WO2013016892A1 - 一种高强高模聚酰亚胺纤维及其制备方法 - Google Patents

一种高强高模聚酰亚胺纤维及其制备方法 Download PDF

Info

Publication number
WO2013016892A1
WO2013016892A1 PCT/CN2011/080401 CN2011080401W WO2013016892A1 WO 2013016892 A1 WO2013016892 A1 WO 2013016892A1 CN 2011080401 W CN2011080401 W CN 2011080401W WO 2013016892 A1 WO2013016892 A1 WO 2013016892A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyimide fiber
dianhydride
temperature
aminophenyl
molar ratio
Prior art date
Application number
PCT/CN2011/080401
Other languages
English (en)
French (fr)
Inventor
武德珍
牛鸿庆
齐胜利
韩恩林
闫晓娜
田国峰
吴战鹏
Original Assignee
北京化工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京化工大学 filed Critical 北京化工大学
Priority to US13/726,489 priority Critical patent/US9428614B2/en
Publication of WO2013016892A1 publication Critical patent/WO2013016892A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1085Polyimides with diamino moieties or tetracarboxylic segments containing heterocyclic moieties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/18Polybenzimidazoles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D1/00Treatment of filament-forming or like material
    • D01D1/02Preparation of spinning solutions
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D10/00Physical treatment of artificial filaments or the like during manufacture, i.e. during a continuous production process before the filaments have been collected
    • D01D10/02Heat treatment
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/06Wet spinning methods
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/12Stretch-spinning methods
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/78Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolycondensation products

