WO2012169063A1 - 電池制御装置、電池システム - Google Patents

電池制御装置、電池システム Download PDF

Info

Publication number
WO2012169063A1
WO2012169063A1 PCT/JP2011/063358 JP2011063358W WO2012169063A1 WO 2012169063 A1 WO2012169063 A1 WO 2012169063A1 JP 2011063358 W JP2011063358 W JP 2011063358W WO 2012169063 A1 WO2012169063 A1 WO 2012169063A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit cell
unit
current
internal resistance
assembled battery
Prior art date
Application number
PCT/JP2011/063358
Other languages
English (en)
French (fr)
Inventor
大川 圭一朗
亮平 中尾
洋平 河原
Original Assignee
日立ビークルエナジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立ビークルエナジー株式会社 filed Critical 日立ビークルエナジー株式会社
Priority to PCT/JP2011/063358 priority Critical patent/WO2012169063A1/ja
Priority to US14/124,590 priority patent/US9252624B2/en
Priority to JP2013519328A priority patent/JP5715694B2/ja
Publication of WO2012169063A1 publication Critical patent/WO2012169063A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/007188Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters
    • H02J7/007192Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature
    • H02J7/007194Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature of the battery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/40Electric propulsion with power supplied within the vehicle using propulsion power supplied by capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/13Maintaining the SoC within a determined range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/16Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to battery ageing, e.g. to the number of charging cycles or the state of health [SoH]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/21Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having the same nominal voltage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/00714Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery charging or discharging current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/46The network being an on-board power network, i.e. within a vehicle for ICE-powered road vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present invention relates to a technique for controlling a battery.
  • a vehicle that runs on electricity is equipped with a storage battery such as a lead battery, a nickel metal hydride battery, or a lithium ion battery. Electric power required when a hybrid vehicle or an electric vehicle travels is covered by these storage batteries.
  • a storage battery such as a lead battery, a nickel metal hydride battery, or a lithium ion battery. Electric power required when a hybrid vehicle or an electric vehicle travels is covered by these storage batteries.
  • the storage battery mounted on the vehicle is used in a wide temperature range, and the storage battery has the maximum allowable power according to the temperature. If the storage battery is charged and discharged beyond this maximum allowable power, there is a possibility of overcharging or overdischarging.
  • the maximum allowable power of a low-temperature storage battery is small, and the maximum allowable power of a high-temperature storage battery is large. Further, although the maximum allowable power is large at a high temperature, the use of the storage battery at a high temperature promotes the deterioration of the storage battery. On the other hand, the higher the state of charge (SOC) of the storage battery, the smaller the maximum allowable charging power and the larger the maximum allowable discharging power. Further, the lower the SOC of the storage battery, the smaller the maximum allowable discharge power and the larger the maximum allowable charge power. In order to use the storage battery safely, it is necessary to perform charge / discharge control within a range not exceeding the maximum allowable power.
  • SOC state of charge
  • Patent Document 1 discloses a technique for calculating allowable charge / discharge power suitable for each single cell and optimally performing charge / discharge control even when temperature variation occurs between the single cells constituting the assembled battery. Are listed.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a battery control device that can accurately determine the allowable charge / discharge power following the change in the internal resistance of the storage battery.
  • the battery control device includes an internal resistance table in which the internal resistance value according to the temperature and charge state of the unit cell is described for each value of the unit cell charge or discharge duration.
  • the battery control device calculates the maximum allowable charging current or the maximum allowable discharging current of the single cell using the internal resistance value described in the internal resistance table, and calculates the maximum allowable charging power or the maximum allowable discharging power calculated according to the value. By using it, the charging or discharging of the unit cell is controlled.
  • the battery control device of the present invention even if the internal resistance of the cell changes as charging / discharging continues, the internal resistance value is changed by switching the internal resistance value acquired from the internal resistance table according to the change. Can follow. Thereby, the allowable charge / discharge power can be obtained with high accuracy.
  • FIG. It is a figure which shows the structure of the battery system 100 which concerns on Embodiment 1, and its periphery. It is a figure which shows the circuit structure of the cell control part 121.
  • FIG. It is a figure which shows the example of the SOC table 181 which the memory
  • the assembled batteries are configured by connecting the cells in series.
  • the assembled batteries may be configured by connecting the cells connected in parallel, or by connecting the cells connected in series.
  • a battery pack may be configured by connecting batteries in parallel.
  • FIG. 1 is a diagram showing a configuration of a battery system 100 according to Embodiment 1 of the present invention and its surroundings.
  • Battery system 100 is connected to inverter 400 via relays 300 and 310, and connected to charger 420 via relays 320 and 330.
  • the battery system 100 includes an assembled battery 110, a single battery management unit 120, a current detection unit 130, a voltage detection unit 140, an assembled battery control unit 150, and a storage unit 180.
  • the assembled battery 110 is composed of a plurality of unit cells 111.
  • the unit cell management unit 120 monitors the state of the unit cell 111.
  • the current detection unit 130 detects a current flowing through the battery system 100.
  • the voltage detection unit 140 detects the total voltage of the assembled battery 110.
  • the assembled battery control unit 150 controls the assembled battery 110.
  • the assembled battery control unit 150 includes the battery voltage and temperature of the unit cell 111 transmitted by the unit cell management unit 120, the current value flowing through the battery system 100 transmitted by the current detection unit 130, and the voltage of the assembled battery 110 transmitted by the voltage detection unit 140. Receives the total voltage value. The assembled battery control unit 150 detects the state of the assembled battery 110 based on the received information. The result of the state detection by the assembled battery control unit 150 is transmitted to the single cell management unit 120 and the vehicle control unit 200.
  • the assembled battery 110 is configured by electrically connecting a plurality of unit cells 111 capable of storing and releasing electrical energy (charging and discharging DC power) in series.
