WO2016188130A1 - 一种多孔石墨掺杂与碳包覆钛酸锂负极材料的制备方法 - Google Patents
一种多孔石墨掺杂与碳包覆钛酸锂负极材料的制备方法 Download PDFInfo
- Publication number
- WO2016188130A1 WO2016188130A1 PCT/CN2016/071392 CN2016071392W WO2016188130A1 WO 2016188130 A1 WO2016188130 A1 WO 2016188130A1 CN 2016071392 W CN2016071392 W CN 2016071392W WO 2016188130 A1 WO2016188130 A1 WO 2016188130A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lithium
- lithium titanate
- negative electrode
- carbon
- porous graphite
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/485—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
- H01M4/625—Carbon or graphite
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/628—Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the invention relates to a lithium ion battery anode material, in particular to a method for preparing a porous graphite doped and carbon coated lithium titanate anode material.
- Lithium-ion battery is a new generation of green high-energy battery with excellent performance. It has high voltage, high energy density, good cycle performance, small self-discharge, no memory effect, wide operating temperature range and so on.
- the cathode materials of the current lithium ion battery electrode materials are mainly LiCoO 2 , LiNiO 2 , LiMn 2 O 4 and the like.
- the Co system is highly toxic, the Ni-based synthesis conditions are harsh, and the Mn-based Jahn-Teller effect cycle performance is not good.
- LiFePO 4 is recognized as one of the more promising cathode materials in next-generation lithium-ion batteries. However, the safety of the negative electrode is often neglected.
- the negative electrode material of lithium ion battery is mainly carbon material.
- the carbon negative electrode material has been commercialized, the potential of carbon to metallic lithium is low, such as graphite only 0.2V, in charge During the discharge process, lithium metal is easily precipitated to produce lithium dendrites, and the lithium battery is short-circuited by the puncture diaphragm, especially in the process of large-rate charge and discharge, the safety hazard is more serious.
- the graphite anode material also has the problem of solvent co-intercalation, resulting in poor performance of large rate charge and discharge.
- spinel lithium titanium oxide lithium titanate has attracted extensive attention due to its superior cycle performance and safety performance. It is considered to be one of the negative electrode materials that may replace the current commercial carbon materials. Research value and business application prospects.
- lithium titanate Compared with carbon negative electrode materials, lithium titanate has many advantages. Among them, the deintercalation of lithium ions in lithium titanate is reversible, and the crystal form of lithium ion in the process of inserting or extracting lithium titanate is not Changed, volume change is less than 1%, so it is called "zero strain material", which can avoid the structure damage caused by the back and forth expansion of the electrode material in the charge and discharge cycle, thereby improving the cycle performance and service life of the electrode, reducing the The number of cycles increases and the specific capacity is greatly attenuated, which has better cycle performance than the carbon negative electrode; however, since lithium titanate is an insulating material, its electrical conductivity is low, resulting in the rate performance in the application of lithium battery. Poorer problems, lithium titanate decays faster than when operating in high-rate environments. For practical applications of lithium-ion power batteries, high-rate operating characteristics are one of the key factors that determine whether they can be commercialized.
- the technical problem to be solved by the present invention is to provide a method for preparing a porous graphite doped and carbon-coated lithium titanate negative electrode material, aiming at solving the problem of poor conductivity of lithium titanate and improving the cycle performance of charge and discharge.
- the technical solution adopted by the present invention to solve the above technical problem is: a method for preparing a porous graphite doped and carbon coated lithium titanate negative electrode material, which comprises the following steps:
- porous graphite a potassium permanganate aqueous solution having a concentration of 1-12 mg/mL is placed, and graphite is added for oxidative pore formation. Washing and drying to obtain porous graphite;
- lithium titanate precursor The lithium source compound and the titanium source compound are weighed according to a molar ratio of Li atoms in the lithium source compound to Ti atoms in the titanium source compound of (0.8 to 0.9):1.
