WO2013005679A1 - フラットパネルディスプレイ用ガラス基板及びその製造方法 - Google Patents

フラットパネルディスプレイ用ガラス基板及びその製造方法 Download PDF

Info

Publication number
WO2013005679A1
WO2013005679A1 PCT/JP2012/066737 JP2012066737W WO2013005679A1 WO 2013005679 A1 WO2013005679 A1 WO 2013005679A1 JP 2012066737 W JP2012066737 W JP 2012066737W WO 2013005679 A1 WO2013005679 A1 WO 2013005679A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
glass
glass substrate
sio
content
Prior art date
Application number
PCT/JP2012/066737
Other languages
English (en)
French (fr)
Inventor
小山 昭浩
諭 阿美
学 市川
Original Assignee
AvanStrate株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AvanStrate株式会社 filed Critical AvanStrate株式会社
Priority to JP2012530014A priority Critical patent/JP5172044B2/ja
Priority to CN201280002211.8A priority patent/CN103080031B/zh
Priority to KR1020127031516A priority patent/KR101351112B1/ko
Priority to KR1020127031553A priority patent/KR101528396B1/ko
Publication of WO2013005679A1 publication Critical patent/WO2013005679A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • C03C3/093Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium containing zinc or zirconium
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133302Rigid substrates, e.g. inorganic substrates
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/10Materials and properties semiconductor
    • G02F2202/104Materials and properties semiconductor poly-Si