Definitions

  • the invention belongs to the technical field of high performance organic fibers, and particularly relates to a high strength and high modulus polyimide fiber and a preparation method thereof.
  • Polyimide (PI) fiber is a kind of high-performance fiber with high strength, high temperature resistance, low temperature resistance and radiation resistance. It also has good biocompatibility and dielectric properties. Atomic energy industry, space environment, rescue needs, aerospace, defense construction, new construction, high speed, transportation, marine development, sports equipment, new energy, environmental industry and protective equipment are widely used.
  • the preparation of polyimide fibers mainly includes a one-step method and a two-step method.
  • the one-step technical route is as follows: a polyimide solution is used as a spinning slurry, and a polyimide dimension is spun by a wet method or a wet method.
  • the fiber has a certain strength after preliminary stretching, and after removing the solvent, heat is performed. Tensile and heat treatment (300 °C - 500 °C), high strength and high modulus polyimide fiber can be obtained.
  • the spinning process of the method is simple, but from the current synthesis of polyimide, the commonly used solvent is phenol, and the phenolic solvent (such as cresol, p-chlorophenol) is not only toxic, but also in the fiber.
  • the residual amount is large, it is difficult to remove, it is not environmentally friendly, and industrialization is difficult.
  • the one-step technique has high requirements on the solubility of polyimide, which greatly reduces the corrosion resistance of polyimide fiber. And heat resistance.
  • the method of preparing a polyimide fiber by a one-step method is disclosed in the US Patent No. 4, 370, 290 and US Pat. No. 5,378,420.
  • the other is a two-step process: First, a concentrated solution of polyamic acid is sprayed by wet or wet method to obtain a polyamic acid fiber, and then the first-spun polyamic acid fiber is chemically cyclized or The polyimide fiber obtained by thermal cyclization.
  • Polyimide fibers are prepared by this method as disclosed in Japanese Laid-Open Patent Publication Nos. 322887815 and JP4018115.
  • the method has the advantages of: solving the problem that the processing property of the polyimide fiber is infusible and insoluble
  • the problem is that there are many kinds of synthetic raw materials and solvents, and the toxicity is small.
  • the residual amount of solvent in Weiwei is low, which is suitable for industrial production.
  • the disadvantage is that the polyimide fiber prepared by the method generally has low mechanical properties.
  • Chinese Patent Application No. 20071005065L1 discloses a polyimide fiber containing a benzimidazole structure and a preparation method thereof, which comprises 2 (; 4 aminophenyl) 5 ⁇ aminobenzimidazole and The dianhydride is prepared by a ratio of 1:1 to prepare a polyamic acid spinning solution, and then the polyamic acid spinning solution is spun to prepare a polyamic acid precursor, and the polyamic acid precursor is finally thermally imidized.
  • a polyimide fiber having a tensile strength of 0.73 to 1.53 GPa and an initial modulus of 45.2 to 220 GPa; and Chinese Patent Application No. 201010572496.1 discloses a pyromellitic dianhydride, p-phenylenediamine and 2.
  • the problem to be solved by the present invention is to overcome the deficiencies in the above preparation method, further improve the mechanical properties of the polyimide fiber, and to achieve the performance of the high-strength high-modulus polyimide fiber.
  • the invention provides a polyimide obtained by random copolymerization of biphenyl dianhydride (BPDA), p-phenylenediamine (pPDA) and 2 (4-aminophenyl) 5-aminobenzimidazole (BIA). ⁇ , wherein the molar ratio of p-phenylenediamine to 2-(4-aminophenyl)-5-aminobenzimidazole is 1:10 ⁇ 3: 1, and the prepared polyimide fiber has tensile strength of 3.0 ⁇ 4.5GPa, initial modulus is 110 - 201GPa.
  • BPDA biphenyl dianhydride
  • pPDA p-phenylenediamine
  • BIOA 2-(4-aminophenyl)-5-aminobenzimidazole
  • the above polyimide fiber also includes copolymerization with other diamine or/and dianhydride monomers, and the amount of other diamine added is equivalent to p-phenylenediamine, 2 (4 aminophenyl) ⁇
  • the molar ratio of the total amount of the aminobenzimidazole added is 1:10 ⁇ : I: 4; the molar ratio of the other dianhydride to the biphenyl dianhydride is 1:10 ⁇ 3:7.
  • diamines and dianhydrides are various diamine and dianhydride monomers used by those skilled in the art for synthesizing polyimides, and have the following formula:
  • represents a conventional structural group in the diamine and dianhydride monomers of the art, such as an aromatic group and a heterocyclic structure.
  • the invention also provides a preparation method of the above polyimide fiber, comprising the following steps:
  • A p-phenylenediamine, 2-(4-aminophenyl) 5-aminobenzimidazole, biphenyl dianhydride, according to the total molar ratio of diamine to dianhydride 1: 0.95 - 1: 1.05, Wherein the molar ratio of p-phenylenediamine to 2 (4 aminophenyl) 5-aminobenzimidazole is 1: 10 ⁇ 3: 1;
  • step B The diamine of step A is dissolved in a metering solvent under the protection of ⁇ , and then the dianhydride is added to make the solid content of the solution 5 ⁇ 35 wt%, and the polyamic acid spinning solution is obtained after sufficient reaction;
  • the polyamic acid spinning solution is spun according to a wet method or a wet-wet spinning process, and a one-step continuous preparation method is employed, that is, after the spinning solution is sprayed through the spinneret, it is continuously solidified and washed with water through a coagulation bath.
  • High-temperature and high-modulus polyimide fibers are obtained by heat treatment and winding at different temperatures.
  • the other diamine is further added in the step A, and the molar ratio of the other diamine added to the total addition amount of p-phenylenediamine and 2-(4-aminophenyl)-5-aminobenzimidazole is 1: 10: 1: 4;
  • Other dianhydride is also added in step A, and the molar ratio of other dianhydride to biphenyl dianhydride is 1: 10-3: 7.
  • the solvent used in the step B is dimethylformamide (DMF), dimethylacetamide (DMAc) or ⁇
  • the temperature range is 2 ⁇ 5 segments, each temperature is 75 - ⁇ 1Q °C, and the reaction time varies from temperature to temperature, totaling 2 ⁇ 20 hours.
  • the gradient temperature is preferably reduced by ⁇ times.
  • the diameter of the spinneret used in the step C is ⁇ 0.045 mm - 0.75 veins, and the number of holes is 50 - 2000 holes, and the coagulation bath and the clear bath are respectively water in the wet method or the wet method.
  • the one-step continuous preparation method used includes at least four-stage hot furnace, each furnace temperature is 80: ⁇ 550'C, the draft ratio is H, The total time is 5 ⁇ 30 ⁇ ⁇ , the atmosphere in the furnace is air or nitrogen. When the temperature is higher than 400, the high draft is carried out. The draft ratio is 3 ⁇ 7, and the atmosphere in the furnace is nitrogen.
  • the temperature of the four-stage hot furnace is preferably compared with the prior art, and the present invention has the following innovative and excellent effects:
  • the invention adopts the synthesis of biphenyl dianhydride (BPM), p-phenylenediamine (pPDA), 2 (4 aminophenyl)-5 aminobenzimidazole (BIA) and other diamines and dianhydrides to prepare multicomponent copolymerization.
  • BPM biphenyl dianhydride
  • pPDA p-phenylenediamine
  • BIOA 4 aminophenyl-5 aminobenzimidazole
  • other diamines and dianhydrides other diamines and dianhydrides to prepare multicomponent copolymerization.
  • the system polyimide fiber from the relationship between the structure and properties of the polyimide fiber, by changing the molecular structure of the polyamic acid, increasing the intermolecular and intramolecular forces, determining the optimal monomer ratio range,
  • the polyimide fiber prepared in the range has a more reasonable molecular structure and intermolecular force, thereby greatly improving the performance of the polyimide fiber.
  • the invention adopts nitrogen protection and gradient temperature reaction method, overcomes the increase of the amount of 2 (4 aminophenyl) 5 aminebenzimidazole in the reaction, and the reaction activity decreases, and the molecular weight of the obtained polyamic acid is low and is not easy to be spun.
