WO2013005807A1 - エチレン-ビニルアルコール共重合体樹脂組成物及びその製造方法 - Google Patents

エチレン-ビニルアルコール共重合体樹脂組成物及びその製造方法 Download PDF

Info

Publication number
WO2013005807A1
WO2013005807A1 PCT/JP2012/067226 JP2012067226W WO2013005807A1 WO 2013005807 A1 WO2013005807 A1 WO 2013005807A1 JP 2012067226 W JP2012067226 W JP 2012067226W WO 2013005807 A1 WO2013005807 A1 WO 2013005807A1
Authority
WO
WIPO (PCT)
Prior art keywords
ethylene
vinyl alcohol
resin composition
alcohol copolymer
compound
Prior art date
Application number
PCT/JP2012/067226
Other languages
English (en)
French (fr)
Inventor
康弘 野中
喜雄 山本
義和 山崎
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to CN201280033589.4A priority Critical patent/CN103635526B/zh
Priority to JP2013523054A priority patent/JP5944388B2/ja
Priority to US14/131,301 priority patent/US9951199B2/en
Priority to EP12807170.1A priority patent/EP2730614B1/en
Publication of WO2013005807A1 publication Critical patent/WO2013005807A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/13Phenols; Phenolates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/12Making granules characterised by structure or composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/12Hydrolysis
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/13Phenols; Phenolates
    • C08K5/134Phenols containing ester groups
    • C08K5/1345Carboxylic esters of phenolcarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/15Heterocyclic compounds having oxygen in the ring
    • C08K5/151Heterocyclic compounds having oxygen in the ring having one oxygen atom in the ring
    • C08K5/1535Five-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/15Heterocyclic compounds having oxygen in the ring
    • C08K5/151Heterocyclic compounds having oxygen in the ring having one oxygen atom in the ring
    • C08K5/1545Six-membered rings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/02Making granules by dividing preformed material
    • B29B9/06Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion

