WO2016165262A1 - 一种掺杂钛酸锂负极材料的制备方法 - Google Patents

一种掺杂钛酸锂负极材料的制备方法 Download PDF

Info

Publication number
WO2016165262A1
WO2016165262A1 PCT/CN2015/087970 CN2015087970W WO2016165262A1 WO 2016165262 A1 WO2016165262 A1 WO 2016165262A1 CN 2015087970 W CN2015087970 W CN 2015087970W WO 2016165262 A1 WO2016165262 A1 WO 2016165262A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
negative electrode
lithium titanate
electrode material
doped
Prior art date
Application number
PCT/CN2015/087970
Other languages
English (en)
French (fr)
Inventor
田东
Original Assignee
田东
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 田东 filed Critical 田东
Publication of WO2016165262A1 publication Critical patent/WO2016165262A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the technical field of preparation of lithium ion battery electrode materials, in particular to a preparation method of a doped lithium titanate anode material.
  • Lithium-ion batteries which have been widely used in electronic products such as mobile phones and notebook computers, have large specific energy, high specific power, low self-discharge, good cycle characteristics, fast charging and high efficiency, wide operating temperature range, and no environmental pollution.
  • the lithium-ion batteries currently used in the market basically use carbon materials as the negative electrode, but the carbon material is the negative electrode in the practical application, there are some insurmountable weaknesses, for example, reacting with the electrolyte during the first discharge to form a surface.
  • the passivation film causes the electrolyte to be consumed and the first coulombic efficiency is low; the potential of the carbon electrode is very close to the potential of the metal lithium.
  • Lithium titanate (Li4Ti5O12) is a "zero strain" material. Its lattice does not shrink and expand during lithium ion deintercalation and embedding, so the material structure is very stable and the cycle performance is good.
  • the lithium titanate charge and discharge platform is about 1.55V, the theoretical specific capacity is 175mAh/g, the actual specific capacity is up to 165mAh/g, and the capacity contribution is concentrated in the platform area.
  • lithium titanate has a larger diffusion coefficient at room temperature than commercial carbon negative electrode materials, and generally has better electrochemical performance and safety. However, lithium titanate has poor conductivity and rapid decay of specific capacity in high-rate environments. Doping coating is the most effective means to improve its performance.
  • the present invention aims to provide a novel method for preparing a lithium titanate lithium ion battery anode material.
  • the invention firstly sprays lithium salt, nano titanium dioxide, silicon dioxide and glucose by a wet ball milling at a certain ratio, and then calcines under an inert atmosphere, and the initial sample cooled by the furnace is sieved by a ball mill to obtain a lithium ion battery.
  • Anode material The raw material of the invention has rich sources and simple preparation process, and the prepared negative electrode material has excellent conductivity, high reversible capacity and excellent cycle performance.
  • the object of the present invention is specifically achieved by the following technical solution, a preparation method of a method for preparing a doped lithium titanate negative electrode material, the steps are as follows:
  • the primary product is ball milled in a ball mill for 1 to 4 hours, and after passing through a 200 mesh sieve, the lithium titanate composite anode material modified by the method is obtained.
  • the lithium source is one of lithium acetate, lithium sulfate, lithium oxalate, lithium carbonate, and lithium hydroxide. .
  • the nano titanium dioxide is an anatase type, having a particle size of 10 to 20 nm and a purity of >99%.
  • the inert atmosphere conditions are a nitrogen or argon atmosphere.
  • the ratio of the amount of the lithium source (calculated as lithium element) and the amount of the nano-titanium dioxide material is 1:1, and the mass of the added silica and glucose is 2.5% to 10% of the sum of the masses of the lithium source and the titanium dioxide, respectively. % to 5%.
  • the nano silica is prepared by vapor phase deposition and has a particle diameter of not more than 30 nm.
  • the preparation method has the advantages of simple preparation process and low price, and the materials prepared by doping and carbon modification have many advantages such as high charge and discharge efficiency, good reversibility of charge and discharge reaction, stable structure and excellent cycle performance.
  • a preparation method of a doped lithium titanate negative electrode material is as follows: lithium hydroxide, nano titanium dioxide and silicon dioxide, glucose are added to a ball mill, and ball milling is carried out for 10 hours with anhydrous ethanol as a medium, wherein lithium hydroxide and nanometer
  • the ratio of the amount of the titanium dioxide material is 1:1, and the mass of the silica and the glucose is 2.5% and 3% of the sum of the masses of the lithium hydroxide and the nano titanium dioxide, respectively.
  • the slurry obtained after the ball milling was spray-dried to obtain a powder mixture.
  • the obtained powder mixture was heated from room temperature to a temperature of 10 ° C / min at a rate of 10 ° C / min to be calcined, and kept for 3 hours, and cooled to obtain a lithium titanate composite material. product.