  • the difficulty of silk greatly improving the content of 2-(4-aminophenyl)-5 anbenzimidazole while ensuring the molecular weight of polyamic acid and its spinnability, and the mechanical properties of polyimide fiber It can be greatly improved, the strength can reach 4. 5GPa, the modulus can reach 2QlGPii (the performance of PI fiber with other technologies is shown in Table 1), which makes it have high cost performance, and with the popularity of raw materials and the price drop, The cost performance of fiber will be further improved.
  • the present invention uses a one-step continuous preparation method, starting from a polyamic acid spinning solution by spinning, solidification, water washing, thermal cyclization, heat pulling, and final winding, which are one-step continuous processes, and At different stages, the fibers are stretched to different extents, which is beneficial to the rearrangement and orientation of the molecular chains.
  • the degree of imidization is high and the defects are few, which ensures the high performance of the fibers and also solves the uniformity and stability of the properties.
  • the problem is that the method greatly improves the production efficiency, reduces the production cost, improves the fiber performance, and is very advantageous for industrial production.
  • Table 1 compares the performance of PI fibers of the present technology with other prior art PI fibers:
  • the prior art 1PI fiber is obtained from the Chinese patent of the application No. 200710050651. 1
  • the prior art 2PI fiber is the fiber obtained from the Chinese patent of the application No. 201010572496.
  • 1 is a scanning electron micrograph of a surface of a PI fiber according to Embodiment 1 of the present invention.
  • Fig. 3 is a dynamic thermomechanical analysis diagram of the PI dimension in the second embodiment of the present invention.
  • BPM biphenyl dianhydride
  • pPM p-phenylenediamine
  • BIOA 2-(-aminophenyl)-5-aminobenzimidazole
  • Preparation of polyimide fiber After defoaming the polyamic acid solution by filtration, the spinning solution is spun by a thousand wet process, and the spinning solution is driven by a metering pump and passed through a spinneret (number of holes: 1GC aperture: 0, 15 through the air layer (: length: 50 ⁇ into the coagulation bath (composition of water and ethanol, volume ratio of 1:1) to form polyamic acid fiber, and then through the cleaning bath (composed of water) washed directly into the four stages of heat Furnace, the temperature of the hot furnace is 20 (TC, 300 ° C, 400 ° C, the draw ratio is 1, 5, 1 ⁇ L l, 3.5, and finally the wire is wound into a roll to obtain a polyimide fiber.
  • a spinneret number of holes: 1GC aperture: 0, 15 through the air layer (: length: 50 ⁇ into the coagulation bath (composition of water and ethanol, volume ratio of 1:1) to form polyamic acid fiber, and then through the cleaning
  • the surface of the PI fiber prepared by the method has a regular groove structure. It can produce stronger bonding with the resin matrix and can be widely used in the field of composite materials.
  • Preparation of polyimide fiber After defoaming the polyamic acid solution by filtration, the spinning process is carried out by a wet process, and the spinning solution is driven by a metering pump and passed through a spinneret (number of holes: 50 holes, pore diameter: 0. 075 ⁇ ) Entering the coagulation bath (composed of water) to form a polyamic acid bismuth, and then passing through a cleaning bath (constituted as water), washing directly into the four-stage furnace, the temperature of the furnace is 200 C, 280. C, 350 C, 450. C, the draft ratio is 1. 5, 1, 3, 1. 2, 3. 5, finally winding the wire into a roll to obtain polyimide fiber.
  • the structural formula of the obtained fiber is as follows:
  • the initial modulus is 201. 3GPa. It can be seen from Fig. 1 that the surface of the PI fiber prepared by the method has a regular groove structure and can form a stronger bonding effect with the resin matrix, and can be widely applied to the preparation of the composite material. It can be seen from Fig. 2 and Fig. 3 that the glass transition temperature of the PI dimension prepared in this example reaches 341, 7 , and the mass loss temperature of 101 ⁇ 2 in nitrogen and air is 573. I 'C and 564. 1 °C, indicating that the PI fiber of this technology has high strength and high modulus At the same time of performance, it also has excellent thermal properties.
  • Preparation of polyimide fiber After defoaming the polyamic acid solution by filtration, the spinning process is carried out by a wet process, and the spinning solution is driven by a metering pump and passed through a spinneret (number of holes: 500 holes, pore diameter: 0.045 mm) Entering the coagulation bath (composed of water and DMAc, volume ratio of 7:3) to form polyamic acid fiber, and then passing through a clear bath (composed of water and ethanol, volume ratio of 1:1), then directly enter the four-stage heat Furnace, hot furnace temperature is 180 ° C, 280 ° C 30 "C, 400 ° C, the draw ratio is 1, 1, 1, 5, and finally wound into a roll to obtain polyimide fiber.
  • the structural formula of the obtained fiber is as follows:
  • Preparation of polyimide fiber After the polyamic acid solution is defoamed by filtration, the crucible is spun by a wet process, and the spinning solution is driven by a metering pump and passed through a spinneret (number of holes: 500 holes, pore diameter: 0.55) Mm) into the coagulation bath (composition of water and DMAc, volume ratio of 1: 1) to form polyamic acid fiber, and then through the clear bath (composed of water and ethanol, volume ratio of 3: 1), after washing, directly into the four Segment furnace, hot furnace temperature is 16 (TC;, 270 ° C, 350 ° C, 500 ° C, the ratio of draw is 2, 1, 5, 1 ' 1, 5. 5, finally winding into a coil to obtain poly Imide fiber.
  • Preparation of polyimide fiber After defoaming the polyamic acid solution by filtration, the spinning process is carried out by a wet process, and the spinning solution is driven by a metering pump and passed through a spinneret (pore number: 1000 holes, pore diameter: 0, 065mm) Entering the coagulation bath (composition of water and N-methylpyrrolidone, volume ratio of 3:1) to form a polyamic acid bismuth, and then washing through the cleaning bath (composed of water) directly into the four-stage furnace, the furnace The temperature is 1801, 240. C, 300 C, 550 ° C, the draw ratio is 1, 8, 1. 5, 1, 3, 6, finally winding the wire into a roll to obtain polyimide Fiber
  • the structural formula of the obtained fiber is as follows:
  • Preparation of polyimide fiber After defoaming the polyamic acid solution by filtration, the spinning process is carried out by a wet process, and the spinning solution is driven by a metering pump and passed through a spinneret (pore number: 2000 holes, pore diameter: 0.055 mm) ) Entering the coagulation bath (composed of water and leg F, volume ratio of 5:3) to form polyamic acid fiber, and then clearing the bath
  • the composition is water and ethanol, the volume ratio is 2: 1) After washing, it directly enters the four-stage hot furnace.
  • the temperature of the hot furnace is 18 C, 260 ° C, 300 ° C, 500 ° C, and the draft ratio is 1.5, 1 . 3, 1, 1, 5, finally winding the wire to obtain polyimide fiber.
  • the structural formula of the obtained fiber is as follows:
  • Preparation of Polyimide Fiber After the polyamic acid solution is defoamed by filtration, the crucible is spun by a thousand wet process, and the spinning solution is driven by a metering pump and passed through a spinneret (number of holes: 1 GQ0 hole, pore diameter: Q.1 leg) through the air layer (: length: 30 ⁇ ) into the coagulation bath (composition of water and methanol, volume ratio of 1:1) to form polyamic acid fiber, and then through the bath (composed of water and ethanol, volume ratio 2: 1) After washing, directly enter the four-stage hot furnace, the temperature of the hot furnace is 180, 2801, 3501;, 4801, the draft ratio is 1, 4, 1, 2, 1, 5, and finally the winding is obtained by winding Polyimide fiber.
  • the structure is as follows: The tensile strength was 3.5 GPa and the initial modulus was 141, 7 GPa.
  • Preparation of polyimide fiber After the polyamic acid solution is defoamed by filtration, the crucible is spun by a wet process, and the spinning solution is driven by a metering pump and passed through a spinneret (number of holes: 2000 holes, pore diameter: 0 , 045 into the coagulation bath (composition of water and DMF, volume ratio of 5: 3) to form polyamic acid fiber, and then through the clear bath (composed of water and ethanol, volume ratio of 2: 1) washed directly into the four segments Hot furnace, hot furnace temperature is
  • the structural formula of the obtained fiber is as follows:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Artificial Filaments (AREA)