- the porous graphite obtained in the step (1) is added in a proportion of 5 to 10% by weight based on the total weight of the lithium source compound and the titanium source compound, and is 2 to 15% and 80%, respectively, based on the total weight of the lithium source compound and the titanium source compound. 150% added carbon source precursor and ball milling aid, ball milling and mixing, until the mixture is evenly dried;
- step (3) High temperature treatment: under the protection of inert gas, the powder dried in step (2) is heated to 700-950 ° C at a temperature of 2 to 10 ° C / min, and lasts for 3-20 hours, and after cooling to room temperature
- the pulverized sieve is used to obtain a porous graphite doped and carbon coated lithium titanate negative electrode material.
- the graphite in the step (1) is artificial graphite or natural graphite, and has a particle diameter D50 ⁇ 5 ⁇ m and a specific surface area ⁇ 10 m 2 /g.
- the lithium source compound in the step (2) is lithium acetate, lithium sulfate, lithium oxalate, lithium carbonate, lithium hydroxide, lithium chloride, lithium phosphate, lithium nitrate or lithium sulfide.
- the titanium source compound in the step (2) is tetrabutyl titanate, anatase titanium dioxide, gold stone type titanium oxide, titanic acid, titanium isopropoxide or titanium oxylate.
- the carbon source precursor described in the step (2) is one or a mixture of two or more of a phenol resin, an epoxy resin, glucose, starch, and pitch.
- the ball milling aid described in the step (2) is one of water, methanol or ethanol, and isopropyl alcohol.
- the inert gas described in the step (3) is nitrogen or argon.
- the invention has the advantages that the porous graphite doping and the carbon coating improve the electrical conductivity of the lithium titanate, and the prepared porous graphite doping and the carbon coated lithium titanate negative electrode material have higher specific capacity and circulation. Good performance, can be widely used in a variety of lithium-ion batteries.
- the preparation method of the invention is low in cost and simple in process, and is suitable for large-scale industrial production.
- the doping modification of porous lithium to lithium titanate can solve the problem of poor high-rate performance of lithium titanate and does not affect its spinel structure. Since the doped porous carbon functions as an electron transport buffer layer in the lithium titanate material, the cycle performance of the lithium titanate material is improved, and the introduction of the carbon material can effectively suppress the aggregation of the lithium titanate particles during the heat treatment. .
- the porous graphite prepared by the present invention has a higher specific surface area, and thus the high rate performance of lithium titanate will be further improved.
- a preparation method of porous graphite doped and carbon coated lithium titanate negative electrode material comprising the following steps:
- step (3) High temperature treatment: under the protection of inert gas, the powder dried in step (2) is heated to 900 ° C at 5 ° C / min for 4 hours, cooled to room temperature, pulverized and sieved to obtain porous Graphite doped and carbon coated lithium titanate negative electrode material.
- a preparation method of porous graphite doped and carbon coated lithium titanate negative electrode material comprising the following steps:
- step (3) High temperature treatment: under the protection of inert gas, the powder dried in step (2) is heated to 800 ° C at 10 ° C / min for 6 hours, cooled to room temperature, pulverized and sieved to obtain porous Graphite doped and carbon coated lithium titanate negative electrode material.
- a preparation method of porous graphite doped and carbon coated lithium titanate negative electrode material comprising the following steps:
- step (3) High temperature treatment: under the protection of inert gas, the powder dried in step (2) is heated to 850 ° C at 7 ° C / min for 5 hours, cooled to room temperature, pulverized and sieved to obtain porous Graphite doped and carbon coated lithium titanate negative electrode material.
- the charge-discharge voltage is 1.0-2.5V, and the charge-discharge rate is 0.5C.
- the battery performance can be tested. The test results are shown in Table 1.
