WO2012000201A1 - 锂离子电池负极材料及其制备方法 - Google Patents

锂离子电池负极材料及其制备方法 Download PDF

Info

Publication number
WO2012000201A1
WO2012000201A1 PCT/CN2010/074904 CN2010074904W WO2012000201A1 WO 2012000201 A1 WO2012000201 A1 WO 2012000201A1 CN 2010074904 W CN2010074904 W CN 2010074904W WO 2012000201 A1 WO2012000201 A1 WO 2012000201A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium ion
ion battery
graphite
natural
conductive
Prior art date
Application number
PCT/CN2010/074904
Other languages
English (en)
French (fr)
Inventor
岳敏
闫慧青
邓明华
贺雪琴
Original Assignee
深圳市贝特瑞新能源材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市贝特瑞新能源材料股份有限公司 filed Critical 深圳市贝特瑞新能源材料股份有限公司
Priority to JP2012530112A priority Critical patent/JP5150010B1/ja
Priority to KR1020127024324A priority patent/KR101383967B1/ko
Priority to PCT/CN2010/074904 priority patent/WO2012000201A1/zh
Publication of WO2012000201A1 publication Critical patent/WO2012000201A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to a battery anode material and a preparation method thereof, in particular to a lithium ion battery carbon anode material and a preparation method thereof.
  • the prior art method for preparing a carbon anode material for a lithium ion battery is to use high-purity spherical graphite as a raw material, the carbon content thereof is as high as 99.9% or more, and the shape is close to a spherical shape, and the graphite is processed by a complicated preparation process, including multiphase coating and doping. Etc., the product yield is lower, less than 50%.
  • These methods inevitably increase the cost of the anode material, affecting the development of lithium-ion batteries to the power battery.
  • the existing products and related preparation methods cannot overcome the disadvantages of lower specific capacity and lower compaction density of the negative electrode material, which affects the further improvement of the energy density of the lithium ion battery.
  • the object of the present invention is to provide a lithium ion battery anode material and a preparation method thereof, and the technical problem to be solved is to reduce the cost of the anode material of the lithium ion battery and increase the high energy density thereof.
  • a lithium ion battery anode material the anode material of the lithium ion battery is composed of one or more of natural crystalline graphite, natural cryptocrystalline graphite and natural crystalline vein graphite, and the matrix is outsourced.
  • the non-graphite carbon material coated with 1 to 10 nm thick is coated with the conductive particles with a matrix mass of 1 to 20%; the non-graphite carbon material is obtained by heat treatment of the emulsified asphalt, and the conductive material is a conductive natural stone. Toner, conductive artificial graphite powder and/or conductive carbon black.
  • the negative electrode material for a lithium ion battery of the present invention has a spherical, bulky, and/or sheet-like shape having a spherical shape and a long-axis-to-axis ratio of 1.0 to 4.5, and has a particle size of 4.0 to 48.0 ⁇ m and a specific surface area of 2.5 to 5.0 m 2 /g.
  • the compact density of the powder is 1.65 to 2.05 g/cm 3
  • the layer spacing is 0.3354 to 0.3360 nm.
  • the anode material of the lithium ion battery of the invention has a magnetic substance of less than 20 ppb of Fe, Cr, Ni and Zn, an anion content of F- ⁇ 30 ppm, Cl- ⁇ 50 ppm, NO 3 - ⁇ 30 ppm, SO 4 2 - ⁇ 50 ppm, trace elements Fe ⁇ 20 ppm, Cu ⁇ 10 ppm, Ni ⁇ 5 ppm, Cr ⁇ 5 ppm, Al ⁇ 20 ppm, and pH value of 4.0 to 7.0.
  • the lithium ion battery negative electrode material of the present invention has a specific capacity of 360 mAh/g or more.
  • the natural crystalline graphite, natural cryptocrystalline graphite or natural crystalline vein graphite of the present invention has a carbon content of 80 to 92% and a particle size ranging from 2.0 to 50 ⁇ m.
  • the emulsified asphalt of the present invention has a pitch content of 20 to 70%, an emulsifier content of 0.1 to 5%, a stabilizer content of 0 to 0.1%, and the balance being water.
  • the conductive material of the present invention is conductive natural graphite powder, conductive artificial graphite powder or conductive carbon black having a carbon content of 99.9 wt% or more, an average particle diameter of 1.0 to 10.0 ⁇ m, and a specific surface area of 5.0 to 40.0 m 2 /g,
  • the layer spacing d002 is 0.3354 to 0.337 nm.
  • a preparation method of a lithium ion battery anode material comprises the following steps: 1. Natural graphite powder, emulsified asphalt which accounts for 10 to 50% of the quality of natural graphite powder, and 0.1 to 0.5% of high molecular organic matter of natural graphite powder.
  • the mixture is at an inlet temperature of 200 ⁇ 360°C, the outlet temperature is 70 ⁇ 100°C, centrifugal spray drying, the pressure is 20 ⁇ 100Pa; 3, at a temperature increase rate of 1 to 20 ° C / min to 450 ⁇ 700 ° C, carbonization treatment for 1 to 30 hours, and then cooled to room temperature at a cooling rate of 1 ⁇ 20 ° C / min; four, to 1 ⁇ 20 ° C /
  • the heating rate of min is 1800 ⁇ 2400 ° C, high temperature treatment for 1 ⁇ 144 hours, and then naturally cooled to room temperature; five, into the natural graphite powder mass of 1 ⁇ 20% of conductive materials, the speed of 100 ⁇ 500 r/min, mixing 5 ⁇ 180min, re-fusion treatment, speed 500 ⁇ 3000 r/min, time 10 to 200 min, gap 0.01 to 1.0 cm, temperature 20 to 50 ° C, to obtain a
  • the magnetic induction intensity is 3,000 to 30,000 Gs
  • the treatment temperature is 10 to 80 ° C
  • the number of electromagnetic hammer strikes is 3 to 180 / sec, which naturally rises or falls.
  • one or more of protective or purified gases nitrogen, argon, helium, neon, chlorine, and fluorine are charged, and the flow rate is 1 to 150 L/h.
  • the conductive material of the invention accounts for 2.0 to 10% of the mass of the natural graphite powder.
  • the natural graphite powder of the invention is a spherical, massive and/or flake-like natural crystalline graphite having a carbon content of 80 to 92%, a particle size of 2.0 to 50.0 ⁇ m, a spherical shape, a length to short axis ratio of 1.0 to 4.5, and a natural hidden color.
  • One or more of crystalline graphite and natural crystalline vein graphite; the emulsified asphalt has a solid content of 20 to 70%, an emulsifier content of 0.1 to 5%, a stabilizer content of 0 to 0.1%, and the balance is water.
  • the high molecular organic substance is polyacetylene, polyaniline, polypyrrole, polyethylene oxide, polypropylene oxide, polyethylene succinate, polyethylene sebacate and polyethylene glycol imine. More than one; the conductive material is conductive natural graphite powder, conductive artificial graphite powder and/or conductive carbon black, the carbon content thereof is 99.9 wt% or more, the average particle diameter is 1.0 to 10.0 ⁇ m, and the specific surface area SSA is 5.0. ⁇ 40.0 m 2 /g, and the layer spacing d002 is 0.3354 to 0.337 nm.
  • the invention adopts the raw material as the graphite with lower carbon content, which greatly reduces the cost of raw materials, uses hot air drying, simplifies the preparation process, and the coating layer is more firm and compact, and adopts a lower carbonization temperature and The temperature of the high temperature heat treatment reduces energy consumption and further reduces the product cost.
  • Fig. 2 is a graph showing the results of electrochemical performance test of Example 1 of the present invention.
  • Figure 3 is an XRD diagram of Embodiment 1 of the present invention.
  • the anode material of the lithium ion battery of the present invention is composed of any one or more of natural crystalline graphite, natural cryptocrystalline graphite and natural crystalline vein graphite, and the base is coated with a non-graphite carbon material of 1 to 10 nm thick.
  • the coated microparticles are compounded with a conductive material having a matrix mass of 1 to 20%.
  • the negative electrode material of the lithium ion battery has a spherical shape, a bulk shape, a block shape and/or a sheet shape with a spherical and long axis ratio of 1.0 to 4.5, and has a particle size of 4.0 to 48.0 ⁇ m and a specific surface area of 2.5 to 5.0 m 2 /g.
  • the powder compaction density is 1.65 to 2.05 g/cm 3
  • the layer spacing d002 is 0.3354 to 0.3360 nm.
  • the lithium ion battery anode material the sum of the magnetic substances Fe, Cr, Ni and Zn is less than 20 ppb (mass mg/kg), the anion content F- ⁇ 30 ppm, Cl- ⁇ 50 ppm, NO 3 - ⁇ 30 ppm, SO 4 2 - ⁇ 50ppm, trace element Fe ⁇ 20ppm, Cu ⁇ 10ppm, Ni ⁇ 5ppm, Cr ⁇ 5ppm, Al ⁇ 20ppm, PH value 4.0 ⁇ 7.0.
  • the anode material of the lithium ion battery has high energy density and excellent electrical performance, wherein the analog battery has a specific capacity of 360 mAh/g or more.
  • the energy density of the negative electrode material is the battery capacity ⁇ compaction density, so that there is a high capacity and a high compacted density, that is, a high energy density.
  • the natural crystalline graphite, natural cryptocrystalline graphite or natural crystalline vein graphite has a carbon content of 80 to 92% and a particle size ranging from 2.0 to 50 ⁇ m.
  • the non-graphite carbon material is an emulsified asphalt having a solid content of 20 to 70%, an emulsifier content of 0.1 to 5%, a stabilizer content of 0 to 0.1%, and the balance being water.
  • the conductive material is conductive natural graphite powder, conductive artificial graphite powder, conductive carbon black and/or other conductive material which can be used for making a battery, and has a carbon content of 99.9 wt% or more and an average particle diameter of 1.0 to 10.0 ⁇ m.
  • the specific surface area SSA is 5.0 to 40.0 m 2 /g, and the layer spacing d002 is 0.3354 to 0.337 nm.
  • the preparation method of the lithium ion battery anode material of the invention comprises the following steps:
  • the natural graphite powder is any one or more of natural crystalline graphite, natural cryptocrystalline graphite, and natural crystalline vein graphite having a carbon content of 80 to 92% and a particle size of 2.0 to 50.0 ⁇ m.
