WO2020108132A1 - 一种氮化钛酸锂-氮化氧化铝复合材料及其制备方法与应用 - Google Patents

一种氮化钛酸锂-氮化氧化铝复合材料及其制备方法与应用 Download PDF

Info

Publication number
WO2020108132A1
WO2020108132A1 PCT/CN2019/111041 CN2019111041W WO2020108132A1 WO 2020108132 A1 WO2020108132 A1 WO 2020108132A1 CN 2019111041 W CN2019111041 W CN 2019111041W WO 2020108132 A1 WO2020108132 A1 WO 2020108132A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
titanate
composite material
aluminum
nitride
Prior art date
Application number
PCT/CN2019/111041
Other languages
English (en)
French (fr)
Inventor
李瑛�
俞兆喆
田冰冰
苏陈良
魏堃
Original Assignee
深圳大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳大学 filed Critical 深圳大学
Publication of WO2020108132A1 publication Critical patent/WO2020108132A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the field of electrode materials for lithium ion secondary batteries, in particular to a lithium nitride titanate-aluminum nitride composite material and its preparation method and application.
  • Lithium titanate batteries have been widely used as a portable new energy source in many electronic products due to their safety, high service life, convenience and portability.
  • the key research direction of anode materials for lithium-ion batteries is moving towards the direction of power battery materials with high specific capacity, large rate, high cycle performance and high safety performance.
  • Traditional carbon materials are the earliest and most used negative electrode materials due to their low rate performance and good cycle performance; however, the theoretical capacity of carbon materials is low (372mAh/g), and dendrites are easily formed at low voltages, causing internal batteries
  • the short circuit makes the safety of high-current charge and discharge worse, prompting people to look for a safe and reliable new negative electrode material that intercalates lithium at a slightly positive potential than the carbon negative electrode.
  • lithium titanate with a spinel structure not only improves the charge-discharge voltage, but also the two substances formed during the lithium intercalation process have similar lattice parameters and small volume effect, and are called zero strain materials.
  • Li 4 Ti 5 O 12 has attracted much attention with its 1.5V (vs. Li/Li + ) voltage platform, close to 100% charge-discharge efficiency and excellent cycle performance. It is a kind of potential lithium ion Battery negative material.
  • lithium titanate materials are used as negative electrode materials in batteries. Due to their own characteristics, materials and electrolytes are prone to interact and gas is generated during cyclic charge and discharge, so ordinary lithium titanate batteries are prone to occur Flatulence causes the battery core to swell, and the electrical performance will also be greatly reduced, which greatly reduces the theoretical cycle life of the lithium titanate battery; and lithium titanate has poor electronic conductivity, which limits its large rate performance.
  • the object of the present invention is to provide a lithium nitride titanate-aluminum nitride composite material and its preparation method and application, aiming to solve the safety performance and electronic conductivity of the existing lithium titanate material The problem of poor performance and high magnification performance.
  • a preparation method of lithium nitride titanate-aluminum nitride composite material which includes the steps of:
  • the lithium titanate-alumina precursor is calcined in the air at 400-900°C for 4-18 hours; cooled and ground to obtain a lithium titanate-alumina composite powder;
  • the lithium source is selected from one or more of lithium hydroxide, lithium acetate, and lithium nitrate.
  • step A the titanium source is selected from tetrabutyl titanate, tetraisopropyl titanate, and titanium tetrachloride One or more.
  • the aluminum source is selected from one or more of aluminum nitrate, aluminum oxide, and aluminum acetate.
  • the lithium source is added according to the molar ratio of Li, Ti and Al of 0.66 to 0.86: 1:0.01 to 0.2 Titanium source, aluminum source.
  • step C The method for preparing a lithium nitride titanate-alumina nitride composite material, wherein in step C, the protective atmosphere is argon, nitrogen, a mixed gas of argon and hydrogen, or a mixed gas of nitrogen and hydrogen .
  • step C the nitrogen-containing atmosphere is nitrogen, ammonia, a mixed gas of nitrogen and hydrogen, and a mixed gas of nitrogen and argon , A mixture of nitrogen and ammonia, or a mixture of ammonia and hydrogen.
  • a lithium nitride titanate-aluminum nitride composite material which is prepared by using the preparation method of the lithium nitride titanate-aluminum nitride composite material as described above.
  • lithium nitride titanate-aluminum nitride composite material as described above, wherein the lithium nitride titanate-aluminum nitride composite material is used as an electrode active material of a fast charge battery.
  • the present invention uses aluminum nitride to improve the interface conductivity of the material, making the lithium ion transmission channel more smooth, and using lithium nitride titanate to improve the electronic conductivity of the surface of the material and the electron transmission rate in the material; thus making the present invention
  • the lithium nitride titanate-aluminum nitride composite material has good large rate performance, good safety performance, and high specific capacity. It can be widely used in various portable electronic devices and lithium ion batteries required by various electric vehicles. Super capacitor.
  • Example 2 is an XRD chart of the lithium nitride titanate-aluminum nitride composite material prepared in Example 4 of the present invention.
  • Example 3 is a graph of the first charge-discharge curve of the lithium nitride titanate-aluminum nitride composite material prepared in Example 4 of the present invention at 0.1C.
  • Example 4 is a graph of the cycle performance of the lithium nitride titanate-aluminum nitride composite material prepared in Example 4 of the present invention at 50C.
  • Example 5 is a Coulomb efficiency curve of the lithium nitride titanate-aluminum nitride composite material prepared in Example 4 of the present invention at 50C.
  • the present invention provides a lithium nitride titanate-aluminum nitride composite material and its preparation method and application.
  • the present invention will be described in further detail below. It should be understood that the specific embodiments described herein are only used to explain the present invention, and are not intended to limit the present invention.
  • Embodiments of the present invention provide a method for preparing the lithium nitride titanate-aluminum nitride composite material described above, which includes the steps of:
  • the lithium titanate-alumina precursor is calcined in the air at 400-900°C for 4-18 hours; cooled and ground to obtain a lithium titanate-alumina composite powder;
  • the preparation method of the lithium nitride titanate-aluminum nitride composite material provided in this embodiment has the characteristics of low preparation cost, simple and flexible preparation process, and is applicable to industrial large-scale production; the large rate performance of the obtained composite material It is good and has a high specific capacity. When it is used as a negative electrode active material to make a power battery, it has excellent rate performance and cycle performance. It can be used in the lithium ion battery system required for electric vehicles, and has the potential to replace super capacitors and other products.
  • the lithium source may be selected from but not limited to one or more of lithium hydroxide, lithium acetate, and lithium nitrate;
  • the titanium source may be selected from but not limited to One or more of tetrabutyl titanate, tetraisopropyl titanate, and titanium tetrachloride;
  • the aluminum source may be selected from but not limited to one or more of aluminum nitrate, aluminum oxide, aluminum acetate .