- Table 1 compares the performance of negative electrode materials in different examples and comparative examples.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Composite Materials (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
本发明公开了一种多孔石墨掺杂与碳包覆钛酸锂负极材料的制备方法,多孔碳和碳包覆对钛酸锂的掺杂改性能解决钛酸锂的高倍率性能较差的问题,并且不影响其尖晶石结构。由于掺杂的多孔碳以及碳包覆层起到了电子传输缓冲层的作用,因此提高了钛酸锂材料的循环性能,另外碳前驱体的引入可有效的抑制热处理过程中钛酸锂颗粒的聚集,提高钛酸锂材料中锂离子扩散系数增大。本发明工艺简单,便于工业化生产。
Description
本发明涉及锂离子电池负极材料,具体涉及一种多孔石墨掺杂与碳包覆钛酸锂负极材料的制备方法。
锂离子电池作为性能卓越的新一代绿色高能电池,其具有高电压、能量密度大、循环性能好、自放电小、无记忆效应、工作温度范围宽等显著特点。现在的锂离子电池电极材料正极材料主要为LiCoO2、LiNiO2和LiMn2O4等。Co系毒性较大,Ni系合成条件苛刻,Mn系Jahn-Teller效应循环性能不好。LiFePO4被公认为是下一代锂离子电池中比较有应用前景的正极材料之一。然而,负极的安全性则往往被人们忽视,目前锂离子电池负极材料主要是碳材料,虽然碳负极材料早已商业化,但是由于碳对金属锂的电位较低,如石墨只有0.2V,在充放电过程中容易析出金属锂产生锂枝晶,穿刺隔膜造成锂电池短路,尤其在大倍率充放电过程中,安全隐患更加严重。同时,石墨负极材料还存在溶剂共嵌的问题,造成大倍率充放电性能较差。尖晶石型锂钛氧化物钛酸锂作为一种零应变材料以其优越的循环性能和安全性能受到广泛关注,被认为是可能取代目前商品化碳材料的负极材料之一,有着很大的研究价值和商业应用前景。与碳负电极材料相比,钛酸锂有很多的优势,其中,锂离子在钛酸锂中的脱嵌是可逆的,而且锂离子在嵌入或脱出钛酸锂的过程中,其晶型不发生变化,体积变化小于1%,因此被称为“零应变材料”,能够避免充放电循环中由于电极材料的来回伸缩而导致结构的破坏,从而提高电极的循环性能和使用寿命,减少了随循环次数增加而带来比容量大幅度的衰减,具有比碳负极更优良的循环性能;但是,由于钛酸锂是一种绝缘材料,其电导率低,从而导致在锂电中的应用存在倍率性能较差的问题,在高倍率环境下工作时,钛酸锂比容量衰减迅速。而对于锂离子动力电池的实际应用,高倍率工作特性是决定其能否获得商业化应用的关键因素之一。
发明内容
本发明所要解决的技术问题是提供一种多孔石墨掺杂与碳包覆钛酸锂负极材料的制备方法,旨在解决钛酸锂导电率差的问题,提高充放电的循环性能。
本发明解决上述技术问题所采用的技术方案为:一种多孔石墨掺杂与碳包覆钛酸锂负极材料的制备方法,其特征在于包括以下步骤:
(1)制备多孔石墨:配置浓度为1-12mg/mL的高锰酸钾水溶液,加入石墨进行氧化造孔,
洗涤烘干,得到多孔石墨;
(2)钛酸锂前驱体制备:将锂源化合物、钛源化合物,按照锂源化合物中的Li原子与钛源化合物中的Ti原子之间摩尔比为(0.8~0.9):1的比例称取,按照锂源化合物和钛源化合物总重量5~10%的比例加入步骤(1)所制得的多孔石墨,同时分别按照锂源化合物和钛源化合物总重量2~15%和80%~150%加入碳源前驱体和球磨助剂,进行球磨混合,至混合均匀后烘干;
(3)高温处理:在惰性气体保护下,将步骤(2)中烘干的粉体以2~10℃/min升温加热至700~950℃,并持续3-20小时,冷却降至室温后,粉碎过筛,即得到多孔石墨掺杂与碳包覆钛酸锂负极材料。
步骤(1)中的石墨为人造石墨或者天然石墨,粒径D50≤5μm,比表面积≥10m2/g。
步骤(2)中的锂源化合物为醋酸锂、硫酸锂、草酸锂、碳酸锂、氢氧化锂、氯化锂、磷酸锂、硝酸锂或硫化锂。
