WO2012174996A1 - 一种类石墨烯包覆掺杂锰酸锂复合正极材料及其制备方法 - Google Patents
一种类石墨烯包覆掺杂锰酸锂复合正极材料及其制备方法 Download PDFInfo
- Publication number
- WO2012174996A1 WO2012174996A1 PCT/CN2012/076963 CN2012076963W WO2012174996A1 WO 2012174996 A1 WO2012174996 A1 WO 2012174996A1 CN 2012076963 W CN2012076963 W CN 2012076963W WO 2012174996 A1 WO2012174996 A1 WO 2012174996A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lithium manganate
- graphene
- coated
- hours
- cathode material
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
- H01M4/1391—Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
- H01M4/625—Carbon or graphite
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the invention relates to the field of chemical batteries, in particular to a graphene-like coated doped lithium manganate composite cathode material and a preparation method thereof.
- Lithium-ion battery is a new generation of green high-energy battery, which has the advantages of light weight, high volumetric energy, high working voltage and no environmental pollution. It is a modern communication, IT and portable electronic products (such as mobile phones, notebook computers, video cameras, etc.).
- the ideal chemical power source is also the preferred power source for electric vehicles in the future, with broad application prospects and huge economic benefits.
- the positive electrode material is an important factor in determining its electrochemical performance, safety performance and future development direction.
- the positive electrode material mainly uses lithium cobaltate, and also has a part of lithium manganate and lithium nickelate, and a small amount of ternary material.
- Lithium cobaltate is expensive and its safety performance is not high; lithium nickelate is difficult to prepare and the voltage is low; while lithium manganate is rich in resources, cheap, safe, and free from environmental pollution, it is the best choice for cathode materials of lithium ion batteries at this stage. .
- Lithium manganate has two structures: LiMnO 2 and LiMn 2 O 4 .
- LiMn 2 O 4 is a spinel structure with a theoretical capacity of 148 mAh/g.
- LiMnO 2 is a layered structure, which is difficult to synthesize, and the thermodynamic structure is unstable and easily converted into a spinel structure, mostly for laboratory research, and is less practical for battery materials.
- lithium manganate has many advantages, it also has its own drawbacks, that is, the capacity decay is severe during the cycle.
- the problem is mainly reflected in the following three aspects: First, lithium manganese oxide has a ginger Taylor effect, which changes its spinel structure, affecting capacity and cycle performance; Second, LiMn 2 O 4 is easily dissolved in the electrolyte; The electrolyte is easily decomposed on the surface of the electrode to form a passivation film to generate self-discharge phenomenon.
- the bulk phase impurity can be used, and the metal cation M (which has a smaller radius than the Mn 3+ and the oxygen binding energy larger than Mn, such as Al, Co, Li, Ni, B) can be used to stabilize the cell. Therefore, the ginger Taylor effect is suppressed; for the above problems 2 and 3, since they are closely related to the electrolyte, the solution is mostly to use a special electrolyte, which makes it difficult to decompose, does not react with the electrode, and reduces the dissolution of manganese ions.
- the capacity of the modified product obtained by these methods still differs greatly from the theoretical value, and the degree of improvement in cycle performance is also very limited.
- the object of the present invention is to provide a graphene-coated doped lithium manganate composite cathode material and a preparation method thereof, which are obtained by coating a lithium-ion battery cathode material with a graphene-like doped lithium manganate, aiming to reduce the The Taylor effect leads to irreversible changes in the structure of lithium manganate, prevents the structure of lithium manganate spinel from changing, and reduces the dissolution and self-discharge effect of lithium manganate in the electrolyte, thereby effectively solving the defects of lithium manganate as a positive electrode material.
- a method for preparing a graphene-coated doped lithium manganate composite cathode material comprising the following steps:
- A Using manganese dioxide and lithium carbonate as precursors, after ball milling, calcination in an air atmosphere at a high temperature of 600 ° C or higher for more than 20 hours to obtain lithium manganate powder;
- the graphene-like precursor is added to the lithium manganate powder and uniformly mixed, and then cured at a constant temperature of 180 ° C for 2 to 4 hours, and then ground, and under the protection of an inert atmosphere, the calcination temperature is 500 ° C or more and calcined for 1 to 50 hours.
- the graphite-like/lithium manganate composite powder is taken out and heat-treated in an air atmosphere at a heat treatment temperature of 300 ° C to 500 ° C for 1 to 10 hours to obtain a graphene-doped coated lithium manganate composite powder.
- the method for preparing a graphene-like coated lithium manganate composite cathode material wherein the molar ratio of manganese dioxide to lithium carbonate is 4 :1 ⁇ 1.2.
- the method for preparing a graphene-like coated lithium manganate composite cathode material wherein the calcination temperature is 600 ° C to 800 ° C under a vacuum atmosphere, and the time is 20 to 50 hours.
- the method for preparing a graphene-like coated doped lithium manganate composite cathode material wherein the graphene-like precursor is an acrylonitrile oligomer.
- the method for preparing a graphene-like coated lithium manganate composite cathode material wherein the acrylonitrile oligomer is in a liquid state, and the relative molecular weight is 106 to 5000.
- the method for preparing a graphene-like coated doped lithium manganate composite cathode material wherein the curing temperature is 180 to 240 °C.
- the method for preparing a graphene-like coated doped lithium manganate composite cathode material wherein the inert atmosphere during calcination is nitrogen or argon, and the calcination temperature is 500 to 750 °C.
- a graphene-like coated doped lithium manganate composite powder prepared by using the above-mentioned method for preparing graphene-coated doped lithium manganate composite cathode material, wherein the surface of lithium manganate is doped with doping There is a graphene-like layer.
