  • the F value was 1.8
  • the flocculant formaldehyde was added to the mixed titanium liquid.
  • Methylamine modified polyacrylamide after adding, the flocculant concentration is kept at 20ppm, sedimentation, filtration and separation to remove the precipitate to obtain a clear titanium liquid, the suspended solid content in the titanium liquid is less than 500ppm, and the titanium liquid is crystallized at 16 ° C for 1 hour. Thereafter, the ferrous sulfate crystals were removed, and then concentrated to obtain 3.5 liters of a concentrated titanium solution having a concentration of 230 g.
  • the obtained titanium liquid is hydrolyzed by autogenous seed crystal.
  • the temperature of the titanium liquid and the bottom water is 95 ⁇ when the hydrolysis is added, and the initial reaction concentration of the titanium liquid is 182.5 g / L.
  • the hydrolysis to i65 g L is regarded as the end of the reaction, and after the reaction is finished, 60 ⁇
  • the hot water of 70 is used to wash the hydrolyzate of the bismuth acid.
  • the filter cake after washing is made into a slurry of 200 g / L concentration.
  • concentrated sulfuric acid and trivalent titanium are added successively for bleaching.
  • the concentrations of concentrated sulfuric acid and trivalent titanium in the slurry were 70 g/L and 1.5 g L, respectively, and then washed with 60 ° C hot water. After washing
  • the filter cake is made into a slurry of 300 g / L concentration (calculated as ⁇ 0 2 ), and then the weight ratio of ⁇ 2 0 ⁇ ⁇ 2 is 0.2, ⁇ 2 0 / ⁇ ⁇ 2 is 0.28, and the ratio of ⁇ 120 ⁇ 02 is 0.26.
  • Phosphoric acid, potassium hydroxide and aluminum sulfate were added to the slurry for salt treatment, and the salt-treated metatitanic acid was sent to a muffle furnace and calcined at 980 V for 2 hours, and then polished and surface-treated to obtain a pigment-grade rutile type ruthenium.
  • the finished product of white powder is 790g, and the performance of finished pigment is shown in Table 3.
  • the process flow of the embodiment according to the total acid toe ratio of 0.7 and the reaction acid concentration of 80%, firstly, 328 g of the concentrated waste acid having a mass fraction of 50% is placed in a 5000 mL beaker, and 1000 g of dried acid-decomposed slag is added while stirring. After 10 minutes, keep stirring to add 547 g of 98% concentrated sulfuric acid, then heat the material to boiling, control the heating rate, and let the acid hydrolysis be in a micro-boiling state. The temperature should be 150-160 ° C, and the reaction time should be about 25 minutes. The solid phase mixture is terminated by the anti-stop heating reaction.
  • the obtained solid phase mixture is aged at 160 Torr for 2 hours, and then immersed in 1500 mL of water to maintain the leaching temperature of 70 V. After immersing for 2.5 hours, 12 g of iron powder is added to continue leaching 1.5. h, about 3000g of acid solution was obtained, and the acid hydrolysis results are shown in Table 2.
  • the obtained titanium liquid was subjected to autogenous seed hydrolysis, and the temperature of the mash and bottom water was 95 ⁇ when the hydrolysis was added, and the initial reaction concentration of the mash was 182.5 g fL, and hydrolysis to 165 g IL was regarded as the end of the reaction, and 60-70 was used after the reaction was completed.
  • the hot water of °C washes the metatitanic acid obtained by hydrolysis, and the washed filter cake is slurried into a slurry of 200 g/L. At 65 ° C, concentrated sulfuric acid and trivalent titanium are added successively for bleaching.
  • the concentrations of concentrated sulfuric acid and trivalent titanium in the slurry were 70 g/L and 1.5 g/L, respectively, and then washed with hot water of 60 ° C.
  • the washed filter cake is slurried to a concentration of 300 g / L (calculated as ⁇ 2 2 ), and then the weight ratio of ⁇ 2 0 ⁇ ⁇ 2 is 0.2, and the weight ratio of K 2 0/Ti0 2 is 0.28 and the weight of Al 2 0 ri0 2
  • the ratio of 0.26 is sequentially added to the slurry by adding phosphoric acid, potassium hydroxide and aluminum sulfate for salt treatment, and the salt treated metatitanic acid is sent to a muffle furnace and calcined at 980 V for 2 hours, and then ground and surface-treated.
  • the finished pigment grade rutile titanium dioxide finished product 8i0g, the performance of the finished pigment is shown in Table 3.
  • the solid phase mixture is stopped, the heating reaction is terminated, the obtained solid phase mixture is aged at 160 ° C for 2 hours, and then immersed in 1500 mL of water to maintain the leaching temperature of 70 Torr. After immersing for 2.5 hours, 12 g of iron powder is added to continue leaching. 1.5h, about 3000g of acid solution was obtained, and the acid hydrolysis results are shown in Table 2.
  • the acid solution 70W)g obtained by the method of Comparative Example 1 was uniformly mixed with the acid solution obtained in the present example, and the flocculant formaldehyde dimethylamine modified polyacrylamide was added to the mixed acid solution, and flocculation was carried out after the addition.
  • the concentration of the agent is kept at 20 ppm, and the sedimentation is carried out for 1 hour.
  • the precipitate is removed by filtration to obtain a clear titanium liquid.
  • the content of the suspended solid in the titanium liquid is less than 500 ppm.
  • the ferrous sulfate crystal is removed, and then concentrated.
  • the concentrated titanium solution having a concentration of 230 g L was concentrated to obtain a concentrated solution of 6 g of 230 g L.
  • the obtained titanium liquid is subjected to autogenous seed crystal hydrolysis.
  • the temperature of the titanium liquid and the bottom water is 95 ° C when the hydrolysis is added, the initial reaction concentration of the titanium liquid is 182.5 g IL, and the hydrolysis to 165 g / L is regarded as the end of the reaction, and the reaction is completed.
  • 60-70 • C hot water is used to wash the metatitanic acid obtained by hydrolysis, and the washed filter cake is slurried into a slurry of 200 g/L.
  • At 65 ⁇ , concentrated sulfuric acid and trivalent titanium are added for bleaching.
  • the concentrations of concentrated sulfuric acid and trivalent titanium in the slurry were 70 g L and 1.5 g L, respectively, and then washed with 60 ° C hot water.
  • the washed filter cake is slurried to a concentration of 300 g/L (as Ti0 2 ), and then the weight ratio of ⁇ 2 ⁇ ⁇ 02 is 0.2, the ratio of K 2 0 Ti0 2 is 0.28, and the weight ratio of ⁇ 1 2 0 ⁇ 2 is 0.26.
  • the ratio is sequentially added to the slurry by adding phosphoric acid, potassium hydroxide and aluminum sulfate for salt treatment, and the salt-treated metafluoric acid is sent to a muffle furnace and calcined at 980 ° C for 2 hours, and then ground and surface-treated to obtain a pigment grade.
  • the finished product of rutile titanium dioxide is 1040g, and the pigment properties are shown in Table 3.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