  • the emulsified asphalt has a bitumen mass content of 20 to 70%, an emulsifier mass content of 0.1 to 5%, a stabilizer mass content of 0 to 0.1%, and the balance being water.
  • the emulsifier is an anionic emulsifier, a cationic emulsifier or a zwitterionic emulsifier.
  • the anionic emulsifier is one or more of a carboxylate, a sulfate and a sulfonate; the cationic emulsifier is an amine derivative or an ammonium salt; and the zwitterionic emulsifier is a polyoxyethylene ether or a polyoxypropylene ether.
  • the carboxylate is soap C15 ⁇ 17H31 ⁇ 35CO2Na, sodium stearate C17H35CO2Na; the sulfate is sodium lauryl sulfate C12H25OSO3Na; the sulfonate is calcium dodecylbenzenesulfonate;
  • the derivatives of the amines are polyammonium amides: NN-bishydroxyethylalkylamide C11H23CON(CH2CH2OH)2, polyacrylamide [-CH2-CH(CONH2)]n-, essential species: lignin sulfonate Sodium, organic ammonium halides: cetyltrimethylammonium chloride C16H33(CH3)3NCl, di(octadecyl)dimethylammonium chloride; the ammonium salt is a quaternary ammonium salt dodecane Trimethylammonium chloride C12H25(CH3)3NCl; the polyoxyethylene ethers are
  • the stabilizer is at least one of sodium chloride, potassium chloride, calcium chloride, magnesium chloride, hydrochloric acid, phosphoric acid, nitric acid, polyvinyl alcohol, carboxymethyl cellulose, and sodium carboxymethyl cellulose.
  • the polymer organic matter is a polymer conductive polymer: polyester, polyalkyl and polyimine, specifically: polyacetylene, polyaniline, polypyrrole, polyethylene oxide, polypropylene oxide, polysuccinic acid One or more of ethylene glycol ester, polyethylene sebacate, and polyethylene glycol imine.
  • the inlet temperature is 200-360 ° C
  • the outlet temperature is 70-100 ° C
  • centrifugal spray drying pressure Under the conditions of 10 to 100 Pa
  • the feed flow rate is 160 kg to 1000 kg/h depending on the solid content of the mixture of 10 to 70% by weight.
  • the dried product is placed in the RGD-300-8 tunnel kiln of Jiangsu Feida Company, at a heating rate of 1 to 20 ° C / min, to 450 ⁇ 700 ° C, carbonization treatment for 1 to 30 hours, Then, it was cooled to room temperature at a temperature decreasing rate of 1 to 20 ° C / min.
  • one or more of protective or purified gases nitrogen, argon, helium, neon, chlorine, and fluorine are charged, and the flow rate is 1 to 150 L/h.
  • the conductive material which will occupy 1-20% of the quality of natural graphite powder shall be placed in the above-mentioned high-temperature treated material, and the VC-500 precision mixer of Wuxi Xinguang Powder Processing Technology Co., Ltd. shall be used, and the speed is 100-500.
  • mixing time is 5 ⁇ 180min, after compounding, re-fusion treatment, in the process of material fusion, placed in narrow gaps, friction rolling, so that small particles embedded in large particles, improve material compaction Density, using Japanese HOSOKWA MICRON GROUP's AMS fusion machine, speed 500 ⁇ 3000 r / min, time 10 ⁇ 200min, the gap is 0.01 ⁇ 1.0cm, the fusion temperature is room temperature ⁇ 50 ° C, naturally cooled to room temperature.
  • the conductive material accounts for 2.0 to 10% of the mass of the natural graphite powder.
  • the conductive material is conductive natural graphite powder, conductive artificial graphite powder, conductive carbon black and/or other conductive material which can be used for making a battery, and has a carbon content of 99.9 wt% or more and an average particle diameter of 1.0 to 10.0 ⁇ m.
  • the specific surface area SSA is 5.0 to 40.0 m 2 /g, and the layer spacing d002 is 0.3354 to 0.337 nm.
  • magnetic induction intensity is 3000 ⁇ 30000Gs
  • processing temperature is 10 ⁇ 80 ° C
  • the number of magnetic mesh is 15 ⁇ 40
  • the number of electromagnetic hammer strikes is 3 ⁇ 180 / sec
  • the processing speed is 100 ⁇ 2000kg / h, naturally rise or cool to room temperature.
  • the raw material is graphite with low carbon content, and the traditional preparation method adopts spherical graphite, the preparation process is complicated, and the carbon content needs to be increased.
  • the preparation of spherical graphite requires multi-stage pulverization, purification, spheroidization and the like,
  • the low cost of raw materials makes the invention greatly reduce the cost of the finished material.
  • the method of the invention uses negative pressure centrifugal spray drying instead of the prior art vapor phase coating, the preparation process is simplified, the coating layer is more firm and compact, and the coating is lower.
  • the carbonization temperature is 450-700 ° C and the high temperature heat treatment temperature is 1800-2400 ° C.
  • the prior art process carbonization temperature is above 1000 ° C, and the high temperature graphitization temperature reaches 3000 ° C, which reduces energy consumption and further reduces product cost.
  • the invention adopts natural graphite powder, emulsified asphalt and high molecular organic materials to form a matrix together, so that the natural graphite not only has a thin and uniform coating layer, but also reduces the active point of the surface of the natural graphite, thereby reducing the active point and The reaction of the electrolyte.
  • conductive materials as additives effectively avoids the "islands" of graphite particles formed during battery cycling, improves the reversible capacity and cycle stability of the anode materials, anion content F- ⁇ 30ppm, Cl- ⁇ 50ppm, NO 3 - ⁇ 30ppm , SO 4 2 - ⁇ 50ppm, can change the surface film SEI formed on the surface of the negative electrode during the first charge and discharge of the battery, that is, the electrochemical reaction generated by the SEI film, reducing the irreversible capacity, the content of the magnetic substance Fe, Cr, Ni and Zn And less than 20ppb, reducing the side reaction between the magnetic substance and the electrolyte during charging and discharging, reducing battery capacity loss, battery storage performance, self-discharge, and improving battery cycle stability and safety.
  • the present invention can perform magnetic descreening treatment, which can effectively remove the fine magnetic material, thereby avoiding side reactions of the magnetic fine particles inside the battery with the electrolyte and the like, thereby improving the safety of the battery.
  • the yield of the treatment process is 85-97 wt%, and the yield is calculated by dividing the weight of the sieve blank after magnetic sieving by the total weight of the feed, and (M sieve feed /M input weight ) ⁇ 100%.
  • the anode material of the lithium ion battery prepared by the method of the invention is observed by a KYKY2800B scanning electron microscope produced by Beijing Keyi Development Co., Ltd., and the crystal structure and crystal lattice are analyzed by PW3040/60 X-ray diffractometer of Panaco X'Pert, the Netherlands.
  • the parameters and the content of different structures were obtained by the transmission electron microscope H-9500 of Guangzhou Philomoen Scientific Instrument Co., Ltd. to obtain the coating thickness.
  • the magnetic substance or trace element was measured by the American PerkinElmer OPTIMA 2100 DV inductively coupled plasma optical emission spectrometer.
  • the anion Cl-, SO42-, NO 3 - or PO 4 3 -acid ion content was measured by ICS-3000 multi-function chromatograph of American Diane Company, and the pH value was measured by PHS-3C acidity meter of Shanghai Lei Magnetic Instrument Factory. Test.
  • the charge and discharge test of the battery is on the CT2001C battery detection system of the blue electric battery test system of Jinnuo, Wuhan.
  • Example 1 The process parameters of Examples 1 to 6 are shown in Table 1. As shown in FIG. 1 , the irregular natural graphite of the spherical shape, the block shape and/or the sheet shape having a spherical shape and a length-to-minor axis ratio of 1.0 to 4.5 is modified by an emulsified asphalt to obtain a uniform surface coating.
  • Floor The process parameters of Examples 1 to 6 are shown in Table 1. As shown in FIG. 1 , the irregular natural graphite of the spherical shape, the block shape and/or the sheet shape having a spherical shape and a length-to-minor axis ratio of 1.0 to 4.5 is modified by an emulsified asphalt to obtain a uniform surface coating.
  • Floor The process parameters of Examples 1 to 6 are shown in Table 1.
  • the negative electrode of the battery of the lithium ion battery negative electrode of Example 1 was prepared by the above method, and the inner diameter of the simulated battery was ⁇ 12 mm, the reversible capacity was 360 mAh/g or more, and the irreversible capacity was small.
  • the graphite powder of the negative electrode of the lithium ion battery of Example 1 has a high diffraction peak intensity of 002 crystal plane, a narrow half-peak width, and no rhombohedral peak at 43.5 and 46.5, and has good structural stability.
  • Table 1 Process parameters of anode materials for lithium ion batteries Example First, mixing Second, dry Third, carbonization Fourth, high temperature treatment Five, compound Sixth, screening, demagnetization 1 Natural cryptocrystalline graphite with carbon content of 92% 60% and natural crystalline vein graphite 40%, 30wt.% emulsified asphalt, 0.3% polyvinyl alcohol, rotating speed 2100r/min, stirring time 100min
  • the inlet temperature is 260 ° C
  • the outlet temperature is 85 ° C
  • the pressure is 100 Pa
  • the feed flow rate is 650 kg / h.
  • the inlet temperature is 360 ° C
  • the outlet temperature is 95 ° C
  • the pressure is 20 Pa
  • the feed flow rate is 400 kg /
  • the inlet temperature is 300 ° C
  • the outlet temperature is 80 ° C
  • the pressure is 60 Pa
  • the feed flow rate
  • the inlet temperature is 200 °C
  • the outlet temperature is 70 °C
  • the pressure is 80
  • the inlet temperature is 320 °C
  • the outlet temperature is 100 °C
  • the pressure is 40Pa
  • the inlet temperature is 280 °C
  • the outlet temperature is 90 °C
  • the pressure is 75 Pa
  • the feed flow rate is 800 kg / h.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