Abstract

一种高强高模聚酰亚胺纤维及其制备方法,属于高性能有机紆维技术领域。该纤维包括由联苯二酐(BPDA)、对苯二胺(pPDA)、2-(4-胺基苯)-5-胺基苯并咪唑(BIA)制备的聚酰亚胺纤维,其中PPDA与BIA的摩尔比为1:10-3:1,在合成过程中还可加入其它二胺和二酐单体,在制备过程中采用梯度温度式反应法和一步连续制备法,突破了2-(4-胺基苯)-5-胺基苯并咪唑含量增加带来的合成及加工上的困难,解决了纤维性能均一性和稳定性差的问题,获得了具有高强高模特性的聚酰亚胺纤维,其强度可达4.5GPa,模量可达201GPa,而且原料来源广泛,紡丝过程连续化进行,成本低,效率高,可以实现工业化生产。

Description

—种高强高模聚酰亚胺纤维及其制备方法
技术领域
本发明属于高性能有机纤维技术领域, 具体涉及一种高强高模聚酰亚胺纤 维及其制备方法。
背景技术
聚酰亚胺(PI ) 纤维作为高性能纤维的一个品种, 具有高强高^ 、 耐高温、 耐低温和耐辐射等高性能, 并且还具有良好的生物相容性和介电性能, 可望在 原子能工业、 空间环境、 救险需要、 航空航天、 国防建设、 新型建筑、 高速.交 通工具、 海洋开发、 体育器械、 新能源、 环境产业及防护用具等领域中得到广 泛的应用。
目前聚酰亚胺纤维的制备主要包括一步法和两步法。 其中一步法技术路线 为: 以聚酰亚胺溶液为纺丝浆液, 通过湿法或千湿法纺制聚酰亚胺 维, 纤维 经初步拉伸后有一定的强度, 去除溶剂后, 进行热拉伸和热处理(300 °C— 500 °C) , 可得到高强高模的聚酰亚胺纤维。 该方法纺丝工艺简单, 但从目前聚酰亚 胺的合成来看, 普遍使用的溶剞是酚类, 酚类溶剂(如甲酚、 对氯苯酚)不仅毒 性较大, 而且在纤维中的残余量较大, 很难去除干净, 不利于环保, 工业化很 困难, 另外, 一步法技术对聚酰亚胺的可溶性有很高的要求, 这就大大降低了 聚酰亚胺纤维的耐腐蚀性能和耐热性能。; 国家发明专利 ZL 02112048. X,美国专 利 US 4, 370, 290和 US 5, 378, 420都公开了采用一步法制备聚跣亚胺纤维方法。 另一种是两步法技术路线: 首先将聚酰胺酸的浓溶液经湿法或千湿法喷丝得到 聚酰胺酸纤维, 然后将第一步纺制的聚酰胺酸纤维经化学环化或热环化得到的 聚酰亚胺纤维。 如日本公开特许公报 JP3287815、 JP4018115均采用该法制备聚 酰亚胺纤维。 该方法的优点是: 解决了聚酰亚胺纤维不熔不溶带来的加工性难 题, 合成原料及溶剂种类多、 毒性小, 紆维中溶剂残余量低, 适宜于工业化生 产。 其缺点是该方法制备的聚酰亚胺纤维一般力学性能较低。
申请号为 20071005065L 1的中国专利申请公开了一种含有苯并咪唑结构的 聚酰亚胺纤维及其制备方法, 该方法是将 2 (; 4 胺基苯基) 5 ·胺基苯并咪唑和 二酐按摩尔比 1:1 的配比制备聚酰胺酸纺丝溶液, 再将聚酰胺酸纺丝溶液进行 纺丝制备出聚酰胺酸原丝, 最终将聚酰胺酸原丝进行热亚胺化得到聚酰亚胺纤 维, 其拉伸强度为 0.73- 1.53GPa, 初始模量为 45.2 ~ 220GPa; 申请号为 201010572496.1的中国专利申请公开了一种以联苯四酸二酐、对苯二胺和 2.( 4— 氨基苯基) 5 氨基苯并咪唑为原料制备的聚酰亚胺纤维及其制备方法, 具体为 将摩尔比为 0.8 ~ 0.95: 0.05 ~ 0.2的对苯二胺和 2 ( 4 氨基苯基 ) -5-氨基苯并 咪唑与联苯四酸二酐溶于溶剂中制备聚酰胺酸纺丝溶液, 然后将聚酰胺酸纺丝 溶液进行纺丝制备得到聚酰胺酸纤维, 再将聚酰胺酸纤维进行千燥、 热环化和 热牵伸制备 ·得到聚酰亚胺纤维, 其强度为 2.5GPa。 以上两种方法均通过.加入 2 (4 氨基苯基) 5 氨基苯并咪唑来改善聚酰亚胺纤维的力学性能, 并使其力学 性能有了较大的提高, 但还没有达到高强高模聚酰亚胺纤维的性能要求, 在合 成方法和制备工艺上都需要有较大的突破和改变。
发明内容
本发明所要解决的问题是克服上述制备方法中的不足, 进一步提高聚酰亚 胺纤维的力学性能, 使其达到高强高模聚酰亚胺纤维的性能求。
本发明提供了一种由联苯二酐 ( BPDA )、 对苯二胺 ( pPDA )和2 (4-胺基 苯) 5-胺基苯并咪唑(BIA)无规共聚得到的聚酰亚胺纾维, 其中对苯二胺 与 2- (4-胺基苯) -5-胺基苯并咪唑的摩尔比为 1:10~3: 1, 制备得到的 聚酰亚胺纤维拉伸强度为 3.0 ~ 4.5GPa, 初始模量为 110 - 201GPa。 在上述的聚酰亚胺纤维中还包括与其它二胺或 /和二酐单体的共聚, 其它二 胺加入量与对苯二胺、 2 (4 胺基苯) ··· 5 ···胺基苯并咪唑总加入量的摩尔比 为 1: 10〜: I: 4; 其它二酐与联苯二酐的摩尔比为: 1: 10~ 3: 7。
这些二胺和二酐为本领域人员用于合成聚酰亚胺的各种二胺和二酐单体, 其通式如下:
H2N—— R—— NH2
o o
o 。
其中!!和!^代表本领域二胺和二酐单体中常规的结构基团,例如芳香族基团 及杂环结构等。
本发明还提供了一种上述聚酰亚胺纤维的制备方法, 包括以下步骤:
A: 将对苯二胺、 2 - (4 胺基.苯) 5 -胺基苯并咪唑、 联苯二酐, 按二 胺与二酐总摩尔比 1: 0.95 - 1: 1.05进行配比, 其中对苯二胺与 2 (4 胺基 苯) 5-胺基.苯并咪唑的摩尔比为 1: 10 ~ 3: 1;
B: 在^保护下将步骤 A的二胺加入计量溶剂溶解, 然后加入二酐, 使溶液的 固含量为 5〜 35wt%, 充分反应后获得聚酰胺酸纺丝溶液;
C: 将聚酰胺酸纺丝溶液按照湿法或千湿法纺丝工艺进行纺丝, 采用一步连 续制备法, 即纺丝溶液经过喷丝板喷出后, 连续经过凝固浴凝固、 水洗。 不同 温度的热炉处理和收丝, 得到高强高模聚酰亚胺纤维。
在上述方法中, 步骤 A中还加入其它二胺, 其它二胺加入量与对苯二胺、 2 ― (4 胺基苯) - 5 -胺基苯并咪唑总加入量的摩尔比为 1: 10- 1: 4; 步骤 A 中还加入其它二酐, 其它二酐与联苯二酐的摩尔比为: 1: 10- 3: 7。 在该方法中, 步骤 B 中所用的溶剂为二甲基曱酰胺(DMF)、 二甲基乙酰胺 (DMAc)或 Ν····甲基吡咯烷酮, 聚酰胺酸溶液的合成采用梯度温度式反应, 温度段 为 2~5段, 每段温度为 75 -~1Q°C, 每个温度段反应时间不等, 总计 2〜 20 小时。 梯度温度优选^ ^次降低。
在上述方法中,步骤 C中所用喷丝板孔径为 Φ 0.045mm- 0.75脈,孔数为 50 - 2000孔, 所采用的湿法或千湿法工艺时凝固浴和清洗浴均分别为水、 曱醇、 乙 醇、 乙二醇, 丙酮、 甲苯、 N, N-二甲基甲酰胺(DMF)、 Ν,Ν-二甲基乙酰胺(DMAc)、 N 曱基吡咯烷酮、 二曱基亚砜(DMS0) 中的一种或几种的混合溶剂, 所釆用的 一步连续制备方法中, 至少包括四段热炉, 各热炉温度为 80 : ~550'C, 牵伸比 为 H, 过炉总时间为 5~ 30π η, 炉内气氛为空气或者氮气, 当温度高于 400 时进行高倍牵伸, 牵伸比为 3~7, 炉内气氛为氮气。 四段热炉的温度优选依 与现有技术相比较, 本发明具有以下创新性及俛良效果:
1、 本发明采用联苯二酐( BPM )、 对苯二胺 ( pPDA )、 2 ( 4 胺基苯 ) -5 胺基苯并咪唑(BIA)及其它二胺和二酐合成制备出多元共聚体系聚酰亚 胺纤维, 从聚酰亚胺纤维结构与性能关系出发, 通过改变聚酰胺酸分子结构, 增加分子间及分子内的作用力, 确定了最佳的单体配比范围, 在该范围内所制 备出的聚酰亚胺纤维具有更加合理的分子结构和分子间作用力, 从而大大提高 了聚酰亚胺纤维的性能。
2、 本发明采用氮气保护和梯度温度式反应方法, 克服了反应中随着 2 (4 胺基苯) 5 胺基苯并咪唑量的增加, 反应活性下降, 所得聚酰胺酸分 子量低不易于纺丝的困难, 在大大提高了 2- (4 胺基苯) -5 胺基苯并咪唑 含量的同时保证了聚酰胺酸的分子量及其可紡性能, 使聚酰亚胺纤维的力学性 能大幅度提升, 强度可达 4. 5GPa, 模量可达 2QlGPii (与其它技术 PI纤维性能 对比如表 1 ), 使其具有很高的性价比, 并且随着原料的普及和价格的下降, 该 纤维的性价比会得到进一步提高„
3、 本发明釆用一步连续制备方法, 从聚酰胺酸纺丝溶液开始经喷丝、 凝 固、 水洗、 热环化、 热牵#到最终绕丝收卷均为一步连续化过程, 并且在每个 阶段对纤维进行不同程度的牵伸, 有利于分子链的重排与取向, 亚胺化程度高, 缺陷少, 确保了纤维获得高性能的同时也解决了紆维性能均一性和稳定性差的 问题, 该方法极大地提高了生产效率, 降低了生产成本, 提高了纤维性能, 非 常有利于工业化生产。
表 1为本技术 PI纤维与其它现有技术 PI纤维的性能对比:
Figure imgf000006_0001
其中现有技术 1PI纤维为申请号 200710050651. 1的中国专利得到的纾维, 现有技术 2PI纤维为申请号 201010572496. 1的中国专利得到的纤维。 图 1为本发明实施例 1中 PI纤维的表面扫描电镜图;
图 2为本发明实施例 2中 PI纾维的热重分析图;
图 3为本发明实施例 2中 PI 维的动态热机械分析图。
具体实施方式
应说明的是: 以下实施 仅用以说明本发明 并非限制本发明所描述的技 术方案; 因此, 尽管本说明书参照下述的实施例对本发明已进行了详细的说明, 但是, 本领域的普通技术人员应当理解, 仍然可以对本发明进行修改或等同替 换; 而一切不脱离发明的精神和范围的技术方案及其改进, 其均应涵盖在本发 明的权利要求范围当中。
另外,需要说明的是,以下实施例所用的联苯二酐( BPM )、对苯二胺( pPM ) 和 2 ··· (4―胺基苯 ) - 5 -胺基苯并咪唑 (BIA ) 的结构式如下:
Figure imgf000007_0001
联苯二酐 ( BPDA )
Figure imgf000007_0002
对苯二胺 ( pPDA )
Figure imgf000007_0003
2 --- (4 -胺基笨 ) - 5 --胺基苯并咪唑 (BIA)
Figure imgf000007_0004
4, 4, 二氨基二苯醚(0DA)
Figure imgf000007_0005
二胺 ( fflPDA;)
Figure imgf000007_0006
均笨四甲酸二酐(PMM)
Figure imgf000008_0001
二苯醚四甲酸二酐(0DPA)
Figure imgf000008_0002
3, 3' , 4, 4' --- 二苯甲酮四酸二酐(BTM)
实施例 1
聚酰胺酸溶液的合成: 按 BPDA; pPDA: BIA=4.2: 3: 1的摩尔配比, 先将 PPDA 和 BIA 两种二胺单体置于三口瓶中, 加入计量的溶剂二甲基甲酰胺 DMF ), 在 氮气保护下, 50°C搅拌使 PPM和 BIA完全溶解, 然后分批加入 BPDA并搅拌, 使其固含量为 10%, 之后在氮气的保护下, 5(TC搅掉 2小时, 10°C搅拌 1小时, - 5 搅# 2小时得到粘稠聚酰胺酸溶液, 其特性粘度为 3. Odi/g.
聚酰亚胺纤维的制备: 将聚酰胺酸溶液通过过滤消泡后, 釆用千湿法工艺 进行纺丝, 纺丝溶液经计量泵打出后通过喷丝板(孔数: 1GC 孔径: 0, 15 经空气层(:长度: 50ΓΜΙ 后进入凝固浴(组成为水和乙醇, 体积比为 1: 1 )形成 聚酰胺酸纤维, 再经清洗浴(组成为水) 洗涤后直接依次进入四段热炉, 热炉 温度为 20(TC、 300°C、 400°C, 牵伸比为 1, 5、 1丄 L l、 3.5, 最后绕 丝成卷获得聚酰亚胺纤维。
所得纤维的结构式如下:
Figure imgf000008_0003
式中 ηι: η=ί: 3,其拉伸强度为 3, 4GPa , 初始模量为 153. 5GPa tl 从图 1中可以看 出, 本方法制备出的 PI纤维表面具有规则的沟槽结构, 可以与树脂基体产生更 强的结合作用, 能够广泛的应用于复合材料领域。 实施例 2
聚酰胺酸溶液的合成: 按 BPDA: pPDA: BIA-21: 13: 7的摩尔配比, 先将 PPDA 和 BIA两种二胺单体置于三口瓶中, 加入计量的溶剂二甲基乙酰胺 ( DMAc ), 在 氮气保护下,7Q °C搅拌使 PPM和 BIA完全溶解, 然后分批加入 BPM并搅掉, 使 其固含量为 15%, 之后在氮气的保护下, 70 'C搅拌 5小时, 2CTC搅拌 2小时, 0 搅拌 3小时得到粘稠聚酰胺酸溶液。 其特性粘度为 2. 5dl /g0
聚酰亚胺纤维的制备: 将聚酰胺酸溶液通过过滤消泡后, 采用湿法工艺进 行纺丝, 纺丝溶液经计量泵打出后通过喷丝板(孔数: 50孔, 孔径: 0. 075丽) 进入凝固浴(组成为水)形成聚酰胺酸纾维, 再经清洗浴(组成为水) 洗涤后 直接依次进入四段热炉, 热炉温度为 200 C、 280。C、 350 C、 450。C, 牵伸比为 1。 5、 1, 3、 1. 2、 3. 5, 最后绕丝成卷获得聚酰亚胺纤维。
所得纤维的结构式如下:
Figure imgf000009_0001
式中 m: n=7: 13,其拉伸强度为 4. 5GPa ,初始模量为 201. 3GPa。从图 1中可以看 出, 本方法制备出的 PI纤维表面具有规則的沟槽结构, 可以与树脂基体产生更 强的结合作用, 可广泛应用于复合材料的制备。 从图 2、 图 3可看出, 本实施例 制备的 PI 维的玻璃化转变温度达到了 341, 7 ,在氮气和空气中质量损失 10½ 的热失重温度分别为 573. I 'C和 564. 1 °C , 说明本技术 PI纤维在具有高强高模 性能的同时, 还具有非常优异的热性能。
实施例 3
聚酰胺酸溶液的合成: 按 BPDA: pPDA: BIA=4.75: 2: 3的摩尔配比, 先将 PPDA 和 BIA两种二胺单体置于三口瓶中, 加入计量的溶剂二甲基乙酰胺 (DMAc), 在 氮气保护下, 75°C搅拌使 PPDA和 BIA完全溶解, 然后分批加入 BPDA并搅捽, 使 其固含量为 20¾, 之后在氮气的保护下, 75 搅拌 2小时, 30°C搅拌 3小时, 0 搅拌 10小时得到粘裯聚酰胺酸溶液。 其特性粘度为 2.3dl/g
