WO2012176494A1 - 駆動システム及び駆動システムの制御方法 - Google Patents

駆動システム及び駆動システムの制御方法 Download PDF

Info

Publication number
WO2012176494A1
WO2012176494A1 PCT/JP2012/054396 JP2012054396W WO2012176494A1 WO 2012176494 A1 WO2012176494 A1 WO 2012176494A1 JP 2012054396 W JP2012054396 W JP 2012054396W WO 2012176494 A1 WO2012176494 A1 WO 2012176494A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaft
transmission
power
drive system
disconnecting
Prior art date
Application number
PCT/JP2012/054396
Other languages
English (en)
French (fr)
Inventor
庸浩 小林
光宏 岩垂
智史 小堂
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to US14/125,343 priority Critical patent/US9050974B2/en
Priority to CN201280028714.2A priority patent/CN103619624B/zh
Priority to DE112012002583.0T priority patent/DE112012002583T5/de
Priority to JP2013521483A priority patent/JP5753582B2/ja
Publication of WO2012176494A1 publication Critical patent/WO2012176494A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/40Controlling the engagement or disengagement of prime movers, e.g. for transition between prime movers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/543Transmission for changing ratio the transmission being a continuously variable transmission
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H29/00Gearings for conveying rotary motion with intermittently-driving members, e.g. with freewheel action
    • F16H29/02Gearings for conveying rotary motion with intermittently-driving members, e.g. with freewheel action between one of the shafts and an oscillating or reciprocating intermediate member, not rotating with either of the shafts
    • F16H29/04Gearings for conveying rotary motion with intermittently-driving members, e.g. with freewheel action between one of the shafts and an oscillating or reciprocating intermediate member, not rotating with either of the shafts in which the transmission ratio is changed by adjustment of a crank, an eccentric, a wobble-plate, or a cam, on one of the shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H29/00Gearings for conveying rotary motion with intermittently-driving members, e.g. with freewheel action
    • F16H29/22Gearings for conveying rotary motion with intermittently-driving members, e.g. with freewheel action with automatic speed change
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/26Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators
    • B60K2006/268Electric drive motor starts the engine, i.e. used as starter motor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors

Definitions

  • the present invention relates to a drive system and a drive system control method.
  • the foot shaft is a shaft that transmits power to the drive wheels, and is a shaft that transmits power to a differential device (differential device), for example.
  • the present invention is a drive system mounted on a hybrid vehicle, comprising an internal combustion engine, a first shaft coupled to an output shaft of the internal combustion engine, a second shaft, First connection / disconnection means for connecting / disconnecting transmission of power between the first shaft and the second shaft, a motor generator for driving the second shaft, a third shaft rotating integrally with a drive wheel, A first transmission for shifting the power of the second shaft, a one-way clutch for transmitting the power after the shift by the first transmission to the third shaft, a shift of the first connecting / disconnecting means and the first transmission Control means for controlling the ratio, and the first transmission includes a rotating part that rotates by a rotating motion of the second shaft, a swinging part that swings by a rotating motion of the rotating part, By changing the rotation radius of the rotating part, the angular velocity of the oscillating part A rotation radius variable mechanism that varies and changes a gear ratio, and the one-way clutch has a power in only one direction of the swinging portion when the ang
  • the motor generator operates as a motor
  • the power of the motor generator is transmitted to the third shaft via the second shaft and the first transmission
  • the control means causes the first connecting / disconnecting means to be disconnected, so that no power is transmitted between the first shaft and the second shaft.
  • the motor generator can drive the second shaft and the like without dragging the internal combustion engine, that is, without receiving the resistance of the stopped internal combustion engine.
  • the power of the motor generator is transmitted via the second shaft, the first connecting / disconnecting device, and the first shaft by setting the first connecting / disconnecting device in the connected state. Then, it is transmitted to the output shaft of the internal combustion engine, and the output shaft rotates. Since the output shaft rotates in this manner (since cranking starts in the embodiment described later), fuel is injected at an appropriate timing in response to the rotation of the output shaft, and the internal combustion engine is started, that is, the internal combustion engine.
  • the combustion cycle at can be started.
  • the power (torque) of the second shaft input to the first transmission slightly varies.
  • the first transmission converts the rotational movement of the second shaft into a swinging motion, and the angular velocity of the swinging portion in which the one-way clutch swings is equal to or higher than the rotational speed of the third shaft, Since power in only the direction is transmitted to the third shaft, that is, fluctuations in a region that is less than the engagement torque of the one-way clutch (torque that the one-way clutch locks) are not transmitted from the second shaft to the third shaft.
  • the shock to the third axis can be reduced.
  • control means when the internal combustion engine is started during EV traveling, the control means is configured so that the angular speed of the rocking portion is less than the rotational speed of the third shaft. It is preferable to control the gear ratio.
  • the control means controls the speed ratio of the first transmission so that the angular speed of the swinging portion is less than the rotational speed of the third shaft. To do.
  • the one-way clutch is unlocked and the power of the swinging portion is not transmitted to the third shaft. Therefore, no shock is transmitted to the third shaft as the engine starts.
  • the power of the third shaft bypasses the first transmission and the one-way clutch and is transmitted to the second shaft, and the power is transmitted via the bypass route.
  • Second connecting / disconnecting means for connecting / disconnecting, and the control means sets the second connecting / disconnecting means to a disconnected state during normal traveling, and sets the second connecting / disconnecting means to a connected state during decelerating traveling. preferable.
  • the control means when the hybrid vehicle is traveling normally (acceleration traveling, constant speed traveling), the control means causes the second connecting / disconnecting means to be disconnected, so that the power of the third shaft is detoured. It is not transmitted to the second axis via.
  • the control means places the second connecting / disconnecting means in the connected state, so that the power of the third axis is transmitted to the second axis via the detour path.
  • the power of the third shaft is transmitted to the second shaft and the second shaft rotates, so that the motor generator functions as a generator to generate regenerative power and charge this to a power storage device such as a high-voltage battery. it can.
  • the fuel consumption of a hybrid vehicle can be improved.
  • the control means when the hybrid vehicle is traveling at a reduced speed, when the control means is configured to connect the first connecting / disconnecting means, the power of the third shaft is transmitted to the internal combustion engine via the bypass path, the second shaft, and the first shaft. Is transmitted to the output shaft. If it does so, it will become possible to decelerate also by the engine brake (engine brake) of an internal combustion engine.
  • engine brake engine brake
  • the drive system further includes a second transmission that shifts the power transmitted through the bypass path.
  • the power transmitted through the detour path can be shifted by the second transmission. That is, when the hybrid vehicle is decelerating and the second connecting / disconnecting means is in the connected state, the second transmission shifts the power transmitted through the detour path so that the power input to the motor generator is converted to the motor generator. It is possible to shift to power with high regenerative efficiency (generation efficiency of regenerative electric power).
  • the control unit when the hybrid vehicle is decelerated, if the control unit is configured to connect the first connecting / disconnecting unit, the second transmission is input to the internal combustion engine by shifting the power transmitted through the detour path. The power is changed, and the strength of the engine brake (engine brake) can be changed.
  • (A)-(d) is a side view of a 1st transmission and a one-way clutch, and shows the rotational motion and the rocking
  • (A)-(d) is a side view of a 1st transmission and a one-way clutch, and has shown the rotational motion and rocking
  • (A)-(d) is a side view of a 1st transmission and a one-way clutch, and shows the rotational motion and the rocking motion in the state where the rotation radius r1 is 0 and the first transmission ratio i1 is infinity (infinity).
  • a drive system 1 according to the present embodiment shown in FIG. 1 is a system that is mounted on a hybrid vehicle (not shown) and generates the drive force of the hybrid vehicle.
  • the hybrid vehicle may be a two-wheeled vehicle or a three-wheeled vehicle in addition to the four-wheeled vehicle.
  • the drive system 1 includes an engine 10 (internal combustion engine), a motor generator 20, a first transmission 30, a plurality of (six in this case) one-way clutch 60, a second transmission 70, a first shaft 81, A second shaft 82, a third shaft 83 (foot shaft) and a fourth shaft 84, a first clutch 91 (first connecting / disconnecting means), a second clutch 92 (second connecting / disconnecting means), a differential device 110, A battery 121 (power storage device) and an ECU 200 (Electronic Control Unit) for electronically controlling the system are provided.
  • “forward direction” is a direction corresponding to the forward direction of the hybrid vehicle
  • “reverse direction” is a direction corresponding to the reverse direction.
  • the engine 10 is a reciprocating engine configured as an in-line two-cylinder type having two cylinders 11 and 11 in a cylinder block (not shown).
  • the number and arrangement of the cylinders are not limited to this, and can be changed as appropriate.
  • the engine 10 burns fuel (gasoline) in accordance with a command from the ECU 200 and operates in four cycles (intake, compression, combustion, exhaust). That is, the engine 10 is provided with a fuel injector for injecting fuel, a throttle valve for controlling the flow rate of intake air, an ignition plug (not shown) for igniting the fuel, and the like, and the ECU 200 electronically controls them. Thus, the operation (combustion cycle) of the engine 10 is controlled.
  • the first shaft 81 is connected to a crankshaft (output shaft) (not shown) of the engine 10.
  • the first shaft 81 rotates integrally with the crankshaft.
  • the second shaft 82 is connected to the first shaft 81 via the first clutch 91.
  • a gear 82 a and a gear 82 b are fixed to the second shaft 82.
  • the first clutch 91 connects / disconnects the transmission of power between the first shaft 81 and the second shaft 82 in accordance with a command from the ECU 200, that is, turns ON (connected) / OFF (disconnected).
  • a command from the ECU 200 that is, turns ON (connected) / OFF (disconnected).
  • an electromagnetic clutch can be used. The same applies to the second clutch 92.
  • a rotation speed sensor 82d is attached to the second shaft 82.
  • the rotational speed sensor 82d detects the rotational speed R82 (rpm) of the second shaft 82 and outputs it to the ECU 200.
  • the motor generator 20 functions as a motor (electric motor) or a generator (generator) in accordance with a command from the ECU 200.
  • a gear 21 is fixed to the output shaft of the motor generator 20, and the gear 21 meshes with the gear 82a described above. Further, the motor generator 20 is connected to the battery 121 so as to exchange electric power with the battery 121.
  • the motor generator 20 rotates (drives) the battery 121 as a power source and rotates (drives) the second shaft 82.
  • the motor generator 20 when functioning as a generator, the motor generator 20 generates power by the rotational force of the second shaft 82, and the generated power is charged in the battery 121.
  • the first transmission 30 is a four-bar crank mechanism type transmission that changes the rotational force (power) of the second shaft 82 in accordance with a command from the ECU 200. That is, the first transmission 30 converts the rotational motion of the second shaft 82 into a swing motion, transmits the swing motion to the one-way clutch 60, and sets the first speed ratio i1 (ratio) infinitely steplessly.
  • This is a mechanism that varies an angular velocity ⁇ 2 (swinging speed) and a swinging angle ⁇ 2 (swinging amplitude) of the swinging portion 42, which will be described later, by changing the speed (see FIG. 3).
  • the first speed ratio i1 the rotational speed of the second shaft 82 / the rotational speed of the third shaft 83”.
  • the rotational speed of the third shaft 83 is “the positive direction of the outer ring 62”. “Rotational speed of the third shaft 83 when rotating only by rocking (power)”.
  • the first transmission 30 has a plurality (six in this case) of swing conversion rods 40 (swing conversion means) that convert the rotational motion of the second shaft 82 into swing motion. And, by changing the rotation radius r1 of the rotating ring 41 (rotating part) of each oscillation conversion rod 40 in a stepless manner, the angular velocity ⁇ 2 (oscillation speed) and oscillation of the oscillation part 42 of each oscillation conversion rod 40 are changed. And a turning radius variable mechanism 50 that varies the moving angle ⁇ 2 (swinging amplitude).
  • the rotation radius r1 is the distance between the central axis O1 of the input shaft 51 (second shaft 82) and the first fulcrum O3 that is the center of the disk 52.
  • the swing center of the swing part 42 is fixed at the center axis O2 of the third shaft 83, and the swing radius r2 (distance between the second fulcrum O4 and the center axis O2) is also fixed. Note that the number of the swing conversion rod 40, the eccentric portion 51b, the disk 52, and the like can be freely changed.
  • the rotation radius variable mechanism 50 is connected to the second shaft 82 and relatively rotates the input shaft 51 to which the power of the second shaft 82 is input, the six disks 52, and the input shaft 51 and the disk 52, A pinion 53 that changes the rotation radius r1 (eccentric radius, eccentricity), a DC motor 54 that rotates the pinion 53, and a speed reduction mechanism 55 are provided.
  • the input shaft 51 is rotatably supported on the wall portion 58a and the wall portion 58b constituting the transmission case 58 via the bearing 59a and the bearing 59b. Note that the central axis O1 of the input shaft 51 and the rotation axis of the second shaft 82 coincide (see FIG. 2).
  • the right end side (one end side) of the input shaft 51 is connected to the second shaft 82.
  • the input shaft 51 rotates together with the second shaft 82 at an angular velocity ⁇ 1.
  • the input shaft 51 has a hollow portion 51a into which the pinion 53 is rotatably inserted on the central axis O1.
  • the hollow portion 51a is partially opened radially outward so that the pinion 53 meshes with the internal gear 52b (see FIG. 3).
  • the input shaft 51 has six eccentric portions 51b having a substantially circular shape (substantially crescent shape) as viewed in the axial direction, which is deviated by a constant eccentric distance with respect to the central axis O1 (see FIG. 2).
  • the six eccentric portions 51b are arranged at equal intervals in the axial direction of the input shaft 51 (see FIG. 2), and are arranged at equal intervals (60 ° intervals) in the circumferential direction.
  • the phases of the swinging motions of the six outer rings 62 of the six one-way clutch 60 described later are shifted at equal intervals (60 ° intervals) (see FIG. 9).
  • the power in the positive direction of the swinging motion of the six outer rings 62 is continuously transmitted from the six outer rings 62 to the inner ring 61.
  • each disk 52 has a circular shape.
  • a circular eccentric hole 52a is formed at a position deviated from the first fulcrum O3, which is the center of the disk 52, and an eccentric portion 51b is rotatably fitted in the eccentric hole 52a.
  • An internal gear 52 b is formed on the inner peripheral surface of the eccentric hole 52 a, and the internal gear 52 b meshes with the pinion 53.
  • the pinion 53 (1) locks the eccentric part 51b and the disk 52 (holds the relative position) and holds the rotation radius r1, and (2) relatively rotates the eccentric part 51b and the disk 52 to rotate the radius. and a function of changing r1.
  • the disk 52 meshed with the pinion 53 by the internal gear 52b relatively rotates around the eccentric part 51b.
  • the rotation radius r1 is variable.
  • the DC motor 54 rotates in accordance with a command from the ECU 200 and rotates the pinion 53 at an appropriate rotation speed.
  • the output shaft of the DC motor 54 is connected to the pinion 53 via a speed reduction mechanism 55 (planetary gear mechanism), and the output of the DC motor 54 is reduced to about 120: 1 and input to the pinion 53. It is like that.
  • the swing conversion rod 40 is integrated with the rotary ring 41 to which the rotational motion of the input shaft 51 is input, and the swing ring 41 that outputs the swing motion to the one-way clutch 60.
  • a portion 42 and a bearing 43 are provided.
  • the rotating ring 41 is provided so as to be fitted on the disk 52 via the bearing 43.
  • the swinging portion 42 is rotatably connected to the outer ring 62 of the one-way clutch 60 via a pin 44.
  • the rotation ring 41 and the disk 52 are relatively rotatable. Therefore, although the rotating ring 41 rotates in synchronization with the disk 52 rotating around the central axis O1 with the rotation radius r1, the rotating ring 41 rotates relative to the disk 52, so that the swing conversion rod The entire 40 does not rotate, and the swing conversion rod 40 remains substantially maintained in its posture.
  • the rotating ring 41 makes one rotation, the swinging portion 42 performs one reciprocating swing motion in an arc shape, and the outer ring 62 also performs one reciprocating swing motion in an arc shape regardless of the size of the rotation radius r1. ing.
  • Each one-way clutch 60 transmits power in the positive direction of the swinging portion 42 of each swing conversion rod 40 to the third shaft 83.
  • the third shaft 83 is rotatably supported on the wall 58a and the wall 58b constituting the transmission case 58 via the bearing 59c and the bearing 59d so as to be rotatable about the central axis O2. ing.
  • each one-way clutch 60 includes an inner ring 61 (clutch inner) that is integrally fixed to the outer peripheral surface of the third shaft 83 and rotates integrally with the third shaft 83, and an outer ring that is connected to the inner ring 61.
  • An outer ring 62 (clutch outer) provided to fit, a plurality of rollers 63 provided in the circumferential direction between the inner ring 61 and the outer ring 62, and a coil spring 64 (attached) for biasing each roller 63 Force member).
  • the outer ring 62 is rotatably connected to the oscillating portion 42 of the oscillating conversion rod 40 via the pin 44, and the outer ring 62 is linked to the oscillating motion of the oscillating portion 42 in the forward direction. (See arrow A1) / Oscillate in the reverse direction (see arrow A2).
  • the roller 63 makes the inner ring 61 and the outer ring 62 locked / unlocked with each other, and each coil spring 64 urges the roller 63 in a direction to be in the locked state.
  • FIG. 9 a state in which power is transmitted from the outer ring 62 to the inner ring 61 is indicated by a thick line.
  • the rotation radius r1 is configured to be “maximum”.
  • the first fulcrum O3 and the central axis O1 approach each other.
  • the rotation radius r1 is configured to be “medium”.
  • the eccentric portion 51b and the disk 52 rotate relative to each other, as shown in FIG. 4C, the first fulcrum O3 and the central axis O1 overlap each other, and the rotation radius r1 becomes “0”. .
  • the rotation radius r1 can be controlled steplessly between “maximum” and “0”.
  • the amplitudes of the angular velocity ⁇ 2 and the swing angle ⁇ 2 of the swing part 42 (outer ring 62) are “maximum” (see FIG. 8).
  • the first speed ratio i1 the rotational speed of the input shaft 51 (second shaft 82) / the rotational speed of the third shaft 83”
  • the rocking speed of the outer ring 62 the radius of the outer ring 62 (fixed value). ) ⁇ angular velocity ⁇ 2
  • the first speed ratio i1 is“ small ”.
