WO2019223129A1 - 一种改性钛酸锂复合材料及其制备方法与锂离子电池 - Google Patents

一种改性钛酸锂复合材料及其制备方法与锂离子电池 Download PDF

Info

Publication number
WO2019223129A1
WO2019223129A1 PCT/CN2018/099980 CN2018099980W WO2019223129A1 WO 2019223129 A1 WO2019223129 A1 WO 2019223129A1 CN 2018099980 W CN2018099980 W CN 2018099980W WO 2019223129 A1 WO2019223129 A1 WO 2019223129A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium titanate
lithium
composite material
preparation
modified
Prior art date
Application number
PCT/CN2018/099980
Other languages
English (en)
French (fr)
Inventor
田冰冰
李瑛�
苏陈良
俞兆喆
Original Assignee
深圳大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳大学 filed Critical 深圳大学
Publication of WO2019223129A1 publication Critical patent/WO2019223129A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the field of rechargeable lithium-ion batteries, in particular to a modified lithium titanate composite material, a preparation method thereof and a lithium-ion battery.
  • the traditional anode material is a carbon anode material.
  • the carbon negative electrode has been successfully commercialized, its battery safety problems, especially at high magnifications, have forced people to look for new and safe anode materials that can be embedded with lithium at a slightly positive potential than the carbon negative electrode.
  • low-potential transition metal oxides and composite oxides have attracted widespread attention as anode materials for lithium-ion batteries, especially the zero-strain material Li 4 Ti 5 O 12 , with its 1.5V (vs. Li / Li + ) voltage
  • the charge-discharge efficiency and excellent cycle performance close to 1 have attracted wide attention, and it is a promising electrode material for power lithium-ion battery anode materials.
  • lithium titanate has poor electronic conductivity, which limits its high rate performance. Therefore, it is necessary to improve its conductivity by modifying it, so as to improve the high rate performance of lithium titanate to meet the needs of power batteries, and to maintain its high reversible electrochemical capacity and good cycle stability.
  • the methods capable of improving the lithium titanate rate performance mainly include: preparing nanometer-sized lithium titanate, and the lithium titanate body is doped and introduced with equal conductivity.
  • Existing methods of carbon coating lithium titanate have improved their performance, but have limited improvement in their electrical conductivity and no increase in contrast capacity. The speed of electrons in graphene reaches 1/300 of the speed of light, far exceeding the speed of electrons in ordinary conductors.
  • the object of the present invention is to provide a modified lithium titanate composite material, a preparation method thereof, and a lithium ion battery.
  • the purpose is to solve the existing method of carbon coating lithium titanate.
  • the performance has been improved, but the improvement of its conductivity is limited and the contrast capacity has not been improved.
  • a method for preparing a modified lithium titanate composite material includes the following steps:
  • nano-lithium titanate powder dissolve lithium source and titanium source separately in a solvent, mix the two solutions and add acetic acid; heat to 40-100 ° C, stir at a constant temperature for 4-10 hours; at 80-120 ° C
  • the precursor is obtained by drying; the precursor is dispersed in deionized water and spray-dried to obtain a powder; the powder is calcined at 700-1000 ° C for 6-18 hours; and then cooled and ground to obtain nanometers.
  • Lithium titanate powder dissolve lithium source and titanium source separately in a solvent, mix the two solutions and add acetic acid; heat to 40-100 ° C, stir at a constant temperature for 4-10 hours; at 80-120 ° C
  • the precursor is obtained by drying; the precursor is dispersed in deionized water and spray-dried to obtain a powder; the powder is calcined at 700-1000 ° C for 6-18 hours; and then cooled and ground to obtain nanometers.
  • modified lithium titanate composite material the prepared lithium nitride titanate powder and graphene oxide are mixed uniformly, and calcined in an inert atmosphere or a reducing atmosphere at 700 to 1100 ° C for 3 to 10 minutes, and the obtained Modified lithium titanate composite.
  • the lithium source is one or a mixture of two or more of lithium hydroxide, lithium acetate, and lithium nitrate; and the titanium source is tetrabutyl titanate or Tetraisopropyl Titanate.
  • a molar ratio of Li to Ti in the lithium source and the titanium source is 0.8 to 0.86.
  • the nitrogen atmosphere is an ammonia gas or a nitrogen-hydrogen mixed gas.
  • step (3) the mass ratio of the sodium nitrate to the natural flake graphite is 1: 1, the mass ratio of the volume of concentrated sulfuric acid to the natural graphite flakes is 50-60 mL / g, and the high manganese The mass ratio of potassium acid to natural flake graphite is 6: 1.
  • step (3) the concentration of the hydrogen peroxide is 30% by weight, and the mass ratio of the volume of the hydrogen peroxide to the natural flake graphite is 20-30 mL / g; the volume of the deionized water and the natural flake graphite are The mass ratio is 75 to 100 mL / g.
  • the reducing atmosphere is a nitrogen-hydrogen mixed gas.
  • step (4) the graphene oxide accounts for 1.0 to 19.4 wt% of the lithium titanate powder and the graphene oxide mixture.
  • the graphene material in the modified lithium titanate composite material accounts for 1.0 to 18.1 wt% of the modified lithium titanate composite material.
  • a modified lithium titanate composite material is prepared by using the preparation method described in the present invention.
  • a lithium ion battery includes a negative electrode, wherein the material of the negative electrode is the modified lithium titanate composite material according to the present invention.
  • the present invention double-modifies lithium titanate through doping and coating, and specifically uses graphene and nitrogen-doped lithium titanate compound prepared by modification with extremely high electronic conductivity.
  • the lithium titanate electrode material has a simple and flexible preparation process.
  • the lithium titanate used can be synthesized by any method without affecting the performance of the composite material, and can be applied to the modified production of existing lithium titanate materials.
  • the prepared modified lithium titanate composite material has large rate performance, excellent cycle performance, and high and low temperature performance.
  • FIG. 1 is an XRD pattern of the lithium titanate and modified lithium titanate composite material prepared in Example 1 and the modified lithium titanate composite material prepared in Example 2, where (a) is the same as described in Example 1.