  • the lithium source, the titanium source, and the aluminum source are added at a molar ratio of Li, Ti, and Al of 0.66 to 0.86: 1:0.01 to 0.2.
  • the protective atmosphere is argon, nitrogen, a mixed gas of argon and hydrogen, or a mixed gas of nitrogen and hydrogen.
  • the nitrogen-containing atmosphere is nitrogen, ammonia, a mixed gas of nitrogen and hydrogen, a mixed gas of nitrogen and argon, a mixed gas of nitrogen and ammonia, or ammonia Mixed gas with hydrogen.
  • Embodiments of the present invention provide a lithium nitride titanate-aluminum nitride composite material, which is prepared by using the preparation method of the lithium titanate-aluminum nitride composite material described above.
  • the aluminum nitride oxide is used to improve the interface conductivity of the material, making the lithium ion transmission channel more smooth, and the lithium nitride titanate is used to improve the electronic conductivity on the surface of the material and the electron transmission rate in the material; thus making the invention
  • the lithium nitride titanate-aluminum nitride composite material has good large rate performance, good safety performance, and high specific capacity. It can be widely used in various portable electronic devices and lithium ion batteries required by various electric vehicles. Super capacitor.
  • the aluminum nitride oxide improves the grain boundary conductivity between the material particles and improves the lithium ion conductivity of the material; lithium nitride titanate exists in the lithium nitride titanate-nitrogen in a Ti-NO cross-linked structure
  • the surface layer of the aluminum oxide composite material makes the surface of the lithium nitride titanate-aluminum nitride composite material have high electronic conductivity.
  • Embodiments of the present invention provide an application of the lithium nitride titanate-aluminum nitride composite material as described above, wherein the lithium nitride titanate-aluminum nitride composite material is used as an electrode activity of a fast charge battery substance.
  • the lithium nitride titanate-aluminum nitride composite material is used as the electrode active material, and the lithium metal is used as the negative electrode to form a half-cell.
  • the specific capacity at 0.1C rate can be as high as about 195mAh/g; 50C
  • the first charge-discharge specific capacity exceeded 123mAh/g during rate charge and discharge, and the specific discharge capacity was still higher than 118mAh/g after 50C charge-discharge rate cycles of 10000 cycles.
  • the butyl ester was dissolved in ethanol, and the lithium acetate solution and the tetrabutyl titanate solution were prepared separately, and the aluminum nitrate was dispersed in the lithium acetate solution; then the tetrabutyl titanate solution and the acetic acid containing aluminum nitrate were dispersed under stirring Lithium solution is mixed, then equal volume of acetic acid is added, stirred at 80°C for 6h, and dried at 120°C; dispersed in deionized water to form a suspension, and the suspension is spray dried, and the temperature of hot air is 140°C to prepare lithium acid -Alumina precursor.
  • Nano lithium titanate-alumina composite powder is nano material.
  • lithium titanate-alumina composite powder into a three-stage furnace, and raise the temperature to 600°C in nitrogen; then change the argon gas to ammonia gas, increase the temperature to 700°C in ammonia gas, and keep it warm for 0.5h, That is, lithium nitride titanate-aluminum nitride composite material.
  • Electrochemical test using the lithium nitride titanate-alumina nitride composite material prepared in this example as the electrode active material, acetylene carbon black as the conductive agent, PVDF (polyvinylidene fluoride) as the binder, and NMP (N -Methyl-2-pyrrolidone) is a solvent-adjusted slurry coated on copper foil to make a pole piece; lithium sheet is used as the counter electrode, the electrolyte concentration is 1mol/L, and the partial propylene microporous membrane is used as the battery separator. Test the battery; assemble a button battery in a glove box filled with argon gas and conduct an electrochemical test. The charging and discharging voltage is 1 to 3V.
  • the battery made of an active material kept at 700°C for the first time has a specific discharge capacity of 191mAh/g and a specific charge capacity of 177mAh/g at 0.1C.
  • a dispersant anhydrous lithium acetate, tetrabutyl titanate, aluminum oxide
  • ethanol a dispersant
  • alumina alumina in the lithium acetate solution
  • dissolve the tetrabutyl titanate solution and lithium acetate solution containing alumina under stirring Mix then add an equal volume of acetic acid, stir at a constant temperature of 80°C for 8h, and dry at 120°C; then disperse in deionized water to form a suspension, and spray dry the suspension, the hot air temperature is At 140°C, a lithium acid-alumina precursor was prepared.
  • Lithium titanate-alumina composite powder is nano material.
  • lithium titanate-alumina composite powder into a three-stage furnace, and raise the temperature to 600°C in argon; then change the argon to ammonia, heat to 700°C in ammonia, and keep it for 1h, That is, lithium nitride titanate-aluminum nitride composite material.
  • Electrochemical test using the lithium nitride titanate-aluminum nitride composite material prepared in this example as the electrode active material, Super P (super carbon) as the conductive agent, and PVDF (polyvinylidene fluoride) as the binder, NMP (N-methyl-2-pyrrolidone) is a solvent-adjusted slurry and coated on copper foil to make a pole piece.
  • the test cell was assembled with a counter electrode of lithium sheet, an electrolyte concentration of 1 mol/L, and a partially porous propylene microporous membrane as the battery separator.
  • a button cell was assembled in a glove box filled with argon gas for electrochemical testing. The charging and discharging voltage was 1V to 3V.
  • the battery made of an active material kept at 700°C has a specific discharge capacity of 185mAh/g for the first time at 0.1C and a specific charge capacity of 178mAh/g.
  • a volume of acetic acid was stirred at 80°C for 4h, followed by drying at 120°C; dispersed in deionized water to form a suspension, and the suspension was spray dried, and the hot air temperature was 140°C to prepare lithium titanate-oxidation Aluminum precursor.
  • lithium titanate-alumina composite powder into the three-stage furnace, and raise the temperature to 600°C in argon; then change the argon to ammonia, heat to 700°C in ammonia and keep the temperature for 0.5h , That is, lithium nitride titanate-aluminum nitride composite material.
  • Electrochemical test using the lithium nitride titanate-alumina nitride composite material prepared in this example as the electrode active material, Super P (super carbon) as the conductive agent, and PVDF (polyvinylidene fluoride) as the binder, NMP (N-methyl-2-pyrrolidone) is a solvent-adjusted slurry and coated on copper foil to make a pole piece.
  • the test cell was assembled with a counter electrode of lithium sheet, an electrolyte concentration of 1 mol/L, and a partially porous propylene microporous membrane as the battery separator.
  • a button cell was assembled in a glove box filled with argon gas for electrochemical testing. The charging and discharging voltage was 1V to 3V.
  • the first charge-discharge curve of a battery made by an active material kept at 700°C at 0.1C is shown as curve A in Figure 1; its first discharge specific capacity is 168mAh/g, and the first charge specific capacity is 164mAh/g.
  • anhydrous lithium acetate, tetrabutyl titanate, aluminum oxide use ethanol as a dispersant, and combine anhydrous lithium acetate and tetrabutyl titanate
  • the esters were dissolved in ethanol, and lithium acetate solution and tetrabutyl titanate solution were prepared separately, and alumina was dispersed in the lithium acetate solution.