- the invention provides a graphene-coated doped lithium manganate composite cathode material and a preparation method thereof, and the method for solid-liquid mixing method is used for coating a graphene-like doped lithium manganate to obtain a lithium ion battery cathode material, which is low in cost and The operation is simple, and the production efficiency can be improved; the graphene-like coating on the surface of the lithium manganate reduces the irreversible change of the lithium manganate structure caused by the ginger Taylor effect; meanwhile, the graphene-like layer can serve as a barrier electrolyte to contact the lithium manganate.
- the precursor-like graphene is uniformly distributed between the lithium manganate particles, reducing voids and enhancing conductivity; effectively solving the defects of lithium manganate as a positive electrode material, A high performance doped coated positive electrode material is obtained.
- Figure 1 is an SEM image of the product prepared in Example 1.
- Example 2 is an XRD pattern of the intermediate product prepared in Example 1.
- Figure 3 is an XRD pattern of the product prepared in Example 1.
- the present invention provides a graphene-coated doped lithium manganate composite cathode material and a preparation method thereof.
- the present invention will be further described in detail below. It is understood that the specific embodiments described herein are merely illustrative of the invention and are not intended to limit the invention.
- the invention provides a method for preparing a graphene-like coated doped lithium manganate composite cathode material, which comprises the following steps:
- A uses commercially available manganese dioxide and lithium carbonate as a precursor, and manganese dioxide and lithium carbonate are uniformly mixed, and after ball milling, calcined at a high temperature of 600 ° C or higher for more than 20 hours in an air atmosphere to obtain lithium manganate powder;
- the graphene-like precursor is added to the lithium manganate powder and uniformly mixed, and then cured at a constant temperature of 180 ° C for 2 to 4 hours, then ground, and under the protection of an inert atmosphere, calcined at a calcination temperature of 500 ° C or higher for 1 to 50 hours.
- the acrylonitrile oligomer is calcined to form a carbon coating layer on the surface of the lithium manganate powder particles, and simultaneously reduces the internal coating of lithium manganate to obtain a graphene/lithium manganate composite powder;
- the graphite-like/lithium manganate composite powder is taken out, placed in an air atmosphere, and heat-treated at 300 ° C to 500 ° C for 1 to 10 hours to obtain a graphene-doped coated lithium manganate composite powder;
- the graphite-like/lithium manganate composite powder is prepared by an inert atmosphere post-treatment, the graphene-like precursor has a reducing effect, which reduces the proportion of oxygen in the lithium manganate, and the oxygen can enter the lithium manganate by treatment in a re-empty atmosphere. Forming a stable and perfect lithium manganate crystal to effectively improve the cycle performance of the sample.
- the process of mixing manganese dioxide and lithium carbonate is uniform, according to the molar ratio, manganese dioxide: lithium carbonate is 4 :(1 ⁇ 1.2).
- the mixed powder of manganese dioxide and lithium carbonate is ball-milled, the mixed powder of manganese dioxide and lithium carbonate is calcined at a high temperature to become lithium manganate powder, and the calcination temperature is 600 to 800 ° C for 20 to 50 hours.
- the acrylonitrile oligomer is used as the graphene-like precursor, and the acrylonitrile oligomer and the lithium manganate powder are uniformly mixed by the ball milling method in the step B, and the acrylonitrile is low in mass ratio.
- the acrylonitrile oligomer is in a liquid state, and has a relative molecular weight of 106 to 5000.
- the curing temperature in the subsequent curing process is preferably 180 to 240. °C.
- the inert atmosphere used is nitrogen or argon, and the calcination temperature is 500 to 750 ° C for 1 to 50 hours.
- the heat treatment temperature is 300 to 500 ° C for 1 to 10 hours.
- a graphene-like coated lithium manganate composite powder prepared by the method for preparing a graphene-like coated lithium manganate composite cathode material, wherein the surface of the lithium manganate is doped with a type of lithium manganate Graphene layer.
- a proper amount of a low-boiling organic solvent such as ethanol can be added.
- the mixing of the two substances is uniform; since the low-boiling organic solvent such as ethanol is finally volatilized, it has no effect on the final product.
- the positive electrode slurry was uniformly coated on a 20 ⁇ m aluminum foil, and then dried at 65 ° C, and punched to obtain a positive electrode disk having a diameter of 14 mm containing about 2 mg of active lithium manganate.
- the negative electrode is a lithium plate for a commercially available lithium ion battery.
- the performance of the test material was assembled by button battery 2032.
- the assembly sequence was negative electrode shell-spring piece-gasket-lithium piece-electrolyte-separator-electrolyte-positive piece-gasket-positive case, and the assembled battery was packaged. They are all done in the glove box.
- Cyclic performance test The above-mentioned lithium ion 2032 battery was placed on the test system, and after standing for 1 minute, it was firstly charged at a constant current of 0.1 C to an upper limit voltage of 4.4 volts, and then allowed to stand for 1 minute, followed by a constant current of 0.1 C. Discharge to 3.0V, record the first discharge capacity of the battery, then repeat the above steps 50 times, record the discharge capacity of the battery, calculate the capacity retention rate by the following formula:
- N-time capacity retention rate (Nth cycle discharge capacity / first cycle discharge capacity) ⁇ 100
- Example 1 121.3 96.7
- Example 2 A2 109.1 94.9
- Example 3 A3 123.6 94.7
- Example 4 A4 115.9 97.2
- Example 5 A5 127 96.1
- Example 6 A6 140.4 95.5
- the figure is analyzed by taking the example 1 as an example.
- Example 1 is a scanning electron micrograph of a magnified 10000-fold of a graphene-doped coated lithium manganate powder prepared in Example 1. As can be seen from the figure, the graphene-doped lithium manganate crystal particles have uniform size. The particle size distribution is small.
- Example 2 is an XRD pattern of an intermediate product lithium manganate product prepared in Example 1. It is known that lithium manganate has a standard spinel structure and a high crystallinity.
- Example 3 is an XRD pattern of the graphene-doped coated lithium manganate prepared in Example 1.