Definitions

  • the present invention relates to a glass substrate for a flat panel display, and more particularly to a polysilicon thin film (hereinafter referred to as p-Si) flat panel display glass substrate and a manufacturing method thereof. More specifically, the present invention relates to a glass substrate used in a flat display manufactured by forming p-Si on a substrate surface and a manufacturing method thereof. More specifically, the present invention relates to a glass substrate for a polysilicon thin film transistor (hereinafter referred to as p-Si ⁇ TFT) flat panel display and a method for manufacturing the same. More specifically, the present invention relates to a glass substrate used in a flat display manufactured by forming p-Si • TFT on a substrate surface and a manufacturing method thereof.
  • p-Si polysilicon thin film
  • the present invention relates to a glass substrate for a p-Si • TFT flat panel display in which the p-Si • TFT flat panel display is a liquid crystal display, and a method for manufacturing the same.
  • this invention relates to the glass substrate for organic electroluminescent displays, and its manufacturing method.
  • the present invention relates to a glass substrate for an oxide semiconductor thin film transistor flat panel display. More specifically, the present invention relates to a glass substrate used for a flat display manufactured by forming an oxide semiconductor thin film transistor on a substrate surface and a manufacturing method thereof.
  • p-Si polysilicon
  • TFTs thin film transistors
  • heat treatment at a relatively high temperature of 400 to 600 ° C. is required for manufacturing a p-Si TFT flat panel display.
  • glass substrate for manufacturing a p-Si • TFT flat panel display glass having high heat resistance is used.
  • the glass substrate used in the conventional a-Si (amorphous silicon) TFT flat panel display does not have a sufficiently high strain point, and a large thermal shrinkage is caused by the heat treatment in manufacturing the p-Si TFT flat panel display. It is known that this causes a problem of pixel pitch deviation.
  • thermal shrinkage of a glass substrate is suppressed by increasing the characteristic temperature (hereinafter referred to as the low temperature viscosity characteristic temperature) in the low temperature viscosity region represented by the strain point and Tg (glass transition point) of the glass substrate.
  • the characteristic temperature hereinafter referred to as the low temperature viscosity characteristic temperature
  • Tg glass transition point
  • Patent Document 1 discloses an alkali-free glass having a strain point of 680 ° C. or higher.
  • strain point In order to increase the low-temperature viscosity characteristic temperature represented by the strain point and Tg (glass transition point) of the glass substrate, it is generally necessary to increase the content of SiO 2 and Al 2 O 3 in the glass.
  • strain point will be representatively described as “low temperature viscosity characteristic temperature” in this specification.
  • the glass described in Patent Document 1 contains 58 to 75% by mass of SiO 2 and 15 to 19% by mass of Al 2 O 3 (see claim 1). As a result, the specific resistance of the molten glass tends to increase. In recent years, direct current heating is often used to efficiently melt glass.
  • the present invention has a high strain point, can suppress thermal contraction of the glass substrate during display manufacturing, and can be manufactured while avoiding the problem of melting tank melting in melting by direct current heating.
  • An object of the present invention is to provide a glass substrate for flat panel display, particularly a glass substrate for p-Si.TFT flat panel display, and a method for producing the same.
  • the present invention is as follows. [1] SiO 2 52-78% by mass, Al 2 O 3 3-25% by mass, B 2 O 3 3-15% by mass, RO (where RO is the total amount of MgO, CaO, SrO and BaO) 3-25% by mass, Fe 2 O 3 0.01-1% by mass, Sb 2 O 3 0-0.3% by mass, And substantially free of As 2 O 3
  • the mass ratio (SiO 2 + Al 2 O 3 ) / B 2 O 3 is in the range of 7 to 30, and the mass ratio (SiO 2 + Al 2 O 3 ) / RO is 6 or more.
  • a glass substrate for a Si / TFT flat panel display (the glass substrate of the first aspect of the present invention.
  • the glass substrate of the present invention means the glass substrate of the first aspect of the present invention).
  • the mass ratio (SiO 2 + Al 2 O 3 ) / B 2 O 3 is in the range of 8.9 to 20 and the mass ratio (SiO 2 + Al 2 O 3 ) / RO is 7.5 or more.
  • the SiO 2 content is 58 to 72 mass%, the Al 2 O 3 content is 10 to 23 mass%, and the B 2 O 3 content is 3 to less than 11 mass%, [1] to [3 ]
  • the glass has a total content of SiO 2 and Al 2 O 3 of 75% by mass or more, The total content of RO, ZnO and B 2 O 3 is less than 7-20% by mass, and The glass substrate according to any one of [1] to [4], wherein the content of B 2 O 3 is 3 to less than 11% by mass.
  • Thermal shrinkage (ppm) ⁇ Shrinkage of glass before and after heat treatment / Glass length before heat treatment ⁇ ⁇ 10 6
  • the glass substrate according to [11] which has a heat shrinkage rate of 60 ppm or less.
  • the thermal shrinkage rate is a value obtained by holding the glass substrate at Tg for 30 minutes, cooling to Tg-100 ° C at 100 ° C / min, and performing the annealing after performing a slow cooling operation to cool to room temperature.
  • a glass substrate for p-Si • TFT flat panel display (a glass substrate as an example of the third aspect of the present invention).
  • the glass substrate according to any one of [1] to [15], which is for a TFT liquid crystal display.
  • the mass ratio (SiO 2 + Al 2 O 3 ) / B 2 O 3 was in the range of 7 to 30, and the mass ratio (SiO 2 + Al 2 O 3 ) / RO was adjusted to be 6 or more.
  • a melting step of melting a glass raw material using at least direct electric heating to obtain a molten glass A molding step of molding the molten glass into a flat glass; A method for producing a glass substrate for a p-Si TFT flat panel display, comprising a step of slowly cooling the flat glass.
  • the mass ratio (SiO 2 + Al 2 O 3 ) / B 2 O 3 was in the range of 8.9 to 20, and the mass ratio (SiO 2 + Al 2 O 3 ) / RO was adjusted to be 7.5 or more.
  • a heat shrinkage reduction treatment is performed to reduce a heat shrinkage rate by controlling a cooling rate of the flat glass.
  • a heat shrinkage reduction treatment is performed in which the cooling rate of the central portion of the flat glass is 50 to 300 ° C./min within a temperature range of Tg to Tg ⁇ 100 ° C. Production method.
  • a flat panel display made of glass having a high strain point, particularly a glass substrate for p-Si • TFT flat panel display can be provided with high productivity.
  • the composition of the glass constituting the glass substrate is represented by mass%, and the ratio of the components constituting the glass is represented by mass ratio.
  • the composition and physical properties of the glass substrate mean the composition and physical properties of the glass constituting the glass substrate unless otherwise specified, and when simply referred to as glass, it means the glass constituting the glass substrate.
  • the thermal contraction rate of a glass substrate means the value measured on the conditions as described in an Example about the glass substrate formed on the predetermined conditions as described in an Example.
  • the low temperature viscosity characteristic temperature means a temperature at which the glass exhibits a viscosity in the range of 10 7.6 to 10 14.5 dPa ⁇ s
  • the low temperature viscosity characteristic temperature includes a strain point and Tg. Therefore, increasing the low temperature viscosity characteristic temperature also means increasing the strain point and Tg, and conversely, increasing the strain point and / or Tg means increasing the low temperature viscosity characteristic temperature.
  • the melting temperature that is an index of solubility is a temperature at which the glass exhibits a viscosity of 10 2.5 dPa ⁇ s, and is a temperature that is an index of meltability.
  • the glass substrate for p-Si • TFT flat panel display of the present invention (the glass substrate of the first aspect of the present invention) SiO 2 52-78% by mass, Al 2 O 3 3-25% by mass, B 2 O 3 3-15% by mass, RO (where RO is the total amount of MgO, CaO, SrO and BaO) 3-25% by mass, Fe 2 O 3 0.01-1% by mass, Sb 2 O 3 0-0.3% by mass, And substantially free of As 2 O 3 Mass ratio (SiO 2 + Al 2 O 3 ) / B 2 O 3 is in the range of 7-30, and mass ratio (SiO 2 + Al 2 O 3 ) / RO is a substrate made of glass having a value of 6 or more.
  • the glass substrate of the first aspect of the present invention SiO 2 52 to 78 mass%, Al 2 O 3 3 to 25 mass%, B 2 O 3 3 to 15 mass%, RO 3 to 13 mass% %, Fe 2 O 3 0.01 to 1% by mass, Sb 2 O 3 is not substantially contained, and As 2 O 3 is not substantially contained, and the mass ratio (SiO 2 + Al 2 O 3 ) / B 2 O 3 is in the range of 8.9 to 20, and a glass substrate made of glass having a mass ratio (SiO 2 + Al 2 O 3 ) / RO of 7.5 or more can be mentioned. The reason why each glass component is contained in the glass substrate of the first aspect of the present invention and the range of the content and composition ratio will be described below.
  • the content of SiO 2 in the glass substrate of the first embodiment of the present invention is in the range of 52 to 78% by mass.
  • SiO 2 is a skeletal component of glass and is therefore an essential component.
  • BHF buffered hydrofluoric acid
  • strain point tend to decrease.
  • the thermal expansion coefficient tends to increase. If the SiO 2 content is too small, it is difficult to reduce the density of the glass substrate. On the other hand, if the SiO 2 content is too large, the specific resistance of the glass melt increases, the melting temperature becomes extremely high, and melting tends to be difficult.
  • the devitrification resistance also tends to decrease.
  • the content of SiO 2 is in the range of 52 to 78% by mass.
  • the content of SiO 2 is preferably 57 to 75% by mass, more preferably 58 to 72% by mass, further preferably 59 to 70% by mass, more preferably 59 to 69% by mass, and still more preferably 61 to 69% by mass. %, Even more preferably 61-68% by mass, still more preferably 62-67% by mass.
  • the SiO 2 content is too high, the glass etching rate tends to be slow.
  • the content of SiO 2 is preferably 53 to 75% by mass, more preferably 55 to 70% by mass, The range is preferably 55 to 65% by mass, more preferably 58 to 63% by mass.
  • the SiO 2 content is appropriately determined in consideration of both the above-mentioned characteristics such as acid resistance and the etching rate.
  • the content of Al 2 O 3 in the glass substrate of the first embodiment of the present invention is in the range of 3 to 25% by mass.
  • Al 2 O 3 is an essential component that suppresses phase separation and raises the strain point. When there is too little content, it will become easy to phase-separate glass. In addition, the strain point decreases. Furthermore, Young's modulus and etching rate tend to decrease. When the Al 2 O 3 content is too large, the specific resistance increases. Moreover, since the devitrification temperature of glass rises and devitrification resistance falls, there exists a tendency for a moldability to deteriorate. From such a viewpoint, the content of Al 2 O 3 is in the range of 3 to 25% by mass.
  • the content of Al 2 O 3 is preferably 8 to 25% by mass, more preferably 10 to 23% by mass, further preferably 12 to 21% by mass, more preferably 12 to 20% by mass or 14 to 21% by mass, More preferably, it is in the range of 14 to 20% by mass, and still more preferably in the range of 15 to 19% by mass.
  • the content of Al 2 O 3 is preferably 8 to 25% by mass, more preferably 10 to 23% by mass, and further preferably 14 to 23% by mass. %, More preferably 17 to 22% by mass.
  • the content of Al 2 O 3 is appropriately determined in consideration of both the phase separation characteristics and the etching rate of the glass.
  • B 2 O 3 in the glass substrate of the first aspect of the present invention is in the range of 3 to 15% by mass.
  • B 2 O 3 is an essential component that lowers the temperature in a high-temperature viscosity region typified by the melting temperature of glass and improves clarity.
  • meltability devitrification resistance and BHF resistance tend to decrease.
  • specific gravity increases and it is difficult to reduce the density.
  • specific resistance increases.
  • the content of B 2 O 3 is too large, the strain point is lowered, the heat resistance is lowered. Further, acid resistance and Young's modulus tend to decrease.
  • the content of B 2 O 3 is in the range of 3 to 15% by mass, preferably 3 to 12% by mass, preferably 3 to less than 11% by mass, more preferably less than 3 to 10% by mass. More preferably, it is in the range of 4 to 9% by mass, more preferably 5 to 9% by mass, and still more preferably 7 to 9% by mass.
  • the B 2 O 3 content is in the range of 3 to 15% by mass, preferably 5 to 15% by mass, more preferably 6 to 13% by mass, More preferably, it is 7 to 11% by mass.
  • the B 2 O 3 content is appropriately determined in consideration of both the meltability and the devitrification temperature.
  • RO which is the total amount of MgO, CaO, SrO and BaO in the glass substrate of the first aspect of the present invention is 3 to 25% by mass, preferably 3 to 14% by mass, more preferably 3 to 13% by mass. Range. RO is an essential component that reduces specific resistance and improves meltability. If the RO content is too small, the specific resistance increases and the meltability deteriorates. When there is too much RO content, a strain point and Young's modulus will fall. Furthermore, the density increases. Moreover, when there is too much RO content, there exists a tendency for a thermal expansion coefficient to increase.
  • RO is in the range of 3 to 25% by mass, preferably in the range of 3 to 14% by mass, more preferably in the range of 3 to 13% by mass, and further preferably 6 to 13% by mass. More preferably, it is in the range of 6 to 12% by mass, even more preferably 7 to 12% by mass, and still more preferably 8 to 11% by mass.
  • the content of Fe 2 O 3 in the glass substrate of the first aspect of the present invention is in the range of 0.01 to 1% by mass.
  • Fe 2 O 3 is an essential component that lowers the specific resistance of the glass melt in addition to having a function as a fining agent.
  • the specific resistance of the glass melt can be reduced by containing the above-mentioned predetermined amount of Fe 2 O 3 , by direct current heating.
  • glass can be melted while avoiding the problem of melting bath melting.
  • the Fe 2 O 3 content is too high, the glass is colored and the transmittance is lowered.
  • the Fe 2 O 3 content is in the range of 0.01 to 1% by mass, preferably 0.01 to 0.5% by mass, more preferably 0.01 to 0.4% by mass, still more preferably 0.01 to 0.3% by mass, and still more preferably 0.01%. It is in the range of -0.2% by mass, more preferably 0.01-0.1% by mass, and still more preferably 0.02-0.07% by mass.
  • Sb 2 O 3 is preferably 0 to 0.3% by mass, and more preferably 0 to 0.1% by mass, from the viewpoint of reducing environmental load.
  • the glass substrate according to the first aspect of the present invention further contains substantially no Sb 2 O 3 and substantially no As 2 O 3 from the viewpoint of further reducing the environmental load. preferable.
  • substantially free means that the glass raw material does not use substances that are the raw materials of these components, and excludes the inclusion of components contained as impurities in other glass raw materials. Not what you want.
  • a total amount of SiO 2 and Al 2 O 3 with respect to B 2 O 3 in the glass substrate of the first aspect of the present invention the weight ratio of (SiO 2 + Al 2 O 3 ) (SiO 2 + Al 2 O 3) / B 2 O 3 is an index of strain point and devitrification resistance.
  • (SiO 2 + Al 2 O 3 ) / B 2 O 3 is preferably 7 to 30, more preferably 7.5 to 25, still more preferably 8 to 25, and even more preferably in the range of 8 to 23. Even more preferably, it is in the range of 8.9-20.
  • the devitrification resistance is gradually reduced, and when it exceeds 30, it is extremely lowered, 25 or less, preferably 23 or less, more preferably 22 Below, more preferably 20 or less, sufficient devitrification resistance can be obtained.
  • (SiO 2 + Al 2 O 3 ) / B 2 O 3 is preferably in the range of 8 to 18, more preferably in the range of 9.5 to 16, further preferably 9.8 to 14, and still more preferably Is in the range of 10-12.
  • (SiO 2 + Al 2 O 3 ) / B 2 O 3 is preferably 7 to 30 More preferably 8 to 25, still more preferably 8.2 to 20, even more preferably 8.4 to 15, and still more preferably 8.5 to 12.
  • Mass ratio (SiO 2 + Al 2 O 3 ) / RO of a total amount of SiO 2 and Al 2 O 3 with respect to RO in the glass substrate (SiO 2 + Al 2 O 3 ) of the first aspect of the present invention is strained It is an index of point and resistivity.
  • (SiO 2 + Al 2 O 3 ) / RO is preferably 6 or more, more preferably 7 or more, and further preferably 7.5 or more. By being in these ranges, it is possible to achieve both an increase in strain point and a reduction in specific resistance (improvement of meltability). The smaller the (SiO 2 + Al 2 O 3 ) / RO is, the lower the strain point is.
  • the strain point is insufficient, and if it is 7 or more, preferably 7.5 or more, the strain point can be made sufficiently high.
  • (SiO 2 + Al 2 O 3 ) / RO is preferably in the range of 7.5 to 15, more preferably in the range of 8.0 to 12, and still more preferably in the range of 8.1 to 10. Note, (SiO 2 + Al 2 O 3) / RO and by 15 or less, it is possible to suppress the resistivity becomes too high.
  • (SiO 2 + Al 2 O 3 ) / RO is preferably 6 It is -15, More preferably, it is 7-15, More preferably, it is the range of 7.5-9.5.
  • the glass substrate of the present invention (the glass substrate of the first aspect of the present invention) preferably has the following glass composition and / or physical properties.
  • the SiO 2 + Al 2 O 3 is the total amount of SiO 2 and Al 2 O 3 is too small, there is a tendency that the strain point is lowered, while when too large, the ratio Resistance tends to increase and devitrification resistance tends to deteriorate. Therefore, SiO 2 + Al 2 O 3 is preferably 75% by mass or more, more preferably 75% by mass to 87% by mass, still more preferably 75% by mass to 85% by mass, and still more preferably 78% by mass. The content is from mass% to 84 mass%, and more preferably from 78 mass% to 83 mass%. From the viewpoint of further increasing the strain point, it is more preferably 78% by mass or more, still more preferably 79 to 87% by mass, and still more preferably 80 to 85% by mass.
  • MgO is a component that lowers the specific resistance and improves the meltability. Moreover, since it is a component which is hard to increase specific gravity in alkaline-earth metal, when the content is increased relatively, it will become easy to aim at density reduction. Although it is not essential, by making it contain, meltability can be improved and generation
  • the MgO content is preferably 0 to 15% by mass, more preferably 0 to 10% by mass, further preferably 0 to 5% by mass, more preferably 0 to 4% by mass, and still more preferably. It is 0 to 3% by mass, still more preferably 0 to less than 2, still more preferably 0 to 1% by mass, and most preferably not substantially contained.
  • CaO is a component that decreases the specific resistance, and is also an effective component for improving the meltability of the glass without rapidly increasing the devitrification temperature of the glass. . Moreover, since it is a component which is hard to increase specific gravity in alkaline-earth metal, when the content is increased relatively, it will become easy to aim at density reduction. Although not essential, the inclusion of CaO is preferable because it can improve the meltability and devitrification by reducing the specific resistance and melting temperature (high temperature viscosity) of the glass melt. If the CaO content is too large, the strain point tends to decrease. Also, the thermal expansion coefficient tends to increase, and the density tends to increase.
  • the CaO content is preferably 0 to 20% by mass, more preferably 0 to 15% by mass, further preferably 1 to 15% by mass, more preferably 2 to 15% by mass, still more preferably 3.6 to 15% by mass, Even more preferably 4 to 14% by weight, still more preferably 5 to 12% by weight, even more preferably 5 to 10% by weight, still more preferably more than 6 to 10% by weight, most preferably more than 6 to 9% by weight. Range.
  • SrO is a component that lowers the specific resistance and improves the meltability.
  • SrO is not essential, when it is contained, devitrification resistance and meltability are improved.
  • the SrO content is 0 to 15% by mass, more preferably 0 to 10% by mass, further preferably 0 to 9% by mass, more preferably 0 to 8% by mass, still more preferably 0 to 3% by mass, Still more preferably, it is in the range of 0 to 2% by mass, still more preferably 0 to 1% by mass, and still more preferably 0 to 0.5% by mass.
  • SrO is not substantially contained.
  • BaO is a component that lowers the specific resistance and improves the meltability.
  • BaO is not essential, but when it is contained, devitrification resistance and meltability are improved. Moreover, a thermal expansion coefficient and a density will also increase.
  • the BaO content is preferably 0 to 3% by mass, more preferably 0 to less than 1.5% by mass, further preferably 0 to 1% by mass, more preferably 0 to less than 0.5% by mass, still more preferably 0 to 0.1% by mass. Less than%. It is preferable not to contain BaO substantially from the viewpoint of environmental load.
  • SrO and BaO are components that lower the specific resistance and improve the meltability. Although not essential, when it is contained, devitrification resistance and meltability are improved. However, when there is too much content, a density will rise.
  • SrO + BaO which is the total amount of SrO and BaO, is 0 to 15% by mass, preferably 0 to 10% by mass, more preferably 0 to 9% by mass, from the viewpoint of reducing density and reducing weight.
  • it is 0 to 8% by mass, more preferably 0 to 3% by mass, still more preferably 0 to 2% by mass, still more preferably 0 to 1% by mass, still more preferably 0 to 0.5% by mass, still more preferably More preferably, it is in the range of 0 to less than 0.1% by mass.
  • SrO and BaO are not substantially contained.
  • R 2 O which is the total amount of Li 2 O, Na 2 O and K 2 O, increases the basicity of the glass and facilitates the oxidation of the fining agent, It is a component that demonstrates clarity. Moreover, it is a component which reduces specific resistance and improves meltability. R 2 O is not essential, but if it is contained, the specific resistance is lowered and the meltability is improved. Furthermore, the basicity of the glass is increased and the clarity is improved. However, if the R 2 O content is too high, it may be eluted from the glass substrate to deteriorate the TFT characteristics. In addition, the thermal expansion coefficient tends to increase.
  • Li 2 O + Na 2 O + K 2 O which is the total amount of R 2 O, is preferably 0 to 0.8% by mass, more preferably 0 to 0.5% by mass, more preferably 0 to 0.4% by mass, and still more preferably The range is 0 to 0.3% by mass, more preferably 0.01 to 0.8% by mass, still more preferably 0.01 to 0.3% by mass, and still more preferably 0.1 to 0.3% by mass.
  • R 2 O is preferably 0.1 to 0.8% by mass, more preferably 0.1 to 0.6% by mass, more preferably more than 0.2 to 0.6% by mass, and still more preferably 0.2%. It is in the range of more than 0.5% by mass.
  • Li 2 O and Na 2 O are components that lower the specific resistance and improve the meltability, but are eluted from the glass substrate to deteriorate the TFT characteristics, It is a component that may increase the thermal expansion coefficient of glass and damage the substrate during heat treatment.