锂离子电池负极材料及其制备方法 锂离子电池负极材料及其制备方法
技术领域
本发明涉及一种电池负极材料及其制备方法,特别是一种锂离子电池碳负极材料及其制备方法。
背景技术
现有技术的制备锂离子电池碳负极材料的方法是采用高纯度球形石墨作原料,其碳含量高达99.9%以上,外形接近球形,采用复杂的制备工艺处理石墨,包括多相包覆、掺杂等,产品收率较低,50%以下,这些方法不可避免地使负极材料的成本增加,影响了锂离子电池向动力电池发展的进程。除此之外,现有产品及相关制备方法不能够克服负极材料比容量较低,压实密度低的缺点,影响了锂离子电池能量密度的进一步提高。
发明内容
本发明的目是提供一种锂离子电池负极材料及其制备方法,要解决的技术问题是降低锂离子电池负极材料成本,提高其高能量密度。
本发明采用以下技术方案:一种锂离子电池负极材料,所述锂离子电池负极材料由天然晶质石墨、天然隐晶质石墨和天然结晶脉状石墨中的一种以上为基体,基体外包覆有1~10nm厚的非石墨类碳材料,包覆后的微粒复合有基体质量1~20%的导电材料;所述非石墨类碳材料是乳化沥青热处理得到,所述导电材料是导电天然石墨粉、导电人造石墨粉和/或导电炭黑。
本发明的锂离子电池负极材料,具有球形、长短轴比1.0~4.5的类球形、块状和/或片状的外形,其粒度为4.0~48.0μm,比表面积为2.5~5.0m2/g,粉体压实密度1.65~2.05g/cm3,层间距为0.3354~0.3360nm。
本发明的锂离子电池负极材料,磁性物质Fe、Cr、Ni和Zn之和小于20ppb,阴离子含量F-≤30ppm,Cl-≤50ppm,NO3-≤30ppm,SO4 2-≤50ppm,微量元素Fe≤20ppm,Cu≤10ppm,Ni≤5ppm,Cr≤5ppm,Al≤20ppm,PH值为4.0~7.0。
本发明的锂离子电池负极材料的比容量在360mAh/g以上。
本发明的天然晶质石墨、天然隐晶质石墨或天然结晶脉状石墨,其含碳量为80~92%,粒度范围为2.0~50μm。
本发明的乳化沥青的沥青质量含量为20~70%,乳化剂含量为0.1~5%,稳定剂的含量为0~0.1%,其余为水。
本发明的导电材料是导电天然石墨粉、导电人造石墨粉或导电炭黑的含碳量为99.9wt%以上,其平均粒径为1.0~10.0μm,比表面积为5.0~40.0m2/g,层间距d002为0.3354~0.337nm。
一种锂离子电池负极材料的制备方法,包括以下步骤:一、将天然石墨粉,与占天然石墨粉质量10~50%的乳化沥青、占天然石墨粉质量0.1~0.5%高分子有机物,转速600~2100r/min,搅拌10~180min,液相混合得到悬浊液状混合物;二、将混合物以进口温度为200~360℃,出口温度为70~100℃,进行离心喷雾干燥,压强为20~100Pa;三、以1~20℃/min的升温速度到450~700℃,碳化处理1~30小时,然后以1~20℃/min的降温速度冷却至室温;四、以1~20℃/min的升温速度到1800~2400℃,高温处理1~144小时,然后自然冷却至室温;五、放入占天然石墨粉质量1~20%的导电材料,速度为100~500 r/min,混合5~180min,再融合处理,转速500~3000 r/min,时间10~200min,间隙为0.01~1.0cm,温度为20~50℃,得到锂离子电池负极材料。
本发明的融合处理后除磁,磁感应强度为3000~30000Gs,处理温度为10~80℃,电磁锤打击次数为3~180/秒,自然升或降温。
本发明的高温处理时,充入保护性或纯化气体:氮气、氩气、氦气、氖气、氯气和氟气的一种以上,流量为1~150L/h。
本发明的导电材料占天然石墨粉的质量为2.0~10%
本发明的天然石墨粉为含碳量80~92%,粒度2.0~50.0μm,形状为球形、长短轴比1.0~4.5的类球形、块状和/或片状的天然晶质石墨、天然隐晶质石墨和天然结晶脉状石墨中的一种以上;所述乳化沥青质量固含量为20~70%,乳化剂含量为0.1~5%,稳定剂的含量为0~0.1%,其余为水;所述高分子有机物为聚乙炔、聚苯胺、聚吡咯、聚环氧乙烷、聚环氧丙烷、聚丁二酸乙二醇酯、聚癸二酸乙二醇和聚乙二醇亚胺的一种以上;所述导电材料是导电天然石墨粉、导电人造石墨粉和/或导电炭黑,其含碳量为99.9wt%以上,其平均粒径为1.0~10.0μm,比表面积SSA为5.0~40.0m2/g,层间距d002为0.3354~0.337nm。
本发明与现有技术相比,本发明采用原材料为含碳量较低的石墨,大大降低了原材料成本,使用热风干燥,制备工艺简化,包覆层更加牢固致密,采用较低的碳化温度及高温热处理的温度,减少了能源消耗,也使产品成本进一步降低。
附图说明
图1是本发明实施例1的SEM图。
图2是本发明实施例1的电化学性能测试结果曲线图。
图3是本发明实施例1的XRD图。
具体实施方式
下面结合附图和实施例对本发明作进一步详细说明。本发明的锂离子电池负极材料,由天然晶质石墨、天然隐晶质石墨和天然结晶脉状石墨中的任一种以上为基体,基体外包覆有1~10nm厚的非石墨类碳材料,包覆后的微粒复合有基体质量1~20%的导电材料。
所述锂离子电池负极材料,具有球形、长短轴比1.0~4.5的类球形、块状和/或片状的外形,其粒度为4.0~48.0μm,比表面积为2.5~5.0m2/g,粉体压实密度1.65~2.05g/cm3,层间距d002为0.3354~0.3360nm。
所述锂离子电池负极材料,磁性物质Fe、Cr、Ni和Zn之和小于20ppb(质量mg/kg),阴离子含量F-≤30ppm,Cl-≤50ppm,NO3-≤30ppm,SO4 2-≤50ppm,微量元素Fe≤20ppm,Cu≤10ppm,Ni≤5ppm,Cr≤5ppm,Al≤20ppm,PH值为4.0~7.0。
所述锂离子电池负极材料,具有高的能量密度及优异的电性能,其中模拟电池比容量达到360mAh/g以上。负极材料的能量密度为电池容量×压实密度,所以有高的容量和高的压实密度即是有高的能量密度。
所述天然晶质石墨、天然隐晶质石墨或天然结晶脉状石墨的含碳量为80~92%,粒度范围为2.0~50μm。
所述非石墨类碳材料为乳化沥青,其质量固含量为20~70%,乳化剂含量为0.1~5%,稳定剂的含量为0~0.1%,其余为水。
所述导电材料是导电天然石墨粉、导电人造石墨粉、导电炭黑和/或可用于制作电池的其他导电材料,其含碳量为99.9wt%以上,其平均粒径为1.0~10.0μm,比表面积SSA为5.0~40.0m2/g,层间距d002为0.3354~0.337nm。
本发明的锂离子电池负极材料的制备方法,包括以下步骤:
一、混合,将形状为球形、长短轴比1.0~4.5的类球形、块状和/或片状的天然石墨粉,与占天然石墨粉质量10~50%的非石墨类碳材料乳化沥青、占天然石墨粉质量0.1~0.5%高分子有机物,采用无锡新光粉体加工工艺有限公司的GS-300型高速搅拌机,在转速600~2100r/min、搅拌时间为10~180min条件下与水液相混合得到悬浊液状混合物,其固含量为10~70wt%。液体为乳化沥青和水的质量之和。