  • the unit cells 111 constituting the assembled battery 110 are grouped into a predetermined number of units when performing state management / control.
  • the grouped unit cells 111 are electrically connected in series to form unit cell groups 112a and 112b.
  • the number of the single cells 111 constituting the single cell group 112 may be the same in all the single cell groups 112, or the number of the single cells 111 may be different for each single cell group 112.
  • the single cell management unit 120 monitors the state of the single cells 111 constituting the assembled battery 110.
  • the unit cell management unit 120 includes a unit cell control unit 121 provided for each unit cell group 112.
  • cell control units 121 a and 121 b are provided corresponding to the cell groups 112 a and 112 b.
  • the unit cell control unit 121 monitors and controls the state of the unit cells 111 constituting the unit cell group 112.
  • unit cells 111 are electrically connected in series to form unit cell groups 112a and 112b, and the unit cell groups 112a and 112b are further electrically connected in series.
  • An assembled battery 110 including a total of eight unit cells 111 was connected.
  • the assembled battery control unit 150 and the single cell management unit 120 transmit and receive signals via an insulating element 170 typified by a photocoupler and a signal communication unit 160.
  • a communication means between the assembled battery control unit 150 and the unit cell control units 121a and 121b constituting the unit cell management unit 120 will be described.
  • the cell control units 121a and 121b are connected in series according to the descending order of potentials of the cell groups 112a and 112b monitored by each.
  • a signal transmitted from the assembled battery control unit 150 to the unit cell management unit 120 is input to the unit cell control unit 121 a via the insulating element 170 and the signal communication unit 160.
  • the output of the unit cell control unit 121a is input to the unit cell control unit 121b via the signal communication unit 160, and the output of the lowest unit cell control unit 121b is supplied to the assembled battery control unit via the insulating element 170 and the signal communication unit 160.
  • the insulating element 170 is not interposed between the unit cell control unit 121a and the unit cell control unit 121b, but signals can be transmitted and received through the insulating element 170.
  • the storage unit 180 includes the assembled battery 110, the single battery 111, and the single battery group 112, the internal resistance characteristics, the capacity at full charge, the polarization voltage, the deterioration characteristics, the individual difference information, the SOC and the open circuit voltage (OCV: Open Circuit Voltage). Stores information such as correspondence relationships. Furthermore, characteristic information such as the single cell management unit 120, the single cell control unit 121, and the assembled battery control unit 150 can be stored in advance. Information stored in the storage unit 180 will be described later with reference to FIGS.
  • the assembled battery control unit 150 uses the unit cell management unit 120, the current detection unit 130, the voltage detection unit 140, the information received from the vehicle control unit 200, one or more SOC tables 181 and an internal resistance table 182 described later.
  • SOH State of Health
  • the calculation for controlling the is executed. And based on a calculation result, information is output to the cell management part 120 and the vehicle control part 200.
  • the vehicle control unit 200 controls the inverter 400 connected to the battery system 100 via the relays 300 and 310 using the information transmitted by the assembled battery control unit 150. Moreover, the battery charger 420 connected to the battery system 100 via the relays 320 and 330 is controlled. During traveling of the vehicle, the battery system 100 is connected to the inverter 400 and drives the motor generator 410 using the energy stored in the assembled battery 110. When charging, the battery system 100 is connected to a charger 420 and is charged by supplying power from a household power supply or a desk lamp.
  • the charger 420 is used when charging the assembled battery 110 using an external power source typified by a home or a desk lamp.
  • the charger 420 is configured to control a charging voltage, a charging current, and the like based on a command from the vehicle control unit 200, but the control may be performed based on a command from the assembled battery control unit 150.
  • the charger 420 may be installed inside the vehicle according to the configuration of the vehicle, the performance of the charger 420, the purpose of use, the installation conditions of the external power source, and the like, or may be installed outside the vehicle.
  • the battery system 100 When the vehicle system on which the battery system 100 is mounted starts and runs, the battery system 100 is connected to the inverter 400 under the control of the vehicle control unit 200, and the motor uses the energy stored in the assembled battery 110. Generator 410 is driven, and assembled battery 110 is charged by the power generated by motor generator 410 during regeneration.
  • a vehicle including the battery system 100 is connected to an external power source represented by a household or desk lamp, the battery system 100 and the charger 420 are connected based on information transmitted by the vehicle control unit 200, and the set The battery 110 is charged until a predetermined condition is met.
  • the energy stored in the assembled battery 110 by charging is used when the vehicle is driven next time, or is used to operate electrical components inside and outside the vehicle. Further, if necessary, it may be discharged to an external power source represented by a household power source.
  • FIG. 2 is a diagram showing a circuit configuration of the unit cell control unit 121.
  • the cell control unit 121 includes a voltage detection circuit 122, a control circuit 123, a signal input / output circuit 124, and a temperature detection unit 125.
  • the voltage detection circuit 122 measures the voltage between the terminals of each unit cell 111.
  • the control circuit 123 receives measurement results from the voltage detection circuit 122 and the temperature detection unit 125, and transmits the measurement results to the assembled battery control unit 150 via the signal input / output circuit 124.
  • it is determined that the circuit configuration that is generally implemented in the unit cell control unit 121 and that equalizes the voltage and SOC variation between the unit cells 111 generated due to self-discharge and variation in consumption current is known. The description is omitted.
  • the temperature detection unit 125 included in the unit cell control unit 121 in FIG. 2 has a function of measuring the temperature of the unit cell group 112.
  • the temperature detection unit 125 measures one temperature as the entire cell group 112 and treats the temperature as a temperature representative value of the cell 111 constituting the cell group 112.
  • the temperature measured by the temperature detection unit 125 is used for various calculations for detecting the state of the cell 111, the cell group 112, or the assembled battery 110. Since FIG. 2 is based on this assumption, the single battery control unit 121 is provided with one temperature detection unit 125.