  • the four nodes of the central axis O1, the first fulcrum O3, the second fulcrum O4, and the central axis O2 are defined as pivot points by the swing conversion rod 40, the turning radius variable mechanism 50, and the one-way clutch 60.
  • a four-bar linkage mechanism is configured.
  • the second fulcrum O4 swings around the center axis O2 by the rotational movement of the first fulcrum O3 about the center axis O1. Further, by changing the turning radius r1 by the turning radius variable mechanism 50, the angular velocity ⁇ 2 and the swing angle ⁇ 2 of the second fulcrum O4 are made variable.
  • a gear 83a is fixed to the third shaft 83, and the gear 83a meshes with a ring gear 112 described later. Therefore, the third shaft 83 rotates integrally with the drive wheels 115L and 115R.
  • a rotation speed sensor 83d is attached to the third shaft 83.
  • the rotational speed sensor 83d detects the rotational speed R83 (rpm) of the third shaft 83 and outputs it to the ECU 200.
  • the fourth shaft 84 is connected to the third shaft 83 via the second clutch 92.
  • a gear 84 a is fixed to the fourth shaft 84.
  • the second clutch 92 connects and disconnects power transmission between the third shaft 83 and the fourth shaft 84 in accordance with a command from the ECU 200, that is, connection (ON) / disconnection (OFF). To do.
  • the second transmission 70 is provided between a gear 84 a fixed to the fourth shaft 84 and a gear 82 b fixed to the second shaft 82, and one of the fourth shaft 84 and the second shaft 82 is provided.
  • This is a device that shifts power and transmits it to the other in accordance with a command from the ECU 200.
  • a stepped transmission that changes the gear ratio stepwise, or a continuously variable transmission (CVT) that continuously changes the gear ratio can be used.
  • the second speed ratio i2 of the second transmission 70 is given by “the rotational speed R82 of the second shaft 82 / the rotational speed R84 of the fourth shaft 84”. In the state where the second clutch 92 is ON (connected), the rotational speed R84 of the fourth shaft 84 is equal to the rotational speed R83 of the third shaft 83.
  • the detour path for transmitting the power of the third shaft 83 to the second shaft 82 while bypassing the first transmission 30 and the one-way clutch 60 is the fourth shaft 84, the gear 84a, And a gear 82b.
  • the second clutch 92 is provided in the detour path and has a function of connecting / disconnecting (connecting (ON) / disconnecting (OFF)) the transmission of power through the detour path.
  • the second transmission 70 is provided in the detour path and has a function of shifting power through the detour path.
  • the power of the second shaft 82 rotating in the reverse direction cannot be transmitted to the third shaft 83 via the one-way clutch 60, but the second transmission 70, the fourth shaft It is possible to transmit to the third shaft 83 via a detour path consisting of 84 and the like, and to rotate the third shaft 83 in the reverse direction.
  • a ring gear 112 is fixed to the differential case 111 of the differential device 110, and the ring gear 112 meshes with a gear 83 a fixed to the third shaft 83.
  • the differential gear 113 composed of a pinion gear and a side gear is connected to the left and right drive wheels 115L and 115R via the left and right drive shafts 114L and 114R, respectively.
  • the driving wheel 115L and the driving wheel 115R are configured to rotate substantially integrally with the third shaft 83 (foot shaft).
  • the battery 121 is, for example, a power storage device configured to be chargeable / dischargeable in a lithium ion type.
  • the battery 121 exchanges power with the motor generator 20 and supplies power to the DC motor 54.
  • the SOC sensor 122 is attached to the battery 121.
  • the SOC sensor 122 detects the SOC (State (Of Charge (%), remaining amount) of the battery 121 and outputs it to the ECU 200.
  • the accelerator opening sensor 131 detects the accelerator opening of an accelerator pedal (not shown) and outputs it to the ECU 200.
  • the vehicle speed sensor 132 detects the vehicle speed and outputs it to the ECU 200.
  • the ECU 200 is a control device that electronically controls the drive system 1 and includes a CPU, ROM, RAM, various interfaces, electronic circuits, and the like, and exhibits various functions according to programs stored therein. It is designed to control various devices.
  • the ECU 200 has a function of selecting any one of the EV travel mode, the engine travel mode, and the parallel travel mode, and controlling the drive system 1 according to the selected mode.
  • the EV travel mode is a mode using the motor generator 20 as a power source
  • the engine travel mode is a mode using the engine 10 as a power source
  • the parallel travel mode is a mode using the engine 10 and the motor generator 20 as a power source. is there.
  • the ECU 200 is set to calculate a required torque required for the third shaft 83 by map search based on the accelerator opening and the current rotation speed R83 of the third shaft 83. . For example, if “requested torque ⁇ first threshold”, the EV travel mode is selected. If “first threshold ⁇ requested torque ⁇ second threshold”, the engine travel mode is selected, and “second threshold” When it is ⁇ requested torque>, it is set to select the parallel traveling mode.
  • the ECU 200 has a function of appropriately controlling the first speed ratio i1 of the first transmission 30 and the second speed ratio i2 of the second transmission 70.
  • the ECU 200 has a function of appropriately controlling ON (connected state) / OFF (disconnected state) of the first clutch 91 and the second clutch 92.
  • the ECU 200 has a function of determining whether or not the hybrid vehicle is traveling at a reduced speed.
  • the amount of decrease in the required torque per predetermined time is greater than or equal to a predetermined value, it is set to determine that the vehicle is decelerating.
  • the vehicle speed detected via the vehicle speed sensor 132 decreases, it may be determined that the vehicle is decelerating.
  • the ECU 200 has a function of determining whether or not the regenerative power can be generated by causing the motor generator 20 to function as a generator when it is determined that the hybrid vehicle is traveling at a reduced speed.
  • the current SOC of battery 121 detected via SOC sensor 122 is equal to or lower than a predetermined SOC determined to be chargeable, it is determined that regenerative power can be generated.
  • step S101 the ECU 200 determines whether the vehicle is currently traveling on EV.
  • the required torque calculated based on the accelerator opening or the like is equal to or less than the first threshold value (requested torque ⁇ first threshold value)
  • the motor generator 20 operates as a motor and the vehicle speed is higher than 0, it may be determined that the vehicle is traveling in EV.
  • step S102 the process of the ECU 200 proceeds to step S102.
  • the first clutch 91 and the second clutch 92 are turned off (disconnected state), and the power of the motor generator 20 is transmitted through the second shaft 82 and the first transmission 30. This is transmitted to the three shafts 83.
  • the ECU 200 appropriately changes the first speed ratio i1 of the first transmission 30 so that, for example, the rotational efficiency of the motor generator 20 is increased.
  • the process of the ECU 200 returns to the start through a return.
  • step S102 the ECU 200 determines whether the engine 10 needs to be started.
  • the required torque calculated based on the accelerator opening is larger than the first threshold (first threshold ⁇ required torque)
  • first threshold ⁇ required torque it is determined that the engine 10 needs to be started.
  • step S102 If it is determined that the engine 10 needs to be started (S102 / Yes), the process of the ECU 200 proceeds to step S103. On the other hand, when it is determined that the engine 10 does not need to be started (S102, No), the process of the ECU 200 proceeds to return.
  • step S103 the ECU 200 detects the rotational speed R82 of the second shaft 82 via the rotational speed sensor 82d. Further, the ECU 200 detects the rotational speed R83 of the third shaft 83 via the rotational speed sensor 83d. In addition, the rotation speed R82 of the second shaft 82 may be calculated based on the command voltage to the motor generator 20 and the gear ratio of the gear 21 and the gear 82a.
  • step S104 the ECU 200 calculates the first speed ratio i1 at which the one-way clutch 60 is in an unlocked state (free state) based on the rotational speed R82 and the rotational speed R83. That is, the first gear ratio i1 is calculated so that the swinging speed in the positive direction of the outer ring 62 is less than the rotational speed R83 of the third shaft 83 (inner ring 61).
  • step S105 the ECU 200 changes to the first gear ratio i1 calculated in the first step S104. Specifically, the ECU 200 controls the DC motor 54 to rotate the eccentric portion 51b and the disk 52 relative to each other so that the first speed ratio i1 is obtained, and changes the rotation radius r1 of the rotating ring 41.
  • step S106 the ECU 200 turns on the first clutch 91 (connected state). Then, the power of the second shaft 82 rotated by the motor generator 20 is transmitted to a crank shaft (output shaft) (not shown) of the engine 10 via the first shaft 81, the crank shaft starts to rotate, and cranking starts. To do.
  • step S107 the ECU 200 starts the start control of the engine 10, that is, starts a combustion cycle in the engine 10. Specifically, the ECU 200 detects a crank angle via a crank angle sensor (not shown), controls a fuel injector (not shown) based on this crank angle, and injects fuel, and also uses an ignition plug ( (Not shown) is operated at a predetermined timing.
  • a crank angle sensor not shown
  • a fuel injector not shown
  • an ignition plug (Not shown) is operated at a predetermined timing.
  • the torque of the second shaft 82 input to the first transmission 30 slightly varies with the start of the combustion cycle in the engine 10, but the first one-way clutch 60 is unlocked. Since the speed ratio is changed to i1, the torque fluctuation of the second shaft 82 is not transmitted to the third shaft 83, and the shock to the third shaft 83 (foot shaft) is reduced. Therefore, the first speed ratio i1 is preferably set in consideration of the torque fluctuation of the second shaft 82 accompanying the start of the engine 10.
  • step S108 the ECU 200 determines whether or not the engine 10 has been started. For example, when the crankshaft is rotating well in conjunction with the fuel injection control and the ignition control, or when a predetermined time has elapsed from the start of the start control of the engine 10 in step S107, it is determined that the start is complete, It is determined that the engine 10 has been started.
  • step S108 If it is determined that the engine 10 has been started (S108 / Yes), the processing of the ECU 200 proceeds to step S109. On the other hand, when it is determined that the start of the engine 10 has not been completed (No at S108), the ECU 200 repeats the determination at Step S108.
  • step S109 the ECU 200 normally controls the first speed ratio i1 of the first transmission 30.
  • the normal control of the first gear ratio i1 is to calculate the required torque based on the accelerator opening and the rotational speed R83 (and / or the vehicle speed) of the third shaft 83, and to calculate the required torque and the net fuel consumption rate (BSFC:
  • the first transmission ratio i1 at which the engine 10 operates in a region where the net fuel consumption rate is small is calculated on the basis of the map of “Brake (Specific) Fuel (Consumption)”, and the first transmission 30 is controlled in accordance with the first transmission ratio i1. It is.
  • step S109 both the engine 10 and the motor generator 20 (functioning as a motor) operate and the hybrid vehicle travels in parallel. However, even if the motor generator 20 is stopped appropriately, Good.
  • step S201 the ECU 200 determines whether or not the hybrid vehicle is traveling at a reduced speed. Specifically, ECU 200 determines that the vehicle is decelerating when the amount of decrease in required torque is equal to or greater than a predetermined value.
  • step S201 If it is determined that the vehicle is traveling at a reduced speed (S201 / Yes), the process of the ECU 200 proceeds to step S202. On the other hand, when it is determined that the vehicle is not traveling at a reduced speed (S201 / No), that is, when it is determined that the vehicle is traveling normally, the process of the ECU 200 proceeds to step S208.
  • step S208 the ECU 200 maintains the current state of the first clutch 91 (ON or OFF), and turns off the second clutch 92. That is, when the EV generator is driven using only the motor generator 20 (functioning as a motor) as a power source, the first clutch 91 is turned off (disconnected state). Thereby, dragging of the stopped engine 10 is prevented.
  • the first clutch 91 is ON (connected state). ) Thereafter, the process of the ECU 200 returns to the start through a return.
  • step S202 the ECU 200 turns on the second clutch 92 (connected state). Note that the current state of the first clutch 91 is maintained (ON or OFF).
  • step S203 the ECU 200 causes the motor generator 20 to function as a generator and determines whether regeneration is possible, that is, whether regenerative power can be generated.
  • step S203 If it is determined that regeneration is possible (S203 / Yes), the process of the ECU 200 proceeds to step S204. On the other hand, if it is determined that regeneration is not possible (S203, No), the process of the ECU 200 proceeds to step S206.
  • step S204 the ECU 200 turns off the first clutch 91 (disconnected state).
  • the first clutch 91 is currently ON, a configuration in which the first clutch 91 is ON may be used.
  • the engine brake is used in combination while generating regenerative power.
  • step S205 the ECU 200 changes the second speed ratio i2 of the second transmission 70 for regenerative power generation.
  • the second speed ratio i2 for regenerative power generation refers to that of the fourth shaft 84 (third shaft 83) so that the rotor of the motor generator 20 that functions as a generator rotates at a regenerative power generation rotational speed with high power generation efficiency. It is calculated based on the rotational speed R83, the gear ratio of the gear 82a and the gear 21, and the like.
  • the rotational speed for regenerative power generation with high power generation efficiency is a fixed value determined by the specifications of the motor generator 20.
  • the power of the fourth shaft 84 (third shaft 83) is shifted at the second transmission ratio i2 in the second transmission 70 and input to the second shaft 82, and the second shaft 82 and the motor.
  • Generator 20 rotates.
  • the regenerative power generated by the motor generator 20 is charged in the battery 121.
  • the regenerative power is charged in the battery 121, and the battery 121 can be brought close to a fully charged state.
  • the cruising distance by EV traveling is not shortened due to insufficient SOC of the battery 121, and the fuel efficiency of the hybrid vehicle can be improved.
  • the ECU 200 allows the second shaft 82 so that the one-way clutch 60 is not locked (powering state) by the second shaft 82 rotating in this way, that is, the one-way clutch 60 is unlocked.
  • the first speed ratio i1 of the first transmission 30 is increased based on the rotational speed R82 and the rotational speed R83 of the third shaft 83. This is the same during the execution of the process of step S207.
  • step S206 the ECU 200 turns on the first clutch 91 (connected state).
  • step S207 the ECU 200 changes the second speed ratio i2 of the second transmission 70 for engine braking.
  • the degree of deceleration is calculated based on the amount of change in accelerator opening and the amount of change in vehicle speed, and the second speed change is performed so that the engine brake by the engine 10 increases as the degree of deceleration increases. Change the ratio i2.
  • ECU200 performs zero torque control so that regenerative electric power is not produced
  • FIG. That is, by controlling the rotational speed of the rotor of the motor generator 20 that rotates in conjunction with the second shaft 82 and the energization of the U-phase coil, V-phase coil, and W-phase coil that constitute the motor generator 20. The rotational speed of the generated rotating magnetic field is matched.
  • steps S103, S104, and S105 of FIG. 10 are performed when the engine 10 is started during EV traveling. However, these may be omitted.
  • the first speed ratio i1 is normally varied based on the required torque or the like.
  • the one-way clutch 60 is unlocked. That is, in a region that is less than the engagement torque of the one-way clutch 60 (torque torque), the torque variation of the second shaft 82 that accompanies the start of the engine 10 is not transmitted to the third shaft 83. Can reduce the shock.
  • the configuration in which steps S103 to S105 are omitted is employed, for example, when the drive system 1 includes a mode selection switch (not shown) and the sports mode is selected.
  • the rotating radius variable mechanism 50 is configured to include the eccentric portion 51b, the disk 52, and the pinion 53, but is not limited thereto.
  • a disk that rotates coaxially and synchronously with the input shaft 51 is provided, and the first fulcrum O3 (see FIG. 3) is configured to be slidable in the radial direction by a slide groove extending in the radial direction of the disk.
  • the first fulcrum O3 may be slid in the radial direction to vary the rotation radius r1.
  • the rotation radius r1 of the first fulcrum O3 is variable (see FIG. 3).
  • the second fulcrum O4 is slid in the radial direction by an actuator.
  • the rocking radius r2 may be varied, and the angular velocity ⁇ 2 and the rocking angle ⁇ 2 may be varied.
  • the swing conversion rod 40 may be configured to be extendable and contractible, and the angular velocity ⁇ 2 and the swing angle ⁇ 2 may be varied by varying the distance between the first fulcrum O3 and the second fulcrum O4 by an actuator.
  • the configuration in which the engine 10 is a reciprocating engine is exemplified, but, for example, a rotary engine, a gas turbine engine, or the like may be used, or these may be combined.
  • the configuration in which the engine 10 is a gasoline engine that burns gasoline is exemplified.
  • a diesel engine that burns light oil, a hydrogen engine that burns hydrogen, and the like may be combined. Also good.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Automation & Control Theory (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Transmission Devices (AREA)