天然石墨粉为含碳量为80~92%,粒度为2.0~50.0μm的天然晶质石墨、天然隐晶质石墨和天然结晶脉状石墨中的任一种以上。
乳化沥青的沥青质量含量为20~70%,乳化剂质量含量为0.1~5%,稳定剂质量含量为0~0.1%,其余为水。乳化剂为阴离子乳化剂、阳离子乳化剂或两性离子乳化剂。所述阴离子乳化剂为羧酸盐、硫酸盐和磺酸盐的一种以上;阳离子乳化剂为胺的衍生物或铵盐;两性离子乳化剂为聚氧乙烯醚类或聚氧丙烯醚类。所述羧酸盐为肥皂C15~17H31~35CO2Na、硬脂酸钠盐C17H35CO2Na;所述硫酸盐为十二烷基硫酸钠盐C12H25OSO3Na;所述磺酸盐为十二烷基苯磺酸钙盐;所述胺的衍生物为多铵基酰胺类:N.N-双羟乙基烷基酰胺C11H23CON(CH2CH2OH)2、聚丙烯酰胺[-CH2-CH(CONH2)]n-,本质素类:木质素磺酸钠,有机卤化铵类:十六烷基三甲基氯化铵C16H33(CH3)3NCl,二(十八烷基)二甲基氯化铵;所述铵盐为季铵盐类十二烷基三甲基氯化铵C12H25(CH3)3NCl;所述聚氧乙烯醚类为:辛基酚聚氧乙烯C8H17-C6H4-O-(CH2CH2O)10H、异构十三醇聚氧乙烯醚RO(CH2CH2O)5H R,十六醇聚氧乙烯醚;所述聚氧丙烯醚类为:双酚-A 聚氧丙烯醚C15H16O2.(C3H6O)n、聚氧乙烯聚氧丙烯季戊四醇醚C[CH2O(C3H6O)n(C3H6O)mH]4。稳定剂为氯化钠、氯化钾、氯化钙、氯化镁、盐酸、磷酸、硝酸、聚乙烯醇、羧甲基纤维素和羧甲基纤维素钠中的一种以上。
高分子有机物为高分子导电聚合物:聚酯、聚烷基类和聚亚胺类,具体为:聚乙炔、聚苯胺、聚吡咯、聚环氧乙烷、聚环氧丙烷、聚丁二酸乙二醇酯、聚癸二酸乙二醇和聚乙二醇亚胺的一种以上。
二、干燥,将混合物用泵抽入无锡市阳光干燥设备厂的GZ-500型高速离心喷雾干燥机,进口温度为200~360℃,出口温度为70~100℃,进行离心喷雾干燥,在压强为10~100Pa的条件下,根据混合物的固含量10~70wt%,进料流量为160kg~1000kg/h。
三、碳化处理,将干燥后所得物放入江苏飞达公司的RGD-300-8型隧道窑,以1~20℃/min的升温速度,到450~700℃,碳化处理1~30小时,然后以1~20℃/min的降温速度冷却至室温。
四、高温处理,再将碳化处理后的产物以1~20℃/min的升温速度,到1800~2400℃,高温处理1~144小时,然后在设备内自然冷却至室温,得到半成品,采用热处理设备为山东青青岛瑞美机电有限公司的石墨化炉SHL—2500。
高温处理时,充入保护性或纯化气体:氮气、氩气、氦气、氖气、氯气和氟气的一种以上,流量为1~150L/h。
五、复合,将占天然石墨粉质量1~20%的导电材料,放入上述高温处理后的材料中,采用无锡新光粉体加工工艺有限公司的VC-500精密混合机,速度为100~500 r/min,混合时间为5~180min,进行复合后,再融合处理,材料融合过程中,置于狭小空隙中,进行摩擦滚动,使其中的小颗粒嵌入到大颗粒中,提高材料的压实密度,采用日本HOSOKWA MICRON GROUP的AMS融合机,转速500~3000 r/min,时间10~200min,间隙为0.01~1.0cm,融合温度为室温~50℃,自然降温至室温。
所述导电材料占天然石墨粉的质量优选为2.0~10%
所述导电材料是导电天然石墨粉、导电人造石墨粉、导电炭黑和/或可用于制作电池的其他导电材料,其含碳量为99.9wt%以上,其平均粒径为1.0~10.0μm,比表面积SSA为5.0~40.0m2/g,层间距d002为0.3354~0.337nm。
六、经100~400目筛分,除磁,除磁采用日本 HOSOKAWA MICRON GROUP的SD-F除磁机,磁感应强度为3000~30000Gs,处理温度为10~80℃,磁介网片数为15~40片,电磁锤打击次数为3~180/秒,处理速度为100~2000kg/h,自然升或降温至室温。
七、包装入库。
本发明采用原材料为含碳量较低的石墨,而传统工艺制备方法采用球形石墨,其制备过程复杂,需要提高含碳量,制备球形石墨需要多级粉碎,纯化、球形化等制程,由于采用原材料成本低,使得本发明大大降低了成品材料的成本,本发明的方法使用负压离心喷雾干燥,代替现有技术的气相包覆,制备工艺简化,包覆层更加牢固致密,采用较低的碳化温度450~700℃及高温热处理的温度1800~2400℃,现有技术工艺碳化温度在1000℃以上,高温石墨化温度达3000℃,减少了能源消耗,也使产品成本进一步降低。
为了提高负极材料的性能,本发明采用天然石墨粉、乳化沥青、高分子有机物共同形成基体,使得天然石墨不仅具有薄而均匀的包覆层,减少天然石墨表面的活性点,从而减少活性点与电解液的反应。采用导电材料用做添加剂,有效避免了电池循环过程中形成的石墨颗粒“孤岛”,提高了负极材料可逆容量和循环稳定性,阴离子含量F-≤30ppm,Cl-≤50ppm,NO3-≤30ppm,SO4 2-≤50ppm,可以改变电池首次充放电时在负极材料表面形成界面膜SEI,即SEI膜产生的电化学反应,降低了不可逆容量,磁性物质的含量Fe、Cr、Ni和Zn之和小于20ppb,减少了充放电过程中的磁性物质与电解液等的副反应,减少了电池容量损失、电池的存储性能、自放电,有利于提高电池的循环稳定,安全性。
本发明为了提高负极材料的安全性,进行除磁筛分处理,其可以有效的去除微粒子磁性物,从而避免磁性微粒子在电池内部的与电解液等的副反应,提高电池的安全性。该处理过程的收率在85~97wt%,其收率的计算公式为:除磁筛分后的筛下料的重量除以投料的总重量,及(M筛下料/M投入料重量)×100%。
本发明的方法制备的锂离子电池负极材料,采用北京科仪发展有限公司生产的KYKY2800B扫描电子显微镜观察形貌,采用荷兰帕纳科X'Pert的PW3040/60X射线衍射仪分析晶体结构、晶格参数、不同结构的含量,采用广州菲罗门科学仪器有限公司的透射电子显微镜H-9500获得包覆层厚度。采用美国珀金埃尔默公司OPTIMA 2100 DV电感耦合等离子体发射光谱仪测得磁性物质或微量元素。用美国戴安公司的ICS-3000多功能色谱仪测得阴离子Cl-、SO42-、NO3-或PO4 3-酸根离子含量,采用上海雷磁仪器厂的PHS-3C型酸度计进行pH值的测试。
利用本发明的锂离子电池负极的石墨粉制备电池的负极,采用所述负极材料,添加粘结剂PVDF溶于NMP后得到的10%溶液、及导电剂SP,按照负积粉:PVDF:SP=96:3:1的质量比混合制浆,均匀涂覆在10μm厚的铜箔上,压制成片,然后制成直径l cm 炭膜,在干燥箱中120℃下烘干12 h备用,以上述极片为工作电极,金属锂片作为辅助电极及参比电极,电解液采用lmol/L LiPF6的EC/DMC/EMC溶液 ,体积比为l:l:1,在充满氩气的手套箱中制备模拟电池,内径为Ф12mm。电池的充放电测试在武汉金诺的蓝电电池测试系统的CT2001C电池检测系统上,充放电电压范围:0.01V~2.0V,电流为0.2C。