  • XRD spectrum of spinel lithium titanate prepared by the method (b) is an XRD spectrum of a modified lithium titanate composite material prepared according to the method described in Example 1; (c) is described in Example 2 XRD spectrum of the modified lithium titanate composite material prepared by the method;
  • Example 2 is the first charge and discharge curve of the modified lithium titanate composite material 0.2C prepared in Example 1;
  • Example 3 is a first charge-discharge curve diagram of the modified lithium titanate composite material 5C prepared in Example 2;
  • Example 4 is a cycle performance diagram of the modified lithium titanate composite material 5C prepared in Example 2;
  • Example 5 is a cycle performance diagram of the modified lithium titanate composite material 10C obtained in Example 3.
  • FIG. 6 is a graph showing the graphene content and the first discharge specific capacity (5C) of the modified lithium titanate composite in Examples 2, 3, and 5.
  • FIG. 6 is a graph showing the graphene content and the first discharge specific capacity (5C) of the modified lithium titanate composite in Examples 2, 3, and 5.
  • the present invention provides a modified lithium titanate composite material, a preparation method thereof, and a lithium ion battery.
  • a modified lithium titanate composite material a preparation method thereof, and a lithium ion battery.
  • the invention provides a method for preparing a modified lithium titanate composite material, which includes the following steps:
  • nano lithium titanate powder dissolve the lithium source and titanium source in a solvent (such as ethanol), mix the two solutions and add acetic acid; heat to 40-100 ° C, and stir at constant temperature for 4-10 hours; at 80 The precursor is dried at ⁇ 120 ° C; the precursor is dispersed in deionized water and spray-dried to obtain a powder; the powder is calcined at 700-1000 ° C for 6-18 hours; and then cooled and ground To obtain nano lithium titanate powder;
  • a solvent such as ethanol
  • modified lithium titanate composite material The prepared lithium nitride titanate powder and graphene oxide are mixed uniformly, and calcined in an inert atmosphere or a reducing atmosphere at 700 to 1100 ° C for 3 to 10 minutes to obtain a modified Lithium titanate composite.
  • the present invention uses graphene with extremely high electronic conductivity and nitrogen-doped lithium titanate to prepare a modified lithium titanate composite electrode material.
  • the preparation process is simple and flexible, and the lithium titanate used can be obtained through It can be synthesized by any method without affecting the properties of the composite material, and can be applied to the modified production of existing lithium titanate materials.
  • the prepared modified lithium titanate composite material has good large rate performance and high specific capacity, and can be widely used in lithium ion batteries required for various portable electronic devices and various electric vehicles.
  • the lithium source is one or a mixture of two or more of lithium hydroxide, lithium acetate, lithium nitrate, and the like.
  • the titanium source is tetrabutyl titanate or tetraisopropyl titanate and the like is not limited thereto.
  • the molar ratio of Li to Ti in the lithium source and the titanium source is 0.8 to 0.86.
  • Step (3) specifically includes: mixing natural flake graphite and sodium nitrate, adding concentrated sulfuric acid, stirring in an ice-water bath for 10-20 minutes, and then slowly adding potassium permanganate, reacting in the ice-water bath for 0.5 to 1 hour, and continuously at 20 to 25 ° C. After stirring for 24 to 48 hours, deionized water and hydrogen peroxide were added to react for 10 to 20 minutes, and the mixture was centrifuged. The separated product was sequentially washed with a mixed solution of sulfuric acid and hydrogen peroxide and deionized water, and then centrifuged and vacuum dried to obtain graphene oxide.
  • the mass ratio of the sodium nitrate to the natural flake graphite is 1: 1
  • the mass ratio of the volume of concentrated sulfuric acid to the natural graphite flakes is 50-60 mL / g
  • the potassium permanganate and the natural flakes are The mass ratio of graphite is 6: 1.
  • step (3) when adding deionized water and hydrogen peroxide to react, the concentration of the hydrogen peroxide is 30% by weight, and the mass ratio of the volume of the hydrogen peroxide to the natural flake graphite is 20-30 mL / g; The mass ratio of natural flake graphite is 75 to 100 mL / g.
  • the sulfuric acid and hydrogen peroxide in the mixed solution of sulfuric acid account for 6 wt% and the hydrogen peroxide accounts for 1 wt% during the washing.
  • Step (4) specifically includes: uniformly mixing the prepared lithium titanate powder and graphene oxide, calcining in an inert atmosphere or a reducing atmosphere at 700 to 1100 ° C for 3 to 10 minutes to obtain a modified lithium titanate composite material. After the lithium nitride titanate powder and graphene oxide are calcined in an inert atmosphere or a reducing atmosphere, the graphene oxide is reduced and coated on the surface of the nitrogen-doped lithium titanate to obtain a graphene coating. Lithium titanate powder, that is, the modified lithium titanate composite material.
  • the inert atmosphere is argon, nitrogen or helium; and the reducing atmosphere is a nitrogen-hydrogen mixed gas.
  • the graphene oxide accounts for 1.0 to 19.4 wt% of the lithium titanate powder and the graphene oxide mixture.
  • the graphene material accounts for 1.0 to 18.1 wt% of the modified lithium titanate composite material.
  • the invention also provides a modified lithium titanate composite material, which is prepared by using the preparation method described in the invention.
  • the graphene material accounts for 1.0 to 18.1 wt% of the modified lithium titanate composite material.
  • the modified lithium titanate composite material prepared by the present invention is double-modified by nitriding treatment and graphene coating, which effectively improves the conductivity and electrochemical performance of the electrode material.
  • the first charge and discharge capacity at 180C is still 180mAh / g.
  • Charge and discharge cycle 100 times discharge capacity is higher than 120mAh / g.
  • a 25Ah power battery was prepared by using lithium cobaltate as a positive electrode, and a charge-discharge cycle of 1,000 cycles was performed at a rate of 10C.
  • the reversible capacity attenuation was less than 20%, and it could work in the range of -40 to 60 ° C.
  • the nano-lithium titanate powder with a single spinel structure is shown in Fig. 1a.
  • the obtained nano-lithium titanate powder was heated to 700 ° C. in a nitrogen-hydrogen mixed gas (hydrogen accounts for 5 vol%) and subjected to nitridation treatment for 10 hours to obtain a lithium nitride titanate powder.