  • the tetrabutyl titanate solution and the lithium acetate solution containing aluminum oxide are mixed under stirring, and then an equal volume of acetic acid is added, stirred at 80°C for 4h, and then dried at 120°C; dispersed in deionized water A suspension was formed, and the suspension was spray-dried, and the hot air temperature was 140°C to prepare a lithium-alumina precursor.
  • Electrochemical test using the lithium nitride titanate-alumina nitride composite material prepared in this example as the electrode active material, Super P (super carbon) as the conductive agent, and PVDF (polyvinylidene fluoride) as the binder, NMP (N-methyl-2-pyrrolidone) is a solvent-adjusted slurry and coated on copper foil to make a pole piece.
  • the test cell was assembled with a counter electrode of lithium sheet, an electrolyte concentration of 1 mol/L, and a partially porous propylene microporous membrane as the battery separator.
  • a button cell was assembled in a glove box filled with argon gas for electrochemical testing. The charging and discharging voltage was 1V to 3V.
  • the first charge-discharge curve of a battery made by an active material kept at 700°C at 0.1C is shown in Figure 3; its first discharge specific capacity is 198mAh/g, and its first charge specific capacity is 194mAh/g.
  • the lithium titanate-aluminum nitride composite material prepared in this example was used as the electrode active material, and the lithium metal was used as the negative electrode to make a half-cell.
  • the cycle performance at 50C is shown in FIG. 4, and it can be seen that the 50C rate
  • the charge-discharge specific capacity exceeded 123mAh/g for the first time during charge and discharge, and the specific discharge capacity was still higher than 116mAh/g after 50C charge-discharge rate cycles of 10000 cycles.
  • the Coulomb efficiency curve of the lithium nitride titanate-aluminum nitride composite material produced in this example at 50C is shown in FIG. 5, it can be seen that the lithium nitride titanate-aluminum nitride composite material is charged and discharged at 50C After the magnification cycle is 10000 times, it still maintains a good Coulomb efficiency.
  • the ester is dissolved in ethanol, respectively, to prepare lithium acetate solution and tetrabutyl titanate solution, and then disperse aluminum nitrate in the lithium acetate solution; then under stirring conditions, the tetrabutyl titanate solution and lithium acetate containing aluminum nitrate
  • the solutions were mixed and an equal volume of acetic acid was added.
  • lithium titanate-alumina composite powder into a three-stage furnace, and raise the temperature to 600°C in nitrogen; then change the argon gas to ammonia gas, increase the temperature to 600°C in ammonia gas, and keep it warm for 30 minutes, That is, lithium nitride titanate-aluminum nitride composite material.
  • Electrochemical test using the lithium nitride titanate-alumina nitride composite material prepared in this example as the electrode active material, Super P (super carbon) as the conductive agent, and PVDF (polyvinylidene fluoride) as the binder, NMP (N-methyl-2-pyrrolidone) is a solvent-adjusted slurry and coated on copper foil to make a pole piece.
  • the test cell was assembled with a counter electrode of lithium sheet, an electrolyte concentration of 1 mol/L, and a partially porous propylene microporous membrane as the battery separator. Assemble a button cell in an argon-filled glove box for electrochemical testing.
  • the charge and discharge voltage is 1V ⁇ 3V.
  • the first charge-discharge curve of a battery made by 600°C active material at 0.1C is shown as curve B in Figure 1; its first discharge specific capacity is 165mAh/g, and the first charge specific capacity is 161mAh/g.
  • the butyl ester was dissolved in ethanol, and the lithium acetate solution and the tetrabutyl titanate solution were prepared separately, and the aluminum nitrate was dispersed in the lithium acetate solution; then the tetrabutyl titanate solution and the acetic acid containing aluminum nitrate were dispersed under stirring Mix the lithium solution, add equal volume of acetic acid, stir at 80°C for 8h, and dry at 120°C; then disperse in deionized water to form a suspension, and spray dry the suspension, and the hot air temperature is 140°C to prepare the acid Lithium-alumina precursor.
  • Lithium titanate-alumina composite powder is nano material.
  • Lithium nitride titanate-aluminum nitride composite material put into a three-stage furnace, and raise the temperature to 600°C in nitrogen; then change the argon gas to nitrogen, increase the temperature to 800°C in nitrogen, and keep it warm for 45 minutes. Lithium nitride titanate-aluminum nitride composite material.
  • Electrochemical test using the lithium nitride titanate-alumina nitride composite material prepared in this example as the electrode active material, Super P (super carbon) as the conductive agent, and PVDF (polyvinylidene fluoride) as the binder, NMP (N-methyl-2-pyrrolidone) is a solvent-adjusted slurry and coated on copper foil to make a pole piece.
  • the test cell was assembled with a counter electrode of lithium sheet, an electrolyte concentration of 1 mol/L, and a partially porous propylene microporous membrane as the battery separator.
  • a button cell was assembled in a glove box filled with argon gas for electrochemical testing. The charging and discharging voltage was 1V to 3V.
  • the first charge-discharge curve of a battery made by 800°C active material at 0.1C is shown in curve C in Figure 1; its first discharge specific capacity is 168mAh/g, and its first charge specific capacity is 162mAh /g.
  • the butyl ester was dissolved in ethanol, and the lithium acetate solution and the tetrabutyl titanate solution were prepared separately, and the aluminum nitrate was dispersed in the lithium acetate solution; then the tetrabutyl titanate solution and the acetic acid containing aluminum nitrate were dispersed under stirring Lithium solution is mixed, then add equal volume of acetic acid, stir at 80°C for 6h, and dry at 120°C; then disperse in deionized water to form a suspension, and spray dry the suspension, and the hot air temperature is 140°C to prepare acid Lithium-alumina precursor.
  • Nano lithium titanate-alumina composite powder is nano material.
  • Electrochemical test using the lithium nitride titanate-alumina nitride composite material prepared in this example as the electrode active material, PVDF (polyvinylidene fluoride) as the binder, and NMP (N-methyl-2-pyrrolidone ) Solvent prepared paste is coated on copper foil to make pole piece.
  • the test cell was assembled with a counter electrode of lithium sheet, an electrolyte concentration of 1 mol/L, and a partially porous propylene microporous membrane as the battery separator.
  • a button cell was assembled in a glove box filled with argon gas for electrochemical testing. The charging and discharging voltage was 1V to 3V.
  • the battery made of an active material kept at 700°C had a specific discharge capacity of 189mAh/g for the first time at 0.1C and a specific charge capacity of 177mAh/g.
  • the present invention provides a lithium nitride titanate-aluminum nitride composite material and its preparation method and application. Specifically, the present invention uses aluminum nitride to improve the interface conductivity of the material, making the lithium ion transmission channel more smooth, and using lithium nitride titanate to improve the electronic conductivity of the surface of the material and the electron transmission rate in the material; thus making the present invention
  • the lithium nitride titanate-aluminum nitride composite material has good large rate performance, good safety performance, and high specific capacity. It can be widely used in various portable electronic devices and lithium ion batteries required by various electric vehicles. Super capacitor.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明公开一种氮化钛酸锂-氮化氧化铝复合材料及其制备方法与应用,其中,方法包括步骤:将锂源和钛源分别溶于乙醇得到锂源溶液和钛源溶液;将铝源加入锂源溶液并与钛源溶液混合后加入乙酸,40~100℃搅拌4~10h,80~120℃烘干,分散在去离子水中,喷雾干燥,得钛酸锂-氧化铝前驱体;在空气中400~900℃煅烧4~18h,冷却,研磨,得钛酸锂-氧化铝复合粉体;在保护气氛中升温至500~1000℃,在含氮气氛中保温0.5~2h,得氮化钛酸锂-氮化氧化铝复合材料。本发明制得的复合材料大倍率性能良好,安全性能良好,比容量高,可广泛应用于各种便携式电子设备和各种电动车所需的锂离子电池和超级电容器。