- the crystal structure and strength of the graphene precursor are both changed, and the graphene-like precursor has a reducing action and a graphene-like form. It has a coating effect and has an influence on the XRD peak intensity, which causes the intensity of the lithium manganese oxide diffraction peak to be weakened.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Composite Materials (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
本发明公开一种类石墨烯包覆掺杂锰酸锂复合正极材料及其制备方法,所述方法包括如下步骤:A、用二氧化锰和碳酸锂为前驱体,经球磨后得到锰酸锂粉体;B、将类石墨烯前驱体加入到锰酸锂粉体中混合均匀后,然后研磨,在惰性气氛保护下,锻烧得到石墨烯/锰酸锂复合粉体;C、将粉体取出,在空气氛下热处理得到类石墨烯包覆掺杂锰酸锂的复合正极材料。采用上述方案获得锂离子电池正极材料,成本低廉、操作简单,有效解决锰酸锂作为正极材料的缺陷,得到高性能的掺杂包覆正极材料。
Description
技术领域
本发明涉及化学电池领域,尤其涉及一种类石墨烯包覆掺杂锰酸锂复合正极材料及其制备方法。
背景技术
锂离子电池是新一代的绿色高能电池,具有重量轻、体积比能量高、工作电压高、无环境污染等优点,是现代通讯、IT和便携式电子产品(如移动电话、笔记本电脑、摄像机等)的理想化学电源,也是未来电动汽车优选的动力电源,具有广阔的应用前景和巨大的经济效益。
在锂离子电池的组成中,正极材料是决定其电化学性能、安全性能以及未来发展方向的重要因素。在目前商品化的锂离子电池中,正极材料主要采用的还是钴酸锂,兼有部分锰酸锂和镍酸锂,以及少量三元材料。钴酸锂价格昂贵,安全性能不高;镍酸锂制备困难,电压低;而锰酸锂资源丰富,价格便宜,且安全性好,无环境污染,是现阶段锂离子电池正极材料最佳选择。
锰酸锂有LiMnO2和LiMn2O4两种结构,LiMn2O4为尖晶石结构,理论容量为148mAh/g,在放电过程有两个放电平台(4.15V,4.05V相对于Li),目前在实际中应用广泛;LiMnO2为层状结构,合成困难,热力学结构不稳定易于转化为尖晶石结构,多为实验室研究,较少实际用于电池材料。
锰酸锂虽然有诸多优点,但也具有自身缺陷,即在循环过程中容量衰减严重。该问题主要体现在以下三个方面:一、锰酸锂放电时有姜泰勒效应,使其尖晶石结构改变,影响容量和循环性能;二、LiMn2O4易溶解于电解液中;三、电解液易分解在电极表面易形成钝化膜产生自放电现象。
针对上述问题一,可以采用体相参杂,加入金属阳离子M(其具有比Mn3+
半径小与氧结合能比Mn大,如Al,Co,Li,Ni,B)起稳定晶胞作用,从而抑制姜泰勒效应;针对上述问题二和三,因其都与电解液关系紧密,解决方法多为采用特制电解液,使其不易分解,不与电极反应,降低锰离子溶解。但是通过这些方法所得改性产品容量仍与理论值相差很大,而且循环性能的改善程度亦非常有限。
因此,现有技术还有待于改进和发展。
发明内容
本发明的目的在于提供一种类石墨烯包覆掺杂锰酸锂复合正极材料及其制备方法,通过类石墨烯包覆掺杂锰酸锂获得锂离子电池正极材料,旨在既要降低由姜泰勒效应导致锰酸锂结构的不可逆变化,防止锰酸锂尖晶石结构改变;又要降低锰酸锂在电解液中的溶解和自放电效应,从而有效解决锰酸锂作为正极材料的缺陷。
本发明的技术方案如下:
一种类石墨烯包覆掺杂锰酸锂复合正极材料的制备方法,所述方法包括如下步骤:
A、
用二氧化锰和碳酸锂为前驱体,经球磨后在空气氛下高温600℃以上煅烧20小时以上,得到锰酸锂粉体;
B、
将类石墨烯前驱体加入到锰酸锂粉体中混合均匀后,在180℃以上恒温固化2~4小时,然后研磨,在惰性气氛保护下,锻烧温度500℃以上煅烧1~50小时,得到类石墨烯/锰酸锂复合粉体;
C、
将类石墨烯/锰酸锂复合粉体取出,在空气氛下热处理,热处理温度为300℃~500℃,时间为1~10小时,得到类石墨烯掺杂包覆锰酸锂复合粉体。
所述的类石墨烯包覆掺杂锰酸锂复合正极材料的制备方法,其中,所述的二氧化锰与碳酸锂摩尔比为4
:1~1.2。
所述的类石墨烯包覆掺杂锰酸锂复合正极材料的制备方法,其中,在空气氛保护下,所述的煅烧温度为600℃~800℃,时间为20~50小时。
所述的类石墨烯包覆掺杂锰酸锂复合正极材料的制备方法,其中,所述的类石墨烯前驱体为丙烯腈低聚物。
所述的类石墨烯包覆掺杂锰酸锂复合正极材料的制备方法,其中,按质量比,丙烯腈低聚物:锰酸锂为0.01~0.2:1。
所述的类石墨烯包覆掺杂锰酸锂复合正极材料的制备方法,其中,所述丙烯腈低聚物为液态,相对分子量为106~5000。
所述的类石墨烯包覆掺杂锰酸锂复合正极材料的制备方法,其中,所述的固化的温度为180~240 ℃。
所述的类石墨烯包覆掺杂锰酸锂复合正极材料的制备方法,其中,煅烧时惰性气氛为氮气或氩气,锻烧温度为500~750℃。
一种应用所述的类石墨烯包覆掺杂锰酸锂复合正极材料的制备方法制得的类石墨烯包覆掺杂锰酸锂复合粉体,其中,在锰酸锂表面包覆掺杂有类石墨烯层。
本发明所提供的一种类石墨烯包覆掺杂锰酸锂复合正极材料及其制备方法,采用固液混合法使类石墨烯包覆掺杂锰酸锂获得锂离子电池正极材料,成本低廉、操作简单,可以提高生产效率;由类石墨烯包覆在锰酸锂表面,降低由姜泰勒效应导致锰酸锂结构的不可逆变化;同时,类石墨烯能够起到阻隔电解液与锰酸锂接触,降低锰离子在电解液中溶解和自放电效应;另外,前驱体生成类石墨烯均匀分布在锰酸锂颗粒间,减小空隙,增强导电性;有效解决锰酸锂作为正极材料的缺陷,得到高性能的掺杂包覆正极材料。
附图说明
图1为实施例1所制备产品的SEM图。
图2为实施例1所制备中间产物的XRD图谱。
图3为实施例1所制备产物的XRD图谱。
具体实施方式