  • the separated product was washed three times with a mixed solution of sulfuric acid and hydrogen peroxide (6 wt% sulfuric acid, 1 wt% hydrogen peroxide) and deionized water, and then centrifuged and dried under vacuum to obtain graphene oxide.
  • the prepared 2.3960g lithium titanate powder and 0.0821g graphene oxide were mixed uniformly, and calcined in a nitrogen atmosphere at a temperature of 1000 ° C and a constant temperature time of 3min, to obtain a modified lithium titanate composite material, graphite
  • the olefin accounts for 3.204 wt% of the total mass of the modified lithium titanate composite, and it still has a spinel structure after XRD test, as shown in FIG. 1b.
  • the electrochemical test is performed under the following conditions: the prepared modified lithium titanate composite material is used as the active material, Super P (super carbon) is used as the conductive agent, PVDF (polyvinylidene fluoride) is used as the binder, and NMP (N-methyl (Amino-2-pyrrolidone) is a solvent prepared slurry and coated on a copper foil to form a pole piece.
  • a lithium battery was used as the counter electrode, the electrolyte concentration was 1 mol / L, and the polypropylene microporous membrane was used as the battery separator to assemble the test battery.
  • Button cells were assembled in an argon-filled glove box for electrochemical testing. The charge and discharge voltage range is 1.0 ⁇ 2.5V.
  • the product is assembled into a battery according to the above method, and the first discharge capacity at 0.2C is 192.8mAh / g, and the charge capacity is 176.9mAh / g, as shown in FIG. 2.
  • the obtained nano lithium titanate powder was heated to 800 ° C in an ammonia gas atmosphere and subjected to a nitriding treatment for 5 hours to obtain a lithium nitride titanate powder.
  • the separated product was washed three times with a mixed solution of sulfuric acid and hydrogen peroxide (6 wt% sulfuric acid, 1 wt% hydrogen peroxide) and deionized water, and then centrifuged and dried under vacuum to obtain graphene oxide.
  • the prepared 2.0164 g of lithium nitride titanate powder and 0.0742 g of graphene oxide were mixed uniformly, and calcined in a nitrogen-hydrogen mixed gas (hydrogen accounted for 10 vol%) atmosphere at a temperature of 800 ° C and a constant temperature time of 10 min.
  • a nitrogen-hydrogen mixed gas hydrogen accounted for 10 vol% atmosphere
  • graphene accounts for 3.241 wt% of the total mass of the modified lithium titanate composites, and the crystal form does not change after XRD testing, as shown in FIG. 1c.
  • the obtained product was assembled into a battery according to the method of Example 1.
  • the first discharge capacity at 5C was 159.0mAh / g, and the charge capacity was 153.2mAh / g, as shown in FIG. 3.
  • the cycle performance is good, the capacity is not lower than 123.4mAh / g after 100 cycles, as shown in Figure 4.
  • the obtained nano-lithium titanate powder was heated to 1100 ° C. in an ammonia gas atmosphere and subjected to a nitriding treatment for 8 hours to obtain a lithium nitride titanate powder.
  • the separated product was washed three times with a mixed solution of sulfuric acid and hydrogen peroxide (6 wt% sulfuric acid, 1 wt% hydrogen peroxide) and deionized water, and then centrifuged and dried under vacuum to obtain graphene oxide.
  • the prepared 1.0324g lithium titanate powder and 0.1204g graphene oxide were mixed uniformly, and calcined in a nitrogen atmosphere at a temperature of 900 ° C and a constant temperature time of 6min to obtain a modified lithium titanate composite material, graphene It accounts for 10.249 wt% of the total mass of the modified lithium titanate composite material.
  • the obtained product was assembled into a battery according to the method of Example 1.
  • the first discharge capacity at 10C exceeded 186mAh / g, and the charge and discharge were 100 cycles.
  • the discharge capacity was still higher than 116mAh / g, and the capacity retention rate reached 62.3%.
  • the cycle performance chart is shown in Figure 5.
  • the other conditions are the same as those in Example 1, except that the lithium titanate powder and the graphene oxide mixture in the mixture are 5.8221 g of lithium nitride titanate powder and 0.0612 g of graphene oxide. They are also calcined in a nitrogen-containing atmosphere. , The temperature is 1000 ° C., and the constant temperature time is 30 min, and a modified lithium titanate composite material is obtained, and graphene accounts for 1.011 wt% of the total mass of the modified lithium titanate composite material.
  • the obtained product was assembled into a battery according to the method of Example 1.
  • the first charge and discharge capacity at 5C was about 150 mAh / g, and the capacity after 100 cycles was about 110 mAh / g.
  • the other conditions are the same as in Example 2, except that the lithium titanate powder and the graphene oxide mixture are 0.5071 g of lithium nitride titanate powder and 0.1201 g of graphene oxide. It is calcined in an atmosphere at a temperature of 900 ° C. and a constant temperature time of 30 minutes to obtain a modified lithium titanate composite material. Graphene accounts for 18.102 wt% of the total mass of the modified lithium titanate composite material.
  • FIG. 6 is a graph showing the graphene content and the first discharge specific capacity (5C) of the modified lithium titanate composite in Examples 2, 3, and 5.
  • the present invention provides a modified lithium titanate composite material, a preparation method thereof, and a lithium ion battery.
  • the present invention uses graphene and nitrided graphene with extremely high electronic conductivity.
  • Lithium titanate composite preparation of modified lithium titanate composite material the preparation process is simple and flexible, the lithium titanate used can be synthesized by any method without affecting the performance of the composite material, and can be applied to the modification of the existing lithium titanate material produce.
  • the prepared modified lithium titanate composite material has large rate performance, excellent cycle performance and high and low temperature performance.
  • the first charge and discharge capacity is still 180mAh / g, and the charge and discharge cycle is 10,000 cycles, and the reversible capacity attenuation is less than 20%. It can work in the range of -40 ⁇ 60 °C.
  • the prepared modified lithium titanate composite material can be widely used in lithium ion batteries required for various portable electronic devices and various electric vehicles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开一种改性钛酸锂复合材料及其制备方法与锂离子电池。本发明先将钛酸锂进行氮化处理,然后将氮化处理过的钛酸锂和氧化石墨烯混合均匀,在惰性气氛或还原性气氛中700~1100℃下煅烧3~10min,即得到改性钛酸锂复合材料。本发明与现有技术相比,采用了电子导电率极大的石墨烯与氮化钛酸锂复合制备改性钛酸锂复合材料,制备工序简单灵活,所用钛酸锂可以是通过任何方法合成而不会影响复合材料性能,且可以适用于对现有钛酸锂材料的改性生产。制备的石墨烯基钛酸锂复合材料大倍率性能良好,并具有较高比容量,可广泛应用于各种便携式电子设备和各种电动车所需的锂离子电池。