Abstract

EV走行中における内燃機関の始動時において第3軸へのショックを低減する駆動システム及び制御方法を提供する。エンジン(10)と、クランク軸に連結された第1軸(81)と、第2軸(82)と、第1クラッチ(91)と、モータジェネレータ(20)と、第3軸(83)と、第1変速機(30)と、ワンウェイクラッチ(60)と、第1クラッチ(91)及び第1変速機(30)の変速比を制御するECU(200)と、を備え、第1変速機(30)は回転リング(41)と揺動部(42)と回転半径可変機構(50)とを備え、ワンウェイクラッチ(60)は、揺動部(42)の角速度が第3軸(83)の回転速度以上である場合、揺動部(42)の一方向のみの動力を第3軸(83)に伝達し、ECU(200)は、EV走行中、第1クラッチ(91)を切断状態とし、EV走行中においてエンジン(10)を始動させる場合、第1クラッチ(91)を接続状態とする。

Description

駆動システム及び駆動システムの制御方法
 本発明は、駆動システム及び駆動システムの制御方法に関する。
 近年、ハイブリッド車に搭載される駆動システム(ハイブリッドシステム)について種々の開発が進められている。例えば、エンジン(内燃機関)から足軸(第3軸)に向かって、第1クラッチ、モータ、第2クラッチ、変速機を順に備えるシステムが提案されている(特許文献1参照)。なお、足軸とは駆動輪に動力を伝達する軸であり、例えば、デフ装置(デファレンシャル装置)に動力を伝達する軸である。
 そして、このようなシステムでは、モータを動力源とするEV走行中において、エンジンを始動させるとき、モータのトルクを利用して、エンジンのクランキングを行っている。
特開2010-265827号公報
 ところが、EV走行中、モータのトルクを利用してエンジンのクランキングを開始すると、エンジンの始動に伴って足軸へのトルクが変動し、ショック(振動)の発生する虞がある。そこで、特許文献1では、このトルクの変動を防止するため、モータと変速機との間に配置された第2クラッチのON(接続状態)/OFF(切断状態)を細かく、つまり、短周期で制御したり、モータのトルクを変化させたりすることによって、足軸へのトルクの変動の低減を図っている。したがって、EV走行中におけるエンジンの始動時の制御が複雑となっている。
 そこで、本発明は、EV走行中における内燃機関の始動時において、足軸等の第3軸へのショックを低減する駆動システム及び駆動システムの制御方法を提供することを課題とする。
 前記課題を解決するための手段として、本発明は、ハイブリッド車に搭載される駆動システムであって、内燃機関と、前記内燃機関の出力軸に連結された第1軸と、第2軸と、前記第1軸と前記第2軸との間における動力の伝達を断接する第1断接手段と、前記第2軸を駆動するモータジェネレータと、駆動輪と一体に回転する第3軸と、前記第2軸の動力を変速する第1変速機と、前記第1変速機による変速後の動力を前記第3軸に伝達するワンウェイクラッチと、前記第1断接手段及び前記第1変速機の変速比を制御する制御手段と、を備え、前記第1変速機は、前記第2軸の回転運動によって回転運動する回転部と、前記回転部の回転運動によって揺動運動する揺動部と、前記回転部の回転半径を可変することで前記揺動部の角速度を可変し変速比を可変する回転半径可変機構と、を備え、前記ワンウェイクラッチは、前記揺動部の角速度が前記第3軸の回転速度以上である場合、前記揺動部の一方向のみの動力を前記第3軸に伝達し、前記制御手段は、EV走行中、前記第1断接手段を切断状態とし、EV走行中において前記内燃機関を始動させる場合、前記第1断接手段を接続状態とすることを特徴とする駆動システム及びその制御方法である。
 このような構成によれば、ハイブリッド車のEV走行中、つまり、モータジェネレータがモータとして作動し、モータジェネレータの動力を、第2軸、第1変速機を介して、第3軸に伝達させ、駆動輪を回転させる場合、制御手段が第1断接手段を切断状態とすることにより、第1軸と第2軸との間において動力は伝達しない。これにより、モータジェネレータが、内燃機関を引き摺る、つまり、停止中の内燃機関の抵抗を受けずに、第2軸等を駆動できる。
 また、EV走行中において内燃機関を始動させる場合、制御手段が第1断接手段を接続状態とすることにより、モータジェネレータの動力は、第2軸、第1断接手段、第1軸を介して、内燃機関の出力軸に伝達し、出力軸が回転する。このように出力軸が回転するので(後記する実施形態ではクランキングが開始するので)、出力軸の回転に対応して、燃料を適宜なタイミングで噴射させ、内燃機関を始動、つまり、内燃機関における燃焼サイクルを開始できる。
 この場合において、内燃機関の始動に伴って、つまり、内燃機関における燃焼サイクルの開始に伴って、第1変速機に入力される第2軸の動力(トルク)が多少変動することになるが、第1変速機が第2軸の回転運動を揺動運動に変換し、ワンウェイクラッチが、揺動運動する揺動部の角速度が第3軸の回転速度以上である場合、その揺動部の一方向のみの動力を第3軸に伝達する構成であるので、つまり、ワンウェイクラッチのエンゲージトルク(ワンウェイクラッチがロックするトルク)に満たない領域における変動は、第2軸から第3軸に伝達しないので、第3軸へのショックを低減できる。
 また、前記駆動システムにおいて、EV走行中において前記内燃機関を始動させる場合、前記制御手段は、前記揺動部の角速度が前記第3軸の回転速度未満となるように、前記第1変速機の変速比を制御することが好ましい。
 このような構成によれば、EV走行中において内燃機関を始動させる場合、制御手段が、揺動部の角速度が第3軸の回転速度未満となるように、第1変速機の変速比を制御する。これにより、ワンウェイクラッチが非ロック状態となり、揺動部の動力は第3軸に伝達しない。よって、エンジンの始動に伴って、第3軸にショックが伝達することはない。
 また、前記駆動システムにおいて、前記第3軸の動力を、前記第1変速機及び前記ワンウェイクラッチを迂回して、前記第2軸に伝達する迂回経路と、前記迂回経路を介しての動力の伝達を断接する第2断接手段と、を備え、前記制御手段は、通常走行時、前記第2断接手段を切断状態とし、減速走行時、前記第2断接手段を接続状態とすることが好ましい。
 このような構成によれば、ハイブリッド車の通常走行時(加速走行時、定速走行時)、制御手段が、第2断接手段を切断状態とするので、第3軸の動力が、迂回経路を介して、第2軸に伝達することはない。
 一方、ハイブリッド車の減速走行時、制御手段が、第2断接手段を接続状態とするので、第3軸の動力が、迂回経路を介して、第2軸に伝達する。このようにして、第3軸の動力が第2軸に伝達し、第2軸が回転するので、モータジェネレータをジェネレータとして機能させ、回生電力を発生させ、これを高圧バッテリ等の蓄電装置に充電できる。これにより、ハイブリッド車の燃費を高めることができる。
 また、ハイブリッド車の減速走行時、制御手段が第1断接手段を接続状態とする構成とした場合、第3軸の動力は、迂回経路、第2軸、第1軸を介して、内燃機関の出力軸に伝達する。そうすると、内燃機関の機関ブレーキ(エンジンブレーキ)によっても減速可能となる。
 また、前記駆動システムにおいて、前記迂回経路を伝達する動力を変速する第2変速機を備えることが好ましい。
 このような構成によれば、第2変速機によって、迂回経路を伝達する動力を変速できる。
 すなわち、ハイブリッド車の減速走行時、第2断接手段が接続状態である場合において、第2変速機が迂回経路を伝達する動力を変速することにより、モータジェネレータに入力される動力を、モータジェネレータにおける回生効率(回生電力の発生効率)の高い動力に変速できる。
 また、ハイブリッド車の減速走行時、制御手段が第1断接手段を接続状態とする構成とした場合、第2変速機が迂回経路を伝達する動力を変速することにより、内燃機関に入力される動力が可変され、機関ブレーキ(エンジンブレーキ)の強さを可変できる。
 本発明によれば、EV走行中における内燃機関の始動時において、足軸等の第3軸へのショックを低減する駆動システム及び駆動システムの制御方法を提供することができる。そして、本発明の諸側面および効果、並びに、他の効果およびさらなる特徴は、添付の図面を参照して後述する本発明の例示的かつ非制限的な実施の形態の詳細な説明により、一層明らかとなるであろう。
本実施形態に係る駆動システムの構成図である。 本実施形態に係る第1変速機及びワンウェイクラッチの断面図である。 本実施形態に係る第1変速機及びワンウェイクラッチの側面図である。 本実施形態に係る第1変速機及びワンウェイクラッチの側面図であり、(a)は回転半径r1(偏心量)が最大で第1変速比i1が小、(b)は回転半径r1が中間で第1変速比i1が中、(c)は回転半径r1が0で第1変速比i1が∞(無限大)、の状態を示している。 (a)~(d)は第1変速機及びワンウェイクラッチの側面図であり、回転半径r1が最大で第1変速比i1が小の状態における回転運動及び揺動運動を示している。 (a)~(d)は第1変速機及びワンウェイクラッチの側面図であり、回転半径r1が中間で第1変速比i1が中の状態における回転運動及び揺動運動を示している。 (a)~(d)は第1変速機及びワンウェイクラッチの側面図であり、回転半径r1が0で第1変速比i1が∞(無限大)の状態における回転運動及び揺動運動を示している。 入力軸(第2軸)の回転角度θ1と外リング(揺動部)の角速度ω2との関係を示すグラフである。 入力軸(第2軸)の回転角度θ1と外リング(揺動部)の摺動速度との関係を示すグラフである。 本実施形態に係る駆動システムの動作を示すフローチャートである。 本実施形態に係る駆動システムの動作を示すフローチャートである。 変形例に係る駆動システムの一効果を示すタイムチャートである。
 以下、本発明の一実施形態について、図1~図11を参照して説明する。
≪駆動システムの構成≫
 図1に示す本実施形態に係る駆動システム1は、図示しないハイブリッド車に搭載されており、ハイブリッド車の駆動力を発生するシステムである。なお、ハイブリッド車は、四輪車の他、二輪車、三輪車でもよい。
 駆動システム1は、エンジン10(内燃機関)と、モータジェネレータ20と、第1変速機30と、複数(ここでは6つ)のワンウェイクラッチ60と、第2変速機70と、第1軸81、第2軸82、第3軸83(足軸)及び第4軸84と、第1クラッチ91(第1断接手段)及び第2クラッチ92(第2断接手段)と、デフ装置110と、バッテリ121(蓄電装置)と、システムを電子制御するECU200(Electronic Control Unit、電子制御装置)と、を備えている。
 なお、以下の説明において、「正方向」はハイブリッド車の前進方向に対応する方向であり、「逆方向」は後退方向に対応する方向である。
<エンジン>
 エンジン10は、本実施形態では、シリンダブロック(図示しない)に2つのシリンダ11、11を有する直列2気筒型で構成されたレシプロエンジンである。ただし、シリンダの数・配列はこれに限定されず、適宜に変更自由である。
 エンジン10は、ECU200からの指令に従って、燃料(ガソリン)を燃焼させ、4サイクル(吸気、圧縮、燃焼、排気)で運転するようになっている。すなわち、エンジン10には、燃料を噴射する燃料インジェクタ、吸気空気の流量を制御するスロットル弁、燃料に点火する点火プラグ(いずれも図示しない)等が取り付けられており、ECU200がこれらを電子制御することで、エンジン10の作動(燃焼サイクル)を制御するようになっている。
<第1軸>
 第1軸81は、エンジン10の図示しないクランク軸(出力軸)と連結されている。そして、第1軸81は、前記クランク軸と一体に回転するようになっている。
<第2軸、第1クラッチ>
 第2軸82は、第1クラッチ91を介して、第1軸81と連結されている。また、第2軸82には、ギヤ82aと、ギヤ82bとが固定されている。
 第1クラッチ91は、ECU200の指令に従って、第1軸81と第2軸82との間における動力の伝達を断接、つまり、ON(接続状態)/OFF(切断状態)するものである。第1クラッチ91としては、例えば、電磁クラッチを使用できる。第2クラッチ92についても同様である。
 また、第2軸82には、回転速度センサ82dが取り付けられている。回転速度センサ82dは、第2軸82の回転速度R82(rpm)を検出し、ECU200に出力するようになっている。
<モータジェネレータ>
 モータジェネレータ20は、ECU200の指令に従って、モータ(電動機)又はジェネレータ(発電機)として機能するようになっている。そして、モータジェネレータ20の出力軸にはギヤ21が固定されており、ギヤ21は前記したギヤ82aと噛合している。また、モータジェネレータ20は、バッテリ121と接続されており、バッテリ121との間で電力を授受するようになっている。
 すなわち、モータとして機能する場合、モータジェネレータ20は、バッテリ121を電源として回転(駆動)し、第2軸82を回転(駆動)するようになっている。
 一方、ジェネレータとして機能する場合、モータジェネレータ20は、第2軸82の回転力によって発電し、その発電電力がバッテリ121に充電されるようになっている。
<第1変速機>
 第1変速機30は、図1~図3に示すように、ECU200の指令に従って、第2軸82の回転力(動力)を、変速する4節クランク機構式の変速機である。すなわち、第1変速機30は、第2軸82の回転運動を揺動運動に変換し、その揺動運動をワンウェイクラッチ60に伝達すると共に、第1変速比i1(レシオ)を無限無段階で変速することで、後記する揺動部42の角速度ω2(揺動速度)・揺動角度θ2(揺動振幅)を可変する機構である(図3参照)。
 なお、「第1変速比i1=第2軸82の回転速度/第3軸83の回転速度」であり、この場合の「第3軸83の回転速度」は、「外リング62の正方向の揺動(動力)のみで回転した場合における第3軸83の回転速度」である。
 第1変速機30は、図2、図3に示すように、第2軸82の回転運動を揺動運動に変換する複数(ここでは6本)の揺動変換ロッド40(揺動変換手段)と、各揺動変換ロッド40の回転リング41(回転部)の回転半径r1を無段階で可変することで、各揺動変換ロッド40の揺動部42の角速度ω2(揺動速度)及び揺動角度θ2(揺動振幅)を可変する回転半径可変機構50と、を備えている。
 ここで、回転半径r1は、入力軸51(第2軸82)の中心軸線O1とディスク52の中心である第1支点O3との距離である。因みに、揺動部42の揺動中心は、第3軸83の中心軸線O2で固定であり、揺動半径r2(第2支点O4と中心軸線O2の距離)も固定である。
 なお、揺動変換ロッド40、偏心部51b、ディスク52等の数は変更自由である。
<第1変速機-回転半径可変機構>