Description

一种氮化钛酸锂-氮化氧化铝复合材料及其制备方法与应用 技术领域
本发明涉及锂离子二次电池电极材料领域,尤其涉及一种氮化钛酸锂-氮化氧化铝复合材料及其制备方法与应用。
背景技术
钛酸锂电池由于具有安全、使用寿命高、便捷可携带的特点,使其作为一种便携式新型能源在众多电子产品领域获得了广泛地运用。目前,锂离子电池用负极材料的重点研究方向正朝着高比容量、大倍率高循环性能和高安全性能的动力型电池材料方向发展。传统的碳材料由于具有低倍率性能好和循环性能好的特点,是最早使用也是使用最多的负极材料;但碳材料的理论容量低(372mAh/g),低电压下易形成枝晶造成电池内部短路,从而使其大电流充放电的安全性变差,促使人们不得不寻找在比碳负极稍正的电位下嵌锂的安全可靠的新型负极材料。具有尖晶石结构的钛酸锂作为负极材料不仅提高了充放电电压,而且在脱嵌锂过程中形成的两种物质的晶格参数相近、体积效应小,被称为零应变材料。Li 4Ti 5O 12以其1.5V(vs.Li/Li +)左右的电压平台、接近100%的充放电效率和优越的循环性能广受关注,是一种很具有潜力的动力型锂离子电池负极材料。
但钛酸锂材料在电池中作为负极材料使用,由于其自身特性的原因,材料与电解液之间容易发生相互作用并在循环充放电过程中有气体产生,因此普通的钛酸锂电池容易发生胀气,导致电芯鼓包,电性能也会大幅下降,极大地降低了钛酸锂电池的理论循环寿命;且钛酸锂具有较差的电子导电性,这就限制了其大倍率性能。
因此,现有技术还有待于改进和发展。
发明内容
鉴于上述现有技术的不足,本发明的目的在于提供一种氮化钛酸锂-氮化氧化铝复合材料及其制备方法与应用,旨在解决现有钛酸锂材料的安全性能、电子导电性及大倍率性能差的问题。
本发明的技术方案如下:
一种氮化钛酸锂-氮化氧化铝复合材料的制备方法,其中,包括步骤:
A、将锂源和钛源分别溶于乙醇,分别得到锂源溶液和钛源溶液;将铝源加入锂源溶液中,并与钛源溶液混合后加入乙酸,40~100℃下加热搅拌,80~120℃下进行烘干,分散在去 离子水中,喷雾干燥制得钛酸锂-氧化铝前驱体;
B、将钛酸锂-氧化铝前驱体在空气中400~900℃下煅烧4~18h;冷却,研磨,制得钛酸锂-氧化铝复合粉体;
C、将钛酸锂-氧化铝复合粉体在保护气氛中升温至500~1000℃,接着在含氮气氛中500~1000℃下对钛酸锂-氧化铝复合粉体保温0.5~2h,即得氮化钛酸锂-氮化氧化铝复合材料。
所述的氮化钛酸锂-氮化氧化铝复合材料的制备方法,其中,步骤A中,所述锂源选自氢氧化锂、醋酸锂、硝酸锂中的一种或多种。
所述的氮化钛酸锂-氮化氧化铝复合材料的制备方法,其中,步骤A中,所述钛源选自钛酸四丁酯、钛酸四异丙脂、四氯化钛中的一种或多种。
所述的氮化钛酸锂-氮化氧化铝复合材料的制备方法,其中,步骤A中,所述铝源选自硝酸铝、氧化铝、乙酸铝中的一种或多种。
所述的氮化钛酸锂-氮化氧化铝复合材料的制备方法,其中,步骤A中,按Li、Ti、Al的摩尔比为0.66~0.86:1:0.01~0.2加入所述锂源、钛源、铝源。
所述的氮化钛酸锂-氮化氧化铝复合材料的制备方法,其中,步骤C中,所述保护气氛为氩气,氮气,氩气和氢气的混合气体,或者氮气和氢气的混合气体。
所述的氮化钛酸锂-氮化氧化铝复合材料的制备方法,其中,步骤C中,所述含氮气氛为氮气,氨气,氮气和氢气的混合气体,氮气和氩气的混合气体,氮气和氨气的混合气体,或者氨气和氢气的混合气体。
一种氮化钛酸锂-氮化氧化铝复合材料,其中,采用如上所述的氮化钛酸锂-氮化氧化铝复合材料的制备方法制备而成。
一种如上所述的氮化钛酸锂-氮化氧化铝复合材料的应用,其中,所述氮化钛酸锂-氮化氧化铝复合材料用作快充电池的电极活性物质。
有益效果:本发明利用氮化氧化铝改善材料的界面电导,使得锂离子传输通道更为通畅,利用氮化钛酸锂提高材料表面的电子电导,提高材料中电子的传输速率;从而使得本发明的氮化钛酸锂-氮化氧化铝复合材料大倍率性能良好,安全性能良好,具有较高的比容量,可广泛应用于各种便携式电子设备和各种电动车所需的锂离子电池和超级电容器。
附图说明
图1为本发明实施例3、5、6制得的氮化钛酸锂-氮化氧化铝复合材料在0.1C时首次充放电曲线对比图。
图2为本发明实施例4制得的氮化钛酸锂-氮化氧化铝复合材料的XRD图。
图3为本发明实施例4制得的氮化钛酸锂-氮化氧化铝复合材料在0.1C时首次充放电曲线图。
图4是本发明实施例4制得的氮化钛酸锂-氮化氧化铝复合材料在50C时的循环性能图。
图5是本发明实施例4制得的氮化钛酸锂-氮化氧化铝复合材料在50C时的库伦效率曲线。
具体实施方式
本发明提供一种氮化钛酸锂-氮化氧化铝复合材料及其制备方法与应用,为使本发明的目的、技术方案及效果更加清楚、明确,以下对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明实施例提供一种如上所述的氮化钛酸锂-氮化氧化铝复合材料的制备方法,其中,包括步骤:
A、将锂源和钛源分别溶于乙醇,分别得到锂源溶液和钛源溶液;将铝源加入锂源溶液中,并与钛源溶液混合后加入乙酸,40~100℃下加热搅拌4~10h,80~120℃下进行烘干,分散在去离子水中,喷雾干燥,制得钛酸锂-氧化铝前驱体;
B、将钛酸锂-氧化铝前驱体在空气中400~900℃下煅烧4~18h;冷却,研磨,制得钛酸锂-氧化铝复合粉体;
C、将钛酸锂-氧化铝复合粉体在保护气氛中升温至500~1000℃,接着在含氮气氛中500~1000℃下对钛酸锂-氧化铝复合粉体保温0.5~2h,即得氮化钛酸锂-氮化氧化铝复合材料。
本实施例提供的氮化钛酸锂-氮化氧化铝复合材料的制备方法具有制备成本低廉,制备工序简单灵活,可适用于工业化大规模的生产的特点;制得的复合材料的大倍率性能良好,并具有较高的比容量,作为负极活性物质制作成动力电池时,倍率性能和循环性能优秀,可用于电动车所需的锂离子电池体系,具有替代超级电容器等产品的潜力。
在一种优选的实施方式中,步骤A中,所述锂源可以选自但不限于氢氧化锂、醋酸锂、硝酸锂中的一种或多种;所述钛源可以选自但不限于钛酸四丁酯、钛酸四异丙脂、四氯化钛中的一种或多种;所述铝源可以选自但不限于硝酸铝、氧化铝、乙酸铝中的一种或多种。
在一种优选的实施方式中,步骤A中,按Li、Ti、Al的摩尔比为0.66~0.86:1:0.01~0.2加入所述锂源、钛源、铝源。
在一种优选的实施方式中,步骤C中,所述保护气氛为氩气,氮气,氩气和氢气的混合气体,或者氮气和氢气的混合气体。
在一种优选的实施方式中,步骤C中,所述含氮气氛为氮气,氨气,氮气和氢气的混合气体,氮气和氩气的混合气体,氮气和氨气的混合气体,或者氨气和氢气的混合气体。