  • the primary product was ball milled in a ball mill for 3 hours, and after passing through a 200 mesh sieve, the doped lithium titanate negative electrode material prepared by the present invention was obtained.
  • a preparation method of a doped lithium titanate negative electrode material is as follows: lithium hydroxide, nano titanium dioxide and silicon dioxide, glucose are added to a ball mill, and ball milling is carried out for 8 hours with anhydrous ethanol as a medium, wherein lithium hydroxide and nanometer
  • the ratio of the amount of the titanium dioxide material is 1:1, and the mass of the silica and the glucose is 5% and 4% of the sum of the masses of lithium hydroxide and nano titanium dioxide, respectively.
  • the slurry obtained after the ball milling was spray-dried to obtain a powder mixture.
  • the obtained powder mixture was heated from room temperature to a temperature of 5 ° C / min at room temperature to 900 ° C for calcination, and kept for 2 hours, and cooled to obtain a lithium titanate composite preliminary product.
  • the primary product was ball milled in a ball mill for 4 hours, and after passing through a 200 mesh sieve, the doped lithium titanate negative electrode material prepared by the present invention was obtained.
  • a preparation method of a doped lithium titanate negative electrode material is as follows: lithium hydroxide, nano titanium dioxide and silicon dioxide, glucose are added to a ball mill, and ball milling is carried out for 10 hours with anhydrous ethanol as a medium, wherein lithium hydroxide and nanometer The ratio of the amount of the titanium dioxide is 1:1, and the mass of silica and glucose is 10% and 5% of the sum of the masses of lithium hydroxide and nano titanium dioxide, respectively.
  • the slurry obtained after the ball milling was spray-dried to obtain a powder mixture.
  • the obtained powder mixture was heated from room temperature to 850 ° C at a rate of 8 ° C / min under a nitrogen atmosphere, and kept for 3 hours, and cooled to obtain a lithium titanate composite preliminary product.
  • the primary product was ball milled in a ball mill for 4 hours, and after passing through a 200 mesh sieve, the doped lithium titanate negative electrode material prepared by the present invention was obtained.
  • a preparation method of a doped lithium titanate negative electrode material is as follows: lithium hydroxide, nano titanium dioxide and silicon dioxide, glucose are added to a ball mill, and ball milling is carried out for 10 hours with anhydrous ethanol as a medium, wherein lithium hydroxide and nanometer
  • the ratio of the amount of the titanium dioxide material is 1:1, and the mass of the silica and the glucose are respectively 6% and 4% of the sum of the masses of lithium hydroxide and nano titanium dioxide.
  • the slurry obtained after the ball milling was spray-dried to obtain a powder mixture.
  • the obtained powder mixture was heated from room temperature to a temperature of 15 ° C / min at a rate of 15 ° C / min to be calcined, and held for 2.5 hours, and cooled to obtain a lithium titanate composite preliminary product.
  • the primary product was ball milled in a ball mill for 2.5 hours, and after passing through a 200 mesh sieve, the doped lithium titanate negative electrode material prepared by the present invention was obtained.
  • Lithium hydroxide and nano titanium dioxide were added to a ball mill at a ratio of 1:1, and ball milled for 1 hour using absolute ethanol as a medium.
  • the slurry obtained after the ball milling was spray-dried to obtain a powder mixture.
  • the obtained powder mixture was heated at room temperature at a rate of 10 ° C/min under an argon atmosphere to 800 ° C for calcination, and kept for 3 hours, and cooled to obtain a lithium titanate preliminary product.
  • the primary product was ball milled in a ball mill for 4 hours, and after passing through a 200 mesh sieve, a lithium titanate material was obtained.
  • the lithium ion battery anode materials prepared in Examples 1 to 4 and Comparative Example 1 were respectively made into half-cells for electrochemical performance measurement, and the half-cell assembly method was as follows: the sample to be tested, S P, conductive carbon black, and polydisperse
  • the vinyl fluoride was mixed at a mass ratio of 80 wt%: 15 wt%: 5 wt%, and the mixture was homogenized with N-methylpyrrolidone, stirred to a viscous state, coated on a copper foil, and dried under vacuum (-0.1 MPa) at 80 ° C for 20 hours. After cooling, it was cut into a circular diaphragm having a diameter of about 1 cm.
  • the half-cell is assembled in a glove box with a CR2016 button cell, the diaphragm is a Celgard 2400 polypropylene diaphragm, and the electrolyte is 1M LiPF6 mixed with ethylene carbonate (EC) and diethyl carbonate (DEC) (mixed electrolyte)
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • the volume ratio of EC and DEC was 1:1
  • the concentration of LiPF6 in the mixed electrolyte was 1 M
  • the counter electrode was a commercial round lithium sheet (1.5 cm in diameter), which was assembled into a battery.
  • the charge-discharge voltage is 1.0-2.5V, and the charge-discharge rate is 0.5C.
  • the battery performance can be tested. The test results are shown in Table 1.
  • Table 1 compares the performance of negative electrode materials in different examples and comparative examples.