Description

一种改性钛酸锂复合材料及其制备方法与锂离子电池 技术领域
本发明涉及可充放锂离子电池领域,尤其涉及一种改性钛酸锂复合材料及其制备方法与锂离子电池。
背景技术
目前,锂离子电池负极材料的研究重点正朝着高比容量,大倍率,高循环性能和高安全性能的动力型电池材料方向发展。传统的负极材料是碳负极材料。虽然碳负极已经成功地商业化,但是其存在的电池安全问题特别是大倍率下的安全问题,迫使人们在寻找比碳负极稍正的电位下嵌锂的安全可靠的新型负极材料。其中低电位过渡金属氧化物及复合氧化物作为锂离子电池的负极材料引起了人们的广泛注意,尤其是零应变材料Li 4Ti 5O 12,以其1.5V(vs.Li/Li +)电压、接近1的充放电效率和优越的循环性能广受关注,是一种很有潜力作为动力型锂离子电池负极材料的电极材料。
但是钛酸锂的电子导电性较差,这就限制了其高倍率性能。因此需要通过对其改性来改善其导电性,从而提高钛酸锂的大倍率性能以适应动力电池需求,并且需要保持其高的可逆电化学容量和良好的循环稳定性。目前,能够提高钛酸锂倍率性能的方法主要包括:制备纳米粒径的钛酸锂,钛酸锂本体掺杂和引入导电相等。现有方法对钛酸锂进行碳包覆,虽然对其性能有一定改善,但是对其导电能力提高有限并且对比容量没有提高。石墨烯中电子的运动速度达到了光速的1/300,远远超过了电子在一般导体中的运动速度,是一种极好的电子导体,并且石墨稀本身就有很高的储锂比容量。因此,将钛酸锂和石墨烯复合,制备石墨烯基钛酸锂复合电极材料将大大提高钛酸锂材料的导电能力,并有效提高材料的比容量。
发明内容
鉴于上述现有技术的不足,本发明的目的在于提供一种改性钛酸锂复合材料及其制备方法与锂离子电池,旨在解决现有方法对钛酸锂进行碳包覆,虽然对其性能有一定改善,但是对其导电能力提高有限并且对比容量没有提高的问题。
本发明的技术方案如下:
一种改性钛酸锂复合材料的制备方法,其中,包括以下步骤:
(1)制备纳米钛酸锂粉体:将锂源和钛源分别溶于溶剂中,混合两种溶液并加入乙酸;加热至40~100℃,恒温搅拌4~10h;在80~120℃下烘干得到前驱体;将所述前驱体分散在去离子水中,经喷雾干燥制得粉体;将所述粉体在700~1000℃下煅烧6~18h;再经冷却,研磨,即得纳米钛酸锂粉体;
(2)制备氮化钛酸锂粉体:将所得纳米钛酸锂粉体在氮气氛中加热到700~1000℃进行氮化处理5~10h,得到氮化钛酸锂粉体;
(3)制备氧化石墨烯:将天然鳞片石墨和硝酸钠混合,加入浓硫酸,冰水浴中搅拌10~20min,再加入高锰酸钾,冰水浴中反应0.5~1h,20~25℃下搅拌24~48h后,加入去离子水和双氧水反应10~20min,离心分离;分离产物经洗涤,再经过离心分离、干燥即得氧化石墨烯;
(4)制备改性钛酸锂复合材料:将制备好的氮化钛酸锂粉体和氧化石墨烯混合均匀,在惰性气氛或还原性气氛中700~1100℃下煅烧3~10min,即得到改性钛酸锂复合材料。
所述的制备方法,其中,步骤(1)中,所述锂源为氢氧化锂、醋酸锂和硝酸锂中的一种或两种以上的混合物;所述钛源为钛酸四丁酯或钛酸四异丙酯。
所述的制备方法,其中,步骤(1)中,所述锂源和钛源中Li与Ti的摩尔比为0.8~0.86。
所述的制备方法,其中,步骤(2)中,所述氮气氛为氨气或氮氢混合气。
所述的制备方法,其中,步骤(3)中,所述硝酸钠与天然鳞片石墨的质量比为1:1,浓硫酸的体积与天然石墨鳞片的质量比为50~60mL/g,高锰酸钾与天然鳞片石墨的质量比为6:1。
所述的制备方法,其中,步骤(3)中,所述双氧水的浓度为30wt%,双氧水的体积与天然鳞片石墨的质量比为20~30mL/g;去离子水的体积与天然鳞片石墨的质量比为75~100mL/g。
所述的制备方法,其中,步骤(4)中,所述还原性气氛为氮氢混合气。
所述的制备方法,其中,步骤(4)中,所述氧化石墨烯占氮化钛酸锂粉体和氧化石墨烯混合物的1.0~19.4wt%。
所述的制备方法,其中,步骤(4)中,所述改性钛酸锂复合材料中,石墨烯材料占所述改性钛酸锂复合材料的1.0~18.1wt%。
一种改性钛酸锂复合材料,其中,采用本发明所述的制备方法制备得到。
一种锂离子电池,包括负极,其中,所述负极的材料为本发明所述的改性钛酸锂复合材料。
有益效果:与现有技术相比,本发明通过掺杂和包覆对钛酸锂进行双重改性,具体采用了电子导电率极大的石墨烯与氮掺杂的钛酸锂复合制备改性钛酸锂电极材料,制备工序简单灵活,所用钛酸锂可以是通过任何方法合成而不会影响复合材料性能,且可以适用于对现有钛酸锂材料的改性生产。制备的改性钛酸锂复合材料具有大的倍率性能、优异的循环性能和高低温性能。
附图说明
图1为实施例1制得的钛酸锂和改性钛酸锂复合材料以及实施例2制得的改性钛酸锂复合材料的XRD图,其中(a)为按实施例1所述的方法制备的尖晶石钛酸锂的XRD谱图;(b)为按实施例1所述的方法制备的改性钛酸锂复合材料的XRD谱图;(c)为按实施例2所述的方法制备的改性钛酸锂复合材料的XRD谱图;
图2为实施例1制得的改性钛酸锂复合材料0.2C的首次充放电曲线图;
图3为实施例2制得的改性钛酸锂复合材料5C的首次充放电曲线图;
图4为实施例2制得的改性钛酸锂复合材料5C时循环性能图;
图5为实施例3制得的改性钛酸锂复合材料10C时循环性能图;
图6为实施例2、3和5中石墨烯含量与改性钛酸锂复合材料首次放电比容量(5C)的曲线图。
具体实施方式
本发明提供一种改性钛酸锂复合材料及其制备方法与锂离子电池,为使本发明的目的、技术方案及效果更加清楚、明确,以下对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明提供一种改性钛酸锂复合材料的制备方法,其中,包括以下步骤:
(1)制备纳米钛酸锂粉体:将锂源和钛源分别溶于溶剂(如乙醇)中,混合两种溶液并加入乙酸;加热至40~100℃,恒温搅拌4~10h;在80~120℃下烘干得到前驱体;将所述前驱体分散在去离子水中,经喷雾干燥制得粉体;将所述粉体在700~1000℃下煅烧6~18h;再经冷却,研磨,即得纳米钛酸锂粉体;
(2)制备氮化钛酸锂粉体:将所得纳米钛酸锂粉体在氮气氛(如氨气或氮氢混合气等)中加热到700~1000℃进行氮化处理5~10h,得到氮化钛酸锂粉体;
(3)制备氧化石墨烯:将天然鳞片石墨和硝酸钠混合,加入浓硫酸,冰水浴中搅拌10~20分钟,再加入高锰酸钾,冰水浴中反应0.5~1h,20~25℃下搅拌24~48h后,加入去离子水和双氧水反应10~20min,离心分离;分离产物经洗涤,再经过离心分离、干燥即得氧化石墨烯;
(4)制备改性钛酸锂复合材料:将制备好的氮化钛酸锂粉体和氧化石墨烯混合均匀,在惰性气氛或还原性气氛中700~1100℃下煅烧3~10min,得到改性钛酸锂复合材料。
本发明与现有技术相比,采用了电子导电率极大的石墨烯与氮掺杂的钛酸锂复合制备改性钛酸锂复合电极材料,制备工序简单灵活,所用钛酸锂可以是通过任何方法合成而不会影响复合材料性能,且可以适用于对现有钛酸锂材料的改性生产。制备的改性钛酸锂复合材料大倍率性能良好,并具有较高比容量,可广泛应用于各种便携式电子设备和各种电动车所需的锂离子电池。
优选地,步骤(1)中,所述锂源为氢氧化锂、醋酸锂和硝酸锂等中的一种或两种以上的混合物。
优选地,步骤(1)中,所述钛源为钛酸四丁酯或钛酸四异丙酯等不限于此。
优选地,步骤(1)中,所述锂源和钛源中Li与Ti的摩尔比为0.8~0.86。
步骤(3)具体包括:将天然鳞片石墨和硝酸钠混合,加入浓硫酸,冰水浴中搅拌10~20min,再缓慢加入高锰酸钾,冰水浴中反应0.5~1h,20~25℃下连续搅拌24~48h后,加入去离子水和双氧水反应10~20min,离心分离;分离产物依次采用硫酸和双氧水的混合溶液和去离子水进行洗涤,再经过离心分离、真空干燥即得氧化石墨烯。
优选地,步骤(3)中,所述硝酸钠与天然鳞片石墨的质量比为1:1,浓硫酸的体积与天然石墨鳞片的质量比为50~60mL/g,高锰酸钾与天然鳞片石墨的质量比为6:1。
优选地,步骤(3)中,加入去离子水和双氧水反应时,所述双氧水的浓度为30wt%,双氧水的体积与天然鳞片石墨的质量比为20~30mL/g;去离子水的体积与天然鳞片石墨的质量比为75~100mL/g。
优选地,步骤(3)中,洗涤时所述硫酸和双氧水的混合溶液中硫酸占6wt%,双氧水占1wt%。
步骤(4)具体包括:将制备好的氮化钛酸锂粉体和氧化石墨烯混合均匀,在惰性气氛或还原性气氛中700~1100℃下煅烧3~10min,得到改性钛酸锂复合材料。所述氮化钛酸锂粉体和氧化石墨烯在惰性气氛或还原性气氛中经煅烧后,所述氧化石墨烯被还原并包覆于氮掺杂的钛酸锂表面,得到石墨烯包覆的氮化钛酸锂粉体,即所述改性钛酸锂复合材料。
优选地,步骤(4)中,所述惰性气氛为氩气、氮气或氦气;所述还原性气氛为氮氢混合气。
优选地,步骤(4)中,所述氧化石墨烯占氮化钛酸锂粉体和氧化石墨烯混合物的1.0~19.4wt%。
优选地,步骤(4)中,所述改性钛酸锂复合材料中,石墨烯材料占所述改性钛酸锂复合材料的1.0~18.1wt%。
本发明还提供一种改性钛酸锂复合材料,其中,采用本发明所述的制备方法制备得到。所述改性钛酸锂复合材料中,石墨烯材料占所述改性钛酸锂复合材料的1.0~18.1wt%。
本发明制备的改性钛酸锂复合材料,经过氮化处理和石墨烯包覆双重改性,有效提高了电极材料导电性和电化学性能。以锂金属为对电极制成半电池,10C时首次充放电容量仍有180mAh/g。充放电循环100次,放电容量高于120mAh/g。以钴酸锂为正极制备成25Ah动力电池,10C倍率条件下充放电循环1000圈,可逆容量衰减小于20%,并可在-40~60℃范围内工作。
下面通过若干实施例对本发明进行详细说明。
实施例1
按摩尔比为Li:Ti=0.86:1的比例称取无水醋酸锂3.9975g和钛酸四丁酯23.9539g,以乙醇为分散剂,将无水醋酸锂和钛酸四丁酯分别溶于乙醇中,搅拌条件下混合两种溶液,然后滴加10mL乙酸。在80℃条件下恒温搅拌4小时,在120℃条件下烘干得前驱体。将所述前驱体分散在去离子水中形成悬浮液,并对悬浮液进行喷雾干燥制得粉体,热空气温度为140℃。将所述粉体在马弗炉中以5℃/min升温至800℃,恒温12h,自然冷却至室温后,研磨,过150目筛, 即得纳米钛酸锂粉体。经X-射线粉末衍射(XRD)测试后为单一尖晶石结构的纳米钛酸锂粉体,见图1中a。
将所得纳米钛酸锂粉体在氮氢混合气(氢气占5vol%)中加热到700℃进行氮化处理10h,得到氮化钛酸锂粉体。
将2.0002g天然鳞片石墨和2.0036g硝酸钠混合,加入116mL浓硫酸溶液,冰水浴中搅拌10min,再缓慢加入12.0728g高锰酸钾于溶液中,在冰水浴中反应0.5h,20℃下连续搅拌48h后,加入184mL去离子水,40mL双氧水(30wt%)反应20min,离心分离。分离产物依次用硫酸和双氧水的混合溶液(硫酸占6wt%,双氧水占1wt%)和去离子水洗涤3次,再离心分离并真空干燥即得氧化石墨烯。
将制备好的2.3960g氮化钛酸锂粉体和0.0821g氧化石墨烯混合均匀,在氮气气氛中进行煅烧,温度为1000℃,恒温时间为3min,即得到改性钛酸锂复合材料,石墨烯占改性钛酸锂复合材料总质量的3.204wt%,经XRD测试后仍为尖晶石结构,见图1中b。