提供一种钛白酸解渣再利用制备钛白粉时的预处理方法,包括将干燥后的酸解渣粉碎好,按一定的酸矿比混合硫酸溶液和酸解渣,升温进行酸解反应,至混合物固化,得固相物,使该固相物保温熟化,用水浸取熟化后的物料,并加入铁粉还原,浸取完成后,通过加入钛精矿酸解钛液的方式调节钛液组成,得混合钛液,对混合钛液进行沉降、过滤,得清钛液。本方法使酸解渣中二氧化钛的酸解率达80%以上,使钛的回收率提高3%以上,减少30%以上的堆渣量。

Description

酸解渣再利用制备钛白粉时的预处理方法 技术领域
本发明涉及钛白制备过程中酸解废渣再利用的方法,具体地说,涉及一种采 用钛白生产过程中的酸解废渣制备钕白粉时, 该酸解渣的预处理方法。
背景技术
钕白粉学名二氧化钛(ΉΟ2), 是一种重要的白色颜料, 广泛应用于塑料、 造纸、 印刷油墨、化纤、橡胶、化妆品等领域。其生产方法主要为硫酸法和氯化 法两种。 由于原料来源及技术等原因, 我国现有的 60余家钛白生产厂中, 绝大 部分采用的是硫酸法工艺。硫酸法是将钛精矿和浓硫酸进行酸解反应生成硫酸氧 钛,然后水解生成偏钛酸,偏钛酸除杂后通过煅烧、 中间粉碎和后处理, 即得到 钛白粉产品,包括锐钛型和金红石型两类钛白产品。传统的硫酸法生产钕白粉主 要包括下列几个过程: (1)钕矿的磨细; (2)钛矿酸解; (3)对酸解所得固相物进 行熟化; (4)熟化产物的浸取和沉降, 得钛液和残渣(本发明中将此步骤所得残 渣均统称为酸解渣或酸解废渣); (5)钕液浓缩结晶; (6)钛液的水解 ; (7)偏钛 酸的过滤、水洗; (8)偏钛酸的煅烧; (9)钛白粉的后处理。硫酸法的优点是能以 低价易得的钛铁矿和硫酸为原料, 技术成熟, 设备简单。 其缺点是流程长, "三 废"及副产物较多, 处理难度较大。因此, 如何减少废副物排放量一直是我国钛 白行业的重要课题。
酸解渣的主要成分是未参与反应的钛铁矿、锆英石、脉石、硫酸亚铁、泥沙、 游离硫酸和部分可溶的二氧化钛。例如文献报道国内某厂的酸解渣 (使用两广矿) 测试的主要成分: Fe 14.9%、 A1203 22.93%. CaO 8.47%、 MgO 6.3%、 Τι02 44.5% 等 [陈朝华, 钛白生产技术问答, Ρ251], 文献报道钕白粉生产中的废渣约占矿 粉的 10%— 15%, 废渣中含 Τι02约 20"44%, 含 Fe约 10—25%。
龙蟒钛业股份有限公司以钛精矿为原料生产钛白产品,采用了先进的酸解工 艺,酸解率达到了 以上,所得酸解渣主要成分如下: Τίθ221.5%, Fe 12.5%, A1203 4.5%, MgO 2.5%, CaO 6.2%, SK¾ 28.2%, 酸解渣中钛的含量只有 21 % 左右。 即使这样, 钕的损失率也有 4%左右, 按照年产 20万吨钕白粉计算, 损 失的钛白粉达到 8000吨, 这是一笔巨大的损失; 每吨钛白粉产生的废渣大概有 300Kg, 每年废渣的数量也有 6万多吨, 如果能够将硫酸法生产钛白粉时酸解过 替换页 (细则第 26条) 程沉降的废渣合理利用, 不仅可以减少环境污染, 还可以提高资源的循环利用, 回收钛和其他有价的金属, 获得可观的社会效益和经济效益。
为开发利用酸解废渣,前人已经做过一些工作,例如公开号 CN101469367A 的专利采用水粗选和磁选的方法回收钛白酸解残渣;公开号 CN101161353A的专 利报道了一种硫酸法钛白酸解废料通过浮选获得钛精矿的方法;也有些报道将湿 残渣与浓硫酸配料后在压力锅内进行加压酸解或者将湿渣作为稀释水使用。 前 人对酸解废渣的利用存在以下几个缺点:首先通过选矿的方法处理废渣,投资和 成本上过大;其次难用正常的酸解条件将其分解,一般采用加压酸解和很高的酸 浓度才能够进行,这就增加了酸解的成本;第三,酸解得到的钛白粉的沉降很难, 质量较差, 不宜于生产高端的钕白粉。