本发明实施例提供一种氮化钛酸锂-氮化氧化铝复合材料,其中,采用如上所述的氮化钛酸锂-氮化氧化铝复合材料的制备方法制备而成。
本实施例中,利用氮化氧化铝改善材料的界面电导,使得锂离子传输通道更为通畅,利用氮化钛酸锂提高材料表面的电子电导,提高材料中电子的传输速率;从而使得本发明的氮化钛酸锂-氮化氧化铝复合材料大倍率性能良好,安全性能良好,具有较高的比容量,可广泛应用于各种便携式电子设备和各种电动车所需的锂离子电池和超级电容器。具体地,氮化氧化铝改善了材料颗粒之间的晶界电导,提高了材料的锂离子传导率;氮化钛酸锂以Ti-N-O交联结构存在于所述氮化钛酸锂-氮化氧化铝复合材料的表层,使得氮化钛酸锂-氮化氧化铝复合材料的表面具有高电子电导性能。
本发明实施例提供一种如上所述的氮化钛酸锂-氮化氧化铝复合材料的应用,其中,所述氮化钛酸锂-氮化氧化铝复合材料用作快充电池的电极活性物质。
本实施例中,以所述氮化钛酸锂-氮化氧化铝复合材料为电极活性物质,以金属锂为负极制成半电池,0.1C倍率下比容量可高达到195mAh/g左右;50C倍率充放电时首次充放电比容量超过123mAh/g,50C充放电倍率循环10000次后放电比容量仍高于118mAh/g。
实施例1
(1)按摩尔比为Li:Ti:Al=0.84:1:0.05的称取无水醋酸锂、钛酸四丁酯、硝酸铝,以乙醇为分散剂,将无水醋酸锂和钛酸四丁酯分别溶于乙醇中,分别制备醋酸锂溶液和钛酸四丁酯溶液,将硝酸铝分散在醋酸锂溶液中;接着在搅拌的条件下将钛酸四丁酯溶液和含有硝酸铝的醋酸锂溶液混合,再加入等体积的乙酸,80℃搅拌6h,120℃下烘干;分散在去离水中形成悬浮液,并对悬浮液进行喷雾干燥,热空气温度为140℃,制得酸锂-氧化铝前驱体。
(2)将钛酸锂-氧化铝前驱体置于烧结炉中,在空气中以5℃/min升温至600℃,600℃煅烧8h,自然冷却至室温,研磨,过150目筛,制得纳米钛酸锂-氧化铝复合粉体,为纳米材料。
(3)将钛酸锂-氧化铝复合粉体放进三段炉中,在氮气中升温至600℃;再把氩气换成氨气,在氨气中升温至700℃,保温0.5h,即得氮化钛酸锂-氮化氧化铝复合材料。
电化学测试:以本实施例制得的氮化钛酸锂-氮化氧化铝复合材料为电极活性物质,乙炔炭黑为导电剂,PVDF(聚偏氟乙烯)为粘结剂,NMP(N-甲基-2-吡咯烷酮)为溶剂调成浆料涂于铜箔上作成极片;以锂片为对电极,电解液浓度为1mol/L,偏丙烯微孔膜为电池的隔 膜,组装成测试电池;在充满氩气的手套箱中组装成扣式电池,进行电化学测试,充放电电压为1~3V。
按上述方法组装成电池,700℃保温的活性材料做出的电池在0.1C时首次放电比容量为191mAh/g,充电比容量为177mAh/g。
实施例2
(1)按摩尔比为Li:Ti:Al=0.86:1:0.1称取无水醋酸锂、钛酸四丁酯、氧化铝,以乙醇为分散剂,将无水醋酸锂和钛酸四丁酯分别溶于乙醇中,分别制备醋酸锂溶液和钛酸四丁酯溶液,将氧化铝分散在醋酸锂溶液当中;在搅拌的条件下将钛酸四丁酯溶液和含有氧化铝的醋酸锂溶液混合,再加入等体积的乙酸,在80℃的条件下,恒温搅拌8h,120℃的条件下烘干;接着分散在去离水中形成悬浮液,并对悬浮液进行喷雾干燥,热空气温度为140℃,制得酸锂-氧化铝前驱体。
(2)将钛酸锂-氧化铝前驱体置于烧结炉中,在空气中以5℃/min升温至500℃,500℃煅烧6h,自然冷却至室温,研磨,过150目筛,制得钛酸锂-氧化铝复合粉体,为纳米材料。
(3)将钛酸锂-氧化铝复合粉体放进三段炉中,在氩气中升温至600℃;再把氩气换成氨气,在氨气中升温至700℃,保温1h,即得氮化钛酸锂-氮化氧化铝复合材料。
电化学测试:以该实施例制得的氮化钛酸锂-氮化氧化铝复合材料为电极活性物质,Super P(超级炭)为导电剂,PVDF(聚偏氟乙烯)为粘结剂,NMP(N-甲基-2-吡咯烷酮)为溶剂调成浆料涂于铜箔上作成极片。以锂片对电极,电解液浓度为1mol/L,偏丙烯微孔膜为电池的隔膜,组装成测试电池。在充满氩气的手套箱中组装成扣式电池,进行电化学测试,充放电电压为1V~3V。
按上述方法组装成电池,700℃保温的活性材料做出的电池在0.1C时首次放电比容量为185mAh/g,充电比容量为178mAh/g。
实施例3
(1)按摩尔比为Li:Ti:Al=0.78:1:0.15称取醋酸锂、钛酸四丁酯、硝酸铝,以乙醇为分散剂,将醋酸锂和钛酸四丁酯分别溶于乙醇,分别制备醋酸锂溶液和钛酸四丁酯溶液,将硝酸铝分散在醋酸锂溶液中,在搅拌的条件下将钛酸四丁酯溶液和含有硝酸铝的醋酸锂溶液混合,再加入等体积的乙酸,80℃搅拌4h,接着在120℃的条件下烘干;分散在去离水中形成悬浮液,并对悬浮液进行喷雾干燥,热空气温度为140℃,制得钛酸锂-氧化铝前驱体。
(2)将钛酸锂-氧化铝前驱体置于烧结炉中,在空气中以5℃/min升温至800℃,800℃煅烧4h,自然冷却至室温后,研磨,过150目筛,即得钛酸锂-氧化铝复合粉体,为纳米材料。
(3)将钛酸锂-氧化铝复合粉体放进三段炉中,在氩气中升温至600℃;再把氩气换成氨气,在氨气中升温至700℃,保温0.5h,即得氮化钛酸锂-氮化氧化铝复合材料。
电化学测试:以本实施例制得的氮化钛酸锂-氮化氧化铝复合材料为电极活性物质,Super P(超级炭)为导电剂,PVDF(聚偏氟乙烯)为粘结剂,NMP(N-甲基-2-吡咯烷酮)为溶剂调成浆料涂于铜箔上作成极片。以锂片对电极,电解液浓度为1mol/L,偏丙烯微孔膜为电池的隔膜,组装成测试电池。在充满氩气的手套箱中组装成扣式电池,进行电化学测试,充放电电压为1V~3V。
按上述方法组装成电池,700℃保温的活性材料做出的电池在0.1C时首次充放电曲线如图1中的曲线A所示;其首次放电比容量为168mAh/g,首次充电比容量为164mAh/g。
实施例4
(1)按摩尔比为Li:Ti:Al=0.86:1:0.1称取无水醋酸锂、钛酸四丁酯、氧化铝,以乙醇为分散剂,将无水醋酸锂和钛酸四丁酯分别溶于乙醇中,分别制备醋酸锂溶液和钛酸四丁酯溶液,将氧化铝分散在醋酸锂溶液中。接着在搅拌的条件下将钛酸四丁酯溶液和含有氧化铝的醋酸锂溶液混合,再加入等体积的乙酸,80℃搅拌4h,接着在120℃的条件下烘干;分散在去离水中形成悬浮液,并对悬浮液进行喷雾干燥,热空气温度为140℃,制得酸锂-氧化铝前驱体。
(2)将钛酸锂-氧化铝前驱体置于烧结炉中,在空气中以5℃/min升温至800℃,800℃煅烧4h,自然冷却至室温后,研磨,过150目筛,即得钛酸锂-氧化铝复合粉体,为纳米材料。