电化学测试是在以下条件进行:以制备的改性钛酸锂复合材料为活性物质,Super P(超级炭)为导电剂,PVDF(聚偏氟乙烯)做粘结剂,NMP(N-甲基-2-吡咯烷酮)为溶剂调成料浆涂于铜箔上作成极片。以锂片对电极,电解液浓度为1mol/L,聚丙烯微孔膜为电池的隔膜,组装成测试电池。在充满氩气的手套箱中组装成扣式电池,进行电化学测试。充放电电压范围为1.0~2.5V。
将产品按上述方法组装成电池,0.2C时首次放电容量为192.8mAh/g,充电容量为176.9mAh/g,如图2所示。
实施例2
按摩尔比为Li:Ti=0.81:1的比例称取无水醋酸锂4.3015g和钛酸四丁酯27.2309g,以乙醇为分散剂,将无水醋酸锂和钛酸四丁酯分别溶于乙醇中,搅拌条件下混合两种溶液,滴加10mL乙酸。在40℃条件下恒温搅拌10小时,在80℃条件下烘干得前驱体。将前驱体分散在去离子水中形成悬浮液,并对悬浮液进行喷雾干燥制得粉体,热空气温度为140℃。将所述粉体在马弗炉中以5℃/min升温至1000℃,恒温6h,自然冷却至室温后,研磨,过150目筛,即得纳米钛酸锂粉体。
将所得纳米钛酸锂粉体在氨气气氛中加热到800℃进行氮化处理5h,得到氮 化钛酸锂粉体。
将2.0006g天然鳞片石墨和2.0021g硝酸钠混合,加入120mL浓硫酸溶液,冰水浴中搅拌15min,再缓慢加入12.0036g高锰酸钾于溶液中,在冰水浴中反应1h,25℃下连续搅拌36h后,加入150mL去离子水,50mL双氧水(30wt%)反应15min,离心分离。分离产物依次用硫酸和双氧水的混合溶液(硫酸占6wt%,双氧水占1wt%)和去离子水洗涤3次,再离心分离并真空干燥即得氧化石墨烯。
将制备好的2.0164g氮化钛酸锂粉体和0.0742g氧化石墨烯混合均匀,在氮氢混合气(氢气占10vol%)气氛中进行煅烧,温度为800℃,恒温时间为10min,得到改性钛酸锂复合材料,石墨烯占改性钛酸锂复合材料总质量的3.241wt%,经XRD测试晶型无变化,如图1中c示。
得到的产品按实施例1的方法组装成电池,5C时首次放电容量为159.0mAh/g,充电容量为153.2mAh/g,如图3所示。并且循环性能良好,100次循环后容量不低于123.4mAh/g,如图4所示。
实施例3
按摩尔比为0.8:1称取无水醋酸锂6.2043g和钛酸四丁酯40.0000g,以乙醇为分散剂,将无水醋酸锂和钛酸四丁酯分别溶于乙醇中,搅拌条件下混合两种溶液,然后滴加10mL乙酸。在60℃条件下恒温搅拌8小时,在100℃条件下烘干得前驱体。将前驱体分散在去离子水中形成悬浮液,并对悬浮液进行喷雾干燥制得粉体,热空气温度为140℃。将所述粉体在马弗炉中以5℃/min升温至700℃,恒温18h,自然冷却至室温后,研磨,过150目筛,即得纳米钛酸锂粉体。
将所得纳米钛酸锂粉体在氨气气氛中加热到1100℃进行氮化处理8h,得到氮化钛酸锂粉体。
将1.9998g天然鳞片石墨和2.0007g硝酸钠混合,加入100mL浓硫酸溶液,冰水浴中搅拌20min,再缓慢加入12.0015g高锰酸钾于溶液中,在冰水浴中反应0.75h,20℃下连续搅拌24h后,加入200mL去离子水,60mL双氧水(30wt%)反应10min,离心分离。分离产物依次用硫酸和双氧水的混合溶液(硫酸占6wt%,双氧水占1wt%)和去离子水洗涤3次,再离心分离并真空干燥即得氧化石墨烯。
将制备好的1.0324g氮化钛酸锂粉体和0.1204g氧化石墨烯混合均匀,在氮气气氛中进行煅烧,温度为900℃,恒温时间为6min,得到改性钛酸锂复合材料, 石墨烯占改性钛酸锂复合材料总质量的10.249wt%。
得到的产品按实施例1的方法组装成电池,10C时首次放电容量超过186mAh/g,充放电100圈,放电容量仍高于116mAh/g,容量保持率达62.3%。循环性能图如图5所示。
实施例4
其他条件与实施例1相同,不同的是氮化钛酸锂粉体和氧化石墨烯混合物中氮化钛酸锂粉体为5.8221g,氧化石墨烯为0.0612g,同样在含氮气氛中进行煅烧,温度为1000℃,恒温时间为30min,得到改性钛酸锂复合材料,石墨烯占改性钛酸锂复合材料总质量的1.011wt%。
得到的产品按实施例1的方法组装成电池,5C时首次充放电容量约为150mAh/g,100次循环后容量约为110mAh/g。
实施例5
其他条件与实施例2相同,不同的是氮化钛酸锂粉体和氧化石墨烯混合物中氮化钛酸锂粉体为0.5071g,氧化石墨烯为0.1201g,且在氮氢混合气(氢气占5vol%)气氛中进行煅烧,温度为900℃,恒温时间为30分钟,得到改性钛酸锂复合材料,石墨烯占改性钛酸锂复合材料总质量的18.102wt%。
得到的产品按实施例1的方法组装成电池,5C时首次充放电容量高达130mAh/g。100次循环后容量不低于100mAh/g。其中,图6为实施例2、3和5中石墨烯含量与改性钛酸锂复合材料首次放电比容量(5C)的曲线图。
综上所述,本发明提供的一种改性钛酸锂复合材料及其制备方法与锂离子电池,本发明与现有技术相比,采用了电子导电率极大的石墨烯与氮化的钛酸锂复合制备改性钛酸锂复合材料,制备工序简单灵活,所用钛酸锂可以是通过任何方法合成而不会影响复合材料性能,且可以适用于对现有钛酸锂材料的改性生产。制备的改性钛酸锂复合材料具有大的倍率性能、优异的循环性能和高低温性能,10C时首次充放电容量仍有180mAh/g,充放电循环10000圈,可逆容量衰减小于20%,并可在-40~60℃范围内工作。制备的改性钛酸锂复合材料,可广泛应用于各种便携式电子设备和各种电动车所需的锂离子电池。
应当理解的是,本发明的应用不限于上述的举例,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,所有这些改进和变换都应属于本发明所 附权利要求的保护范围。