硫酸法生产钛白粉工艺中,酸矿比是决定酸解反应强度、反应程度的关键参 数, 酸度大, 引发反应后放热量大, 反应速度快, 反应剧烈, 一般钕精矿酸解的 酸矿比控制在 1.5-1.7,酸矿比高或低,易致反应放热不足或放热量过大超过适宜 的反应温度范围, 降低酸解率。 酸解渣含钛量比较低, 所需要的酸量不能太多, 酸解液要得到合适的 F值 (酸比值)时, 酸矿比就不能太高。 在适宜的酸矿比下, 反应酸浓度也有一个适宜的值,浓度太低,酸解渣内的钛元素不能充分反应就难 以溶解出来,而浓度太高, 不但浪费酸, 而且酸解渣内硅、钙等含量较高的杂质 元素也被反应溶解出来,使选择性提取酸解渣中的有效成分并使杂质分离具有较 大难度。对酸解渣进行预处理,使酸解渣中绝大部分钛元素得到有效回收,预处 理产物能够返回硫酸法工艺制备钛白粉, 是本发明力图解决的问题。
发明内容
本发明的目的在于克服所述缺陷,提供一种酸解渣再利用制备钛白粉时的预 处理方法,预处理产物能够返回硫酸法工艺制备钛白粉,酸解渣中绝大部分钛元 素得到有效回收, 降低废弃物排放量,提高经济效益,对资源的有效利用及环境 保护具有重要意义。
本发明的目的是这样实现的 - 一种酸解渣再利用制备钛白粉时的预处理方法, 包括如下歩骤:
a、取干燥并粉碎的酸解渣,一般粉碎至大于 45微米颗粒的比例小于渣料总重量 的 15% (wt%); 再将酸解渣加入浓硫酸溶液中, 其中浓硫酸和酸解渣的质量比
替换页 (细则第 26条) 例为 0.6~0.9 (即酸矿比), 然后加水调到硫酸溶液质量分数为 60〜90% (即反 应浓度),加热使固液混合物达到 130〜150Γ引发温度下进行酸解发应直至混合 物固化, 反应时间一般为 10-30分钟, 得固相物;
b、 使所述固相物在 150〜180'C温度下熟化 l〜3h;
c、 于 60〜75Ό温度用水浸取熟化后的物料, 浸取时间为 3〜5h, 浸取 2小时后 加入具有还原作用的铁粉,浸取完成后通过加入钛精矿酸解钛液的方式调节钛液 组成, 得混合钛液, 所述混合钛液的浓度以 Ti02计为 120〜140g l, F值为 1.7〜 1.9;
d、 对混合钛液进行沉降, 过滤, 得清钛液, 所述清钛液的悬浮物的含量小于 500mg I。
本发明的工艺是在相对钛精矿酸解的条件,采用酸矿比和酸浓度都比较低度 情况下,使反应在沸腾下进行,从而把酸解渣中大部分的有效成分钛、铁的反应 出来,而它所含硅, 钙等杂质在本发明所述范围的酸浓度下基本不反应,这样带 入钛白生产中的杂质比较少,减少对产品质量的影响。所述酸溶液可以采用硫酸 法钛白生产工艺中的废酸再加点 98%酸混合而成,可以通过浓缩废酸或添加新鲜 浓硫酸的方式调节硫酸溶液的质量分数, 以满足本发明工艺的要求;本发明工艺 得到的清钛液可以返回硫酸法生产钛白粉的工艺中进行水解、洗涤、漂洗、盐处 理、 煅烧和后处理等操作, 最后得到钛白粉产品。
本工艺中,提高熟化温度及延长熟化时间对酸解率有一定提高,但温度过高 和反应时间过长, 酸解率提高效果不明显, 在 150~180Ό温度下熟化 l〜3h是 较为适宜的。本工艺的步骤 c是将钛精矿酸解钛液与酸解渣酸解后的钛液进行混 合, 目的是改善钛液组成, 有利于钕液的沉降, 减少悬浮物。
优选的,所述酸解渣中 Ή02质量分数不低于 20%,总铁的含量不低于 10%, 以保证工艺运行及产品质量的稳定,在本工艺中,所述酸解渣中还允许含有氧化 铝、 氧化镁、 氧化硅、 氧化钙及氧化亚铁等杂质。
优选的, 所述酸矿比为 0.6〜0.9, 所述硫酸溶液的质量分数为 60〜90%。 优选的, 所述酸矿比为 0.7〜0.8, 所述硫酸溶液的质量分数为 70〜80%。 优选的,步骤 c所得混合钛液中钛精矿钛酸解钛液质量分数为 50〜70%,所 述混合钛液是指浸取完成后的液体与钕精矿酸解钛液混合所得的钛液。
替换页 (细则第 26条) 优选的,沉降前向混合钛液中加入絮凝剂改性聚丙烯酰胺,絮凝剂在混合钛 液中的终浓度为 15-30ppm, 加入絮凝剂可更有效降低混合钛液中悬浮物含量, 得到的清钛液指标更优异。
需要说明的是, 本发明所述钛精矿酸解钛液是指按现有工艺以钛精矿为原 料, 用硫酸进行酸解后所得酸解液, 所述各种钛液(包括混合钛液、 清钛液等) 的浓度均是以 Ήθ2计的浓度,酸矿比是指 100%质量分数的硫酸与干矿物的质量 比。