Definitions

  • the present invention relates to an ethylene-vinyl alcohol copolymer resin composition and a method for producing the same.
  • EVOH ethylene-vinyl alcohol copolymer
  • an EVOH resin composition containing EVOH is required to have excellent appearance characteristics (no yellowing or other coloring, no hue spots, etc.).
  • the EVOH resin composition since the above films are usually formed by melt molding, the EVOH resin composition has excellent appearance characteristics with little quality unevenness even in melt molding (there is no generation of gels and blisters, yellowing, etc.) Etc.) and long-run properties (the property such as viscosity does not change even during long-time molding, and a molded product free from fish eyes and streaks can be obtained).
  • many films, sheets, and the like are formed with a multilayer structure including an EVOH resin composition layer in order to further improve oxygen barrier properties.
  • a vinyl acetate polymer in which a conjugated polyene compound having a boiling point of 20 ° C. or higher is added after polymerizing one or more monomers containing vinyl acetate.
  • Saponified vinyl acetate polymer obtained by saponification (Patent Document 1), hydroxycarboxylic acid and / or salt thereof in terms of hydroxycarboxylic acid, 100 to 5000 ppm, alkali metal in terms of metal, 50 to 500 ppm, alkaline earth metal Saponified ethylene-vinyl ester copolymer composition containing 20 to 200 ppm in terms of metal (Patent Document 2), and saponified ethylene-vinyl acetate copolymer selected from boric acid compounds, phosphoric acid or compounds thereof, and fatty acid salts Hydroxyl group-containing thermoplastic resin modified by containing 0.001 to 10% by weight of at least one kind
  • the resin composition of use (Patent Document 3) have been proposed. However, these EVOH resin compositions still have room for improvement in appearance characteristics such as hue.
  • JP-A-9-71620 Japanese Patent Laid-Open No. 10-67898 JP 2000-178397 A JP 2001-045771 A Japanese Patent Laid-Open No. 11-200132
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide an EVOH resin composition having excellent appearance characteristics and suppressing the occurrence of yellowing and the like in melt molding. It is.
  • the above object includes an ethylene-vinyl alcohol copolymer (A) and a compound (B) having an enediol structure (hereinafter also simply referred to as “compound (B)”).
  • compound (B) By providing an ethylene-vinyl alcohol copolymer resin composition in which the molar ratio of the compound (B) to the vinyl alcohol unit in (A) is 2.70 ⁇ 10 ⁇ 9 or more and 2.70 ⁇ 10 ⁇ 5 or less. Solved.
  • the compound (B) has a carboxyl group and / or a lactone ring.
  • the compound (B) is preferably phenols or ascorbic acids, and the compound (B) is gallic acid, methyl gallate, ethyl gallate, propyl gallate, isoamyl gallate, octyl gallate. More preferred is at least one selected from the group consisting of tannic acid, pyrogallol, catechol, catechin, epicatechin, epigallocatechin, epigallocatechin gallate, ellagic acid, ascorbic acid and erythorbic acid. It is also preferred that the compound (B) has a molecular weight of 2000 or less.
  • the EVOH resin composition further contains a carboxylic acid compound and / or carboxylic acid ion other than the compound (B), and the content of the carboxylic acid compound and / or carboxylic acid ion is 0.01 ⁇ mol in terms of carboxylic acid radical. / G or more and 20 ⁇ mol / g or less is also suitable.
  • the EVOH resin composition has a ratio ⁇ 2 / ⁇ 1 of 2.0 or less of an extinction coefficient ⁇ 2 at 225 nm after heat treatment at 120 ° C. and 24 hours in air and an extinction coefficient ⁇ 1 at 225 nm before the heat treatment. is there.
  • the above-mentioned problems include a saponification step in which an ethylene-vinyl ester copolymer is saponified to obtain an ethylene-vinyl alcohol copolymer (A), and after this saponification step, the compound (B) is converted into an ethylene-vinyl alcohol copolymer ( It can also be solved by the method for producing the EVOH resin composition, which comprises a mixing step of mixing with A).
  • a drying step for drying the water-containing pellets, and the mixing step between the pelletizing step and the drying step, and the water-containing pellets are immersed in the solution containing the compound (B) as the mixing step. It is preferable to do.
  • the ethylene-vinyl alcohol copolymer (A) obtained in the saponification step and the compound (B) by performing a granulation operation using the ethylene-vinyl alcohol copolymer (A) obtained in the saponification step and the compound (B), the ethylene-vinyl alcohol copolymer (A) and the compound (A)
  • a method for producing the EVOH resin composition comprising a pelletizing step for obtaining a water-containing pellet containing B) and a drying step for drying the water-containing pellet is also suitable.
  • the above problem can be solved by a molded body obtained by molding the EVOH resin composition. Moreover, the said subject is solved also by the multilayer structure which has a layer which consists of the said EVOH resin composition.
  • an EVOH resin composition that has excellent appearance characteristics (particularly, little coloration and hue unevenness) and suppresses the occurrence of yellowing and the like in melt molding. Moreover, said effect can be acquired reliably by manufacturing EVOH resin composition with the manufacturing method of this invention. According to the EVOH resin composition of the present invention, it is possible to obtain various molded products such as single layer or multilayer films, sheets, pipes, containers, fibers and the like having excellent appearance characteristics.
  • FIG. 6 is a schematic view of a twin screw extruder used in Example 54.
  • EVOH (A) is the main component of the EVOH resin composition of the present invention.
  • EVOH (A) is a copolymer having ethylene units and vinyl alcohol units as main structural units.
  • EVOH (A) may contain one or more other structural units in addition to the ethylene unit and the vinyl alcohol unit.
  • EVOH (A) is usually obtained by polymerizing ethylene and a vinyl ester and saponifying the resulting ethylene-vinyl ester copolymer.
  • the lower limit of the ethylene content of EVOH (A) (that is, the ratio of the number of ethylene units to the total number of monomer units in EVOH (A)) is preferably 20 mol%, more preferably 22 mol%, and even more preferably 24 mol%. preferable.
  • the upper limit of the ethylene content of EVOH (A) is preferably 60 mol%, more preferably 55 mol%, and even more preferably 50 mol%.
  • the ethylene content of EVOH (A) is smaller than the above lower limit, the water resistance, hot water resistance and gas barrier properties under high humidity may be lowered when the multilayer structure is molded, or the melt moldability may be deteriorated. is there. Conversely, if the ethylene content of EVOH (A) exceeds the above upper limit, the gas barrier properties when the multilayer structure is formed may be reduced.
  • the lower limit of the saponification degree of EVOH (A) (that is, the ratio of the number of vinyl alcohol units to the total number of vinyl alcohol units and vinyl ester units in EVOH (A)) is preferably 80 mol%, more preferably 95 mol%, 99 mol% is more preferable.
  • the upper limit of the saponification degree of EVOH (A) is preferably 100 mol%, more preferably 99.99 mol%.
  • the lower limit of the melt flow rate of EVOH (A) (according to JIS-K7210, measured value at a temperature of 210 ° C. and a load of 2160 g) is preferably 0.1 g / 10 minutes, more preferably 0.5 g / 10 minutes, 1 g / 10 min is more preferable, and 3 g / 10 min is particularly preferable.
  • the upper limit of the melt flow rate of EVOH (A) is preferably 200 g / 10 minutes, more preferably 50 g / 10 minutes, further preferably 30 g / 10 minutes, and particularly preferably 15 g / 10 minutes.
  • the compound (B) having an enediol structure contained in the EVOH resin composition of the present invention is a compound having a double bond in the molecule and hydroxy groups at both ends of the double bond.
  • the double bond referred to in this specification may be a part of an aromatic ring such as a benzene ring. It is preferable that the double bond is a part of the benzene ring and further has a hydroxy group at the meta position because coloring such as yellowing can be further suppressed. Moreover, the said hydroxy group may form the salt.
  • the compound (B) is not particularly limited as long as it has an enediol structure, but preferably has a carboxyl group and / or a lactone ring.
  • the carboxyl group may have an ester structure or form a salt with a metal.
  • the compound (B) is a phenol or ascorbic acid.
  • Phenols refer to compounds having a hydroxyl group on an aromatic ring, such as catechins such as catechin, epicatechin, epigallocatechin, epigallocatechin gallate, gallic acid, methyl gallate, ethyl gallate, propyl gallate , Isoamyl gallate, octyl gallate, tannic acid, pyrogallol, catechol, ellagic acid and the like.
  • Ascorbic acid refers to ascorbic acid, its isomers, derivatives thereof, and salts thereof, and examples thereof include ascorbic acid and erythorbic acid.
  • the upper limit of the molecular weight of the compound (B) is preferably 2000, more preferably 1500, still more preferably 1000, and particularly preferably 500.
  • 100 is preferable, More preferably, it is 120, More preferably, it is 150.
  • the upper limit of the molar ratio of the compound (B) to the vinyl alcohol unit of the ethylene-vinyl alcohol copolymer (A) is 2.70 ⁇ 10 ⁇ 5 , preferably 2.02 ⁇ 10 ⁇ 5. More preferably, it is 35 ⁇ 10 ⁇ 5 .
  • the lower limit of the molar ratio is 2.70 ⁇ 10 ⁇ 9 , preferably 8.09 ⁇ 10 ⁇ 9 , and more preferably 1.35 ⁇ 10 ⁇ 8 .
  • the content of the compound (B) with respect to the total amount of the EVOH resin composition is preferably 0.01 to 100 ppm.
  • a lower limit of content of a compound (B) 0.03 ppm is more preferable, and 0.05 ppm is further more preferable.
  • an upper limit of content of a compound (B) 80 ppm is more preferable, 50 ppm is further more preferable, and 10 ppm is especially preferable.
  • coloring such as yellowing in drying or melt molding, can be suppressed more.
  • Carboxylic acid and / or carboxylate ion are contained in the EVOH resin composition of the present invention, thereby improving the color resistance during melt molding of the EVOH resin composition.
  • the carboxylic acid and / or carboxylic acid ion does not include the compound (B).
  • Carboxylic acid is a compound having one or more carboxyl groups in the molecule.
  • the carboxylate ion is one in which the hydrogen ion of the carboxyl group of the carboxylic acid is eliminated.
  • the carboxylic acid contained in the EVOH resin composition of the present invention may be a monocarboxylic acid, a polyvalent carboxylic acid compound having two or more carboxyl groups in the molecule, or a combination thereof.
  • the polyvalent carboxylic acid does not include a polymer.
  • the polyvalent carboxylate ion is one in which at least one hydrogen ion of the carboxyl group of the polyvalent carboxylic acid is eliminated.
  • the carboxyl group of the carboxylic acid may have an ester structure, and the carboxylate ion may form a salt with the metal.
  • the monocarboxylic acid is not particularly limited, and examples thereof include formic acid, acetic acid, propionic acid, butyric acid, caproic acid, capric acid, acrylic acid, methacrylic acid, benzoic acid, and 2-naphthoic acid.
  • These carboxylic acids may have a hydroxyl group or a halogen atom.
  • Examples of the carboxylate ion include those from which the hydrogen ion of the carboxyl group of each carboxylic acid is eliminated.
  • the pKa of this monocarboxylic acid is preferably 3.5 or more, more preferably 4 or more, from the viewpoint of the pH adjusting ability and melt moldability of the composition.
  • acetic acid is preferable from the viewpoint of easy handling.
  • the polyvalent carboxylic acid is not particularly limited as long as it has two or more carboxyl groups in the molecule.
  • oxalic acid, malonic acid, succinic acid, maleic acid, fumaric acid, glutaric acid, adipine Aliphatic dicarboxylic acids such as acid and pimelic acid; aromatic dicarboxylic acids such as phthalic acid, isophthalic acid and terephthalic acid; tricarboxylic acids such as aconitic acid; 1,2,3,4-butanetetracarboxylic acid, ethylenediaminetetraacetic acid, etc.
  • a carboxylic acid having four or more carboxyl groups hydroxycarboxylic acids such as tartaric acid, citric acid, isocitric acid, malic acid, mucinic acid, tartronic acid, citramalic acid; oxaloacetic acid, mesooxalic acid, 2-ketoglutaric acid, 3-ketoglutaric acid Ketocarboxylic acids such as acids; amino acids such as glutamic acid, aspartic acid, and 2-aminoadipic acid And the like can be given.
  • examples of the polyvalent carboxylate ion include these anions.
  • succinic acid, malic acid, tartaric acid, and citric acid are particularly preferable because they are easily available.
  • the content of carboxylic acid and carboxylate ion is preferably 20 ⁇ mol / g, more preferably 15 ⁇ mol / g in terms of carboxylic acid root as the upper limit for the ethylene-vinyl alcohol copolymer resin composition from the viewpoint of color resistance during melt molding. g, more preferably 10 ⁇ mol / g.
  • the lower limit of the content is preferably 0.01 ⁇ mol / g, more preferably 0.05 ⁇ mol / g, still more preferably 0.5 ⁇ mol / g in terms of carboxylic acid radical.
  • the EVOH resin composition of the present invention may further contain a metal ion.
  • the metal ion may be a single metal species or a plurality of metal species.
  • adhesion between layers can be improved when a multilayer structure is molded, and as a result, durability of the multilayer structure can be improved. it can.
  • the reason why such metal ions improve interlaminar adhesion is not necessarily clear, but this bonding occurs when one of the adjacent layers has a functional group capable of reacting with the hydroxy group of EVOH (A) in the molecule. It is conceivable that the production reaction is accelerated by the presence of metal ions.
  • metal ions include alkali metal ions, alkaline earth metal ions, and other transition metal ions.
  • the lower limit of the metal ion content (content in the dry EVOH resin composition) is preferably 2.5 ⁇ mol / g, more preferably 3.5 ⁇ mol / g, and even more preferably 4.5 ⁇ mol / g.
  • the upper limit of the metal ion content is preferably 22 ⁇ mol / g, more preferably 16 ⁇ mol / g, and even more preferably 10 ⁇ mol / g. If the content of metal ions is less than the lower limit, interlayer adhesion may be reduced. On the other hand, when the content of metal ions exceeds the above upper limit, it is difficult to reduce coloring of the EVOH resin composition by containing the compound (B), and the appearance characteristics may be deteriorated.
  • the metal ion preferably contains an alkali metal ion.
  • the alkali metal ion include lithium, sodium, potassium, rubidium, cesium and the like, and sodium or potassium ion is more preferable from the viewpoint of industrial availability.
  • the EVOH resin composition of the present invention contains an alkali metal ion, the long-run property and the interlayer adhesion when a multilayer structure is formed are improved.
  • Alkali metal salts that give alkali metal ions are not particularly limited, and examples thereof include aliphatic carboxylates such as lithium, sodium, and potassium, aromatic carboxylates, phosphates, and metal complexes.
  • Specific examples of the alkali metal salt include sodium acetate, potassium acetate, sodium dihydrogen phosphate, disodium hydrogen phosphate, trisodium phosphate, potassium dihydrogen phosphate, dipotassium hydrogen phosphate, triphosphate phosphate.
  • Examples include potassium, lithium dihydrogen phosphate, trilithium phosphate, sodium stearate, potassium stearate, sodium salt of ethylenediaminetetraacetic acid, and the like.
  • sodium acetate, potassium acetate, and sodium dihydrogen phosphate are particularly preferable because they are easily available.
  • the lower limit of the content of alkali metal ions (content in the dry EVOH resin composition) is preferably 2.5 ⁇ mol / g, more preferably 3.5 ⁇ mol / g, and even more preferably 4.5 ⁇ mol / g.
  • the upper limit of the content of alkali metal ions is preferably 22 ⁇ mol / g, more preferably 16 ⁇ mol / g, and even more preferably 10 ⁇ mol / g. If the content of alkali metal ions is smaller than the above lower limit, the interlayer adhesion may be reduced when the multilayer structure is formed. On the other hand, when the content of alkali metal ions exceeds the above upper limit, it is difficult to reduce the color of the EVOH resin composition by containing the compound (B), and the appearance characteristics may be deteriorated.
  • the metal ions include alkaline earth metal ions.
  • the alkaline earth metal ions include beryllium, magnesium, calcium, strontium, barium and the like, and magnesium or calcium ions are more preferable from the viewpoint of industrial availability.
  • the metal ions include alkaline earth metal ions, the deterioration of the EVOH resin composition when the multilayer structure is repeatedly reused is suppressed, and the appearance of the molded product is improved due to the reduction of defects such as gels and blisters.
  • the EVOH resin composition of the present invention may further contain a phosphoric acid compound.
  • a phosphoric acid compound When the phosphoric acid compound is contained in the EVOH resin composition of the present invention, it is possible to improve the long run property during melt molding of the EVOH resin composition.
  • the phosphoric acid compound is not particularly limited, and examples thereof include various oxygen acids such as phosphoric acid and phosphorous acid and salts thereof.
  • the phosphate may be contained in any form of, for example, a first phosphate, a second phosphate, and a third phosphate, and is not particularly limited as a counter cation species, but an alkali metal salt Or an alkaline earth metal salt is preferable, and an alkali metal salt is more preferable.
  • sodium dihydrogen phosphate, potassium dihydrogen phosphate, disodium hydrogen phosphate or dipotassium hydrogen phosphate is preferred from the viewpoint of improving the long run property during melt molding.
  • the lower limit of the phosphoric acid compound content (phosphoric acid radical equivalent content in the dry EVOH resin composition) is preferably 1 ppm, more preferably 5 ppm, and even more preferably 8 ppm.
  • an upper limit of content of a phosphoric acid compound 500 ppm is preferable, 200 ppm is more preferable, and 50 ppm is further more preferable. If the content of the phosphoric acid compound is smaller than the above lower limit, the long run improvement effect at the time of melt molding may not be sufficiently exhibited. On the other hand, if the content of the phosphoric acid compound exceeds the above upper limit, there is a risk that gels and blisters of the molded product are likely to occur.
  • the boron compound When the boron compound is contained in the EVOH resin composition of the present invention, the long run property during melt molding of the EVOH resin composition can be improved, and as a result, the appearance of gels and blisters is suppressed. Characteristics can be improved. Specifically, when a boron compound is blended in the EVOH resin composition, it is considered that a borate ester is generated between EVOH (A) and the boron compound. By using such an EVOH resin composition, a boron compound is formed. It is possible to improve the long-run property as compared with a resin composition containing no.
  • the boron compound is not particularly limited, and examples thereof include boric acids, boric acid esters, borates, and borohydrides.
  • boric acids include orthoboric acid (H 3 BO 3 ), metaboric acid, and tetraboric acid.
  • boric acid esters include triethyl borate and trimethyl borate.
  • the borate include alkali metal salts, alkaline earth metal salts, and borax of the various boric acids. Of these, orthoboric acid is preferred.
  • the lower limit of the boron compound content (the boron element equivalent content of the boron compound in the dry EVOH resin composition) is preferably 5 ppm, more preferably 10 ppm, and even more preferably 50 ppm.
  • the upper limit of the boron compound content is preferably 2,000 ppm, more preferably 1,000 ppm, still more preferably 500 ppm, and particularly preferably 300 ppm. If the boron compound content is less than the above lower limit, the effect of improving the long run property during melt molding by adding the boron compound may not be obtained. On the other hand, when the content of the boron compound exceeds the above upper limit, the effect of improving the long run property at the time of melt molding may be reduced.
  • the EVOH resin composition of the present invention includes a plasticizer, a stabilizer, a surfactant, a colorant, an ultraviolet absorber, a slip agent, an antistatic agent, a desiccant, a crosslinking agent, as long as the effects of the present invention are not impaired. It is also possible to add appropriate amounts of fillers, reinforcing agents such as various fibers, and the like.
  • thermoplastic resin other than EVOH (A) an appropriate amount can be blended within a range not impairing the effects of the present invention.
  • thermoplastic resins other than EVOH (A) include various polyolefins (polyethylene, polypropylene, poly 1-butene, poly 4-methyl-1-pentene, ethylene-propylene copolymers, ethylene and ⁇ -olefins having 4 or more carbon atoms).
  • Copolymer polyolefin modified with maleic anhydride, ethylene-vinyl ester copolymer, ethylene-acrylic ester copolymer, or modified polyolefin obtained by graft-modifying these with unsaturated carboxylic acid or derivatives thereof),
  • Various nylons nylon-6, nylon-66, nylon-6 / 66 copolymer, etc.
  • polyvinyl chloride polyvinylidene chloride
  • polyester polystyrene
  • polyacrylonitrile polyurethane
  • polyacetal and modified polyvinyl alcohol resin
  • the blending amount is preferably 50% by mass or less, and more preferably 10% by mass or less with respect to the EVOH resin composition.
  • the ratio ⁇ 2 / ⁇ 1 between the extinction coefficient ⁇ 2 at 225 nm after heat treatment at 120 ° C. for 24 hours in air and the extinction coefficient ⁇ 1 at 225 nm before the heat treatment is 2.0 or less. Preferably, it is 1.8 or less, more preferably 1.6 or less.
  • the ratio of the extinction coefficients is in the above range, an EVOH resin composition having few hue spots and excellent appearance characteristics can be obtained.
  • the extinction coefficient ⁇ is a value represented by the following formula (1).
  • A represents the absorbance of light at 225 nm measured with an absorptiometer
  • L represents the optical path length (unit: cm)
  • C represents the concentration (mass%) of the ethylene-vinyl alcohol copolymer resin composition.
  • the extinction coefficient is measured by dissolving the EVOH resin composition in a solvent.
  • the solvent used for the measurement may be a solution in which the ethylene-vinyl alcohol copolymer composition before and after the heat treatment is dissolved, and is measured by appropriately adjusting the mixing ratio of 1-propanol and water.
  • the lower limit of the melt flow rate (measured value at a temperature of 210 ° C. and a load of 2160 g) of the EVOH resin composition of the present invention is preferably 0.1 g / 10 minutes, more preferably 0.5 g / 10 minutes, and more preferably 1 g / 10. Minute is more preferable, and 3 g / 10 minutes is particularly preferable.
  • the upper limit of the melt flow rate of the EVOH resin composition is preferably 200 g / 10 minutes, more preferably 50 g / 10 minutes, further preferably 30 g / 10 minutes, and particularly preferably 15 g / 10 minutes.
  • the lower limit of the pH measured at 20 ° C. of the extract obtained by extracting 10 g of the EVOH resin composition with 50 ml of pure water at 95 ° C. for 4 hours is preferably 3.5. More preferably, 4.0 is even more preferable.
  • the upper limit of the pH of the extract is preferably 8.0, more preferably 7.8, and even more preferably 7.5.
  • the EVOH resin composition of the present invention includes, for example, a copolymerization step (step 1) in which ethylene and vinyl ester are copolymerized to obtain an ethylene-vinyl ester copolymer, and saponification of the ethylene-vinyl ester copolymer.
  • step 1) ethylene and vinyl ester are copolymerized to obtain an ethylene-vinyl ester copolymer
  • saponification of the ethylene-vinyl ester copolymer Including a saponification step (step 2) to obtain an ethylene-vinyl alcohol copolymer (A)
  • a production method further comprising a mixing step of mixing the ethylene-vinyl alcohol copolymer (A) and the compound (B) having an enediol structure after the saponification step.
  • the copolymerization step is a step of copolymerizing ethylene and vinyl ester to obtain an ethylene-vinyl ester copolymer, and subsequently removing unreacted ethylene and unreacted vinyl ester as necessary to remove ethylene-vinyl.
  • the copolymerization method of ethylene and vinyl ester is not particularly limited, and known methods such as solution polymerization, suspension polymerization, emulsion polymerization, and bulk polymerization can be used. Moreover, any of a continuous type and a batch type may be sufficient.
  • vinyl ester used for polymerization examples include vinyl formate, vinyl acetate, vinyl propionate, vinyl valelate, vinyl caprate, vinyl laurate, vinyl stearate, vinyl benzoate, vinyl pivalate and vinyl versatate.
  • vinyl acetate is preferably used.
  • a copolymerization component a monomer that can be copolymerized in addition to the above components, for example, an unsaturated acid such as acrylic acid, methacrylic acid, crotonic acid, maleic acid, itaconic acid, or an anhydride, salt thereof, or Mono- or dialkyl esters, etc .; nitriles such as acrylonitrile and methacrylonitrile; amides such as acrylamide and methacrylamide; olefin sulfonic acids such as vinyl sulfonic acid, allyl sulfonic acid and methallyl sulfonic acid or salts thereof; alkyl vinyl ethers, vinyl ketones, N-vinylpyrrolidone, vinyl chloride, vinylidene chloride and the like can be copolymerized in a small amount.
  • an unsaturated acid such as acrylic acid, methacrylic acid, crotonic acid, maleic acid, itaconic acid, or an anhydride,
  • a vinylsilane compound can be contained in an amount of 0.0002 mol% to 0.2 mol%.
  • examples of the vinylsilane compound include vinyltrimethoxysilane, vinyltriethoxysilane, vinyltri ( ⁇ -methoxy-ethoxy) silane, and ⁇ -methacryloyloxypropylmethoxysilane.
  • vinyltrimethoxysilane and vinyltriethoxysilane are preferably used.
  • the solvent used for the polymerization is not particularly limited as long as it is an organic solvent capable of dissolving ethylene, vinyl ester and ethylene-vinyl ester copolymer.
  • a solvent for example, alcohols such as methanol, ethanol, propanol, n-butanol and tert-butanol; dimethyl sulfoxide and the like can be used.
  • methanol is particularly preferable because removal and separation after the reaction is easy.
  • Examples of the initiator used for the polymerization include 2,2′-azobisisobutyronitrile, 2,2′-azobis- (2,4-dimethylvaleronitrile), 2,2′-azobis- (4-methoxy). -2,4-dimethylvaleronitrile), 2,2'-azobis- (2-cyclopropylpropionitrile) and other azonitrile initiators; isobutyryl peroxide, cumylperoxyneodecanoate, diisopropylperoxydi Organic peroxide initiators such as carbonate, di-n-propyl peroxydicarbonate, t-butylperoxyneodecanoate, acetyl peroxide, lauroyl peroxide, benzoyl peroxide, t-butyl hydroperoxide, etc. Can be used.
  • the polymerization temperature is preferably 20 to 90 ° C, more preferably 40 to 70 ° C.
  • the polymerization time is preferably 2 to 15 hours, more preferably 3 to 11 hours.
  • the polymerization rate is preferably 10 to 90%, more preferably 30 to 80% with respect to the vinyl ester charged.
  • the resin content in the solution after polymerization is preferably 5 to 85% by mass, more preferably 20 to 70% by mass.
  • a polymerization inhibitor is added as necessary, and after removing unreacted ethylene gas, unreacted vinyl ester is removed.