本发明提供一种类石墨烯包覆掺杂锰酸锂复合正极材料及其制备方法,为使本发明的目的、技术方案及效果更加清楚、明确,以下对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明所提供的一种类石墨烯包覆掺杂锰酸锂复合正极材料的制备方法,其中,包括以下步骤:
A采用市售二氧化锰和碳酸锂作为前驱体,将二氧化锰和碳酸锂混合均匀,经球磨后在空气氛下高温600℃以上煅烧20小时以上,得到锰酸锂粉体;
B将类石墨烯前驱体加入到锰酸锂粉体中混合均匀后,在180℃以上恒温固化2~4小时,然后研磨,在惰性气氛保护下,500℃以上锻烧温度煅烧1~50小时,丙烯腈低聚物经煅烧在锰酸锂粉体粒子表面形成碳包覆层,同时对内部包覆锰酸锂起还原作用,得类石墨烯/锰酸锂复合粉体;
C再将类石墨烯/锰酸锂复合粉体取出,置于空气氛中,再次在300℃~500℃下热处理1~10小时得到类石墨烯掺杂包覆锰酸锂复合粉体;由于惰性气氛后处理制备类石墨烯/锰酸锂复合粉体时,类石墨烯前驱体具有还原作用,会使锰酸锂中氧比例降低,通过再次空气氛处理,可以使氧进入锰酸锂,形成结构稳定完善锰酸锂晶体,有效改善样品循环性能。
本发明制备方法的步骤A中将二氧化锰和碳酸锂混合均匀的过程,按照摩尔比,二氧化锰:碳酸锂为4
:(1~1.2)。当二氧化锰和碳酸锂混合粉体经球磨后,二氧化锰和碳酸锂混合粉体经高温煅烧成为锰酸锂粉体,其煅烧温度为600~800℃,时间为20~50小时。
本发明的制备方法中,将丙烯腈低聚物作为类石墨烯前驱体,在步骤B中采用球磨的方法将丙烯腈低聚物与锰酸锂粉体混合均匀,按质量比,丙烯腈低聚物:锰酸锂为(0.01~0.2):
1。所述丙烯腈低聚物为液态,相对分子量为106~5000,随后的固化过程中,其固化的温度优选为180~240
℃。所述煅烧的过程中,所用惰性气氛为氮气或氩气,锻烧温度为500~750 ℃,时间为1-50小时。
步骤C中所述空气氛下热处理的过程中,热处理的温度为300~500 ℃,时间为1~10小时。
应用所述的类石墨烯包覆掺杂锰酸锂复合正极材料的制备方法制得的类石墨烯包覆掺杂锰酸锂复合粉体,其中,在锰酸锂表面包覆掺杂有类石墨烯层。
在步骤A中将二氧化锰和碳酸锂混合均匀的过程和步骤B中将丙烯腈低聚物加入到锰酸锂粉体中混合均匀的过程,可以添加适量的乙醇等低沸点有机溶剂,便于两种物质的混合均匀;由于乙醇等低沸点有机溶剂最终容易挥发,所以对最终产物并没有影响。
下面通过实施例,进一步阐明本发明的突出特点和显著进步,仅在于说明本发明而决不限制本发明。
实施例1
(1)将0.08摩尔Li2CO3、0.32摩尔MnO2与20ml无水乙醇混合(Li:Mn为1:4)在球磨罐中以400转/分钟球磨15小时,取出,在室温下静置8小时,取出样品过200目筛,在空气氛下于600℃恒温烧结50小时,得到锰酸锂。
(2)将步骤(1)所得锰酸锂中加入液态丙烯腈低聚物(LANO),其中LiMnO4:LANO的质量比为1:0.01,加入适量乙醇作溶剂进行超声分散,结束后室温干燥除去乙醇溶剂。在180
℃恒温固化6小时,然后研磨,在氮气保护下,500℃锻烧温度煅烧40小时,得到类石墨烯/锰酸锂复合粉体。
(3)将(2)所得类石墨烯/锰酸锂复合粉体在空气氛下,300℃恒温烧结10小时,得到类石墨烯包覆掺杂锰酸锂粉体材料。
实施例2
(1)将0.084摩尔Li2CO3、0.32摩尔MnO2与20ml无水乙醇混合(Li:Mn为1.05:4)在球磨罐中以400转/分钟球磨15小时,取出,在室温下静置8小时,取出样品过200目筛,在空气氛下于650℃恒温烧结45小时,得到锰酸锂。
(2)将步骤(1)所得锰酸锂中加入液态丙烯腈低聚物(LANO),其中LiMnO4:LANO的质量比为1:0.05,加入适量乙醇作溶剂进行超声分散,结束后室温干燥除去乙醇溶剂。在200
℃恒温固化4 小时,然后研磨,在氮气保护下,550℃锻烧温度煅烧8小时,得到类石墨烯/锰酸锂复合粉体。
(3)将(2)所得类石墨烯/锰酸锂复合粉体在空气氛下,400℃恒温烧结8小时,得到类石墨烯包覆掺杂锰酸锂粉体材料。
实施例3
(1)将0.088摩尔Li2CO3、0.32摩尔MnO2与20ml无水乙醇混合(Li:Mn为1.1:4)在球磨罐中以400转/分钟球磨15小时,取出,在室温下静置8小时,取出样品过200目筛,在空气氛下于700℃恒温烧结40小时,得到锰酸锂。
(2)将步骤(1)所得锰酸锂中加入液态丙烯腈低聚物(LANO),其中LiMnO4:LANO的质量比为1:0.05,加入适量乙醇作溶剂进行超声分散,结束后室温干燥除去乙醇溶剂。在180℃恒温固化6小时,然后研磨,在氮气保护下,600℃锻烧温度煅烧30小时,得到类石墨烯/锰酸锂复合粉体。
(3)将(2)所得类石墨烯/锰酸锂复合粉体在空气氛下,400℃恒温烧结6小时,得到类石墨烯包覆掺杂锰酸锂粉体材料。
实施例4
(1)将0.092摩尔Li2CO3、0.32摩尔MnO2与20ml无水乙醇混合(Li:Mn为1.15:4)在球磨罐中以400转/分钟球磨15小时,取出,在室温下静置8小时,取出样品过200目筛,在空气氛下于750℃恒温烧结35小时,得到锰酸锂。
(2)将步骤(1)所得锰酸锂中加入液态丙烯腈低聚物(LANO),其中LiMnO4:LANO的质量比为1:0.1,加入适量乙醇作溶剂进行超声分散,结束后室温干燥除去乙醇溶剂。在220
℃恒温固化3 小时,然后研磨,在氮气保护下,650℃锻烧温度煅烧25小时,得到类石墨烯/锰酸锂复合粉体。
(3)将(2)所得类石墨烯/锰酸锂复合粉体在空气氛下,450℃恒温烧结4小时,得到类石墨烯包覆掺杂锰酸锂粉体材料。
实施例5
(1)将0.096摩尔Li2CO3、0.32摩尔MnO2与20ml无水乙醇混合(Li:Mn为1.2:4)在球磨罐中以400转/分钟球磨15小时,取出,在室温下静置8小时,取出样品过200目筛,在空气氛下于800℃恒温烧结30小时,得到锰酸锂。
(2)将步骤(1)所得锰酸锂中加入液态丙烯腈低聚物(LANO),其中LiMnO4:LANO的质量比为1:0.15,加入适量乙醇作溶剂进行超声分散,结束后室温干燥除去乙醇溶剂。在220
℃恒温固化3 小时,然后研磨,在氮气保护下,700℃锻烧温度煅烧10小时,得到类石墨烯/锰酸锂复合粉体。
(3)将(2)所得类石墨烯/锰酸锂复合粉体在空气氛下,500℃恒温烧结2小时,得到类石墨烯包覆掺杂锰酸锂粉体材料。
实施例6
(1)将0.08摩尔Li2CO3、0.32摩尔MnO2与20ml无水乙醇混合(Li:Mn为1:4)在球磨罐中以400转/分钟球磨15小时,取出,在室温下静置8小时,取出样品过200目筛,在空气氛下于750℃恒温烧结30小时,得到锰酸锂。