Abstract

本发明涉及锂离子电池电极材料的制备技术领域,具体公开了一种掺杂钛酸锂负极材料的制备方法。本发明方法先将锂源、纳米二氧化硅和葡萄糖按一定的物料比加入到球磨机中,以无水乙醇为介质球磨后喷雾干燥,然后在惰性气氛条件下煅烧,球磨筛分即可。该材料用于锂离子电池负极材料显示出优异的电化学性能。本发明制备工艺简单,制备出的负极材料可逆容量高,高倍率循环性能、倍率充放电性能表现优异。

Description

一种掺杂钛酸锂负极材料的制备方法 技术领域
本发明涉及锂离子电池电极材料的制备技术领域,具体涉及一种掺杂钛酸锂负极材料的制备方法。
背景技术
目前已广泛应用于移动电话、笔记本电脑等电子产品中的锂离子电池具有比能量大、比功率高、自放电小、循环特性好以及可快速充电且效率高、工作温度范围宽、无环境污染等优点,目前市场上所用锂离子电池,基本都是以碳材料为负极,但是碳材料为负极在实际应用中还有一些难以克服的弱点,例如,首次放电过程中与电解液发生反应形成表面钝化膜,导致电解液的消耗和首次库伦效率较低;碳电极的电位与金属锂的电位很接近,当电池过充电时,碳电极表面易析出金属锂,从而可能会引起短路,进而导致电池爆炸。为了解决锂电池的安全问题,人们做了大量的研究。尖晶石Li4Ti5O12作为一种新型的锂离子二次电池负极材料,与其它商业化的材料相比,具有循环性能好、不与电解液反应、安全性能高、充放电平台平稳等优点,是近几年来备受关注的最优异的锂离子电池负极材料之一。
钛酸锂(Li4Ti5O12)是一种“零应变”材料,在锂离子脱嵌和嵌入过程中其晶格不发生相应的收缩与膨胀,所以材料结构非常稳定,循环性能也较好。钛酸锂充放电平台大约在1.55V左右,理论比容量为175mAh/g,实际比容量可达165mAh/g,且容量贡献集中在平台区域。此外,钛酸锂与商品化的碳负极材料相比,常温下具有较大的扩散系数,通常具有更好的电化学性能和安全性。但钛酸锂导电性差,高倍率环境下比容量衰减迅速,掺杂包覆是改善其性能最有效的手段。
发明内容
针对现有技术中存在的不足,本发明的目的在于提供了一种全新的钛酸锂锂离子电池负极材料的制备方法。
本发明先将锂盐、纳米二氧化钛和二氧化硅、葡萄糖按一定比例通过湿法球磨喷雾干燥,然后在惰性气氛条件下煅烧,随炉冷却后的初样品经过球磨筛分后即得到锂离子电池负极材料。本发明原料来源丰富,制备工艺简单,制备出的负极材料导电性优良,可逆容量高,循环性能优异。
本发明的目的具体是通过以下技术方案得以实现的,一种掺杂钛酸锂负极材料的制备方法的制备方法,步骤如下:
(1)将锂源、纳米二氧化钛和二氧化硅、葡萄糖按照一定的物料比加入到球磨机中,以无水乙醇为介质球磨3~24小时;
(2)将球磨后所得浆料喷雾干燥,得到粉体混合物料;
(3)将所得粉体混合物料在惰性气氛下从室温以5~20℃/min的速度升温至800~900℃,并保持1~3h小时,冷却后得到掺杂的钛酸锂复合材料初产品;
(4)将初产品在球磨机中球磨处理1~4小时,过200目筛后,即得到本法米掺杂改性的钛酸锂复合负极材料。
所述锂源为醋酸锂、硫酸锂、草酸锂、碳酸锂、氢氧化锂中的一种。。
所述的纳米二氧化钛为锐钛型,粒径10~20nm,纯度>99%。
所述惰性气氛条件为氮气或者氩气气氛。
所述锂源(以锂元素计)、纳米二氧化钛物质的量之比为1:1,加入二氧化硅、葡萄糖的质量分别为锂源、二氧化钛二者质量之和的2.5%~10%、3%~5%。
所述的纳米二氧化硅为气相法沉积制备,其粒径不大于30纳米。
与现有技术相比,本发明方法的优点与有益效果在于:
1.通过原位加入纳米二氧化硅,使其进入钛酸锂晶格之中,修饰钛酸锂材料的内部结构,同时起到骨架支撑的作用,保证材料的循环稳定性;
2.加入葡萄糖,在高温处理后,葡萄糖碳化形成性能优异的碳质导电剂,可以弥补钛酸锂导电性能的不足,同时,碳材料的微孔结构有利于锂离子的快速脱嵌,提高材料的倍率性能和低温性能;
3.本发明制备工艺简单、价格低廉,利用掺杂和碳改性所制备出的材料具有充放电效率高、充放电反应可逆性好、结构稳定、循环性能优异等诸多优点。
具体实施方式
为了使本发明的技术手段、创作特征、工作流程、使用方法达成目的与功效易于明白了解,下面结合具体实施例,进一步阐述本发明。