步骤(2)中的钛源化合物为钛酸四丁酯、锐钛型二氧化钛、金石型二氧化钛、钛酸、异丙醇钛或草酸氧钛。
步骤(2)中所述的碳源前驱体为酚醛树脂、环氧树脂、葡萄糖、淀粉、沥青中的一种或两种以上的混合物。
步骤(2)中所述的球磨助剂为水、甲醇或乙醇、异丙醇中一种。
步骤(3)所述的惰性气体为氮气或氩气。
与现有技术相比,本发明的优点在于多孔石墨掺杂与碳包覆提高了钛酸锂的电导率,制得的多孔石墨掺杂与碳包覆钛酸锂负极材料比容量高,循环性能好,可广泛应用于各种锂离子电池。同时,本发明的制备方法成本低廉,工艺简单,适合于大规模的工业化生产。
多孔碳对钛酸锂的掺杂改性能解决钛酸锂的高倍率性能较差的问题,并且不影响其尖晶石结构。由于掺杂的多孔碳在钛酸锂材料中起到了电子传输缓冲层的作用,因此提高了钛酸锂材料的循环性能,另外碳材料的引入可有效的抑制热处理过程中钛酸锂颗粒的聚集。本发明制备的多孔石墨具有更高的比表面积,因此钛酸锂的高倍率性能将进一步提高。
以下结合具体实施例对本发明作进一步详细描述。
实施例1
一种多孔石墨掺杂与碳包覆钛酸锂负极材料的制备方法,包括以下步骤:
(1)配制5mg/mL的高锰酸钾水溶液,将50g的天然石墨(粒径D50:3.63μm,比表面积:
12.51m2/g)的加入到溶液中,氧化处理60min,然后用水洗涤至中性,然后烘干备用;
(2)按摩尔比Li:Ti=0.84:1的比例分别取二氧化钛50g和碳酸锂19.42g,按照锂源化合物和钛源化合物总重量5%的比例加入步骤(1)所制得的多孔石墨3.47g,同时分别按照锂源化合物和钛源化合物总重量2%和80%加入碳源前驱体葡萄糖1.38g和球磨助剂无水乙醇55.54g,进行球磨混合15h,然后烘干;
(3)高温处理:在惰性气体保护下,将步骤(2)中烘干的粉体以5℃/min加热至900℃,持续4小时,冷却降至室温后,粉碎过筛,即得到多孔石墨掺杂与碳包覆钛酸锂负极材料。
实施例2
一种多孔石墨掺杂与碳包覆钛酸锂负极材料的制备方法,包括以下步骤:
(1)配制10mg/mL的高锰酸钾水溶液,将50g的人造石墨(粒径D50:4.42μm,比表面积:18.12m2/g)的加入到溶液中,氧化处理30min,然后用水洗涤至中性,然后烘干备用;
(2)按摩尔比Li:Ti=0.84:1的比例分别取二氧化钛50g和碳酸锂19.42g,按照锂源化合物和钛源化合物总重量9%的比例加入步骤(1)所制得的多孔石墨6.25g,同时分别按照锂源化合物和钛源化合物总重量10%和150%加入碳源前驱体葡萄糖6.94g和球磨助剂无水乙醇104.1g,进行球磨混合12h,然后烘干;
(3)高温处理:在惰性气体保护下,将步骤(2)中烘干的粉体以10℃/min加热至800℃,持续6小时,冷却降至室温后,粉碎过筛,即得到多孔石墨掺杂与碳包覆钛酸锂负极材料。
实施例3
一种多孔石墨掺杂与碳包覆钛酸锂负极材料的制备方法,包括以下步骤:
(1)配制8mg/mL的高锰酸钾水溶液,将50g的天然石墨(粒径D50:3.28μm,比表面积:15.42m2/g)的加入到溶液中,氧化处理50min,然后用水洗涤至中性,然后烘干备用;
(2)按摩尔比Li:Ti=0.84:1的比例分别取二氧化钛50g和碳酸锂19.42g,按照锂源化合物和钛源化合物总重量10%的比例加入步骤(1)所制得的多孔石墨6.94g,同时分别按照锂源化合物和钛源化合物总重量15%和120%加入碳源前驱体葡萄糖10.41g和球磨助剂无水乙醇83.3g,进行球磨混合10h,然后烘干;
(3)高温处理:在惰性气体保护下,将步骤(2)中烘干的粉体以7℃/min加热至850℃,持续5小时,冷却降至室温后,粉碎过筛,即得到多孔石墨掺杂与碳包覆钛酸锂负极材料。
对比例1
按照n(Li):n(Ti)=0.87,称取1000g碳酸锂和2161g二氧化钛,放入球磨机进行球磨混合8h后,将混合均匀的粉体在空气中,以10℃/min的速度升温至800℃,再保温4h,然后
自然冷却至室温,得到钛酸锂负极材料。
电化学性能测试