聚酰亚胺纤维的制备: 将聚酰胺酸溶液通过过滤消泡后, 采用湿法工艺进 行纺丝, 纺丝溶液经计量泵打出后通过喷丝板 (孔数: 500孔, 孔径: 0.045mm) 进入凝固浴 (组成为水和 DMAc, 体积比为 7: 3)形成聚酰胺酸纤维, 再经清洗 浴 (组成为水和乙醇, 体积比为 1: 1 )洗涤后直接依次进入四段热炉, 热炉温度 为 180°C、 280°C 30『C、 400°C, 牵伸比为 1、 1、 1、 5, 最后绕丝成卷获得聚 酰亚胺纤维。 所得纤维的结构式如下:
Figure imgf000010_0001
式中 m: n=3: 2,其拉伸强度为 3. iGPa, 初始模量为 165.2GPa。 实施例 4
聚酰胺酸溶液的合成: 按 BPDA: ODA: pPDA: BIA=6: 1: 3: 2 的摩尔配比, 先将 0DA、 PPDA和 BIA 三种二胺单体置于三口瓶中, 加入计量的溶剂二甲基乙酰胺
(DMAc), 氮气保护下, 5i)'C机械搅拌使 0DA、 PPM和 BIA完全溶解, 然后分批 加入 BPM并搅拌, 使其固含量为 25%, 50Ό攬拌 10小时, - 10°C搅拌 5小时得 到粘稠聚酰胺酸溶液。 其特性粘度为 3. ldl/g。
聚酰亚胺纤维的制备: 将聚酰胺酸溶液通过过滤消泡后, 釆用湿法工艺进 行纺丝, 纺丝溶液经计量泵打出后通过喷丝板(孔数: 500孔, 孔径: 0.55mm) 进入凝固浴(组成为水和 DMAc, 体积比为 1: 1 )形成聚酰胺酸纤维, 再经清洗 浴(组成为水和乙醇, 体积比为 3: 1 )洗添后直接依次进入四段热炉, 热炉温度 为 16(TC;、 270°C , 350°C、 500°C, 牵侔比为 2、 1, 5、 1' 1、 5。 5, 最后绕丝成卷 获得聚酰亚胺纤维。
如下:
Figure imgf000011_0001
式中 m: n: s=2: 3: 1,其拉伸强度为 3.7GPa, 初始模量为 146, 2GPa。
实.施例 5
聚酰胺酸溶液的合成: 按 BPDA: fflPDA: pPDA: BIA-14.7: 2: 5: 7 的摩尔配比, 先将 PPDA、 MPDA和 BIA三种二胺单体置于三口瓶中,加入计量的溶剂 N-甲基吡 咯烷酮, 在氮气保护下, 75°C搅拌使 PPDA、 MPDA和 BIA完全溶解, 然后分批加 入 BPM并搅拌, 使其固含量为 20%, 之后在氮气的保护下, 7'5°C搅拌 8小时, 15 搅拌 3 小时, - 10 :搅拌 9 小时后得到粘稠聚酰胺酸溶液。 其特性粘度为 2, 8dl/g。
聚酰亚胺纤维的制备: 将聚酰胺酸溶液通过过滤消泡后, 采用湿法工艺进 行纺丝, 紡丝溶液经计量泵打出后通过喷丝板(孔数: 1000孔, 孔径: 0, 065mm) 进入凝固浴(组成为水和 N 甲基吡咯烷酮, 体积比为 3: 1 )形成聚酰胺酸纾维, 再经清洗浴(组成为水)洗涤后直接依次进入四段热炉, 热炉温度为 1801、 240 。C、 300 C、 550°C, 牵伸比为 1, 8、 1。 5、 1, 3、 6, 最后绕丝成卷获得聚酰亚胺 纤维
所得纤维的结构式如下:
Figure imgf000012_0001
式中 m: n: s=7: 5: 2,其拉伸强度为 3.6GPa, 初始模量为 178. lGPa。
实施例 6
聚酰胺酸溶液的合成: 按 BPDA: PMDA; pPDA; B1"A=7„ 4: 1: 1: 7的摩尔配比, 先 将 PPDA 和 BIA 两种二胺单体置于三口瓶中, 加入计量的溶剂二甲基甲酰胺
( DMF ), 在氮气保护下 40C搅拌使 PPDA和 BIA完全溶解, 然后分批加入 BPDA 和 PMM并搅拌, 使其固含量为 15¾, 之后在氮气的保护下, 40 搅拌 8小时, O 搅拌 4小时得到粘稠聚酰胺酸溶液。 其特性粘度为 2.60dl/g。
聚酰亚胺纤维的制备: 将聚酰胺酸溶液通过过滤消泡后, 采用湿法工艺进 行纺丝, 纺丝溶液经计量泵打出后通过喷丝板 (孔数: 2000孔, 孔径: 0.055mm) 进入凝固浴 (组成为水和腿 F, 体积比为 5: 3)形成聚酰胺酸纤维, 再经清洗浴
(组成为水和乙醇, 体积比为 2: 1 )洗涤后直接依次进入四段热炉, 热炉温度为 18 C、 260°C、 300°C、 500°C, 牵伸比为 1.5、 1。 3、 1, 1、 5, 最后绕丝成卷获 得聚酰亚胺纤维。
所得纤维的结构式如下:
Figure imgf000012_0002
其拉伸强度为 3.3CPa, 初始模量为 126.4GPa0
实施例 7
聚酰胺酸溶液的合成: 按 BPDA: ODPA: pPDA:BIA=6: 2.4: 6: 2的摩尔配比, 先 将 PPM 和 BIA 两种二胺单体置于三口瓶中, 加入计量的溶剂二甲基乙酰胺 ( DMAc )在氮气保护下 25。C搅拌使 PPDA和 BIA分散均匀, 然后分批加入 BPDA 和 0DPA并搅拌 , 使其固含量为 5%, 之后在氮气保护下 25。C搅拌.5小时, -10 "C搅拌 5小时, lO'C搅拌 2小时, 0°C搅拌 2小时后得到粘稠聚酰胺酸溶液。 其 特性粘度为 2.78dl/gtl
聚酰亚胺纤维的制备: 将聚酰胺酸溶液通过过滤消泡后, 釆用千湿法工艺 进行纺丝, 纺丝溶液经计量泵打出后通过喷丝板(孔数: 1GQ0孔, 孔径: Q.1腿) 经空气层(:长度: 30ΓΜΙ)进入凝固浴(组成为水和甲醇, 体积比为 1: 1 )形成聚 酰胺酸纤维, 再经清洗浴(组成为水和乙醇, 体积比为 2: 1 )洗涤后直接依次进 入四段热炉, 热炉温度为 180 、 2801、 3501;, 4801, 牵伸比为 1, 4、 1, 2、 1, 5, 最后绕丝成卷获得聚酰亚胺纤维。
结构式如下:
Figure imgf000013_0001
其拉伸强度为 3.5GPa, 初始模量为 141, 7GPa。 实施例 8
聚酰胺酸溶液的合成: 按 BPDA: BTDA: pPDA: BIA=8.55: 3: 2: 9 的摩尔配比, 先将 PPDA 和 BIA 两种二胺单体置于三口瓶中, 加入计量的溶剂二甲基甲酰胺 (则在氮气保护下, 5CTC搅拌使 PPDA和 BIA完全溶解, 然后分批加入 BPDA 和 BTDA并搅拌, 使其固含量为 10%, 之后在氮气保护下 50。C搅拌 3小时, 10 搅拌 3 小时, 0 :搅拌 5 小时后得到粘稠聚酰胺酸溶液。 其特性粘度为 2.56dl./g。
聚酰亚胺纤维的制备: 将聚酰胺酸溶液通过过滤消泡后, 釆用湿法工艺进 行纺丝, 纺丝溶液经计量泵打出后通过喷丝板(孔数: 2000孔, 孔径: 0, 045 进入凝固浴(组成为水和 DMF, 体积比为 5: 3)形成聚酰胺酸纤维, 再经清洗浴 (组成为水和乙醇, 体积比为 2: 1 )洗涤后直接依次进入四段热炉, 热炉温度为
180°C、 28(TC、 350°C, SIO'C 1.9、 1.3、 1.1、 5.5, 最后绕丝 获得聚酰亚胺纤维。
所得纤维的结构式如下:
Figure imgf000014_0001
'强度为 3.6GPa, 初始模量为 152, IGPa