本发明的有益效果:本发明所提供的酸解渣再利用制备钛白粉时的预处理方 法,能够有效实现钕白生产过程中酸解渣及废酸的再利用,使酸解渣所含二氧化 钛的酸解率达到 80%以上, 预处理所得产品能够直接用于硫酸法工艺制备钛白 粉, 使钛的回收率提高 3%以上, 酸解渣中绝大部分钛元素得到有效回收, 并减 少 30%以上的堆渣量, 变废为宝, 对资源的有效利用及环境保护具有重要意义。 具体实施方式 以下结合具体实施例对本发明进行进一步的说明。
原料: 酸解渣颗粒和钛精矿颗粒, 酸解渣颗粒及钛精矿颗粒中粒度大于 45微米 颗粒比例均小于 15% (wt%), 主要成分及其含量如表 1 :
表 1
Figure imgf000005_0001
对比例 1
按酸矿质量比 1.65将 1683克 98%的浓硫酸放入 5000mL的烧杯,边搅拌边加入 1000g钛精矿颗粒, 混合均匀后, 加入 281g水调节硫酸质量分数为 84%后, 撹 拌并升高反应体系的温度至〗50Ό,停止加热,酸解反应自发进行,最高温度 189 替换页 (细则第 26条) 'C, 约 6分钟后直至生成固相混合物, 主反应结束。取所得固相混合物置于 180 Ό温度下熟化 1.5小时后, 加水 2500mL浸取, 维持浸取温度 70Ό,浸取总时间 为 4小时,浸取开始 2.5h后加入 30g铁粉进行还原,得酸解液,酸解结果见表 2。
向所得酸解液中加入絮凝剂二甲铵改性聚丙酰胺进行沉降,絮凝剂加入量为 总质量的 20ρριη, 沉降 lh后过滤, 得清钛液; 再将清钛液降温至 16'C温度下结 晶 1小时, 去除结晶体硫酸亚铁后, 浓缩制得浓度为 230g/L的浓钛液 2升。
将所得浓钛液迸行自生晶种水解, 水解加料时钛液和底水的温度为 95'C, 钛液初始反应浓度为 182.5 g /L (以 Ti02计的浓度), (水解到浓度为 165 g /L视 为反应结束),反应结束后用 60-70'C的热水对水解得到的偏钛酸进行洗涤,洗涤 后的滤饼打成浓度为 200 g /L (以 ΉΟ2计的浓度,)的料浆, 在 65°C温度下, 先 后加入浓硫酸和三价钛进行漂白,加入后使料浆中浓硫酸和三价钛的浓度分别为 70g L和 1.5g/L, 然后用 60'C的热水洗去洗涤。洗涤后的滤饼打成 300 g /L浓度 (以 Ήθ2计)的料浆, 再按 Ρ20 Π02重量比为 0.2、 Κ20/Γι02重量比为 0.28和 Α120 Πθ2重量比为 0.26的比例一次向浆料中加入磷酸、氢氧化钾和硫酸铝进行 盐处理(按磷酸、 氢氧化钾和硫酸铝的先后顾序加入到浆料中), 将盐处理后的 偏钛酸送至马弗炉于 980Ό温度煅烧 2h,煅烧产物经研磨后进行表面处理,得到 颜料级金红石型钛白粉成品 440g, 产品颜料性能见表 3。
实施例 1
本实施例的工艺流程: 按总酸矿比 0.6和反应酸浓度为 60%,先将 792克质量分 数为 50%的浓缩废酸放入 5000mL的烧杯,边搅拌边加入 lOOOg干燥的酸解渣颗 粒, 10分钟后保持搅拌加入 208克 98%的浓硫酸, 然后加热物料至沸腾, 控制 加热速度, 使酸解处于微沸状态下进行, 反应温度 130-140 C , 反应时间约 35 分钟生成固相混合物, 停止加热反应结束, 将所得固相混合物置于 温度下 熟化 2小时, 加水 1500mL浸取, 维持浸取的温度 7QV,浸取 2.5h后加入 12g 铁粉继续浸取 1.5h后得到酸解液约 3000g, 酸解结果见表 2。
取对比例 1所得酸解液 3000g与本实施例所得酸解液混合均匀,得混合钛液, 混合钛液的浓度为 125g/l, F值为 1.7, 再向混合钛液中加入絮凝剂甲醛二甲胺 改性聚丙烯酷胺, 加入后使絮凝剂浓度保持 20ppm, 沉降 lh, 过滤分离除去沉 淀得到清钛液, 清钛液中悬浮物含量小于 500ppm, 将清钕液于 16Ό温度下结晶