为检验本发明方法制备的改性锂离子电池钛酸锂负极材料的性能,用半电池测试方法进行测试,用以上实施例和比较例的负极材料:乙炔黑:PVDF(聚偏氟乙烯)=93:3:4(重量比),加适量NMP(N-甲基吡咯烷酮)调成浆状,涂布于铜箔上,经真空110℃干燥8小时制成负极片;以金属锂片为对电极,电解液为1mol/L LiPF6/EC+DEC+DMC=1:1:1,聚丙烯微孔膜为隔膜,组装成电池。充放电电压为1.0~2.5V,充放电速率为0.5C,对电池性能进行能测试,测试结果见表1。
表1为不同实施例和比较例中负极材料的性能比较
以上显示和描述了本实用新型的基本原理和主要特征及本实用新型的优点,本行业的技术人员应该了解,本实用新型不受上述实施例的限制,上述实施例和说明书中描述的只是说明本实用新型的原理,在不脱离本实用新型精神和范围的前提下,本实用新型还会有各种变化和改进,这些变化和改进都落入要求保护的本实用新型范围内,本实用新型要求保护范围由所附的权利要求书及其等效物界定。
Claims (7)
- 一种多孔石墨掺杂与碳包覆钛酸锂负极材料的制备方法,其特征在于包括以下步骤:(1)制备多孔石墨:配置浓度为1-12mg/mL的高锰酸钾水溶液,加入石墨进行氧化造孔,洗涤烘干,得到多孔石墨;(2)钛酸锂前驱体制备:将锂源化合物、钛源化合物,按照锂源化合物中的Li原子与钛源化合物中的Ti原子之间摩尔比为(0.8~0.9):1的比例称取,按照锂源化合物和钛源化合物总重量5~10%的比例加入步骤(1)所制得的多孔石墨,同时分别按照锂源化合物和钛源化合物总重量2~15%和80%~150%加入碳源前驱体和球磨助剂,进行球磨混合,至混合均匀后烘干;(3)高温处理:在惰性气体保护下,将步骤(2)中烘干的粉体以2~10℃/min升温加热至700~950℃,并持续3-20小时,冷却降至室温后,粉碎过筛,即得到多孔石墨掺杂与碳包覆钛酸锂负极材料。
- 根据权利要求1所述的一种多孔石墨掺杂与碳包覆钛酸锂负极材料的制备方法,其特征在于步骤(1)中的石墨为人造石墨或者天然石墨,粒径D50≤5μm,比表面积≥10m2/g。
- 根据权利要求1所述的一种多孔石墨掺杂与碳包覆钛酸锂负极材料的制备方法,其特征在于步骤(2)中的锂源化合物为醋酸锂、硫酸锂、草酸锂、碳酸锂、氢氧化锂、氯化锂、磷酸锂、硝酸锂或硫化锂。
- 根据权利要求1所述的一种多孔石墨掺杂与碳包覆钛酸锂负极材料的制备方法,其特征在于步骤(2)中的钛源化合物为钛酸四丁酯、锐钛型二氧化钛、金石型二氧化钛、钛酸、异丙醇钛或草酸氧钛。
- 根据权利要求1所述的一种多孔石墨掺杂与碳包覆钛酸锂负极材料的制备方法,其特征在于步骤(2)中所述的碳源前驱体为酚醛树脂、环氧树脂、葡萄糖、淀粉、沥青中的一种或两种以上的混合物。
- 根据权利要求1所述的一种多孔石墨掺杂与碳包覆钛酸锂负极材料的制备方法,其特征在于步骤(2)中所述的球磨助剂为水、甲醇或乙醇、异丙醇中一种。
- 根据权利要求1所述的一种多孔石墨掺杂与碳包覆钛酸锂负极材料的制备方法,其特征在于步骤(3)所述的惰性气体为氮气或氩气。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510264457.8A CN104953098A (zh) | 2015-05-22 | 2015-05-22 | 一种多孔石墨掺杂与碳包覆钛酸锂负极材料的制备方法 |
CN201510264457.8 | 2015-05-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016188130A1 true WO2016188130A1 (zh) | 2016-12-01 |
Family
ID=54167606
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2016/071392 WO2016188130A1 (zh) | 2015-05-22 | 2016-01-19 | 一种多孔石墨掺杂与碳包覆钛酸锂负极材料的制备方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN104953098A (zh) |