 回転半径可変機構50は、第2軸82と連結され第2軸82の動力が入力される入力軸51と、6枚のディスク52と、入力軸51とディスク52とを相対回転させることで、回転半径r1(偏心半径、偏心量)を可変するピニオン53と、ピニオン53を回動させるDCモータ54と、減速機構55と、を備えている。
 入力軸51は、変速機ケース58を構成する壁部58a、壁部58bに、軸受59a、軸受59bを介して、回転自在に支持されている。なお、入力軸51の中心軸線O1と、第2軸82の回転軸線とは一致している(図2参照)。
 図2において、入力軸51の右端側(一端側)は、第2軸82と連結されている。そして、入力軸51は第2軸82と一体に角速度ω1で回転するようになっている。
 また、入力軸51は、その中心軸線O1上に、ピニオン53が回転自在に挿入される中空部51aを有している。なお、中空部51aは部分的に径方向外に開口しており、ピニオン53が内歯車52bと噛合するようになっている(図3参照)。
 さらに、入力軸51は、中心軸線O1に対して一定の偏心距離で偏倚した軸方向視で略円形(略三日月形)の偏心部51bを6つ有している(図2参照)。6つの偏心部51bは、本実施形態では、入力軸51の軸方向において等間隔で配置されると共に(図2参照)、周方向において等間隔(60°間隔)で配置されている。
 これにより、後記する6つのワンウェイクラッチ60の6つの外リング62の揺動運動の位相が等間隔(60°間隔)でずれることになり(図9参照)、その結果、位相がずれて揺動運動する6つの外リング62から内リング61に、6つの外リング62の揺動運動の正方向における動力が連続的に伝達されることになる。
 6枚のディスク52は、6つの偏心部51bにそれぞれ設けられている(図2参照)。
 さらに説明すると、図3に示すように、各ディスク52は円形を呈している。そして、ディスク52の中心である第1支点O3から外れた位置には、円形の偏心孔52aが形成されており、偏心孔52aには偏心部51bが回転可能に内嵌している。また、偏心孔52aの内周面には内歯車52bが形成されており、内歯車52bはピニオン53と噛合している。
 ピニオン53は、(1)偏心部51bとディスク52とをロック(相対位置を保持)し、回転半径r1を保持する機能と、(2)偏心部51bとディスク52とを相対回転させ、回転半径r1を可変する機能と、を備えている。
 すなわち、ピニオン53が、偏心部51b(入力軸51、第2軸82)と同期して回転すると、つまり、ピニオン53が、偏心部51b(入力軸51、第2軸82)と同一の回転速度で回転すると、偏心部51bとディスク52との相対位置が保持され、つまり、偏心部51bとディスク52とが一体化して回転し、回転半径r1が保持されるようになっている。
 一方、ピニオン53が、偏心部51bと異なる回転速度(上回る回転速度/下回る回転速度)で回転すると、ピニオン53に内歯車52bで噛合するディスク52が偏心部51bの周りに相対回転し、その結果、回転半径r1が可変するようになっている。
 DCモータ54は、ECU200の指令に従って回転し、ピニオン53を適宜な回転速度にて回動させるものである。DCモータ54の出力軸は、減速機構55(遊星歯車機構)を介して、ピニオン53に接続されており、DCモータ54の出力は、120:1程度に減速されて、ピニオン53に入力されるようになっている。
<第1変速機-揺動変換ロッド>
 揺動変換ロッド40は、図3に示すように、入力軸51の回転運動が入力される回転リング41と、回転リング41と一体であり、その揺動運動をワンウェイクラッチ60に出力する揺動部42と、軸受43と、を備えている。
 回転リング41は、軸受43を介して、ディスク52に外嵌するように設けられている。揺動部42は、ピン44を介して、ワンウェイクラッチ60の外リング62に回動自在に連結されている。
 これにより、回転リング41とディスク52とは、相対的に回動自在となっている。したがって、回転リング41は、中心軸線O1を中心として回転半径r1で回転するディスク52に同期して回転するものの、回転リング41はディスク52に対して相対的に回動するので、揺動変換ロッド40全体は回転せず、揺動変換ロッド40はその姿勢を略維持したままとなる。
 そして、回転リング41が一回転すると、回転半径r1の大小に関わらず、揺動部42が円弧状で一往復揺動運動し、外リング62も円弧状で一往復揺動運動するようになっている。
<ワンウェイクラッチ、第3軸>
 各ワンウェイクラッチ60は、各揺動変換ロッド40の揺動部42の正方向のみの動力を、第3軸83に伝達させるものである。
 図2に示すように、第3軸83は、変速機ケース58を構成する壁部58a、壁部58bに、軸受59c、軸受59dを介して、中心軸線O2を中心として、回転自在に支持されている。
 そして、図3に示すように、各ワンウェイクラッチ60は、第3軸83の外周面に一体に固定され第3軸83と一体で回転する内リング61(クラッチインナ)と、内リング61に外嵌するように設けられた外リング62(クラッチアウタ)と、内リング61と外リング62との間で周方向に複数設けられたローラ63と、各ローラ63を付勢するコイルばね64(付勢部材)と、を備えている。
 外リング62は、ピン44を介して、揺動変換ロッド40の揺動部42と回動自在に連結されており、外リング62は揺動部42の揺動運動に連動して、正方向(矢印A1参照)/逆方向(矢印A2参照)に揺動運動する。
 ローラ63は、内リング61と外リング62とを互いにロック状態/非ロック状態とするものであり、各コイルばね64は、ローラ63を前記ロック状態となる方向に付勢している。
 そして、図9に示すように、外リング62の正方向の揺動速度が、内リング61(第3軸83)の正方向の回転速度を超えた場合、ローラ63によって外リング62と内リング61とがロック状態(動力伝達状態)となる。そうすると、揺動変換ロッド40の揺動運動する揺動部42の正方向の動力が、ワンウェイクラッチ60を介して、第3軸83に伝達し、第3軸83が正方向で回転するようになっている。
 なお、図9では、外リング62から内リング61に動力が伝達する状態を太線で示している。
<回転半径r1の可変状況>
 ここで、図4を参照して回転半径r1が可変する状況を説明し、次いで、図5~図7を参照して、異なる回転半径r1におけるディスク52(回転リング41)の回転運動と、揺動部42の揺動運動を説明する。
 図4(a)に示すように、第1支点O3(ディスク52の中心)と中心軸線O1とが最も遠ざかると、回転半径r1が「最大」となるように構成されている。
 そして、ピニオン53が偏心部51bと異なる回転速度で回転し、偏心部51bとディスク52とが相対回転すると、図4(b)に示すように、第1支点O3と中心軸線O1とが近づき、回転半径r1が「中」となるように構成されている。
 さらに、偏心部51bとディスク52とが相対回転すると、図4(c)に示すように、第1支点O3と中心軸線O1とが重なり、回転半径r1が「0」なるように構成されている。
 このように、回転半径r1は、「最大」と「0」との間で、無段階で制御可能となっている。
 次に、図4(a)に示す回転半径r1が「最大」の状態において、偏心部51bとピニオン53とを同期して回転させると、図5に示すように、偏心部51b、ディスク52及びピニオン53は一体化して、回転半径r1を「最大」で保持したまま回転するようになっている。
 この場合、揺動部42(外リング62)の角速度ω2及び揺動角度θ2の振幅が「最大」となる(図8参照)。
 また、「第1変速比i1=入力軸51(第2軸82)の回転速度/第3軸83の回転速度」であり、「外リング62の揺動速度=外リング62の半径(固定値)×角速度ω2」であるから、第1変速比i1は「小」となる。
 次に、図4(b)に示す回転半径r1が「中」の状態において、偏心部51bとピニオン53とを同期して回転させると、図6に示すように、偏心部51b、ディスク52及びピニオン53は一体化して、回転半径r1を「中」で保持したまま回転するようになっている。
 この場合、揺動部42(外リング62)の角速度ω2及び揺動角度θ2の振幅が「中」となる(図8参照)。そして、第1変速比i1は「中」となる。
 次に、図4(c)に示す回転半径r1が「0」の状態において、偏心部51bとピニオン53とを同期して回転させると、図7に示すように、偏心部51b、ディスク52及びピニオン53は一体化して、回転半径r1を「0」で保持したまま回転するようになっている。つまり、偏心部51b、ディスク52及びピニオン53が、回転リング41内で空転し、揺動変換ロッド40が動作しないことになる。
 この場合、揺動部42(外リング62)の角速度ω2及び揺動角度θ2が「0」となる(図8参照)。そして、第1変速比i1は「∞(無限大)」となる。
 このようにして、回転半径r1が保持された状態(偏心部51bとピニオン53とが同期回転する状態)では、回転半径r1の大小に関わらず、入力軸51の回転周期と、揺動部42及び外リング62の揺動周期とは、同期(回転半径r1=0の場合を除く)することになる。
 すなわち、本実施形態では、揺動変換ロッド40、回転半径可変機構50及びワンウェイクラッチ60によって、中心軸線O1、第1支点O3、第2支点O4、中心軸線O2の4つの節を回動点とする4節リンク機構が構成されている。
 そして、中心軸線O1を中心とする第1支点O3の回転運動によって、第2支点O4が中心軸線O2を揺動中心として揺動運動するようになっている。
 また、回転半径可変機構50により、回転半径r1を可変することで、第2支点O4の角速度ω2及び揺動角度θ2が可変されるようになっている。
<第3軸-その他>
 図1に戻って説明を続ける。
 第3軸83には、ギヤ83aが固定されており、ギヤ83aは後記するリングギヤ112と噛合している。よって、第3軸83は、駆動輪115L、115Rと一体に回転するようになっている。
 また、第3軸83には、回転速度センサ83dが取り付けられている。回転速度センサ83dは、第3軸83の回転速度R83(rpm)を検出し、ECU200に出力するようになっている。
<第4軸、第2クラッチ>
 第4軸84は、第2クラッチ92を介して、第3軸83と接続されている。また、第4軸84には、ギヤ84aが固定されている。
 第2クラッチ92は、第1クラッチ91と同様に、ECU200の指令に従って、第3軸83と第4軸84との間における動力の伝達を断接、つまり、接続(ON)/切断(OFF)するものである。
<第2変速機>
 第2変速機70は、第4軸84に固定されたギヤ84aと、第2軸82に固定されたギヤ82bとの間に設けられており、第4軸84及び第2軸82の一方の動力を、ECU200からの指令に従って、変速して他方に伝達する装置である。このような第2変速機70としては、変速比を段階的に変化させる有段変速機、変速比を連続的に変化させる無段変速機(Continuously Variable Transmission:CVT)、を使用できる。
 第2変速機70の第2変速比i2は、「第2軸82の回転速度R82/第4軸84の回転速度R84」、で与えられる。なお、第2クラッチ92がON(接続)された状態において、第4軸84の回転速度R84は、第3軸83の回転速度R83と等しくなる。
 ここで、本実施形態において、第3軸83の動力を、第1変速機30及びワンウェイクラッチ60を迂回して第2軸82に伝達する迂回経路は、第4軸84と、ギヤ84aと、ギヤ82bとを備えて構成されている。
 そして、第2クラッチ92は、前記迂回経路に設けられ、この迂回経路を介しての動力の伝達を断接(接続(ON)/切断(OFF))する機能を備えている。また、第2変速機70は、前記迂回経路に設けられ、この迂回経路を介しての動力を変速する機能を備えている。
 ここで、ハイブリッド車を後退させる場合、逆方向に回転する第2軸82の動力を、ワンウェイクラッチ60を介して第3軸83に伝達することはできないが、第2変速機70、第4軸84等からなる迂回経路を介して、第3軸83に伝達させ、第3軸83を逆方向で回転させることが可能となっている。
<デフ装置>
 デフ装置110のデフケース111には、リングギヤ112が固定されており、リングギヤ112は、第3軸83に固定されたギヤ83aと噛合している。そして、ピニオンギヤ及びサイドギヤから構成されたデフギヤ113は、左右の駆動軸114L、駆動軸114Rを介して、左右の駆動輪115L、駆動輪115Rにそれぞれ連結されている。これにより、駆動輪115L及び駆動輪115Rは、第3軸83(足軸)と略一体で回転するようになっている。
<バッテリ>
 バッテリ121は、例えば、リチウムイオン型で充放電可能に構成された蓄電装置である。バッテリ121は、モータジェネレータ20との間で電力を授受し、DCモータ54に電力を供給するようになっている。
 バッテリ121には、SOCセンサ122が取り付けられている。そして、SOCセンサ122は、バッテリ121のSOC(State Of Charge(%)、残量)を検出し、ECU200に出力するようになっている。
<その他センサ>
 アクセル開度センサ131は、アクセルペダル(図示しない)のアクセル開度を検出し、ECU200に出力するようになっている。
 車速センサ132は、車速を検出し、ECU200に出力するようになっている。
<ECU>
 ECU200は、駆動システム1を電子制御する制御装置であり、CPU、ROM、RAM、各種インタフェイス、電子回路などを含んで構成されており、その内部に記憶されたプログラムに従って、各種機能を発揮し、各種機器を制御するようになっている。
<ECU-走行モード制御機能>
 ECU200は、EV走行モード、エンジン走行モード、パラレル走行モードのいずれかを選択し、選択したモードに従って、駆動システム1を制御する機能を備えている。
 なお、EV走行モードはモータジェネレータ20を動力源とするモードであり、エンジン走行モードはエンジン10を動力源とするモードであり、パラレル走行モードはエンジン10及びモータジェネレータ20を動力源とするモードである。
 具体的には、ECU200は、アクセル開度と現在の第3軸83の回転速度R83とに基づいて、マップ検索により、第3軸83に要求される要求トルクを算出するように設定されている。
 そして、例えば、「要求トルク≦第1閾値」である場合、EV走行モードを選択し、「第1閾値<要求トルク≦第2閾値」である場合、エンジン走行モードを選択し、「第2閾値<要求トルク」である場合、パラレル走行モードを選択するように設定されている。
<ECU-変速比制御機能>
 ECU200は、第1変速機30の第1変速比i1と、第2変速機70の第2変速比i2とを適宜に制御する機能を備えている。
<ECU-クラッチ制御機能>