  • the total amount of Li 2 O and Na 2 O is preferably 0 to 0.2% by mass, more preferably 0 to 0.1% by mass, still more preferably 0 to 0.05% by mass, and still more preferably substantially free.
  • K 2 O is a component that increases the basicity of the glass, facilitates the oxidization of the fining agent, and exhibits the fining properties. Moreover, it is a component which reduces specific resistance and improves meltability. Although not essential, when it is contained, the specific resistance is lowered and the meltability is improved. In addition, clarity is improved. If the K 2 O content is too large, it tends to be eluted from the glass substrate and deteriorate the TFT characteristics. Also, the thermal expansion coefficient tends to increase.
  • the K 2 O content is preferably in the range of 0 to 0.8% by mass, more preferably 0 to 0.5% by mass, still more preferably 0 to 0.3% by mass, and still more preferably 0.1 to 0.3% by mass.
  • K 2 O has a higher molecular weight than Li 2 O and Na 2 O, and thus is hardly eluted from the glass substrate. Therefore, when R 2 O is contained, it is preferable to contain K 2 O. That is, K 2 O is preferably contained in a higher ratio than Li 2 O (K 2 O> Li 2 O is satisfied). K 2 O is preferably contained in a higher ratio than Na 2 O (K 2 O> Na 2 O is satisfied). When the ratio of Li 2 O and Na 2 O is large, the tendency to elute from the glass substrate and deteriorate the TFT characteristics becomes strong.
  • the mass ratio K 2 O / R 2 O is preferably 0.5 to 1, more preferably 0.6 to 1, still more preferably 0.7 to 1, still more preferably 0.75 to 1, still more preferably 0.8 to 1, More preferably, it is in the range of 0.9 to 1, still more preferably 0.95 to 1, and still more preferably 0.99 to 1.
  • ZrO 2 and TiO 2 are components that improve the chemical durability and heat resistance of the glass.
  • ZrO 2 and TiO 2 are not essential components, but by containing them, an increase in low temperature viscosity characteristic temperature (including Tg and strain point) and an improvement in acid resistance can be realized.
  • the amount of ZrO 2 and the amount of TiO 2 are too large, the devitrification temperature is remarkably increased, so that the devitrification resistance and the moldability may be lowered.
  • ZrO 2 may precipitate ZrO 2 crystals during the cooling process, which may cause deterioration of glass quality as an inclusion.
  • the content of ZrO 2 and TiO 2 is preferably 5% by mass or less, more preferably 3% by mass or less, still more preferably 2% by mass or less, and 1% by mass.
  • the following is more preferable, less than 0.5% by mass is more preferable, and less than 0.2% by mass is even more preferable.
  • the glass substrate of the present invention does not substantially contain ZrO 2 and TiO 2 .
  • the content of ZrO 2 and TiO 2 is preferably 0 to 5% by mass, more preferably 0 to 3% by mass, still more preferably 0 to 2% by mass, and still more preferably 0 to 1% by mass, 0 to less than 0.5% by mass is more preferable, and 0 to less than 0.2% by mass is even more preferable.
  • the glass substrate of the present invention does not substantially contain ZrO 2 and TiO 2 .
  • ZnO is a component that improves BHF resistance and meltability. However, it is not essential. If the ZnO content is too high, the devitrification temperature and density tend to increase. In addition, the strain point tends to decrease. Therefore, the ZnO content is preferably in the range of 0 to 5% by mass, more preferably 0 to 3% by mass, still more preferably 0 to 2% by mass, and still more preferably 0 to 1% by mass. It is preferable that ZnO is not substantially contained.
  • RO + ZnO + B 2 O 3 which is the total amount of RO, ZnO, and B 2 O 3 , is an index of clarity. If there is too little RO + ZnO + B 2 O 3 , the melting temperature (high temperature viscosity) of the glass will increase and the clarity will decrease. On the other hand, when it is too much, the strain point is lowered.
  • RO + ZnO + B 2 O 3 is preferably less than 20% by mass, more preferably less than 5-20% by mass, further preferably less than 7-20% by mass, more preferably less than 10-20% by mass, and still more preferably Is in the range of 14 to less than 20% by weight, more preferably 15 to 19% by weight.
  • RO + ZnO + B 2 O 3 is preferably less than 30% by mass, more preferably less than 10-30% by mass, and further preferably less than 14-30% by mass. More preferably, it is in the range of 14 to less than 25% by mass, and still more preferably in the range of 15 to 23% by mass.
  • RO + ZnO + B 2 O 3 is appropriately determined in consideration of both the clarity and the devitrification temperature.
  • P 2 O 5 is a component that lowers the melting temperature (high temperature viscosity) and improves the meltability.
  • it is not essential. If the P 2 O 5 content is too high, the glass will become non-homogeneous due to volatilization of P 2 O 5 during glass melting, and striae are likely to occur. In addition, the acid resistance is remarkably deteriorated. Moreover, milky white is likely to occur.
  • the P 2 O 5 content is preferably in the range of 0 to 3% by mass, more preferably 0 to 1% by mass, still more preferably 0 to 0.5% by mass, and it is particularly preferable that the P 2 O 5 content is not substantially contained.
  • B 2 O 3 and B 2 O 3 + P 2 O 5 is the total amount of P 2 O 5 is a melting of the indicator.
  • meltability tends to be lowered.
  • the amount is too large, the glass becomes inhomogeneous due to volatilization of B 2 O 3 and P 2 O 5 during glass melting, and striae are likely to occur. Also, the strain point tends to decrease.
  • B 2 O 3 + P 2 O 5 is preferably 3 to 15% by mass, more preferably 3 to less than 11% by mass, further preferably 5 to less than 10% by mass, more preferably 4 to 9% by mass, and even more.
  • B 2 O 3 + P 2 O 5 is preferably 3 to 15% by mass, preferably 5 to 15% by mass, and more preferably 6 to 13%. % By mass, more preferably 7 to less than 11% by mass. B 2 O 3 + P 2 O 5 is appropriately determined in consideration of both meltability and the devitrification temperature.
  • CaO / RO is an index of flame melting and devitrification resistance.
  • CaO / RO is preferably 0.05 to 1, more preferably 0.1 to 1, still more preferably 0.5 to 1, even more preferably 0.65 to 1, even more preferably 0.7 to 1, even more preferably 0.85 to 1, even more preferably. Is in the range of 0.9 to 1, still more preferably 0.95 to 1. By setting it as these ranges, devitrification resistance and meltability can be made compatible. Further, the density can be reduced. Moreover, the effect of increasing the strain point is higher when CaO alone is contained than when a plurality of alkaline earth metals are contained as a raw material.
  • the obtained glass When only CaO is contained as an alkaline earth metal oxide as a raw material, the obtained glass has a CaO / RO value of, for example, about 0.98 to 1. In addition, even when only CaO is contained as a raw material as an alkaline earth metal oxide, the obtained glass may contain other alkaline earth metal oxides as impurities.
  • the value of SiO 2 -1 / 2Al 2 O 3 is the difference obtained by subtracting the half of the content of Al 2 O 3 from the content of SiO 2, 60 wt It is preferable to set the ratio to not more than% because a glass substrate having an etching rate sufficient to perform glass slimming can be obtained. Note that if the value of SiO 2 -1 / 2Al 2 O 3 is too small to increase the etching rate, the devitrification temperature tends to increase. In addition, since the strain point may not be sufficiently high, the value of SiO 2 -1 / 2Al 2 O 3 is preferably 40% by mass or more.
  • the value of SiO 2 -1 / 2Al 2 O 3 is preferably 40 to 60% by mass, more preferably 45 to 60% by mass, and further preferably 45 to 58% by mass. Preferably, it is 45 to 57% by mass, more preferably 45 to 55% by mass, still more preferably 49 to 54% by mass.
  • the glass constituting the glass substrate of the first aspect of the present invention preferably has an etching rate of 50 ⁇ m / h or more.
  • the etching rate of the glass constituting the glass substrate is preferably 160 ⁇ m / h or less.
  • the etching rate is preferably 55 to 140 ⁇ m / h, more preferably 60 to 140 ⁇ m / h, still more preferably 60 to 120 ⁇ m / h, and still more preferably 70 to 120 ⁇ m / h.
  • the etching rate is defined as measured under the following conditions.
  • the glass constituting the glass substrate of the first aspect of the present invention can contain a fining agent.
  • the fining agent is not particularly limited as long as it has a small environmental burden and excellent glass fining properties.
  • the fining agent is selected from the group of Sn, Fe, Ce, Tb, Mo and W metal oxides. At least one can be mentioned.
  • SnO 2 is suitable. If the amount of the clarifying agent is too small, the foam quality is deteriorated, and if the content is too large, devitrification or coloring may be caused.
  • the amount of fining agent added depends on the type of fining agent and the composition of the glass, but may be, for example, 0.05 to 1% by mass, preferably 0.05 to 0.5% by mass, more preferably 0.1 to 0.4% by mass. Is appropriate.
  • Fe 2 O 3 which is an essential component in the present invention can also be used as a clarifier, and is preferably used in combination with SnO 2 instead of being used alone, and assists the clarification effect of SnO 2. it can.
  • the glass constituting the glass substrate of the first aspect of the present invention preferably contains substantially no PbO and F. PbO and F are preferably not included for environmental reasons.
  • the glass constituting the glass substrate of the first aspect of the present invention preferably uses a metal oxide as a fining agent.
  • a metal oxide for example, ammonium salt or chloride
  • the clarity of the metal oxide. Will decline.
  • the NH 4 + content is preferably less than 4 ⁇ 10 ⁇ 4 %, preferably 0 to 2 ⁇ 10 ⁇ 4 %. It is more preferable that it is less than, and it is still more preferable not to contain substantially.
  • the glass of the present invention preferably has a Cl content of less than 0.1%, more preferably 0 to less than 0.1%, even more preferably 0 to less than 0.05%, and more preferably 0 to It is still more preferable that it is less than 0.01%, and it is still more preferable not to contain substantially.
  • the NH 4 + and Cl are components that remain in the glass as an ammonium salt and chloride (especially ammonium chloride) in the hope that a clarification effect is expected. For reasons, the use of these raw materials is not preferable.
  • the strain point [° C.] of the glass constituting the glass substrate of the first aspect of the present invention is 665 ° C. or higher, preferably 675 ° C. or higher.
  • the strain point [° C.] is preferably 680 ° C. or higher, more preferably 685 ° C. or higher, further preferably 688 ° C. or higher, more preferably 690 ° C. or higher, still more preferably 695 ° C. or higher, still more preferably 700 ° C. That's it.
  • the strain point [° C.] of the glass of the present invention there is no upper limit of the strain point [° C.] of the glass of the present invention, but as a practical guideline, for example, 750 ° C. or less, preferably 745 ° C. or less, more preferably 740 ° C. or less. It is. However, it is not intended to be limited to this upper limit.
  • the strain point of glass can be set to a desired value by adjusting the glass composition with reference to the description of the glass composition of the glass substrate of the present invention.
  • the glass constituting the glass substrate of the first aspect of the present invention has a Tg [° C.] of preferably 720 ° C. or higher, more preferably 730 ° C. or higher, more preferably 740 ° C. or higher, more preferably 745 ° C. or higher, More preferably, it is 750 ° C. or higher.
  • Tg becomes low, the heat resistance tends to decrease.
  • thermal contraction of the glass substrate tends to occur in the heat treatment process during display manufacturing.
  • a practical guideline is, for example, 800 ° C. or less, preferably 795 ° C.
  • Tg of the glass is made within the above range, it is appropriate to increase the Tg, for example, a larger amount of components such as SiO 2 and Al 2 O 3 in the composition range of the glass substrate of the present invention.
  • the glass constituting the glass substrate of the first aspect of the present invention has a density [g / cm 3 ] of preferably 2.5 g / cm 3 or less, more preferably from the viewpoint of weight reduction of the glass substrate and weight reduction of the display. 2.45 g / cm 3 or less, more preferably 2.42 g / cm 3 or less, more preferably 2.4 g / cm 3 or less.
  • density is high, it is difficult to reduce the weight of the glass substrate, and it is impossible to reduce the weight of the display.
  • the viscosity of the glass constituting the glass substrate of the first aspect of the present invention varies depending on the conditions during glass melting. Even with glasses of the same composition, the water content in the glass differs depending on the melting conditions, and the strain point may change, for example, in the range of about 1 to 10 ° C. Accordingly, in order to obtain a glass having a desired strain point, it is necessary to adjust the glass composition and also the water content in the glass during glass melting.
  • the ⁇ -OH value which is an index of water content in glass, can be adjusted by selecting raw materials. For example, increase the ⁇ -OH value by selecting raw materials with high water content (for example, raw materials for hydroxide) or adjusting the content of raw materials that reduce the moisture content in glass such as chlorides. be able to. Further, the ⁇ -OH value can be adjusted by adjusting the ratio of gas combustion heating (oxygen combustion heating) and direct current heating used for glass melting. Furthermore, the ⁇ -OH value can be increased by increasing the amount of water in the furnace atmosphere or by bubbling water vapor into the molten glass during melting.
  • the ⁇ -OH value which is an index of the moisture content of glass, has a higher strain point as the value is smaller, and the thermal shrinkage tends to be smaller in the heat treatment process (during display production).
  • the larger the ⁇ -OH value the lower the melting temperature (high temperature viscosity).
  • the ⁇ -OH value of the glass constituting the glass substrate of the first aspect of the present invention is preferably 0.05 to 0.40 mm ⁇ 1 , preferably 0.10 to 0.35 mm ⁇ 1 is more preferable, 0.10 to 0.30 mm ⁇ 1 is more preferable, 0.10 to 0.25 mm ⁇ 1 is further preferable, 0.10 to 0.20 mm ⁇ 1 is more preferable, and 0.10 to 0.15 mm ⁇ 1 is still more preferable.
  • the glass constituting the glass substrate of the first aspect of the present invention has a devitrification temperature [° C.], preferably less than 1330 ° C., more preferably less than 1300 ° C., further preferably 1250 ° C. or less, more preferably 1230 ° C. or less, More preferably, it is 1220 ° C. or less, and further more preferably 1210 ° C. or less. If the devitrification temperature is less than 1300 ° C., the glass plate can be easily formed by the float method. If the devitrification temperature is 1250 ° C. or lower, the glass plate can be easily formed by the downdraw method. By applying the downdraw method, the surface quality of the glass substrate can be improved. In addition, the production cost can be reduced.
  • the glass constituting the glass substrate of the first aspect of the present invention has a devitrification temperature, preferably less than 1050 to 1300 ° C.
  • the temperature is preferably 1110 to 1250 ° C, more preferably 1150 to 1230 ° C, still more preferably 1160 to 1220 ° C, and still more preferably 1170 to 1210 ° C.
  • the glass constituting the glass substrate of the first aspect of the present invention has a coefficient of thermal expansion (100-300 ° C.) [ ⁇ 10 ⁇ 7 ° C.], preferably less than 39 ⁇ 10 ⁇ 7 ° C., more preferably 38 ⁇ 10 ⁇ Less than 7 ° C., more preferably less than 37 ⁇ 10 ⁇ 7 ° C., more preferably less than 28 to 36 ⁇ 10 ⁇ 7 ° C., even more preferably less than 30 to 35 ⁇ 10 ⁇ 7 ° C. and even more preferably 31 to 34.5 ⁇ 10 -7 ° C., even more preferably in the range of 32 ⁇ 34 ⁇ 10 -7 °C.
  • the thermal expansion coefficient When the thermal expansion coefficient is large, the thermal shock and thermal shrinkage tend to increase in the heat treatment process during display manufacturing. On the other hand, if the thermal expansion coefficient is small, it is difficult to match the thermal expansion coefficient with peripheral materials such as metals and organic adhesives formed on other glass substrates, and the peripheral agent may peel off. is there. In the display manufacturing process, rapid heating and rapid cooling are repeated, and the thermal shock applied to the glass substrate increases. Furthermore, a large glass substrate tends to have a temperature difference (temperature distribution) in the heat treatment process, and the probability of destruction of the glass substrate increases. By setting the thermal expansion coefficient in the above range, the thermal stress resulting from the thermal expansion difference can be reduced. As a result, the probability of breaking the glass substrate is lowered in the heat treatment step.
  • the thermal expansion coefficient (100-300 ° C) is less than 40 x 10 -7 ° C from the standpoint of matching the thermal expansion coefficient with peripheral materials such as metals and organic adhesives formed on the glass substrate. It is preferably 28 to 40 ⁇ 10 ⁇ 7 ° C., more preferably 30 to 39 ⁇ 10 ⁇ 7 ° C., and more preferably 32 to 38 ⁇ 10 ⁇ 7 ° C. Is more preferably 34 to 38 ⁇ 10 ⁇ 7 ° C.
  • the glass substrate of the first aspect of the present invention has a heat shrinkage ratio [ppm] of preferably 75 ppm or less, and preferably 65 ppm or less.
  • the heat shrinkage rate is preferably 60 ppm or less, more preferably 55 ppm or less, further preferably 50 ppm or less, more preferably 48 ppm or less, and still more preferably 45 ppm or less. More specifically, the heat shrinkage rate is preferably 0 to 75 ppm, more preferably 0 to 65 ppm, further preferably 0 to 60 ppm, more preferably 0 to 55 ppm, still more preferably 0 to 50 ppm, and even more preferably. Is 0 to 45 ppm.
  • the strain point of the glass is preferably set to 680 ° C. or higher.
  • the thermal shrinkage rate (amount) is most preferably 0 ppm.
  • the thermal shrinkage rate is set to 0 ppm, the slow cooling process should be made extremely long, or the thermal shrinkage reduction treatment (offline annealing) should be performed after the slow cooling process.
  • the productivity is lowered and the cost is increased.
  • the heat shrinkage rate is preferably, for example, 3 to 75 ppm, more preferably 5 to 75 ppm, still more preferably 5 to 65 ppm, still more preferably 5 to 60 ppm, and still more preferably 8 It is ⁇ 55 ppm, more preferably 8 to 50 ppm, and even more preferably 15 to 45 ppm.
  • the heat shrinkage rate is expressed by the following formula after heat treatment at a temperature rising / falling rate of 10 ° C./min and holding at 550 ° C. for 2 hours.
  • Thermal shrinkage (ppm) ⁇ Shrinkage amount of glass before and after heat treatment / Glass length before heat treatment ⁇ ⁇ 10 6
  • the heat shrinkage rate of the glass substrate of the first aspect of the present invention is measured after subjecting the glass substrate, which is the object of measurement of the heat shrinkage rate, to the heat treatment.
  • the heat shrinkage rate of the glass substrate of the first aspect of the present invention is Tg as shown in the preparation of the sample glass substrate for heat shrinkage measurement of the glass substrate that is the object of measurement of the heat shrinkage rate in Examples. It can also be a value obtained by performing the heat treatment after performing a slow cooling operation of cooling to Tg-100 ° C. at 100 ° C./min after standing for 30 minutes and allowing to cool to room temperature.
  • the cooling conditions may be different, and by measuring the thermal shrinkage after performing the cooling treatment after holding the Tg, the heat under the same conditions A shrinkage value can be obtained.
  • the glass substrate of the first aspect of the present invention is a glass substrate having a heat shrinkage rate of 75 ppm or less, preferably 65 ppm or less, more preferably 60 ppm or less, and SiO 2 52 to 78 mass%, Al 2 O 3 3 ⁇ 25% by mass, B 2 O 3 3 ⁇ 15% by mass, RO (where RO is the total amount of MgO, CaO, SrO and BaO) 3 ⁇ 25, more preferably 3 ⁇ 13% by mass, Fe 2 O 3 0.01
  • a glass substrate for a p-Si TFT flat panel display comprising ⁇ 1% by mass, substantially free of Sb 2 O 3 and substantially free of As 2 O 3 (of the present invention)
  • the glass substrate of the second embodiment is also included.
  • the thermal contraction rate of the glass substrate is 75 ppm or less, preferably 65 ppm or less.
  • the heat shrinkage rate is preferably 60 ppm or less, more preferably 55 ppm or less, further preferably 50 ppm or less, more preferably 48 ppm or less, still more preferably 45 ppm or less, and even more preferably 40 ppm or less.
  • the Fe 2 O 3 content is 0.01 to 1% by mass, preferably 0.01 to 0.5% by mass, more preferably 0.01 to 0.2% by mass, still more preferably 0.01 to 0.1% by mass, and still more preferably 0.02 to 0.07% by mass. Range.
  • the glass substrate of the second aspect of the present invention is made of glass that does not substantially contain Sb 2 O 3 and substantially does not contain As 2 O 3 because of environmental load problems.
  • the p-Si ⁇ s of the second aspect of the present invention comprising a glass having a heat shrinkage of 75 ppm or less, preferably 65 ppm or less, more preferably 60 ppm or less, and containing 0.01 to 1% by mass of Fe 2 O 3.
  • the glass substrate for TFT flat panel display can reduce the specific resistance of the molten glass without causing a serious pitch shift problem of the pixel, and avoid the occurrence of the melting tank melting problem in the melting by direct current heating. Is possible.
  • the glass composition and physical properties of the glass substrate of the second aspect of the present invention other than those described above can be the same as those of the glass substrate of the first aspect of the present invention.
  • the glass constituting the glass substrate of the first and second aspects of the present invention has a melting temperature of preferably 1680 ° C. or less, more preferably 1650 ° C. or less, further preferably 1640 ° C. or less, and more preferably 1620 ° C. or less. is there.
  • a melting temperature preferably 1680 ° C. or less, more preferably 1650 ° C. or less, further preferably 1640 ° C. or less, and more preferably 1620 ° C. or less. is there.
  • the melting temperature is high, the load on the melting tank increases. Moreover, since energy is used in large quantities, cost also becomes high.
  • the glass constituting the glass substrate of the first and second embodiments of the present invention has a liquidus viscosity (viscosity at the devitrification temperature) of 10 4.0 or more, preferably 10 4.5 to 10 6.0 dPa ⁇ s, more preferably the 10 4.5 ⁇ 10 5. 9 dPa ⁇ s, more preferably 10 4.6 ⁇ 10 5.8 dPa ⁇ s , more preferably from 10 4.8 ⁇ 10 5.7 dPa ⁇ s , even more preferably 10 4.8 ⁇ 10 5.6 dPa ⁇ s , further More preferably, it is in the range of 10 4.9 to 10 5.5 .
  • the glass substrate is molded by the overflow downdraw method. It becomes easy. Thereby, while being able to improve the surface quality of a glass substrate, the production cost of a glass substrate can be reduced.
  • the liquid phase viscosity of the glass can be adjusted to the above range by appropriately adjusting the content of each component.