Claims

权 利 要 求 书
1、 一种高强高模聚酰亚胺纤维, 其特征在于, 包括由联苯二酐 (BPDA)、 对 苯二胺( pPDA )和 2 ( 4 '···胺基苯) 5 胺基苯并咪唑( BIA )无规共聚 得到的聚酰亚胺纤维, 其中对苯二胺与 2- (4-胺基苯) -5-胺基苯并 咪唑的摩尔比为 1: 10 ~ 3: 1。
2、 按照权利要求 1的一种高强高模聚酰亚胺纤维, 其特征在于, 聚酰亚胺纤 维中还包括与其它二胺或 /和二酐单体的共聚, 其它二胺加入量与对苯二 胺、 2- ( 4 -胺基苯 ) - 5 -胺基苯并咪唑总加入量的摩尔比为 1: 10-1: 4; 其它二酐与联苯二酐的摩尔比为: 1: 10-3: 7。
3、 权利要求 1所述的一种高强高模聚酰亚胺纤维的制备方法, 其特征在于, 包括以下步骤:
A: 将对苯二胺、 1 (4 胺基苯) 5 胺基.苯并咪峻、 联笨二酐, 按二 胺与二酐总摩尔比 1: 0.95 1: 1, 05进行配比, 其中对苯二胺与 2 (4 胺基 苯 ) -5-胺基笨并咪唑的摩尔比为 1: 10-3: 1;
B: 在 N2保护下将步骤 A的二胺加入计量溶剂溶解, 然后加入二酐, 使溶液 的固含量为 5 ~ 35wt%, 充分反应后获得聚酰胺酸纺丝溶液;
C: 将聚酰胺酸纺丝溶液按照湿法或千湿法纺丝工艺进行纺丝, 采用一步 连续制备法, 即纺丝溶液经过喷丝板喷出后, 连续经过凝固浴凝固、 水洗、 不 同温度的热炉处理和收丝 , 得到高强高模聚酰亚胺纤维;
聚酰胺酸溶液的合成釆用梯度温度式反应, 温度段为 2~5 段, 每段温度 为 75 --10 , 每个温度段反应时间不等, 总计 2~20小时;
所采用的一步连续制备方法中, 至少包括四段热炉, 各热炉温度为 80°C ~ 550°C, 牵伸比为 1 -2, 过炉总时间为 5 - 3 Grain, 炉内气氛为空气或者氮气, 当温度高于 400 时进行高倍牵伸, 牵伸比为 3~7, 炉内气氛为氮气。 权 利 要 求 书
、 按照权利要求 3的方法, 其特征在于, 步骤 A中还包括其它二胺或 /和其 它二酐, 其它二胺加入量与对苯二胺、 2 ( 4 胺基苯) 5 -胺基苯并 咪唑总加入量的摩尔比为 1 : 10 - 1: 4; 其它二酐与联苯二酐的摩尔比为: 1 : 10 - 3: 7。
、 按照权利要求 3或 4的方法, 其特征在于, 步骤 B中所用的溶剂为二甲基 甲醃胺(DMF )、 二甲基乙酰胺(DMAc)或 Ν· -曱基吡咯烷嗣。
、 按照权利要求 3或 4的方法, 其特征在于, 步骤 C中所用喷丝板孔径为 Φ 0. 045mm ~ 0. 75mm, 孔数为 50 "- 2000孔。
、 按照权利要求 3或 4的方法, 其特征在于, 步骤 C中所采用的湿法或千湿 法工艺时凝固浴和清洗浴均分别为水、 甲醇、 乙醇、 乙二醇、 丙酮、 甲苯、 N, N 二甲基甲酰胺 ( DMF )、 N, N 二甲基乙酰胺 ( DMAc )、 N 甲基吡咯烷酮、 二甲基亚枫 ( DMS0 ) 中的一种或几种的混合溶剂。
、 按照权利要求 3或 4的方法, 其特征在于, 步骤 B的梯度温度依次降低。 、 按照权利要求 3或 4的方法, 其特征在于, 步驟 C四段热炉的温度依次升 问。
PCT/CN2011/080401 2011-08-04 2011-09-30 一种高强高模聚酰亚胺纤维及其制备方法 WO2013016892A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/726,489 US9428614B2 (en) 2011-08-04 2012-12-24 Polyimide fiber with high strength and high modulus and its preparation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2011102223000A CN102345177B (zh) 2011-08-04 2011-08-04 一种高强高模聚酰亚胺纤维及其制备方法
CN201110222300.0 2011-08-04

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/726,489 Continuation US9428614B2 (en) 2011-08-04 2012-12-24 Polyimide fiber with high strength and high modulus and its preparation method

Publications (1)

Publication Number Publication Date
WO2013016892A1 true WO2013016892A1 (zh) 2013-02-07

Family

ID=45544239

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/080401 WO2013016892A1 (zh) 2011-08-04 2011-09-30 一种高强高模聚酰亚胺纤维及其制备方法

Country Status (3)

Country Link
US (1) US9428614B2 (zh)
CN (1) CN102345177B (zh)
WO (1) WO2013016892A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103922989A (zh) * 2014-04-29 2014-07-16 苏州海泰原新材料有限公司 含邻苯二甲腈结构的吡咯基芳香二胺及其制备方法和应用