WO (1) | WO2016188130A1 (zh) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110350172A (zh) * | 2019-07-05 | 2019-10-18 | 贵州大学 | 一种偏钛酸锂包覆钛酸锂电极材料方法 |
CN110504450A (zh) * | 2019-07-17 | 2019-11-26 | 温州大学新材料与产业技术研究院 | 一种杂原子掺杂的多级孔碳材料的制备方法及在锂电池负极浆料中的应用 |
CN112768644A (zh) * | 2020-04-16 | 2021-05-07 | 西安越遴新材料研究院有限公司 | 一种利用改性沥青包覆硅碳复合负极材料界面的修饰方法 |
CN113328076A (zh) * | 2021-05-27 | 2021-08-31 | 北京化工大学 | 一种碳包覆硫化铁量子点复合纳米片及其制备方法和应用 |
CN114520314A (zh) * | 2020-11-19 | 2022-05-20 | 湖南中科星城石墨有限公司 | 具有多孔碳包覆层的负极材料、其制备方法和锂离子电池 |
CN114551858A (zh) * | 2022-03-01 | 2022-05-27 | 深圳博磊达新能源科技有限公司 | 一种钛酸锂复合材料及其制备方法 |
CN115724420A (zh) * | 2022-09-30 | 2023-03-03 | 重庆长安新能源汽车科技有限公司 | 一种双金属掺杂多孔碳材料、制备方法、应用及其包覆正极材料和制备方法 |
CN115881940A (zh) * | 2022-08-25 | 2023-03-31 | 江南机电设计研究所 | 一种低温启动锂离子电池及其制备方法 |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104953098A (zh) * | 2015-05-22 | 2015-09-30 | 田东 | 一种多孔石墨掺杂与碳包覆钛酸锂负极材料的制备方法 |
KR102028936B1 (ko) * | 2016-06-08 | 2019-10-07 | 쇼와 덴코 가부시키가이샤 | 리튬 이온 2차전지용 부극 및 리튬 이온 2차전지 |
CN108199011B (zh) * | 2017-11-20 | 2021-10-26 | 深圳市斯诺实业发展有限公司 | 一种钛酸锂负极材料的制备方法 |
CN109817922A (zh) * | 2019-01-23 | 2019-05-28 | 湖南摩根海容新材料有限责任公司 | 高功率型钛酸锂复合材料及制备方法 |
CN114188533B (zh) * | 2021-12-20 | 2023-06-30 | 湖北亿纬动力有限公司 | 一种负极材料及其制备方法和应用 |
CN114792606B (zh) * | 2022-04-20 | 2023-08-22 | 北京航空航天大学 | 一种碳负载掺锰钛酸钠储能材料及其制备方法和应用、负极电极片 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101777645A (zh) * | 2010-02-10 | 2010-07-14 | 赵县强能电源有限公司 | 一种碳改性钛酸锂的制备方法 |
CN102646810A (zh) * | 2012-04-27 | 2012-08-22 | 宁波工程学院 | 一种三维多孔石墨烯掺杂与包覆钛酸锂复合负极材料的制备方法 |
CN102694177A (zh) * | 2012-05-24 | 2012-09-26 | 哈尔滨工业大学 | 碳包覆钛酸锂/碳纳米管复合物的制备方法 |
CN102916168A (zh) * | 2012-11-09 | 2013-02-06 | 中国海洋石油总公司 | 一种人造石墨的改性方法 |
CN103022460A (zh) * | 2012-11-28 | 2013-04-03 | 上海锦众信息科技有限公司 | 一种钛酸锂碳复合材料的制备方法 |