替换页 (细则第 26条) lh除去硫酸亚铁结晶, 浓缩得浓度为 230g/L的浓钛液 2.4升。
将所得钛液进行自生晶种水解, 水解加料时钛液和底水的温度为 95'C, 钛 液初始反应浓度为 182.5 g/L, 水解到浓度为 165 g L视为反应结束, 反应结束 后用 60·70Ό的热水对水解得到的偏钛酸进行洗涤, 洗涤后的滤饼打成 200 g /L 浓度的料浆, 在 65Ό温度下, 先后加入浓硫酸和三价钛进行漂白, 加入后使料 浆中浓硫酸和三价钛的浓度分别为 70g L和 1.5g/L,然后用 60Ό的热水洗去洗涤。 洗涤后的滤饼打成 300 g L (以 ΉΟ2计)浓度的料浆, 再按 Ρ2θ5 ιθ2重量比为 0.2、 Κ20 Πθ2重量比为 0.28和 Α120 Π02重量比为 0.26的比例依次向浆料中加 入磷酸、氢氧化钾和硫酸铝进行盐处理, 将盐处理后的偏钛酸送至马弗炉于 980 'C温度煅烧 2h, 煅烧产物经研磨后进行表面处理, 制备得到颜料级金红石型钛 白粉成品 540g, 成品颜料性能见表 3。
实施例 2
本实施例的工艺流程: 按总酸矿比 0.7和反应酸浓度为 70%, 先将 583克质量分 数为 50%的浓縮废酸放入 5000mL的烧杯,边搅拌边加入 1000g干燥的酸解渣颗 粒, 10分钟后保持撹拌加入 417克 98%的浓硫酸, 然后加热物料至沸腾, 制加 热速度, 使酸解处于微沸状态下进行, 反应温度基本保持 140-150 左右, 反应 时间约 30分钟生成固相混合物,停止加热反应结束,将所得固相混合物置于 160 'C温度下熟化 2小时后, 加水 1500mL浸取, 维持浸取的温度 70V,浸取 2.5h 后加入 12g铁粉继续浸取 1.5h, 得到酸解液约 3000g, 酸解结果见表 2。
取对比例 1所得酸解液 5000g与本实施例所得酸解液混合均匀,得混合钕液, 混合钛液的浓度为 130g l, F值为 1.8, 再向混合钛液中加入絮凝剂甲醛二甲胺 改性聚丙烯酰胺, 加入后使絮凝剂浓度保持 20ppm, 沉降 , 过滤分离除去沉 淀得到清钛液, 清钛液中悬浮物含量小于 500ppm, 将清钛液于 16°C温度下结晶 lh后, 去除硫酸亚铁结晶, 然后浓缩得浓度为 230g L的浓钛液 3.5升。
将所得钛液进行自生晶种水解, 水解加料时钛液和底水的温度为 95Ό , 钛 液初始反应浓度为 182.5 g /L,水解到 i65 g L视为反应结束,反应结束后用 60~70 的热水对水解得到的偏钕酸进行洗涤, 洗漆后的滤饼打成 200 g /L浓度的料 浆, 在 65Ό温度下, 先后加入浓硫酸和三价钛进行漂白, 加入后使料浆中浓硫 酸和三价钛的浓度分别为 70g/L和 1.5g L,然后用 60'C的热水洗去洗涤。洗涤后
替换页 (细则第 26条) 的滤饼打成 300 g /L浓度(以 Ή02计) 的料浆, 再按 Ρ20 Πθ2重量比为 0.2、 Κ20/Ήθ2重量比为 0.28和 Α120 Π02重量比为 0.26的比例依次向浆料中加入磷 酸、 氢氧化钾和硫酸铝进行盐处理, 将盐处理后的偏钛酸送至马弗炉于 980 V 温度煅烧 2h后' 进行研磨及表面处理, 得到颜料级金红石型钕白粉成品 790g, 成品颜料性能见表 3。
实施例 3
本实施例的工艺流程:按总酸矿比 0.7和反应酸浓度为 80%, 先将 328克质量分 数为 50%的浓缩废酸放入 5000mL的烧杯,边搅拌边加入 lOOOg干燥的酸解渣颗 粒, 10分钟后保持搅拌加入 547克 98%的浓硫酸, 然后加热物料至沸腾, 控制 加热速度,使酸解处于微沸状态下进行,应温度 150-160°C,反应时间约 25分钟 生成固相混合物, 反停止加热反应结束, 将所得固相混合物置于 160Ό温度下熟 化 2小时后, 加水 1500mL浸取, 维持浸取的温度 70V,浸取 2.5h后加入 12g 铁粉继续浸取 1.5h, 得到酸解液约 3000g, 酸解结果见表 2。