(2)将步骤(1)所得锰酸锂中加入液态丙烯腈低聚物(LANO),其中LiMnO4:LANO的质量比为1:0.02,加入适量乙醇,超声分散均匀,蒸发溶剂,室温干燥。在220℃恒温固化3
小时,然后研磨,在氮气保护下,750℃锻烧温度煅烧1小时,得到类石墨烯/锰酸锂复合粉体。
(3)将(2)所得类石墨烯/锰酸锂复合粉体在空气氛下,500℃恒温烧结1小时,得到类石墨烯包覆掺杂锰酸锂粉体材料。
综合上述实施例,进一步采用例1~6所制备样品进行电池制备:
(1)电池的制备
正极的制备
分别将0.4克由实施例1~5制得的正极活性物质锰酸锂复合粉体材料、0.05克粘结剂聚偏氟乙烯(PVDF)和0.05克导电剂乙炔黑混合研磨均匀,加入5克N-甲基吡咯烷酮,搅拌形成均匀正极浆料。
将该正极浆料均匀的涂覆在20微米的铝箔上,然后在65℃下烘干,冲片,制得直径为14mm的正极圆片,其中含有约2毫克活性锰酸锂。
负极采用市售锂离子电池专用锂片。
电池的装配
采用纽扣电池2032组装测试材料性能,装配顺序为负极壳-弹片-垫片-锂片-电解液-隔膜-电解液-正极片-垫片-正极壳,再将组装好电池进行封装,整个过程均在手套箱中完成。
(2)电池性能测试
循环性能测试:将上述制得锂离子2032电池分别放在测试系统上,静置1分钟后先以0.1C进行恒流充电至上限电压4.4伏,再静置1分钟,接着以0.1C恒流放电至3.0V,记录电池的首次放电容量,然后重复上述步骤50次,记录电池的放电容量,由下式计算容量保持率:
N次容量保持率=(第N次循环放电容量/首次循环放电容量)×100
结果如下表1所示:
表1
实施例 编号 |
电池编号 | 初始放电比 容量( mAh/g ) |
循环 50 次容量 保持率( % ) |
实施例 1 | A1 | 121.3 | 96.7 |
实施例 2 | A2 | 109.1 | 94.9 |
实施例 3 | A3 | 123.6 | 94.7 |
实施例 4 | A4 | 115.9 | 97.2 |
实施例 5 | A5 | 127 | 96.1 |
实施例 6 | A6 | 140.4 | 95.5 |
附图解析以实施例1为例
图1为实施例1所制备产物类石墨烯掺杂包覆锰酸锂粉体的放大10000倍的扫描电镜照片;从图中可以看出,类石墨烯掺杂锰酸锂结晶颗粒大小均一,颗粒粒径分布小。
图2为实施例1所制备中间产物锰酸锂产品的XRD图谱;由图知制备锰酸锂具有标准尖晶石结构,结晶度高。
图3为实施例1所制备产物类石墨烯掺杂包覆锰酸锂的XRD图谱;由图知,其结晶结构与强度均发变化,类石墨烯前驱体具有还原作用,且生成类石墨烯具有包覆作用,对其XRD峰强有影响,致使锰酸锂衍射峰强度减弱。
由上述实施例的结果可知,在不同的反应条件下,均可得类石墨烯包覆掺杂锰酸锂正极材料,且材料具有良好电化学性能,从表1数据可知由本发明方法制备得到的锰酸锂制成的电池初始放电比容量较高,而且其50次循环容量保持率均在94%以上,这远高于现有技术所制备锰酸锂容量保持率,能够确实有效的解决锰酸锂正极材料的应用缺陷。
应当理解的是,本发明的应用不限于上述的举例,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,所有这些改进和变换都应属于本发明所附权利要求的保护范围。
Claims (9)
- 一种类石墨烯包覆掺杂锰酸锂复合正极材料的制备方法,所述方法包括如下步骤:A、 用二氧化锰和碳酸锂为前驱体,经球磨后在空气氛下高温600℃以上煅烧20小时以上,得到锰酸锂粉体;B、 将类石墨烯前驱体加入到锰酸锂粉体中混合均匀后,在180℃以上恒温固化2~4小时,然后研磨,在惰性气氛保护下,锻烧温度500℃以上煅烧1~50小时,得到类石墨烯/锰酸锂复合粉体;C、 将类石墨烯/锰酸锂复合粉体取出,在空气氛下热处理,热处理温度为300℃~500℃,时间为1~10小时,得到类石墨烯掺杂包覆锰酸锂复合粉体。
- 根据权利要求1所述的类石墨烯包覆掺杂锰酸锂复合正极材料的制备方法,其特征在于,所述的二氧化锰与碳酸锂摩尔比为4 :1~1.2。
- 根据权利要求1所述的类石墨烯包覆掺杂锰酸锂复合正极材料的制备方法,其特征在于,步骤A中在空气氛保护下,所述的煅烧温度为600℃~800℃,时间为20~50小时。
- 根据权利要求1所述的类石墨烯包覆掺杂锰酸锂复合正极材料的制备方法,其特征在于,所述的类石墨烯前驱体为丙烯腈低聚物。
- 根据权利要求4所述的类石墨烯包覆掺杂锰酸锂复合正极材料的制备方法,其特征在于,步骤B中,按质量比,丙烯腈低聚物:锰酸锂为0.01~0.2:1。
- 根据权利要求5所述的类石墨烯包覆掺杂锰酸锂复合正极材料的制备方法,其特征在于,所述丙烯腈低聚物为液态,相对分子量为106~5000。
- 根据权利要求1所述的类石墨烯包覆掺杂锰酸锂复合正极材料的制备方法,其特征在于,步骤B中所述的固化的温度为180℃~240℃。
- 根据权利要求1所述的类石墨烯包覆掺杂锰酸锂复合正极材料的制备方法,其特征在于,步骤B中煅烧时所述惰性气氛为氮气或氩气,锻烧温度为500℃~750℃。
- 一种应用权利要求1所述的类石墨烯包覆掺杂锰酸锂复合正极材料的制备方法制得的类石墨烯包覆掺杂锰酸锂复合正极材料,其特征在于,在锰酸锂表面包覆掺杂有类石墨烯层。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/133,678 US9379382B2 (en) | 2011-06-21 | 2013-12-19 | Positive electrode materials for lithium-ion batteries and method for preparing the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110166476.9 | 2011-06-21 | ||