  • a temperature detection unit 125 may be provided for each single cell 111 to measure the temperature for each single cell 111, and various calculations may be performed based on the temperature for each single cell 111. In this case, the number of temperature detection units 125 Therefore, the configuration of the unit cell control unit 121 becomes complicated.
  • the temperature detection unit 125 is simply shown.
  • a temperature sensor is installed on the temperature measurement target, and the installed temperature sensor outputs temperature information as a voltage, and the measurement result is transmitted to the signal input / output circuit 124 via the control circuit 123. Outputs the measurement result outside the unit cell control unit 121.
  • a function for realizing this series of flows is implemented as a temperature detection unit 125 in the single cell control unit 121, and the voltage detection circuit 122 can be used for measuring temperature information (voltage).
  • FIG. 3 is a diagram illustrating an example of the SOC table 181 stored in the storage unit 180.
  • the SOC table 181 is a data table describing a correspondence relationship between the OCV of the single battery 111 and the SOC of the single battery 111.
  • the data format may be arbitrary, but here, for convenience of explanation, an example of data is shown in a graph format. In this embodiment, a data table is used.
  • the correspondence relationship between the OCV and the SOC can be expressed by using mathematical formulas. It is characteristic information indicating the correspondence between OCV and SOC, and any means can be used as long as it can convert from OCV to SOC or from SOC to OCV.
  • OCV is a voltage when the unit cell 111 is not loaded. Before the relays 300, 310, 320, 330 are closed, or when the relays 300, 310, 320, 330 are closed but charging / discharging of the assembled battery 110 is not started, etc. It can be determined that the voltage between the terminals is OCV. Furthermore, when the assembled battery 110 is charged or discharged, but the current value is weak, it can be regarded as OCV.
  • the battery voltage at this time is a closed circuit voltage (CCV: Closed Circuit Voltage).
  • CCV Closed Circuit Voltage
  • the assembled battery control unit 150 needs to calculate the OCV by the following equation 1 using the resistance R and information on the polarization voltage Vp. By inputting the obtained OCV into the table of FIG. 3, the SOC at each time point is obtained.
  • Equation 1 The calculation of Equation 1 below can be executed by the battery pack controller 150 regardless of whether or not the unit cell 111 is charged / discharged.
  • the SOC is calculated for each single cell 111 by using the OCV of each single cell 111 constituting the assembled battery 110.
  • SOC initial SOC + 100 ⁇ ⁇ Idt / full charge capacity
  • the assembled battery control unit 150 can obtain the SOC of the unit cell 111 by using the OCV and the SOC table 181 of the unit cell 111 detected by the unit cell control unit 121. Further, the OCV of the assembled battery 110 can be obtained by summing up the OCVs of the single cells 111. When the SOC characteristics are different for each unit cell 111, an SOC table 181 may be provided for each unit cell 111.
  • FIG. 4 is a diagram illustrating an example of the internal resistance table 182 stored in the storage unit 180.
  • the internal resistance table 182 is a data table in which the internal resistance value according to the temperature and SOC of the unit cell 111 is described according to the charging duration.
  • the data format of the internal resistance table 182 may be arbitrary, but here, for convenience of explanation, the horizontal axis represents the temperature of the cell 111 and the vertical axis represents the SOC of the cell 111.
  • An example in which a plurality of maps are provided along the charging duration time axis is shown. In this embodiment, the data table is used. However, like the SOC table 181 of FIG.
  • the correspondence relationship between the temperature, the SOC, the charging duration and the internal resistance can be expressed by means different from the data table such as a mathematical formula. Any characteristic information may be used as long as it is characteristic information of the internal resistance according to the temperature, the SOC, and the charging duration.
  • the assembled battery control unit 150 refers to the internal resistance table 182 by using the SOC acquired by the above-described method and the representative temperature of the single cell group 112 acquired by the single cell control unit 121, so that the inside of the single cell 111 Get resistance value. Furthermore, the internal resistance value for every charging continuation time can be acquired by designating the charging continuation time of the cell 111.
  • the time interval at which the two-dimensional map for each charging duration of the internal resistance table 182 is provided may be appropriately determined according to the specifications of the battery system 100 and the like.
  • the two-dimensional map illustrated in FIG. 4 can be provided for each charging duration of 1 second.
  • the configuration of the battery system 100 has been described above. Next, the basic concept and operation procedure of the battery system 100 will be described.
  • the internal resistance value of the unit cell 111 changes according to the temperature and SOC of the unit cell 111.
  • the temperature of the unit cell 111 can be obtained from the unit cell control unit 121, and the SOC of the unit cell 111 can be obtained using the method described above.
  • the assembled battery control unit 150 acquires the internal resistance value of the single battery 111 using these, and determines an appropriate allowable charging current.
  • the internal resistance value of the unit cell 111 also changes depending on the charging duration. Therefore, in the first embodiment, the internal resistance table 182 is provided for each charging duration so that a more accurate internal resistance value of the unit cell 111 can be obtained. Thereby, the allowable charging current can be obtained more accurately.
  • the maximum temperature and the minimum temperature in the assembled battery 110 are obtained using two or more temperature measurement results measured by the two or more cell control units 121, and the allowable current corresponding to the maximum temperature and the minimum temperature in the assembled battery 110 is obtained.
  • the lower allowable current is adopted as the final allowable current value.
  • FIG. 5 is a control block showing a method for obtaining the allowable charging current of each unit cell 111 of the assembled battery control unit 150 provided in the battery system 100.
  • the allowable charging current can be obtained by the following equation 2.
  • the OCV of the following formula 2 the calculation result of the formula 1 can also be used.
  • the SOC is obtained by integrating the current flowing into and out of the unit cell 111
  • the SOC calculation result is represented by the OCV in the SOC table 181 of FIG.
  • the result converted into can also be used.