CN104953098A (zh) * | 2015-05-22 | 2015-09-30 | 田东 | 一种多孔石墨掺杂与碳包覆钛酸锂负极材料的制备方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103066267A (zh) * | 2012-12-07 | 2013-04-24 | 上海锦众信息科技有限公司 | 一种锂离子电池钛酸锂-碳复合材料的制备方法 |
-
2015
- 2015-05-22 CN CN201510264457.8A patent/CN104953098A/zh active Pending
-
2016
- 2016-01-19 WO PCT/CN2016/071392 patent/WO2016188130A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101777645A (zh) * | 2010-02-10 | 2010-07-14 | 赵县强能电源有限公司 | 一种碳改性钛酸锂的制备方法 |
CN102646810A (zh) * | 2012-04-27 | 2012-08-22 | 宁波工程学院 | 一种三维多孔石墨烯掺杂与包覆钛酸锂复合负极材料的制备方法 |
CN102694177A (zh) * | 2012-05-24 | 2012-09-26 | 哈尔滨工业大学 | 碳包覆钛酸锂/碳纳米管复合物的制备方法 |
CN102916168A (zh) * | 2012-11-09 | 2013-02-06 | 中国海洋石油总公司 | 一种人造石墨的改性方法 |
CN103022460A (zh) * | 2012-11-28 | 2013-04-03 | 上海锦众信息科技有限公司 | 一种钛酸锂碳复合材料的制备方法 |
CN104953098A (zh) * | 2015-05-22 | 2015-09-30 | 田东 | 一种多孔石墨掺杂与碳包覆钛酸锂负极材料的制备方法 |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110350172A (zh) * | 2019-07-05 | 2019-10-18 | 贵州大学 | 一种偏钛酸锂包覆钛酸锂电极材料方法 |
CN110504450A (zh) * | 2019-07-17 | 2019-11-26 | 温州大学新材料与产业技术研究院 | 一种杂原子掺杂的多级孔碳材料的制备方法及在锂电池负极浆料中的应用 |
CN112768644A (zh) * | 2020-04-16 | 2021-05-07 | 西安越遴新材料研究院有限公司 | 一种利用改性沥青包覆硅碳复合负极材料界面的修饰方法 |
CN114520314A (zh) * | 2020-11-19 | 2022-05-20 | 湖南中科星城石墨有限公司 | 具有多孔碳包覆层的负极材料、其制备方法和锂离子电池 |
CN114520314B (zh) * | 2020-11-19 | 2024-02-27 | 湖南中科星城石墨有限公司 | 具有多孔碳包覆层的负极材料、其制备方法和锂离子电池 |
CN113328076A (zh) * | 2021-05-27 | 2021-08-31 | 北京化工大学 | 一种碳包覆硫化铁量子点复合纳米片及其制备方法和应用 |
CN114551858A (zh) * | 2022-03-01 | 2022-05-27 | 深圳博磊达新能源科技有限公司 | 一种钛酸锂复合材料及其制备方法 |
CN115881940A (zh) * | 2022-08-25 | 2023-03-31 | 江南机电设计研究所 | 一种低温启动锂离子电池及其制备方法 |
CN115724420A (zh) * | 2022-09-30 | 2023-03-03 | 重庆长安新能源汽车科技有限公司 | 一种双金属掺杂多孔碳材料、制备方法、应用及其包覆正极材料和制备方法 |