  • a method for removing unreacted vinyl ester for example, the above copolymer solution is continuously supplied from the upper part of the tower filled with Raschig rings at a constant rate, and an organic solvent vapor such as methanol is blown from the lower part of the tower, A method of distilling a mixed vapor of an organic solvent such as methanol and an unreacted vinyl ester from the top and taking out a copolymer solution from which the unreacted vinyl ester has been removed is adopted from the bottom of the column.
  • an alkali catalyst is added to the copolymer solution to saponify the copolymer.
  • the saponification method can be either a continuous type or a batch type.
  • this alkali catalyst for example, sodium hydroxide, potassium hydroxide, alkali metal alcoholate and the like are used.
  • the copolymer solution concentration is 10 to 50% by mass
  • the reaction temperature is 30 to 60 ° C.
  • the amount of catalyst used is 0.02 to 0.6 per mol of vinyl ester structural unit.
  • Mole, saponification time is 1-6 hours.
  • a method of performing a saponification reaction while efficiently removing a carboxylic acid methyl ester and the like produced by a saponification reaction using a conventionally known tower type reactor is the amount of alkali catalyst used.
  • the reaction temperature should be 70 to 150 ° C.
  • the amount of catalyst used should be 0.001 to 0.2 mol per mol of vinyl ester structural unit. .
  • EVOH (A) after the saponification reaction contains an alkali catalyst, by-product salts such as sodium acetate and potassium acetate, and other impurities. Therefore, it is preferable to remove these by neutralization and washing as necessary.
  • EVOH (A) after the saponification reaction is washed with water containing almost no metal ions such as ion-exchanged water, chloride ions, or the like, a part of sodium acetate, potassium acetate or the like may remain.
  • the mixing step may be performed after the pelletizing step. Also by this method, an EVOH resin composition with reduced yellowing can be effectively obtained.
  • the ethylene-vinyl alcohol copolymer (A) obtained by the saponification step is usually obtained in the form of a solution containing the solvent used in the saponification reaction. Since this solution contains a catalyst such as alkali used in the saponification reaction, sodium acetate produced as a by-product, etc., washing is performed to remove these. In order to facilitate this washing operation, it is preferable to granulate the ethylene-vinyl alcohol copolymer solution obtained in the saponification step into EVOH (A) hydrous pellets.
  • ethylene-vinyl alcohol copolymer (A) water-containing pellets from the ethylene-vinyl alcohol copolymer (A) solution in the pelletizing step, and the ethylene-vinyl alcohol copolymer (A)
  • the solution is extruded into a cooled coagulation bath containing a poor solvent in the form of a strand, cooled and solidified, and then cut with a strand cutter to obtain a cylindrical EVOH (A) hydrous pellet, or in the same manner, ethylene-vinyl alcohol
  • a known method such as a method of obtaining a hydrous pellet of a meteorite-to-spherical EVOH (A) by cutting with a rotating blade or the like immediately after the solution of the copolymer (A) is extruded into a coagulation bath can be used.
  • the solution of the ethylene-vinyl alcohol copolymer (A) is brought into contact with water vapor to obtain a water-containing resin composition of EVOH (A) in advance by the method described in JP-A No. 2002-121290.
  • a method of obtaining a hydrous pellet of EVOH (A) can also be suitably used.
  • the water content in the water-containing pellets of EVOH (A) obtained by these methods is preferably from 50 to 200% by weight, more preferably from 60 to 180% by weight, based on the dry weight of EVOH. More preferably, it is ⁇ 150 mass%.
  • the water-containing pellets of EVOH (A) obtained in the pelletizing step are finally dried in the drying step to be pellets of the resin composition containing EVOH (A).
  • the moisture content in the resin composition pellets containing EVOH (A) after drying is based on the entire resin composition pellets containing EVOH (A) for the purpose of preventing molding troubles such as generation of voids due to foaming during molding. It is preferably 1.0% by mass or less, more preferably 0.8% by mass or less, and still more preferably 0.5% by mass or less.
  • drying method of the EVOH (A) hydrous pellets there is no particular limitation on the drying method of the EVOH (A) hydrous pellets, and various known methods can be used, and stationary drying, fluidized drying, and the like are preferable. These drying methods may be used alone, or a plurality of drying methods may be used in combination, for example, by first performing fluidized drying and then static drying. The drying treatment may be performed by either a continuous method or a batch method. When a plurality of drying methods are combined, a continuous method or a batch method can be freely selected for each drying method.
  • a method for performing the mixing step after the pelletizing step (1) a method of bringing the EVOH (A) hydrous pellet into contact with a solution containing the compound (B), or (2) an EVOH (A) hydrous pellet
  • a method of melt-kneading the compound (B) with an extruder such as a twin screw extruder is preferably used.
  • the compound (B) and, if necessary, the carboxylic acid compound and the like can be mixed with EVOH (A) at the same time.
  • the compound (B) can be efficiently mixed in the EVOH resin composition, and the EVOH resin composition in which yellowing during melt molding is suppressed can be more effectively produced. it can.
  • the hydrous pellets When the EVOH (A) hydrous pellets are immersed in a solution containing the compound (B) and other components as necessary, the hydrous pellets may have any shape such as powder, granular, spherical, cylindrical chip, etc. Can be used. This operation can be performed by either a batch method or a continuous method. When the batch method is used, the mass ratio (bath ratio) of the EVOH (A) and the solution containing each component in the EVOH (A) hydrous pellet is preferably 3 or more, more preferably 10 or more, and even more preferably 20 or more. . In the case of carrying out continuously, a conventionally known tower type apparatus can be suitably used.
  • the preferred range of the immersion time varies depending on the form of the water-containing pellet, but it is usually 1 hour or more, preferably 2 hours or more when the water-containing pellet of EVOH (A) is granular having an average diameter of about 1 to 10 mm.
  • the immersion treatment in the solution may be performed by separately immersing each component to be contained in the resin composition containing EVOH (A) into a plurality of solutions in which each component is dissolved, and once using a solution in which a plurality of components are dissolved.
  • treatment with a solution containing all components other than EVOH (A) is preferable from the viewpoint of simplification of the process.
  • each component may be independently dissolved in a solvent, but it is also possible to use a component in which several components form a salt.
  • the solution may contain carbon dioxide and / or carbonic acid, and examples of the method for containing carbon dioxide and / or carbonic acid include the method described in WO 03/068847.
  • the total concentration of free carbon dioxide and carbonic acid contained in the aqueous solution is preferably 0.5 mmol / L or more, more preferably 2 mmol / L, and even more preferably 10 mmol / L or more.
  • the treatment may be performed under a pressurized condition of about 1.5 to 10 atm.
  • the concentration of each of the other components in the solution is not particularly limited, and may be adjusted as appropriate so that a desired content can be obtained in the finally obtained EVOH resin composition.
  • the solvent of the solution is not particularly limited, but water is preferable for reasons of handling.
  • EVOH (A) hydrous pellets and the compound (B) are melt-kneaded in the extruder as the mixing step, for example, a method described in JP-A No. 2002-284811 is preferably used.
  • the compound (B) in the pelletizing step described above.
  • the compound (B) can be uniformly contained in the water-containing pellet of EVOH (A).
  • the ethylene-vinyl alcohol copolymer (A) obtained in the saponification step and the compound (B) are granulated using a twin screw extruder, and the ethylene-vinyl alcohol copolymer (A And a method for obtaining a water-containing pellet containing the compound (B).
  • the compound (B) is preferably added in the form of an aqueous solution.
  • the EVOH resin composition of the present invention is molded into various molded products such as films, sheets, containers, pipes, fibers, etc. by melt molding. These molded products can be pulverized and molded again for reuse. It is also possible to uniaxially or biaxially stretch films, sheets, fibers, and the like.
  • melt molding method extrusion molding, inflation extrusion, blow molding, melt spinning, injection molding and the like are possible.
  • the multilayer structure of the present invention is a multilayer structure including at least one layer obtained from the EVOH resin composition of the present invention.
  • the layer structure of the multilayer structure is not particularly limited, and E represents a layer obtained from the EVOH resin composition of the present invention, Ad represents a layer obtained from an adhesive resin, and T represents a layer obtained from a thermoplastic resin. Examples of such structures include T / E / T, E / Ad / T, and T / Ad / E / Ad / T. Each of these layers may be a single layer or a multilayer.
  • the method for producing the multilayer structure is not particularly limited. For example, a method of melt-extruding a thermoplastic resin to a molded product (film, sheet, etc.) obtained from the EVOH resin composition of the present invention, a method of co-extruding the EVOH resin composition of the present invention and another thermoplastic resin, the present A method of co-injecting an EVOH resin composition of the invention and a thermoplastic resin, a molded product molded from the EVOH resin composition of the present invention, and a film or sheet of another substrate, an organic titanium compound, an isocyanate compound, a polyester system The method of laminating using well-known adhesives, such as a compound, is mentioned.
  • a method of co-extrusion of the EVOH resin composition of the present invention and another thermoplastic resin is preferably used.
  • the EVOH resin composition of the present invention is excellent in long run properties and appearance characteristics, and is particularly difficult to be colored even by melting at a relatively high temperature. Therefore, a co-extrusion of the EVOH resin composition of the present invention with another thermoplastic resin having a relatively high melting point can provide a multilayer structure having an excellent appearance in which the occurrence of coloring such as yellowing is suppressed. it can.
  • thermoplastic resin used for the other layers in the multilayer structure examples include linear low density polyethylene, low density polyethylene, medium density polyethylene, high density polyethylene, ethylene-vinyl acetate copolymer, ethylene-propylene copolymer, Polypropylene, propylene- ⁇ -olefin copolymers ( ⁇ -olefins having 4 to 20 carbon atoms), olefins such as polybutene and polypentene or copolymers thereof, polyesters such as polyethylene terephthalate, polyester elastomers, nylon-6, nylon Polyamides such as ⁇ 66, polystyrene, polyvinyl chloride, polyvinylidene chloride, acrylic resins, vinyl ester resins, polyurethane elastomers, polycarbonates, chlorinated polyethylene, chlorinated polypropylene, and the like.
  • the adhesive resin is not particularly limited as long as it has adhesiveness with the EVOH resin composition and the thermoplastic resin of the present invention, but an adhesive resin containing a carboxylic acid-modified polyolefin is preferable.
  • a carboxylic acid-modified polyolefin a modified olefin containing a carboxyl group obtained by chemically bonding an ethylenically unsaturated carboxylic acid, its ester or its anhydride to an olefin polymer (for example, addition reaction, graft reaction, etc.)
  • a polymer can be preferably used.
  • the olefin polymer is a polyolefin such as polyethylene (low pressure, medium pressure, high pressure), linear low density polyethylene, polypropylene, boribten, olefin and other monomers (vinyl ester, unsaturated carboxylic acid ester, etc.) (For example, ethylene-vinyl acetate copolymer, ethylene-acrylic acid ethyl ester copolymer, etc.).
  • linear low density polyethylene ethylene-vinyl acetate copolymer (vinyl acetate content 5 to 55 mass%), ethylene-acrylic acid ethyl ester copolymer (acrylic acid ethyl ester content 8 to 35 mass%), linear low density polyethylene and ethylene-vinyl acetate copolymer are particularly preferred.
  • ethylenically unsaturated carboxylic acid, its ester or its anhydride examples include ethylenically unsaturated monocarboxylic acid, its ester, ethylenically unsaturated dicarboxylic acid, its mono or diester, or its anhydride, Of these, ethylenically unsaturated dicarboxylic acid anhydride is preferred. Specific examples include maleic acid, fumaric acid, itaconic acid, maleic anhydride, itaconic anhydride, maleic acid monomethyl ester, maleic acid monoethyl ester, maleic acid diethyl ester, and fumaric acid monomethyl ester. Acid is preferred.
  • the addition amount or graft amount (degree of modification) of the ethylenically unsaturated carboxylic acid or its anhydride to the olefin polymer is 0.0001 to 15% by mass, preferably 0.001 to 10%, based on the olefin polymer. % By mass.
  • the addition reaction or grafting reaction of ethylenically unsaturated carboxylic acid or its anhydride to olefin polymer for example, is performed by radical polymerization method in the presence of solvent (such as xylene) and catalyst (such as peroxide). Can do.
  • solvent such as xylene
  • catalyst such as peroxide
  • carboxylic acid-modified polyolefin thus obtained is preferably 0.2 to 30 g / 10 minutes, and preferably 0.5 to 10 g / 10 minutes. More preferably.
  • These adhesive resins may be used alone or in combination of two or more.
  • the method for coextrusion of the EVOH resin composition of the present invention and the thermoplastic resin is not particularly limited, and examples thereof include a multi-manifold merging method T-die method, a feed block merging method T-die method, and an inflation method. .
  • molded products films, sheets, tubes, bottles, etc.
  • various types of molded products can be obtained by secondary processing of the coextruded multilayer structure thus obtained.
  • the various molded products include (1) a multilayer co-stretched sheet or film obtained by stretching and heat-treating a multilayer structure (sheet or film, etc.) in a uniaxial or biaxial direction, and (2) a multilayer structure (sheet). Or a multilayer rolled sheet or film obtained by rolling a film or the like, and (3) a multilayer obtained by thermoforming a multilayer structure (sheet or film, etc.) such as vacuum forming, pressure forming, or vacuum / pressure forming. Examples include tray cup-shaped containers, (4) bottles obtained by stretch blow molding from a multilayer structure (such as pipes), and cup-shaped containers.
  • the secondary processing method is not limited to the methods exemplified when obtaining the molded product, and a known secondary processing method other than the above, such as blow molding, can be used as appropriate.
  • the multilayer structure has a layer obtained from the EVOH resin composition excellent in appearance characteristics and long run properties, it is less colored such as fish eyes, gels, blisters, and yellowing. It can be suitably used as a food container such as a cup-shaped container or a bottle.
  • Measurement conditions Device name: Superconducting nuclear magnetic resonance apparatus “Lambda500” manufactured by JEOL Ltd. Observation frequency: 500 MHz Solvent: DMSO-d6 Polymer concentration: 4% by mass Measurement temperature: 40 ° C and 95 ° C Integration count: 600 times Pulse delay time: 3.836 seconds Sample rotation speed: 10 to 12 Hz Pulse width (90 ° pulse): 6.75 ⁇ sec
  • the portion of 3.1 to 3.7 ppm is 95
  • the measurement data at ° C. was adopted, the measurement data at 40 ° C. was adopted for the portion of 3.7 to 4 ppm, and the total amount of the methine hydrogen was quantified as the total value thereof.
  • the hydrogen peak of water or a hydroxyl group shifts to the high magnetic field side by increasing the measurement temperature. Therefore, it analyzed using the measurement result of both 40 degreeC and 95 degreeC as follows. From the spectrum measured at 40 ° C., the integrated value (I 1 ) of the peak of chemical shift of 3.7 to 4 ppm and the integrated value (I 2 ) of the peak of chemical shift of 0.6 to 1.8 ppm are obtained.
  • the dried EVOH pellets were pulverized by freeze pulverization.
  • the obtained pulverized EVOH was sieved with a sieve having a nominal size of 1 mm (conforming to standard fluid standard JIS-Z8801).
  • 10 g of EVOH powder and 50 mL of ion exchange water that passed through the above sieve were put into a 100 mL Erlenmeyer flask with a stopper, attached with a cooling condenser, and stirred and extracted at 95 ° C. for 10 hours.
  • 2 mL of the obtained extract was diluted with 8 mL of ion exchange water.
  • the diluted extract is quantitatively analyzed using ion chromatography “ICS-1500” manufactured by Yokogawa Electric Corporation, and the amount of carboxylic acid ions is calculated by quantifying the amount of carboxylic acid ions. did. In the determination, a calibration curve prepared using each monocarboxylic acid or polyvalent carboxylic acid was used.
  • the solution was diluted with 10 mL of ion exchange water, and all the liquid was transferred to a 50 mL volumetric flask, and the volume was adjusted with ion exchange water to obtain a decomposition solution.
  • the amount of each metal ion, phosphate compound, and boron compound by quantitatively analyzing the above decomposition solution at each observation wavelength shown below using an ICP emission spectroscopic analyzer “Optima 4300 DV” manufactured by PerkinElmer Japan. was quantified.
  • the amount of the phosphoric acid compound was calculated as a phosphate radical equivalent value by quantifying phosphorus element.
  • the boron compound content was obtained in terms of boron element. Na: 589.592 nm K: 766.490 nm Mg: 285.213 nm Ca: 317.933 nm P: 214.914 nm B: 249.667 nm
  • the obtained solution was put in a quartz cell having an optical path length of 1.0 cm, and absorbance at 225 nm was measured with a spectrophotometer UV-2450 manufactured by Shimadzu Corporation. Evaluation was performed using the pellets obtained in Examples and Comparative Examples and the pellets further heat-treated, and the extinction coefficient was calculated for each.
  • the extinction coefficient ⁇ is a value represented by the following formula (1).
  • A / (L ⁇ C) (1)
  • A represents the absorbance of light at 225 nm measured with an absorptiometer
  • L represents the optical path length (unit: cm)
  • C represents the concentration (mass%) of the ethylene-vinyl alcohol copolymer resin composition.
  • a ratio ⁇ 2 / ⁇ 1 between the extinction coefficient ⁇ 1 of the EVOH pellet obtained from the analysis result and the extinction coefficient ⁇ 2 of the heat-treated pellet was calculated.
  • the absorbance exceeded 1.0, the adjusted EVOH solution was appropriately diluted with 55 mass% 1-propanol aqueous solution, and then the absorbance was measured.
  • the obtained multilayer film was cut out at 150 mm in the MD direction and 10 mm in the TD direction immediately after the multilayer film was formed, and immediately after that, a T-type peeling was performed at a pulling rate of 250 mm / min by an autograph (“DCS-50M” manufactured by Shimadzu Corporation).
  • the peel strength between the EVOH layer / Ad layer was measured in the mode, and the following determination was made based on the strength of the peel strength.
  • EVOH 20mm ⁇ extruder Lab machine ME type CO-EXT (manufactured by Toyo Seiki Co., Ltd.)
  • Ad 20 mm ⁇ extruder SZW20GT-20MG-STD (manufactured by Technobel)
  • LLDPE 32mm ⁇ extruder GT-32-A (Plastic Engineering Laboratory Co., Ltd.)
  • EVOH extrusion temperature supply unit / compression unit / metering unit / die 175/210/220/220 ° C.
  • Ad extrusion temperature Supply unit / Compression unit / Measuring unit / Die 100/160/220/220 ° C.
  • LLDPE extrusion temperature Supply unit / Compression unit / Measuring unit / Die 150/200/210/220 ° C. Die 300mm width coat hanger die (Plastic Engineering Laboratory Co., Ltd.) ⁇ Adhesion criteria> Judgment: Standard A: 500 g / 15 cm or more B: 400 g / 15 cm or more and less than 500 g / 15 cm C: 300 g / 15 cm or more and less than 400 g / 15 cm D: less than 300 g / 15 cm
  • AMV 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile)
  • AMV 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile)
  • the neutralized reaction solution was transferred from the reactor to a drum can and allowed to stand at room temperature for 16 hours to be cooled and solidified into a cake. Thereafter, the cake-like resin was drained using a centrifuge (“H-130” manufactured by Kokusan Centrifuge Co., Ltd., 1200 rpm). Next, the center part of the centrifuge was washed while continuously supplying ion exchange water from above, and the step of washing the resin with water was performed for 10 hours. The conductivity of the cleaning solution 10 hours after the start of cleaning was 30 ⁇ S / cm (measured with “CM-30ET” manufactured by Toa Denpa Kogyo Co., Ltd.).
  • impurities such as by-products in the saponification step are added by repeating the operation of adding 150 L of ion exchange water to 40 kg of hydrous EVOH pellets, stirring at 25 ° C. for 2 hours, and dehydrating with a centrifuge 6 times.
  • Water-containing EVOH pellets (w-EVOH-1) were obtained.
  • the conductivity of the cleaning solution after the sixth cleaning was measured with “CM-30ET” manufactured by Toa Denpa Kogyo Co., Ltd. As a result, the conductivity of the cleaning solution was 3 ⁇ S / cm.
  • the water content of the obtained hydrous EVOH pellets was 110% by mass.
  • Synthesis of Hydrous EVOH Pellet In Synthesis Example 1, the charged amounts of vinyl acetate and methanol during the polymerization of the ethylene-vinyl acetate copolymer were 71.1 kg and 4.28 kg, respectively, and the reactor pressure was 6. At 65 MPa, the injection amount of the initiator solution (a methanol solution of 3.0 g / L concentration of AMV) at the start of polymerization was 1305 mL, the continuous addition amount of the initiator solution was 2145 mL / hr, and the polymerization tank internal temperature was 55 ° C. A methanol solution of EVAc from which unreacted vinyl acetate monomer was removed was obtained in the same manner as in Synthesis Example 1 except that At this time, the polymerization rate was 35%.
  • the injection amount of the initiator solution a methanol solution of 3.0 g / L concentration of AMV
  • Synthesis of hydrous EVOH pellets In Synthesis Example 1, the amounts of vinyl acetate and methanol charged in the polymerization of the ethylene-vinyl acetate copolymer were 87.8 kg and 7.21 kg, respectively, and the reactor pressure was 5. Synthesis Example 1 except that the injection amount at the start of polymerization of the initiator solution (2.8 g / L methanol solution of AMV) was changed to 691 mL and the continuous addition amount of the initiator solution to 2136 mL / hr at 59 MPa. A methanol solution of EVAc from which unreacted vinyl acetate monomer was removed by the same operation was obtained. At this time, the polymerization rate was 45%.
  • Synthesis of hydrous EVOH pellets In Synthesis Example 1, the amounts of vinyl acetate and methanol charged in the polymerization of the ethylene-vinyl acetate copolymer were 86.7 kg and 27.7 kg, respectively, and the reactor pressure was 2. Synthesis Example 1 except that the injection amount at the start of polymerization of the initiator solution (AMV 1.5 g / L concentration methanol solution) was changed to 700 mL and the continuous addition amount of the initiator solution to 2166 mL / hr at 98 MPa. A methanol solution of EVAc from which unreacted vinyl acetate monomer was removed by the same operation was obtained. At this time, the polymerization rate was 45%.
  • Synthesis of hydrous EVOH pellets In Synthesis Example 1, the charged amounts of vinyl acetate and methanol during the polymerization of the ethylene-vinyl acetate copolymer were 101.0 kg and 16.3 kg, respectively, and the reactor pressure was 2.
  • the injection amount of the initiator solution (a methanol solution of 1.5 g / L concentration of AMV) at the start of polymerization was 627 mL, the continuous addition amount of the initiator solution was 1938 mL / hr, and the reaction time was 5.0 hours
  • a methanol solution of EVAc from which unreacted vinyl acetate monomer was removed was obtained in the same manner as in Synthesis Example 1 except that At this time, the polymerization rate was 45%.
  • Example 1 In water, propyl gallate 4.8 mg / L, acetic acid 0.79 g / L, citric acid 0.10 g / L, sodium acetate 0.53 g / L, phosphoric acid 0.012 g / L, boric acid 0.42 g / L 10.5 kg of the hydrous EVOH pellets (w-EVOH-1) obtained in Synthesis Example 1 was added to 94.5 L of an aqueous solution in which the respective components were dissolved, and immersion was performed with occasional stirring at 25 ° C. for 6 hours. went. The water-containing EVOH pellets after the immersion were dehydrated by centrifugation and then dried in a hot air dryer at 80 ° C. for 3 hours and then at 120 ° C. for 35 hours to obtain dry EVOH resin composition pellets (dry EVOH pellets).
  • the ethylene content (Et) was 32.0 mol%
  • the saponification degree (DS) was 99.98 mol% or more.
  • propyl gallate was 0.0236 ⁇ mol / g
  • acetic acid and acetate ions were 8.00 ⁇ mol / g
  • citric acid and citrate ions were 0.52 ⁇ mol / g
  • sodium ions were 6.96 ⁇ mol / g
  • the phosphate compound contained 10 ppm in terms of phosphate radical and the boron compound contained 201 ppm in terms of boron element.
  • the extinction coefficient ratio ⁇ 2 / ⁇ 1 was 1.47.
  • the pH of the extracted liquid was 4.6.
  • the quality spot evaluation was A.
  • the EVOH resin composition before and after the heat treatment was melt-molded and evaluated for anti-coloring property. From this, the quality spot evaluation at the time of melt molding was A judgment.
  • the torque value did not reach 1.5 times the torque value after 5 minutes, and was judged as A, and as for adhesiveness, the peel strength was 510 g / 15 cm and judged as A.
  • Examples 2 to 50 and Comparative Examples 1 to 4 The dry EVOH resin composition pellets were obtained in the same manner as in Example 1 except that the types of hydrous EVOH pellets used in Example 1 and the types and amounts of each compound blended in the aqueous solution were changed as shown in Table 1 and Table 4. Obtained. About each obtained EVOH resin composition, the result of having analyzed ethylene content etc. similarly to Example 1 is shown in Table 2 and Table 5, and the result of having evaluated coloring resistance etc. is shown in Table 3 and Table 6. However, in Examples 23 to 26, EVOH synthesized in Synthesis Examples 2 to 5 was used.
  • Examples 51 to 53> The type of hydrous EVOH pellets used in Example 1 and the type and amount of each compound added to the aqueous solution were changed as shown in Table 7, and carbon dioxide was added to the aqueous solution at 1.0 L / min.
  • a dry EVOH resin composition pellet was obtained in the same manner as in Example 1 except that the immersion was performed at 25 ° C. for 6 hours while blowing.
  • Example 54 The w-EVOH-1 obtained in Synthesis Example 1 was dried in a hot air dryer at 80 ° C. for 1 hour to obtain water-containing EVOH pellets having a water content of 50% by mass.
  • the obtained hydrous EVOH pellets were charged into a twin screw extruder (details are shown below) at 10 kg / hr, the resin temperature at the discharge port was set to 100 ° C., and the solution addition shown in FIG.
  • the EVOH resin composition of the present invention has excellent appearance characteristics (particularly, no coloring and hue spots), and the occurrence of yellowing and the like during melt molding is suppressed, so there are few quality spots, It can be suitably used as a material for various molded articles such as a molded article having excellent appearance characteristics, for example, a single layer or multilayer film, sheet, pipe, container, fiber and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