  • the glass constituting the glass substrate of the first and second embodiments of the present invention has a glass melt specific resistance (at 1550 ° C.) [ ⁇ ⁇ cm] of preferably 50 to 300 ⁇ ⁇ cm, more preferably 50 to The range is 250 ⁇ ⁇ cm, more preferably 50 to 200 ⁇ ⁇ cm, and still more preferably 100 to 200 ⁇ ⁇ cm. If the specific resistance becomes too small, the current value necessary for melting becomes excessive, and there may be restrictions on the equipment. On the other hand, when the specific resistance is too large, the electrode tends to be consumed. Moreover, an electric current may flow into the heat-resistant brick which forms a melting tank instead of glass, and a melting tank may be damaged.
  • the specific resistance of the molten glass can be adjusted to the above range mainly by controlling the contents of RO and Fe 2 O 3 which are essential components of the glass of the present invention.
  • the glass substrates of the first and second embodiments of the present invention have a Young's modulus [GPa] of preferably 70 GPa or more, more preferably 73 GPa or more, still more preferably 74 GPa or more, and even more preferably 75 GPa or more.
  • GPa Young's modulus
  • the Young's modulus of the glass substrate has a strong tendency to fluctuate the Young's modulus in the range of the composition of the glass substrate of the present invention.
  • the Young's modulus can be increased by adjusting the content of components such as Al 2 O 3. .
  • the glass substrates of the first and second embodiments of the present invention have a specific elastic modulus (Young's modulus / density) [GPa cm 3 g ⁇ 1 ] of preferably 28 GPa cm 3 g ⁇ 1 or more, more preferably 29 GPa cm 3 g. -1 or more, more preferably 30 GPa cm 3 g -1 or more, more preferably 31GPa cm 3 g -1 or more.
  • GPa cm 3 g ⁇ 1 Young's modulus / density
  • the specific elastic modulus is small, the glass is easily broken due to the bending of the glass due to its own weight. In particular, the problem of breakage due to bending becomes significant in a large glass substrate having a width direction of 2000 mm or more.
  • the size of the glass substrate of the first and second aspects of the present invention is not particularly limited.
  • the width direction is, for example, 500 to 3500 mm, preferably 1000 to 3500 mm, and more preferably 2000 to 3500 mm.
  • the longitudinal direction is, for example, 500 to 3500 mm, preferably 1000 to 3500 mm, and more preferably 2000 to 3500 mm. As the larger glass substrate is used, the productivity of the liquid crystal display and the organic EL display is improved.
  • the glass substrate of the first and second embodiments of the present invention may have a thickness [mm] in the range of 0.1 to 1.1 mm, for example. However, it is not intended to limit to this range.
  • the plate thickness [mm] can be, for example, in the range of 0.1 to 0.7 mm, 0.3 to 0.7 mm, and 0.3 to 0.5 mm. If the glass plate is too thin, the strength of the glass substrate itself is reduced. For example, damage during flat panel display manufacturing is likely to occur. If the plate thickness is too thick, it is not preferable for a display that is required to be thin. In addition, since the weight of the glass substrate becomes heavy, it is difficult to reduce the weight of the flat panel display.
  • a glass substrate for p-Si.TFT flat panel display glass substrate according to the third aspect of the present invention made of glass containing substantially no As 2 O 3 .
  • a glass substrate for p-Si • TFT flat panel display which is made of a glass substantially free of Sb 2 O 3 and substantially free of As 2 O 3, can be mentioned.
  • the content of SiO 2 in the glass substrate of the third aspect of the present invention is in the range of 57 to 75% by mass.
  • SiO 2 is a skeletal component of glass and is therefore an essential component.
  • acid resistance, BHF (buffered hydrofluoric acid) and strain point tend to decrease.
  • the thermal expansion coefficient tends to increase.
  • the SiO 2 content is too small, it is difficult to reduce the density of the glass substrate.
  • the SiO 2 content is too large, the specific resistance of the glass melt increases, the melting temperature becomes extremely high, and melting tends to be difficult.
  • the devitrification resistance also tends to decrease.
  • the content of SiO 2 is in the range of 57 to 75% by mass.
  • the content of SiO 2 is preferably in the range of 58 to 72% by mass, more preferably 59 to 70% by mass, still more preferably 61 to 69% by mass, and still more preferably 62 to 67% by mass.
  • the SiO 2 content is too high, the glass etching rate tends to be slow.
  • the content of SiO 2 is preferably 57 to 75% by mass, more preferably 57 to 70% by mass, The range is preferably 57 to 65% by mass, more preferably 58 to 63% by mass.
  • the SiO 2 content is appropriately determined in consideration of both the above-mentioned characteristics such as acid resistance and the etching rate.
  • the content of Al 2 O 3 in the glass substrate of the third aspect of the present invention is in the range of 8 to 25% by mass.
  • Al 2 O 3 is an essential component that suppresses phase separation and increases the strain point. When there is too little content, it will become easy to phase-separate glass. In addition, the strain point tends to decrease. Furthermore, Young's modulus and etching rate tend to decrease. When the Al 2 O 3 content is too large, the specific resistance increases. Moreover, since the devitrification temperature of glass rises and devitrification resistance falls, there exists a tendency for a moldability to deteriorate. From such a viewpoint, the content of Al 2 O 3 is in the range of 8 to 25% by mass.
  • the content of Al 2 O 3 is preferably 10 to 23% by mass, more preferably 12 to 21% by mass, further preferably 12 to 20% by mass, more preferably 14 to 20% by mass, and still more preferably 15 to It is in the range of 19% by mass.
  • the content of Al 2 O 3 is preferably 10 to 23% by mass, more preferably 12 to 23% by mass, and further preferably 14 to 23% by mass. %, More preferably 17 to 22% by mass.
  • the content of Al 2 O 3 is appropriately determined in consideration of both the phase separation characteristics and the etching rate of the glass.
  • B 2 O 3 in the glass substrate of the third aspect of the present invention is in the range of 3 to 15% by mass, more preferably in the range of 3 to 10% by mass.
  • B 2 O 3 is an essential component that lowers the viscosity of the glass and improves meltability and clarity.
  • meltability and devitrification resistance are lowered, and BHF resistance is lowered.
  • specific gravity increases and it is difficult to reduce the density.
  • the content of B 2 O 3 is too large, the resistivity of the glass melt is increased. Further, the content of B 2 O 3 is too large, the strain point is lowered, the heat resistance is lowered. Furthermore, acid resistance and Young's modulus are reduced.
  • the content of B 2 O 3 is in the range of 3 to 15% by mass, preferably 3 to less than 10% by mass, more preferably 4 to 9% by mass, and further preferably 5 to 9% by mass. More preferably, it is in the range of 7 to 9% by mass.
  • the B 2 O 3 content is preferably 5 to 15% by mass, more preferably 6 to 13% by mass, and even more preferably less than 7 to 11% by mass. It is.
  • the B 2 O 3 content is appropriately determined in consideration of both the meltability and the devitrification temperature.
  • RO which is the total amount of MgO, CaO, SrO and BaO is in the range of 3 to 25% by mass.
  • RO is an essential component that reduces specific resistance and improves meltability. If the RO content is too small, the specific resistance increases and the meltability deteriorates. When there is too much RO content, a strain point and Young's modulus will fall. Also, the density increases. Moreover, when there is too much RO content, there exists a tendency for a thermal expansion coefficient to increase.
  • RO is in the range of 3 to 25% by mass, preferably 3 to 16% by mass, more preferably 3 to 15% by mass, still more preferably 3 to 14% by mass, and still more preferably 3 to It is in the range of 13% by weight, more preferably 6-12% by weight, still more preferably 8-11% by weight.
  • MgO in the glass substrate of the third aspect of the present invention is a component that lowers the specific resistance and improves the meltability. Moreover, since it is a component which is hard to increase specific gravity in alkaline-earth metal, when the content is increased relatively, it will become easy to aim at density reduction. Although it is not essential, by making it contain, meltability can be improved and generation
  • the MgO content is 0 to 15% by mass, preferably 0 to 10% by mass, more preferably 0 to 5% by mass, still more preferably 0 to 4% by mass, and still more preferably 0 to 3% by mass. %, More preferably 0 to less than 2% by mass, still more preferably 0 to 1% by mass, and most preferably not substantially contained.
  • CaO in the glass substrate of the third aspect of the present invention is an effective component for reducing the specific resistance and improving the meltability of the glass without rapidly increasing the devitrification temperature of the glass. Moreover, since it is a component which is hard to increase specific gravity in alkaline-earth metal, when the content is increased relatively, it will become easy to aim at density reduction. Although it is not essential, the inclusion of CaO is preferred because it can improve the meltability by reducing the specific resistance and melting temperature of the glass melt and can further improve devitrification. On the other hand, when the CaO content is too large, the strain point tends to decrease. Moreover, there exists a tendency of a thermal expansion coefficient increase and a density rise.
  • the CaO content is preferably 0 to 20% by mass, more preferably 0 to 15% by mass, further preferably 1 to 15% by mass, more preferably 3.6 to 15% by mass, still more preferably 4 to 14% by mass, Still more preferably, it is in the range of 5 to 12% by mass, even more preferably 5 to 10% by mass, still more preferably more than 6 to 10% by mass, and most preferably more than 6 to 9% by mass.
  • SrO and BaO in the glass substrate of the third aspect of the present invention are components that lower the specific resistance of the glass melt and lower the melting temperature to improve the meltability and lower the devitrification temperature. Although not essential, when it is contained, devitrification resistance and meltability are improved. However, when there is too much content, a density will rise.
  • SrO + BaO which is the total amount of SrO and BaO, is 0 to 15% by mass, preferably 0 to 10% by mass, more preferably 0 to 9% by mass, from the viewpoint of reducing density and reducing weight.
  • the content of Fe 2 O 3 in the glass substrate of the third aspect of the present invention is in the range of 0.01 to 1% by mass.
  • Fe 2 O 3 is an essential component that lowers the specific resistance of the glass melt in addition to having a function as a fining agent.
  • the specific resistance of the glass melt can be reduced by adding the above-mentioned predetermined amount of Fe 2 O 3, and it can be melted by melting by direct current heating. It is possible to melt the glass while avoiding the problem of bath melting. However, if the Fe 2 O 3 content is too high, the glass is colored and the transmittance is lowered.
  • the Fe 2 O 3 content is in the range of 0.01 to 1% by mass, preferably 0.01 to 0.5% by mass, more preferably 0.01 to 0.4% by mass, still more preferably 0.01 to 0.3% by mass, and still more preferably 0.01%. It is in the range of -0.2% by mass, more preferably 0.01-0.1% by mass, and still more preferably 0.02-0.07% by mass.
  • Sb 2 O 3 is preferably 0 to 0.3% by mass, more preferably 0 to 0.1% by mass, from the viewpoint of reducing environmental burden.
  • the glass substrate of the third aspect of the present invention further contains substantially no Sb 2 O 3 and substantially no As 2 O 3 from the viewpoint of further reducing the environmental load. preferable.
  • the glass composition, physical properties, size, etc. of the glass substrate of the third aspect of the present invention other than those described above can be the same as those of the glass substrate of the first aspect of the present invention.
  • the glass substrate of the present invention (common to the glass substrates of the first to third embodiments of the present invention) is suitable for a glass substrate for flat panel display, particularly a flat panel display glass substrate on which p-Si • TFT is formed. It is. Specifically, it is suitable for a glass substrate for liquid crystal display and a glass substrate for organic EL display. Particularly, it is suitable for a glass substrate for p-Si • TFT liquid crystal display. Especially, it is suitable for the glass substrate for displays, such as a portable terminal in which high definition is calculated
  • the method for producing the glass substrate for p-Si • TFT flat panel display of the present invention (the glass substrate of the first aspect of the present invention) SiO 2 52-78% by mass, Al 2 O 3 3-25% by mass, B 2 O 3 3-15% by mass, RO (where RO is the total amount of MgO, CaO, SrO and BaO) 3-25% by mass, Fe 2 O 3 0.01-1% by mass, Sb 2 O 3 0-0.3% by mass, And substantially free of As 2 O 3
  • the mass ratio (SiO 2 + Al 2 O 3 ) / B 2 O 3 was in the range of 7 to 30, and the mass ratio (SiO 2 + Al 2 O 3 ) / RO was adjusted to be 6 or more.
  • the manufacturing method of the glass substrate of the 1st aspect of this invention is as an example, SiO 2 52-78% by mass, Al 2 O 3 3-25% by mass, B 2 O 3 3-15% by mass, RO (where RO is the total amount of MgO, CaO, SrO and BaO) 3 to 13% by mass, Fe 2 O 3 0.01-1% by mass Contains substantially no Sb 2 O 3 and substantially no As 2 O 3 ,
  • the mass ratio (SiO 2 + Al 2 O 3 ) / B 2 O 3 was in the range of 8.9 to 20, and the mass ratio (SiO 2 + Al 2 O 3 ) / RO was adjusted to be 7.5 or more.
  • the glass substrate of the second and third aspects of the present invention can also be produced through the same steps as the glass substrate of the first aspect of the present invention.
  • the glass raw material used is SiO 2 52 to 78 mass%, Al 2 O 3 3 to 25 mass%, B 2 O 3 3 to 15 mass%, RO in the production of the glass substrate of the second aspect of the present invention.
  • RO is the total amount of MgO, CaO, SrO and BaO
  • substantially free of Sb 2 O 3 and As 2 O 3 is a glass raw material which becomes glass which does not contain substantially.
  • RO is the total amount of MgO, CaO, SrO and BaO
  • the glass raw material prepared to have a predetermined glass composition is melted using at least direct current heating.
  • the glass raw material can be appropriately selected from known materials. It is preferable to adjust the glass composition, particularly the Fe 2 O 3 content, so that the specific resistance of the glass melt at 1550 ° C. is in the range of 50 to 300 ⁇ ⁇ cm. By setting the RO content to 3 to 15 mass% and the Fe 2 O 3 content to 0.01 to 1 mass%, the specific resistance at 1550 ° C. can be within the above range. Further, it is preferable to adjust the melting step so that the ⁇ -OH value of the glass substrate is 0.05 to 0.4 mm ⁇ 1 . In the production of the glass substrate of the second aspect of the present invention, RO can be adjusted in the range of 3 to 13% by mass.
  • the molten glass melted in the melting step is formed into flat glass.
  • the down-draw method particularly the overflow down-draw method is suitable as the method for forming the flat glass.
  • a float method, a redraw method, a rollout method, etc. can be applied.
  • the main surface of the obtained glass substrate is a hot-formed surface compared to the case where other forming methods such as the float method are used.
  • the step of polishing the surface of the glass substrate after molding becomes unnecessary, the manufacturing cost can be reduced and the productivity can be improved.
  • both main surfaces of the glass substrate molded using the downdraw method have a uniform composition, the etching can be performed uniformly when the etching process is performed.
  • the glass substrate having a surface state without microcracks can be obtained by molding using the downdraw method, the strength of the glass substrate itself can be improved.
  • the heat shrinkage rate of the glass substrate can be controlled by appropriately adjusting the conditions during slow cooling.
  • the thermal contraction rate of the glass substrate is preferably 75 ppm or less, more preferably 60 ppm or less, and in order to produce a glass substrate of 75 ppm or less, more preferably 60 ppm or less, for example, a downdraw method is used.
  • it is desirable to perform the molding so that the temperature of the flat glass is cooled in a temperature range from Tg to Tg-100 ° C. in 20 to 120 seconds. If it is less than 20 seconds, the amount of heat shrinkage may not be sufficiently reduced.
  • the glass manufacturing apparatus when it exceeds 120 seconds, productivity is lowered and the glass manufacturing apparatus (slow cooling furnace) is enlarged.
  • productivity is lowered and the glass manufacturing apparatus (slow cooling furnace) is enlarged.
  • a preferable range of the cooling rate is 50 to 300 ° C./min, more preferably 50 to 200 ° C./min, and further preferably 60 to 120 ° C./min.
  • the thermal shrinkage rate can be reduced by separately providing a thermal shrinkage reduction treatment (offline annealing) step after the slow cooling step.
  • a thermal shrinkage reduction treatment offline annealing
  • the thermal shrinkage rate be within a predetermined range by performing a thermal shrinkage reduction process (online annealing) in which the cooling rate of the flat glass is controlled in the slow cooling step.
  • the glass substrate of the present invention has been described by taking the glass substrate for p-Si ⁇ TFT flat panel display as an example.
  • the glass substrate of the present invention is used for flat panel display, particularly for p-Si flat panel display. Can also be used.
  • the glass substrate of the present invention can also be used as glass for oxide semiconductor thin film transistor flat panel displays. That is, the glass substrate of the present invention can also be used for a flat display produced by forming an oxide semiconductor thin film transistor on the substrate surface.
  • the sample glass was cut, ground and polished to produce a sample glass substrate of 30 mm ⁇ 40 mm ⁇ 0.7 mm whose upper and lower surfaces are mirror surfaces.
  • the sample glass substrate was used for ⁇ -OH measurement, which was not affected by the slow cooling conditions.
  • the above sample glass is cut, ground and polished to form a rectangular parallelepiped having a thickness of 0.7 to 4 mm, a width of 5 mm, and a length of 20 mm. After holding this for 30 minutes at Tg, 100 ° C / min up to Tg-100 ° C The sample glass substrate for heat shrinkage measurement was obtained by cooling at room temperature and allowing to cool to room temperature.
  • strain point The sample glass was cut and ground into a 3 mm square and 55 mm long prismatic shape to obtain a test piece.
  • the test piece was measured using a beam bending measuring apparatus (manufactured by Tokyo Kogyo Co., Ltd.), and the strain point was determined by calculation according to the beam bending method (ASTM C-598).
  • Thermal shrinkage The thermal shrinkage rate was determined by the following equation using the shrinkage amount of the glass substrate after the heat-shrinkage measurement sample glass substrate was subjected to heat treatment at 550 ° C. for 2 hours.
  • Thermal shrinkage (ppm) ⁇ Shrinkage amount of glass before and after heat treatment / length of glass before heat treatment ⁇ ⁇ 10 6
  • the amount of shrinkage was measured by the following method.
  • the sample glass substrate for heat shrinkage was heated from room temperature to 550 ° C. using a differential thermal dilatometer (Thermo Plus2 TMA8310), held for 2 hours, cooled to room temperature, and the amount of shrinkage of the sample glass before and after heat treatment Was measured. At this time, the heating / cooling speed was set to 10 ° C./min.
  • the sample glass was pulverized and passed through a 2380 ⁇ m sieve to obtain glass particles that remained on the 1000 ⁇ m sieve.
  • the glass particles were immersed in ethanol, subjected to ultrasonic cleaning, and then dried in a thermostatic bath.
  • the dried glass particles were placed on a platinum boat having a width of 12 mm, a length of 200 mm, and a depth of 10 mm so that the glass particles 25 g had a substantially constant thickness.
  • This platinum boat is kept in an electric furnace with a temperature gradient of 1080 to 1320 ° C (or 1140 ° C to 1380 ° C) for 5 hours, and then removed from the furnace to reduce devitrification generated inside the glass by 50 times. Observed with an optical microscope. The maximum temperature at which devitrification was observed was defined as the devitrification temperature.
  • the sample glass was processed into a cylindrical shape having a diameter of 5 mm and a length of 20 mm to obtain a test piece.
  • a differential thermal dilatometer (Thermo Plus2 TMA8310) was used to measure the temperature and the amount of expansion / contraction of the test piece. The temperature rising rate at this time was 5 ° C./min.
  • an average thermal expansion coefficient and Tg in a temperature range of 100 to 300 ° C. were obtained.
  • the Tg in this application is a glass body held in another electric furnace set at 800 ° C. for 2 hours, then cooled to 740 ° C. for 2 hours, further cooled to 660 ° C. for 2 hours, and then the electric furnace It is the value measured about the sample glass which turned off the power supply and cooled to room temperature.
  • the density of the glass was measured by the Archimedes method.
  • the high temperature viscosity of the sample glass was measured using a platinum ball pulling type automatic viscosity measuring device. From the measurement results, the temperature at a viscosity of 10 2.5 dPa ⁇ s was calculated to obtain the melting temperature.
  • the glass raw material prepared to have the glass composition shown in Examples 7 and 13 was used at 1560 to 1640 ° C. using a continuous melting apparatus equipped with a refractory brick melting tank and a platinum alloy adjustment tank (clarification tank). Melt, refine at 1620-1670 ° C, stir at 1440-1530 ° C, form into a 0.7mm thick sheet by the overflow downdraw method, within the temperature range of Tg to Tg-100 ° C, 100 ° C / Slow cooling was performed at an average rate of min to obtain a glass substrate for liquid crystal display (for organic EL display). In addition, about each characteristic of the said description, it measured using the obtained glass substrate.
  • the melting temperature of the glass substrate having the composition of Example 7 obtained as described above was 1610 ° C., the ⁇ -OH value was 0.20 mm ⁇ 1 , Tg was 754 ° C., the strain point was 697 ° C., and the heat shrinkage rate was 51 ppm.
  • the other characteristics were the same as in Example 7.
  • the melting temperature of the glass substrate having the composition of Example 13 is 1585 ° C.
  • the ⁇ -OH value is 0.21 mm ⁇ 1
  • the Tg is 761 ° C.
  • the strain point is 710 ° C.
  • the heat shrinkage rate is 31 ppm.
  • the glass substrate had a Tg of 720 ° C.
  • the glass substrate obtained as described above has a ⁇ -OH value of 0.09 mm ⁇ 1 larger than that of Examples 7 and 13, and therefore Tg is 2 to 3 ° C. lower than that of Examples 7 and 13. A sufficiently high Tg can be realized. Therefore, it can be said that the glass substrate obtained in this example is a glass substrate having excellent characteristics that can be used for a display to which p-Si • TFT is applied.
  • the present invention can be used in the field of manufacturing glass substrates for displays.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)
  • Liquid Crystal (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