  • the allowable charging current is obtained for each of the time when the temperature of the unit cell 111 is the highest and the time when the temperature is the lowest, and the smaller one is finally adopted.
  • FIG. 6 is a diagram illustrating a method for obtaining the allowable charging current of the assembled battery 110 of the assembled battery control unit 150 included in the battery system 100 using a control block.
  • the assembled battery control unit 150 calculates the allowable charging current for each single cell 111 by inputting the SOC for each single cell 111 in addition to the method described in FIG. 5, and then determines the smallest allowable charging current as the final allowable charging current. Adopt as. Since the currents that flow through all the unit cells 111 connected in series are the same, by adopting the smallest allowable charging current among the unit cells 111, the charging control in which the voltages of all the unit cells 111 do not exceed Vmax is achieved. Can be realized.
  • an assembled battery charging voltage at the time of charging is calculated, and the allowable charging current of the assembled battery 110 is calculated by multiplying the allowable charging current and the assembled battery charging voltage. Can be calculated.
  • the assembled battery charging voltage is the total voltage of the assembled battery 110 expected when the finally determined allowable charging current is applied.
  • the assembled battery charging voltage may be a result of summing up the voltages of the individual cells 111 when charging is performed with an allowable charging current obtained by inputting an SOC, a temperature, or the like for each of the single cells 111 constituting the assembled battery 110.
  • the average voltage of the single cells 111 when charged with an allowable charging current obtained by inputting the average SOC, average temperature, etc. of the single cells 111 constituting the assembled battery 110 may be multiplied by the number of series.
  • Either the above-described method of calculating the voltage for each unit cell 111 and calculating the total value of the voltages or the method of determining the average voltage of the unit cells 111 and multiplying by the series number may be employed.
  • a method of obtaining the average voltage of the single cells 111 and multiplying by the number of series is adopted. The method will be described using Equation 3 below.
  • the average OCV in Equation 3 below is obtained by converting the average value of the calculation result of Equation 1 for each unit cell 111 or the average value of the SOC of current integration obtained for each unit cell 111 into the average OCV by the SOC table 181 of FIG. The results are used.
  • the average internal resistance value in the following formula 3 is the average value of the SOC for each unit cell 111 or the current integral SOC for each unit cell 111 obtained by using the formula 1 and FIG. Are obtained by inputting them into the internal resistance table 182 of FIG.
  • FIG. 7 is a diagram showing a processing image when calculating the allowable charging current and the allowable charging power from the input parameters described above.
  • the assembled battery control unit 150 executes a series of calculations up to the allowable charging power described above, transmits the calculation result to the vehicle control unit 200, and charges the assembled battery 110 within the range of the allowable charging power received by the vehicle control unit 200.
  • a command is transmitted to the inverter 400 or the like. By doing in this way, the assembled battery 110 can be charged in the range in which the single cells 111 which comprise the assembled battery 110 do not exceed Vmax.
  • Step 1 Obtain the OCV of the cell 111
  • the assembled battery control unit 150 obtains the OCV of the unit cell 111 using Equation 1 using the measurement result of the unit cell management unit 120 and the like. However, in the case of no load, the voltage measured by the unit cell management unit 120 can be directly handled as the OCV.
  • Step 2 Acquire the SOC of the unit cell 111
  • the assembled battery control unit 150 acquires the SOC of the single cell 111 using the OCV and the SOC table 181 of the single cell 111 acquired in step 1.
  • the SOC is obtained by integrating the current value measured by the current detection unit 130.
  • the average OCV is calculated from the OCV of the unit cell 111 described in step 1 or the average SOC which is the average value of the SOC obtained here is calculated by using the SOC table 181 of FIG. It is good to convert it to.
  • Step 3 Obtain the temperature of the cell 111
  • the assembled battery control unit 150 acquires the temperatures of two or more unit cell groups 112 using the unit cell control unit 121 provided for each unit cell group 112.
  • the temperature detection unit 125 is provided for each unit cell 111
  • the temperature is acquired for each unit cell 111. From the two or more acquired temperatures, a maximum temperature and a minimum temperature are calculated for calculating the allowable current, and an average temperature is calculated for calculating the allowable power.
  • Step 4 Get charging duration
  • the assembled battery control unit 150 acquires a duration time during which the unit cell 111 is charged. For example, counting is started when charging of the unit cell 111 is started, and is counted up while charging is continued. The counted result is used as the charging duration.
  • Step 5 Obtain the internal resistance value corresponding to the charging duration
  • the assembled battery control unit 150 refers to the internal resistance table 182 using the SOC, temperature, and charging duration of the unit cell 111 acquired in Steps 2 to 4, and acquires the corresponding internal resistance value.
  • Step 6 Obtain allowable charging current of single cell 111
  • the assembled battery control unit 150 obtains the allowable charging current of the unit cell 111 using the method described with reference to FIGS.
  • Step 7 Obtain allowable charging power
  • the assembled battery control unit 150 performs the calculations of Equations 3 and 4 using the allowable charging current obtained in Step 6 as an input, and obtains the allowable charging power.
  • the assembled battery control unit 150 obtains the allowable charging current and transmits it to the vehicle control unit 200, and the vehicle control unit 200 calculates the allowable charging power. You may implement.
  • the vehicle control unit 200 performs various calculations and processes, and transmits commands to the inverter 400 and the charger 420 so that the assembled battery 110 is charged within a range of allowable charging power received or calculated by itself.
  • Step 8 Repeat the above while continuing charging
  • the assembled battery control unit 150 repeatedly executes the operations of Step 1 to Step 7 described above. Thereby, the internal resistance value of the unit cell 111 is switched according to the charging duration, the allowable charging power is always obtained using the optimum allowable charging current, and the charging control can be performed.
  • the battery system 100 includes the internal resistance table 182 in which the two-dimensional map describing the internal resistance value according to the temperature and SOC of the unit cell 111 is provided for each charging duration. ing.