实施例1
一种掺杂钛酸锂负极材料的制备方法,步骤如下:将氢氧化锂、纳米二氧化钛和二氧化硅、葡萄糖加入到球磨机中,以无水乙醇为介质球磨10小时,其中氢氧化锂和纳米二氧化钛的物质的量之比为1:1,二氧化硅、葡萄糖的质量分别为氢氧化锂、纳米二氧化钛质量之和的2.5%、3%。将球磨后所得浆料喷雾干燥,得到粉体混合物料。将所得粉体混合物料在氮气气氛下从室温按10℃/min的速率升温至800℃煅烧,并保温3小时,冷却后得到钛酸锂复合材料初 产品。将初产品在球磨机中球磨处理3小时,过200目筛后,即得到本发明制备的掺杂钛酸锂负极材料。
实施例2
一种掺杂钛酸锂负极材料的制备方法,步骤如下:将氢氧化锂、纳米二氧化钛和二氧化硅、葡萄糖加入到球磨机中,以无水乙醇为介质球磨8小时,其中氢氧化锂和纳米二氧化钛的物质的量之比为1:1,二氧化硅、葡萄糖的质量分别为氢氧化锂、纳米二氧化钛质量之和的5%、4%。将球磨后所得浆料喷雾干燥,得到粉体混合物料。将所得粉体混合物料在氮气气氛下从室温按5℃/min的速率升温至900℃煅烧,并保温2小时,冷却后得到钛酸锂复合材料初产品。将初产品在球磨机中球磨处理4小时,过200目筛后,即得到本发明制备的掺杂钛酸锂负极材料。
实施例3
一种掺杂钛酸锂负极材料的制备方法,步骤如下:将氢氧化锂、纳米二氧化钛和二氧化硅、葡萄糖加入到球磨机中,以无水乙醇为介质球磨10小时,其中氢氧化锂和纳米二氧化钛的物质的量之比为1:1,二氧化硅、葡萄糖的质量分别为氢氧化锂、纳米二氧化钛质量之和的10%、5%。将球磨后所得浆料喷雾干燥,得到粉体混合物料。将所得粉体混合物料在氮气气氛下从室温按8℃/min的速率升温至850℃煅烧,并保温3小时,冷却后得到钛酸锂复合材料初产品。将初产品在球磨机中球磨处理4小时,过200目筛后,即得到本发明制备的掺杂钛酸锂负极材料。
实施例4
一种掺杂钛酸锂负极材料的制备方法,步骤如下:将氢氧化锂、纳米二氧化钛和二氧化硅、葡萄糖加入到球磨机中,以无水乙醇为介质球磨10小时,其中氢氧化锂和纳米二氧化钛的物质的量之比为1:1,二氧化硅、葡萄糖的质量分别为氢氧化锂、纳米二氧化钛质量之和的6%、4%。将球磨后所得浆料喷雾干燥,得到粉体混合物料。将所得粉体混合物料在氮气气氛下从室温按15℃/min的速率升温至850℃煅烧,并保温2.5小时,冷却后得到钛酸锂复合材料初产品。将初产品在球磨机中球磨处理2.5小时,过200目筛后,即得到本发明制备的掺杂钛酸锂负极材料。
对比例1
将氢氧化锂、纳米二氧化钛按物质的量之比为1:1加入到球磨机中,以无水乙醇为介质球磨1小时。将球磨后所得浆料喷雾干燥,得到粉体混合物料。将所得粉体混合物料在氩气气氛下从室温按10℃/min的速率升温至800℃煅烧,并保温3小时,冷却后得到钛酸锂初产品。 将初产品在球磨机中球磨处理4小时,过200目筛后,即得到钛酸锂材料。
分别将实施例1~4和对比例1制得的锂离子电池负极材料制成半电池进行电化学性能测定,半电池装配方法如下:将待测样品、S P、导电炭黑和聚偏二氟乙烯按质量比为80wt%:15wt%:5wt%混合,用N‐甲基吡咯烷酮调匀,搅拌成粘稠状,将其涂在铜箔上,真空(‐0.1MPa)80℃下干燥20小时,冷却后切成直径约1cm的圆形膜片。半电池在手套箱中采用CR2016型扣式电池组装,隔膜为Celgard 2400聚丙烯隔膜,电解液为1M LiPF6的碳酸乙烯酯(EC)与碳酸二乙酯(DEC)混合电解液(混合电解液中EC、DEC的体积比为1:1,混合电解液中LiPF6浓度为1M),对电极为商品化圆形锂片(直径1.5cm),组装成电池。充放电电压为1.0~2.5V,充放电速率为0.5C,对电池性能进行能测试,测试结果见表1。
表1为不同实施例和比较例中负极材料的性能比较
Figure PCTCN2015087970-appb-000001
以上显示和描述了本实用新型的基本原理和主要特征及本实用新型的优点,本行业的技术人员应该了解,本实用新型不受上述实施例的限制,上述实施例和说明书中描述的只是说明本实用新型的原理,在不脱离本实用新型精神和范围的前提下,本实用新型还会有各种变化和改进,这些变化和改进都落入要求保护的本实用新型范围内,本实用新型要求保护范围由所附的权利要求书及其等效物界定。