 ECU200は、第1クラッチ91、第2クラッチ92のON(接続状態)/OFF(切断状態)を適宜に制御する機能を備えている。
<ECU-減速走行判定機能、回生判定機能>
 ECU200は、ハイブリッド車が減速走行中であるか否か判定する機能を備えている。ここでは、所定時間当たりにおける要求トルクの低下量が所定値以上である場合、減速走行中であると判定するように設定されている。この他、車速センサ132を介して検出される車速が低下した場合、減速走行中であると判定するようにしてもよい。
 ECU200は、ハイブリッド車が減速走行中であると判定した場合において、モータジェネレータ20をジェネレータとして機能させ、回生電力を生成可能であるか否か判定する機能を備えている。ここでは、SOCセンサ122を介して検出されるバッテリ121の現在のSOCが、充電可能であると判断される所定SOC以下である場合、回生電力を生成可能であると判定される。
≪駆動システムの動作・効果≫
 次に、駆動システム1の動作(駆動システム1の制御方法)、効果について説明する。
<通常走行時-EV走行中のエンジン始動制御>
 図10を参照して、EV走行中におけるエンジン10の始動制御について説明する。なお、前提として、ハイブリッド車は走行している。
 ステップS101において、ECU200は、現在、EV走行中であるか否か判定する。ここでは、アクセル開度等に基づいて算出される要求トルクが前記した第1閾値以下である場合(要求トルク≦第1閾値)、EV走行中であると判定する。この他、エンジン10が停止状態で、モータジェネレータ20がモータとして作動し、車速が0よりも大きい場合、EV走行中であると判定してもよい。
 現在、EV走行中であると判定した場合(S101・Yes)、ECU200の処理はステップS102に進む。なお、EV走行中である場合、第1クラッチ91及び第2クラッチ92はOFF(切断状態)されており、モータジェネレータ20の動力は、第2軸82、第1変速機30を介して、第3軸83に伝達している。そして、ECU200は、第1変速機30の第1変速比i1を、例えば、モータジェネレータ20の回転効率が高くなるように適宜に可変している。
 一方、現在、EV走行中でないと判定した場合(S101・No)、ECU200の処理はリターンを通ってスタートに戻る。
 ステップS102において、ECU200は、エンジン10を始動させる必要があるか否か判定する。ここでは、アクセル開度等に基づいて算出される要求トルクが、前記した第1閾値よりも大きい場合(第1閾値<要求トルク)、エンジン10を始動させる必要があると判定する。
 エンジン10を始動させる必要があると判定した場合(S102・Yes)、ECU200の処理は、ステップS103に進む。一方、エンジン10を始動させる必要はないと判定した場合(S102・No)、ECU200の処理は、リターンに進む。
 ステップS103において、ECU200は、回転速度センサ82dを介して、第2軸82の回転速度R82を検出する。また、ECU200は、回転速度センサ83dを介して、第3軸83の回転速度R83を検出する。
 この他、モータジェネレータ20への指令電圧等と、ギヤ21及びギヤ82aのギヤ比とに基づいて、第2軸82の回転速度R82を算出してもよい。
 ステップS104において、ECU200は、回転速度R82及び回転速度R83に基づいて、ワンウェイクラッチ60が非ロック状態(フリー状態)となる第1変速比i1を算出する。すなわち、外リング62の正方向の揺動速度が、第3軸83(内リング61)の回転速度R83未満となるように、第1変速比i1を算出する。
 ステップS105において、ECU200は、第1ステップS104で算出した第1変速比i1に変更する。
 具体的には、ECU200は、第1変速比i1となるように、DCモータ54を制御し、偏心部51bとディスク52とを相対回転させ、回転リング41の回転半径r1を変更する。
 ステップS106において、ECU200は、第1クラッチ91をON(接続状態)とする。そうすると、モータジェネレータ20によって回転する第2軸82の動力は、第1軸81を介して、エンジン10の図示しないクランク軸(出力軸)に伝達し、クランク軸が回転し始め、クランキングが開始する。
 ステップS107において、ECU200は、エンジン10の始動制御を開始、つまり、エンジン10における燃焼サイクルを開始させる。
 具体的には、ECU200は、クランク角センサ(図示しない)を介してクランク角を検出し、このクランク角に基づいて、燃料インジェクタ(図示しない)を制御して燃料を噴射すると共に、点火プラグ(図示しない)を所定のタイミングで作動させる。
 この場合において、エンジン10における燃焼サイクルの開始に伴って、第1変速機30に入力される第2軸82のトルクが多少変動することになるが、ワンウェイクラッチ60が非ロック状態となる第1変速比i1に変更しているので、第2軸82のトルク変動が、第3軸83に伝達することはなく、第3軸83(足軸)へのショックが低減される。よって、第1変速比i1は、エンジン10の始動に伴う第2軸82のトルク変動を考慮したうえで設定することが好ましい。
 ステップS108において、ECU200は、エンジン10の始動が完了したか否か判定する。
 例えば、燃料噴射制御及び点火制御に連動してクランク軸が良好に回転している場合や、ステップS107でエンジン10の始動制御の開始から、始動が完了したと判断される所定時間経過した場合、エンジン10の始動が完了したと判定される。
 エンジン10の始動は完了したと判定した場合(S108・Yes)、ECU200の処理はステップS109に進む。一方、エンジン10の始動は完了していないと判定した場合(S108・No)、ECU200は、ステップS108の判定を繰り返す。
 ステップS109において、ECU200は、第1変速機30の第1変速比i1を通常に制御する。第1変速比i1を通常に制御するとは、アクセル開度、第3軸83の回転速度R83(及び/又は車速)に基づいて要求トルクを算出し、この要求トルクと正味燃料消費率(BSFC:Brake Specific Fuel Consumption)のマップとに基づいて、正味燃料消費率の小さい領域でエンジン10が作動する第1変速比i1を算出し、この第1変速比i1に従って第1変速機30を制御することである。
 なお、このようにステップS109に進んだ場合、エンジン10及びモータジェネレータ20(モータとして機能)の両方が作動し、ハイブリッド車がパラレル走行することになるが、モータジェネレータ20を適宜に停止してもよい。
 その後、ECU200の処理は、リターンを通ってスタートに戻る。
<減速走行時-回生電力制御/エンンジンブレーキ制御>
 図11を参照して、減速走行時における回生電力制御/エンンジンブレーキ制御について説明する。前提として、ハイブリッド車はエンジン10及び/又はモータジェネレータ20(モータとして機能)を動力源として走行している。
 ステップS201において、ECU200は、ハイブリッド車が減速走行中であるか否か判定する。具体的には、ECU200は、要求トルクの低下量が所定値以上である場合、減速走行中であると判定する。
 減速走行中であると判定した場合(S201・Yes)、ECU200の処理はステップS202に進む。一方、減速走行中でないと判定した場合(S201・No)、つまり、通常走行中であると判定した場合、ECU200の処理はステップS208に進む。
<通常走行中>
 ステップS208において、ECU200は、第1クラッチ91については現状を維持し(ON又はOFF)、第2クラッチ92をOFFする。
 すなわち、モータジェネレータ20(モータとして機能)のみを動力源としEV走行している場合、第1クラッチ91はOFF(切断状態)される。これにより、停止中のエンジン10の引き摺りが防止される。
 また、エンジン10のみを動力源としてエンジン走行している場合、または、エンジン10及びモータジェネレータ20(モータとして機能)を動力源とてパラレル走行している場合、第1クラッチ91はON(接続状態)される。
 その後、ECU200の処理は、リターンを通ってスタートに戻る。
<減速走行中>
 ステップS202において、ECU200は、第2クラッチ92をON(接続状態)する。なお、第1クラッチ91については現状を維持する(ON又はOFF)。
 ステップS203において、ECU200は、モータジェネレータ20をジェネレータとして機能させ、回生可能、つまり、回生電力を生成可能であるか否か判定する。
 回生可能であると判定した場合(S203・Yes)、ECU200の処理は、ステップS204に進む。一方、回生可能でないと判定した場合(S203・No)、ECU200の処理は、ステップS206に進む。
<減速走行中-回生電力生成>
 ステップS204において、ECU200は、第1クラッチ91をOFF(切断状態)とする。ただし、第1クラッチ91が現在ONである場合、そのままONとする構成でもよく、この場合、回生電力を生成しつつ、エンジンブレーキを併用することになる。
 ステップS205において、ECU200は、第2変速機70の第2変速比i2を回生発電用に変更する。回生発電用の第2変速比i2とは、ジェネレータとして機能させるモータジェネレータ20のロータが、発電効率の高い回生発電用の回転速度で回転するように、第4軸84(第3軸83)の回転速度R83や、ギヤ82a及びギヤ21のギヤ比等に基づいて算出される。発電効率の高い回生発電用の回転速度は、モータジェネレータ20の仕様によって定められる固定値である。
 そうすると、第4軸84(第3軸83)の動力は、第2変速機70において、回生発電用の第2変速比i2で変速され、第2軸82に入力され、第2軸82及びモータジェネレータ20が回転する。そして、モータジェネレータ20で生成した回生電力は、バッテリ121に充電される。このようにして、回生電力がバッテリ121に充電され、バッテリ121を満充電状態に近づけることができる。これにより、EV走行による航続距離がバッテリ121のSOC不足のため短くならず、ハイブリッド車の燃費を高めることができる。
 ここで、このように回転する第2軸82によって、ワンウェイクラッチ60がロック状態(力行状態)とならないように、つまり、ワンウェイクラッチ60が非ロック状態となるように、ECU200は、第2軸82の回転速度R82及び第3軸83の回転速度R83に基づいて、第1変速機30の第1変速比i1を大きくする。
 なお、この点については、ステップS207の処理の実行中も同様である。
 その後、ECU200の処理は、リターンを通って、スタートに戻る。
<減速走行中-エンジンブレーキ>
 ステップS206において、ECU200は、第1クラッチ91をON(接続状態)とする。
 ステップS207において、ECU200は、第2変速機70の第2変速比i2をエンジンブレーキ用に変更する。具体的には、アクセル開度の変化量や車速の変化量に基づいて、減速の程度を算出し、この減速の程度が大きくなるにつれて、エンジン10によるエンジンブレーキが大きくなるように、第2変速比i2を変更する。
 なお、このようにステップS207に進んでいる場合、回生電力を充電不能であるから(S203・No)、ECU200は、モータジェネレータ20で回生電力が生成しないようにゼロトルク制御を実行する。すなわち、第2軸82に連動して回転するモータジェネレータ20のロータの回転速度と、モータジェネレータ20を構成するU相用コイル、V相用コイル、W相用コイルへの通電を制御することで生成する回転磁界の回転速度とを一致させる。
 その後、ECU200の処理は、リターンを通って、スタートに戻る。
≪変形例≫
 以上、本発明の一実施形態について説明したが、本発明はこれに限定されず、例えば、次のように変更できる。
 前記した実施形態では、EV走行中におけるエンジン10の始動時に、図10のステップS103、S104、S105の処理を実行したが、これらを省略する構成としてもよい。
 このような構成とした場合、エンジン10の始動時も、第1変速比i1は要求トルク等に基づいて通常に可変することになるが、図12に示すように、外リング62の正方向の揺動速度が、内リング61(第3軸83)の正方向の回転速度未満の領域では、ワンウェイクラッチ60が非ロック状態となる。すなわち、ワンウェイクラッチ60のエンゲージトルク(ロック状態となるトルク)に満たない領域では、エンジン10の始動に伴う第2軸82のトルクの変動が、第3軸83に伝達しないので、第3軸83へのショックを低減できる。
 なお、ステップS103~S105を省略する構成は、例えば、駆動システム1がモード選択スイッチ(図示しない)を備え、スポーツモードが選択された場合に採用される。
 前記した実施形態では、回転半径可変機構50は、偏心部51bと、ディスク52と、ピニオン53とを備えて構成したが、これに限定されない。
 例えば、入力軸51と同軸で同期回転する円板を設け、この円板の径方向に延びるスライド溝等によって、第1支点O3(図3参照)を径方向にスライド可能に構成し、アクチュエータによって第1支点O3を径方向にスライドさせ、回転半径r1を可変する構成としてもよい。
 前記した実施形態では、第1支点O3の回転半径r1を可変する構成としたが(図3参照)、これに代えて又は加えて、アクチュエータによって第2支点O4を径方向にスライドすることで、揺動半径r2を可変し、角速度ω2及び揺動角度θ2を可変する構成としてもよい。
 また、揺動変換ロッド40を伸縮可能に構成し、アクチュエータによって、第1支点O3と第2支点O4との距離を可変することで、角速度ω2及び揺動角度θ2を可変する構成としてもよい。
 前記した実施形態では、エンジン10(内燃機関)がレシプロエンジンである構成を例示したが、その他に例えば、ロータリエンジン、ガスタービンエンジン等でもよく、また、これらを組み合わせてもよい。
 前記した実施形態では、エンジン10がガソリンを燃焼させるガソリンエンジンである構成を例示したが、その他に例えば、軽油を燃焼させるディーゼルエンジン、水素を燃焼させる水素エンジン等でもよく、また、これらを組み合わせてもよい。
 1   駆動システム
 10  エンジン(内燃機関)
 20  モータジェネレータ
 30  第1変速機
 40  揺動変換ロッド
 41  回転リング(回転部)
 42  揺動部
 50  回転半径可変機構
 60  ワンウェイクラッチ
 70  第2変速機
 81  第1軸
 82  第2軸
 83  第3軸
 84  第4軸(迂回経路)
 91  第1クラッチ(第1断接手段)
 92  第2クラッチ(第2断接手段)
 115L、115R 駆動輪
 200 ECU(制御手段)
 R82 第2軸の回転速度
 R83 第3軸の回転速度
 i1  第1変速機の第1変速比
 i2  第2変速機の第2変速比