 本発明は、優れた外観特性(特に着色及び色相の斑の少ないこと)を備え、且つ溶融成形時の黄変等の発生が抑制されたエチレン-ビニルアルコール共重合体樹脂組成物を提供することを目的とする。本発明は、エチレン-ビニルアルコール共重合体(A)及びエンジオール構造を有する化合物(B)を含有し、上記エチレン-ビニルアルコール共重合体(A)のビニルアルコール単位に対する上記化合物(B)のモル比が2.70×10-9以上2.70×10-5以下であるエチレン-ビニルアルコール共重合体樹脂組成物である。

Description

エチレン-ビニルアルコール共重合体樹脂組成物及びその製造方法
 本発明は、エチレン-ビニルアルコール共重合体樹脂組成物及びその製造方法に関する。
 エチレン-ビニルアルコール共重合体(以下、「EVOH」ともいう。)は、酸素遮断性、透明性、耐油性、非帯電性、機械強度等に優れており、フィルム、シート、容器等の各種包装材料等として広く用いられている。
 通常、EVOHを含有するEVOH樹脂組成物には、優れた外観特性(黄変等の着色が生じていない、色相の斑がない等)が求められる。また、上記フィルム等は通常溶融成形法により成形されるため、EVOH樹脂組成物には溶融成形においても品質斑が少ない優れた外観特性(ゲル、ブツの発生がない、黄変等の着色が生じていない等)や、ロングラン性(長時間の成形においても粘性等の物性が変化せず、フィッシュアイやスジ等のない成形物を得ることができること)等が求められる。また、フィルムやシート等は、酸素遮断性等をより高めるため、EVOH樹脂組成物層を含む多層構造で形成されるものも多い。このような多層構造体を得る際には、層間接着性を高めるため、EVOH樹脂組成物中に金属塩を含有させることが広く行われている。しかしながら、EVOH樹脂組成物中に金属塩を含有させると、黄変等の着色が生じやすくなり、外観特性が低下することが知られている。特に、シート成形などの用途においては、成形物を得た後のシートの耳部分(トリム)を回収して再利用するといったことが行われるが、再利用を繰り返す度にEVOH樹脂組成物の劣化が進行し、ゲルやブツといった欠点が増大して成形物の外観が悪化するといった不都合がある。
 このような中、EVOH樹脂組成物の外観特性を向上させるため、酢酸ビニルを含む1種類以上の単量体を重合した後、沸点20℃以上の共役ポリエン化合物を添加する酢酸ビニル系重合体をけん化して得られる酢酸ビニル系重合体けん化物(特許文献1)、ヒドロキシカルボン酸及び/またはその塩をヒドロキシカルボン酸換算で100~5000ppm、アルカリ金属を金属換算で50~500ppm、アルカリ土類金属を金属換算で20~200ppm含むエチレン-ビニルエステル共重合体けん化物組成物(特許文献2)、エチレン-酢酸ビニル共重合体けん化物にホウ酸化合物、リン酸又はその化合物、脂肪酸塩から選ばれる少なくとも1種類を0.001~10重量%含有してなることを特徴とする水酸基含有熱可塑性樹脂改質用の樹脂組成物(特許文献3)が各種提案されている。しかし、これらのEVOH樹脂組成物は、色相等の外観特性において未だ改良の余地がある。
 また、有機化合物系酸素吸収剤として、又は3級アミンを含有する製膜溶液中のEVOHの分解を防止する目的で、EVOH樹脂組成物に多価フェノール類を配合することが知られている(特許文献4及び特許文献5)。しかし、これらのEVOH樹脂組成物は、目的とする酸素吸収効果又は分解防止効果を得るためにEVOHに対して0.1質量%程度以上の多価フェノール類を配合すると、EVOH樹脂組成物の色相が悪化するという問題がある。
特開平9-71620号公報 特開平10-67898号公報 特開2000-178397号公報 特開2001-047571号公報 特開平11-200132号公報
 上記のごとく、EVOH樹脂組成物の外観特性を向上させるために様々な対策がとられている。しかし、これらのEVOH樹脂組成物においても外観特性(特に着色及び色相の斑の少ないこと)の改善が満足し得るレベルに到達できていない。特に、EVOH樹脂組成物の製造工程では、乾燥機内で滞留時間差があり、色相斑が生じるという問題がある。また、溶融成形時に黄変等が発生し、成形体に外観特性の悪化(特に色相の斑)が生じることがある。
 本発明は、上記課題を解決するためになされたものであり、優れた外観特性を備え、且つ溶融成形における黄変等の発生が抑制されたEVOH樹脂組成物を提供することを目的とするものである。
発明を解決するための手段
 上記課題は、エチレン-ビニルアルコール共重合体(A)、及びエンジオール構造を有する化合物(B)(以下、単に「化合物(B)」ともいう)を含有し、上記エチレン-ビニルアルコール共重合体(A)のビニルアルコール単位に対する上記化合物(B)のモル比が2.70×10-9以上2.70×10-5以下であるエチレン-ビニルアルコール共重合体樹脂組成物を提供することによって解決される。
 上記化合物(B)がカルボキシル基及び/又はラクトン環を有することも好適である。また、上記化合物(B)がフェノール類又はアスコルビン酸類であることが好適であり、上記化合物(B)が、没食子酸、没食子酸メチル、没食子酸エチル、没食子酸プロピル、没食子酸イソアミル、没食子酸オクチル、タンニン酸、ピロガロール、カテコール、カテキン、エピカテキン、エピガロカテキン、エピガロカテキンガレート、エラグ酸、アスコルビン酸及びエリソルビン酸からなる群より選ばれる少なくとも1種であることがより好適である。また、上記化合物(B)の分子量が2000以下であることも好適である。
 また、上記EVOH樹脂組成物がさらに上記化合物(B)以外のカルボン酸化合物及び/又はカルボン酸イオンを含有し、このカルボン酸化合物及び/又はカルボン酸イオンの含有率がカルボン酸根換算で0.01μmol/g以上20μmol/g以下であることも好適である。
 上記EVOH樹脂組成物が、空気下120℃及び24時間の熱処理後の225nmにおける吸光係数ε2と上記熱処理前の225nmにおける吸光係数ε1との比ε2/ε1が2.0以下であることも好適である。
 また、上記課題は、エチレン-ビニルエステル共重合体をけん化してエチレン-ビニルアルコール共重合体(A)を得るけん化工程と、このけん化工程後に化合物(B)をエチレン-ビニルアルコール共重合体(A)と混合する混合工程とを有する、上記EVOH樹脂組成物の製造方法によっても解決される。
 上記製造方法において、上記けん化工程で得られたエチレン-ビニルアルコール共重合体(A)を用いた造粒操作によりエチレン-ビニルアルコール共重合体(A)を含む含水ペレットを得るペレット化工程と、上記含水ペレットを乾燥する乾燥工程とを有し、上記ペレット化工程と乾燥工程との間に上記混合工程を有し、この混合工程として上記含水ペレットを上記化合物(B)を含有する溶液に浸漬することが好適である。また、上記けん化工程で得られたエチレン-ビニルアルコール共重合体(A)及び上記化合物(B)を用いた造粒操作を行うことにより上記エチレン-ビニルアルコール共重合体(A)及び上記化合物(B)を含む含水ペレットを得るペレット化工程と、上記含水ペレットを乾燥する乾燥工程とを有する上記EVOH樹脂組成物の製造方法も好適である。
 上記課題は、上記EVOH樹脂組成物を成形してなる成形体によっても解決される。また、上記課題は、上記EVOH樹脂組成物からなる層を有する多層構造体によっても解決される。
 本発明により、優れた外観特性(特に着色及び色相の斑の少ないこと)を備え、且つ溶融成形における黄変等の発生が抑制されたEVOH樹脂組成物を提供することができる。また、本発明の製造方法によりEVOH樹脂組成物を製造することで、上記の効果を確実に得ることができる。本発明のEVOH樹脂組成物によれば、外観特性の優れた単層又は多層のフィルム、シート、パイプ、容器、繊維などの各種成形品を得ることができる。
実施例54で用いた二軸押出機の概略図である。
 以下、本発明の実施の形態を、各成分、EVOH樹脂組成物、EVOH樹脂組成物の製造方法、及びEVOH樹脂組成物からなる成形体並びに多層構造体の順に詳説する。
 (エチレン-ビニルアルコール共重合体(A))
 EVOH(A)は本発明のEVOH樹脂組成物の主成分である。EVOH(A)は、主構造単位として、エチレン単位及びビニルアルコール単位を有する共重合体である。なお、EVOH(A)は、エチレン単位及びビニルアルコール単位以外に、他の構造単位を1種又は複数種含んでいてもよい。EVOH(A)は、通常、エチレンとビニルエステルとを重合し、得られるエチレン-ビニルエステル共重合体をけん化して得られる。
 EVOH(A)のエチレン含有量(すなわち、EVOH(A)中の単量体単位の総数に対するエチレン単位の数の割合)の下限としては20mol%が好ましく、22mol%がより好ましく、24mol%がさらに好ましい。一方、EVOH(A)のエチレン含有量の上限としては60mol%が好ましく、55mol%がより好ましく、50mol%がさらに好ましい。EVOH(A)のエチレン含有量を上記範囲とすることで、十分な外観特性及びロングラン性を発揮することができる。EVOH(A)のエチレン含有量が上記下限より小さいと、多層構造体を成形した際の耐水性、耐熱水性及び高湿度下でのガスバリア性が低下するおそれや、溶融成形性が悪化するおそれがある。逆に、EVOH(A)のエチレン含有量が上記上限を超えると、多層構造体を成形した際のガスバリア性が低下するおそれがある。
 EVOH(A)のけん化度(すなわち、EVOH(A)中のビニルアルコール単位及びビニルエステル単位の総数に対するビニルアルコール単位の数の割合)の下限としては、80mol%が好ましく、95mol%がより好ましく、99mol%がさらに好ましい。一方、EVOH(A)のけん化度の上限としては100mol%が好ましく、99.99mol%がより好ましい。EVOH(A)のけん化度を上記範囲とすることで、ガスバリア性に優れた成形体及び多層構造体を得ることができる。
 EVOH(A)のメルトフローレート(JIS-K7210に準拠、温度210℃、荷重2160gでの測定値)の下限としては、0.1g/10分が好ましく、0.5g/10分がより好ましく、1g/10分がさらに好ましく、3g/10分が特に好ましい。一方、EVOH(A)のメルトフローレートの上限としては、200g/10分が好ましく、50g/10分がより好ましく、30g/10分がさらに好ましく、15g/10分が特に好ましい。EVOH(A)のメルトフローレートを上記範囲の値とすることで、得られるEVOH樹脂組成物の溶融成形性が向上し、より優れた外観特性及びロングラン性を発揮することができる。
 (エンジオール構造を有する化合物(B))
 本発明のEVOH樹脂組成物に含有されるエンジオール構造を有する化合物(B)は、分子内に二重結合を有し、その二重結合の両端にヒドロキシ基を有する化合物である。なお、本明細書中でいう二重結合は、ベンゼン環等の芳香環の一部であってもよい。二重結合がベンゼン環の一部であり、さらにメタ位にもヒドロキシ基を有すると、黄変等の着色をより抑制することができるため好ましい。また、上記ヒドロキシ基が塩を形成していてもよい。
 化合物(B)はエンジオール構造を有している限り特に限定されないが、カルボキシル基及び/又はラクトン環を有していることが好ましい。化合物(B)がカルボキシル基及び/又はラクトン環を有すると、黄変等の着色をより抑制することができる。上記カルボキシル基はエステル構造であっても金属と塩を形成していてもよい。
 化合物(B)がフェノール類又はアスコルビン酸類であることが好ましい。化合物(B)がフェノール類又はアスコルビン酸類であると、黄変等の着色がより抑制される。フェノール類とは、芳香環上にヒドロキシル基を有する化合物をいい、例えばカテキン、エピカテキン、エピガロカテキン、エピガロカテキンガレート等のカテキン類や没食子酸、没食子酸メチル、没食子酸エチル、没食子酸プロピル、没食子酸イソアミル、没食子酸オクチル、タンニン酸、ピロガロール、カテコール、エラグ酸等が挙げられる。また、アスコルビン酸類とは、アスコルビン酸、その異性体、それらの誘導体及びそれらの塩をいい、例えばアスコルビン酸、エリソルビン酸等を挙げることができる。
 化合物(B)の分子量の上限としては2000が好ましく、より好ましくは1500であり、さらに好ましくは1000であり、特に好ましいのが500である。化合物(B)の分子量の下限としては100が好ましく、より好ましくは120であり、さらに好ましくは150である。化合物(B)の分子量が上記範囲にあると乾燥による色相斑をより抑えることができる。
 化合物(B)のエチレン-ビニルアルコール共重合体(A)のビニルアルコール単位に対するモル比の上限値は2.70×10-5であり、2.02×10-5であることが好ましく、1.35×10-5であることがより好ましい。一方、上記モル比の下限値は、2.70×10-9であり、8.09×10-9であることが好ましく、1.35×10-8であることがより好ましい。エチレン-ビニルアルコール共重合体(A)のビニルアルコール単位に対する化合物(B)のモル比を上記範囲とすることで、乾燥もしくは溶融成形における黄変等の着色を抑えることができる。
 特に限定されるものではないが、当該EVOH樹脂組成物の総量に対する化合物(B)の含有量は0.01~100ppmが好ましい。化合物(B)の含有量の下限値としては、0.03ppmがより好ましく、0.05ppmがさらに好ましい。一方、化合物(B)の含有量の上限値としては、80ppmがより好ましく、50ppmがさらに好ましく、10ppmが特に好ましい。化合物(B)の含有量が上記範囲にあると、乾燥もしくは溶融成形における黄変等の着色をより抑えることができる。
 (カルボン酸及び/又はカルボン酸イオン)
 カルボン酸及び/又はカルボン酸イオンは、本発明のEVOH樹脂組成物に含有されることで、当該EVOH樹脂組成物の溶融成形時の耐着色性を向上させる。なお、本明細書において、カルボン酸及び/又はカルボン酸イオンには化合物(B)を含まない。
 カルボン酸は、分子内に1つ以上のカルボキシル基を有する化合物である。また、カルボン酸イオンは、カルボン酸のカルボキシル基の水素イオンが脱離したものである。本発明のEVOH樹脂組成物に含有されるカルボン酸は、モノカルボン酸でもよく、分子内に2つ以上のカルボキシル基を有する多価カルボン酸化合物でもよく、これらの組み合わせであってもよい。なお、この多価カルボン酸には、重合体は含まれない。また、多価カルボン酸イオンは、多価カルボン酸のカルボキシル基の水素イオンの少なくとも1つが脱離したものである。カルボン酸のカルボキシル基はエステル構造であってもよく、カルボン酸イオンは金属と塩を形成していてもよい。
 モノカルボン酸としては、特に限定されず、例えばギ酸、酢酸、プロピオン酸、酪酸、カプロン酸、カプリン酸、アクリル酸、メタクリル酸、安息香酸、2-ナフトエ酸などを挙げることができる。これらのカルボン酸は、ヒドロキシル基やハロゲン原子を有していてもよい。また、カルボン酸イオンとしては、上記各カルボン酸のカルボキシル基の水素イオンが脱離したものを挙げることができる。このモノカルボン酸(モノカルボン酸イオンを与えるモノカルボン酸も含む)のpKaとしては、組成物のpH調整能及び溶融成形性の点から、3.5以上が好ましく、4以上がさらに好ましい。このようなモノカルボン酸としてはギ酸(pKa=3.68)、酢酸(pKa=4.74)、プロピオン酸(pKa=4.85)、酪酸(pKa=4.80)等を挙げることができるが、取扱い容易性等の観点から酢酸が好ましい。
 また、多価カルボン酸としては、分子内に2個以上のカルボキシル基を有している限り特に限定されず、例えば、シュウ酸、マロン酸、コハク酸、マレイン酸、フマル酸、グルタル酸、アジピン酸、ピメリン酸等の脂肪族ジカルボン酸;フタル酸、イソフタル酸、テレフタル酸等の芳香族ジカルボン酸;アコニット酸等のトリカルボン酸;1,2,3,4-ブタンテトラカルボン酸、エチレンジアミン四酢酸等の4以上のカルボキシル基を有するカルボン酸;酒石酸、クエン酸、イソクエン酸、リンゴ酸、ムチン酸、タルトロン酸、シトラマル酸等のヒドロキシカルボン酸;オキサロ酢酸、メソシュウ酸、2-ケトグルタル酸、3-ケトグルタル酸等のケトカルボン酸;グルタミン酸、アスパラギン酸、2-アミノアジピン酸等のアミノ酸;等を挙げることができる。なお、多価カルボン酸イオンとしては、これらの陰イオンを挙げることができる。この中でもコハク酸、リンゴ酸、酒石酸、クエン酸が入手容易である点から特に好ましい。
 カルボン酸及びカルボン酸イオンの含有量としては、溶融成形時の耐着色性の観点からエチレン-ビニルアルコール共重合体樹脂組成物に対する上限としてカルボン酸根換算で20μmol/gが好ましく、より好ましくは15μmol/gであり、さらに好ましくは10μmol/gである。上記含有量の下限としてはカルボン酸根換算で0.01μmol/gが好ましく、より好ましくは0.05μmol/gであり、さらに好ましくは0.5μmol/gである。
 カルボン酸の含有量は、化合物(B)がカルボキシル基を含む場合でも、実施例において後述する定量方法により、区別して定量することができる。
 (金属イオン)
 本発明のEVOH樹脂組成物はさらに金属イオンを含有していてもよい。金属イオンは、単独の金属種であっても良く、複数の金属種からなるものであっても良い。金属イオンが本発明のEVOH樹脂組成物に含有されることで、多層構造体を成形した場合に層間の接着性を向上させることができ、その結果、多層構造体の耐久性を向上させることができる。かかる金属イオンが層間接着性を向上させる理由は、必ずしも明らかではないが、隣接する層の一方が、EVOH(A)のヒドロキシ基と反応し得る官能基を分子内に有する場合等に、この結合生成反応が金属イオンの存在によって加速されることが考えられる。金属イオンとしては、例えばアルカリ金属イオン、アルカリ土類金属イオン、その他遷移金属イオン等を挙げることができる。
 金属イオンの含有量(乾燥EVOH樹脂組成物中の含有量)の下限としては、2.5μmol/gが好ましく、3.5μmol/gがより好ましく、4.5μmol/gがさらに好ましい。一方、金属イオンの含有量の上限としては、22μmol/gが好ましく、16μmol/gがより好ましく、10μmol/gがさらに好ましい。金属イオンの含有量が上記下限より小さいと、層間接着性が低下するおそれがある。逆に、金属イオンの含有量が上記上限を超えると、化合物(B)を含有させることによるEVOH樹脂組成物の着色低減が困難となり、外観特性が低下するおそれがある。
 金属イオンはアルカリ金属イオンを含むものが好ましい。アルカリ金属イオンとしてはリチウム、ナトリウム、カリウム、ルビジウム、セシウム等のイオンが挙げられるが、工業的入手の点からはナトリウム又はカリウムのイオンがより好ましい。本発明のEVOH樹脂組成物がアルカリ金属イオンを含むことで、ロングラン性と多層構造体とした際の層間接着力が向上する。
 アルカリ金属イオンを与えるアルカリ金属塩としては、特に限定されないが、例えばリチウム、ナトリウム、カリウム等の脂肪族カルボン酸塩、芳香族カルボン酸塩、リン酸塩、金属錯体等が挙げられる。このアルカリ金属塩としては、具体的には、酢酸ナトリウム、酢酸カリウム、リン酸二水素ナトリウム、リン酸水素二ナトリウム、リン酸三ナトリウム、リン酸二水素カリウム、リン酸水素二カリウム、リン酸三カリウム、リン酸二水素リチウム、リン酸三リチウム、ステアリン酸ナトリウム、ステアリン酸カリウム、エチレンジアミン四酢酸のナトリウム塩等が挙げられる。この中でも、酢酸ナトリウム、酢酸カリウム、リン酸二水素ナトリウムが、入手容易である点から特に好ましい。
 アルカリ金属イオンの含有量(乾燥EVOH樹脂組成物中の含有量)の下限としては、2.5μmol/gが好ましく、3.5μmol/gがより好ましく、4.5μmol/gがさらに好ましい。一方、アルカリ金属イオンの含有量の上限としては、22μmol/gが好ましく、16μmol/gがより好ましく、10μmol/gがさらに好ましい。アルカリ金属イオンの含有量が上記下限より小さいと、多層構造体を成形した場合に、層間接着力が低下するおそれがある。逆に、アルカリ金属イオンの含有量が上記上限を超えると、化合物(B)を含有させることによるEVOH樹脂組成物の着色低減が困難となり、外観特性が低下するおそれがある。
 金属イオンがアルカリ土類金属イオンを含むことも好ましい。アルカリ土類金属イオンとしてはベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム等のイオンが挙げられるが、工業的入手の点からはマグネシウム又はカルシウムのイオンであることがより好ましい。金属イオンがアルカリ土類金属イオンを含むことで、多層構造体を繰返し再利用した際のEVOH樹脂組成物の劣化が抑制され、ゲルやブツといった欠点の減少により成形物の外観が向上する。
 (リン酸化合物)
 本発明のEVOH樹脂組成物は、さらにリン酸化合物を含有していてもよい。リン酸化合物は、本発明のEVOH樹脂組成物に含有されることで、当該EVOH樹脂組成物の溶融成形時のロングラン性を向上させることができる。
 リン酸化合物としては特に限定されず、例えば、リン酸、亜リン酸等の各種のリンの酸素酸やその塩等が挙げられる。リン酸塩としては、例えば第1リン酸塩、第2リン酸塩、第3リン酸塩のいずれの形で含まれていてもよく、その対カチオン種としても特に限定されないが、アルカリ金属塩又はアルカリ土類金属塩が好ましく、アルカリ金属塩がさらに好ましい。具体的には、リン酸二水素ナトリウム、リン酸二水素カリウム、リン酸水素二ナトリウム又はリン酸水素二カリウムが、溶融成形時のロングラン性改善の点で好ましい。
 リン酸化合物の含有量(乾燥EVOH樹脂組成物中のリン酸根換算含有量)の下限としては1ppmが好ましく、5ppmがより好ましく、8ppmがさらに好ましい。一方、リン酸化合物の含有量の上限としては、500ppmが好ましく、200ppmがより好ましく、50ppmがさらに好ましい。リン酸化合物の含有量が上記下限より小さいと、溶融成形時のロングラン性改善効果が十分に発揮されない場合がある。逆に、リン酸化合物の含有量が上記上限を超えると、成形物のゲル・ブツが発生し易くなるおそれがある。
 (ホウ素化合物)
 ホウ素化合物は、本発明のEVOH樹脂組成物に含有されることで、当該EVOH樹脂組成物の溶融成形時のロングラン性を改善させることができ、その結果、ゲル・ブツ等の発生を抑制し外観特性を向上させることができる。詳細には、当該EVOH樹脂組成物にホウ素化合物が配合された場合、EVOH(A)とホウ素化合物との間にホウ酸エステルを生成すると考えられ、かかるEVOH樹脂組成物を用いることによって、ホウ素化合物を含有しない樹脂組成物よりもロングラン性を改善させることが可能である。
 ホウ素化合物としては、特に限定されるものではなく、例えば、ホウ酸類、ホウ酸エステル、ホウ酸塩、水素化ホウ素類等が挙げられる。具体的には、ホウ酸類としては、例えば、オルトホウ酸(HBO)、メタホウ酸、四ホウ酸等が挙げられ、ホウ酸エステルとしては、例えば、ホウ酸トリエチル、ホウ酸トリメチルなどが挙げられ、ホウ酸塩としては、上記各種ホウ酸類のアルカリ金属塩、アルカリ土類金属塩、ホウ砂などが挙げられる。これらの中でもオルトホウ酸が好ましい。
 ホウ素化合物の含有量(乾燥EVOH樹脂組成物中のホウ素化合物のホウ素元素換算含有量)の下限としては、5ppmが好ましく、10ppmがより好ましく、50ppmがさらに好ましい。一方、ホウ素化合物の含有量の上限としては、2,000ppmが好ましく、1,000ppmがより好ましく、500ppmがさらに好ましく、300ppmが特に好ましい。ホウ素化合物の含有量が上記下限より小さいと、ホウ素化合物を添加することによる溶融成形時のロングラン性改善効果が得られないおそれがある。逆に、ホウ素化合物の含有量が上記上限を超えると、溶融成形時のロングラン性改善効果が低下するおそれがある。
 (その他の添加剤等)
 本発明のEVOH樹脂組成物には、本発明の効果を損なわない範囲で、可塑剤、安定剤、界面活性剤、色剤、紫外線吸収剤、スリップ剤、帯電防止剤、乾燥剤、架橋剤、充填剤、各種繊維等の補強剤等を適量添加することも可能である。
 また、本発明の効果を損なわない範囲で、EVOH(A)以外の熱可塑性樹脂を適量配合することも可能である。EVOH(A)以外の熱可塑性樹脂としては各種ポリオレフィン(ポリエチレン、ポリプロピレン、ポリ1-ブテン、ポリ4-メチル-1-ペンテン、エチレン-プロピレン共重合体、エチレンと炭素数4以上のα-オレフィンとの共重合体、無水マレイン酸で変性されたポリオレフィン、エチレン-ビニルエステル共重合体、エチレン-アクリル酸エステル共重合体、又はこれらを不飽和カルボン酸若しくはその誘導体でグラフト変性した変性ポリオレフィンなど)、各種ナイロン(ナイロン-6、ナイロン-66、ナイロン-6/66共重合体など)、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリエステル、ポリスチレン、ポリアクリロニトリル、ポリウレタン、ポリアセタール及び変性ポリビニルアルコール樹脂などが用いられる。EVOH(A)以外の熱可塑性樹脂を含有する場合、その配合量はEVOH樹脂組成物に対して50質量%以下であることが好ましく、10質量%以下であることがより好ましい。