  • the battery system 100 acquires the internal resistance value of the single cell 111 from the internal resistance table 182 using the temperature, SOC, and charging duration of the single cell 111, and obtains the allowable charging current of the single cell 111 based on this. Thereby, even if the internal resistance value of the unit cell 111 changes according to the charging duration, the optimum allowable charging current can be acquired following this and the charging control can be performed.
  • the internal resistance table 182 describes the internal resistance value for each discharge duration time.
  • the charging duration is input, but instead of this, the discharging duration is input, and the allowable discharge current is calculated by changing the upper limit voltage Vmax of Equation 2 to the lower limit voltage Vmin.
  • the allowable discharge current is obtained for each single cell 111, and the value having the smallest absolute value among them is adopted as the final allowable discharge current value.
  • Embodiment 1 demonstrated the example which switches the internal resistance value of the cell 111 used when calculating
  • Embodiment 2 of the present invention when the battery system 100 operates by switching between an operation mode for supplying electric power to the electric vehicle and an operation mode for supplying electric power to the hybrid electric vehicle, the allowable charge / discharge current is calculated.
  • An operation example of switching the procedure to be performed in accordance with the switching of the operation mode will be described. Since the configuration of the battery system 100 is substantially the same as that of the first embodiment, the following description will focus on differences.
  • FIG. 8 is a diagram showing a method for obtaining an allowable charging current of the assembled battery 110 of the assembled battery control unit 150 included in the battery system 100 according to the second embodiment in a control block.
  • the assembled battery control unit 150 switches between operating the battery system 100 in the hybrid electric vehicle mode (HEV mode) or the electric vehicle mode (EV mode) in accordance with an instruction from the vehicle control unit 200.
  • HEV mode hybrid electric vehicle mode
  • EV mode electric vehicle mode
  • the assembled battery control unit 150 calculates the allowable charge / discharge current using the method described in the first embodiment when the battery system 100 is operated in the EV mode.
  • the internal resistance value is not switched depending on the charge / discharge duration time, and a fixed internal resistance value is used. Which internal resistance value is used is appropriately determined according to the specifications of the battery system 100 and the like.
  • the HEV mode is an operation mode in which the assembled battery 110 is charged and discharged for a relatively short time. calculate. Note that the use of the internal resistance value assuming a short time in the HEV mode is the same in the calculation of the allowable power performed after the allowable current is obtained. In the HEV mode, the calculation process of the assembled battery control unit 150 can be simplified by using the internal resistance value, which is shorter in time than the EV mode, as a fixed value.
  • the method of switching the operation of the assembled battery control unit 150 between the EV mode and the HEV mode in accordance with an instruction from the vehicle control unit 200 has been described.
  • the assembled battery control unit 150 always allows the allowable current or power for the HEV mode.
  • a method of calculating the allowable current or power for the EV mode in parallel In this case, the vehicle control unit 200 receives two types of allowable current or power in the HEV mode and the EV mode, and the vehicle control unit 200 uses either one or two allowable currents or power as necessary. Charge / discharge control of the battery 110 is performed. Even in this case, when the battery system 100 operates in the HEV mode, the allowable current or power is calculated using an internal resistance value that is assumed to have a shorter charge / discharge duration than when the battery system 100 operates in the EV mode.
  • the allowable current or electric power assumed in the HEV mode is grasped while the vehicle is traveling in the EV mode, and the allowable current assumed in the EV mode while the vehicle is traveling in the HEV mode. Or you can grasp the power.
  • the vehicle system which can consider the charging / discharging performance of the assembled battery 110 after mode switching, and also the traveling performance of the vehicle using the assembled battery 110 can be provided.
  • the allowable charge / discharge current may be calculated in consideration of the deterioration state (SOH) of the unit cell 111.
  • SOH means the rate of increase of internal resistance due to deterioration, and the value is 1 when the unit cell 111 is new, and the value becomes larger than 1 as it deteriorates. .
  • SOH any known technique can be used as a method for acquiring the SOH of the unit cell 111, and thus is not referred to in the third embodiment.
  • the SOH here is the result of detecting the rate of increase in internal resistance for each unit cell 111, and this is applied to the allowable current calculation for each unit cell 111.
  • FIG. 9 is a diagram showing a method for obtaining an allowable charging current of each unit cell 111 of the assembled battery control unit 150 included in the battery system 100 according to the third embodiment in a control block.
  • This allowable charging current is obtained for each of the time when the temperature of the unit cell 111 is the highest and the time when the temperature is the lowest, and the smaller one is adopted. Similar processing is performed when calculating the allowable discharge current.
  • FIG. 10 is a diagram showing a method for obtaining an allowable charging current of the assembled battery 110 of the assembled battery control unit 150 included in the battery system 100 according to the third embodiment in a control block.
  • the allowable charging current is obtained in consideration of the SOH of the single cell 111
  • both the SOC and SOH of each single cell 111 are used when obtaining the allowable charging current of each single cell 111.
  • the SOC and SOH of each unit cell 111 are used to determine the allowable current for each unit cell 111, and by adopting the smallest allowable current among them, the variation in the SOC and SOH of the unit cells 111 constituting the assembled battery 110 is obtained. Realize charge / discharge control taking into account.
  • SOH can also be taken into account when calculating the allowable power.
  • the assembled battery charging voltage required for calculating the allowable charging power the total of the voltages when the allowable current obtained for each unit cell 111 constituting the assembled battery 110 is energized or the assembled battery 110 is configured.
  • the average voltage when the allowable current of the unit cell 111 is energized is multiplied by the series number.
  • SOH is added to the method of obtaining the average voltage of the single cells 111 and multiplying by the series number, the average SOH is added to Equation 3 as a parameter and expressed as Equation 6.