CN115724420B (zh) * | 2022-09-30 | 2024-04-16 | 深蓝汽车科技有限公司 | 一种双金属掺杂多孔碳材料、制备方法、应用及其包覆正极材料和制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN104953098A (zh) | 2015-09-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016188130A1 (zh) | 一种多孔石墨掺杂与碳包覆钛酸锂负极材料的制备方法 | |
US11289691B2 (en) | Spherical or spherical-like cathode material for a lithium battery, a battery and preparation method and application thereof | |
Tang et al. | Synthesis and electrochemical performance of lithium-rich cathode material Li [Li0. 2Ni0. 15Mn0. 55Co0. 1-xAlx] O2 | |
WO2022042373A1 (zh) | 锂离子电池 | |
CN109390563B (zh) | 改性磷酸铁锂正极材料及其制备方法、正极片、锂二次电池 | |
CN109301174B (zh) | 正极材料及其制备方法及锂二次电池 | |
CA2901265C (en) | Method for producing positive electrode active material layer for lithium ion battery, and positive electrode active material layer for lithium ion battery | |
WO2022267534A1 (zh) | 锂金属负极极片、电化学装置及电子设备 | |
WO2018064907A1 (zh) | 改性正极材料的制备方法及锂离子电池 | |
CN112768687A (zh) | 锂位掺杂改性的锂离子电池用高镍低钴三元正极材料及其制备方法 | |
WO2021185014A1 (zh) | 负极活性材料及使用其的电化学装置和电子装置 | |
CN103259046B (zh) | 可快速充电的高倍率磷酸铁锂电池的制备方法 | |
WO2016202162A1 (zh) | 一种锂离子负极材料Li4Ti5O12/C的合成方法 | |
CN108807920B (zh) | Laso包覆八面体结构镍锰酸锂复合材料及制备方法 | |
WO2016165262A1 (zh) | 一种掺杂钛酸锂负极材料的制备方法 | |
CN116154154B (zh) | 纯相聚阴离子型硫酸盐钠离子电池正极材料及其制备方法 | |
WO2024130851A1 (zh) | 一种双包覆型正极材料及其制备方法和应用 | |
CN110970618A (zh) | 一种低成本磷酸铁锂复合材料的制备方法 | |
CN108365220A (zh) | 锂源材料及其制备方法和在锂离子电池中的应用 | |
CN103693632A (zh) | 一种锂离子电池用磷酸氧钒锂正极材料的制备方法 | |
WO2024159825A1 (zh) | 一种正极补锂材料及其制备方法、正极材料、正极片和二次电池 | |
CN108807929B (zh) | 一种储备式锂电池用正极材料的制备方法及产品 | |
CN107834054B (zh) | 一种锂离子电池用镍锰酸锂-石墨烯复合材料的制备方法 | |
CN114497498B (zh) | 电化学装置和电子装置 | |
CN115275166A (zh) | 一种长寿命石墨复合材料及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16799019 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16799019 Country of ref document: EP Kind code of ref document: A1 |