 (EVOH樹脂組成物)
 本発明のEVOH樹脂組成物は、空気下120℃で24時間熱処理した後の225nmにおける吸光係数ε2と上記熱処理前の225nmにおける吸光係数ε1との比ε2/ε1が2.0以下であることが好ましく、1.8以下であることがより好ましく、1.6以下であることがさらに好ましい。上記吸光係数の比が上記範囲にあると、色相の斑の少ない、外観特性に優れたEVOH樹脂組成物を得ることができる。
 ここで、吸光係数εは下記式(1)で示される値である。
 ε=A/(L×C)  ・・・(1)
(式中、Aは吸光光度計で測定される225nmの光の吸光度、Lは光路長(単位:cm)、Cはエチレン-ビニルアルコール共重合体樹脂組成物の濃度(質量%)を表す。)
 吸光係数は、溶媒にEVOH樹脂組成物を溶解して測定される。測定に使用する溶媒は上記熱処理前後のエチレン-ビニルアルコール共重合体組成物が溶解する溶液であれば良く、1-プロパノールと水の混合比を適宜調整して測定する。
 本発明のEVOH樹脂組成物のメルトフローレート(温度210℃、荷重2160gでの測定値)の下限としては、0.1g/10分が好ましく、0.5g/10分がより好ましく、1g/10分がさらに好ましく、3g/10分が特に好ましい。一方、当該EVOH樹脂組成物のメルトフローレートの上限としては、200g/10分が好ましく、50g/10分がより好ましく、30g/10分がさらに好ましく、15g/10分が特に好ましい。当該EVOH樹脂組成物のメルトフローレートを上記範囲とすることで、溶融成形性が向上し、より優れた外観特性及びロングラン性を発揮することができる。
 また、当該EVOH樹脂組成物10gを50mlの純水で95℃、4時間抽出して得られた抽出液の20℃で測定されるpHの下限としては、3.5が好ましく、3.8がより好ましく、4.0がさらに好ましい。一方、上記抽出液のpHの上限としては8.0が好ましく、7.8がより好ましく、7.5がさらに好ましい。上記抽出液のpHが上記範囲にあると、溶融成形における黄変等の発生をより抑えることができる。
 (EVOH樹脂組成物の製造方法)
 本発明のEVOH樹脂組成物は、例えば
 エチレンとビニルエステルとを共重合してエチレン-ビニルエステル共重合体を得る共重合工程(工程1)、及び
 上記エチレン-ビニルエステル共重合体をけん化してエチレン-ビニルアルコール共重合体(A)を得るけん化工程(工程2)を含み、
 上記けん化工程よりも後に上記エチレン-ビニルアルコール共重合体(A)とエンジオール構造を有する化合物(B)とを混合する混合工程をさらに含む製造方法により効果的に得ることができる。
 当該製造方法によれば、化合物(B)の混合を後に述べるけん化工程より後に行うことで、乾燥もしくは溶融成形における黄変等の発生を抑え、品質斑のないEVOH樹脂組成物及び成形体を得ることができる。以下、各工程について詳説する。
 (工程1)
 共重合工程は、エチレンとビニルエステルとを共重合してエチレン-ビニルエステル共重合体を得る工程であり、必要に応じてそれに続いて未反応エチレン、未反応ビニルエステルを除去してエチレン-ビニルエステル共重合体溶液を得る工程を含む。共重合工程において化合物(B)を添加した場合、最終的に得られるEVOH樹脂組成物は本発明の主目的である黄変等の着色の抑制効果が殆ど得られないか、着色が却って激しくなる場合がある。
 エチレンとビニルエステルとの共重合方法としては特に限定されず、例えば溶液重合、懸濁重合、乳化重合、バルク重合などの公知の方法を用いることができる。また、連続式、回分式のいずれであってもよい。
 重合に用いられるビニルエステルとしては、ギ酸ビニル、酢酸ビニル、プロピオン酸ビニル、バレリン酸ビニル、カプリン酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル、安息香酸ビニル、ピバリン酸ビニル及びバーサティック酸ビニル等が挙げられ、工業的入手/使用の点からは酢酸ビニルが好適に用いられる。
 上記重合において、共重合成分として、上記成分以外にも共重合し得る単量体、例えばアクリル酸、メタクリル酸、クロトン酸、マレイン酸、イタコン酸等の不飽和酸又はその無水物、塩、又はモノ若しくはジアルキルエステル等;アクリロニトリル、メタクリロニトリル等のニトリル;アクリルアミド、メタクリルアミド等のアミド;ビニルスルホン酸、アリルスルホン酸、メタアリルスルホン酸等のオレフィンスルホン酸又はその塩;アルキルビニルエーテル類、ビニルケトン、N-ビニルピロリドン、塩化ビニル、塩化ビニリデンなどを少量共重合させることもできる。
 また、共重合成分として、ビニルシラン化合物を0.0002モル%以上0.2モル%以下含有することができる。ここで、ビニルシラン化合物としては、例えば、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリ(β-メトキシ-エトキシ)シラン、γ-メタクリロイルオキシプロピルメトキシシランなどが挙げられる。これらの中でも、ビニルトリメトキシシラン、ビニルトリエトキシシランが好適に用いられる。
 重合に用いられる溶媒としては、エチレン、ビニルエステル及びエチレン-ビニルエステル共重合体を溶解し得る有機溶媒であれば特に限定されない。そのような溶媒として、例えばメタノール、エタノール、プロパノール、n-ブタノール、tert-ブタノール等のアルコール;ジメチルスルホキシドなどを用いることができる。これらの中でも、反応後の除去分離が容易である点でメタノールが特に好ましい。
 重合に用いられる開始剤としては、例えば2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス-(2,4-ジメチルバレロニトリル)、2,2’-アゾビス-(4-メトキシ-2,4-ジメチルバレロニトリル)、2,2’-アゾビス-(2-シクロプロピルプロピオニトリル)等のアゾニトリル系開始剤;イソブチリルパーオキサイド、クミルパーオキシネオデカノエート、ジイソプロピルパーオキシジカーボネート、ジ-n-プロピルパーオキシジカーボネート、t-ブチルパーオキシネオデカノエート、アセチルパーオキサイド、ラウロイルパーオキサイド、ベンゾイルパーオキサイド、t-ブチルハイドロパーオキサイド等の有機過酸化物系開始剤などを用いることができる。
 重合温度としては、好ましくは20~90℃であり、より好ましくは40~70℃である。重合時間としては、好ましくは2~15時間であり、より好ましくは3~11時間である。重合率は、仕込みのビニルエステルに対して好ましくは10~90%であり、より好ましくは30~80%である。重合後の溶液中の樹脂分は、好ましくは5~85質量%であり、より好ましくは20~70質量%である。
 所定時間の重合後又は所定の重合率に達した後、必要に応じて重合禁止剤を添加し、未反応のエチレンガスを蒸発除去した後、未反応のビニルエステルを除去する。未反応のビニルエステルを除去する方法としては、例えば、ラシヒリングを充填した塔の上部から上記共重合体溶液を一定速度で連続的に供給し、塔下部よりメタノール等の有機溶媒蒸気を吹き込み、塔頂部よりメタノール等の有機溶媒と未反応ビニルエステルの混合蒸気を留出させ、塔底部より未反応のビニルエステルを除去した共重合体溶液を取り出す方法などが採用される。
 (工程2)
 次に、上記共重合体溶液にアルカリ触媒を添加し、上記共重合体をけん化する。けん化方法は、連続式、回分式のいずれも可能である。このアルカリ触媒としては、例えば水酸化ナトリウム、水酸化カリウム、アルカリ金属アルコラートなどが用いられる。
 けん化の条件としては、例えば回分式の場合、共重合体溶液濃度が10~50質量%、反応温度が30~60℃、触媒使用量がビニルエステル構造単位1モル当たり0.02~0.6モル、けん化時間が1~6時間である。連続式の場合、従来より公知である塔式の反応器を用いて、けん化反応に伴い生成するカルボン酸メチルエステル等の除去を効率的に行いながらけん化反応を行う方法が、アルカリ触媒の使用量が低減できるという点で好ましいが、反応を均一な溶液状態で行うためには反応温度が70~150℃、触媒使用量がビニルエステル構造単位1モル当たり0.001~0.2モルとするとよい。
 けん化反応後のEVOH(A)は、アルカリ触媒、酢酸ナトリウムや酢酸カリウムなどの副生塩類、その他不純物を含有するため、これらを必要に応じて中和、洗浄することにより除去することが好ましい。ここで、けん化反応後のEVOH(A)を、イオン交換水等の金属イオン、塩化物イオン等をほとんど含まない水で洗浄する際、酢酸ナトリウム、酢酸カリウム等を一部残存させてもよい。
 本発明のEVOH樹脂組成物の製造方法において、上述したけん化工程にてけん化反応を行った後に、残存するアルカリ触媒を中和することがよく用いられるが、この際の中和に用いる酸とともに化合物(B)を混合することも可能である。
 本発明のEVOH樹脂組成物の製造方法では、上記各工程に加えて、
 上記けん化工程で得られたエチレン-ビニルアルコール共重合体(A)を含む溶液から造粒操作によりエチレン-ビニルアルコール共重合体(A)の含水ペレットを得るペレット化工程(工程3)、及び
 上記含水ペレットを乾燥してエチレン-ビニルアルコール共重合体樹脂組成物を得る乾燥工程(工程4)をさらに含み、
 上記ペレット化工程以降に上記混合工程を行うとよい。当該方法によっても、黄変が低減されたEVOH樹脂組成物を効果的に得ることができる。
 (工程3)
 EVOH(A)の製造において、通常、けん化工程により得られたエチレン-ビニルアルコール共重合体(A)は、けん化反応時に用いた溶媒を含む溶液の形で得られる。この溶液には、けん化反応に使用したアルカリ等の触媒や、副生物として生成する酢酸ナトリウム等が含まれているため、これらを除去するために洗浄が行われる。この洗浄操作を容易にするために、けん化工程で得られたエチレン-ビニルアルコール共重合体溶液を造粒してEVOH(A)の含水ペレットとすることが好ましい。
 ペレット化工程においてエチレン-ビニルアルコール共重合体(A)の溶液からEVOH(A)の含水ペレットを得るための造粒の操作については特に制限はなく、エチレン-ビニルアルコール共重合体(A)の溶液を冷却された貧溶媒を含む凝固浴にストランド状に押し出して冷却固化させた後ストランドカッターによりカットして円柱状のEVOH(A)の含水ペレットを得る方法や、同様にしてエチレン-ビニルアルコール共重合体(A)の溶液を凝固浴に押し出した直後に回転する刃等によってカットを行い碁石状~球状のEVOH(A)の含水ペレットを得る方法など公知の方法を用いることができる。また、特開2002-121290号公報に記載の方法等によりエチレン-ビニルアルコール共重合体(A)の溶液を水蒸気と接触させて予めEVOH(A)の含水樹脂組成物とした後にこれをカットしてEVOH(A)の含水ペレットを得る方法等も好適に用いることができる。
 これらの方法により得られたEVOH(A)の含水ペレット中の含水率は、EVOHの乾燥重量基準で50~200質量%であることが好ましく、60~180質量%であることがより好ましく、70~150質量%であることが更に好ましい。
 (工程4)
 ペレット化工程で得られたEVOH(A)の含水ペレットは、最終的には乾燥工程にて乾燥することでEVOH(A)を含む樹脂組成物のペレットとすることが好ましい。乾燥後のEVOH(A)を含む樹脂組成物ペレット中の含水率は、成形加工時の発泡等によるボイドの発生といった成形トラブルを防ぐ目的から、EVOH(A)を含む樹脂組成物ペレット全体に対して1.0質量%以下であることが好ましく、0.8質量%以下であることがより好ましく、0.5質量%以下であることが更に好ましい。
 EVOH(A)の含水ペレットの乾燥方法については特に制限はなく、公知の各種方法を用いることができ、静置乾燥や流動乾燥等が好適なものとして挙げられる。これらの乾燥方法を単独で用いても良いし、例えば始めに流動乾燥を行った後に静置乾燥を行うなど複数を組み合わせて用いても良い。乾燥処理は連続式、バッチ式いずれの方法で行っても良く、複数の乾燥方式を組み合わせて行う場合は、各乾燥方式について連続式、バッチ式を自由に選択できる。
 (混合工程)
 上記ペレット化工程以降に上記混合工程を行う方法としては、(1)EVOH(A)の含水ペレットを化合物(B)を含有する溶液と接触させる方法や、(2)EVOH(A)の含水ペレットと化合物(B)とを二軸押出機等の押出機内で溶融混練する方法などが好適に用いられる。なお、この際、化合物(B)、及び必要に応じカルボン酸化合物等を同時にEVOH(A)と混合させることができる。
 上記ペレット化工程以降に上記混合工程を行う方法としては、上記ペレット化工程と乾燥工程との間で、上記含水ペレットを化合物(B)を含有する溶液に浸漬させる方法が好ましい。当該方法によれば、化合物(B)を効率的にEVOH樹脂組成物中に混合させることができ、溶融成形時の黄変が抑えられたEVOH樹脂組成物の製造をより効果的に行うことができる。
 EVOH(A)の含水ペレットを化合物(B)及び必要に応じて他の成分を含む溶液に浸漬させる場合、含水ペレットの形状としては、粉末、粒状、球状、円柱形チップ状等、任意の形状のものを用いることができる。また、この操作はバッチ方式、連続方式のいずれによる方法も用いることができる。バッチ式で行う場合、EVOH(A)の含水ペレット中のEVOH(A)と各成分を含有する溶液の質量比(浴比)は3以上が好ましく、10以上がより好ましく、20以上が更に好ましい。連続式で実施する場合、従来より公知の塔式の装置を好適に用いることができる。浸漬時間は含水ペレットの形態によってその好適範囲は異なるが、通常、EVOH(A)の含水ペレットが平均径1~10mm程度の粒状の場合には1時間以上、好ましくは2時間以上である。
 溶液への浸漬処理は、EVOH(A)を含む樹脂組成物に含有させる各成分をそれぞれ単独で溶解した複数の溶液に分けて浸漬してもよく、複数の成分を溶解した液を用いて一度に処理しても構わないが、EVOH(A)以外の全ての成分を含む溶液で処理することが、工程の簡素化の点から好ましい。
 EVOH(A)以外の各成分を含有する溶液を得るに当たっては各成分をそれぞれ独立して溶媒に溶解しても良いが、いくつかの成分同士が塩を形成するものを用いることも可能である。溶液は二酸化炭素及び/又は炭酸を含有してもよく、二酸化炭素及び/又は炭酸を含有させる方法としては、たとえば国際公開第03/068847号に記載の方法が挙げられる。水溶液中に含有される遊離の二酸化炭素と炭酸の合計の濃度は好適には0.5mmol/L以上、より好適には2mmol/L、さらに好ましくは10mmol/L以上である。炭酸ガスの溶解度を上げるために、1.5~10気圧程度の加圧条件下で処理を行っても良い。溶液中の他各成分の濃度は特に限定されるものではなく、最終的に得られるEVOH樹脂組成物中において目的の含有量が得られるように適宜調節すれば良い。溶液の溶媒は特に限定されないが、取扱い上の理由等から水であることが好ましい。
 また、混合工程としてEVOH(A)の含水ペレットと化合物(B)とを押出機内で溶融混練する場合、例えば特開2002-284811号公報等に記載の方法などが好適に用いられる。
 本発明のEVOH樹脂組成物の製造方法において、上述のペレット化工程において化合物(B)を混合することも好ましい。ペレット化工程において化合物(B)をEVOH(A)と混合させておくことで、EVOH(A)の含水ペレット中に化合物(B)を均一に含有させることができる。具体的には、例えばけん化工程で得られたエチレン-ビニルアルコール共重合体(A)と化合物(B)とを、二軸押出機を用いて造粒し、エチレン-ビニルアルコール共重合体(A)及び上記化合物(B)を含む含水ペレットを得る方法等が挙げられる。この際、化合物(B)は水溶液の状態で添加することが好ましい。
 (成形体)
 本発明のEVOH樹脂組成物は溶融成形によりフィルム、シート、容器、パイプ、繊維等、各種の成形体に成形される。これらの成形物は再使用の目的で粉砕し再度成形することも可能である。また、フィルム、シート、繊維等を一軸または二軸延伸することも可能である。溶融成形法としては押出成形、インフレーション押出、ブロー成形、溶融紡糸、射出成形等が可能である。
 (多層構造体)
 本発明の多層構造体は、本発明のEVOH樹脂組成物から得られる層を少なくとも一層備える多層構造体である。当該多層構造体の層構造としては、特に限定されないが、本発明のEVOH樹脂組成物から得られる層をE、接着性樹脂から得られる層をAd、熱可塑性樹脂から得られる層をTで表わした場合の、T/E/T、E/Ad/T、T/Ad/E/Ad/T等の構造が挙げられる。これらの各層は、単層であってもよいし、多層であってもよい。
 当該多層構造体を製造する方法としては、特に限定されない。例えば本発明のEVOH樹脂組成物から得られる成形物(フィルム、シート等)に熱可塑性樹脂を溶融押出する方法、本発明のEVOH樹脂組成物と他の熱可塑性樹脂とを共押出する方法、本発明のEVOH樹脂組成物と熱可塑性樹脂とを共射出する方法、本発明のEVOH樹脂組成物から成形された成形物と他の基材のフィルム、シートとを有機チタン化合物、イソシアネート化合物、ポリエステル系化合物等の公知の接着剤を用いてラミネートする方法等が挙げられる。
 これらの方法の中でも、本発明のEVOH樹脂組成物と他の熱可塑性樹脂とを共押出する方法が好ましく用いられる。本発明のEVOH樹脂組成物は、ロングラン性及び外観特性に優れており、特に、比較的高温での溶融によっても着色が生じにくい。従って、本発明のEVOH樹脂組成物と融点が比較的高い他の熱可塑性樹脂との共押出によっても、黄変等の着色の発生が抑制された、外観の優れた多層構造体を得ることができる。
 多層構造体における他の層に用いられる熱可塑性樹脂としては、直鎖状低密度ポリエチレン、低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、エチレン-酢酸ビニル共重合体、エチレン-プロピレン共重合体、ポリプロピレン、プロピレン-α-オレフィン共重合体(炭素数4~20のα-オレフィン)、ポリブテン、ポリペンテン等のオレフィンの単独又はその共重合体、ポリエチレンテレフタレート等のポリエステル、ポリエステルエラストマー、ナイロン-6、ナイロン-66等のポリアミド、ポリスチレン、ポリ塩化ビニル、ポリ塩化ビニリデン、アクリル系樹脂、ビニルエステル系樹脂、ポリウレタンエラストマー、ポリカーボネート、塩素化ポリエチレン、塩素化ポリプロピレン等が挙げられる。これらの中でも、ポリプロピレン、ポリエチレン、エチレン-プロピレン共重合体、エチレン-酢酸ビニル共重合体、ポリアミド、ポリスチレン、ポリエステルが好ましく用いられる。
 上記接着性樹脂としては、本発明のEVOH樹脂組成物及び熱可塑性樹脂との接着性を有していれば特に限定されないが、カルボン酸変性ポリオレフィンを含有する接着性樹脂が好ましい。カルボン酸変性ポリオレフィンとしては、オレフィン系重合体にエチレン性不飽和カルボン酸、そのエステル又はその無水物を化学的(例えば付加反応、グラフト反応等)に結合させて得られるカルボキシル基を含有する変性オレフィン系重合体を好適に用いることができる。ここでオレフィン系重合体とは、ポリエチレン(低圧、中圧、高圧)、直鎖状低密度ポリエチレン、ポリプロピレン、ボリブテン等のポリオレフィン、オレフィンと他のモノマー(ビニルエステル、不飽和カルボン酸エステルなど)との共重合体(例えば、エチレン-酢酸ビニル共重合体、エチレン-アクリル酸エチルエステル共重合体等)を意味する。これらの中でも、直鎖状低密度ポリエチレン、エチレン-酢酸ビニル共重合体(酢酸ビニルの含有量5~55質量%)、エチレン-アクリル酸エチルエステル共重合体(アクリル酸エチルエステルの含有量8~35質量%)が好ましく、直鎖状低密度ポリエチレン及びエチレン-酢酸ビニル共重合体が特に好ましい。エチレン性不飽和カルボン酸、そのエステル又はその無水物としては、エチレン性不飽和モノカルボン酸、又はそのエステル、エチレン性不飽和ジカルボン酸、又はそのモノ若しくはジエステル、若しくはその無水物が挙げられ、これらの中でもエチレン性不飽和ジカルボン酸無水物が好ましい。具体的にはマレイン酸、フマル酸、イタコン酸、無水マレイン酸、無水イタコン酸、マレイン酸モノメチルエステル、マレイン酸モノエチルエステル、マレイン酸ジエチルエステル、フマル酸モノメチルエステルなどが挙げられ、特に、無水マレイン酸が好適である。
 エチレン性不飽和カルボン酸又はその無水物のオレフィン系重合体への付加量又はグラフト量(変性度)としては、オレフィン系重合体に対し0.0001~15質量%、好ましくは0.001~10質量%である。エチレン性不飽和カルボン酸又はその無水物のオレフィン系重合体への付加反応、グラフト反応は、例えば、溶媒(キシレンなど)、触媒(過酸化物など)の存在下でラジカル重合法などにより行うことができる。このようにして得られたカルボン酸変性ポリオレフィンの210℃で測定したメルトフローレート(MFR)は0.2~30g/10分であることが好ましく、0.5~10g/10分であるであることがさらに好ましい。これらの接着性樹脂は単独で用いてもよいし、また二種以上を混合して用いることもできる。
 本発明のEVOH樹脂組成物と熱可塑性樹脂等との共押出の方法としては、特に限定されず、マルチマニホールド合流方式Tダイ法、フィードブロック合流方式Tダイ法、インフレーション法等を挙げることができる。
 このようにして得られた共押出多層構造体を二次加工することにより、各種成形品(フィルム、シート、チューブ、ボトル等)を得ることができる。この各種成形品としては例えば、(1)多層構造体(シート又はフィルム等)を一軸又は二軸方向に延伸、熱処理することにより得られる多層共延伸シート又はフィルム、(2)多層構造体(シート又はフィルム等)を圧延することにより得られる多層圧延シート又はフィルム、(3)多層構造体(シート又はフィルム等)を真空成形、圧空成形、真空圧空成形等、熱成形加工することにより得られる多層トレーカップ状容器、(4)多層構造体(パイプ等)からのストレッチブロー成形等により得られるボトル、カップ状容器等が挙げられる。
 なお、二次加工法は、上記成形品を得る際に例示した各方法に制限されることなく、例えば、ブロー成形等の上記以外の公知の二次加工法を適宜用いることができる。
 当該多層構造体は、外観特性及びロングラン性に優れたEVOH樹脂組成物から得られる層を有しているため、フィッシュアイや、ゲル・ブツ及び黄変等の着色が少なく、例えば深絞り容器、カップ状容器、ボトル等の食品容器等として好適に用いることができる。
 以下、実施例によって本発明をさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
 以下の実施例及び比較例においてEVOH樹脂組成物等の分析、評価はそれぞれ以下に示す方法にて行った。
 (1)含水EVOHペレットの含水率の測定
 メトラー・トレド社製のハロゲン水分率分析装置「HR73」を用い乾燥温度180℃、乾燥時間20分、サンプル量約10gの条件で含水EVOHペレットの含水率を測定した。以下に示す含水EVOHの含水率は、EVOHの乾燥重量基準の質量%とする。
 (2)EVOH(A)のエチレン含有量及びけん化度
 乾燥EVOHペレットを凍結粉砕により粉砕した。得られた粉砕EVOHを、呼び寸法1mmのふるい(標準フルイ規格JIS-Z8801準拠)でふるい分けした。上記のふるいを通過したEVOH粉末5gを、100gのイオン交換水中に浸漬し、85℃で4時間撹拌した後、脱液して乾燥する操作を二回行った。得られた洗浄後のEVOH粉末を用いて、下記の測定条件でH-NMRの測定を行い、下記の解析方法でエチレン含有量及びけん化度を求めた。
 測定条件
  装置名    :日本電子社製 超伝導核磁気共鳴装置「Lambda500」
  観測周波数  :500MHz
  溶媒     :DMSO-d6
  ポリマー濃度 :4質量%
  測定温度   :40℃及び95℃
  積算回数   :600回
  パルス遅延時間:3.836秒
  サンプル回転速度:10~12Hz
  パルス幅(90°パルス):6.75μsec
 解析方法