实施例1~6的工艺参数见表1。如图1所示,实施例1的形状为球形、长短轴比1.0~4.5的类球形、块状和/或片状的不规则的天然石墨经过乳化沥青改性后,得到表面均一的包覆层。
对比例,将不规则天然石墨,含碳量90%,粒度为5.006~45.521μm的球形石墨,直接作为负极材料,按上述方法制备模拟电池,测试其理化性能指标和电性能。实施例1~6及对比例的结构、理化性能和电性能测试结果见表2。
如图2所示,实施例1的锂离子电池负极的石墨粉制备电池的负极,按上述方法制作模拟电池内径为Ф12mm,可逆容量在360mAh/g以上,不可逆容量小。
如图3所示,实施例1的锂离子电池负极的石墨粉,002晶面的衍射峰强度高,半峰宽窄,同时在43.5和46.5不存在菱形峰,结构稳定性好。
从测试结果可以看出,采用本发明的锂离子电池负极材料制备的锂离子电池的首次可逆容量高,首次库伦效率高,以该材料为负极制备的锂离子电池能量密度高(能量密度=压实密度×容量)。同时此材料兼备一定的低温性能,安全性能优异。
表 1 锂离子电池负极材料 工艺参数
实施例 一、混合 二、干燥 三、碳化处理 四、高温处理 五、复合 六、筛分、除磁
1 含碳量92%的天然隐晶质石墨 60% 和天然结晶脉状石墨 40%,30wt.% 乳化沥青,0.3%聚乙烯醇,转速2100r/min、搅拌时间100min 进口温度260℃ ,出口温度85 ℃ ,压强100Pa,进料流量为650kg /h 升温速度10℃ /min, 700℃,碳化处理21小时,降温速度20℃ /min 升温速度1℃ /min,1800℃,高温处理113小时,氮气保护,流量46L /h 5wt.%导电石墨,混合速度为100r/min ,时间140min,融合转速2000r/min,时间60min ,间隙0.86cm,融合温度20℃ 325目,磁感应强度30000Gs,处理温度为10℃ ,磁介网片15片,电磁锤打击10/秒,处理速度100kg/h
2 含碳量80%的天然晶质石墨20%、天然隐晶质石墨 20%和天然结晶脉状石墨60%, 50wt.%乳化沥青,0.1%羧甲基纤维素钠,转速1000r/min、搅拌时间130min 进口温度360℃ ,出口温度95℃,压强20Pa,进料流量为400kg/h 升温速度6℃ /min, 700℃,碳化处理4小时,降温速度3℃/min 升温速度10 ℃/min, 2400℃,高温处理1小时,氮气+氯气+氟气气氛保护,流量150L/h 10wt.%导电石墨,混合速度为500r/min,时间 5min,融合转速800r/min ,时间90min,间隙 0.63cm,融合温度25℃ 150目,磁感应强度20000Gs,处理温度为20 ℃,磁介网片30片,电磁锤打击180/秒, 处理速度320kg/h
3 含碳量89%的天然晶质石墨40%、天然隐晶质石墨 50%和天然结晶脉状石墨10% , 20wt.%乳化沥青,0.4%聚乙二醇,转速 1500r/min、搅拌时间10min 进口温度300℃,出口温度80℃ ,压强60Pa,进料流量为1000kg/h 升温速度13℃/min, 450℃,碳化处理1小时,降温速度12℃/min 升温速度4℃ /min, 2100℃ ,高温处理68小时,氩气+氯气+氟气,流量119L/h 20wt.%导电石墨,混合速度为300r/min,时间20min ,融合转速500r/min,时间10min,间隙 0.08cm,融合温度30℃ 100目,磁感应强度8000Gs,处理温度为60℃ ,磁介网片20片,电磁锤打击3/ 秒,处理速度 600kg/h
4 含碳量92%的天然晶质石墨60%、天然隐晶质石墨10%和天然结晶脉状石墨30%, 10wt.%乳化沥青,0.2%羧甲基纤维素钠,转速600r/min 、搅拌时间30min 进口温度200 ℃,出口温度70℃,压强80Pa ,进料流量为160kg/h 升温速度20℃/min, 550℃,碳化处理12小时,降温速度1℃/min 升温速度12℃/min , 1800℃ ,高温处理144小时,氩气+氟气,流量1L/h 15wt.%导电石墨,混合速度为450r/min,时间10min,融合转速2600r/min,时间 200min,间隙 0.01cm,融合温度35℃ 400目,磁感应强度 12000Gs,处理温度为80 ℃ ,磁介网片35片,电磁锤打击 40/秒,处理速度1600kg/h
5 含碳量80%的天然晶质石墨80% 、天然隐晶质石墨5% 和天然结晶脉状石墨15%, 15wt.%乳化沥青,0.5%聚丙烯酸,转速2000r/min、搅拌时间180min 进口温度320 ℃,出口温度100 ℃,压强 40Pa,进料流量为330kg/h 升温速度18℃ /min, 450℃,碳化处理30小时,降温速度14 ℃/min 升温速度16℃ /min, 2400℃,高温处理32小时,氮气+氯气,流量140L/h 20wt.%导电石墨,混合速度为220r/min,时间100min,融合转速3000r/min ,时间160min,间隙0.3cm,融合温度40℃ 250目,磁感应强度3000Gs,处理温度为40℃,磁介网片40片,电磁锤打击120/秒, 处理速度1000kg/h
6 含碳量92%的天然晶质石墨100%、40wt.%乳化沥青,0.1%聚乙烯醇,转速1800r/min、搅拌时间60min 进口温度280 ℃ ,出口温度 90℃,压强 75Pa,进料流量为800kg /h 升温速度1℃/min,700℃,碳化处理17小时,降温速度10℃/min 升温速度20℃ /min , 1800℃,高温处理95小时,氩气,流量78L/h 1wt.%导电石墨,混合速度为360r/min ,时间 180min,融合转速1200r/min,时间110min,间隙 1.0cm,融合温度50℃ 200目,磁感应强度18000Gs,处理温度为30℃ ,磁介网片25片,电磁锤打击90/秒, 处理速度2000kg/h
表 2 锂离子电池负极材料的结构、理化性能和电性能测试结果
实施例及对比例 粒度分布μm 比表面积 m²/g 压实密度 g/cm³ pH 微量元素 Fe ppm 磁性物质(Fe+Cr+Ni+Zn)Ni+Zn) ppb 首次可逆容量 mAh/g 首次库仑效率 %
1 5.934~46.832 4.0 2.0 6.0 16.31 7.35 364.3 95.2
2 5.031 ~ 47.234 4.5 1.8 5.0 6.52 15.29 369.1 94.8
3 5.953 ~ 46.364 2.9 1.9 6.5 24.95 20.35 368.5 95.1
4 5.698 ~ 49.556 2.6 1.7 4.3 46.78 10.64 367.5 95.4
5 5.024 ~ 44.629 3.6 1.6 5.6 17.56 5.21 369.4 94.7
6 5.689 ~ 45.863 3.5 1.75 4.5 0 13.88 371.2 95.5
对比例 5.754 ~ 45.709 6.98 1.8 5.3 20.18 10.52 359.2 80.0