  • Battery charge voltage number of series x (Average OCV + allowable charging current ⁇ average internal resistance value ⁇ average SOH) (Formula 6)
  • the result obtained by multiplying the assembled battery charging voltage and the allowable charging current obtained as described above is the allowable charging power.
  • FIG. 11 is a diagram showing a processing image when calculating the allowable charging current and the allowable charging power using Expression 5 and Expression 6.
  • the allowable charging current and charging power have been described, but the same processing can be performed on the discharge side in consideration of SOH.
  • the allowable discharge current is obtained by changing Vmax in Expression 5 to Vmin.
  • the allowable discharge power can be obtained by replacing the allowable charging current of Equation 6 with the allowable discharge current.
  • the assembled battery 110 can be more reliably charged and discharged.
  • each of the above-described configurations, functions, processing units, etc. can be realized as hardware by designing all or a part thereof, for example, with an integrated circuit, or the processor executes a program for realizing each function. By doing so, it can also be realized as software.
  • Information such as programs and tables for realizing each function can be stored in a storage device such as a memory or a hard disk, or a storage medium such as an IC card or a DVD.
  • battery system 110 assembled battery 111: single battery 112: single battery group 120: single battery management unit 121: single battery control unit 122: voltage detection circuit 123: control circuit 124: signal input Output circuit, 125: temperature detection unit, 130: current detection unit, 140: voltage detection unit, 150: assembled battery control unit, 160: signal communication means, 170: insulation element, 180: storage unit, 181: SOC table, 182 : Internal resistance table, 200: Vehicle control unit, 300 to 330: Relay, 400: Inverter, 410: Motor generator, 420: Charger.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

 蓄電池の内部抵抗の変化に追従して許容充放電電力を精度よく求めることのできる電池制御装置を提供することを目的とする。 本発明に係る電池制御装置は、単電池の温度、充電状態に応じた内部抵抗値を、単電池の充電または放電継続時間の値毎に記述した内部抵抗テーブルを備える。電池制御装置は、内部抵抗テーブルが記述している内部抵抗値を用いて単電池の許容充電電流または許容放電電流を算出し、その値にしたがって単電池の充電または放電を制御する(図5参照)。

Description

電池制御装置、電池システム
 本発明は、電池を制御する技術に関するものである。
 電気を動力として走行する車両には、鉛電池、ニッケル水素電池、リチウムイオン電池などの蓄電池が搭載される。ハイブリッド自動車や電気自動車が走行する際に必要となる電力は、これらの蓄電池によって賄われる。
 車両に搭載される蓄電池は広い温度範囲で使用され、蓄電池はその温度に応じた最大の許容電力を有する。この最大許容電力を超えて蓄電池の充放電を実施すると、過充電や過放電となる可能性がある。
 一般的に、低温状態の蓄電池が持つ最大許容電力は小さく、高温状態の蓄電池が持つ最大許容電力は大きい。また、高温状態では最大許容電力は大きいが、高温状態での蓄電池の使用は蓄電池の劣化を促進させる。一方、蓄電池の充電状態(SOC:State of Charge)が高いほど最大許容充電電力は小さく、最大許容放電電力は大きい。また、蓄電池のSOCが低いほど最大許容放電電力は小さく、最大許容充電電力は大きい。蓄電池を安全に使用するためには、最大許容電力を超えない範囲内において充放電制御を実施する必要がある。
 下記特許文献1には、組電池を構成する単電池間に温度ばらつきが生じた場合でも、各単電池に適した許容充放電電力を算出し、充放電制御を最適に実施するための技術が記載されている。
特開2007-165211号公報
 上記特許文献1に記載されている技術では、充放電の継続時間に応じて蓄電池の内部抵抗が変化した場合に、許容充放電電力の算出精度が低下する可能性がある。
 本発明は、上記のような課題を解決するためになされたものであり、蓄電池の内部抵抗の変化に追従して許容充放電電力を精度よく求めることのできる電池制御装置を提供することを目的とする。
 本発明に係る電池制御装置は、単電池の温度、充電状態に応じた内部抵抗値を、単電池の充電または放電継続時間の値毎に記述した内部抵抗テーブルを備える。電池制御装置は、内部抵抗テーブルに記述された内部抵抗値を用いて単電池の最大許容充電電流または最大許容放電電流を算出し、その値にしたがって算出した最大許容充電電力または最大許容放電電力を用いることにより、単電池の充電または放電を制御する。