本発明は歪点やガラス転移点に代表される低温粘性域での特性温度が高く、熱収縮率が小さく、かつ直接通電加熱による熔解において熔解槽熔損の問題の発生を回避できるガラスからなる、p-Si・TFTフラットパネルディスプレイ用ガラス基板とその製造方法を提供する。本発明のガラス基板は、SiO2 52~78質量%、Al2O3 3~25質量%、B2O33~15質量%、RO(但し、ROはMgO、CaO、SrO及びBaOの合量) 3~25質量%、Fe2O3 0.01~1質量%、Sb2O3 0~0.3質量%を含有し、かつAs2O3は実質的に含有せず、質量比(SiO2+Al2O3)/B2O3は7~30の範囲であり、かつ質量比(SiO2+Al2O3)/ROは6以上であるガラスからなる。本発明のガラス基板の製造方法は、上記ガラス組成となるように調合したガラス原料を少なくとも直接通電加熱を用いて熔解して熔融ガラスを得る熔解工程と、前記熔融ガラスを平板状ガラスに成形する成形工程と、前記平板状ガラスを徐冷する徐冷工程と、を有する。

Description

フラットパネルディスプレイ用ガラス基板及びその製造方法
 本発明は、フラットパネルディスプレイ用ガラス基板に関し、特にポリシリコン薄膜(以下、p-Siと記載する)フラットパネルディスプレイ用ガラス基板及びその製造方法に関する。さらに詳細には、基板表面にp-Si形成して製造されるフラットディスプレイに用いられるガラス基板及びその製造方法に関する。さらに詳細には、ポリシリコン薄膜トランジスタ(以下、p-Si・TFTと記載する)フラットパネルディスプレイ用ガラス基板及びその製造方法に関する。さらに詳細には、基板表面にp-Si・TFT形成して製造されるフラットディスプレイに用いられるガラス基板及びその製造方法に関する。さらに詳細には、本発明は、p-Si・TFTフラットパネルディスプレイが液晶ディスプレイであるp-Si・TFTフラットパネルディスプレイ用ガラス基板、及びその製造方法に関する。あるいは、本発明は、有機ELディスプレイ用ガラス基板及びその製造方法に関する。あるいは、本発明は、酸化物半導体薄膜トランジスタフラットパネルディスプレイ用ガラス基板に関する。さらに詳細には、基板表面に酸化物半導体薄膜トランジスタを形成して製造されるフラットディスプレイに用いられるガラス基板及びその製造方法に関する。
 携帯機器などの小型機器に搭載されたディスプレイは、消費電力を低減できるなどの理由から、薄膜トランジスター(TFT)の製造にp-Si(ポリシリコン)が適用されている。現在、p-Si・TFTフラットパネルディスプレイの製造には、400~600℃という比較的高温での熱処理が必要とされる。p-Si・TFTフラットパネルディスプレイ製造用のガラス基板としては、耐熱性の高いガラスが用いられている。しかし、従来のa-Si(アモルファスシリコン)・TFTフラットパネルディスプレイに用いられているガラス基板は歪点が十分に高くなく、p-Si・TFTフラットパネルディスプレイの製造時の熱処理により大きな熱収縮が発生し、画素のピッチズレの問題を引き起こすことが知られている。
 小型機器のディスプレイには、近年ますます高精細化が求められている。そのため、画素のピッチズレを極力抑制することが望まれており、画素のピッチズレの原因であるディスプレイ製造時のガラス基板の熱収縮の抑制が課題となっている。
 ガラス基板の熱収縮は、一般に、ガラス基板の歪点やTg(ガラス転移点)に代表される低温粘性域での特性温度(以下、低温粘性特性温度と記す)を高くすることで抑制することができる。歪点の高いガラスとしては、例えば、特許文献1に歪点が680℃以上の無アルカリガラスが開示されている。
特開2010-6649号公報
 ガラス基板の歪点やTg(ガラス転移点)に代表される低温粘性特性温度を高めるするためには、一般的に、ガラス中のSiO2やAl2O3の含有量を多くする必要がある(以下、本明細書では、「低温粘性特性温度」として、「歪点」を代表して記載する。)。特許文献1に記載のガラスは、SiO2を58~75質量%、Al2O3を15~19質量%含有する(請求項1参照)。その結果、熔融ガラスの比抵抗が上昇する傾向がある。近年、効率的にガラスを熔解させるために直接通電加熱が用いられていることが多い。直接通電加熱の場合、熔融ガラスの比抵抗が上昇すると、熔融ガラスではなく、熔解槽を構成する耐火物に電流が流れてしまう場合がある。その結果、熔解槽が熔損してしまうという問題が生じることがあることが、本発明者らの検討の結果明らかになった。
 しかしながら、上記特許文献1に記載の発明においては、熔融ガラスの比抵抗について考慮されていない。そのため、特許文献1に記載のガラスを直接通電加熱による熔融を経て製造しようとする場合、上記熔解槽熔損の問題が発生することが強く懸念される。
 さらに、ガラスの低温粘性特性温度をより高くすること、即ち、より高い歪点やTgを有するガラス及びガラス基板の提供が望まれており、上記熔解槽熔損の問題の発生に対する懸念は、ますます強まる傾向がある。
 そこで、本発明は、歪点が高く、ディスプレイ製造時のガラス基板の熱収縮の抑制が可能で、かつ直接通電加熱による熔解において熔解槽熔損の問題の発生を回避しつつ製造が可能であるガラスからなる、フラットパネルディスプレイ用ガラス基板、特にp-Si・TFTフラットパネルディスプレイ用ガラス基板とその製造方法を提供することを目的とする。
 本発明は以下の通りである。
[1]
SiO2 52~78質量%、
Al2O33~25質量%、
B2O33~15質量%、
RO(但し、ROはMgO、CaO、SrO及びBaOの合量) 3~25質量%、
Fe2O30.01~1質量%、
Sb2O30~0.3質量%、
を含有し、かつAs2O3は実質的に含有せず、
質量比(SiO2+Al2O3)/B2O3は7~30の範囲であり、かつ質量比(SiO2+Al2O3)/ROは6以上
であるガラスからなる、p-Si・TFTフラットパネルディスプレイ用ガラス基板(本発明の第1の態様のガラス基板である。以下、本発明のガラス基板と記載する場合、本発明の第1の態様のガラス基板を意味する)。
[2]
前記ガラスは、Sb2O3を実質的に含有しない[1]に記載のガラス基板。
[3]
SiO2 52~78質量%、
Al2O33~25質量%、
B2O33~15質量%、
RO(但し、ROはMgO、CaO、SrO及びBaOの合量) 3~13質量%、
Fe2O30.01~1質量%、
を含有し、Sb2O3は実質的に含有せず、かつAs2O3は実質的に含有せず、
質量比(SiO2+Al2O3)/B2O3は8.9~20の範囲であり、かつ質量比(SiO2+Al2O3)/ROは7.5以上
であるガラスからなる、p-Si・TFTフラットパネルディスプレイ用ガラス基板(本発明の第1の態様のガラス基板の一例である。)。
[4]
SiO2含有量が58~72質量%であり、Al2O3含有量が10~23質量%であり、B2O3含有量が3~11質量%未満である、[1]~[3]のいずれか1項に記載のガラス基板。
[5]
前記ガラスは、SiO2及びAl2O3の合計含有量が75質量%以上であり、
RO、ZnO及びB2O3の合計含有量が7~20質量%未満であり、かつ
B2O3の含有量が3~11質量%未満である[1]~[4]のいずれか1項に記載のガラス基板。
[6]
前記ガラスは歪点が688℃以上である[1]~[5]のいずれか1項に記載のガラス基板。
[7]
前記ガラスはR2O(但し、R2Oは、Li2O、Na2O及びK2Oの合量)の含有量が0.01~0.8質量%である[1]~[6]のいずれか1項に記載のガラス基板。
[8]
前記ガラスはβ-OH値が0.05~0.4mm-1である[1]~[7]のいずれか1項に記載のガラス基板。
[9]
前記ガラスはZrO2の含有量が0.2質量%未満である[1]~[8]のいずれか1項に記載のガラス基板。
[10]
前記ガラスはSrO及びBaOの合計含有量が0~2質量%未満である[1]~[9]のいずれか1項に記載のガラス基板。
[11]
SiO2 52~78質量%、
Al2O33~25質量%、
B2O33~15質量%、
RO(但し、ROはMgO、CaO、SrO及びBaOの合量) 3~13質量%、
Fe2O3 0.01~1質量%を含有し、
Sb2O3は実質的に含有せず、かつAs2O3は実質的に含有しないガラスからなり、
昇降温速度が10℃/min、550℃で2時間保持の熱処理が施された後の下記式で示
される熱収縮率が75ppm以下である、
p-Si・TFTフラットパネルディスプレイ用ガラス基板(本発明の第2の態様のガラス基板)。
(式)
熱収縮率(ppm)={熱処理前後でのガラスの収縮量/熱処理前のガラスの長さ}×106
[12]
熱収縮率が60ppm以下である[11]に記載のガラス基板。
[13]
前記熱収縮率は、ガラス基板をTgで30分保持した後、Tg-100℃まで100℃/minで冷却し、室温まで放冷する徐冷操作を行った後に前記熱処理を施して得た値である、[11]又は[12]に記載のガラス基板。
[14]
SiO2 57~75質量%、
Al2O38~25質量%、
B2O33~15質量%、
RO(但し、ROはMgO、CaO、SrO及びBaOの合量) 3~25質量%、
MgO 0~15質量%、
CaO 0~20質量%、
SrO及びBaOの合量 0~3質量%、
Fe2O30.01~1質量%
Sb2O30~0.3質量%、
を含有し、
かつAs2O3は実質的に含有しないガラスからなる、
p-Si・TFTフラットパネルディスプレイ用ガラス基板(本発明の第3の態様のガラス基板)
[15]
SiO2 57~75質量%、
Al2O38~25質量%、
B2O33~10質量%未満、
RO(但し、ROはMgO、CaO、SrO及びBaOの合量) 3~25質量%、
MgO 0~15質量%、
CaO 0~20質量%、
SrO及びBaOの合量 0~3質量%、
Fe2O3 0.01~1質量%
を含有し、
Sb2O3は実質的に含有せず、かつAs2O3は実質的に含有しないガラスからなる、
p-Si・TFTフラットパネルディスプレイ用ガラス基板(本発明の第3の態様の一例のガラス基板)。
[16]
TFT液晶ディスプレイ用である[1]~[15]のいずれかに記載のガラス基板。
[17]
SiO2 52~78質量%、
Al2O33~25質量%、
B2O33~15質量%、
RO(但し、ROはMgO、CaO、SrO及びBaOの合量) 3~25質量%、
Fe2O30.01~1質量%、
Sb2O30~0.3質量%、
を含有し、かつAs2O3は実質的に含有せず、
質量比(SiO2+Al2O3)/B2O3は7~30の範囲であり、かつ質量比(SiO2+Al2O3)/ROは6以上のガラスとなるように調合したガラス原料を、少なくとも直接通電加熱を用いて熔解して熔融ガラスを得る熔解工程と、
前記熔融ガラスを平板状ガラスに成形する成形工程と、
前記平板状ガラスを徐冷する徐冷工程と、を有する
p-Si・TFTフラットパネルディスプレイ用ガラス基板の製造方法。
[18]
SiO2 52~78質量%、
Al2O33~25質量%、
B2O33~15質量%、
RO(但し、ROはMgO、CaO、SrO及びBaOの合量) 3~13質量%、
Fe2O30.01~1質量%
を含有し、Sb2O3は実質的に含有せず、かつAs2O3は実質的に含有せず、
質量比(SiO2+Al2O3)/B2O3は8.9~20の範囲であり、かつ質量比(SiO2+Al2O3)/ROは7.5以上
のガラスとなるように調合したガラス原料を、少なくとも直接通電加熱を用いて熔解して熔融ガラスを得る熔解工程と、
前記熔融ガラスを平板状ガラスに成形する成形工程と、
前記平板状ガラスを徐冷する徐冷工程と、を有する
p-Si・TFTフラットパネルディスプレイ用ガラス基板の製造方法。
[19]
前記熔融ガラスは1550℃の融液における比抵抗が50~300Ω・cmである[17]又は[18]に記載の製造方法。
[20]
前記徐冷工程において、平板状ガラスの冷却速度を制御して熱収縮率を低減させる熱収縮低減処理を施す、[17]~[19]のいずれかに記載の製造方法。
[21]
前記徐冷工程において、平板状ガラスの中央部の冷却速度を、TgからTg-100℃の温度範囲内において、50~300℃/分とする熱収縮低減処理を施す、[20]に記載の製造方法。
[22]
SiO2 52~78質量%、
Al2O33~25質量%、
B2O33~15質量%、
RO(但し、ROはMgO、CaO、SrO及びBaOの合量) 3~25質量%、
Fe2O30.01~1質量%、
Sb2O30~0.3質量%、
を含有し、かつAs2O3は実質的に含有せず、
質量比(SiO2+Al2O3)/B2O3は7~30の範囲であり、かつ質量比(SiO2+Al2O3)/ROは6以上であるガラスからなる、フラットパネルディスプレイ用ガラス基板。
 本発明によれば、ガラス熔解炉の熔損を抑制または回避しつつ、高歪点ガラスを製造することが可能となり、その結果、ディスプレイ製造時のガラス基板の熱収縮の抑制が可能である、高い歪点を有するガラスからなるフラットパネルディスプレイ、特にp-Si・TFTフラットパネルディスプレイ用ガラス基板を高い生産性で提供することができる。
 本願明細書において、ガラス基板を構成するガラスの組成は特に断らない限り、質量%で表示し、ガラスを構成する成分の比は質量比で表示する。また、ガラス基板の組成及び物性は、特に断らない限りガラス基板を構成するガラスの組成及び物性を意味し、単にガラスと表記するときは、ガラス基板を構成するガラスを意味する。但し、ガラス基板の熱収縮率は、実施例に記載の所定の条件で形成したガラス基板について、実施例に記載の条件で測定した値を意味する。また、本願明細書において、低温粘性特性温度とは、ガラスが107.6~1014.5dPa・sの範囲の粘度を示す温度を意味し、低温粘性特性温度には、歪点およびTgが含まれる。従って、低温粘性特性温度を高めるということは、歪点およびTgを高めることも意味し、逆に、歪点及び/又はTgを高めるということは低温粘性特性温度を高めることを意味する。また、溶解性の指標となる熔融温度とは、ガラスが102.5dPa・sの粘度を示す温度であり、熔解性の指標となる温度である。
<p-Si・TFTフラットパネルディスプレイ用ガラス基板>
 本発明のp-Si・TFTフラットパネルディスプレイ用ガラス基板(本発明の第1の態様のガラス基板)は、
SiO2 52~78質量%、
Al2O33~25質量%、
B2O33~15質量%、
RO(但し、ROはMgO、CaO、SrO及びBaOの合量) 3~25質量%、
Fe2O30.01~1質量%、
Sb2O30~0.3質量%、
を含有し、かつAs2O3は実質的に含有せず、
質量比(SiO2+Al2O3)/B2O3は7~30の範囲であり、かつ質量比(SiO2+Al2O3)/ROは6以上
であるガラスからなる基板である。また、本発明の第1の態様のガラス基板の一例としては、SiO2 52~78質量%、Al2O3 3~25質量%、B2O33~15質量%、RO 3~13質量%、Fe2O3 0.01~1質量%を含有し、Sb2O3は実質的に含有せず、かつAs2O3は実質的に含有しないガラスであって、質量比(SiO2+Al2O3)/B2O3は8.9~20の範囲であり、かつ質量比(SiO2+Al2O3)/ROは7.5以上であるガラスからなるガラス基板を挙げることができる。以下に、本発明の第1の態様のガラス基板における各ガラス成分を含有する理由及び含有量や組成比の範囲について説明する。
 本発明の第1の態様のガラス基板におけるSiO2の含有量は52~78質量%の範囲である。
 SiO2は、ガラスの骨格成分であり、従って、必須成分である。含有量が少なくなると、耐酸性、耐BHF(バッファードフッ酸)および歪点が低下する傾向がある。また、SiO2含有量が少なくなると、熱膨張係数が増加する傾向がある。また、SiO2含有量が少なすぎると、ガラス基板を低密度化するのが難しくなる。一方、SiO2含有量が多すぎると、ガラス融液の比抵抗が上昇し、熔融温度が著しく高くなり熔解が困難になる傾向がある。SiO2含有量が多すぎると、耐失透性が低下する傾向もある。このような観点から、SiO2の含有量は、52~78質量%の範囲とする。SiO2の含有量は、好ましくは57~75 質量%、より好ましくは58~72質量%、さらに好ましくは59~70質量%、一層好ましくは59~69質量%、より一層好ましくは61~69質量%、さらに一層好ましくは61~68質量%、尚一層好ましくは62~67質量%の範囲である。他方、SiO2含有量が多すぎると、ガラスのエッチングレートが遅くなる傾向がある。ガラス板をスリミングする場合の速度を示すエッチングレートが十分に速いガラス基板を得るという観点からは、SiO2の含有量は、好ましくは53~75 質量%、より好ましくは55~70質量%、さらに好ましくは55~65質量%、一層好ましくは58~63質量%の範囲である。尚、SiO2含有量は、上記耐酸性等の特性とエッチングレートの両方を考慮して適宜決定される。
 本発明の第1の態様のガラス基板におけるAl2O3の含有量は 3~25質量%の範囲である。
 Al2O3は、分相を抑制し、歪点を高くする必須成分である。含有量が少なすぎると、ガラスが分相しやすくなる。また、歪点が低下する。さらに、ヤング率及びエッチングレートも低下する傾向がある。
 Al2O3含有量が多すぎると、比抵抗が上昇する。また、ガラスの失透温度が上昇して、耐失透性が低下するので、成形性が悪化する傾向がある。このような観点から、Al2O3の含有量は 3~25質量%の範囲である。Al2O3の含有量は、好ましくは8~25質量%、より好ましくは10~23質量%、さらに好ましくは12~21質量%、一層好ましくは12~20質量%または14~21質量%、より一層好ましくは14~20質量%、尚一層好ましくは15~19質量%の範囲である。他方、エッチングレートが十分に速いガラス基板を得るという観点からは、Al2O3の含有量は、好ましくは8~25質量%、より好ましくは10~23質量%、さらに好ましくは14~23質量%、一層好ましくは17~22質量%である。尚、Al2O3の含有量は、上記ガラスが分相特性等とエッチングレートの両方を考慮して適宜決定される。
 本発明の第1の態様のガラス基板におけるB2O3は、3~15質量%の範囲である。
 B2O3は、ガラスの熔融温度に代表される高温粘性域における温度を低下させ、清澄性を改善する必須成分である。B2O3含有量が少なすぎると、熔解性、耐失透性及び耐BHFが低下する傾向にある。また、B2O3含有量が少なすぎると、比重が増加して低密度化が図りがたくなる。他方、B2O3含有量が多すぎると、比抵抗が上昇する。また、B2O3含有量が多すぎると、歪点が低下し、耐熱性が低下する。また、耐酸性及びヤング率が低下する傾向にある。また、ガラス熔解時のB2O3の揮発により、ガラスの不均質が顕著となり、脈理が発生しやすくなる。このような観点から、B2O3含有量は、3~15質量%の範囲であり、好ましくは3~12質量%、好ましくは3~11質量%未満、より好ましくは3~10質量%未満、さらに好ましくは4~9質量%、一層好ましくは5~9質量%、尚一層好ましくは7~9質量%の範囲である。他方、失透温度を十分に低下させるためには、B2O3含有量は、3~15質量%の範囲であり、好ましくは5~15質量%、よりましくは6~13質量%、さらにましくは7~11質量%未満である。尚、B2O3含有量は、上記熔解性等と失透温度の両方を考慮して適宜決定される。
 本発明の第1の態様のガラス基板におけるMgO、CaO、SrO及びBaOの合量であるROは、3~25質量%、好ましくは3~14質量%の範囲、より好ましくは3~13質量%の範囲である。
 ROは、比抵抗を低下させ、熔解性を向上させる必須成分である。RO含有量が少なすぎると、比抵抗が上昇し、熔解性が悪化する。RO含有量が多すぎると、歪点及びヤング率が低下する。さらに、密度が上昇する。また、RO含有量が多すぎると、熱膨張係数が増大する傾向もある。このような観点から、ROは、3~25質量%の範囲であり、好ましくは3~14質量%の範囲、より好ましくは3~13質量%の範囲であり、さらに好ましくは6~13質量%、一層好ましくは6~12質量%、より一層好ましくは7~12質量%、さらに一層好ましくは8~11質量%の範囲である。
 本発明の第1の態様のガラス基板におけるFe2O3の含有量は0.01~1質量%の範囲である。
 Fe2O3は、清澄剤としての働きを有する以外に、ガラス融液の比抵抗を低下させる必須成分である。熔融温度(高温粘性域における温度)が高く、難熔なガラスにおいては、上記所定量のFe2O3を含有させることで、ガラス融液の比抵抗を低下させることができ、直接通電加熱による熔解において熔解槽熔損の問題の発生を回避しつつガラスの熔解が可能になる。しかし、Fe2O3含有量が多くなりすぎると、ガラスが着色し、透過率が低下する。そこで、Fe2O3含有量は、0.01~1質量%の範囲であり、好ましくは0.01~0.5質量%、より好ましくは0.01~0.4質量%、さらに好ましくは0.01~0.3質量%、一層好ましくは0.01~0.2質量%、より一層好ましくは0.01~0.1質量%、さらに一層好ましくは0.02~0.07質量%の範囲である。
 本発明の第1の態様のガラス基板は、環境負荷を低減するという観点から、Sb2O3は0~0.3質量%であることが好ましく、0~0.1質量%であることがさらに好ましい。また、本発明の第1の態様のガラス基板は、環境負荷をより低減するという観点から、Sb2O3は実質的に含有せず、かつAs2O3も実質的に含有しないことがさらに好ましい。本明細書において、「実質的に含有せず」とは、ガラス原料にこれら成分の原料となる物質を用いないことを意味し、他の成分のガラス原料に不純物として含まれる成分の混入を排除するものではない。
 本発明の第1の態様のガラス基板におけるB2O3に対するSiO2とAl2O3の合量である(SiO2+Al2O3)の質量比(SiO2+Al2O3)/B2O3は歪点と耐失透性の指標となる。 (SiO2+Al2O3)/B2O3は好ましくは7~30であり、より好ましくは7.5~25であり、さらに好ましくは8~25であり、一層好ましくは8~23の範囲、さらに一層好ましくは8.9~20の範囲である。(SiO2+Al2O3)/B2O3が小さいほど歪点は低くなり、7未満では歪点は不十分であり、好ましくは7.5以上、より好ましくは8以上、さらに好ましくは8.9以上になると歪点を十分に高くすることができる。一方、(SiO2+Al2O3)/B2O3が大きいほど耐失透性が徐々に低下し、30を超えると極端に低下し、25以下、好ましくは23以下、より好ましくは22以下、さらに好ましくは20以下であれば十分な耐失透性が得られる。そのため、(SiO2+Al2O3)/B2O3は、好ましくは8~18の範囲であり、より好ましくは9.5~16の範囲であり、さらに好ましくは9.8~14であり、一層好ましくは10~12の範囲である。他方、失透温度を十分に低下させることに加えて、エッチングレートが十分に速いガラス基板を得ることも考慮すると、(SiO2+Al2O3)/B2O3は好ましくは7~30であり、より好ましくは8~25であり、さらに好ましくは8.2~20であり、一層好ましくは8.4~15であり、尚一層好ましくは8.5~12である。
 本発明の第1の態様のガラス基板におけるROに対するSiO2とAl2O3の合量である(SiO2+Al2O3)の質量比(SiO2+Al2O3)/ROは歪点と比抵抗の指標となる。(SiO2+Al2O3)/ROは好ましくは6以上であり、より好ましくは7以上であり、さらに好ましくは7.5以上である。これらの範囲にあることで、歪点の上昇と比抵抗の低減(熔解性の向上)を両立することができる。 (SiO2+Al2O3)/ROが小さいほど歪点は低くなり、6未満では歪点は不十分であり、7以上、好ましくは7.5以上になると歪点を十分に高くすることができる。(SiO2+Al2O3)/ROは、好ましくは7.5~15の範囲であり、より好ましくは8.0~12、さらに好ましくは8.1~10の範囲である。なお、(SiO2+Al2O3)/ROを15以下にすることで、比抵抗が上昇しすぎることを抑制できる。他方、歪点の上昇と比抵抗の低減を両立させることに加えて、エッチングレートが十分に速いガラス基板を得ることも考慮すると、(SiO2+Al2O3)/ROは、好ましくは6~15であり、より好ましくは7~15であり、さらに好ましくは7.5~9.5の範囲である。
 本発明のガラス基板(本発明の第1の態様のガラス基板)は、上記に加えて、以下のガラス組成および/または物性を有することが好ましい。
 本発明の第1の態様のガラス基板において、SiO2とAl2O3の合量であるSiO2+Al2O3は少なすぎると、歪点が低下する傾向があり、多すぎると、比抵抗が上昇し、耐失透性が悪化する傾向がある。そのためSiO2+Al2O3は、75質量%以上であることが好ましく、より好ましくは75質量%~87質量%であり、さらに好ましくは75質量%~85質量%であり、一層好ましくは78質量%~84質量%であり、より一層好ましくは78質量%~83質量%である。歪点をさらに高くするという観点からは、より好ましくは78質量%以上、さらに好ましくは79~87質量%、一層好ましくは80~85質量%である。
 本発明の第1の態様のガラス基板において、MgOは比抵抗を低下させ、熔解性を向上させる成分である。また、アルカリ土類金属の中では比重を増加させにくい成分であるので、その含有量を相対的に増加させると、低密度化を図りやすくなる。必須ではないが、含有させることで、熔解性を向上し、かつ切粉の発生を抑制できる。但し、MgOの含有量が多すぎると、ガラスの失透温度が急激に上昇するため、成形性が悪化(耐失透性が低下)する。また、MgOの含有量が多すぎると、耐BHF低下、耐酸性低下の傾向がある。特に、失透温度を低下させたい場合には、MgOは実質的に含有させないことが好ましい。このような観点から、MgO含有量は、好ましくは0~15質量%、より好ましくは0~10質量%、さらに好ましくは0~5質量%、一層好ましくは0~4質量%、より一層好ましくは0~3質量%、さらに一層好ましくは0~2未満、尚一層好ましくは0~1質量%であり、最も好ましくは実質的に含有しないことである。
 本発明の第1の態様のガラス基板において、CaOは、比抵抗を低下させる成分であり、ガラスの失透温度を急激に上げることなくガラスの熔解性を向上させるのにも有効な成分である。また、アルカリ土類金属の中では比重を増加させにくい成分であるので、その含有量を相対的に増加させると、低密度化を図りやすくなる。必須ではないが、含有させることで、ガラス融液の比抵抗低下および熔融温度(高温粘性)低下による熔解性向上及び失透性改善ができるので、CaOは含有させることが好ましい。
 CaO含有量が多すぎると、歪点が低下する傾向にある。また、熱膨張係数が増加する傾向があり、さらに密度が上昇する傾向がある。CaO含有量は、好ましくは0~20質量%、より好ましくは0~15質量%、さらに好ましくは1~15質量%、一層好ましくは2~15質量%、より一層好ましくは3.6~15質量%、さらに一層好ましくは4~14質量%、尚一層好ましくは5~12質量%、さらに一層好ましくは5~10質量%、さらに一層好ましくは6超~10質量%、最も好ましくは6超~9質量%の範囲である。