(3)将钛酸锂-氧化铝复合粉体放进三段炉中,在氩气中升温至600℃;把氩气换成氨气,在氨气中升温至700℃,保温0.5h,即得氮化钛酸锂和氮化氧化铝复合材料,其X射线衍射(X-ray diffraction,XRD)测试结果如图2所示。
电化学测试:以本实施例制得的氮化钛酸锂-氮化氧化铝复合材料为电极活性物质,Super P(超级炭)为导电剂,PVDF(聚偏氟乙烯)为粘结剂,NMP(N-甲基-2-吡咯烷酮)为溶剂调成浆料涂于铜箔上作成极片。以锂片对电极,电解液浓度为1mol/L,偏丙烯微孔膜为电池的隔膜,组装成测试电池。在充满氩气的手套箱中组装成扣式电池,进行电化学测试,充放电电压为1V~3V。
按上述方法组装成电池,700℃保温的活性材料做出的电池在0.1C时首次充放电曲线如图3所示;其首次放电比容量为198mAh/g,首次充电比容量为194mAh/g。以该实施例制得的氮化钛酸锂-氮化氧化铝复合材料为电极活性物质,以金属锂为负极制成半电池,在50C时的循环性能如图4所示,可知,50C倍率充放电时首次充放电比容量超过123mAh/g,50C充 放电倍率循环10000次后放电比容量仍高于116mAh/g。以该实施例制得的氮化钛酸锂-氮化氧化铝复合材料在50C时的库伦效率曲线如图5所示,可知,该氮化钛酸锂-氮化氧化铝复合材料50C充放电倍率循环10000次后仍保持很好的库伦效率。
实施例5
(1)按摩尔比为Li:Ti:Al=0.78:1:0.15称取无水醋酸锂、钛酸四丁酯、硝酸铝,以乙醇为分散剂,将无水醋酸锂和钛酸四丁酯分别溶于乙醇中,分别制备醋酸锂溶液和钛酸四丁酯溶液,再将硝酸铝分散在醋酸锂溶液当中;接着在搅拌的条件将钛酸四丁酯溶液和含有硝酸铝的醋酸锂溶液混合,再加入等体积的乙酸。80℃搅拌6h,120℃的条件下烘干;分散在去离水中形成悬浮液,并对悬浮液进行喷雾干燥,热空气温度为140℃,即得钛酸锂前驱体。
(2)将钛酸锂-氧化铝前驱体置于烧结炉中,在空气中以5℃/min升温至800℃,800℃煅烧4h,自然冷却至室温后,研磨,过150目筛,即得钛酸锂-氧化铝复合粉体,为纳米材料。
(3)将钛酸锂-氧化铝复合粉体放进三段炉中,在氮气中升温至600℃;再把氩气换成氨气,在氨气中升温至600℃,保温30分钟,即得氮化钛酸锂-氮化氧化铝复合材料。
电化学测试:以本实施例制得的氮化钛酸锂-氮化氧化铝复合材料为电极活性物质,Super P(超级炭)为导电剂,PVDF(聚偏氟乙烯)为粘结剂,NMP(N-甲基-2-吡咯烷酮)为溶剂调成浆料涂于铜箔上作成极片。以锂片对电极,电解液浓度为1mol/L,偏丙烯微孔膜为电池的隔膜,组装成测试电池。在充满氩气的手套箱中组装成扣式电池,进行电化学测试。充放电电压为1V~3V。
按上述方法组装成电池,600℃保温的活性材料做出的电池在0.1C时首次充放电曲线如图1中的曲线B所示;其首次放电比容量为165mAh/g,首次充电比容量为161mAh/g。
实施例6
(1)按摩尔比为Li:Ti:Al=0.78:1:0.15的称取无水醋酸锂、钛酸四丁酯、硝酸铝,以乙醇为分散剂,将无水醋酸锂和钛酸四丁酯分别溶于乙醇中,分别制备醋酸锂溶液和钛酸四丁酯溶液,将硝酸铝分散在醋酸锂溶液中;接着在搅拌的条件下将钛酸四丁酯溶液和含有硝酸铝的醋酸锂溶液混合,再加入等体积的乙酸,80℃搅拌8h,120℃下烘干;接着分散在去离水中形成悬浮液,并对悬浮液进行喷雾干燥,热空气温度为140℃,制得酸锂-氧化铝前驱体。
(2)将钛酸锂-氧化铝前驱体置于烧结炉中,在空气中以5℃/min升温至800℃,800℃煅烧4h,自然冷却至室温,研磨,过150目筛,制得钛酸锂-氧化铝复合粉体,为纳米材料。
(3)将钛酸锂-氧化铝复合粉体放进三段炉中,在氮气中升温至600℃;再把氩气换成氮气,在氮气中升温至800℃,保温45分钟,即得氮化钛酸锂-氮化氧化铝复合材料。
电化学测试:以本实施例制得的氮化钛酸锂-氮化氧化铝复合材料为电极活性物质,Super P(超级炭)为导电剂,PVDF(聚偏氟乙烯)为粘结剂,NMP(N-甲基-2-吡咯烷酮)为溶剂调成浆料涂于铜箔上作成极片。以锂片对电极,电解液浓度为1mol/L,偏丙烯微孔膜为电池的隔膜,组装成测试电池。在充满氩气的手套箱中组装成扣式电池,进行电化学测试,充放电电压为1V~3V。
按上述方法组装成电池,800℃保温的活性材料做出的电池在0.1C时首次充放电曲线如图1中曲线C所示;其首次放电比容量为168mAh/g,首次充电比容量为162mAh/g。
实施例7
(1)按摩尔比为Li:Ti:Al=0.68:1:0.2的称取无水醋酸锂、钛酸四丁酯、硝酸铝,以乙醇为分散剂,将无水醋酸锂和钛酸四丁酯分别溶于乙醇中,分别制备醋酸锂溶液和钛酸四丁酯溶液,将硝酸铝分散在醋酸锂溶液中;接着在搅拌的条件下将钛酸四丁酯溶液和含有硝酸铝的醋酸锂溶液混合,再加入等体积的乙酸,80℃搅拌6h,120℃下烘干;接着分散在去离水中形成悬浮液,并对悬浮液进行喷雾干燥,热空气温度为140℃,制得酸锂-氧化铝前驱体。
(2)将钛酸锂-氧化铝前驱体置于烧结炉中,在空气中以8℃/min升温至800℃,800℃煅烧12h,自然冷却至室温,研磨,过150目筛,制得纳米钛酸锂-氧化铝复合粉体,为纳米材料。
(3)将钛酸锂-氧化铝复合粉体放进三段炉中,在氮气中升温至600℃;再把氩气换成氨气与氮气的混合气体,在氨气与氮气的混合气体中升温至700℃,保温1h,即得氮化钛酸锂-氮化氧化铝复合材料。
电化学测试:以本实施例制得的氮化钛酸锂-氮化氧化铝复合材料为电极活性物质,PVDF(聚偏氟乙烯)为粘结剂,NMP(N-甲基-2-吡咯烷酮)为溶剂调成浆料涂于铜箔上作成极片。以锂片对电极,电解液浓度为1mol/L,偏丙烯微孔膜为电池的隔膜,组装成测试电池。在充满氩气的手套箱中组装成扣式电池,进行电化学测试,充放电电压为1V~3V。
按上述方法组装成电池,700℃保温的活性材料做出的电池在0.1C时首次放电比容量为189mAh/g,充电比容量为177mAh/g。
综上所述,本发明提供了一种氮化钛酸锂-氮化氧化铝复合材料及其制备方法与应用。具体地,本发明利用氮化氧化铝改善材料的界面电导,使得锂离子传输通道更为通畅,利用氮化钛酸锂提高材料表面的电子电导,提高材料中电子的传输速率;从而使得本发明的氮化钛酸锂-氮化氧化铝复合材料大倍率性能良好,安全性能良好,具有较高的比容量,可广泛应用于各种便携式电子设备和各种电动车所需的锂离子电池和超级电容器。
应当理解的是,本发明的应用不限于上述的举例,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,所有这些改进和变换都应属于本发明所附权利要求的保护范围。