取对比例 1所得酸解液 5000g与本实施例所得酸解液混合均匀,得混合钛液, 混合钛液的浓度为 135g I, F值为 1.9, 再向混合钦液中加入絮凝剂甲醛二甲胺 改性聚丙烯酰胺, 加入后使絮凝剂浓度保持 20ppm, 沉降 lh, 过滤分离除去沉 淀得到清钛液, 清钛液中悬浮物含量小于 500ppm,将清钛液于 16'C温度下结晶 lh后, 去除硫酸亚铁结晶, 然后浓缩得浓度为 230g/L的浓钛液 3.6升。
将所得钛液进行自生晶种水解, 水解加料时钕液和底水的温度为 95Ό, 钕 液初始反应浓度为 182.5 g fL,水解到 165 g IL视为反应结束,反应结束后用 60-70 °C的热水对水解得到的偏钛酸进行洗涤, 洗涤后的滤饼打成 200 g/L浓度的料 浆, 在 65'C温度下, 先后加入浓硫酸和三价钛进行漂白, 加入后使料浆中浓硫 酸和三价钛的浓度分别为 70g/L和 1.5g/L,然后用 60'C的热水洗去洗涤。洗涤后 的滤饼打成 300 g /L浓度(以 Τί02计) 的料浆, 再按 Ρ20 Πθ2重量比为 0.2、 K20/Ti02重量比为 0.28和 Al20 ri02重量比为 0.26的比例依次向浆料中加入磷 酸、 氢氧化钾和硫酸铝进行盐处理, 将盐处理后的偏钛酸送至马弗炉于 980 V 温度煅烧 2h后, 进行研磨及表面处理, 得到颜料级金红石型钛白粉成品 8i0g, 成品颜料性能见表 3。
实施例 4
替换页 (细则第 26条) 本实施例的工艺流程: 按总酸矿比 0.8和反应酸浓度为 80%,先将 375克质量分 数为 50%的浓缩废酸放入 5000mL的烧杯,边搅拌边加入 1000g干燥的酸解渣颗 粒, 10分钟后保持搅拌加入 625克 98%的浓硫酸, 然后加热物料至沸腾, 控制 加热速度, 使酸解处于微沸状态下进行, 反应温度 150-160"C, 反应时间约 20 分钟生成固相混合物, 停止加热反应结束, 将所得固相混合物置于 160'C温度下 熟化 2小时后,加水 1500mL浸取,维持浸取的温度 70Ό,浸取 2.5h后加入 12g 铁粉继续浸取 1.5h, 得到酸解液约 3000g, 酸解结果见表 2。
取按对比例 1方法得到的酸解液 70W)g和本例所得酸解液均匀混合,再向混 合后的酸解液中加入絮凝剂甲醛二甲胺改性聚丙烯酰胺,加入后使絮凝剂浓度保 持 20ppm, 沉降 lh, 过滤分离除去沉淀得到清钛液, 清钛液中悬浮物含量小于 500ppm,将清钛液于 16'C温度下结晶 lh后,去除硫酸亚铁结晶,然后浓缩得浓 度为 230g L的浓钛液浓缩得浓度为 230g L的浓钕液 .6升。
将所得钛液进行自生晶种水解, 水解加料时钛液和底水的温度为 95°C, 钛 液初始反应浓度为 182.5 g IL,水解到 165 g /L视为反应结束,反应结束后用 60-70 •C的热水对水解得到的偏钛酸进行洗涤, 洗涤后的滤饼打成 200 g/L浓度的料 浆, 在 65Γ温度下, 先后加入浓硫酸和三价钛进行漂白, 加入后使料桨中浓硫 酸和三价钛的浓度分别为 70g L和 1.5g L,然后用 60'C的热水洗去洗涤。洗涤后 的滤饼打成 300 g/L浓度(以 Ti02计)的料浆, 再按 Ρ2Ο Π02重量比为 0.2、 K20 Ti02重量比为 0.28和 Α120 Πθ2重量比为 0.26的比例依次向浆料中加入磷 酸、 氢氧化钾和硫酸铝进行盐处理, 将盐处理后的偏钕酸送至马弗炉于 980 'C 温度煅烧 2h后, 进行研磨及表面处理, 得到颜料级金红石型钛白粉成品 1040g, 颜料性能见表 3。
表 2 ^½«w^果
Figure imgf000009_0001
替换页 (细则第 26条) 表 3各^^品的磨職
Figure imgf000010_0001
最后需要说明, 以上实施例仅用于说明本发明的技术方案而非限制,尽管参 照较佳实施例对本发明的技术方案进行了详细说明, 本领域技术人员应当理解, 可以对本发明的技术方案进行修改或者等同替换, 而不脱离本发明的宗旨和范 围, 其均应涵盖在本发明的保护范围当中。
替换页 (细则第 26条)