CN201110166476.9A CN102263239B (zh) | 2011-06-21 | 2011-06-21 | 一种类石墨烯包覆掺杂锰酸锂复合正极材料及其制备方法 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/133,678 Continuation-In-Part US9379382B2 (en) | 2011-06-21 | 2013-12-19 | Positive electrode materials for lithium-ion batteries and method for preparing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012174996A1 true WO2012174996A1 (zh) | 2012-12-27 |
Family
ID=45009780
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2012/076963 WO2012174996A1 (zh) | 2011-06-21 | 2012-06-15 | 一种类石墨烯包覆掺杂锰酸锂复合正极材料及其制备方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US9379382B2 (zh) |
CN (1) | CN102263239B (zh) |
WO (1) | WO2012174996A1 (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105958055A (zh) * | 2016-06-24 | 2016-09-21 | 哈尔滨工业大学 | 一种层状结构纳米锰酸锂镶嵌石墨烯包覆的锂离子电池正极材料、电极及制备方法 |
WO2017066581A1 (en) * | 2015-10-14 | 2017-04-20 | Northwestern University | Graphene-coated metal oxide spinel cathodes |
CN114156474A (zh) * | 2021-10-29 | 2022-03-08 | 广东一纳科技有限公司 | 钠离子电池正极材料及其制备方法、电池 |
CN114775034A (zh) * | 2022-04-01 | 2022-07-22 | 安徽格派新能源有限公司 | 一种单晶锰酸锂正极材料的制备方法 |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102263239B (zh) * | 2011-06-21 | 2016-02-10 | 深圳市本征方程石墨烯技术股份有限公司 | 一种类石墨烯包覆掺杂锰酸锂复合正极材料及其制备方法 |
CN102593460A (zh) * | 2012-02-29 | 2012-07-18 | 北京师范大学 | 一种掺杂改性尖晶石型锰酸锂正极材料的制备方法 |
CN102602917B (zh) * | 2012-03-19 | 2014-02-12 | 华南理工大学 | 氮掺杂石墨烯/金属氧化物纳米复合材料的制备方法 |
CN103280569B (zh) * | 2013-02-04 | 2015-11-25 | 深圳市本征方程石墨烯技术股份有限公司 | 一种类石墨烯包覆富锂层状镍锰酸锂及制备方法和应用 |
CN103400988B (zh) * | 2013-07-23 | 2015-09-30 | 深圳市百纳新能源科技有限公司 | 一种锂离子二次电池正极材料的制备方法 |
CN105594028B (zh) * | 2013-10-04 | 2020-05-19 | 株式会社半导体能源研究所 | 锂锰复合氧化物、二次电池、电子设备以及制造层的方法 |
CN106159226B (zh) * | 2016-07-26 | 2019-03-22 | 河北北方学院 | 一种改性石墨烯掺杂的锰酸锂电极材料及其制备方法 |
CN106876784A (zh) * | 2017-01-04 | 2017-06-20 | 沈阳工业大学 | 一种peo基固态聚合物电解质膜及其制备方法 |
CN109830655A (zh) * | 2019-01-07 | 2019-05-31 | 新乡市中天新能源科技股份有限公司 | 一种离子共掺杂制备尖晶石型锰酸锂正极材料的方法 |
CN110137436B (zh) * | 2019-03-14 | 2022-04-26 | 青海师范大学 | 一种改进磷酸铁锂放电平台的方法 |
CN110137483B (zh) * | 2019-06-18 | 2022-03-22 | 贵州梅岭电源有限公司 | 一种镍钴锰酸锂复合材料及其制备方法与应用 |
CN110311106A (zh) * | 2019-06-25 | 2019-10-08 | 西北工业大学 | 一种提升锂离子电池在水下大电流放电安全性的方法 |
CN110190273A (zh) * | 2019-07-10 | 2019-08-30 | 深圳市本征方程石墨烯技术股份有限公司 | 一种石墨烯掺杂的锰酸锂正极材料及其制备方法 |
CN110600744A (zh) * | 2019-07-18 | 2019-12-20 | 桑顿新能源科技(长沙)有限公司 | 碳包覆磷酸铁锂材料、制备方法及锂离子电池正极材料 |
CN111029552B (zh) * | 2019-12-24 | 2021-07-13 | 天津巴莫科技有限责任公司 | 一种高电压高倍率钴酸锂正极材料及其制备方法 |
CN111403739A (zh) * | 2020-03-19 | 2020-07-10 | 湖北容百锂电材料有限公司 | 镍钴锰酸锂电芯正极活性材料、铝壳电芯及其制作方法 |
CN111900376B (zh) * | 2020-07-13 | 2021-11-23 | 江苏可兰素环保科技有限公司 | 一种用于高温电解液的电极材料及其制备方法 |
CN111769286A (zh) * | 2020-07-16 | 2020-10-13 | 凤凰新能源(惠州)有限公司 | 一种高电压镍锰酸锂正极材料及其制备方法 |
CN112151742A (zh) * | 2020-09-25 | 2020-12-29 | 福建师范大学 | 一种金属氧化物和石墨烯改性的用于提升全电池性能的三元正极材料的制备方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100021819A1 (en) * | 2008-07-28 | 2010-01-28 | Aruna Zhamu | Graphene nanocomposites for electrochemical cell electrodes |