Claims (6)

  1. 一种掺杂钛酸锂负极材料的制备方法,步骤如下:
    (1)将锂源、纳米二氧化钛和二氧化硅、葡萄糖按照一定的物料比加入到球磨机中,以无水乙醇为介质球磨3~24小时;
    (2)将球磨后所得浆料喷雾干燥,得到粉体混合物料;
    (3)将所得粉体混合物料在惰性气氛下从室温以一定升温速率至800~900℃,并保持1~3h小时,冷却后得到掺杂的钛酸锂复合材料初产品;
    (4)将初产品在球磨机中球磨处理1~4小时,过200目筛后,即得到本法米掺杂改性的钛酸锂复合负极材料。
  2. 根据权利要求1所述的一种掺杂钛酸锂负极材料的制备方法,其特征在于:步骤(1)所述锂源为醋酸锂、硫酸锂、草酸锂、碳酸锂、氢氧化锂中的一种。
  3. 根据权利要求1所述的一种掺杂钛酸锂负极材料的制备方法,其特征在于:所述锂源(以锂元素计)、纳米二氧化钛物质的量之比为1:1,加入二氧化硅、葡萄糖的质量分别为锂源、二氧化钛二者质量之和的2.5%~10%、3%~5%。
  4. 根据权利要求1所述的一种掺杂钛酸锂负极材料的制备方法,其特征在于:步骤(1)中所述的纳米二氧化硅为气相法沉积制备,其粒径不大于30纳米。
  5. 根据权利要求1所述的一种掺杂钛酸锂负极材料的制备方法,其特征在于:步骤(3)所述惰性气氛条件为氮气或者氩气气氛。
  6. 根据权利要求1所述的一种掺杂钛酸锂负极材料的制备方法,其特征在于:步骤(3)所述的升温的速率为5~20℃/min。
PCT/CN2015/087970 2015-04-15 2015-08-25 一种掺杂钛酸锂负极材料的制备方法 WO2016165262A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510174894.0A CN104810515A (zh) 2015-04-15 2015-04-15 一种掺杂钛酸锂负极材料的制备方法
CN201510174894.0 2015-04-15

Publications (1)

Publication Number Publication Date
WO2016165262A1 true WO2016165262A1 (zh) 2016-10-20

Family

ID=53695168

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/087970 WO2016165262A1 (zh) 2015-04-15 2015-08-25 一种掺杂钛酸锂负极材料的制备方法

Country Status (2)

Country Link
CN (1) CN104810515A (zh)
WO (1) WO2016165262A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111403724A (zh) * 2020-04-21 2020-07-10 旭派电源有限公司 一种改性n,p共掺杂钛酸锂负极材料及其制备方法
CN111747453A (zh) * 2020-05-15 2020-10-09 北方奥钛纳米技术有限公司 镍掺杂钛酸锂、其制备方法及其应用
CN112670470A (zh) * 2020-12-20 2021-04-16 复旦大学 一种钛酸锂/石墨单炔复合负极材料及其制备方法和应用
CN113201808A (zh) * 2021-04-28 2021-08-03 中南大学 一种多孔纤维硅氧负极复合材料及其制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104810515A (zh) * 2015-04-15 2015-07-29 田东 一种掺杂钛酸锂负极材料的制备方法