Claims (10)

  1. 一种改性钛酸锂复合材料的制备方法,其特征在于,包括以下步骤:
    (1)制备纳米钛酸锂粉体:将锂源和钛源分别溶于溶剂中,混合两种溶液并加入乙酸;加热至40~100℃,恒温搅拌4~10h;在80~120℃下烘干得到前驱体;将所述前驱体分散在去离子水中,经喷雾干燥制得粉体;将所述粉体在700~1000℃下煅烧6~18h;再经冷却,研磨,即得纳米钛酸锂粉体;
    (2)制备氮化钛酸锂粉体:将所得纳米钛酸锂粉体在氮气氛中加热到700~1000℃进行氮化处理5~10h,得到氮化钛酸锂粉体;
    (3)制备氧化石墨烯:将天然鳞片石墨和硝酸钠混合,加入浓硫酸,冰水浴中搅拌10~20min,再加入高锰酸钾,冰水浴中反应0.5~1h,20~25℃下搅拌24~48h后,加入去离子水和双氧水反应10~20min,离心分离;分离产物经洗涤,再经过离心分离、干燥即得氧化石墨烯;
    (4)制备改性钛酸锂复合材料:将制备好的氮化钛酸锂粉体和氧化石墨烯混合均匀,在惰性气氛或还原性气氛中700~1100℃下煅烧3~10min,得到改性钛酸锂复合材料。
  2. 根据权利要求1所述的制备方法,其特征在于,步骤(1)中,所述锂源为氢氧化锂、醋酸锂和硝酸锂中的一种或两种以上的混合物;所述钛源为钛酸四丁酯或钛酸四异丙酯;所述锂源和钛源中Li与Ti的摩尔比为0.8~0.86。
  3. 根据权利要求1所述的制备方法,其特征在于,步骤(2)中,所述氮气氛为氨气或氮氢混合气。
  4. 根据权利要求1所述的制备方法,其特征在于,步骤(3)中,所述硝酸钠与天然鳞片石墨的质量比为1:1,浓硫酸的体积与天然石墨鳞片的质量比为50~60mL/g,高锰酸钾与天然鳞片石墨的质量比为6:1。
  5. 根据权利要求1所述的制备方法,其特征在于,步骤(3)中,所述双氧水的浓度为30wt%,双氧水的体积与天然鳞片石墨的质量比为20~30mL/g;去离子水的体积与天然鳞片石墨的质量比为75~100mL/g。
  6. 根据权利要求1所述的制备方法,其特征在于,步骤(4)中,所述还原性气氛为氮氢混合气。
  7. 根据权利要求1所述的制备方法,其特征在于,步骤(4)中,所述氧化石墨烯占氮化钛酸锂粉体和氧化石墨烯混合物的1.0~19.4wt%。
  8. 根据权利要求1所述的制备方法,其特征在于,步骤(4)中,所述改性钛酸锂复合材料中,石墨烯材料占所述改性钛酸锂复合材料的1.0~18.1wt%。
  9. 一种改性钛酸锂复合材料,其特征在于,采用权利要求1~8任一项所述的制备方法制备得 到。
  10. 一种锂离子电池,包括负极,其特征在于,所述负极的材料为权利要求9所述的改性钛酸锂复合材料。
PCT/CN2018/099980 2018-05-25 2018-08-10 一种改性钛酸锂复合材料及其制备方法与锂离子电池 WO2019223129A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810518751.0A CN108511735A (zh) 2018-05-25 2018-05-25 一种改性钛酸锂复合材料及其制备方法与锂离子电池
CN201810518751.0 2018-05-25