Claims (12)

  1. 一种锂离子电池负极材料,其特征在于:所述锂离子电池负极材料由天然晶质石墨、天然隐晶质石墨和天然结晶脉状石墨中的一种以上为基体,基体外包覆有1~10nm厚的非石墨类碳材料,包覆后的微粒复合有基体质量1~20%的导电材料;所述非石墨类碳材料是乳化沥青热处理得到,所述导电材料是导电天然石墨粉、导电人造石墨粉和/或导电炭黑。
  2. 根据权利要求1所述的锂离子电池负极材料,其特征在于:所述锂离子电池负极材料,具有球形、长短轴比1.0~4.5的类球形、块状和/或片状的外形,其粒度为4.0~48.0μm,比表面积为2.5~5.0m2/g,粉体压实密度1.65~2.05g/cm3,层间距(d002)为0.3354~0.3360nm。
  3. 根据权利要求2所述的锂离子电池负极材料,其特征在于:所述锂离子电池负极材料,磁性物质Fe、Cr、Ni和Zn之和小于20ppb,阴离子含量F-≤30ppm,Cl-≤50ppm,NO3-≤30ppm,SO4 2-≤50ppm,微量元素Fe≤20ppm,Cu≤10ppm,Ni≤5ppm,Cr≤5ppm,Al≤20ppm,PH值为4.0~7.0。
  4. 根据权利要求3所述的锂离子电池负极材料,其特征在于:所述锂离子电池负极材料的比容量在360mAh/g以上。
  5. 根据权利要求1、2或3所述的锂离子电池负极材料,其特征在于:所述天然晶质石墨、天然隐晶质石墨或天然结晶脉状石墨,其含碳量为80~92%,粒度范围为2.0~50μm。
  6. 根据权利要求5所述的锂离子电池负极材料,其特征在于:所述乳化沥青的沥青质量含量为20~70%,乳化剂含量为0.1~5%,稳定剂的含量为0~0.1%,其余为水。
  7. 根据权利要求6所述的锂离子电池负极材料,其特征在于:所述导电材料是导电天然石墨粉、导电人造石墨粉或导电炭黑的含碳量为99.9wt%以上,其平均粒径为1.0~10.0μm,比表面积为5.0~40.0m2/g,层间距d002为0.3354~0.337nm。
  8. 一种锂离子电池负极材料的制备方法,包括以下步骤:一、将天然石墨粉,与占天然石墨粉质量10~50%的乳化沥青、占天然石墨粉质量0.1~0.5%高分子有机物,转速600~2100r/min,搅拌10~180min,液相混合得到悬浊液状混合物;二、将混合物以进口温度为200~360℃,出口温度为70~100℃,进行离心喷雾干燥,压强为20~100Pa;三、以1~20℃/min的升温速度到450~700℃,碳化处理1~30小时,然后以1~20℃/min的降温速度冷却至室温;四、以1~20℃/min的升温速度到1800~2400℃,高温处理1~144小时,然后自然冷却至室温;五、放入占天然石墨粉质量1~20%的导电材料,速度为100~500 r/min,混合5~180min,再融合处理,转速500~3000 r/min,时间10~200min,间隙为0.01~1.0cm,温度为20~50℃,得到锂离子电池负极材料。
  9. 根据权利要求8所述的锂离子电池负极材料的制备方法,其特征在于:所述融合处理后除磁,磁感应强度为3000~30000Gs,处理温度为10~80℃,电磁锤打击次数为3~180/秒,自然升或降温。
  10. 根据权利要求8或9所述的锂离子电池负极材料的制备方法,其特征在于:所述高温处理时,充入保护性或纯化气体:氮气、氩气、氦气、氖气、氯气和氟气的一种以上,流量为1~150L/h。
  11. 根据权利要求10所述的锂离子电池负极材料的制备方法,其特征在于:所述导电材料占天然石墨粉的质量为2.0~10%。
  12. 根据权利要求11所述的锂离子电池负极材料的制备方法,其特征在于:所述天然石墨粉为含碳量80~92%,粒度2.0~50.0μm,形状为球形、长短轴比1.0~4.5的类球形、块状和/或片状的天然晶质石墨、天然隐晶质石墨和天然结晶脉状石墨中的一种以上;所述乳化沥青质量固含量为20~70%,乳化剂含量为0.1~5%,稳定剂的含量为0~0.1%,其余为水;所述高分子有机物为聚乙炔、聚苯胺、聚吡咯、聚环氧乙烷、聚环氧丙烷、聚丁二酸乙二醇酯、聚癸二酸乙二醇和聚乙二醇亚胺的一种以上;所述导电材料是导电天然石墨粉、导电人造石墨粉和/或导电炭黑,其含碳量为99.9wt%以上,其平均粒径为1.0~10.0μm,比表面积SSA为5.0~40.0m2/g,层间距d002为0.3354~0.337nm。
PCT/CN2010/074904 2010-07-02 2010-07-02 锂离子电池负极材料及其制备方法 WO2012000201A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012530112A JP5150010B1 (ja) 2010-07-02 2010-07-02 リチウムイオン電池負極材の製造方法
KR1020127024324A KR101383967B1 (ko) 2010-07-02 2010-07-02 리튬이온전지 음극재료 및 그의 제조방법
PCT/CN2010/074904 WO2012000201A1 (zh) 2010-07-02 2010-07-02 锂离子电池负极材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2010/074904 WO2012000201A1 (zh) 2010-07-02 2010-07-02 锂离子电池负极材料及其制备方法