 40℃での測定では、3.3ppm付近に水分子中の水素のピークが観測され、EVOHのビニルアルコール単位のメチン水素のピークのうちの、3.1~3.7ppmの部分と重なった。一方、95℃での測定では、上記40℃で生じた重なりは解消するものの、4~4.5ppm付近に存在するEVOHのビニルアルコール単位の水酸基の水素のピークが、EVOHのビニルアルコール単位のメチン水素のピークのうちの、3.7~4ppmの部分と重なった。すなわち、EVOHのビニルアルコール単位のメチン水素(3.1~4ppm)の定量については、水又は水酸基の水素のピークとの重複を避けるために、3.1~3.7ppmの部分については、95℃の測定データを採用し、3.7~4ppmの部分については40℃の測定データを採用し、これらの合計値として上記メチン水素の全量を定量した。なお、水又は水酸基の水素のピークは測定温度を上昇させることで高磁場側にシフトすることが知られている。従って、以下のように40℃と95℃の両方の測定結果を用いて解析した。上記の40℃で測定したスペクトルより、3.7~4ppmのケミカルシフトのピークの積分値(I)及び0.6~1.8ppmのケミカルシフトのピークの積分値(I)を求める。
 一方、95℃で測定したスペクトルより、3.1~3.7ppmのケミカルシフトのピークの積分値(I)、0.6~1.8ppmのケミカルシフトのピークの積分値(I)及び1.9~2.1ppmのケミカルシフトのピークの積分値(I)を求める。ここで、0.6~1.8ppmのケミカルシフトのピークは、主にメチレン水素に由来するものであり、1.9~2.1ppmのケミカルシフトのピークは、未けん化の酢酸ビニル単位中のメチル水素に由来するものである。これらの積分値から下記式によりエチレン含有量及びけん化度を計算した。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
 (3)エンジオール構造を有する化合物(B)の定量
 乾燥EVOHペレットを凍結粉砕により粉砕した。得られた粉砕EVOHを、呼び寸法1mmのふるい(標準フルイ規格JIS-Z8801準拠)でふるい分けした。上記のふるいを通過したEVOH粉末5gとイオン交換水10mLを共栓付き100mL三角フラスコに投入し、冷却コンデンサーを付け、95℃で10時間撹拌、抽出した。得られた抽出液を、グラスフィルターで濾過した。別の300mL三角フラスコに和光純薬工業社製1,1-ジフェニル-2-ピクリルヒドラジル20mgを入れ、イオン交換水100mLに溶解した(以下、DPPH水溶液という)。先ほど得られた濾過後の抽出液を10mL三角フラスコにホールピペットで3mL移しとり、さらにDPPH水溶液をホールピペットで3mL添加した。5分間放置した後、島津製作所製分光光度計UV-2450で513nmにおける吸光度を測定し、その吸光度をAとした。また、別の10mL三角フラスコにホールピペットでイオン交換水3mLとDPPH水溶液3mLを添加し、5分間放置した後、513nmにおける吸光度を測定し、Aとした。同様に、既知濃度のエンジオール構造を有する化合物(B)を含有する水溶液3mLを10mL三角フラスコにとり、DPPH水溶液を3mL添加後、5分間放置し、513nmにおける吸光度を測定し、Aとした。AとAの差から算出した検量線を用い、AとAの差から、エンジオール構造を有する化合物(B)の含有量[B]mol/gを算出した。なお、吸光度が1.0を超えた場合は、調整した液を適宜イオン交換水で希釈してから吸光度を測定した。
 (4)エンジオール構造を有する化合物(B)とエチレン-ビニルアルコール共重合体(A)のビニルアルコール単位[VA]のモル比([B]/[VA])
 上記で得られたEVOH(A)のエチレン含有量をPEtmol%、けん化度DSmol%、さらに単位重量あたりに含有されるビニルアルコール単位の含有量を[VA]mol/gとする。ビニルアルコール単位の分子量とエチレン単位の分子量をそれぞれ44.0、28.0とすると[B]/[VA]は次式にて算出される。
Figure JPOXMLDOC01-appb-M000003
 (5)カルボン酸及びカルボン酸イオンの定量
 乾燥EVOHペレットを凍結粉砕により粉砕した。得られた粉砕EVOHを、呼び寸法1mmのふるい(標準フルイ規格JIS-Z8801準拠)でふるい分けした。上記のふるいを通過したEVOH粉末10gとイオン交換水50mLを共栓付き100mL三角フラスコに投入し、冷却コンデンサーを付け、95℃で10時間撹拌、抽出した。得られた抽出液2mLを、イオン交換水8mLで希釈した。上記の希釈された抽出液を、横河電機社製イオンクロマトグラフィー「ICS-1500」を用いて定量分析し、カルボン酸イオンの量を定量することで、カルボン酸及びカルボン酸イオンの量を算出した。なお、定量に際しては各モノカルボン酸もしくは多価カルボン酸を用いて作成した検量線を用いた。
 イオンクロマトグラフィー測定条件
  カラム      :Dionex IonPac社製「ICE-AS-1」
  溶離液      :1.0mmol/L オクタンスルホン酸溶液
  測定温度     :35℃
  溶離液流速    :1mL/min.
  サンプル打ち込み量:50μL
 (6)金属イオン、リン酸化合物及びホウ素化合物の定量
 乾燥EVOHペレット0.5gをアクタック社製のテフロン(登録商標)製耐圧容器に添加し、和光純薬工業社製精密分析用硝酸5mLを添加した。30分放置後、ラプチャーディスク付きキャップリップにて容器に蓋をし、アクタック社製マイクロウェーブ高速分解システム「スピードウェーブ MWS-2」にて150℃10分、次いで180℃10分の処理を行って乾燥EVOHペレットを分解させた。乾燥EVOHペレットの分解が完了できていない場合は、処理条件を適宜調節した。10mLのイオン交換水で希釈し、すべての液を50mLのメスフラスコに移しとり、イオン交換水で定容し分解溶液を得た。
 上記の分解溶液を、パーキンエルマージャパン社製ICP発光分光分析装置「Optima 4300 DV」を用いて、以下に示す各観測波長で定量分析することで、各金属イオン、リン酸化合物及びホウ素化合物の量を定量した。リン酸化合物の量は、リン元素を定量しリン酸根換算値として算出した。ホウ素化合物の含有量は、ホウ素元素換算値で得た。
 Na :589.592nm
 K  :766.490nm
 Mg :285.213nm
 Ca :317.933nm
 P  :214.914nm
 B  :249.667nm
 (7)吸光係数比ε2/ε1の測定
 実施例及び比較例にて得られた乾燥後の各EVOHペレット30gを用いて120℃24時間空気下で熱処理した。熱処理前後の各EVOHペレットを凍結粉砕により粉砕した。得られた粉砕EVOHを、呼び寸法1mmのふるい(標準フルイ規格JIS-Z8801準拠)でふるい分けした。上記のふるいを通過したEVOH粉末1gに55質量%1-プロパノール水溶液10mLを加え、75℃で3時間加温し溶解させた。得られた溶液を光路長1.0cmの石英セルに入れて、島津製作所製分光光度計UV-2450で225nmにおける吸光度を測定した。実施例及び比較例にて得られたペレットとさらに熱処理したペレットで評価を行い、それぞれ吸光係数を算出した。ここで、吸光係数εは下記式(1)で示される値である。
 ε=A/(L×C)  ・・・(1)
(式中、Aは吸光光度計で測定される225nmの光の吸光度、Lは光路長(単位:cm)、Cはエチレン-ビニルアルコール共重合体樹脂組成物の濃度(質量%)を表す。)
 分析結果から得られたEVOHペレットの吸光係数ε1と熱処理したペレットの吸光係数ε2の比ε2/ε1を算出した。また、吸光度が1.0を超える場合は、調整したEVOH溶液を55質量%1-プロパノール水溶液で適宜希釈してから吸光度を測定した。
 (8)pH測定
 乾燥EVOHペレットを凍結粉砕により粉砕した。得られた粉砕EVOHを、呼び寸法1mmのふるい(標準フルイ規格JIS-Z8801準拠)でふるい分けした。上記のふるいを通過したEVOH粉末10gとイオン交換水50mLを共栓付き100mL三角フラスコに投入し、冷却コンデンサーを付け、95℃で4時間撹拌、抽出した。上記で得られた抽出液をメトラー・トレド社製MA235/イオン分析計でpH測定した。
 (9)EVOH樹脂組成物の外観評価
 実施例及び比較例にて得られた乾燥後の各EVOHペレット50gの着色状況を目視で確認し、以下のように判断した。
 判定:基準
 A :ほとんど着色していない
 B :かすかに着色している
 C :着色(薄黄色)している
 D :着色(黄色)している
 E :激しく着色(橙色)している
 さらに120℃24時間空気下で熱処理し、上記方法と同様に着色状況を目視で確認し、同様の評価を行った。なお、ここで用いた空気とは酸素と窒素を主に含有し、酸素濃度は18体積%以上24体積%以下であった。
 (10)EVOH樹脂組成物の品質斑評価
 乾燥機での滞留時間差等による品質斑評価として上記EVOH樹脂組成物の外観評価をもとに、以下のように判断した。
 判定:基準
 A :熱処理前後でランク差がなかったもの
 B :熱処理前後でランク差が1つあったもの
 C :熱処理前後でランク差が2つあったもの
 (11)溶融成形時の耐着色性評価
 実施例及び比較例にて得られた乾燥後の各EVOHペレット50gを120℃で24時間空気下熱処理した。熱処理前後の各EVOH樹脂組成物ペレット10gを用いて、加熱圧縮プレス装置にて240℃で5分間加熱溶融させて厚み2mmの円盤状サンプルを作成した。得られた円盤状サンプルの着色状況を目視で確認し、以下のように判断した。
 判定:基準
 A :ほとんど着色していない
 B :かすかに着色している
 C :着色(薄黄色)している
 D :着色(黄色)している
 E :激しく着色(橙色)している
 (12)溶融成形時の品質斑評価
 乾燥機での滞留時間差等による溶融成形時品質斑評価として上記溶融成形時の耐着性評価をもとに、以下のように判断した。
 判定:基準
 A :熱処理前後でランク差がなかったもの
 B :熱処理前後でランク差が1つあったもの
 C :熱処理前後でランク差が2つあったもの
 (13)ロングラン性(粘度安定性)
 得られた乾燥EVOHペレット60gをラボプラストミル(東洋精機製作所社製「20R200」二軸異方向)を用いて100rpm、240℃で混練したときのトルク変化を測定した。混練開始から5分後のトルクを測定し、トルク値がその5分後のトルクの1.5倍になるまでの時間を測定した。この時間が長いほど、粘度変化が少なく、ロングラン性に優れていることを示す。
 判定:基準
 A :60分以上
 B :40分以上60分未満
 C :20分以上40分未満
 (14)接着性
 得られた乾燥EVOHペレット、直鎖状低密度ポリエチレン(LLDPE:三井化学社製「ウルトゼックス2022L」)及び接着性樹脂(Arkema社製「Bondine TX8030」、以下Adと略することがある)を用いて、以下の方法/条件にて3種5層の多層フィルム(LLDPE/Ad/EVOH/Ad/LLDPE=50μm/10μm/10μm/10μm/50μm)を得た。得られた多層フィルムを、多層製膜直後にMD方向に150mm、TD方向に10mmで切り出した後、直ちにオートグラフ(島津製作所社製「DCS-50M」)により引張速度250mm/分、T型剥離モードでEVOH層/Ad層間の剥離強度を測定し、剥離強度の強さにより以下のように判定した。
〈多層製膜条件〉
 押出機:
  EVOH用 :20mmφ押出機 ラボ機ME型CO-EXT(東洋精機社製)
  Ad用   :20mmφ押出機 SZW20GT-20MG-STD(テクノベル社製)
  LLDPE用:32mmφ押出機 GT-32-A(プラスチック工学研究所社製)
 EVOH押出温度  供給部/圧縮部/計量部/ダイ
          =175/210/220/220℃
 Ad押出温度    供給部/圧縮部/計量部/ダイ
          =100/160/220/220℃
 LLDPE押出温度 供給部/圧縮部/計量部/ダイ
          =150/200/210/220℃
 ダイ 300mm幅コートハンガーダイ(プラスチック工学研究所社製)
〈接着性の判定基準〉
 判定:基準
 A :500g/15cm以上
 B :400g/15cm以上500g/15cm未満
 C :300g/15cm以上400g/15cm未満
 D :300g/15cm未満
 <合成例1> 含水EVOHペレットの合成
 (エチレン-酢酸ビニル共重合体の重合)
 撹拌機、窒素導入口、エチレン導入口、開始剤添加口及びディレー(逐次添加)溶液添加口を備えた250L加圧反応槽に酢酸ビニル85.3kg、メタノール21.6kgを仕込み、60℃に昇温した後60分間窒素バブリングにより系中を窒素置換した。次いで反応槽圧力が3.7MPaとなるようにエチレンを仕込んだ。開始剤として、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)(AMV)をメタノールに溶解し、濃度1.9g/Lの開始剤溶液を調製し、窒素ガスによるバブリングを行って窒素置換した。上記重合槽内温を60℃に調整した後、上記開始剤溶液653mLを注入し重合を開始した。重合中はエチレンを導入して反応槽圧力を3.7MPaに、重合温度を60℃に維持し、2018mL/hrで上記開始剤溶液を連続添加して重合を実施した。5.0時間後に重合率が45%となったところで冷却して重合を停止した。反応槽を開放して脱エチレンした後、窒素ガスをバブリングして脱エチレンを完全に行った。次いでラシヒリングを充填した塔の上部から得られた共重合体溶液を連続的に供給し、塔下部よりメタノールを吹き込み塔頂部よりメタノールと未反応酢酸ビニルモノマーの混合蒸気を流出させ、塔底部より未反応酢酸ビニルモノマーを除去したエチレン-酢酸ビニル共重合体(EVAc)のメタノール溶液を得た。
 (けん化)
 得られたEVAc溶液にメタノールを加えて濃度が15質量%となるように調整したEVAcのメタノール溶液266.7kg(溶液中のEVAc40kg)に、80.6L(EVAc中の酢酸ビニルユニットに対してモル比0.4)のアルカリ溶液(NaOHの2mol/Lメタノール溶液)を添加して60℃で4時間撹拌することにより、EVAcのけん化を行った。反応開始から6時間後、9.7kgの酢酸と60Lの水を添加して上記反応液を中和し、反応を停止させた。
 (洗浄)
 中和された反応液を、反応器からドラム缶に移して16時間室温で放置し、ケーキ状に冷却固化させた。その後、遠心分離機(国産遠心器社製「H-130」回転数1200rpm)を用いて、上記ケーキ状の樹脂を脱液した。次に、遠心分離機の中央部に、上方よりイオン交換水を連続的に供給しながら洗浄し、上記樹脂を水洗する工程を10時間行った。洗浄開始から10時間後の洗浄液の伝導度は、30μS/cm(東亜電波工業社製「CM-30ET」で測定)であった。
 (造粒)
 このようにして得られた粉末状のEVOHを乾燥機を用いて60℃、48時間乾燥した。乾燥した粉末状のEVOH20kgを、43Lの水/メタノール混合溶液(質量比:水/メタノール=40/60)に80℃で12時間、撹拌しながら溶解させた。次に、撹拌を止めて溶解槽の温度を65℃に下げて5時間放置し、上述のEVOHの水/メタノール溶液の脱泡を行った。そして、直径3.5mmの円形の開口部を有する金板から、5℃の水/メタノール混合溶液(質量比:水/メタノール=90/10)中に押出してストランド状に析出させ、切断することで直径約3mm、長さ約4mmの含水EVOHペレットを得た。
 (精製)
 このようにして得られた含水EVOHペレット40kg及びイオン交換水150Lを、高さ900mm、開径600mmの金属製ドラム缶に入れ、25℃で2時間撹拌し、遠心分離機で脱液する操作を2回繰り返した。次に、40kgの含水EVOHペレットに対して150Lの1g/Lの酢酸水溶液を加え、25℃で2時間撹拌し、遠心分離機で脱液する操作を2回繰り返した。さらに、含水EVOHペレット40kgに対して150Lのイオン交換水を加えて、25℃で2時間撹拌し、遠心分離機で脱液する操作を6回繰り返すことで、けん化工程での副生物等の不純物の除去された含水EVOHペレット(w-EVOH-1)を得た。6回目の洗浄を行った後の洗浄液の伝導度を東亜電波工業社製「CM-30ET」で測定した結果、上記洗浄液の伝導度は3μS/cmであった。得られた含水EVOHペレットの含水率は110質量%であった。
 <合成例2> 含水EVOHペレットの合成
 合成例1において、エチレン-酢酸ビニル共重合体の重合時における酢酸ビニル及びメタノールの仕込み量をそれぞれ71.1kg、4.28kgに、反応槽圧力を6.65MPaに、開始剤溶液(AMVの3.0g/L濃度のメタノール溶液)の重合開始時の注入量を1305mLに、開始剤溶液の連続添加量を2145mL/hrに、重合槽内温を55℃に変更した以外は合成例1と同様の操作により未反応酢酸ビニルモノマーを除去したEVAcのメタノール溶液を得た。この時、重合率は35%であった。
 次いで、EVAcのメタノール溶液200.0kg(溶液中のEVAc30kg)に、アルカリ溶液の添加量を49.8Lに、中和時の酢酸添加量を6.0kgに変更した以外は合成例1と同様の操作によりけん化、洗浄を行って粉末状のEVOHを得た。
 さらに、乾燥した粉末状のEVOH15kgを23Lの水/メタノール混合溶液(質量比:水/メタノール=5/95)に変更した以外は合成例1と同様の操作により造粒、精製を行って含水EVOHペレット(w-EVOH-2)を得た。
 <合成例3> 含水EVOHペレットの合成
 合成例1において、エチレン-酢酸ビニル共重合体の重合時における酢酸ビニル及びメタノールの仕込み量をそれぞれ87.8kg、7.21kgに、反応槽圧力を5.59MPaに、開始剤溶液(AMVの2.8g/L濃度のメタノール溶液)の重合開始時の注入量を691mLに、開始剤溶液の連続添加量を2136mL/hrに変更した以外は合成例1と同様の操作により未反応酢酸ビニルモノマーを除去したEVAcのメタノール溶液を得た。この時、重合率は45%であった。
  次いで、EVAcのメタノール溶液200kg(溶液中のEVAc30kg)に、アルカリ溶液の添加量を55.5Lに、中和時の酢酸添加量を6.7kgに変更した以外は合成例1と同様の操作によりけん化、洗浄を行って粉末状のEVOHを得た。
 さらに、乾燥した粉末状のEVOH15kgを23Lの水/メタノール混合溶液(質量比:水/メタノール=15/85)に変更した以外は合成例1と同様の操作により造粒、精製を行って含水EVOHペレット(w-EVOH-3)を得た。
 <合成例4> 含水EVOHペレットの合成
 合成例1において、エチレン-酢酸ビニル共重合体の重合時における酢酸ビニル及びメタノールの仕込み量をそれぞれ86.7kg、27.7kgに、反応槽圧力を2.98MPaに、開始剤溶液(AMVの1.5g/L濃度のメタノール溶液)の重合開始時の注入量を700mLに、開始剤溶液の連続添加量を2166mL/hrに変更した以外は合成例1と同様の操作により未反応酢酸ビニルモノマーを除去したEVAcのメタノール溶液を得た。この時、重合率は45%であった。
 次いで、アルカリ溶液の添加量を82.9Lに、中和時の酢酸添加量を10.0kgに変更した以外は合成例1と同様の操作によりけん化、洗浄を行って粉末状のEVOHを得た。
 さらに、EVOH溶解時に用いる水/メタノール混合溶液の水/メタノール質量比を38/62に変更した以外は合成例1と同様の操作により造粒、精製を行って含水EVOHペレット(w-EVOH-4)を得た。
 <合成例5> 含水EVOHペレットの合成
 合成例1において、エチレン-酢酸ビニル共重合体の重合時における酢酸ビニル及びメタノールの仕込み量をそれぞれ101.0kg、16.3kgに、反応槽圧力を2.89MPaに、開始剤溶液(AMVの1.5g/L濃度のメタノール溶液)の重合開始時の注入量を627mLに、開始剤溶液の連続添加量を1938mL/hrに、反応時間を5.0時間に変更した以外は合成例1と同様の操作により未反応酢酸ビニルモノマーを除去したEVAcのメタノール溶液を得た。この時、重合率は45%であった。
 次いで、アルカリ溶液の添加量を84.3Lに、中和時の酢酸添加量を10.1kgに変更した以外は合成例1と同様の操作によりけん化、洗浄を行って粉末状のEVOHを得た。
 さらに、EVOH溶解時に用いる水/メタノール混合溶液の水/メタノール質量比を41/59に変更した以外は合成例1と同様の操作により造粒、精製を行って含水EVOHペレット(w-EVOH-5)を得た。
 <実施例1>
 水に没食子酸プロピル4.8mg/L、酢酸0.79g/L、クエン酸0.10g/L、酢酸ナトリウム0.53g/L、リン酸0.012g/L、ホウ酸0.42g/Lとなるようそれぞれの成分を溶解した水溶液94.5Lに、合成例1で得た含水EVOHペレット(w-EVOH-1)10.5kgを投入して、25℃で6時間、時々攪拌しながら浸漬を行った。浸漬後の含水EVOHペレットを遠心脱液により脱水した後、熱風乾燥機中80℃で3時間、引き続き120℃で35時間乾燥して、乾燥EVOH樹脂組成物ペレット(乾燥EVOHペレット)を得た。
 上記に従いエチレン含有量及びけん化度を分析したところ、エチレン含有量(Et)は32.0mol%、けん化度(DS)は99.98mol%以上であった。また上記に従い分析した結果、没食子酸プロピルは0.0236μmol/g、酢酸および酢酸イオンを8.00μmol/g、クエン酸及びクエン酸イオンを0.52μmol/g、ナトリウムイオンを6.96μmol/g、リン酸化合物をリン酸根換算で10ppm、ホウ素化合物をホウ素元素換算で201ppm含んでいた。上記に従い各物性の評価を行ったところ、吸光係数比ε2/ε1は1.47であった。抽出された液のpHは4.6であった。EVOH樹脂組成物の熱処理前後の外観評価でほとんど着色が見られず、ともにA判定であった。このことから品質斑評価ではA判定であった。熱処理前後のEVOH樹脂組成物を用いて溶融成形を行い、耐着色性評価を行ったが、どちらもほとんど着色が見られずともにA判定であった。このことから溶融成型時の品質斑評価はA判定であった。ロングラン性については60分後においてもトルク値は5分後のトルク値の1.5倍に到達せずA判定であり、接着性については剥離強度は510g/15cmとなりA判定であった。
 <実施例2~50及び比較例1~4>
 実施例1において用いた含水EVOHペレットの種類及び水溶液へ配合した各化合物の種類及び量を表1及び表4のように変更した以外は、実施例1と同様にして乾燥EVOH樹脂組成物ペレットを得た。得られた各EVOH樹脂組成物について、実施例1と同様にしてエチレン含有量等を分析した結果を表2及び表5に、耐着色性等を評価した結果を表3及び表6に示す。ただし、実施例23~26では合成例2~5で合成したEVOHを使用した。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
 <実施例51~53>
 実施例1において用いた含水EVOHペレットの種類及び水溶液へ配合した各化合物の種類及び量を表7のように変更し、さらにその水溶液に炭酸ガスを1.0L/min.で吹き込みながら25℃で6時間、浸漬を行った以外は、実施例1と同様にして乾燥EVOH樹脂組成物ペレットを得た。得られた各EVOH樹脂組成物について、実施例1と同様にしてエチレン含有量等を分析した結果を表8に、耐着色性等を評価した結果を表9に示す。
 <実施例54>
 合成例1で得られたw-EVOH-1を熱風乾燥機中80℃で1時間乾燥することで、含水率を50質量%とした含水EVOHペレットを得た。得られた含水EVOHペレットを、二軸押出機(詳細を以下に示す)に10kg/hrで投入し、吐出口の樹脂温度を100℃とし、吐出口側先端部の図1に示した溶液添加部より、没食子酸プロピル55.6mg/L、酢酸5.13g/L、クエン酸1.11g/L、酢酸ナトリウム6.34g/L、リン酸0.11g/L、ホウ酸12.8g/Lを含む水溶液を0.6L/hrで添加した。ダイスより吐出されたストランド状の溶融状態の含水EVOHをストランドカッターにて切断し、円柱状の含水EVOHペレット(含水率:25質量%)を得た。得られた含水EVOHペレットを熱風乾燥機中80℃で1時間、引き続き120℃で24時間乾燥して、乾燥EVOH樹脂組成物ペレットを得た。得られたEVOH樹脂組成物について、実施例1と同様にしてエチレン含有量等を分析した結果を表8に、耐着色性等を評価した結果を表9に示す。
〈二軸押出機の仕様詳細〉
 口径       30mmφ
 L/D      45.5
 スクリュー    同方向完全噛合型(スクリューの構成詳細は図1に示す)
 スクリュー回転数 300rpm
 ダイス      3mmφ、5穴ストランドダイ
 引取り速度    5m/min.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
 本発明のEVOH樹脂組成物は、優れた外観特性(特に着色及び色相の斑のないこと)を備え、且つ溶融成形時の黄変等の発生が抑制されているため、品質の斑が少なく、外観特性の優れた成形体、例えば、単層又は多層のフィルム、シート、パイプ、容器、繊維などの各種成形体の材料として好適に用いることができる。
 1 原料供給部
 2、4、6 フルフライトスクリュー部
 3、5 逆フライトスクリュー部
 7 ベントシリンダー部
 8 溶液添加部
 9 温度センサー
 10 シリンダバレル
 11 吐出口
 20 二軸押出機