Claims

1.一种酸解渣再利用制备钛白粉时的预处理方法, 其特征在于: 包括如下步骤: a、 取干燥并粉碎的酸解渣, 按 0.5〜0.9酸矿比使硫酸溶液与所述酸解渣混合, 于 130〜150Ό引发温度下进行酸解发应, 直至混合物固化, 得固相物, 所述硫 酸溶液质量分数为 60〜90%;
b、 步骤 a所得固相物在 150〜180'C保温下熟化 l〜3h;
c、 于 60~75Γ温度用水浸取熟化后的物料, 浸取总时间为 3〜5h, 并在浸取 2 小时后加入具有还原作用的铁粉,浸取完成后通过加入钛精矿酸解钛液的方式调 节钛液组成, 得混合钕液, 所述混合钛液的浓度以 Ti02计为 120〜140g l, F值 为 1;?〜 1.9;
d、 对混合钛液进行沉降, 过滤, 得清钛液, 所述清钛液的悬浮物的含量小于
2.根据权利要求 1所述的方法, 其特征在于: 所述酸解渣中 T )2质量分数不低 于 20%, 总铁的含量不低于 10%。
3.根据权利要求〗或 2所述的方法, 其特征在于- 所述酸矿比为 0. 5〜0.9, 所 述硫酸溶液的质量分数为 60〜90%。
4.根据权利要求 3所述的方法,其特征在于:所述酸矿比优选为 0.6〜0.8,所述 硫酸溶液的质量分数优选为 70〜80%。
5.根据权利要求 4所述的方法, 其特征在于: 所述混合钛液中钕精矿酸解钛液 的质量分数为 50〜70%。
6.根据权利要求 5所述的方法, 其特征在于: 步骤 d中, 沉降前向混合钛液中 加入絮凝剂改性聚丙烯酰胺, 絮凝剂在混合钛液中的终浓度为 15-30ppm。
替换页 (细则第 26条)
PCT/CN2012/078192 2011-08-04 2012-07-04 酸解渣再利用制备钛白粉时的预处理方法 WO2013017000A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2011102218500A CN102336433A (zh) 2011-08-04 2011-08-04 酸解渣再利用制备钛白粉时的预处理方法
CN201110221850.0 2011-08-04

Publications (1)

Publication Number Publication Date
WO2013017000A1 true WO2013017000A1 (zh) 2013-02-07

Family

ID=45512441

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/078192 WO2013017000A1 (zh) 2011-08-04 2012-07-04 酸解渣再利用制备钛白粉时的预处理方法

Country Status (2)

Country Link
CN (1) CN102336433A (zh)
WO (1) WO2013017000A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110835120A (zh) * 2019-12-04 2020-02-25 龙佰四川钛业有限公司 一种钛精矿高效酸解工艺