 本発明の第1の態様のガラス基板において、SrOは、比抵抗を低下させ、熔解性を向上させる成分である。SrOは、必須ではないが、含有させると、耐失透性及び熔解性が向上する。SrO含有量が多すぎると、密度が上昇してしまう。SrO含有量は、0~15質量%であり、より好ましくは0~10質量%、さらに好ましくは0~9質量%、一層好ましくは0~8質量%、より一層好ましくは0~3質量%、さらに一層好ましくは0~2質量%、尚一層好ましくは0~1質量%、さらに尚一層好ましくは0~0.5質量%の範囲である。ガラスの密度を低下させたい場合には、SrOは実質的に含有させないことが好ましい。
 本発明の第1の態様のガラス基板において、BaOは、比抵抗を低下させ、熔解性を向上させる成分である。BaOは、必須ではないが、含有させると、耐失透性及び熔解性が向上する。また、熱膨張係数及び密度も増大してしまう。BaO含有量は、好ましくは0~3質量%、より好ましくは0~1.5 質量%未満、さらに好ましくは0~1質量%、一層好ましくは0~0.5質量%未満、尚一層好ましくは0~0.1質量%未満である。BaOは、環境負荷の問題から、実質的に含有させないことが好ましい。
 本発明の第1の態様のガラス基板において、SrOとBaOは、比抵抗を低下させ、熔解性を向上させる成分である。必須ではないが、含有させると、耐失透性及び熔解性は向上する。しかし、含有量が多すぎると、密度が上昇してしまう。SrOとBaOの合量であるSrO+BaOは、密度を低減し、軽量化するという観点から、0~15質量%であり、好ましくは0~10質量%、より好ましくは0~9質量%、さらに好ましくは0~8質量%、一層好ましくは0~3質量%、より一層好ましくは0~2質量%、さらに一層好ましくは0~1質量%、尚一層好ましくは0~0.5質量%、さらに尚一層好ましくは0~0.1質量%未満の範囲である。ガラス基板の密度を低下させたい場合には、SrOとBaOは、実質的に含有させないことが好ましい。
 本発明の第1の態様のガラス基板において、Li2O、Na2O及びK2Oの合量であるR2Oは、ガラスの塩基性度を高め、清澄剤の酸化を容易にして、清澄性を発揮させる成分である。また、比抵抗を低下させ、熔解性を向上させる成分である。R2Oは、必須ではないが、含有させると、比抵抗が低下し、熔解性が向上する。さらに、ガラスの塩基性度が高くなり、清澄性が向上する。
 しかし、R2O含有量が多すぎると、ガラス基板から溶出してTFT特性を劣化させるおそれがある。また、熱膨張係数が増大する傾向がある。
 R2Oの合量であるLi2O+Na2O+K2Oは、好ましくは0~0.8質量%、より好ましくは0~0.5質量%、より好ましくは0~0.4質量%、さらに好ましくは0~0.3質量%、一層好ましくは0.01~0.8質量%、一層好ましくは0.01~0.3質量%、より一層好ましくは0.1~0.3質量%の範囲である。
 また、ガラスの比抵抗を確実に低下させたい場合、R2Oは、好ましくは0.1~0.8質量%、より好ましくは0.1~0.6質量%、より好ましくは0.2超~0.6質量%、さらに好ましくは0.2超~0.5質量%の範囲である。
 本発明の第1の態様のガラス基板において、Li2O及びNa2Oは、比抵抗を低下させ、熔解性を向上させる成分であるが、ガラス基板から溶出してTFT特性を劣化させたり、ガラスの熱膨張係数を大きくして熱処理時に基板を破損したりするおそれのある成分である。Li2O及びNa2Oの合量は、好ましくは0~0.2質量%、より好ましくは0~0.1質量%、さらに好ましくは0~0.05質量%、一層好ましくは実質的に含有しない。
 本発明の第1の態様のガラス基板において、K2Oは、ガラスの塩基性度を高め、清澄剤の酸化を容易にして、清澄性を発揮させる成分である。また、比抵抗を低下させ、熔解性を向上させる成分である。必須ではないが、含有させると、比抵抗は低下し、熔解性は向上する。さらに、清澄性も向上する。
 K2O含有量が多すぎると、ガラス基板から溶出してTFT特性を劣化させる傾向がある。また、熱膨張係数も増大する傾向がある。K2O含有量は、好ましくは0~0.8質量%、より好ましくは0~0.5質量%、さらに好ましくは0~0.3質量%、一層好ましくは0.1~0.3質量%の範囲である。
 本発明の第1の態様のガラス基板において、K2Oは、Li2OやNa2Oと比較して、分子量が大きいため、ガラス基板から溶出しにくい。そのため、R2Oを含有させる場合には、K2Oを含有させることが好ましい。つまり、K2Oは、Li2Oよりも高い比率で含有される(K2O>Li2Oを満たす)ことが好ましい。K2Oは、Na2Oよりも高い比率で含有される(K2O>Na2Oを満たす)ことが好ましい。
 Li2O及びNa2Oの割合が大きいと、ガラス基板から溶出してTFT特性を劣化させる傾向が強くなる。質量比K2O/R2Oは、好ましくは0.5~1であり、より好ましくは0.6~1であり、さらに好ましくは0.7~1、一層好ましくは0.75~1、さらに一層好ましくは0.8~1、より一層好ましくは0.9~1、より一層好ましくは0.95~1、より一層好ましくは0.99~1の範囲である。
 本発明の第1の態様のガラス基板において、ZrO2およびTiO2は、ガラスの化学的耐久性および耐熱性を向上させる成分である。ZrO2およびTiO2は、必須成分ではないが、含有させることで低温粘性特性温度(Tgおよび歪点を含む)の上昇および耐酸性向上を実現できる。しかし、ZrO2量およびTiO2量が多くなりすぎると、失透温度が著しく上昇するため、耐失透性および成形性が低下する場合がある。特に、ZrO2は、冷却過程でZrO2の結晶を析出する場合があり、これがインクルージョンとしてガラスの品質悪化を引き起こすことがある。以上の理由から、本発明のガラス基板では、ZrO2およびTiO2の含有率は、それぞれ、5質量%以下が好ましく、3質量%以下がより好ましく、2質量%以下がさらに好ましく、1質量%以下がさらに好ましく、0.5質量%未満がさらに好ましく、0.2質量%未満がさらに一層好ましい。さらに好ましくは、本発明のガラス基板が、ZrO2およびTiO2を実質的に含有しないことである。言い換えると、ZrO2およびTiO2の含有率は、それぞれ、0~5質量%が好ましく、0~3質量%がより好ましく、0~2質量%がさらに好ましく、0~1質量%がさらに好ましく、0~0.5質量%未満がさらに好ましく、0~0.2質量%未満がさらに一層好ましい。さらに好ましくは、本発明のガラス基板が、ZrO2およびTiO2を実質的に含有しないことである。
 本発明の第1の態様のガラス基板において、ZnOは、耐BHF性や熔解性を向上させる成分である。但し、必須ではない。
 ZnO含有量が多くなりすぎると、失透温度及び密度が上昇する傾向がある。また、歪点が低下する傾向がある。そのため、ZnO含有量は、好ましくは0~5質量%、より好ましくは0~3質量%、さらに好ましくは0~2質量%、一層好ましくは0~1質量%の範囲である。ZnOは実質的に含有しないことが好ましい。
 本発明の第1の態様のガラス基板において、ROとZnOとB2O3の合量であるRO+ZnO+B2O3は、 清澄性の指標となる。RO+ZnO+B2O3が少なすぎると、ガラスの熔融温度(高温粘性)が上昇し、清澄性が低下する。一方、多すぎると、歪点が低下する。RO+ZnO+B2O3は、好ましくは20質量%未満、より好ましくは5~20質量%未満、さらに好ましくは7~20質量%未満、一層好ましくは10~20質量%未満、さらに一層好ましくは14~20質量%未満、より一層好ましくは15~19質量%の範囲である。他方、失透温度を十分に低下させるためには、RO+ZnO+B2O3は、好ましくは30質量%未満、より好ましくは10~30質量%未満、さらに好ましくは14~30質量%未満、一層好ましくは14~25質量%未満、より一層好ましくは15~23質量%の範囲である。尚、RO+ZnO+B2O3は、上記清澄性等と失透温度の両方を考慮して適宜決定される。
 本発明の第1の態様のガラス基板において、P2O5は、熔融温度(高温粘性)を低下させ、熔解性を向上させる成分である。但し、必須ではない。P2O5含有量が多すぎると、ガラス熔解時のP2O5の揮発により、ガラスの不均質が顕著となり、脈理が発生しやすくなる。また、耐酸性が著しく悪化する。また、乳白が生じやすくなる。P2O5含有量は、好ましくは0~3質量%、より好ましくは0~1質量%、さらに好ましくは0~0.5質量%の範囲であり、実質的に含有しないことが特に好ましい。
 本発明の第1の態様のガラス基板において、B2O3とP2O5の合量であるB2O3+P2O5は、熔解性の指標となる。B2O3+P2O5が少なすぎると、熔解性が低下する傾向がある。多すぎると、ガラス熔解時のB2O3とP2O5の揮発により、ガラスの不均質が顕著となり、脈理が発生しやすくなる。また、歪点が低下する傾向もある。B2O3+P2O5は、好ましくは3~15質量%、より好ましくは3~11質量%未満、さらに好ましくは5~10質量%未満、一層好ましくは4~9質量%、より一層好ましくは5~9質量%、さらに一層好ましくは7~9質量%の範囲である。他方、失透温度を十分に低下させるためには、B2O3+P2O5は、好ましくは3~15質量%であり、好ましくは5~15質量%、よりましくは6~13質量%、さらにましくは7~11質量%未満である。尚、B2O3+P2O5は、熔解性等と失透温度の両方を考慮して適宜決定される。
 本発明の第1の態様のガラス基板において、CaO/ROは 熔解性と耐失透性の指標となる。CaO/ROは好ましくは0.05~1、より好ましくは0.1~1、さらに好ましくは0.5~1、一層好ましくは0.65~1、より一層好ましくは0.7~1、さらに一層好ましくは0.85~1、尚一層好ましくは0.9~1、さらに尚一層好ましくは0.95~1の範囲である。これらの範囲とすることで、耐失透性と熔解性を両立することができる。さらに、低密度化を図ることができる。また、原料として、複数のアルカリ土類金属を含有させるよりも、CaOのみを含有させた方が歪点を高める効果が高い。アルカリ土類金属酸化物としてCaOのみを原料として含有させた場合、得られるガラスのCaO/ROの値は、例えば0.98~1程度である。なお、アルカリ土類金属酸化物としてCaOのみを原料として含有させた場合でも、得られるガラスには、他のアルカリ土類金属酸化物が不純物として含まれる場合がある。
 本発明の第1の態様のガラス基板において、SiO2 の含有量からAl2O3の含有量の1/2を引いた差であるSiO2-1/2Al2O3の値を、60質量%以下とすることにより、ガラスのスリミングを行うために十分なエッチングレートを有するガラス基板を得ることができるので好ましい。なお、エッチングレートを高くするために、SiO2-1/2Al2O3の値を小さくしすぎると、失透温度が上昇してしまう傾向がある。また、歪点を十分に高くできない場合もあるため、SiO2-1/2Al2O3の値が40質量%以上であることが好ましい。以上のことから、SiO2-1/2Al2O3の値が40~60質量%であることが好ましく、45~60質量%であることがより好ましく、45~58質量%であることがさらに好ましく、45~57質量%であることが一層好ましく、45~55質量%であることがさらにより一層好ましく、49~54質量%であることがさらに一層好ましい。 
 また、生産性よくエッチング(スリミング)を行うために、本発明の第1の態様のガラス基板を構成するガラスはエッチングレートが50μm/h以上であることが好ましい。一方、過度にエッチングレートが高いと、パネル作製工程での薬液との反応で不都合が生じる虞があるため、ガラス基板を構成するガラスのエッチングレートは160μm/h以下であることが好ましい。エッチングレートは好ましくは55~140μm/h、より好ましくは60~140μm/h 、さらに好ましくは60~120μm/h、一層好ましくは70~120μm/hである。本発明においては、上記エッチングレートは以下の条件で測定したものと定義する。
 本発明の第1の態様のガラス基板を構成するガラスは清澄剤を含むことができる。清澄剤としては、環境への負荷が小さく、ガラスの清澄性に優れたものであれば特に制限されないが、例えば、Sn、Fe、Ce、Tb、MoおよびWの金属酸化物の群から選ばれる少なくとも1種を挙げることができる。清澄剤としては、SnO2が好適である。清澄剤の添加量は、少なすぎると、泡品質が悪化し、含有量が多くなりすぎると、失透や着色などの原因となる場合がある。清澄剤の添加量は、清澄剤の種類やガラスの組成にもよるが、例えば、0.05~1 質量%、好ましくは0.05~0.5質量%、より好ましくは0.1~0.4質量%の範囲とすることが適当である。尚、本発明において必須成分であるFe2O3は清澄剤として用いることも可能であり、単独で用いるのではなく、SnO2と併用することが好ましく、SnO2の清澄効果を補助することができる。
 本発明の第1の態様のガラス基板を構成するガラスはPbO及びFは実質的に含有しないことが好ましい。PbO及びFは環境上の理由から含まないことが好ましい。
 本発明の第1の態様のガラス基板を構成するガラスは、清澄剤として金属酸化物を使用することが好ましい。前記金属酸化物の清澄性を高めるためには、ガラスを酸化性にすることが好ましくが、還元性の原料(例えば、アンモニウム塩、塩化物)を使用することで、前記金属酸化物の清澄性は低下する。前記還元性の原料を用いるとガラス中にNH4 +やClが残存するという観点からNH4 +の含有量が4×10-4%未満であることが好ましく、0~2×10-4%未満であることがよりに好ましく、実質的に含有しないことがさらに好ましい。また、本発明のガラスは、Clの含有量が0.1%未満であることが好ましく、0~0.1%未満であることがよりに好ましく、0~0.05%未満であることがさらにに好ましく、0~0.01%未満であることが一層に好ましく、実質的に含有しないことが尚一層好ましい。なお、上記NH4 +及びClは清澄効果を期待して、アンモニウム塩および塩化物(特に塩化アンモニウム)としてガラス原料に用いられることでガラス中に残存する成分であるが、環境上および設備腐食の理由からも、これらの原料の使用は好ましくない。
 ガラス基板は、歪点やTgで代表される低温粘性特性温度が低いと、熱処理工程(ディスプレイ製造時)において熱収縮が大きくなる。本発明の第1の態様のガラス基板を構成するガラスの歪点[℃]は、665℃以上であり、675℃以上が好ましい。また、歪点[℃]は、好ましくは680℃以上、より好ましくは685℃以上、さらに好ましくは688℃以上、一層好ましくは690℃以上、より一層好ましくは695℃以上、尚一層好ましくは700℃以上である。低温粘性特性という観点からは、本発明のガラスの歪点[℃]の上限はないが、実用上の目安としては例えば、750℃以下であり、好ましくは745℃以下、より好ましくは740℃以下である。但し、この上限に限定される意図ではない。ガラスの歪点は、上記本発明のガラス基板のガラスの組成の説明を参照して、ガラス組成を調整することで、所望の値にすることができる。
 また、本発明の第1の態様のガラス基板を構成するガラスはTg[℃]が、好ましくは720℃以上、より好ましくは730℃以上、さらに好ましくは740℃以上、さらに好ましくは745℃以上、一層好ましくは750℃以上である。Tgが低くなると、耐熱性が低下する傾向がある。また、ディスプレイ製造時の熱処理工程においてガラス基板の熱収縮が生じやすくなる傾向もある。耐熱性および熱収縮の観点からは、本発明のガラスのTg[℃]の上限はないが、実用上の目安としては例えば、800℃以下であり、好ましくは795℃以下、より好ましくは790℃以下である。但し、この上限に限定される意図ではない。ガラスのTgを上記範囲にするには、本発明のガラス基板の組成の範囲において、Tgを高める、例えば、SiO2及びAl2O3等の成分を多めにすることが適当である。
 本発明の第1の態様のガラス基板を構成するガラスは密度[g/cm3]が、ガラス基板の軽量化及びディスプレイの軽量化という観点から、好ましくは2.5g/cm3以下、より好ましくは2.45g/cm3以下、さらに好ましくは2.42g/cm3以下、一層好ましくは2.4g/cm3以下である。密度が高くなると、ガラス基板の軽量化が困難となり、ディスプレイの軽量化も図れなくなる。
 さらに、本発明の第1の態様のガラス基板を構成するガラスの粘性は、ガラス熔解時における条件によっても変化する。同一組成のガラスであっても、熔解条件の違いにより、ガラス中の含水量が異なり、例えば、約1~10℃の範囲で歪点が変化することがある。従って、所望の歪点を有するガラスを得るには、ガラス組成を調整するとともに、ガラス熔解時におけるガラス中の含水量も調整する必要がある。
 ガラス中の含水量の指標であるβ-OH値は、原料の選択により調整することができる。例えば、含水量の高い原料( 例えば水酸化物原料) を選択したり、塩化物等のガラス中の水分量を減少させる原料の含有量を調整したりすることで、β-OH値を増させることができる。また、ガラス熔解に用いるガス燃焼加熱(酸素燃焼加熱)と直接通電加熱の比率を調整することでβ-OH値を調整することができる。さらに、炉内雰囲気中の水分量を増加させたり、熔解時に熔融ガラスに対して水蒸気をバブリングしたりすることで、β-OH値を増加させることができる。
 なおガラスのβ-OH値[mm-1]はガラスの赤外線吸収スペクトルにおいて次式によって求められる。
β-OH値=(1/X)log 10(T1/T2)
   X  : ガラス肉厚(mm)
   T1 : 参照波長2600nm における透過率(%)
   T2 : 水酸基吸収波長2800nm付近における最小透過率(%)
 ガラスの水分量の指標であるβ-OH値は、値が小さいほど歪点が高く、熱処理工程(ディスプレイ製造時)において熱収縮が小さくなる傾向にある。他方、β-OH値が大きいほど、熔融温度(高温粘性)を低下させる傾向にある。
 低収縮率と熔解性を両立するために、本発明の第1の態様のガラス基板を構成するガラスのβ-OH値は、0.05~0.40mm-1とすることが好ましく、0.10~0.35mm-1がより好ましく、0.10~0.30mm-1がさらに好ましく、0.10~0.25mm-1がさらに好ましく、0.10~0.20mm-1が一層好ましく、0.10~0.15mm-1がより一層好ましい。
 本発明の第1の態様のガラス基板を構成するガラスは失透温度[℃]が、好ましくは1330℃未満、より好ましくは1300℃未満、さらに好ましくは1250℃以下、一層好ましくは1230℃以下、より一層好ましくは1220℃以下、さらに一層好ましくは1210℃以下である。失透温度が1300℃未満であれば、フロート法でガラス板の成形がしやすくなる。失透温度が1250℃以下であれば、ダウンドロー法でガラス板の成形がしやすくなる。ダウンドロー法を適用することで、ガラス基板の表面品質を向上できる。また、生産コストも低減することができる。失透温度が高すぎると、失透が生じやすく、耐失透性が低下する。また、ダウンドロー法に適用できなくなる。他方、熱収縮率や密度のなどのフラットパネルディスプレイ用基板の特性を考慮すると、本発明の第1の態様のガラス基板を構成するガラスは失透温度が、好ましくは1050~1300℃未満、より好ましくは1110~1250℃、さらに好ましくは1150~1230℃、一層好ましくは1160~1220℃、より一層好ましくは1170~1210℃である。
 本発明の第1の態様のガラス基板を構成するガラスは熱膨張係数(100-300℃)[×10-7℃]が、好ましくは39×10-7℃未満、より好ましくは38×10-7℃未満、さらに好ましくは37×10-7℃未満、一層好ましくは28~36×10-7℃未満、より一層好ましくは30~35×10-7℃未満、さらに一層好ましくは31~34.5×10-7℃、尚一層好ましくは32~34×10-7℃の範囲である。熱膨張係数が大きいと、ディスプレイ製造時の熱処理工程において、熱衝撃や熱収縮量が増大する傾向がある。他方、熱膨張係数が小さいと、他のガラス基板上に形成される金属、有機系接着剤などの周辺材料と熱膨張係数との整合がとりにくくなり、周辺部剤が剥離してしまう場合がある。また、ディスプレイ製造工程では、急加熱と急冷が繰り返され、ガラス基板にかかる熱衝撃は大きくなる。さらに、大型のガラス基板は、熱処理工程において、温度差(温度分布)がつきやすく、ガラス基板の破壊確率が高くなる。熱膨張係数を上記範囲とすることで、熱膨張差から生じる熱応力を低減することができ、結果として、熱処理工程において、ガラス基板の破壊確率が低下する。つまり、熱膨張係数を上記範囲とすることは、幅方向2000~3500mmであり、縦方向が2000~3500mmであるガラス基板について、ガラス基板の破壊確率が低下させるという観点から、特に有効である。なお、ガラス基板上に形成される金属、有機系接着剤などの周辺材料と熱膨張係数との整合が重視させる観点からは、熱膨張係数(100-300℃)が40×10-7℃未満であることが好ましく、28~40×10-7℃未満であることがより好ましく、30~39×10-7℃未満であることがさらに好ましく、32~38×10-7℃未満であることが一層好ましく、34~38×10-7℃未満であることがより一層好ましい。
 本発明の第1の態様のガラス基板は熱収縮率 [ppm]が、好ましくは75ppm以下であり、65ppm以下であることが好ましい。さらに、熱収縮率が、好ましくは60ppm以下、より好ましくは55ppm以下、さらに好ましくは50ppm以下、一層好ましくは48ppm以下、より一層好ましくは45ppm以下である。より詳細には、熱収縮率は0~75ppmであることが好ましく、より好ましくは0~65ppm、さらに好ましくは0~60ppm、一層好ましくは0~55ppm、より一層好ましくは0~50ppm、さらに一層好ましくは0~45ppmである。熱収縮率(量)が大きくなると、画素の大きなピッチズレの問題を引き起こし、高精細なディスプレイを実現できなくなる。熱収縮率(量)を所定範囲に制御するためには、ガラスの歪点を680℃以上にすることが好ましい。熱収縮率(量)は最も好ましくは0ppmであるが、熱収縮率を0ppmにしようとすると、徐冷工程を極めて長くすることや、徐冷工程後に熱収縮低減処理(オフラインアニール)を施すことが求められるが、この場合、生産性が低下し、コストが高騰してしまう。生産性およびコストを鑑みると、熱収縮率は、例えば、3~75ppmであることが好ましく、より好ましくは5~75ppm、さらに好ましくは5~65ppm、一層好ましくは5~60ppm、より一層好ましくは8~55ppm、さらに一層好ましくは8~50ppm、さらに一層好ましくは15~45ppmである。
 尚、熱収縮率は、昇降温速度が10℃/min、550℃で2時間保持の熱処理が施された後の下記式で示される。
熱収縮率(ppm)={熱処理前後のガラスの収縮量/熱処理前のガラスの長さ}×106
 本発明の第1の態様のガラス基板の熱収縮率は、熱収縮率の測定対象であるガラス基板を上記熱処理に供した後に測定されるものである。但し、本発明の第1の態様のガラス基板の熱収縮率は、熱収縮率の測定対象であるガラス基板を、実施例における熱収縮測定用試料ガラス基板の調製で示したように、Tgで30分保持した後、Tg-100℃まで100℃/minで冷却し、室温まで放冷する徐冷操作を行った後に前記熱処理を施して得た値であることもできる。ダウンドロー法等の連続式の方法で製造されたガラス基板については、冷却条件が異なることがあり、上記Tg保持後の冷却処理を施した後に熱収縮率を測定することで、同じ条件における熱収縮率の値を得ることができる。
 本発明第1の態様のガラス基板は、熱収縮率が75ppm以下であり、好ましくは65ppm以下、より好ましくは60ppm以下のガラス基板であり、かつSiO2 52~78質量%、Al2O33~25質量%、B2O3 3~15質量%、RO(但し、ROはMgO、CaO、SrO及びBaOの合量) 3~25、より好ましくは3~13質量%、Fe2O3 0.01~1質量%を含有し、Sb2O3は実質的に含有せず、かつAs2O3は実質的に含有しないガラスからなる、p-Si・TFTフラットパネルディスプレイ用ガラス基板(本発明の第2の態様のガラス基板)も包含する。ガラス基板の熱収縮率は、75ppm以下であり、好ましくは65ppm以下であることが好ましい。さらに、熱収縮率は、好ましくは60ppm以下、より好ましくは55ppm以下、さらに好ましくは50ppm以下、一層好ましくは48ppm以下、より一層好ましくは45ppm以下、さらに一層好ましくは40ppm以下である。Fe2O3 含有量は0.01~1質量%であるが、好ましくは0.01~0.5質量%、より好ましくは0.01~0.2質量%、さらに好ましくは0.01~0.1質量%、一層好ましくは0.02~0.07質量%の範囲である。
 本発明の第2の態様のガラス基板は、環境負荷の問題から、Sb2O3は実質的に含有せず、かつAs2O3も実質的に含有しないガラスからなる。
 熱収縮率が75ppm以下であり、好ましくは65ppm以下、より好ましくは60ppm以下であり、かつFe2O3 0.01~1質量%を含有するガラスからなる本発明の第2の態様のp-Si・TFTフラットパネルディスプレイ用ガラス基板は、画素の重大なピッチズレの問題を引き起こすことなく、かつ熔融ガラスの比抵抗を低下させることができ、直接通電加熱による熔解において熔解槽熔損の問題の発生を回避することが可能である。本発明の第2の態様のガラス基板の上記以外のガラス組成及び物性等は、本発明の第1の態様のガラス基板と同様であることができる。
 本発明の第1および第2の態様のガラス基板を構成するガラスは、熔融温度が、好ましくは1680℃以下、より好ましくは1650℃以下、さらに好ましくは1640℃以下、一層好ましくは1620℃以下である。熔融温度が高いと、熔解槽への負荷が大きくなる。また、エネルギーを大量に使用するため、コストも高くなる。熔融温度を上記範囲にするには、本発明のガラス基板の組成の範囲において、粘性を低下させる、例えば、B2O3,RO等の成分を含有することが適当である。
 本発明の第1および第2の態様のガラス基板を構成するガラスは液相粘度(失透温度での粘度)が、104.0以上であり、好ましくは104.5~106.0 dPa・s、より好ましくは104.5~105. 9 dPa・s、さらに好ましくは104.6~105.8 dPa・s、一層好ましくは104.8~105.7 dPa・s、より一層好ましくは104.8~105.6 dPa・s、さらに一層好ましくは104.9~105.5の範囲である。これらの範囲内にあることで、p-Si・TFTフラットパネルディスプレイ用ガラス基板として必要な特性を有すると共に、成形時に失透結晶が発生し難くなるため、オーバーフローダウンドロー法でガラス基板を成形しやすくなる。これにより、ガラス基板の表面品位を向上できるとともに、ガラス基板の生産コストを低減することができる。本発明の第1および第2の態様のガラス基板を構成するガラスの組成の範囲において、各成分の含有量を適宜調整することで、ガラスの液相粘度を上記範囲にすることができる。