 本発明に係る電池制御装置によれば、充放電を継続するにしたがって単電池の内部抵抗が変化しても、内部抵抗テーブルから取得する内部抵抗値を変化にしたがって切り替えることにより、内部抵抗の変化に追従することができる。これにより、許容充放電電力を精度よく求めることができる。
実施形態1に係る電池システム100とその周辺の構成を示す図である。 単電池制御部121の回路構成を示す図である。 記憶部180が格納しているSOCテーブル181の例を示す図である。 記憶部180が格納している内部抵抗テーブル182の例を示す図である。 電池システム100が備える組電池制御部150の各単電池111の許容充電電流を求める手法を制御ブロックで表した図である。 電池システム100が備える組電池制御部150の組電池110の許容充電電流を求める手法を制御ブロックで表した図である。 電池システム100が備える組電池制御部150が組電池110の許容充電電力を求める手法を、制御ブロックで表した図である。 実施形態2に係る電池システム100が備える組電池制御部150の組電池110の許容充電電流を求める手法を制御ブロックで表した図である。 実施形態3に係る電池システム100が備える組電池制御部150の各単電池111の許容充電電流を求める手法を制御ブロックで表した図である。 実施形態3に係る電池システム100が備える組電池制御部150の組電池110の許容充電電流を求める手法を制御ブロックで表した図である。 電池システム100が備える組電池制御部150が組電池110の許容充電電力を求める手法を、制御ブロックで表した図である。
 以下、本発明の実施形態を図面に基づいて説明する。以下の実施形態では、プラグインハイブリッド自動車(PHEV)の電源を構成する電池システムに対して本発明を適用した場合を例に挙げて説明する。
 また、以下の実施形態では、リチウムイオン電池を採用した場合を例に挙げて説明するが、他にもニッケル水素電池、鉛電池、電気二重層キャパシタ、ハイブリッドキャパシタなどを用いることもできる。なお、以下の実施形態では単電池を直列に接続して組電池を構成しているが、単電池を並列接続したものを直列接続して組電池を構成してもよいし、直列接続した単電池を並列接続して組電池を構成してもよい。
<実施の形態1:システム構成>
 図1は、本発明の実施形態1に係る電池システム100とその周辺の構成を示す図である。電池システム100はリレー300と310を介してインバータ400に接続され、リレー320と330を介して充電器420に接続される。電池システム100は、組電池110、単電池管理部120、電流検知部130、電圧検知部140、組電池制御部150、記憶部180を備える。
 組電池110は、複数の単電池111から構成される。単電池管理部120は、単電池111の状態を監視する。電流検知部130は、電池システム100に流れる電流を検知する。電圧検知部140は、組電池110の総電圧を検知する。組電池制御部150は、組電池110を制御する。
 組電池制御部150は、単電池管理部120が送信する単電池111の電池電圧や温度、電流検知部130が送信する電池システム100に流れる電流値、電圧検知部140が送信する組電池110の総電圧値を受け取る。組電池制御部150は、受け取った情報をもとに組電池110の状態を検知する。組電池制御部150による状態検知の結果は、単電池管理部120や車両制御部200に送信される。
 組電池110は、電気エネルギーの蓄積および放出(直流電力の充放電)が可能な複数の単電池111を電気的に直列に接続して構成している。組電池110を構成する単電池111は、状態の管理・制御を実施する上で、所定の単位数にグループ分けされている。グループ分けされた単電池111は、電気的に直列に接続され、単電池群112a、112bを構成している。単電池群112を構成する単電池111の個数は、全ての単電池群112において同数でもよいし、単電池群112毎に単電池111の個数が異なっていてもよい。
 単電池管理部120は、組電池110を構成する単電池111の状態を監視する。単電池管理部120は、単電池群112毎に設けられた単電池制御部121を備える。図1では、単電池群112aと112bに対応して、単電池制御部121aと121bが設けられている。単電池制御部121は、単電池群112を構成する単電池111の状態を監視および制御する。
 本実施形態1では、説明を簡略化するために、4個の単電池111を電気的に直列接続して単電池群112aと112bを構成し、単電池群112aと112bをさらに電気的に直列接続して合計8個の単電池111を備える組電池110とした。
 組電池制御部150と単電池管理部120は、フォトカプラに代表される絶縁素子170および信号通信手段160を介して信号を送受信する。
 組電池制御部150と、単電池管理部120を構成する単電池制御部121aおよび121bとの間の通信手段について説明する。単電池制御部121aおよび121bは、それぞれが監視する単電池群112aおよび112bの電位の高い順にしたがって直列に接続されている。組電池制御部150が単電池管理部120に送信した信号は、絶縁素子170および信号通信手段160を介して単電池制御部121aに入力される。単電池制御部121aの出力は信号通信手段160を介して単電池制御部121bに入力され、最下位の単電池制御部121bの出力は絶縁素子170および信号通信手段160を介して組電池制御部150へと伝送される。本実施形態1では、単電池制御部121aと単電池制御部121bの間は絶縁素子170を介していないが、絶縁素子170を介して信号を送受信することもできる。
 記憶部180は、組電池110、単電池111、単電池群112の内部抵抗特性、満充電時の容量、分極電圧、劣化特性、個体差情報、SOCと開回路電圧(OCV:Open Circuit Voltage)の対応関係などの情報を格納する。さらに、単電池管理部120、単電池制御部121、組電池制御部150などの特性情報についてもあらかじめ記憶することができる。記憶部180が記憶する情報については、後述の図3~図4で改めて説明する。
 組電池制御部150は、単電池管理部120、電流検知部130、電圧検知部140、車両制御部200から受け取った情報、後述するSOCテーブル181および内部抵抗テーブル182を用いて、1つ以上の単電池111のSOC、劣化状態(SOH:State of Health)、充電・放電可能な電流や電力(以下では、充電側を正、放電側を負の値として表現する)、異常状態、充放電量を制御するための演算などを実行する。そして、演算結果に基づいて、単電池管理部120や車両制御部200に情報を出力する。
 車両制御部200は、組電池制御部150が送信する情報を用いて、リレー300と310を介して電池システム100と接続されるインバータ400を制御する。また、リレー320と330を介して電池システム100に接続される充電器420を制御する。車両走行中には、電池システム100はインバータ400と接続され、組電池110が蓄えているエネルギーを用いて、モータジェネレータ410を駆動する。充電の際には、電池システム100は充電器420と接続され、家庭用の電源または電気スタンドからの電力供給によって充電される。