Publications (1)

Publication Number Publication Date
WO2012000201A1 true WO2012000201A1 (zh) 2012-01-05

Family

ID=45401330

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/074904 WO2012000201A1 (zh) 2010-07-02 2010-07-02 锂离子电池负极材料及其制备方法

Country Status (3)

Country Link
JP (1) JP5150010B1 (zh)
KR (1) KR101383967B1 (zh)
WO (1) WO2012000201A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014030720A1 (ja) * 2012-08-23 2014-02-27 三菱化学株式会社 非水系電解液二次電池用炭素材、非水系電解液二次電池用負極、非水系電解液二次電池、及び非水系電解液二次電池用炭素材の製造方法
CN105050952A (zh) * 2013-03-26 2015-11-11 三菱化学株式会社 碳材料、使用该碳材料的非水系二次电池
CN114068923A (zh) * 2020-07-30 2022-02-18 湖南中科星城石墨有限公司 一种石墨的改性方法及其在锂离子电池的用途
CN114335466A (zh) * 2021-12-23 2022-04-12 杭州阳名新能源设备科技有限公司 一种高能量密度负极材料、制备方法及其应用
CN114551871A (zh) * 2021-12-21 2022-05-27 太原理工大学 一种球形硬碳复合材料及其制备方法和应用
CN115117355A (zh) * 2022-08-24 2022-09-27 湖南金阳烯碳新材料股份有限公司 一种二次电池用负极材料的制备方法和应用
CN117800335A (zh) * 2024-02-29 2024-04-02 上海巴库斯超导新材料有限公司 人造石墨与碳包覆天然石墨的复合材料制备工艺