 本発明の第1および第2の態様のガラス基板を構成するガラスは、ガラス融液の比抵抗(1550℃における)[Ω・cm]が、好ましくは50~300Ω・cm、より好ましくは50~250Ω・cm、さらに好ましくは50~200Ω・cm、一層好ましくは100~200Ω・cmの範囲である。比抵抗が小さくなりすぎると、熔解に必要な電流値が過大になり、設備上の制約がでる場合がある。一方、比抵抗が大きくなりすぎると、電極の消耗が多くなる傾向もある。また、ガラスではなく、熔解槽を形成する耐熱煉瓦に電流が流れてしまい、熔解槽が熔損してしまう場合もある。熔融ガラスの比抵抗は、主に、本発明のガラスの必須成分であるROとFe2O3含有量をコントロールすることで、上記範囲に調整できる。
 本発明の第1および第2の態様のガラス基板はヤング率[GPa]が、好ましくは70GPa以上、より好ましくは73GPa以上、さらに好ましくは74GPa以上、一層好ましくは75GPa以上である。ヤング率が小さいと、ガラス自重によるガラスの撓みによって、ガラスが破損しやすくなる。特に幅方向2000mm以上の大型のガラス基板では、撓みによる破損の問題が顕著となる。ガラス基板のヤング率は、本発明のガラス基板の組成の範囲において、ヤング率を変動させる傾向が強い、例えば、Al2O3等の成分の含有量を調整することで、大きくすることができる。
 本発明の第1および第2の態様のガラス基板は比弾性率(ヤング率/密度)[GPa cm3g-1]が、好ましくは28GPa cm3 g-1以上、より好ましくは29GPa cm3 g-1以上、さらに好ましくは30GPa cm3 g-1以上、一層好ましくは31GPa cm3 g-1以上である。比弾性率が小さいと、ガラス自重によるガラスの撓みによって、ガラスが破損しやすくなる。特に幅方向2000mm以上の大型のガラス基板では、撓みによる破損の問題が顕著となる。
 本発明の第1および第2の態様のガラス基板は大きさには特に制限はない。幅方向は、例えば、500~3500mm、好ましくは1000~3500mm、より好ましくは2000~3500mmである。縦方向は、例えば、500~3500mm、好ましくは1000~3500mm、より好ましくは2000~3500mmである。大きいガラス基板を使用するほど、液晶ディスプレイや有機ELディスプレイの生産性が向上する。
 本発明の第1および第2の態様のガラス基板は板厚[mm]が、例えば、0.1~1.1mmの範囲であることができる。但し、この範囲に限定する意図ではない。板厚[mm]は、例えば、0.1~0.7mm、0.3~0.7mm、0.3~0.5mmの範囲であることもできる。ガラス板の厚さが薄すぎると、ガラス基板自体の強度が低下する。例えば、フラットパネルディスプレイ製造時の破損が生じやすくなる。板厚が厚すぎると、薄型化が求められるディスプレイには好ましくない。また、ガラス基板の重量が重くなるため、フラットパネルディスプレイの軽量化が図りがたくなる。
 本発明は、SiO2  57~75質量%、Al2O3  8~25質量%、B2O3  3~15質量%、RO(但し、ROはMgO、CaO、SrO及びBaOの合量) 3~25質量%、MgO 0~15質量%、CaO 0~20質量%、SrO及びBaOの合量 0~3質量%、Fe2O3  0.01~1質量%、Sb2O3  0~0.3質量%、を含有し、かつAs2O3は実質的に含有しないガラスからなる、p-Si・TFTフラットパネルディスプレイ用ガラス基板(本発明の第3の態様のガラス基板)を包含する。
 本発明の第3の態様のガラス基板の一例として、
SiO2 57~75質量%、
Al2O3 8~25質量%、
B2O3 3~10質量%未満、
RO(但し、ROはMgO、CaO、SrO及びBaOの合量)  3~25質量%、
MgO  0~15質量%、
CaO  0~20質量%、
SrO及びBaOの合量 0~30質量%、
Fe2O3  0.01~1質量%
を含有し、
Sb2O3は実質的に含有せず、かつAs2O3は実質的に含有しないガラスからなる、p-Si・TFTフラットパネルディスプレイ用ガラス基板を挙げることができる。
 本発明の第3の態様のガラス基板における各成分を含有する理由及び含有量や組成比の範囲について説明する。
 本発明の第3の態様のガラス基板におけるSiO2の含有量は57~75質量%の範囲である。
 SiO2は、ガラスの骨格成分であり、従って、必須成分である。含有量が少なくなると、耐酸性、耐BHF(バッファードフッ酸)及び歪点が低下する傾向がある。また、熱膨張係数が増加する傾向がある。また、SiO2含有量が少なすぎると、ガラス基板を低密度化するのが難しくなる。一方、SiO2含有量が多すぎると、ガラス融液の比抵抗が上昇し、熔融温度が著しく高くなり熔解が困難になる傾向がある。SiO2含有量が多すぎると、耐失透性が低下する傾向もある。このような観点から、SiO2の含有量は、57~75質量%の範囲とする。SiO2の含有量は、好ましくは58~72質量%、より好ましくは59~70質量%、さらに好ましくは61~69質量%、一層好ましくは62~67質量%の範囲である。他方、SiO2含有量が多すぎると、ガラスのエッチングレートが遅くなる傾向がある。ガラス板をスリミングする場合の速度を示すエッチングレートが十分に速いガラス基板を得るという観点からは、SiO2の含有量は、好ましくは57~75 質量%、より好ましくは57~70質量%、さらに好ましくは57~65質量%、一層好ましくは58~63質量%の範囲である。尚、SiO2含有量は、上記耐酸性等の特性とエッチングレートの両方を考慮して適宜決定される。
 本発明の第3の態様のガラス基板におけるAl2O3の含有量は 8~25質量%の範囲である。
 Al2O3は、分相を抑制し、かつ、歪点を高くする必須成分である。含有量が少なすぎると、ガラスが分相しやすくなる。また、歪点が低下する傾向にある。さらに、ヤング率及びエッチングレートも低下する傾向がある。Al2O3含有量が多すぎると、比抵抗が上昇する。また、ガラスの失透温度が上昇して、耐失透性が低下するので、成形性が悪化する傾向がある。このような観点から、Al2O3の含有量は 8~25質量%の範囲である。Al2O3の含有量は、好ましくは10~23質量%、より好ましくは12~21質量%、さらに好ましくは12~20質量%、一層好ましくは14~20質量%、より一層好ましくは15~19質量%の範囲である。他方、エッチングレートが十分に速いガラス基板を得るという観点からは、Al2O3の含有量は、好ましくは10~23質量%、より好ましくは12~23質量%、さらに好ましくは14~23質量%、一層好ましくは17~22質量%である。尚、Al2O3の含有量は、上記ガラスが分相特性等とエッチングレートの両方を考慮して適宜決定される。
 本発明の第3の態様のガラス基板におけるB2O3は、3~15質量%の範囲であり、より好ましくは3~10質量%の範囲である。
 B2O3は、ガラスの粘性を低下させ、熔解性および清澄性を改善する必須成分である。B2O3含有量が少なすぎると、熔解性及び耐失透性が低下すると共に、耐BHFが低下する。また、B2O3含有量が少なすぎると、比重が増加して低密度化が図りがたくなる。B2O3含有量が多すぎると、ガラス融液の比抵抗が上昇する。また、B2O3含有量が多すぎると、歪点が低下し、耐熱性が低下する。さらに、耐酸性及びヤング率が低下する。また、ガラス熔解時のB2O3の揮発により、ガラスの不均質が顕著となり、脈理が発生しやすくなる。このような観点から、B2O3含有量は、3~15質量%の範囲であり、好ましくは3~10質量%未満、より好ましくは4~9質量%、さらに好ましくは5~9質量%、一層好ましくは7~9質量%の範囲である。他方、失透温度を十分に低下させるためには、B2O3含有量は、好ましくは5~15質量%、よりましくは6~13質量%、さらにましくは7~11質量%未満である。尚、B2O3含有量は、上記熔解性等と失透温度の両方を考慮して適宜決定される。
 本発明の第3の態様のガラス基板におけるMgO、CaO、SrO及びBaOの合量であるROは、3~25質量%の範囲である。ROは、比抵抗を低下させ、熔解性を向上させる必須成分である。RO含有量が少なすぎると、比抵抗が上昇し、熔解性が悪化する。RO含有量が多すぎると、歪点及びヤング率が低下する。また、密度が上昇する。また、RO含有量が多すぎると、熱膨張係数が増大する傾向もある。このような観点から、ROは、3~25質量%の範囲であり、好ましくは3~16質量%、より好ましくは3~15質量%、さらに好ましくは3~14質量%、一層好ましくは3~13質量%、より一層好ましくは6~12質量%、尚一層好ましくは8~11質量%の範囲である。
 本発明の第3の態様のガラス基板におけるMgOは比抵抗を低下させ、熔解性を向上させる成分である。また、アルカリ土類金属の中では比重を増加させにくい成分であるので、その含有量を相対的に増加させると、低密度化を図りやすくなる。必須ではないが、含有させることで、熔解性を向上し、かつ切粉の発生を抑制できる。但し、MgOの含有量が多すぎると、ガラスの失透温度が急激に上昇するため、成形性が悪化(耐失透性が低下)する。また、MgOの含有量が多すぎると、耐BHF低下、耐酸性低下の傾向がある。特に、失透温度を低下させたい場合には、MgOは実質的に含有させないことが好ましい。このような観点から、MgO含有量は、0~15質量%、好ましくは0~10質量%、より好ましくは0~5質量%、さらに好ましくは0~4質量%、一層好ましくは0~3質量%、さらに好ましくは0~2質量%未満、一層好ましくは0~1質量%であり、最も好ましくは実質的に含有しないことである。
 本発明の第3の態様のガラス基板におけるCaOは、比抵抗を低下させ、ガラスの失透温度を急激に上げることなくガラスの熔解性を向上させるのに有効な成分である。また、アルカリ土類金属の中では比重を増加させにくい成分であるので、その含有量を相対的に増加させると、低密度化を図りやすくなる。必須ではないが、含有させることで、ガラス融液の比抵抗低下および熔融温度低下による熔解性向上が改善でき、さらに失透性も改善ができるので、CaOは含有させることが好ましい。
 一方、CaO含有量が多すぎると、歪点が低下する傾向がある。また、熱膨張係数増加及び密度上昇の傾向がある。CaO含有量は、好ましくは0~20質量%、より好ましくは0~15質量%、さらに好ましくは1~15質量%、一層好ましくは3.6~15質量%、より一層好ましくは4~14質量%、尚一層好ましくは5~12質量%、さらに一層好ましくは5~10質量%、さらに一層好ましくは6超~10質量%、最も好ましくは6超~9質量%の範囲である。
 本発明の第3の態様のガラス基板におけるSrOとBaOは、ガラス融液の比抵抗を低下させ、かつ熔融温度を低下させて、熔解性を向上させると共に失透温度の低下させる成分である。必須ではないが、含有させると、耐失透性及び熔解性は向上する。しかし、含有量が多すぎると、密度が上昇してしまう。SrOとBaOの合量であるSrO+BaOは、密度を低減し、軽量化するという観点から、0~15質量%であり、好ましくは0~10質量%、より好ましくは0~9質量%、一層好ましくは0~8質量%、より一層好ましくは0~3質量%、さらに一層好ましくは0~2質量%、尚一層好ましくは0~1質量%、さらに一層好ましくは0~0.5質量%、尚一層好ましくは0~0.1質量%未満の範囲である。ガラスの密度を低下させたい場合には、SrOとBaOは、実質的に含有させないことが好ましい。
 本発明の第3の態様のガラス基板におけるFe2O3の含有量は0.01~1質量%の範囲である。
 Fe2O3は、清澄剤としての働きを有する以外に、ガラス融液の比抵抗を低下させる必須成分である。熔融温度(高温粘性)が高く、難熔なガラスにおいては、上記所定量のFe2O3を含有させることで、ガラス融液の比抵抗を低下させることができ、直接通電加熱による熔解において熔解槽熔損の問題の発生を回避しつつガラスの熔解が可能になる。しかし、Fe2O3含有量が多くなりすぎると、ガラスが着色し、透過率が低下する。そこで、Fe2O3含有量は、0.01~1質量%の範囲であり、好ましくは0.01~0.5質量%、より好ましくは0.01~0.4質量%、さらに好ましくは0.01~0.3質量%、一層好ましくは0.01~0.2質量%、より一層好ましくは0.01~0.1質量%、さらに一層好ましくは0.02~0.07質量%の範囲である。
 本発明の第3の態様のガラス基板は、環境負荷を低減するという観点から、Sb2O3は0~0.3質量%であることが好ましく、0~0.1質量%であることがより好ましい。また、本発明の第3の態様のガラス基板は、環境負荷をより低減するという観点から、Sb2O3は実質的に含有せず、かつAs2O3も実質的に含有しないことがさらに好ましい。
 本発明の第3の態様のガラス基板の上記以外のガラス組成、物性および大きさ等は、本発明の第1の態様のガラス基板と同様であることができる。
 本発明のガラス基板(本発明の第1~3の態様のガラス基板に共通)は、フラットパネルディスプレイ用ガラス基板、特にp-Si・TFTが表面に形成されるフラットパネルディスプレイ用ガラス基板に好適である。具体的には、液晶ディスプレイ用ガラス基板、有機ELディスプレイ用ガラス基板に好適である。特に、p-Si・TFT液晶ディスプレイ用ガラス基板に好適である。中でも、高精細が求められる携帯端末などのディスプレイ用ガラス基板に好適である。
<p-Si・TFTフラットパネルディスプレイ用ガラス基板の製造方法>
 本発明のp-Si・TFTフラットパネルディスプレイ用ガラス基板(本発明の第1の態様のガラス基板)の製造方法は、
SiO2 52~78質量%、
Al2O33~25質量%、
B2O33~15質量%、
RO(但し、ROはMgO、CaO、SrO及びBaOの合量) 3~25質量%、
Fe2O30.01~1質量%、
Sb2O30~0.3質量%、
を含有し、かつAs2O3は実質的に含有せず、
質量比(SiO2+Al2O3)/B2O3は7~30の範囲であり、かつ質量比(SiO2+Al2O3)/ROは6以上のガラスとなるように調合したガラス原料を少なくとも直接通電加熱を用いて熔解して熔融ガラスを得る熔解工程と、
前記熔融ガラスを平板状ガラスに成形する成形工程と、
前記平板状ガラスを徐冷する徐冷工程と、を有する。
 また、本発明の第1の態様のガラス基板の製造方法は、一例として、
SiO2 52~78質量%、
Al2O33~25質量%、
B2O33~15質量%、
RO(但し、ROはMgO、CaO、SrO及びBaOの合量) 3~13質量%、
Fe2O30.01~1質量%
を含有し、Sb2O3は実質的に含有せず、かつAs2O3は実質的に含有せず、
質量比(SiO2+Al2O3)/B2O3は8.9~20の範囲であり、かつ質量比(SiO2+Al2O3)/ROは7.5以上のガラスとなるように調合したガラス原料を少なくとも直接通電加熱を用いて熔解して熔融ガラスを得る熔解工程と、前記熔融ガラスを平板状ガラスに成形する成形工程と、
前記平板状ガラスを徐冷する徐冷工程と、を有するガラス基板の製造方法を包含する。
 本発明の第2及び3の態様のガラス基板も上記本発明の第1の態様のガラス基板と同様の工程を経て製造することができる。但し用いるガラス原料は、本発明の第2の態様のガラス基板の製造においては、SiO2 52~78質量%、Al2O33~25質量%、B2O3 3~15質量%、RO(但し、ROはMgO、CaO、SrO及びBaOの合量) 3~13質量%、Fe2O3 0.01~1質量%を含有し、Sb2O3は実質的に含有しない、かつAs2O3は実質的に含有しないガラスとなるようなガラス原料である。本発明の第3の態様のガラス基板の製造においては、SiO2 57~75質量%、Al2O38~25質量%、B2O3 3~15質量%、RO(但し、ROはMgO、CaO、SrO及びBaOの合量) 3~25質量%、MgO 0~15質量%、CaO 0~20質量%、SrO及びBaOの合量 0~3質量%、Fe2O3 0.01~1質量%、Sb2O3 0~0.3質量%、を含有し、かつAs2O3は実質的に含有しないガラスとなるようなガラス原料である。また、本発明の第3の態様のガラス基板の製造方法の一例においては、SiO2 57~75質量%、Al2O3 8~25質量%、B2O3 3~10質量%未満、RO(但し、ROはMgO、CaO、SrO及びBaOの合量) 3~25質量%、MgO  0~15質量%、CaO  0~20質量%、SrO及びBaOの合量 0~3質量%、Fe2O3 0.01~1質量%を含有し、Sb2O3は実質的に含有せず、かつAs2O3は実質的に含有しないガラスとなるようなガラス原料である。
[熔解工程]
 熔解工程においては、所定のガラス組成となるように調合したガラス原料を少なくとも直接通電加熱を用いて熔解する。ガラス原料は、公知の材料から適宜選択できる。ガラス融液の1550℃における比抵抗が、50~300Ω・cmの範囲となるように、ガラス組成、特に、Fe2O3の含有量を調整することが好ましい。ROの含有量を3~15質量%、Fe2O3の含有量を0.01~1質量%の範囲とすることで、1550℃における比抵抗を上記範囲内とすることができる。
 また、ガラス基板のβ-OHの値が0.05~0.4mm-1となるように、熔解工程を調整することが好ましい。尚、本発明の第2の態様のガラス基板の製造においては、ROを3~13質量%の範囲で調整できる。
[成形工程]
 成形工程では、熔解工程にて熔解した熔融ガラスを平板状ガラスに成形する。平板状ガラスへの成形方法は、例えば、ダウンドロー法、特にオーバーフローダウンドロー法が好適である。その他、フロート法、リドロー法、ロールアウト法などを適用できる。ダウンドロー法を採用することにより、フロート法など他の成形方法を用いた場合に比べ、得られたガラス基板の主表面が熱間成形された表面であるために、極めて高い平滑性を有しており、成形後のガラス基板表面の研磨工程が不要となるために、製造コストを低減することができ、さらに生産性も向上させることができる。さらに、ダウンドロー法を使用して成形したガラス基板の両主表面は均一な組成を有しているために、エッチング処理を行った際に、均一にエッチングを行うことができる。加えて、ダウンドロー法を使用して成形することで、マイクロクラックのない表面状態を有するガラス基板を得ることができるため、ガラス基板自体の強度も向上させることができる
[徐冷工程]
 徐冷時の条件を適宜調整することでガラス基板の熱収縮率をコントロールすることができる。ガラス基板の熱収縮率は上述のように、75ppm以下、より好ましくは60ppm以下であることが好ましく、75ppm以下、より好ましくは60ppm以下のガラス基板を製造するためには、例えば、ダウンドロー法を使用する場合は、平板状ガラスの温度を、TgからTg-100℃の温度範囲を20~120秒で冷却するように、成形を行うことが望ましい。20秒未満であると、熱収縮量を十分低減することができない場合がある。一方、120秒を超えると、生産性が低下すると共に、ガラス製造装置(徐冷炉)が大型化してしまう。あるいは、平板状ガラスの平均の冷却速度を、TgからTg-100℃の温度範囲において、50~300℃/分とするように徐冷(冷却)を行うことが好ましい。冷却速度が、300℃/分を超えると、熱収縮量を十分低減することができない場合がある。一方、50℃/分未満であると、生産性が低下すると共に、ガラス製造装置(徐冷炉)が大型化してしまう。冷却速度の好ましい範囲は、50~300℃/分であり、50~200℃/分がより好ましく、60~120℃/分がさらに好ましい。他方、徐冷工程後に熱収縮低減処理(オフラインアニール)工程を別途設けることで、熱収縮率を小さくすることもできる。しかし、徐冷工程とは別にオフラインアニール工程を設けると、生産性が低下し、コストが高騰してしまうという問題点がある。そのため、上述したように、徐冷工程において平板状ガラスの冷却速度を制御するという熱収縮低減処理(オンラインアニール)を施すことによって、熱収縮率を所定範囲内におさめることがより好ましい。
 以上、本発明のガラス基板をp-Si・TFTフラットパネルディスプレイ用ガラス基板を例に説明したが、本発明の本発明のガラス基板は、フラットパネルディスプレイ用、特にp-Siフラットパネルディスプレイ用としても用いることができる。さらに、本発明のガラス基板は、酸化物半導体薄膜トランジスタフラットパネルディスプレイ用のガラスとしても用いることかできる。即ち、本発明のガラス基板は、基板表面に酸化物半導体薄膜トランジスタを形成して製造されるフラットディスプレイに用いることもできる。
 以下、本発明を実施例に基づいてさらに詳細に説明する。但し、本発明は実施例に限定されるものではない。
実施例1~34
 表1に示すガラス組成になるように、実施例1~34および比較例1~2の試料ガラスを以下の手順に従って作製した。得られた試料ガラスおよび試料ガラス基板について、失透温度、Tg、100~300℃の範囲における平均熱膨張係数(α)、熱収縮率、密度、歪点、熔解温度(粘度が102.5dPa・sの時のガラス温度、表1中ではT(log(η=2.5)と表示)、液相粘度、1550℃における比抵抗、エッチング速度を求め、表1に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-I000002
Figure JPOXMLDOC01-appb-I000003
Figure JPOXMLDOC01-appb-I000004
(試料ガラスの作製)
 まず、表1に示すガラス組成となるように、通常のガラス原料である、シリカ,アルミナ,酸化ホウ素,炭酸カリウム,塩基性炭酸マグネシウム,炭酸カルシウム,炭酸ストロンチウム,二酸化スズおよび三酸化二鉄を用いて、ガラス原料バッチ(以下バッチと呼ぶ)を調合した。なお、ガラスで400gとなる量で調合した。
 また、上記試料ガラスを切断、研削および研磨加工を施して、上下面が鏡面である30mm×40mm×0.7mmの試料ガラス基板を作製した。前記試料ガラス基板は、徐冷条件に影響されない、β-OHの測定に用いた。
 さらに、上記試料ガラスを切断、研削および研磨加工を施して、厚み0.7~4mm、幅5mm、長さ20mmの直方体とし、これをTgで30分保持した後、Tg-100℃まで100℃/minで冷却し、室温まで放冷することで、熱収縮測定用試料ガラス基板とした。
(歪点)
 前記試料ガラスを、3mm角、長さ55mmの角柱形状に切断・研削加工して、試験片とした。この試験片に対して、ビーム曲げ測定装置(東京工業株式会社製)を用いて測定を行い、ビーム曲げ法(ASTM C-598)に従い、計算により歪点を求めた。
(熱収縮率)
 熱収縮率は、前記熱収縮測定用試料ガラス基板を550℃で2時間の熱処理が施された後のガラス基板の収縮量を用いて、以下の式にて求めた。
熱収縮率(ppm)
  ={熱処理前後のガラスの収縮量/熱処理前のガラスの長さ}×106
 本実施例では、具体的に、以下の方法によって収縮量の測定を行った。
 前記熱収縮用試料ガラス基板について、示差熱膨張計(Thermo Plus2 TMA8310)を用い、室温から550℃まで昇温し、2時間保持した後、室温まで冷却し、熱処理前後での試料ガラスの収縮量を測定した。この時の、昇降温速度は10℃/minに設定した。
 (1550℃での比抵抗)
 前記試料ガラスの熔融時の比抵抗は、HP社製 4192A LF インピーダンス・アナライザーを用いて、四端子法にて測定し、前記測定結果より1550℃での比抵抗値を算出した。
 (失透温度の測定方法)
 前記試料ガラスを粉砕し、2380μmのふるいを通過し、1000μmのふるい上に留まったガラス粒を得た。このガラス粒をエタノールに浸漬し、超音波洗浄した後、恒温槽で乾燥させた。乾燥させたガラス粒を、幅12mm、長さ200mm、深さ10mmの白金ボート上に、前記ガラス粒25gをほぼ一定の厚さになるように入れた。この白金ボートを、1080~1320℃(あるいは1140℃~1380℃)の温度勾配をもった電気炉内に5時間保持し、その後、炉から取り出して、ガラス内部に発生した失透を50倍の光学顕微鏡にて観察した。失透が観察された最高温度を、失透温度とした。
 (100~300℃の範囲における平均熱膨張係数αおよびTgの測定方法)
 前記試料ガラスを、φ5mm、長さ20mmの円柱状に加工して、試験片とした。この試験片に対し、示差熱膨張計(Thermo Plus2 TMA8310)を用いて、昇温過程における温度と試験片の伸縮量を測定した。この時の昇温速度は5℃/minとした。前記温度と試験片の伸縮量との測定結果を元に100~300℃の温度範囲における平均熱膨張係数およびTgを得た。なお、本願でのTgとは、ガラス体を800℃に設定した別の電気炉の中で2時間保持した後、740℃まで2時間、更に660℃まで2時間で冷却後、その電気炉の電源を切り、室温まで冷却した試料ガラスについて測定した値である。
(密度)
 ガラスの密度は、アルキメデス法によって測定した。
(熔融温度)
 前記試料ガラスの高温粘性は、白金球引き上げ式自動粘度測定装置を用いて測定した。前記測定結果より、粘度102.5dPa・sの時の温度を算出し、熔融温度を得た。
(液相粘度)
 前記高温粘性の測定結果より、前記失透温度での粘性を算出し、液相粘度を得た。表1には、10ndPa・sで示される液相粘度の指数部分nのみを表示する、
(エッチング速度)
 実施例7および13に示すガラス組成となるよう調合したガラス原料を、耐火煉瓦製の熔解槽と白金合金製の調整槽(清澄槽)を備えた連続熔解装置を用いて、1560~1640℃で熔解し、1620~1670℃で清澄し、1440~1530℃で攪拌した後にオーバーフローダウンドロー法により厚さ0.7mmの薄板状に成形し、TgからTg-100℃の温度範囲内において、100℃/minの平均速度で徐冷を行い、液晶ディスプレイ用(有機ELディスプレイ用)ガラス基板を得た。なお、前記記載の各特性については、得られたガラス基板を用いて測定した。
 上記のように得られた実施例7の組成のガラス基板の熔解温度は1610℃、β-OH値は0.20mm-1で、Tgは754℃、歪点は697℃、熱収縮率は51ppmであり、他の特性は実施例7と同等であった。また、実施例13の組成のガラス基板の熔解温度は1585℃、β-OH値は0.21mm-1で、Tgは761℃、歪点は710℃、熱収縮率は31ppmであり、他の特性は実施例23と同等であった。上記のように、上記ガラス基板は720℃以上のTgと、1680℃以下の熔融温度とを有しており、高い低温粘性特性温度および良好な熔解性とが実現されていた。さらに、熱収縮率および失透温度も、本発明のガラス基板の条件を満たしていた。なお、上記のように得られたガラス基板は、実施例7、13よりも、β-OH値が0.09mm-1大きいため、実施例7、13と比較するとTgは2~3℃低くなるが、十分に高いTgを実現できている。 したがって、本実施例で得られたガラス基板は、p-Si・TFTが適用されるディスプレイにも用いることが可能な、優れた特性を備えたガラス基板であるといえる。
 本発明は、ディスプレイ用ガラス基板の製造分野に利用可能である。