CN115440967A (zh) * 2022-10-20 2022-12-06 航天锂电科技(江苏)有限公司 一种大圆柱锂离子动力电池负极材料及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101276912A (zh) * 2007-03-28 2008-10-01 株式会社东芝 活性物质、非水电解质电池、电池组和汽车
CN101485015A (zh) * 2006-06-05 2009-07-15 T/J技术公司 碱金属钛酸盐及它们的合成方法
CN101842319A (zh) * 2007-08-30 2010-09-22 石原产业株式会社 钛酸化合物、制造该钛酸化合物的方法、含有该钛酸化合物的电极活性材料和使用该电极活性材料的存储设备
CN104810515A (zh) * 2015-04-15 2015-07-29 田东 一种掺杂钛酸锂负极材料的制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102299311B (zh) * 2011-07-20 2013-11-20 彩虹集团公司 负极活性物质及其制备方法以及采用该负极活性物质制备的锂离子二次电池
CN103296257B (zh) * 2013-06-05 2015-06-24 深圳市斯诺实业发展有限公司 一种改性锂离子电池钛酸锂负极材料的制备方法
CN103326009B (zh) * 2013-06-05 2015-08-19 深圳市斯诺实业发展有限公司 一种高容量钛酸锂负极材料的制备方法
CN103456939B (zh) * 2013-07-24 2015-12-23 湖南大学 利用偏钛酸制备锂离子电池负极材料碳包覆钛酸锂的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101485015A (zh) * 2006-06-05 2009-07-15 T/J技术公司 碱金属钛酸盐及它们的合成方法
CN101276912A (zh) * 2007-03-28 2008-10-01 株式会社东芝 活性物质、非水电解质电池、电池组和汽车
CN101842319A (zh) * 2007-08-30 2010-09-22 石原产业株式会社 钛酸化合物、制造该钛酸化合物的方法、含有该钛酸化合物的电极活性材料和使用该电极活性材料的存储设备
CN104810515A (zh) * 2015-04-15 2015-07-29 田东 一种掺杂钛酸锂负极材料的制备方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111403724A (zh) * 2020-04-21 2020-07-10 旭派电源有限公司 一种改性n,p共掺杂钛酸锂负极材料及其制备方法
CN111403724B (zh) * 2020-04-21 2022-03-29 旭派电源有限公司 一种改性n,p共掺杂钛酸锂负极材料及其制备方法
CN111747453A (zh) * 2020-05-15 2020-10-09 北方奥钛纳米技术有限公司 镍掺杂钛酸锂、其制备方法及其应用
CN112670470A (zh) * 2020-12-20 2021-04-16 复旦大学 一种钛酸锂/石墨单炔复合负极材料及其制备方法和应用
CN112670470B (zh) * 2020-12-20 2022-10-11 复旦大学 一种钛酸锂/石墨单炔复合负极材料及其制备方法和应用
CN113201808A (zh) * 2021-04-28 2021-08-03 中南大学 一种多孔纤维硅氧负极复合材料及其制备方法