Claims (7)

  1.  ハイブリッド車に搭載される駆動システムであって、
     内燃機関と、
     前記内燃機関の出力軸に連結された第1軸と、
     第2軸と、
     前記第1軸と前記第2軸との間における動力の伝達を断接する第1断接手段と、
     前記第2軸を駆動するモータジェネレータと、
     駆動輪と一体に回転する第3軸と、
     前記第2軸の動力を変速する第1変速機と、
     前記第1変速機による変速後の動力を前記第3軸に伝達するワンウェイクラッチと、
     前記第1断接手段及び前記第1変速機の変速比を制御する制御手段と、
     を備え、
     前記第1変速機は、前記第2軸の回転運動によって回転運動する回転部と、前記回転部の回転運動によって揺動運動する揺動部と、前記回転部の回転半径を可変することで前記揺動部の角速度を可変し変速比を可変する回転半径可変機構と、を備え、
     前記ワンウェイクラッチは、前記揺動部の角速度が前記第3軸の回転速度以上である場合、前記揺動部の一方向のみの動力を前記第3軸に伝達し、
     前記制御手段は、
     EV走行中、前記第1断接手段を切断状態とし、
     EV走行中において前記内燃機関を始動させる場合、前記第1断接手段を接続状態とする
     ことを特徴とする駆動システム。
  2.  EV走行中において前記内燃機関を始動させる場合、
     前記制御手段は、前記揺動部の角速度が前記第3軸の回転速度未満となるように、前記第1変速機の変速比を制御する
     ことを特徴とする請求の範囲第1項に記載の駆動システム。
  3.  前記第3軸の動力を、前記第1変速機及び前記ワンウェイクラッチを迂回して、前記第2軸に伝達する迂回経路と、
     前記迂回経路を介しての動力の伝達を断接する第2断接手段と、
     を備え、
     前記制御手段は、
     通常走行時、前記第2断接手段を切断状態とし、
     減速走行時、前記第2断接手段を接続状態とする
     ことを特徴とする請求の範囲第1項又は請求の範囲第2項に記載の駆動システム。
  4.  前記迂回経路を伝達する動力を変速する第2変速機を備える
     ことを特徴とする請求の範囲第3項に記載の駆動システム。
  5.  内燃機関と、
     前記内燃機関の出力軸に連結された第1軸と、
     第2軸と、
     前記第1軸と前記第2軸との間における動力の伝達を断接する第1断接手段と、
     前記第2軸を駆動するモータジェネレータと、
     駆動輪と一体に回転する第3軸と、
     前記第2軸の動力を変速する第1変速機と、
     前記第1変速機による変速後の動力を前記第3軸に伝達するワンウェイクラッチと、
     前記第1断接手段及び前記第1変速機の変速比を制御する制御手段と、
     を備え、
     前記第1変速機は、前記第2軸の回転運動によって回転運動する回転部と、前記回転部の回転運動によって揺動運動する揺動部と、前記回転部の回転半径を可変することで前記揺動部の角速度を可変し変速比を可変する回転半径可変機構と、を備え、
     前記ワンウェイクラッチは、前記揺動部の角速度が前記第3軸の回転速度以上である場合、前記揺動部の一方向のみの動力を前記第3軸に伝達させる駆動システムの制御方法であって、
     前記制御手段は、
     EV走行中、前記第1断接手段を切断状態とし、
     EV走行中において前記内燃機関を始動させる場合、前記第1断接手段を接続状態とする
     ことを特徴とする駆動システムの制御方法。
  6.  EV走行中において前記内燃機関を始動させる場合、
     前記制御手段は、前記揺動部の角速度が前記第3軸の回転速度未満となるように、前記第1変速機の変速比を制御する
     ことを特徴とする請求の範囲第5項に記載の駆動システムの制御方法。
  7.  前記駆動システムは、
     前記第3軸の動力を、前記第1変速機及び前記ワンウェイクラッチを迂回して、前記第2軸に伝達する迂回経路と、
     前記迂回経路を介しての動力の伝達を断接する第2断接手段と、
     を備え、
     前記制御手段は、
     通常走行時、前記第2断接手段を切断状態とし、
     減速走行時、前記第2断接手段を接続状態とする
     ことを特徴とする請求の範囲第5項又は請求の範囲第6項に記載の駆動システムの制御方法。
PCT/JP2012/054396 2011-06-23 2012-02-23 駆動システム及び駆動システムの制御方法 WO2012176494A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/125,343 US9050974B2 (en) 2011-06-23 2012-02-23 Drive system and method for controlling drive system
CN201280028714.2A CN103619624B (zh) 2011-06-23 2012-02-23 驱动系统和驱动系统的控制方法
DE112012002583.0T DE112012002583T5 (de) 2011-06-23 2012-02-23 Antriebssystem und Verfahren zur Steuerung des Antriebssystems
JP2013521483A JP5753582B2 (ja) 2011-06-23 2012-02-23 駆動システム及び駆動システムの制御方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011139797 2011-06-23
JP2011-139797 2011-06-23