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140121953A (ko) 2013-04-08 2014-10-17 주식회사 엘지화학 리튬 이차전지용 음극, 그 제조방법 및 이를 포함하는 리튬 이차 전지
CN103474631B (zh) 2013-10-08 2017-01-11 深圳市贝特瑞新能源材料股份有限公司 一种锂离子电池用氧化亚硅复合负极材料、制备方法及锂离子电池
CN103560247B (zh) * 2013-11-08 2017-02-01 深圳市贝特瑞新能源材料股份有限公司 一种车载与储能用锂离子电池负极材料及其制备方法
JP6223466B2 (ja) 2013-11-29 2017-11-01 旭化成株式会社 リチウムイオンキャパシタ
KR20160075433A (ko) 2016-06-10 2016-06-29 주식회사 엘지화학 리튬 이차전지용 음극, 그 제조방법 및 이를 포함하는 리튬 이차 전지
CN113036253B (zh) * 2019-12-09 2023-01-13 锂源(深圳)科学研究有限公司 废旧磷酸铁锂选择性氧化-还原再生的方法、再生磷酸铁锂和锂离子电池
CN111354944B (zh) * 2020-03-20 2021-03-26 宁德新能源科技有限公司 负极活性材料及使用其的电化学装置和电子装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1012217A (ja) * 1996-06-26 1998-01-16 Mitsubishi Pencil Co Ltd リチウムイオン二次電池用負極
CN1339838A (zh) * 2000-08-22 2002-03-13 中国科学院化学研究所 一种锂离子电池炭负极材料及其制备方法和用途
JP2005019399A (ja) * 2003-06-06 2005-01-20 Jfe Chemical Corp リチウムイオン二次電池用負極材料およびその製造方法、ならびにリチウムイオン二次電池用負極およびリチウムイオン二次電池
CN101186292A (zh) * 2006-11-22 2008-05-28 辽宁工程技术大学 一种炭负极材料的制备方法及使用该材料的锂离子电池
CN101887967A (zh) * 2010-06-18 2010-11-17 深圳市贝特瑞新能源材料股份有限公司 锂离子电池负极材料及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4666876B2 (ja) * 2001-09-26 2011-04-06 Jfeケミカル株式会社 複合黒鉛質材料およびその製造方法、ならびにリチウムイオン二次電池用負極材料およびリチウムイオン二次電池
CN101350407B (zh) * 2002-12-19 2014-07-30 杰富意化学株式会社 锂离子二次电池的负极材料和锂离子二次电池
KR100477970B1 (ko) * 2002-12-26 2005-03-23 삼성에스디아이 주식회사 리튬 이차 전지용 음극 활물질 및 그의 제조 방법
JP5194574B2 (ja) * 2007-03-01 2013-05-08 日立化成株式会社 非水電解液二次電池用負極材、その製造方法、非水電解液二次電池用負極及び非水電解液二次電池
JP5413645B2 (ja) * 2009-03-13 2014-02-12 東海カーボン株式会社 リチウム二次電池用負極材の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1012217A (ja) * 1996-06-26 1998-01-16 Mitsubishi Pencil Co Ltd リチウムイオン二次電池用負極
CN1339838A (zh) * 2000-08-22 2002-03-13 中国科学院化学研究所 一种锂离子电池炭负极材料及其制备方法和用途
JP2005019399A (ja) * 2003-06-06 2005-01-20 Jfe Chemical Corp リチウムイオン二次電池用負極材料およびその製造方法、ならびにリチウムイオン二次電池用負極およびリチウムイオン二次電池
CN101186292A (zh) * 2006-11-22 2008-05-28 辽宁工程技术大学 一种炭负极材料的制备方法及使用该材料的锂离子电池
CN101887967A (zh) * 2010-06-18 2010-11-17 深圳市贝特瑞新能源材料股份有限公司 锂离子电池负极材料及其制备方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014030720A1 (ja) * 2012-08-23 2014-02-27 三菱化学株式会社 非水系電解液二次電池用炭素材、非水系電解液二次電池用負極、非水系電解液二次電池、及び非水系電解液二次電池用炭素材の製造方法
US10720645B2 (en) 2012-08-23 2020-07-21 Mitsubishi Chemical Corporation Carbon material for non-aqueous electrolyte secondary battery, negative electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and manufacturing method for carbon material for non-aqueous electrolyte secondary battery
CN105050952A (zh) * 2013-03-26 2015-11-11 三菱化学株式会社 碳材料、使用该碳材料的非水系二次电池
CN111517319A (zh) * 2013-03-26 2020-08-11 三菱化学株式会社 碳材料、使用该碳材料的非水系二次电池
CN114068923A (zh) * 2020-07-30 2022-02-18 湖南中科星城石墨有限公司 一种石墨的改性方法及其在锂离子电池的用途
CN114551871A (zh) * 2021-12-21 2022-05-27 太原理工大学 一种球形硬碳复合材料及其制备方法和应用
CN114335466A (zh) * 2021-12-23 2022-04-12 杭州阳名新能源设备科技有限公司 一种高能量密度负极材料、制备方法及其应用
CN114335466B (zh) * 2021-12-23 2023-06-23 杭州阳名新能源设备科技有限公司 一种高能量密度负极材料的制备方法
CN115117355A (zh) * 2022-08-24 2022-09-27 湖南金阳烯碳新材料股份有限公司 一种二次电池用负极材料的制备方法和应用
CN117800335A (zh) * 2024-02-29 2024-04-02 上海巴库斯超导新材料有限公司 人造石墨与碳包覆天然石墨的复合材料制备工艺
CN117800335B (zh) * 2024-02-29 2024-04-30 上海巴库斯超导新材料有限公司 人造石墨与碳包覆天然石墨的复合材料制备工艺

Also Published As

Publication number Publication date
JP5150010B1 (ja) 2013-02-20
JP2013506233A (ja) 2013-02-21
KR20120129983A (ko) 2012-11-28
KR101383967B1 (ko) 2014-04-10

Similar Documents

Publication Publication Date Title
WO2012000201A1 (zh) 锂离子电池负极材料及其制备方法
WO2021132761A1 (ko) 양극활물질, 이의 제조방법 및 이를 포함하는 양극을 포함한 리튬이차전지
WO2018101809A1 (ko) 리튬이차전지용 니켈계 활물질 전구체, 그 제조방법, 이로부터 형성된 리튬이차전지용 니켈계 활물질 및 이를 포함하는 양극을 함유한 리튬이차전지
WO2018101806A1 (ko) 리튬이차전지용 니켈계 활물질 전구체, 그 제조방법, 이로부터 형성된 리튬이차전지용 니켈계 활물질 및 이를 포함하는 양극을 함유한 리튬이차전지
CN105449165B (zh) 锂离子电池的富锂极片及其制备方法
WO2017099456A1 (ko) 카본으로 이루어진 코어를 포함하는 리튬 이차 전지용 음극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
WO2021066584A1 (ko) 구형화된 카본계 음극활물질, 이의 제조방법, 이를 포함하는 음극 및 리튬 이차전지
WO2021034020A1 (ko) 양극 활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지
CN101887967A (zh) 锂离子电池负极材料及其制备方法
WO2021132762A1 (ko) 양극활물질, 이의 제조방법 및 이를 포함하는 양극을 포함한 리튬이차전지
WO2010041907A2 (en) Negative active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery comprising the same
WO2019117531A1 (ko) 리튬 이차전지용 양극 활물질, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2021132763A1 (ko) 양극활물질, 이의 제조방법 및 이를 포함하는 양극을 포함한 리튬이차전지
WO2020159322A1 (ko) 리튬이차전지용 음극 및 이를 포함하는 리튬이차전지
WO2021141460A1 (ko) 인조흑연, 인조흑연의 제조방법, 이를 포함하는 음극 및 리튬 이차전지
CN113735107A (zh) 改性石墨负极材料及其制备方法、应用、锂离子电池
WO2021066580A1 (ko) 음극활물질, 음극활물질의 제조방법, 이를 포함하는 음극 및 리튬 이차전지
WO2014109534A1 (en) Electrode formulation, method for preparing the same, and electrode comprising the same
WO2021112323A1 (ko) 양극활물질, 이의 제조방법 및 이를 포함하는 양극을 포함한 리튬이차전지
WO2023014126A1 (ko) 건식 전극 필름 제조 방법 및 상기 전극 필름 제조 시스템
WO2022131695A1 (ko) 리튬 이온 이차전지용 음극재, 이의 제조방법 및 이를 포함하는 리튬 이온 이차전지
WO2021066581A1 (ko) 구형화된 카본계 음극활물질, 이의 제조방법, 이를 포함하는 음극 및 리튬 이차전지
CN114653302A (zh) 一种人造石墨的造粒方法及造粒料、人造石墨及制备方法和应用、二次电池
WO2022080979A1 (ko) 음극 및 이의 제조방법
Zhang et al. Improving the Energy Density of Ca-Doped Li4Ti5O12 Through Discharging to 0 V Cut-off Voltage

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10853906

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012530112

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127024324

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10853906

Country of ref document: EP

Kind code of ref document: A1