Claims (9)

  1. 一种氮化钛酸锂-氮化氧化铝复合材料的制备方法,其特征在于,包括步骤:
    A、将锂源和钛源分别溶于乙醇,分别得到锂源溶液和钛源溶液;将铝源加入锂源溶液中,并与钛源溶液混合后加入乙酸,40~100℃下加热搅拌4~10h,80~120℃下进行烘干,分散在去离子水中,喷雾干燥,制得钛酸锂-氧化铝前驱体;
    B、将钛酸锂-氧化铝前驱体在空气中400~900℃下煅烧4~18h,冷却,研磨,制得钛酸锂-氧化铝复合粉体;
    C、将钛酸锂-氧化铝复合粉体在保护气氛中升温至500~1000℃,接着在含氮气氛中500~1000℃下对钛酸锂-氧化铝复合粉体保温0.5~2h,即得氮化钛酸锂-氮化氧化铝复合材料。
  2. 根据权利要求1所述的氮化钛酸锂-氮化氧化铝复合材料的制备方法,其特征在于,步骤A中,所述锂源选自氢氧化锂、醋酸锂、硝酸锂中的一种或多种。
  3. 根据权利要求1所述的氮化钛酸锂-氮化氧化铝复合材料的制备方法,其特征在于,步骤A中,所述钛源选自钛酸四丁酯、钛酸四异丙脂、四氯化钛中的一种或多种。
  4. 根据权利要求1所述的氮化钛酸锂-氮化氧化铝复合材料的制备方法,其特征在于,步骤A中,所述铝源选自硝酸铝、氧化铝、乙酸铝中的一种或多种。
  5. 根据权利要求1所述的氮化钛酸锂-氮化氧化铝复合材料的制备方法,其特征在于,步骤A中,按Li、Ti、Al的摩尔比为0.66~0.86:1:0.01~0.2加入所述锂源、钛源、铝源。
  6. 根据权利要求1所述的氮化钛酸锂-氮化氧化铝复合材料的制备方法,其特征在于,步骤C中,所述保护气氛为氩气,氮气,氩气和氢气的混合气体,或者氮气和氢气的混合气体。
  7. 根据权利要求1所述的氮化钛酸锂-氮化氧化铝复合材料的制备方法,其特征在于,步骤C中,所述含氮气氛为氮气,氨气,氮气和氢气的混合气体,氮气和氩气的混合气体,氮气和氨气的混合气体,或者氨气和氢气的混合气体。
  8. 一种氮化钛酸锂-氮化氧化铝复合材料,其特征在于,采用如权利要求1~7任一所述的氮化钛酸锂-氮化氧化铝复合材料的制备方法制备而成。
  9. 一种如权利要求8所述的氮化钛酸锂-氮化氧化铝复合材料的应用,其特征在于,所述氮化钛酸锂-氮化氧化铝复合材料用作快充电池的电极活性物质。
PCT/CN2019/111041 2018-11-27 2019-10-14 一种氮化钛酸锂-氮化氧化铝复合材料及其制备方法与应用 WO2020108132A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811425190.6 2018-11-27
CN201811425190.6A CN109346710B (zh) 2018-11-27 2018-11-27 一种氮化钛酸锂-氮化氧化铝复合材料及其制备方法与应用