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102336433A (zh) * 2011-08-04 2012-02-01 四川龙蟒钛业股份有限公司 酸解渣再利用制备钛白粉时的预处理方法
CN102602990B (zh) * 2012-03-31 2014-01-08 四川龙蟒钛业股份有限公司 硫酸法生产钛白粉中酸解渣的回收利用方法
CN102830200A (zh) * 2012-08-21 2012-12-19 攀钢集团攀枝花钢铁研究院有限公司 一种检测含钛矿物酸解率的方法
CN104176770A (zh) * 2013-05-20 2014-12-03 山东道恩钛业有限公司 全钛渣制备硫酸氧钛溶液的方法
CN103342387A (zh) * 2013-07-15 2013-10-09 贵州东华工程股份有限公司 采用钛精矿和酸溶性钛渣为原料硫酸法生产钛白粉的方法
CN103359784B (zh) * 2013-08-06 2015-06-17 石海东 连续自流式硫酸法生产钛白的酸解工艺及其装置
CN106745232B (zh) * 2017-02-24 2018-09-11 四川龙蟒钛业股份有限公司 一种水解垢的回收利用方法
CN106966427B (zh) * 2017-03-14 2019-10-08 襄阳龙蟒钛业有限公司 一种酸解钛液的净化方法及用于方法中的过滤器
CN107720810A (zh) * 2017-10-10 2018-02-23 攀钢集团研究院有限公司 钛白废酸循环利用的方法
CN108217723B (zh) * 2018-03-08 2020-03-20 四川龙蟒钛业股份有限公司 一种有效提高酸解产能的方法
CN108675344A (zh) * 2018-06-08 2018-10-19 龙蟒佰利联集团股份有限公司 一种硫酸法钛白酸解生产工艺
CN110776005A (zh) * 2019-12-04 2020-02-11 龙佰四川钛业有限公司 一种高效硫酸法钛白粉酸解工艺
CN113213529B (zh) * 2021-05-26 2022-08-02 攀钢集团攀枝花钢铁研究院有限公司 硫酸法钛白生产及其钛白废酸中偏钛酸的回收利用方法
CN113430391A (zh) * 2021-07-16 2021-09-24 沈阳有色金属研究院有限公司 一种低温焙烧-水浸处理钛白酸解残渣的方法
CN114436323A (zh) * 2021-12-28 2022-05-06 龙佰襄阳钛业有限公司 一种酸解浸取温度控制工艺
CN115321592A (zh) * 2022-09-21 2022-11-11 中国有色集团(广西)平桂飞碟股份有限公司 一种可提高连续酸解反应酸解钛液质量的预处理方法
CN115536061B (zh) * 2022-11-04 2024-01-26 攀枝花东方钛业有限公司 一种低品位钛矿制备硫酸氧钛的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1499752A2 (en) * 2002-04-19 2005-01-26 Millennium Inorganic Chemicals, Inc. Sulfuric acid beneficiation of titaniferous ore for the production of tio2
WO2007052801A1 (ja) * 2005-11-07 2007-05-10 Tohoku University ルチルの抽出方法
CN101323465A (zh) * 2008-07-25 2008-12-17 攀钢集团研究院有限公司 酸解酸溶性钛渣的方法
CN101857269A (zh) * 2010-06-25 2010-10-13 四川龙蟒钛业股份有限公司 新流程钛渣和钛精矿混合酸解制备钛白粉的方法
CN101935063A (zh) * 2009-09-02 2011-01-05 沙立林 高钛盐酸浸出渣、其新用途及钛白粉的制备方法
CN102277489A (zh) * 2011-08-05 2011-12-14 攀钢集团有限公司 酸解含钛渣的方法
CN102336433A (zh) * 2011-08-04 2012-02-01 四川龙蟒钛业股份有限公司 酸解渣再利用制备钛白粉时的预处理方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001261340A (ja) * 2000-03-22 2001-09-26 Mitsui Chemicals Inc チタン化合物の回収方法および回収したチタンの利用法
CN101898791B (zh) * 2010-06-25 2012-10-03 四川龙蟒钛业股份有限公司 一种利用新流程钛渣制备金红石钛白粉的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1499752A2 (en) * 2002-04-19 2005-01-26 Millennium Inorganic Chemicals, Inc. Sulfuric acid beneficiation of titaniferous ore for the production of tio2
WO2007052801A1 (ja) * 2005-11-07 2007-05-10 Tohoku University ルチルの抽出方法
CN101323465A (zh) * 2008-07-25 2008-12-17 攀钢集团研究院有限公司 酸解酸溶性钛渣的方法
CN101935063A (zh) * 2009-09-02 2011-01-05 沙立林 高钛盐酸浸出渣、其新用途及钛白粉的制备方法
CN101857269A (zh) * 2010-06-25 2010-10-13 四川龙蟒钛业股份有限公司 新流程钛渣和钛精矿混合酸解制备钛白粉的方法
CN102336433A (zh) * 2011-08-04 2012-02-01 四川龙蟒钛业股份有限公司 酸解渣再利用制备钛白粉时的预处理方法
CN102277489A (zh) * 2011-08-05 2011-12-14 攀钢集团有限公司 酸解含钛渣的方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110835120A (zh) * 2019-12-04 2020-02-25 龙佰四川钛业有限公司 一种钛精矿高效酸解工艺

Also Published As

Publication number Publication date
CN102336433A (zh) 2012-02-01

Similar Documents

Publication Publication Date Title
WO2013017000A1 (zh) 酸解渣再利用制备钛白粉时的预处理方法
CN101857269B (zh) 新流程钛渣和钛精矿混合酸解制备钛白粉的方法
RU2736539C1 (ru) Способ получения оксида ванадия батарейного сорта
RU2726540C1 (ru) Способ выделения ванадия и хрома из ванадиево-хромового шлака
CN104694761A (zh) 一种钒渣钠化焙烧提钒工艺钒液提钒的方法
CN101898791A (zh) 一种利用新流程钛渣制备金红石钛白粉的方法
CN106892453A (zh) 水洗滤液用于酸解浸取的方法
CN109055724B (zh) 从铬钒矿/渣中提取钒和铬的方法
WO2013143236A1 (zh) 硫酸法生产钛白粉中酸解渣的回收利用方法
CN108423710B (zh) 一种硫酸法色料搪瓷钛白粉制备方法
WO2013020431A1 (zh) 一种钛白粉废酸浓缩渣回收利用方法
WO2017101746A1 (zh) 一种铝土矿高效快速脱硅方法
CN109500059A (zh) 一种硫化砷渣转型及微胶囊固化稳定化方法
CN109762991A (zh) 一种含铬电镀污泥中重金属选择性分离回收工艺
CN102849783A (zh) 利用低品位氧化锌矿氨法脱碳生产高纯纳米氧化锌的方法
CN104263947A (zh) 一种含稀土催化剂污泥资源化回收工艺
EP0186370A2 (en) Titanium dioxide pigment production from ilmenite
CN104129816B (zh) 一种钛白浓缩酸除铁的方法
CN109019687B (zh) 一种利用高铬型钒渣制备五氧化二钒和三氧化二铬的方法
CN114368781A (zh) 一种含钛渣中钛的有效回收利用及提升副产物价值的方法
CN110306065A (zh) 一种钒渣制备偏钒酸铵的方法
CN106219614A (zh) 利用钛白废酸生产低钛亚铁渣的方法
CN113213529A (zh) 硫酸法钛白生产及其钛白废酸中偏钛酸的回收利用方法
CN1315723C (zh) 以高岭石类矿物为原料制备二氧化硅和硫酸铝的方法
CN109182868B (zh) 一种低杂质钒铝合金及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12820229

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12820229

Country of ref document: EP

Kind code of ref document: A1