Publications (1)

Publication Number Publication Date
WO2019223129A1 true WO2019223129A1 (zh) 2019-11-28

Family

ID=63401718

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/099980 WO2019223129A1 (zh) 2018-05-25 2018-08-10 一种改性钛酸锂复合材料及其制备方法与锂离子电池

Country Status (2)

Country Link
CN (1) CN108511735A (zh)
WO (1) WO2019223129A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114551844A (zh) * 2022-03-01 2022-05-27 深圳博磊达新能源科技有限公司 一种钛酸锂复合负极材料及其制备方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109346710B (zh) * 2018-11-27 2021-07-20 深圳大学 一种氮化钛酸锂-氮化氧化铝复合材料及其制备方法与应用
CN109473656A (zh) * 2018-11-27 2019-03-15 深圳大学 一种氮化钛酸锂/氮化二氧化钛复合电极材料及其制备方法
CN111392766B (zh) * 2019-11-13 2022-11-08 中国人民解放军军事科学院防化研究院 一种制备纳米钛酸锂/石墨烯多孔复合电极材料的方法
CN111403721B (zh) * 2020-04-16 2021-06-29 旭派电源有限公司 一种锂离子电池钛酸锂负极材料的制备方法
CN114335456B (zh) * 2021-12-06 2024-05-17 桂林电子科技大学 快充型复合负极材料及其制备方法与应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101877405A (zh) * 2010-04-20 2010-11-03 华南理工大学 钛酸锂-石墨烯复合电极材料的制备方法
CN101894946A (zh) * 2009-05-21 2010-11-24 丰田自动车株式会社 制造氮化的Li-Ti复合氧化物的方法、氮化的Li-Ti复合氧化物和锂离子电池
CN107221647A (zh) * 2017-07-18 2017-09-29 华南师范大学 一种氮掺杂钛酸锂/石墨烯纳米复合材料的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101894946A (zh) * 2009-05-21 2010-11-24 丰田自动车株式会社 制造氮化的Li-Ti复合氧化物的方法、氮化的Li-Ti复合氧化物和锂离子电池
CN101877405A (zh) * 2010-04-20 2010-11-03 华南理工大学 钛酸锂-石墨烯复合电极材料的制备方法
CN107221647A (zh) * 2017-07-18 2017-09-29 华南师范大学 一种氮掺杂钛酸锂/石墨烯纳米复合材料的制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114551844A (zh) * 2022-03-01 2022-05-27 深圳博磊达新能源科技有限公司 一种钛酸锂复合负极材料及其制备方法

Also Published As

Publication number Publication date
CN108511735A (zh) 2018-09-07

Similar Documents

Publication Publication Date Title
WO2019223129A1 (zh) 一种改性钛酸锂复合材料及其制备方法与锂离子电池
WO2020108040A1 (zh) 一种氮化钛酸锂/氮化二氧化钛复合电极材料及其制备方法
CN108598444B (zh) 锂离子电池复合负极材料三氧化二钒/石墨烯及制备方法
CN110104677B (zh) 复合钛酸锂材料及其制备方法与应用
WO2016188130A1 (zh) 一种多孔石墨掺杂与碳包覆钛酸锂负极材料的制备方法
CN109346710B (zh) 一种氮化钛酸锂-氮化氧化铝复合材料及其制备方法与应用
WO2016202162A1 (zh) 一种锂离子负极材料Li4Ti5O12/C的合成方法
WO2023142666A1 (zh) 锂离子电池预锂化剂及其制备方法和应用
CN114300671B (zh) 一种石墨复合负极材料及其制备方法和应用
CN107565099B (zh) 一种正极活性材料及其制备方法和一种锂离子电池
WO2017197675A1 (zh) 一种钛酸锂改性材料及其制备方法
CN104466182A (zh) 一种氮掺杂纳米碳包覆/氧化改性石墨复合材料及其制备方法
CN105591107A (zh) 一种超薄层状v5s8及其制备方法与在锂离子/钠离子电池中的应用
WO2021184764A1 (zh) 用于锂离子电池的富锂锰基正极材料及其制备方法、正极片、锂离子电池和电动汽车
CN108832106A (zh) 一种还原氧化石墨烯-氧化镍钴铝锂复合正极材料、其制备方法及其应用
KR20220107281A (ko) 전지를 위한 음극활물질 및 그 제조 방법
WO2024130851A1 (zh) 一种双包覆型正极材料及其制备方法和应用
CN107732210A (zh) 氧化锡‑石墨烯复合负极材料及其制备方法
CN114843483B (zh) 一种硬碳复合材料及其制备方法和应用
CN114203993B (zh) 一种Li2SeO4快离子导体改性的锂离子电池正极材料
CN105895875B (zh) 一种锂离子电池正极活性材料及其制备方法和锂离子电池
CN105375004B (zh) 一种长寿命高能锂二次电池正极材料及其制备方法
KR102394000B1 (ko) 리튬 이차 전지용 인산염계 양극활물질 및 그 제조방법
CN109994723B (zh) 一种SiOx-G/PAA-PANi/Cu复合材料的制备方法
CN108054360B (zh) 一种低温锂电池用氟化硫酸铁锂正极材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18919958

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 12-03-2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18919958

Country of ref document: EP

Kind code of ref document: A1