Also Published As

Publication number Publication date
CN104810515A (zh) 2015-07-29

Similar Documents

Publication Publication Date Title
Tang et al. Synthesis and electrochemical performance of lithium-rich cathode material Li [Li0. 2Ni0. 15Mn0. 55Co0. 1-xAlx] O2
CN103840151B (zh) 一种特殊单晶结构的三元正极材料及其制备方法
WO2016165262A1 (zh) 一种掺杂钛酸锂负极材料的制备方法
WO2016202162A1 (zh) 一种锂离子负极材料Li4Ti5O12/C的合成方法
WO2016188130A1 (zh) 一种多孔石墨掺杂与碳包覆钛酸锂负极材料的制备方法
CN103078087B (zh) 一种钛酸锂/碳纳米管复合负极材料的制备方法
WO2017024719A1 (zh) 一种高容量锂电池负极材料的制备方法
CN109873140B (zh) 一种锂离子电池石墨烯复合三元正极材料及其制备方法
WO2020108040A1 (zh) 一种氮化钛酸锂/氮化二氧化钛复合电极材料及其制备方法
CN108199011B (zh) 一种钛酸锂负极材料的制备方法
CN103296257A (zh) 一种改性锂离子电池钛酸锂负极材料的制备方法
CN102496705A (zh) 一种尖晶石钛酸锂的制备方法
CN104409715A (zh) 一种高性能氮掺杂碳包覆的钛酸锂复合锂离子电池负极材料的制备方法
WO2017024896A1 (zh) 一种金属锡掺杂复合钛酸锂负极材料的制备方法
WO2020108132A1 (zh) 一种氮化钛酸锂-氮化氧化铝复合材料及其制备方法与应用
CN103326010A (zh) 一种纳米硅掺杂复合钛酸锂负极材料的制备方法
CN103594683A (zh) 一种制备高温锂离子电池锰酸锂正极材料的包覆改性方法
CN103219507A (zh) 管状结构的复合材料及其制备方法和应用
WO2019096012A1 (zh) 一种钛酸锂复合材料及其制备方法、负极片及锂离子电池
CN103326009A (zh) 一种高容量钛酸锂负极材料的制备方法
WO2017024902A1 (zh) 一种改性锂电池钛酸锂负极材料的制备方法
CN103972508A (zh) 一种无机掺杂/包覆改性天然石墨、制备方法及其应用
CN103441257A (zh) 一种钛酸锂材料的制备方法
CN108365220A (zh) 锂源材料及其制备方法和在锂离子电池中的应用
CN105047870A (zh) 一种掺氮碳包覆硅复合材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15888963

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 22/12/2017)

122 Ep: pct application non-entry in european phase

Ref document number: 15888963

Country of ref document: EP

Kind code of ref document: A1