Claims (12)

  1.  エチレン-ビニルアルコール共重合体(A)、及びエンジオール構造を有する化合物(B)を含有し、
     上記エチレン-ビニルアルコール共重合体(A)のビニルアルコール単位に対する上記化合物(B)のモル比が2.70×10-9以上2.70×10-5以下であるエチレン-ビニルアルコール共重合体樹脂組成物。
  2.  上記化合物(B)が、カルボキシル基及び/又はラクトン環を有する請求項1に記載のエチレン-ビニルアルコール共重合体樹脂組成物。
  3.  上記化合物(B)が、フェノール類又はアスコルビン酸類である請求項1又は請求項2に記載のエチレン-ビニルアルコール共重合体樹脂組成物。
  4.  上記化合物(B)が、没食子酸、没食子酸メチル、没食子酸エチル、没食子酸プロピル、没食子酸イソアミル、没食子酸オクチル、タンニン酸、ピロガロール、カテコール、カテキン、エピカテキン、エピガロカテキン、エピガロカテキンガレート、エラグ酸、アスコルビン酸及びエリソルビン酸からなる群より選択される少なくとも1種である請求項3に記載のエチレン-ビニルアルコール共重合体樹脂組成物。
  5.  上記化合物(B)の分子量が2000以下である請求項1から請求項4のいずれか1項に記載のエチレン-ビニルアルコール共重合体樹脂組成物。
  6.  さらに、上記化合物(B)以外のカルボン酸化合物及び/又はカルボン酸イオンを含有し、このカルボン酸化合物及び/又はカルボン酸イオンの含有率がカルボン酸根換算で0.01μmol/g以上20μmol/g以下である請求項1から請求項5のいずれか1項に記載のエチレン-ビニルアルコール共重合体樹脂組成物。
  7.  空気下120℃及び24時間の熱処理後の225nmにおける吸光係数ε2と上記熱処理前の225nmにおける吸光係数ε1との比ε2/ε1が2.0以下である請求項1から請求項6のいずれか1項に記載のエチレン-ビニルアルコール共重合体樹脂組成物。
  8.  請求項1から請求項7のいずれか1項に記載のエチレン-ビニルアルコール共重合体樹脂組成物の製造方法であって、
     エチレン-ビニルエステル共重合体をけん化してエチレン-ビニルアルコール共重合体(A)を得るけん化工程と、
     上記けん化工程後に化合物(B)をエチレン-ビニルアルコール共重合体(A)と混合する混合工程とを有することを特徴とするエチレン-ビニルアルコール共重合体樹脂組成物の製造方法。
  9.  上記けん化工程で得られたエチレン-ビニルアルコール共重合体(A)を用いた造粒操作によりエチレン-ビニルアルコール共重合体(A)を含む含水ペレットを得るペレット化工程と、
     上記含水ペレットを乾燥する乾燥工程とを有し、
     上記ペレット化工程と乾燥工程との間に上記混合工程を有し、
     この混合工程として上記含水ペレットを上記化合物(B)を含有する溶液に浸漬する請求項8に記載のエチレン-ビニルアルコール共重合体樹脂組成物の製造方法。
  10.  上記けん化工程で得られたエチレン-ビニルアルコール共重合体(A)及び上記化合物(B)を用いた造粒操作により上記エチレン-ビニルアルコール共重合体(A)及び上記化合物(B)を含む含水ペレットを得るペレット化工程と、
     上記含水ペレットを乾燥する乾燥工程とを有する請求項8に記載のエチレン-ビニルアルコール共重合体樹脂組成物の製造方法。
  11.  請求項1から請求項7のいずれか1項に記載のエチレン-ビニルアルコール共重合体樹脂組成物からなる成形体。
  12.  請求項1から請求項7のいずれか1項に記載のエチレン-ビニルアルコール共重合体樹脂組成物からなる層を有する多層構造体。
PCT/JP2012/067226 2011-07-07 2012-07-05 エチレン-ビニルアルコール共重合体樹脂組成物及びその製造方法 WO2013005807A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201280033589.4A CN103635526B (zh) 2011-07-07 2012-07-05 乙烯-乙烯醇共聚物树脂组合物及其制造方法
JP2013523054A JP5944388B2 (ja) 2011-07-07 2012-07-05 エチレン−ビニルアルコール共重合体樹脂組成物及びその製造方法
US14/131,301 US9951199B2 (en) 2011-07-07 2012-07-05 Ethylene-vinyl alcohol copolymer resin composition and method for producing same
EP12807170.1A EP2730614B1 (en) 2011-07-07 2012-07-05 Ethylene-vinyl alcohol copolymer resin composition and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011150981 2011-07-07
JP2011-150981 2011-07-07