CN101944593A (zh) * | 2010-09-15 | 2011-01-12 | 天津大学 | 纳米结构的锂离子电池正极材料及其制备方法 |
CN102074692A (zh) * | 2010-12-31 | 2011-05-25 | 深圳大学 | 一种类石墨烯掺杂锂离子电池正极材料的制备方法 |
CN102263239A (zh) * | 2011-06-21 | 2011-11-30 | 刘剑洪 | 一种类石墨烯包覆掺杂锰酸锂复合正极材料及其制备方法 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5540981A (en) * | 1994-05-31 | 1996-07-30 | Rohm And Haas Company | Inorganic-containing composites |
EP1381135A4 (en) * | 2001-04-17 | 2006-07-19 | Matsushita Electric Ind Co Ltd | BATTERY-OPERATED ELECTRONIC DEVICE AND MOBILE COMMUNICATION DEVICE |
CN1207800C (zh) * | 2001-07-17 | 2005-06-22 | 成都市雷雳高科技发展有限公司 | 一种锂锰氧化物正极材料的合成方法 |
WO2003036740A1 (en) * | 2001-10-19 | 2003-05-01 | Matsushita Electric Industrial Co., Ltd. | Secondary cell |
EP2104162B1 (en) * | 2008-03-18 | 2011-07-13 | Korea Institute of Science and Technology | Lithium-manganese-tin oxide cathode active material and lithium secondary cell using the same |
CN101587950A (zh) * | 2008-05-20 | 2009-11-25 | 青岛新正锂业有限公司 | 锂离子电池微米级单晶颗粒正极材料 |
CN101521276A (zh) * | 2009-03-30 | 2009-09-02 | 深圳大学 | 一种锂离子电池正极材料包覆碳的制备方法 |
DE102009049379A1 (de) * | 2009-10-15 | 2011-04-21 | Bayer Technology Services Gmbh | Verbundmaterialien mit Graphenlagen und deren Herstellung und Verwendung |
EP2615671A4 (en) * | 2010-09-10 | 2017-05-10 | Ocean's King Lighting Science&Technology Co., Ltd. | Lithium salt-graphene-containing composite material and preparation method thereof |
US20130171502A1 (en) * | 2011-12-29 | 2013-07-04 | Guorong Chen | Hybrid electrode and surface-mediated cell-based super-hybrid energy storage device containing same |
-
2011
- 2011-06-21 CN CN201110166476.9A patent/CN102263239B/zh active Active
-
2012
- 2012-06-15 WO PCT/CN2012/076963 patent/WO2012174996A1/zh active Application Filing
-
2013
- 2013-12-19 US US14/133,678 patent/US9379382B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100021819A1 (en) * | 2008-07-28 | 2010-01-28 | Aruna Zhamu | Graphene nanocomposites for electrochemical cell electrodes |
CN101944593A (zh) * | 2010-09-15 | 2011-01-12 | 天津大学 | 纳米结构的锂离子电池正极材料及其制备方法 |
CN102074692A (zh) * | 2010-12-31 | 2011-05-25 | 深圳大学 | 一种类石墨烯掺杂锂离子电池正极材料的制备方法 |
CN102263239A (zh) * | 2011-06-21 | 2011-11-30 | 刘剑洪 | 一种类石墨烯包覆掺杂锰酸锂复合正极材料及其制备方法 |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017066581A1 (en) * | 2015-10-14 | 2017-04-20 | Northwestern University | Graphene-coated metal oxide spinel cathodes |
KR20180078259A (ko) * | 2015-10-14 | 2018-07-09 | 노쓰웨스턴유니버시티 | 그래핀-코팅된 금속 산화물 스피넬 캐소드 |
US10749170B2 (en) | 2015-10-14 | 2020-08-18 | Northwestern University | Graphene-coated metal oxide spinel cathodes |