Publications (1)

Publication Number Publication Date
WO2020108132A1 true WO2020108132A1 (zh) 2020-06-04

Family

ID=65318298

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/111041 WO2020108132A1 (zh) 2018-11-27 2019-10-14 一种氮化钛酸锂-氮化氧化铝复合材料及其制备方法与应用

Country Status (2)

Country Link
CN (1) CN109346710B (zh)
WO (1) WO2020108132A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115231612A (zh) * 2022-09-20 2022-10-25 河北格力钛新能源有限公司 制备改性钛酸锂复合材料的方法及改性钛酸锂复合材料

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109346710B (zh) * 2018-11-27 2021-07-20 深圳大学 一种氮化钛酸锂-氮化氧化铝复合材料及其制备方法与应用
CN110092413A (zh) * 2019-05-09 2019-08-06 云南中烟工业有限责任公司 一种喷雾干燥-固相法制备钛酸锂的方法
CN112310365A (zh) * 2020-06-28 2021-02-02 深圳市海洋王照明工程有限公司 一种组合物、制备方法及其在电极材料领域的应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107221642A (zh) * 2017-06-27 2017-09-29 四川兴能新材料有限公司 一种氧化铝包覆的钛酸锂的制备方法
CN108511735A (zh) * 2018-05-25 2018-09-07 深圳大学 一种改性钛酸锂复合材料及其制备方法与锂离子电池
CN109346710A (zh) * 2018-11-27 2019-02-15 深圳大学 一种氮化钛酸锂-氮化氧化铝复合材料及其制备方法与应用

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101764209A (zh) * 2010-01-04 2010-06-30 苏州星恒电源有限公司 具有表面包覆层的钛酸锂复合电极材料
CN102376947B (zh) * 2011-10-26 2013-03-27 合肥国轩高科动力能源股份公司 一种氧化铝包覆纳米钛酸锂复合材料的制备方法
CN104852035B (zh) * 2015-04-28 2017-07-07 湖南瑞翔新材料股份有限公司 氧化铝包覆的钛酸锂的制备方法
PL3327833T3 (pl) * 2015-12-24 2021-11-02 Lg Chem, Ltd. Materiał czynny elektrody ujemnej o ulepszonej charakterystyce wyjściowej i elektroda dla urządzenia elektrochemicznego zawierająca materiał czynny elektrody ujemnej
CN105870437A (zh) * 2016-05-10 2016-08-17 北京泰和九思科技有限公司 一种形貌可控的纳米钛酸锂复合材料及其制备方法以及锂离子电池
CN105958021B (zh) * 2016-05-27 2019-07-30 天津泰和九思科技有限公司 一种钛酸锂复合材料及其制备方法以及锂离子电池
CN106340636B (zh) * 2016-11-16 2017-09-05 石家庄昭文新能源科技有限公司 一种球形钛酸锂复合负极材料及其制备方法
CN106602053B (zh) * 2017-01-06 2019-07-23 四川国创成电池材料有限公司 一种含氧化铝掺杂的钛酸锂复合负极材料的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107221642A (zh) * 2017-06-27 2017-09-29 四川兴能新材料有限公司 一种氧化铝包覆的钛酸锂的制备方法
CN108511735A (zh) * 2018-05-25 2018-09-07 深圳大学 一种改性钛酸锂复合材料及其制备方法与锂离子电池
CN109346710A (zh) * 2018-11-27 2019-02-15 深圳大学 一种氮化钛酸锂-氮化氧化铝复合材料及其制备方法与应用

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115231612A (zh) * 2022-09-20 2022-10-25 河北格力钛新能源有限公司 制备改性钛酸锂复合材料的方法及改性钛酸锂复合材料
CN115231612B (zh) * 2022-09-20 2023-02-03 河北格力钛新能源有限公司 制备改性钛酸锂复合材料的方法及改性钛酸锂复合材料

Also Published As

Publication number Publication date
CN109346710B (zh) 2021-07-20
CN109346710A (zh) 2019-02-15

Similar Documents

Publication Publication Date Title
WO2020108132A1 (zh) 一种氮化钛酸锂-氮化氧化铝复合材料及其制备方法与应用
WO2020108040A1 (zh) 一种氮化钛酸锂/氮化二氧化钛复合电极材料及其制备方法
CN107369815B (zh) 一种锂离子二次电池复合正极材料及其制备方法
CN103456936A (zh) 钠离子二次电池及其用的层状钛酸盐活性物质、电极材料、正负极和活性物质的制备方法
WO2014040410A1 (zh) 一种富锂固溶体正极复合材料及其制备方法、锂离子电池正极片和锂离子电池
CN102324511A (zh) 一种锂离子电池复合负极材料的制备方法
CN110104677B (zh) 复合钛酸锂材料及其制备方法与应用
CN103066265A (zh) 钠离子电池负极活性物质及其制备方法和应用
WO2019223129A1 (zh) 一种改性钛酸锂复合材料及其制备方法与锂离子电池
CN104810515A (zh) 一种掺杂钛酸锂负极材料的制备方法
CN107946564B (zh) 富钠锰基Na4Mn2O5/Na0.7MnO2复合材料及其制备方法和应用
WO2023174152A1 (zh) 正极材料的制备方法、正极材料、正极片和钠离子电池
WO2019096012A1 (zh) 一种钛酸锂复合材料及其制备方法、负极片及锂离子电池
CN109509874A (zh) 一种三氧化钼包覆富锂锰基正极材料的制备方法
WO2022257208A1 (zh) 一种复合正极材料及其制备方法和锂离子电池
CN103094567A (zh) 一种锂快离子导体复合的锂电池正极材料及其制备方法
EP4391112A1 (en) Composite coating method for highly-compacted nickelic layered positive electrode material of solid-state battery
WO2017197675A1 (zh) 一种钛酸锂改性材料及其制备方法
CN113871724A (zh) 一种氧化物固态电解质及其制备方法和应用
WO2024066070A1 (zh) 一种二次电池
CN112490440B (zh) 液相反应制备的氧硒化物/硫硒化物、方法及其应用
CN104600269A (zh) 一种石墨烯/氧缺位钛酸锂复合材料的制备方法
CN101728524A (zh) 一种锂离子电池/电容器电极材料及其制备方法
CN105591091A (zh) 一种钠离子二次电池负极活性物质及其制备方法和应用
CN111446430A (zh) 一种二氧化钼锂电池负极材料的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19889802

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 09/09/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19889802

Country of ref document: EP

Kind code of ref document: A1