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6060715B2 (ja) * 2012-02-10 2017-01-18 宇部興産株式会社 ポリイミドガス分離膜、及びガス分離方法
CN102605477B (zh) * 2012-02-24 2013-12-25 北京化工大学 聚酰亚胺基碳纤维及其制备方法
CN102677225B (zh) * 2012-05-28 2014-03-12 四川大学 芳香族聚酰胺/芳香族聚酰亚胺共混纤维及其制备方法
CN102943331B (zh) * 2012-11-28 2015-01-21 江苏奥神新材料有限责任公司 一种工业化的聚酰亚胺纤维牵伸方法
CN103147253B (zh) * 2013-03-05 2015-03-04 中国科学院理化技术研究所 一种高强度聚酰亚胺纳米纤维多孔膜及其制备方法和应用
CN103408772B (zh) * 2013-07-17 2018-01-12 北京化工大学 一种以高性能聚酰亚胺纤维为增强体的环氧树脂复合材料及制备
CN103710779B (zh) * 2013-11-01 2017-04-12 江苏先诺新材料科技有限公司 一种提高聚酰亚胺纤维耐碱性能的方法
CN103788651B (zh) * 2014-01-17 2016-05-25 四川大学 低表观粘度的聚酰胺酸溶液及其制备方法
CN105040120A (zh) * 2015-06-17 2015-11-11 天津工业大学 一种制备两步法合成聚酰亚胺基微/纳米纤维的方法
CN105297166B (zh) * 2015-11-17 2017-12-19 中国科学院长春应用化学研究所 一种聚酰亚胺纤维及其制备方法
CN106220848A (zh) * 2016-07-22 2016-12-14 深圳市惠程电气股份有限公司 熔融温度与玻璃化温度差小于30度的耐高温聚酰亚胺及其制备方法
EP3611224A4 (en) * 2017-02-23 2020-11-04 Asahi Kasei Kabushiki Kaisha COMPOSITION, COMPOSITE FILM AND MEMBRANE-ELECTRODE ASSEMBLY
CN107793566B (zh) * 2017-10-31 2021-01-29 宁波惠璞新材料有限公司 一种热塑性聚苯并咪唑酰亚胺及其制备方法
RU2687417C1 (ru) * 2017-12-25 2019-05-13 Общество с ограниченной ответственностью "ЛИРСОТ" Высокопрочная высокомодульная термо-, огнестойкая полиимидная нить и способ ее получения
CN112226842B (zh) * 2019-07-15 2022-10-11 中国石油化工股份有限公司 高强高断裂伸长率聚酰亚胺纤维及其制备方法
CN112226846B (zh) * 2019-07-15 2022-08-12 中国石油化工股份有限公司 耐辐照性能优异的聚酰亚胺纤维及其制备方法和应用
CN112225896A (zh) * 2019-07-15 2021-01-15 中国石油化工股份有限公司 高强高模聚酰亚胺纤维及其制备方法和应用
CN111764001B (zh) * 2020-06-24 2021-06-29 东华大学 一种高强高模聚酰亚胺纤维的制备方法
CN113622049B (zh) * 2021-07-28 2022-11-04 东华大学 一种高强耐候聚酰亚胺纤维的制备方法
CN114989606A (zh) * 2022-06-07 2022-09-02 潘玉 一种轻质聚酰亚胺气凝胶防寒保暖材料、制备方法及应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03287815A (ja) * 1990-04-05 1991-12-18 Asahi Chem Ind Co Ltd ポリイミド繊維の製造法
JP2006176907A (ja) * 2004-12-21 2006-07-06 Du Pont Toray Co Ltd ポリイミド繊維
CN101200822A (zh) * 2007-11-30 2008-06-18 四川大学 含苯并咪唑结构的聚酰亚胺纤维及其制备方法
CN101611182A (zh) * 2006-12-15 2009-12-23 帝人高科技产品株式会社 含杂环芳族聚酰胺纤维及其制备方法以及由该纤维构成的布帛和经该纤维补强的纤维强化复合材料
WO2011018893A1 (ja) * 2009-08-11 2011-02-17 株式会社カネカ ポリイミド繊維及びその利用、並びに当該ポリイミド繊維の製造方法
CN101984157A (zh) * 2010-12-03 2011-03-09 中国科学院长春应用化学研究所 聚酰亚胺纤维及其制备方法
CN102041577A (zh) * 2010-12-03 2011-05-04 中国科学院长春应用化学研究所 一种聚酰亚胺纤维及其制备方法
CN102041576A (zh) * 2010-12-03 2011-05-04 中国科学院长春应用化学研究所 一种聚酰亚胺纤维及其制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56159314A (en) 1980-05-09 1981-12-08 Ube Ind Ltd Preparation of polyimide fiber
JPH0418115A (ja) 1990-05-02 1992-01-22 Asahi Chem Ind Co Ltd ポリイミド繊維の製造法
US5378420A (en) * 1993-06-16 1995-01-03 Edison Polymer Innovation Corporation Process for preparing aromatic polyimide fibers
CN1232686C (zh) 2002-06-13 2005-12-21 东华大学 一种聚酰亚胺纤维的制备方法
US7071282B2 (en) * 2003-06-03 2006-07-04 General Electric Company Benzimidazole diamine-based polyetherimide compositions and methods for making them
CN101914819B (zh) * 2010-07-30 2012-05-23 北京化工大学 含喹唑啉结构的聚酰亚胺纤维及其制备方法
CN102191581B (zh) * 2011-03-28 2012-10-24 中国科学院长春应用化学研究所 聚酰亚胺纤维及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03287815A (ja) * 1990-04-05 1991-12-18 Asahi Chem Ind Co Ltd ポリイミド繊維の製造法
JP2006176907A (ja) * 2004-12-21 2006-07-06 Du Pont Toray Co Ltd ポリイミド繊維
CN101611182A (zh) * 2006-12-15 2009-12-23 帝人高科技产品株式会社 含杂环芳族聚酰胺纤维及其制备方法以及由该纤维构成的布帛和经该纤维补强的纤维强化复合材料
CN101200822A (zh) * 2007-11-30 2008-06-18 四川大学 含苯并咪唑结构的聚酰亚胺纤维及其制备方法
WO2011018893A1 (ja) * 2009-08-11 2011-02-17 株式会社カネカ ポリイミド繊維及びその利用、並びに当該ポリイミド繊維の製造方法
CN101984157A (zh) * 2010-12-03 2011-03-09 中国科学院长春应用化学研究所 聚酰亚胺纤维及其制备方法
CN102041577A (zh) * 2010-12-03 2011-05-04 中国科学院长春应用化学研究所 一种聚酰亚胺纤维及其制备方法
CN102041576A (zh) * 2010-12-03 2011-05-04 中国科学院长春应用化学研究所 一种聚酰亚胺纤维及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103922989A (zh) * 2014-04-29 2014-07-16 苏州海泰原新材料有限公司 含邻苯二甲腈结构的吡咯基芳香二胺及其制备方法和应用
CN103922989B (zh) * 2014-04-29 2016-08-17 苏州海泰原新材料有限公司 含邻苯二甲腈结构的吡咯基芳香二胺及其制备方法和应用

Also Published As

Publication number Publication date
US20130137846A1 (en) 2013-05-30
US9428614B2 (en) 2016-08-30
CN102345177B (zh) 2013-04-10
CN102345177A (zh) 2012-02-08

Similar Documents

Publication Publication Date Title
WO2013016892A1 (zh) 一种高强高模聚酰亚胺纤维及其制备方法
US9011739B2 (en) Methods of continuously manufacturing polymide fibers
CN101984157B (zh) 聚酰亚胺纤维及其制备方法
Dong et al. Synthesis of organ-soluble copolyimides by one-step polymerization and fabrication of high performance fibers
CN104928790A (zh) 一种聚酰亚胺纤维的制备方法
CN107034542A (zh) 一种三步法混合亚胺化制备聚酰亚胺纤维的方法
WO2017084420A1 (zh) 一种聚酰亚胺纤维及其制备方法
CN100519627C (zh) 聚苯并噁唑-酰亚胺及其纤维的制备方法
CN105648567B (zh) 一种聚酰亚胺超细纤维及其制备方法
CN102383217B (zh) 一种聚酰亚胺纤维及其制备方法
CN101914819B (zh) 含喹唑啉结构的聚酰亚胺纤维及其制备方法
CN102220652A (zh) 一种高效制备聚酰亚胺纤维的方法
CN107002300A (zh) 碳纤维前体纤维、碳纤维及碳纤维的制造方法
WO2017084419A1 (zh) 聚酰亚胺纤维及其制备方法
Wang et al. Influences of different imidization conditions on polyimide fiber properties and structure
JP5298901B2 (ja) 高耐熱性ポリイミド繊維およびその製造方法
JP6917027B2 (ja) ポリイミド繊維およびその製造方法
Su et al. Preparation and characterization of ternary copolyimide fibers via partly imidized method
CN104195666B (zh) 一种基于邻甲基芳酰胺酰亚胺化制备聚酰亚胺纤维的方法
JP2013117015A (ja) ポリイミド、ポリイミド繊維、及びそれらの製造方法
CN112226846B (zh) 耐辐照性能优异的聚酰亚胺纤维及其制备方法和应用
JPH0447048B2 (zh)
JPH0418115A (ja) ポリイミド繊維の製造法
JPH01115932A (ja) 新規成形用ドープ
JP2728495B2 (ja) コポリイミド繊維の製造法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11870301

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11870301

Country of ref document: EP

Kind code of ref document: A1