KR102706790B1 (ko) * | 2015-10-14 | 2024-09-12 | 노쓰웨스턴유니버시티 | 그래핀-코팅된 금속 산화물 스피넬 캐소드 |
CN105958055A (zh) * | 2016-06-24 | 2016-09-21 | 哈尔滨工业大学 | 一种层状结构纳米锰酸锂镶嵌石墨烯包覆的锂离子电池正极材料、电极及制备方法 |
CN105958055B (zh) * | 2016-06-24 | 2018-03-27 | 哈尔滨工业大学 | 一种层状结构纳米锰酸锂镶嵌石墨烯包覆的锂离子电池正极材料、电极及制备方法 |
CN114156474A (zh) * | 2021-10-29 | 2022-03-08 | 广东一纳科技有限公司 | 钠离子电池正极材料及其制备方法、电池 |
CN114156474B (zh) * | 2021-10-29 | 2023-12-05 | 广东一纳科技有限公司 | 钠离子电池正极材料及其制备方法、电池 |
CN114775034A (zh) * | 2022-04-01 | 2022-07-22 | 安徽格派新能源有限公司 | 一种单晶锰酸锂正极材料的制备方法 |
Also Published As
Publication number | Publication date |
---|---|
US9379382B2 (en) | 2016-06-28 |
CN102263239A (zh) | 2011-11-30 |
US20140103264A1 (en) | 2014-04-17 |
CN102263239B (zh) | 2016-02-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2012174996A1 (zh) | 一种类石墨烯包覆掺杂锰酸锂复合正极材料及其制备方法 | |
JP7271053B2 (ja) | 窒素が添加された全固体電池用硫化物界固体電解質 | |
JP7129075B2 (ja) | 大気安定性の高い無機硫化物固体電解質、及びその製造方法並びにその応用 | |
WO2018101806A1 (ko) | 리튬이차전지용 니켈계 활물질 전구체, 그 제조방법, 이로부터 형성된 리튬이차전지용 니켈계 활물질 및 이를 포함하는 양극을 함유한 리튬이차전지 | |
WO2021132761A1 (ko) | 양극활물질, 이의 제조방법 및 이를 포함하는 양극을 포함한 리튬이차전지 | |
US10608239B2 (en) | Method for producing electrode body | |
WO2015065098A2 (ko) | 양극 활물질, 이의 제조방법, 및 이를 포함하는 리튬 이차전지 | |
WO2014119973A1 (ko) | 리튬 이차전지용 양극 활물질, 이의 제조 방법 및 이를 이용한 리튬 이차전지 | |
WO2019088340A1 (ko) | 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 이차전지 | |
WO2011059204A2 (ko) | 리튬이차전지용 양극 활물질 | |
WO2012000201A1 (zh) | 锂离子电池负极材料及其制备方法 | |
WO2012011760A2 (ko) | 리튬 이차전지 양극활물질 전구체의 제조방법, 이에 의하여 제조된 리튬 이차전지 양극활물질 전구체, 및. 상기 양극활물질 전구체를 이용한 리튬 이차전지 양극활물질용 리튬금속복합산화물의 제조방법, 이에 의하여 제조된 리튬 이차전지 양극활물질용 리튬금속복합산화물. | |
WO2017188802A1 (ko) | 양극활물질, 그 제조 방법, 및 이를 포함하는 리튬이차전지 | |
WO2017213462A1 (ko) | 소듐 이차전지용 양극활물질, 및 이의 제조 방법 | |
RU2704625C1 (ru) | Твердый электролит, полностью твердотельный аккумулятор и способ получения твердого электролита | |
WO2020153728A1 (ko) | 리튬 이차전지용 음극활물질, 이를 포함하는 음극 및 리튬 이차전지 | |
Wang et al. | Improvement of the overall performances of LiMn2O4 via surface-modification by polypyrrole | |
WO2019117531A1 (ko) | 리튬 이차전지용 양극 활물질, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지 | |
WO2016165262A1 (zh) | 一种掺杂钛酸锂负极材料的制备方法 | |
WO2021096265A1 (ko) | 리튬 이차전지용 양극 활물질 및 상기 양극 활물질의 제조 방법 | |
KR20240001267A (ko) | 탄소 섬유 구조를 가진 탄소 결합 리튬 이온 도체-탄소 복합 캐소드 재료의 합성 | |
WO2019124719A1 (ko) | 율특성이 우수하고 장기 충방전시 가스발생이 없는 질소가 도핑된 그래핀 양자점이 부착된 lto 음극재료 | |
WO2020141953A1 (ko) | 이차전지용 음극 활물질, 이를 포함하는 전극 및 이의 제조방법 | |
WO2022086098A1 (ko) | 그래핀-실리콘 복합체를 포함하는 음극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지 | |
WO2022250324A1 (ko) | 양극 첨가제 및 이를 함유하는 리튬 이차전지용 양극 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12802848 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12802848 Country of ref document: EP Kind code of ref document: A1 |