Claims (22)

  1. SiO2 52~78質量%、
    Al2O33~25質量%、
    B2O33~15質量%、
    RO(但し、ROはMgO、CaO、SrO及びBaOの合量) 3~25質量%、
    Fe2O30.01~1質量%、
    Sb2O30~0.3質量%、
    を含有し、かつAs2O3は実質的に含有せず、
    質量比(SiO2+Al2O3)/B2O3は7~30の範囲であり、かつ質量比(SiO2+Al2O3)/ROは6以上
    であるガラスからなる、
    p-Si・TFTフラットパネルディスプレイ用ガラス基板。
  2. 前記ガラスが、Sb2O3を実質的に含有しない請求項1に記載のガラス基板。
  3. SiO2 52~78質量%、
    Al2O33~25質量%、
    B2O33~15質量%、
    RO(但し、ROはMgO、CaO、SrO及びBaOの合量) 3~13質量%、
    Fe2O3 0.01~1質量%、
    を含有し、Sb2O3は実質的に含有せず、かつAs2O3は実質的に含有せず、
    質量比(SiO2+Al2O3)/B2O3は8.9~20の範囲であり、かつ質量比(SiO2+Al2O3)/ROは7.5以上
    であるガラスからなる、
    p-Si・TFTフラットパネルディスプレイ用ガラス基板。
  4. SiO2含有量が58~72質量%であり、Al2O3含有量が10~23質量%であり、B2O3含有量が3~11質量%未満である、請求項1~3のいずれか1項に記載のガラス基板。
  5. SiO2及びAl2O3の合計含有量が75質量%以上であり、
    RO、ZnO及びB2O3の合計含有量が7~20質量%未満であり、かつ
    B2O3の含有量が3~11質量%未満である請求項1~4のいずれか1項に記載のガラス基板。
  6. 前記ガラスは歪点が688℃以上である請求項1~5のいずれか1項に記載のガラス基板。
  7. 前記ガラスはR2O(但し、R2Oは、Li2O、Na2O及びK2Oの合量)の含有量が0.01~0.8質量%であるガラスからなる請求項1~5のいずれか1項に記載のガラス基板。
  8. 前記ガラスはβ-OH値が0.05~0.4mm-1である、請求項1~7のいずれか1項に記載のガラス基板。
  9. 前記ガラスはZrO2の含有量が0.2質量%未満である、請求項1~8のいずれか1項に記載のガラス基板。
  10. 前記ガラスはSrO及びBaOの合計含有量が0~2質量%未満である、請求項1~9のいずれか1項に記載のガラス基板。
  11. SiO2 52~78質量%、
    Al2O33~25質量%、
    B2O33~15質量%、
    RO(但し、ROはMgO、CaO、SrO及びBaOの合量) 3~13質量%、
    Fe2O3 0.01~1質量%を含有し、
    Sb2O3は実質的に含有せず、かつAs2O3は実質的に含有しないガラスからなり、
    昇降温速度が10℃/min、550℃で2時間保持の熱処理が施された後の下記式で示される熱収縮率が75ppm以下である、
    p-Si・TFTフラットパネルディスプレイ用ガラス基板。
    (式)
    熱収縮率(ppm)={熱処理前後でのガラスの収縮量/熱処理前のガラスの長さ}×106
  12. 熱収縮率が60ppm以下である請求項11に記載のガラス基板。
  13. 前記熱収縮率は、ガラス基板をTgで30分保持した後、Tg-100℃まで100℃/minで冷却し、室温まで放冷する徐冷操作を行った後に前記熱処理を施して得た値である、請求項11又は12に記載のガラス基板。
  14. SiO2 57~75質量%、
    Al2O38~25質量%、
    B2O33~15質量%、
    RO(但し、ROはMgO、CaO、SrO及びBaOの合量) 3~25質量%、
    MgO 0~15質量%、
    CaO 0~20質量%、
    SrO及びBaOの合量 0~3質量%、
    Fe2O30.01~1質量%
    Sb2O30~0.3質量%、
    を含有し、
    As2O3は実質的に含有しないガラスからなる、
    p-Si・TFTフラットパネルディスプレイ用ガラス基板。
  15. SiO2 57~75質量%、
    Al2O38~25質量%、
    B2O33~10質量%未満、
    RO(但し、ROはMgO、CaO、SrO及びBaOの合量) 3~25質量%、
    MgO 0~15質量%、
    CaO 0~20質量%、
    SrO及びBaOの合量 0~3質量%、
    Fe2O3 0.01~1質量%
    を含有し、
    Sb2O3は実質的に含有せず、かつAs2O3は実質的に含有しないガラスからなる、
    p-Si・TFTフラットパネルディスプレイ用ガラス基板。
  16. TFT液晶ディスプレイ用である請求項1~15のいずれかに記載のガラス基板。
  17. SiO2 52~78質量%、
    Al2O33~25質量%、
    B2O33~15質量%、
    RO(但し、ROはMgO、CaO、SrO及びBaOの合量) 3~25質量%、
    Fe2O30.01~1質量%、
    Sb2O30~0.3質量%、
    を含有し、As2O3は実質的に含有せず、
    質量比(SiO2+Al2O3)/B2O3は7~30の範囲であり、かつ質量比(SiO2+Al2O3)/ROは6以上のガラスとなるように調合したガラス原料を少なくとも直接通電加熱を用いて熔解する熔工程と、
    前記熔融ガラスを平板状ガラスに成形する成形工程と、
    前記平板状ガラスを徐冷する徐冷工程と、を有する
    p-Si・TFTフラットパネルディスプレイ用ガラス基板の製造方法。
  18. SiO2 52~78質量%、
    Al2O33~25質量%、
    B2O33~15質量%、
    RO(但し、ROはMgO、CaO、SrO及びBaOの合量) 3~13質量%、
    Fe2O3 0.01~1質量%
    を含有し、Sb2O3は実質的に含有せず、かつAs2O3は実質的に含有せず、
    質量比(SiO2+Al2O3)/B2O3は8.9~20の範囲であり、かつ質量比(SiO2+Al2O3)/ROは7.5以上
    のガラスとなるように調合したガラス原料を少なくとも直接通電加熱を用いて熔解して熔融ガラスを得る熔解工程と、
    前記熔融ガラスを平板状ガラスに成形する成形工程と、
    前記平板状ガラスを徐冷する徐冷工程と、を有する
    p-Si・TFTフラットパネルディスプレイ用ガラス基板の製造方法。
  19. 前記熔融ガラスは、1550℃の融液における比抵抗は50~300Ω・cmである請求項17又は18に記載の製造方法。
  20.  前記徐冷工程において、平板状ガラスの冷却速度を制御して熱収縮率を低減させる熱収縮低減処理を施す、請求項17~19のいずれか1項に記載の製造方法。
  21. 前記徐冷工程において、平板状ガラスの中央部の冷却速度を、TgからTg-100℃の温度範囲内において、50~300℃/分とする熱収縮低減処理を施す、請求項20に記載の製造方法。
  22. SiO2 52~78質量%、
    Al2O33~25質量%、
    B2O33~15質量%、
    RO(但し、ROはMgO、CaO、SrO及びBaOの合量) 3~25質量%、
    Fe2O30.01~1質量%、
    Sb2O30~0.3質量%、
    を含有し、かつAs2O3は実質的に含有せず、
    質量比(SiO2+Al2O3)/B2O3は7~30の範囲であり、かつ質量比(SiO2+Al2O3)/ROは6以上あるガラスからなる、フラットパネルディスプレイ用ガラス基板。
PCT/JP2012/066737 2011-07-01 2012-06-29 フラットパネルディスプレイ用ガラス基板及びその製造方法 WO2013005679A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012530014A JP5172044B2 (ja) 2011-07-01 2012-06-29 フラットパネルディスプレイ用ガラス基板及びその製造方法
CN201280002211.8A CN103080031B (zh) 2011-07-01 2012-06-29 平面显示器用玻璃基板及其制造方法
KR1020127031516A KR101351112B1 (ko) 2011-07-01 2012-06-29 플랫 패널 디스플레이용 유리 기판 및 그 제조 방법
KR1020127031553A KR101528396B1 (ko) 2011-07-01 2012-06-29 플랫 패널 디스플레이용 유리 기판

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011147767 2011-07-01
JP2011-147767 2011-07-01
JP2012-059232 2012-03-15
JP2012059232 2012-03-15

Publications (1)

Publication Number Publication Date
WO2013005679A1 true WO2013005679A1 (ja) 2013-01-10

Family

ID=47437031

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/066737 WO2013005679A1 (ja) 2011-07-01 2012-06-29 フラットパネルディスプレイ用ガラス基板及びその製造方法

Country Status (6)

Country Link
US (2) US8932969B2 (ja)
JP (3) JP5172044B2 (ja)
KR (2) KR101528396B1 (ja)
CN (2) CN103080031B (ja)
TW (4) TWI597250B (ja)
WO (1) WO2013005679A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014118313A (ja) * 2012-12-14 2014-06-30 Nippon Electric Glass Co Ltd ガラス及びガラス基板
WO2014163130A1 (ja) * 2013-04-05 2014-10-09 日本電気硝子株式会社 ガラス基板及びその徐冷方法
JP2015034122A (ja) * 2013-07-11 2015-02-19 日本電気硝子株式会社 ガラス
JP2016102059A (ja) * 2015-12-25 2016-06-02 日本電気硝子株式会社 ガラス基板及びその製造方法
WO2016143665A1 (ja) * 2015-03-10 2016-09-15 日本電気硝子株式会社 ガラス基板
WO2016185976A1 (ja) * 2015-05-18 2016-11-24 日本電気硝子株式会社 無アルカリガラス基板
JP2016199467A (ja) * 2011-07-01 2016-12-01 AvanStrate株式会社 フラットパネルディスプレイ用ガラス基板及びその製造方法
JP2017007940A (ja) * 2016-08-22 2017-01-12 日本電気硝子株式会社 ガラス及びガラス基板
KR20170065614A (ko) * 2014-09-30 2017-06-13 코닝 인코포레이티드 유리 시트 내에 압축에 영향을 미치는 방법 및 유리 제조 시스템
JPWO2016063981A1 (ja) * 2014-10-23 2017-08-03 旭硝子株式会社 無アルカリガラス

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8697591B2 (en) 2006-12-14 2014-04-15 Ppg Industries Ohio, Inc. Low dielectric glass and fiber glass
US9156728B2 (en) 2006-12-14 2015-10-13 Ppg Industries Ohio, Inc. Low density and high strength fiber glass for ballistic applications
US7829490B2 (en) * 2006-12-14 2010-11-09 Ppg Industries Ohio, Inc. Low dielectric glass and fiber glass for electronic applications
US9056786B2 (en) 2006-12-14 2015-06-16 Ppg Industries Ohio, Inc. Low density and high strength fiber glass for ballistic applications
US9394196B2 (en) 2006-12-14 2016-07-19 Ppg Industries Ohio, Inc. Low density and high strength fiber glass for reinforcement applications
CN103204630B (zh) 2011-07-01 2020-06-09 安瀚视特控股株式会社 平面显示器用玻璃基板及其制造方法
CN107445450B (zh) * 2013-03-27 2020-09-11 安瀚视特控股株式会社 玻璃基板的制造方法及玻璃基板制造装置
CN103626395B (zh) * 2013-11-28 2016-01-06 中国建筑材料科学研究总院 一种高硼硅玻璃的制备方法、高硼硅玻璃及其应用
JP6354943B2 (ja) * 2013-12-24 2018-07-11 日本電気硝子株式会社 ガラス
WO2016194693A1 (ja) 2015-06-02 2016-12-08 日本電気硝子株式会社 ガラス
CN105621882A (zh) * 2015-12-30 2016-06-01 芜湖东旭光电装备技术有限公司 一种玻璃用组合物、低脆性化学强化玻璃及其制备方法和应用
TWI714698B (zh) * 2016-01-12 2021-01-01 日商日本電氣硝子股份有限公司 玻璃
WO2018116953A1 (ja) * 2016-12-20 2018-06-28 日本電気硝子株式会社 ガラス
JP7333159B2 (ja) * 2016-12-26 2023-08-24 日本電気硝子株式会社 無アルカリガラス基板の製造方法
JP6497407B2 (ja) 2017-03-31 2019-04-10 Agc株式会社 無アルカリガラス基板
JP7001987B2 (ja) * 2017-04-27 2022-01-20 日本電気硝子株式会社 ガラス基板
JP7197835B2 (ja) * 2017-12-20 2022-12-28 日本電気硝子株式会社 ガラス板の製造方法
WO2019181706A1 (ja) * 2018-03-20 2019-09-26 Agc株式会社 基板、液晶アンテナ及び高周波デバイス
JP7389400B2 (ja) * 2018-10-15 2023-11-30 日本電気硝子株式会社 無アルカリガラス板
CN109231819B (zh) * 2018-10-16 2021-04-09 东旭光电科技股份有限公司 无碱铝硅酸盐玻璃及其制备方法和应用
CN111217521B (zh) * 2020-03-10 2021-04-13 醴陵旗滨电子玻璃有限公司 铝硼硅酸盐玻璃及其制备方法
TW202319363A (zh) * 2021-06-28 2023-05-16 日商日本電氣硝子股份有限公司 無鹼玻璃板
CN115872617A (zh) * 2021-09-29 2023-03-31 成都光明光电股份有限公司 玻璃组合物
US11773006B1 (en) 2022-11-10 2023-10-03 Corning Incorporated Glasses for high performance displays

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002201040A (ja) * 2000-10-31 2002-07-16 Asahi Glass Co Ltd アルミノホウケイ酸ガラス
WO2003104157A1 (ja) * 2002-06-10 2003-12-18 旭硝子株式会社 ガラスおよびガラス製造方法
JP2004189535A (ja) * 2002-12-11 2004-07-08 Nippon Electric Glass Co Ltd 無アルカリガラス基板
JP2006265001A (ja) * 2005-03-22 2006-10-05 Asahi Glass Co Ltd ガラスおよびガラス製造方法
WO2009078421A1 (ja) * 2007-12-19 2009-06-25 Nippon Electric Glass Co., Ltd. ガラス基板
JP2009149512A (ja) * 1996-07-19 2009-07-09 Corning Inc ヒ素を含まないガラス
JP2009203080A (ja) * 2007-02-27 2009-09-10 Avanstrate Inc 表示装置用ガラス基板および表示装置
JP2010275167A (ja) * 2009-06-01 2010-12-09 Nippon Electric Glass Co Ltd ガラス基板の製造方法
JP2011126728A (ja) * 2009-12-16 2011-06-30 Avanstrate Inc ガラス組成物とそれを用いたフラットパネルディスプレイ用ガラス基板

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0564579A (ja) 1991-09-06 1993-03-19 Sumitomo Bakelite Co Ltd 細胞培養用具およびその表面加工方法
DE69508706T2 (de) * 1994-11-30 1999-12-02 Asahi Glass Co. Ltd., Tokio/Tokyo Alkalifreies Glas und Flachbildschirm
KR100262115B1 (ko) * 1995-09-28 2000-07-15 기시다 기요사쿠 무알칼리유리기판
JPH09278465A (ja) 1996-04-17 1997-10-28 Nippon Electric Glass Co Ltd 熱収縮率の小さいガラス基板の製造方法
SE9901100D0 (sv) 1999-03-24 1999-03-24 Amersham Pharm Biotech Ab Surface and tis manufacture and uses
US20050096209A1 (en) * 2002-06-10 2005-05-05 Asahi Glass Company, Limited Glass and method for producing glass
JP2003137591A (ja) 2002-11-06 2003-05-14 Nippon Electric Glass Co Ltd 無アルカリガラスの製造方法
JP4737709B2 (ja) * 2004-03-22 2011-08-03 日本電気硝子株式会社 ディスプレイ基板用ガラスの製造方法
JP2008105860A (ja) 2005-01-31 2008-05-08 Nippon Sheet Glass Co Ltd ガラスの製造方法
EP1911725A4 (en) * 2005-07-06 2010-07-07 Asahi Glass Co Ltd PROCESS FOR PRODUCING NON-ALKALI GLASS AND NON-ALKALI GLASS
JP4946216B2 (ja) 2005-07-06 2012-06-06 旭硝子株式会社 無アルカリガラスの製造方法
CN102249541B (zh) * 2005-08-15 2013-03-27 安瀚视特股份有限公司 玻璃组成物
JP5435394B2 (ja) * 2007-06-08 2014-03-05 日本電気硝子株式会社 強化ガラス基板及びその製造方法
US7709406B2 (en) * 2007-07-31 2010-05-04 Corning Incorporation Glass compositions compatible with downdraw processing and methods of making and using thereof
CN100551856C (zh) * 2007-11-30 2009-10-21 彩虹集团电子股份有限公司 无碱玻璃
JP5397593B2 (ja) * 2007-12-19 2014-01-22 日本電気硝子株式会社 ガラス基板
JP5327702B2 (ja) * 2008-01-21 2013-10-30 日本電気硝子株式会社 ガラス基板の製造方法
TWI414502B (zh) * 2008-05-13 2013-11-11 Corning Inc 含稀土元素之玻璃材料及基板及含該基板之裝置
RU2010154445A (ru) * 2008-05-30 2012-07-10 Фостер Вилер Энергия Ой (Fi) Способ и система для генерации энергии путем сжигания в чистом кислороде
JP5246605B2 (ja) * 2010-07-09 2013-07-24 日本電気硝子株式会社 液晶ディスプレイ用ガラス基板及び液晶ディスプレイ
KR101528396B1 (ko) * 2011-07-01 2015-06-11 아반스트레이트 가부시키가이샤 플랫 패널 디스플레이용 유리 기판
CN103204630B (zh) * 2011-07-01 2020-06-09 安瀚视特控股株式会社 平面显示器用玻璃基板及其制造方法
JP2013212943A (ja) * 2012-03-30 2013-10-17 Avanstrate Inc フラットパネルディスプレイ用ガラス基板の製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009149512A (ja) * 1996-07-19 2009-07-09 Corning Inc ヒ素を含まないガラス
JP2002201040A (ja) * 2000-10-31 2002-07-16 Asahi Glass Co Ltd アルミノホウケイ酸ガラス
WO2003104157A1 (ja) * 2002-06-10 2003-12-18 旭硝子株式会社 ガラスおよびガラス製造方法
JP2004189535A (ja) * 2002-12-11 2004-07-08 Nippon Electric Glass Co Ltd 無アルカリガラス基板
JP2006265001A (ja) * 2005-03-22 2006-10-05 Asahi Glass Co Ltd ガラスおよびガラス製造方法
JP2009203080A (ja) * 2007-02-27 2009-09-10 Avanstrate Inc 表示装置用ガラス基板および表示装置
WO2009078421A1 (ja) * 2007-12-19 2009-06-25 Nippon Electric Glass Co., Ltd. ガラス基板
JP2010275167A (ja) * 2009-06-01 2010-12-09 Nippon Electric Glass Co Ltd ガラス基板の製造方法
JP2011126728A (ja) * 2009-12-16 2011-06-30 Avanstrate Inc ガラス組成物とそれを用いたフラットパネルディスプレイ用ガラス基板

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016199467A (ja) * 2011-07-01 2016-12-01 AvanStrate株式会社 フラットパネルディスプレイ用ガラス基板及びその製造方法
JP2014118313A (ja) * 2012-12-14 2014-06-30 Nippon Electric Glass Co Ltd ガラス及びガラス基板
WO2014163130A1 (ja) * 2013-04-05 2014-10-09 日本電気硝子株式会社 ガラス基板及びその徐冷方法
JP2015034122A (ja) * 2013-07-11 2015-02-19 日本電気硝子株式会社 ガラス
KR102646604B1 (ko) * 2013-07-11 2024-03-13 니폰 덴키 가라스 가부시키가이샤 유리
KR20220021022A (ko) * 2013-07-11 2022-02-21 니폰 덴키 가라스 가부시키가이샤 유리
KR102419501B1 (ko) 2014-09-30 2022-07-11 코닝 인코포레이티드 유리 시트 내에 압축에 영향을 미치는 방법 및 유리 제조 시스템
KR20170065614A (ko) * 2014-09-30 2017-06-13 코닝 인코포레이티드 유리 시트 내에 압축에 영향을 미치는 방법 및 유리 제조 시스템
JP2019194157A (ja) * 2014-10-23 2019-11-07 Agc株式会社 無アルカリガラス
JP2019194156A (ja) * 2014-10-23 2019-11-07 Agc株式会社 無アルカリガラス
JPWO2016063981A1 (ja) * 2014-10-23 2017-08-03 旭硝子株式会社 無アルカリガラス
JP2016183091A (ja) * 2015-03-10 2016-10-20 日本電気硝子株式会社 ガラス基板
US10233113B2 (en) 2015-03-10 2019-03-19 Nippon Electric Glass Co., Ltd. Glass substrate
JP7004488B2 (ja) 2015-03-10 2022-01-21 日本電気硝子株式会社 ガラス基板
WO2016143665A1 (ja) * 2015-03-10 2016-09-15 日本電気硝子株式会社 ガラス基板
JPWO2016185976A1 (ja) * 2015-05-18 2018-03-08 日本電気硝子株式会社 無アルカリガラス基板
US10590026B2 (en) 2015-05-18 2020-03-17 Nippon Electric Glass Co., Ltd. Non-alkali glass substrate
WO2016185976A1 (ja) * 2015-05-18 2016-11-24 日本電気硝子株式会社 無アルカリガラス基板
JP2016102059A (ja) * 2015-12-25 2016-06-02 日本電気硝子株式会社 ガラス基板及びその製造方法
JP2017007940A (ja) * 2016-08-22 2017-01-12 日本電気硝子株式会社 ガラス及びガラス基板

Also Published As

Publication number Publication date
JP6329724B2 (ja) 2018-05-23
US9321671B2 (en) 2016-04-26
KR20140018087A (ko) 2014-02-12
KR101528396B1 (ko) 2015-06-11
TWI677479B (zh) 2019-11-21
US20140249019A1 (en) 2014-09-04
CN103204631B (zh) 2018-01-02
CN103204631A (zh) 2013-07-17
TWI469945B (zh) 2015-01-21
KR20130021398A (ko) 2013-03-05
JP2016199467A (ja) 2016-12-01
TWI597250B (zh) 2017-09-01
US20130029830A1 (en) 2013-01-31
KR101351112B1 (ko) 2014-01-14
TW201733945A (zh) 2017-10-01
JPWO2013005679A1 (ja) 2015-02-23
CN103080031A (zh) 2013-05-01
TW201323367A (zh) 2013-06-16
JP5172044B2 (ja) 2013-03-27
TW201307239A (zh) 2013-02-16
JP2013216561A (ja) 2013-10-24
US8932969B2 (en) 2015-01-13
JP6420282B2 (ja) 2018-11-07
TWI654155B (zh) 2019-03-21
CN103080031B (zh) 2015-12-09
TW201920026A (zh) 2019-06-01

Similar Documents

Publication Publication Date Title
JP6420282B2 (ja) フラットパネルディスプレイ用ガラス基板及びその製造方法
JP6375265B2 (ja) フラットパネルディスプレイ用ガラス基板及びその製造方法
TWI546269B (zh) Glass substrate for display and method for manufacturing the same
JP6348100B2 (ja) フラットパネルディスプレイ用ガラス基板およびその製造方法
TW201731787A (zh) 平面面板顯示器用玻璃基板及其製造方法
TWI518045B (zh) 平板顯示器用玻璃基板

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012530014

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 201280002211.8

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20127031516

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12807098

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12807098

Country of ref document: EP

Kind code of ref document: A1