Publications (1)

Publication Number Publication Date
WO2013005807A1 true WO2013005807A1 (ja) 2013-01-10

Family

ID=47437153

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/067226 WO2013005807A1 (ja) 2011-07-07 2012-07-05 エチレン-ビニルアルコール共重合体樹脂組成物及びその製造方法

Country Status (6)

Country Link
US (1) US9951199B2 (ja)
EP (1) EP2730614B1 (ja)
JP (1) JP5944388B2 (ja)
CN (1) CN103635526B (ja)
TW (1) TWI558728B (ja)
WO (1) WO2013005807A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016006694A1 (ja) * 2014-07-11 2016-01-14 株式会社クラレ エチレン-ビニルアルコール共重合体、樹脂組成物、及びこれらを用いた成形体
JP2016029157A (ja) * 2014-07-11 2016-03-03 株式会社クラレ 樹脂組成物、多層シート、包装材及び容器
JP2016028886A (ja) * 2014-07-11 2016-03-03 株式会社クラレ 蒸着フィルム、包装材及び真空断熱体
JP2016029156A (ja) * 2014-07-11 2016-03-03 株式会社クラレ 樹脂組成物、フィルム、多層構造体及び包装材料
WO2017047559A1 (ja) * 2015-09-15 2017-03-23 日本合成化学工業株式会社 エチレン-ビニルアルコール系共重合体、エチレン-ビニルアルコール系共重合体の製造方法、樹脂組成物及び多層構造体
WO2017110676A1 (ja) * 2015-12-25 2017-06-29 日本合成化学工業株式会社 エチレン-ビニルエステル系共重合体ケン化物組成物及びその製造方法
KR101782603B1 (ko) 2015-11-25 2017-09-27 주식회사 혜성지테크 피로갈롤, 에라직산 및 합성 수지 성분을 포함하는 수지, 도료 조성물 및 이의 제조방법
WO2018116766A1 (ja) * 2016-12-20 2018-06-28 日本合成化学工業株式会社 エチレン-ビニルアルコール系共重合体ペレット、樹脂組成物および多層構造体
JP2018145395A (ja) * 2016-12-20 2018-09-20 日本合成化学工業株式会社 エチレン−ビニルアルコール系共重合体樹脂組成物および多層構造体
JPWO2017104673A1 (ja) * 2015-12-16 2018-10-04 日本合成化学工業株式会社 樹脂組成物およびそれを用いた溶融成形品、ならびに多層構造体
WO2019130799A1 (ja) * 2017-12-27 2019-07-04 株式会社クラレ エチレン-ビニルアルコール共重合体含有樹脂組成物、成形体及び包装材料
US11884806B2 (en) 2016-12-20 2024-01-30 Mitsubishi Chemical Corporation Ethylene-vinyl alcohol copolymer resin composition, and multilayer structure

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG11201802385UA (en) 2015-10-28 2018-04-27 Nippon Synthetic Chem Ind Co Ltd Saponified ethylene-vinyl ester-based copolymer pellet and producing method therefor
EP3398991B1 (en) * 2015-12-28 2021-01-20 Mitsubishi Chemical Corporation Production method for ethylene/vinyl alcohol copolymer composition
US11186666B2 (en) 2015-12-28 2021-11-30 Mitsubishi Chemical Corporation Ethylene-vinyl alcohol copolymer composition pellets, and multilayer structure
CN110088147B (zh) * 2016-12-21 2023-10-24 三菱化学株式会社 聚乙烯醇系树脂、分散剂和悬浮聚合用分散剂
WO2018124233A1 (ja) * 2016-12-28 2018-07-05 日本合成化学工業株式会社 エチレン-ビニルアルコール系共重合体組成物ペレットおよび、エチレン-ビニルアルコール系共重合体組成物ペレットの製造方法
TWI757397B (zh) * 2016-12-28 2022-03-11 日商三菱化學股份有限公司 乙烯-乙烯醇系共聚物組成物丸粒、及乙烯-乙烯醇系共聚物組成物丸粒的製造方法
TWI813574B (zh) * 2017-06-27 2023-09-01 日商三菱化學股份有限公司 乙烯-乙烯醇系共聚物組成物、熔融成形用乙烯-乙烯醇系共聚物組成物、丸粒及多層結構體
KR102550270B1 (ko) * 2017-12-27 2023-07-04 주식회사 쿠라레 에틸렌-비닐알코올 공중합체 함유 수지 조성물, 및 이로 이루어지는 성형체 및 포장 재료
KR102405288B1 (ko) 2019-01-22 2022-06-07 주식회사 엘지화학 비닐 알코올계 공중합체, 이의 제조 방법 및 이를 포함하는 기체 차단성 필름
US20220275243A1 (en) * 2019-08-20 2022-09-01 The Regents Of The University Of Michigan Surface functionalized substrates and methods of making the same
CN112707975A (zh) * 2019-10-24 2021-04-27 中国石油化工股份有限公司 乙烯-乙烯醇共聚物的生产方法
CN112706488B (zh) * 2019-10-25 2023-03-03 中国石油化工股份有限公司 具有特殊性质的乙烯-乙烯醇共聚物组合物、薄膜及其制备方法
JP6719031B1 (ja) * 2020-02-21 2020-07-08 株式会社クラレ 樹脂組成物、成形体及び多層構造体
US20230294380A1 (en) * 2020-06-25 2023-09-21 Kuraray Co., Ltd. Multi-Layer Film, and Multi-Layer Structure In Which Same Is Used
CN114426753B (zh) * 2020-10-15 2023-02-28 中国石油化工股份有限公司 乙烯-乙烯醇共聚物组合物及其制备方法
JP2024504156A (ja) * 2021-12-22 2024-01-30 エルジー・ケム・リミテッド エチレン-ビニルアルコール共重合体の製造方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0971620A (ja) 1995-06-26 1997-03-18 Kuraray Co Ltd 酢酸ビニル系重合体の製法、酢酸ビニル系重合体ケン化物の製法および樹脂組成物
JPH1067898A (ja) 1996-06-19 1998-03-10 Kuraray Co Ltd エチレン−ビニルエステル共重合体ケン化物組成物およびそれを用いた共押出多層成形体
JPH11200132A (ja) 1998-01-21 1999-07-27 Kuraray Co Ltd エチレン−ビニルアルコール系共重合体膜の製膜溶液および製膜方法
JP2000178397A (ja) 1998-12-14 2000-06-27 Nippon Synthetic Chem Ind Co Ltd:The 水酸基含有熱可塑性樹脂改質用の樹脂組成物およびその使用法
JP2001047571A (ja) 1999-08-16 2001-02-20 Nippon Synthetic Chem Ind Co Ltd:The 多層容器
JP2001226414A (ja) * 2000-02-14 2001-08-21 Nippon Synthetic Chem Ind Co Ltd:The 酢酸ビニル系重合体及びそのケン化物の製造法
JP2001234008A (ja) * 1999-12-16 2001-08-28 Kuraray Co Ltd ロングラン性の改善されたエチレン−ビニルアルコール共重合体樹脂組成物およびその成形物
WO2001096464A1 (fr) * 2000-06-14 2001-12-20 Kuraray Co. Ltd. Composition de resine constituee d'un copolymere ethylene/alcool vinylique
JP2002121290A (ja) 2000-08-07 2002-04-23 Kuraray Co Ltd エチレン−ビニルアルコール共重合体含水組成物の製造方法
JP2002284811A (ja) 2001-01-19 2002-10-03 Kuraray Co Ltd エチレン−ビニルアルコール共重合体樹脂の製造方法
WO2003068847A1 (fr) 2002-02-18 2003-08-21 Kuraray Co., Ltd. Compositions de resines de copolymeres d'ethylene-alcool vinylique et leur procede de production
WO2005014716A1 (ja) * 2003-08-07 2005-02-17 Idemitsu Unitech Co., Ltd. エチレン-ビニルアルコール共重合体樹脂組成物からなる単層又は多層成形品、容器及び回収・再使用による成形品の製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2321320C (en) * 1999-09-29 2006-08-15 Kuraray Co., Ltd. Resin composition of good long-run workability comprising ethylene-vinyl alcohol copolymer
US6964990B2 (en) 1999-12-16 2005-11-15 Kuraray Co., Ltd. Ethylene-vinyl alcohol copolymer resin composition of improved long-run workability, and its shaped articles
US8557372B2 (en) * 2010-12-01 2013-10-15 Northern Technologies International Corp. Laminate for preserving food

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0971620A (ja) 1995-06-26 1997-03-18 Kuraray Co Ltd 酢酸ビニル系重合体の製法、酢酸ビニル系重合体ケン化物の製法および樹脂組成物
JPH1067898A (ja) 1996-06-19 1998-03-10 Kuraray Co Ltd エチレン−ビニルエステル共重合体ケン化物組成物およびそれを用いた共押出多層成形体
JPH11200132A (ja) 1998-01-21 1999-07-27 Kuraray Co Ltd エチレン−ビニルアルコール系共重合体膜の製膜溶液および製膜方法
JP2000178397A (ja) 1998-12-14 2000-06-27 Nippon Synthetic Chem Ind Co Ltd:The 水酸基含有熱可塑性樹脂改質用の樹脂組成物およびその使用法
JP2001047571A (ja) 1999-08-16 2001-02-20 Nippon Synthetic Chem Ind Co Ltd:The 多層容器
JP2001234008A (ja) * 1999-12-16 2001-08-28 Kuraray Co Ltd ロングラン性の改善されたエチレン−ビニルアルコール共重合体樹脂組成物およびその成形物
JP2001226414A (ja) * 2000-02-14 2001-08-21 Nippon Synthetic Chem Ind Co Ltd:The 酢酸ビニル系重合体及びそのケン化物の製造法
WO2001096464A1 (fr) * 2000-06-14 2001-12-20 Kuraray Co. Ltd. Composition de resine constituee d'un copolymere ethylene/alcool vinylique
JP2002121290A (ja) 2000-08-07 2002-04-23 Kuraray Co Ltd エチレン−ビニルアルコール共重合体含水組成物の製造方法
JP2002284811A (ja) 2001-01-19 2002-10-03 Kuraray Co Ltd エチレン−ビニルアルコール共重合体樹脂の製造方法
WO2003068847A1 (fr) 2002-02-18 2003-08-21 Kuraray Co., Ltd. Compositions de resines de copolymeres d'ethylene-alcool vinylique et leur procede de production
WO2005014716A1 (ja) * 2003-08-07 2005-02-17 Idemitsu Unitech Co., Ltd. エチレン-ビニルアルコール共重合体樹脂組成物からなる単層又は多層成形品、容器及び回収・再使用による成形品の製造方法

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016029157A (ja) * 2014-07-11 2016-03-03 株式会社クラレ 樹脂組成物、多層シート、包装材及び容器
JP2016028886A (ja) * 2014-07-11 2016-03-03 株式会社クラレ 蒸着フィルム、包装材及び真空断熱体
JP2016029156A (ja) * 2014-07-11 2016-03-03 株式会社クラレ 樹脂組成物、フィルム、多層構造体及び包装材料
WO2016006694A1 (ja) * 2014-07-11 2016-01-14 株式会社クラレ エチレン-ビニルアルコール共重合体、樹脂組成物、及びこれらを用いた成形体
WO2017047559A1 (ja) * 2015-09-15 2017-03-23 日本合成化学工業株式会社 エチレン-ビニルアルコール系共重合体、エチレン-ビニルアルコール系共重合体の製造方法、樹脂組成物及び多層構造体
US11401355B2 (en) 2015-09-15 2022-08-02 Mitsubishi Chemical Corporation Ethylene-vinyl alcohol copolymer, method of producing ethylene-vinyl alcohol copolymer, resin composition, and multilayer structure
JPWO2017047559A1 (ja) * 2015-09-15 2018-08-02 日本合成化学工業株式会社 エチレン−ビニルアルコール系共重合体、エチレン−ビニルアルコール系共重合体の製造方法、樹脂組成物及び多層構造体
KR101782603B1 (ko) 2015-11-25 2017-09-27 주식회사 혜성지테크 피로갈롤, 에라직산 및 합성 수지 성분을 포함하는 수지, 도료 조성물 및 이의 제조방법
JPWO2017104673A1 (ja) * 2015-12-16 2018-10-04 日本合成化学工業株式会社 樹脂組成物およびそれを用いた溶融成形品、ならびに多層構造体
WO2017110676A1 (ja) * 2015-12-25 2017-06-29 日本合成化学工業株式会社 エチレン-ビニルエステル系共重合体ケン化物組成物及びその製造方法
JPWO2017110676A1 (ja) * 2015-12-25 2018-10-11 日本合成化学工業株式会社 エチレン−ビニルエステル系共重合体ケン化物組成物及びその製造方法
JP2018145395A (ja) * 2016-12-20 2018-09-20 日本合成化学工業株式会社 エチレン−ビニルアルコール系共重合体樹脂組成物および多層構造体
JPWO2018116766A1 (ja) * 2016-12-20 2019-10-24 三菱ケミカル株式会社 エチレン−ビニルアルコール系共重合体ペレット、樹脂組成物および多層構造体
US11292860B2 (en) 2016-12-20 2022-04-05 Mitsubishi Chemical Corporation Ethylene-vinyl alcohol copolymer pellets, resin composition, and multilayer structure
WO2018116766A1 (ja) * 2016-12-20 2018-06-28 日本合成化学工業株式会社 エチレン-ビニルアルコール系共重合体ペレット、樹脂組成物および多層構造体
JP7119356B2 (ja) 2016-12-20 2022-08-17 三菱ケミカル株式会社 エチレン-ビニルアルコール系共重合体樹脂組成物および多層構造体
US11884806B2 (en) 2016-12-20 2024-01-30 Mitsubishi Chemical Corporation Ethylene-vinyl alcohol copolymer resin composition, and multilayer structure
WO2019130799A1 (ja) * 2017-12-27 2019-07-04 株式会社クラレ エチレン-ビニルアルコール共重合体含有樹脂組成物、成形体及び包装材料
JPWO2019130799A1 (ja) * 2017-12-27 2021-01-07 株式会社クラレ エチレン−ビニルアルコール共重合体含有樹脂組成物、成形体及び包装材料
JP7079270B2 (ja) 2017-12-27 2022-06-01 株式会社クラレ エチレン-ビニルアルコール共重合体含有樹脂組成物の製造方法

Also Published As

Publication number Publication date
EP2730614A1 (en) 2014-05-14
US20140213701A1 (en) 2014-07-31
TWI558728B (zh) 2016-11-21
EP2730614B1 (en) 2018-05-02
CN103635526B (zh) 2016-08-17
US9951199B2 (en) 2018-04-24
JPWO2013005807A1 (ja) 2015-02-23
TW201307399A (zh) 2013-02-16
JP5944388B2 (ja) 2016-07-05
CN103635526A (zh) 2014-03-12
EP2730614A4 (en) 2015-03-04

Similar Documents

Publication Publication Date Title
JP5944388B2 (ja) エチレン−ビニルアルコール共重合体樹脂組成物及びその製造方法
JP5824088B2 (ja) 樹脂組成物、その製造方法及び多層構造体
JP5285953B2 (ja) エチレン−ビニルアルコール共重合体樹脂組成物およびそれからなるペレット
WO2012133252A1 (ja) エチレン-ビニルアルコール共重合体樹脂の製造方法、エチレン-ビニルアルコール共重合体樹脂及び多層構造体
JP5872943B2 (ja) エチレン−ビニルアルコール共重合体樹脂の製造方法
JP2001164059A (ja) ロングラン性に優れたエチレン−ビニルアルコール共重合体からなる樹脂組成物およびそれを用いた多層構造体
WO2015050223A1 (ja) 樹脂組成物、多層シート、包装材及び容器
JP5813202B2 (ja) 低臭性に優れたエチレン−ビニルアルコール共重合体からなる樹脂組成物
WO2017047806A1 (ja) 樹脂組成物、その製造方法及び多層構造体
JP3704448B2 (ja) エチレン−ビニルアルコール共重合体樹脂ペレットの製造方法と樹脂ペレット
JP6890125B2 (ja) 樹脂組成物、押出成形品、射出成形品及びブロー成形品
JP2005329718A (ja) エチレン−ビニルアルコール共重合体樹脂ペレットの製造方法と樹脂ペレット
JP4684589B2 (ja) 樹脂組成物及びその製造方法
JP4117232B2 (ja) 樹脂組成物及びその製造方法
JP4564246B2 (ja) 樹脂組成物及びその製造方法
JP4217123B2 (ja) フィルム又はシート、及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12807170

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013523054

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14131301

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012807170

Country of ref document: EP