Publications (1)

Publication Number Publication Date
WO2012176494A1 true WO2012176494A1 (ja) 2012-12-27

Family

ID=47422345

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/054396 WO2012176494A1 (ja) 2011-06-23 2012-02-23 駆動システム及び駆動システムの制御方法

Country Status (5)

Country Link
US (1) US9050974B2 (ja)
JP (1) JP5753582B2 (ja)
CN (1) CN103619624B (ja)
DE (1) DE112012002583T5 (ja)
WO (1) WO2012176494A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013067355A (ja) * 2011-09-26 2013-04-18 Honda Motor Co Ltd 駆動システム
WO2014162816A1 (ja) * 2013-04-01 2014-10-09 本田技研工業株式会社 車両用動力伝達装置
WO2014162815A1 (ja) * 2013-04-01 2014-10-09 本田技研工業株式会社 車両用動力伝達装置
WO2014188823A1 (ja) * 2013-05-24 2014-11-27 本田技研工業株式会社 車両用動力伝達装置
JPWO2012176494A1 (ja) * 2011-06-23 2015-02-23 本田技研工業株式会社 駆動システム及び駆動システムの制御方法
WO2015151287A1 (ja) * 2014-04-04 2015-10-08 本田技研工業株式会社 無段変速機
JP2015206393A (ja) * 2014-04-18 2015-11-19 本田技研工業株式会社 車両用動力伝達装置
JP2015209907A (ja) * 2014-04-25 2015-11-24 本田技研工業株式会社 車両用動力伝達装置
WO2015194633A1 (ja) * 2014-06-19 2015-12-23 本田技研工業株式会社 動力伝達装置
JP2017155778A (ja) * 2016-02-29 2017-09-07 本田技研工業株式会社 車両用動力伝達装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112013004461T5 (de) * 2012-09-13 2015-06-03 Honda Motor Co., Ltd. Fahrzeugleistungsübertragungsvorrichtung
JP5982563B2 (ja) * 2013-04-23 2016-08-31 本田技研工業株式会社 無段変速機
JP6319208B2 (ja) * 2015-07-01 2018-05-09 トヨタ自動車株式会社 ハイブリッド駆動装置
EP3184862B2 (en) 2015-12-23 2023-08-16 Volvo Car Corporation Control of electric motor
DE102017205871A1 (de) * 2017-04-06 2018-10-11 Volkswagen Aktiengesellschaft Verfahren zum Kompensieren von Leerlaufverlusten in einem Elektrofahrzeug, Computerprogrammprodukt, Datenträger und Elektrofahrzeug
DE102017209765A1 (de) * 2017-06-09 2018-12-13 Volkswagen Aktiengesellschaft Antriebsstrang und Betriebsverfahren für ein Hybridfahrzeug mit einem freilaufgeschalteten Vorwärtsgang

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000230610A (ja) * 1999-02-09 2000-08-22 Kenji Mimura 無段変速機
JP2007126011A (ja) * 2005-11-04 2007-05-24 Nissan Motor Co Ltd ハイブリッド車両の制御装置
JP2008105622A (ja) * 2006-10-27 2008-05-08 Toyota Central R&D Labs Inc ハイブリッド車両の駆動装置
JP2009197981A (ja) * 2008-02-25 2009-09-03 Honda Motor Co Ltd 変速機
JP2010025310A (ja) * 2008-07-24 2010-02-04 Honda Motor Co Ltd 変速機
JP2010519470A (ja) * 2007-02-26 2010-06-03 ジーアイエフ ゲセルシャフト フール インダストリエフォルシャング エムビーエイチ 無段変速サブギア・ボックスを有する駆動装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005502543A (ja) * 2001-09-26 2005-01-27 ルーク ラメレン ウント クツプルングスバウ ベタイリグングス コマンディートゲゼルシャフト 駆動装置
WO2004024486A1 (ja) * 2002-09-13 2004-03-25 Honda Giken Kogyo Kabushiki Kaisha ハイブリッド車両
KR100507494B1 (ko) * 2003-07-07 2005-08-17 현대자동차주식회사 하이브리드 전기 차량의 동력 전달 시스템
JP4972988B2 (ja) * 2006-05-02 2012-07-11 日産自動車株式会社 ハイブリッド車両の伝動状態切り替え制御装置
JP4243304B2 (ja) * 2006-10-25 2009-03-25 本田技研工業株式会社 動力装置
WO2009067981A1 (de) * 2007-11-30 2009-06-04 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Verfahren zum steuern des betriebs eines generators in einem fahrzeugantriebsstrang sowie fahrzeugantriebsstrang
JP5338473B2 (ja) 2009-05-15 2013-11-13 日産自動車株式会社 エンジン始動制御装置
DE112011102036B4 (de) * 2010-06-15 2019-05-29 Honda Motor Co., Ltd. Fahrzeugantriebssystem und Steuerverfahren für Fahrzeugantriebssystem
WO2011158577A1 (ja) * 2010-06-15 2011-12-22 本田技研工業株式会社 自動車用駆動システム
CN102939479B (zh) * 2010-06-15 2015-10-07 本田技研工业株式会社 机动车用驱动系统和机动车用驱动系统的控制方法
JP5019080B2 (ja) * 2010-09-03 2012-09-05 本田技研工業株式会社 自動車用駆動システム及びその制御方法
JP5142234B2 (ja) * 2011-01-06 2013-02-13 本田技研工業株式会社 無段変速機構及び自動車用駆動システム
JP5753582B2 (ja) * 2011-06-23 2015-07-22 本田技研工業株式会社 駆動システム及び駆動システムの制御方法
JP5455994B2 (ja) * 2011-08-31 2014-03-26 本田技研工業株式会社 自動車用駆動システム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000230610A (ja) * 1999-02-09 2000-08-22 Kenji Mimura 無段変速機
JP2007126011A (ja) * 2005-11-04 2007-05-24 Nissan Motor Co Ltd ハイブリッド車両の制御装置
JP2008105622A (ja) * 2006-10-27 2008-05-08 Toyota Central R&D Labs Inc ハイブリッド車両の駆動装置
JP2010519470A (ja) * 2007-02-26 2010-06-03 ジーアイエフ ゲセルシャフト フール インダストリエフォルシャング エムビーエイチ 無段変速サブギア・ボックスを有する駆動装置
JP2009197981A (ja) * 2008-02-25 2009-09-03 Honda Motor Co Ltd 変速機
JP2010025310A (ja) * 2008-07-24 2010-02-04 Honda Motor Co Ltd 変速機

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2012176494A1 (ja) * 2011-06-23 2015-02-23 本田技研工業株式会社 駆動システム及び駆動システムの制御方法
JP2013067355A (ja) * 2011-09-26 2013-04-18 Honda Motor Co Ltd 駆動システム
WO2014162816A1 (ja) * 2013-04-01 2014-10-09 本田技研工業株式会社 車両用動力伝達装置
WO2014162815A1 (ja) * 2013-04-01 2014-10-09 本田技研工業株式会社 車両用動力伝達装置
JP5945068B2 (ja) * 2013-04-01 2016-07-05 本田技研工業株式会社 車両用動力伝達装置
JP5933125B2 (ja) * 2013-05-24 2016-06-08 本田技研工業株式会社 車両用動力伝達装置
WO2014188823A1 (ja) * 2013-05-24 2014-11-27 本田技研工業株式会社 車両用動力伝達装置
CN105190100A (zh) * 2013-05-24 2015-12-23 本田技研工业株式会社 车辆用动力传递装置
WO2015151287A1 (ja) * 2014-04-04 2015-10-08 本田技研工業株式会社 無段変速機
JPWO2015151287A1 (ja) * 2014-04-04 2017-04-13 本田技研工業株式会社 無段変速機
JP2015206393A (ja) * 2014-04-18 2015-11-19 本田技研工業株式会社 車両用動力伝達装置
JP2015209907A (ja) * 2014-04-25 2015-11-24 本田技研工業株式会社 車両用動力伝達装置
WO2015194633A1 (ja) * 2014-06-19 2015-12-23 本田技研工業株式会社 動力伝達装置
JPWO2015194633A1 (ja) * 2014-06-19 2017-04-20 本田技研工業株式会社 動力伝達装置
JP2017155778A (ja) * 2016-02-29 2017-09-07 本田技研工業株式会社 車両用動力伝達装置

Also Published As

Publication number Publication date
US9050974B2 (en) 2015-06-09
CN103619624B (zh) 2016-03-02
CN103619624A (zh) 2014-03-05
JP5753582B2 (ja) 2015-07-22
US20140106929A1 (en) 2014-04-17
DE112012002583T5 (de) 2014-03-20
JPWO2012176494A1 (ja) 2015-02-23

Similar Documents

Publication Publication Date Title
JP5753582B2 (ja) 駆動システム及び駆動システムの制御方法
JP5455994B2 (ja) 自動車用駆動システム
JP5492990B2 (ja) 自動車用駆動システム
JP5842926B2 (ja) ハイブリッド駆動システム
JP5501461B2 (ja) 自動車用駆動システムおよび自動車用駆動システムの制御方法
WO2012005094A1 (ja) 自動車用駆動システム及びその制御方法
JP2007118728A (ja) エンジンの始動制御装置
JP2013071574A (ja) 駆動システム
CN103189626B (zh) 驱动系统
WO2011158875A1 (ja) 自動車用駆動システムおよび自動車用駆動システムの制御方法
JP2012201339A (ja) 変速比制御装置及び変速比制御方法
JP5702698B2 (ja) 車両の駆動システム
WO2011158603A1 (ja) 自動車用駆動システムおよび自動車用駆動システムの制御方法
JP5570661B2 (ja) 駆動システム
JP2014104882A (ja) 車両の制御装置
WO2012002062A1 (ja) 自動車用駆動システム及びその制御方法
JP5862797B2 (ja) 車両用変速機及び制御装置
JP5654974B2 (ja) 駆動システム
WO2011162056A1 (ja) 自動車用駆動システム及びその制御方法
JP5586694B2 (ja) 自動車用駆動システムおよび自動車用駆動システムの制御方法
JP2009262601A (ja) 動力装置
JP2012179998A (ja) 駆動システム
WO2011158872A1 (ja) 自動車用駆動システムおよび自動車用駆動システムの制御方法
JP2012107534A (ja) 駆動システム
JP2012250625A (ja) ハイブリッド車両の制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12803498

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013521483

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14125343

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120120025830

Country of ref document: DE

Ref document number: 112012002583

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12803498

Country of ref document: EP

Kind code of ref document: A1