 充電器420は、家庭または電気スタンドに代表される外部の電源を用いて組電池110を充電する際に用いられる。本実施形態1では、充電器420は車両制御部200からの指令に基づき充電電圧や充電電流などを制御する構成としているが、組電池制御部150からの指令に基づき制御を実施してもよい。また、充電器420は車両の構成、充電器420の性能、使用目的、外部の電源の設置条件などに応じて車両内部に設置してもよいし、車両の外部に設置することもできる。
 電池システム100を搭載した車両システムが始動して走行する場合には、車両制御部200の管理のもと、電池システム100はインバータ400に接続され、組電池110が蓄えているエネルギーを用いてモータジェネレータ410を駆動し、回生時はモータジェネレータ410の発電電力により組電池110が充電される。電池システム100を備える車両が家庭用または電気スタンドに代表される外部の電源と接続された際には、車両制御部200が発信する情報に基づき電池システム100と充電器420とが接続され、組電池110が所定の条件になるまで充電される。充電によって組電池110に蓄えられたエネルギーは、次回の車両走行時に利用されるか、車両内外の電装品等を動作させるためにも利用される。さらに必要に応じて、家庭用の電源に代表される外部電源へも放出する場合がある。
 図2は、単電池制御部121の回路構成を示す図である。単電池制御部121は、電圧検出回路122、制御回路123、信号入出力回路124、温度検知部125を備える。電圧検出回路122は、各単電池111の端子間電圧を測定する。制御回路123は、電圧検出回路122および温度検知部125から測定結果を受け取り、信号入出力回路124を介して組電池制御部150に送信する。なお、単電池制御部121に一般的に実装される、自己放電や消費電流ばらつき等に伴い発生する単電池111間の電圧やSOCばらつきを均等化する回路構成は、周知のものであると判断して記載を省略した。
 図2における単電池制御部121が備える温度検知部125は、単電池群112の温度を測定する機能を有する。温度検知部125は、単電池群112全体として1つの温度を測定し、単電池群112を構成する単電池111の温度代表値としてその温度を取り扱う。温度検知部125が測定した温度は、単電池111、単電池群112、または組電池110の状態を検知するための各種演算に用いられる。図2はこれを前提とするため、単電池制御部121に1つの温度検知部125を設けた。単電池111毎に温度検知部125を設けて単電池111毎に温度を測定し、単電池111毎の温度に基づいて各種演算を実行することもできるが、この場合は温度検知部125の数が多くなる分、単電池制御部121の構成が複雑となる。
 図2では、簡易的に温度検知部125を示した。実際は温度測定対象に温度センサが設置され、設置した温度センサが温度情報を電圧として出力し、これを測定した結果が制御回路123を介して信号入出力回路124に送信され、信号入出力回路124が単電池制御部121の外に測定結果を出力する。この一連の流れを実現する機能が単電池制御部121に温度検知部125として実装され、温度情報(電圧)の測定には電圧検出回路122を用いることもできる。
 図3は、記憶部180が格納しているSOCテーブル181の例を示す図である。SOCテーブル181は、単電池111のOCVと、単電池111のSOCとの対応関係を記述したデータテーブルである。データ形式は任意でよいが、ここでは説明の便宜上、グラフ形式でデータ例を示す。なお、本実施例ではデータテーブルを用いているが、数式などを用いることでOCVとSOCとの対応関係を表現することもできる。OCVとSOCの対応関係を示す特性情報であり、OCVからSOC、またはSOCからOCVへと変換できる手段であれば何でもよい。
 OCVは、単電池111の無負荷時の電圧である。リレー300、310、320、330が閉じる前、またはリレー300、310、320、330が閉じられているが組電池110の充放電が開始されていない状態、などのタイミングにおいて測定した単電池111の端子間電圧がOCVと判断できる。さらに、組電池110の充電または放電を実施しているがその電流値が微弱な場合にOCVと見なすこともできる。
 単電池111に出入りする電流値が大きい場合は、単電池111に含まれる内部抵抗が無視できない電圧降下や電圧上昇を生じさせる。この時の電池電圧は閉回路電圧(CCV:Closed Circuit Voltage)であり、この条件下では単電池制御部121が直接、単電池111のOCVを把握することが困難である。この場合にOCVを得るためには、単電池制御部121が測定した単電池111のCCVと、電流検知部130が測定した単電池111に出入りする電流Iと、あらかじめ記憶した単電池111の内部抵抗Rと、分極電圧Vpに関する情報とを用いて、組電池制御部150が下記式1によりOCVを計算する必要がある。求めたOCVを図3のテーブルに入力することにより、各時点におけるSOCを得る。
 下記式1の計算は、単電池111を充放電しているか否かに関わらず組電池制御部150に実行させることができる。組電池110を構成する単電池111それぞれのOCVを用いるなどして単電池111毎にSOCを計算する。
 SOCを計算する他の方法としては、単電池111に出入りする電流を積分することによりSOCを得る方法が知られている(SOC=初期SOC+100×∫Idt/満充電容量)。本実施例ではどちらのSOC計算方法を採用してもよい。さらには、組電池制御部150が単電池111毎にSOCを得ることができるその他の手法を用いてもよい。
 単電池111毎にSOCを得るためには、下記式1のCCV、R、Vp、前述した電流を積分することによりSOCを得るSOC計算方法を採用する場合は、初期SOCや満充電容量などを単電池111毎に計算用パラメータとして用意しておく必要がある。
 OCV=CCV-I×R-Vp ・・・(式1)
 組電池制御部150は、単電池制御部121が検出した単電池111のOCVとSOCテーブル181を用いることにより、単電池111のSOCを得ることができる。また、単電池111のOCVを合計して組電池110のOCVを求めることもできる。単電池111毎にSOC特性が異なる場合は、各単電池111についてSOCテーブル181を設けてもよい。
 図4は、記憶部180が格納している内部抵抗テーブル182の例を示す図である。内部抵抗テーブル182は、単電池111の温度、SOCに応じた内部抵抗値を、充電継続時間に応じて記述したデータテーブルである。内部抵抗テーブル182のデータ形式は任意でよいが、ここでは説明の便宜上、横軸を単電池111の温度、縦軸を単電池111のSOCとして単電池111の内部抵抗値Rを記述した2次元マップを、充電継続時間軸に沿って複数設けた例を示した。なお、本実施例ではデータテーブルを用いたが、図3のSOCテーブル181と同様に、数式などデータテーブルとは異なる手段で温度、SOC、充電継続時間と内部抵抗の対応関係を表現してもよく、温度とSOCと充電継続時間に応じた内部抵抗の特性情報であれば何でもよい。
 組電池制御部150は、前述した方法で取得したSOCと単電池制御部121が取得した単電池群112の代表温度とを用いて、内部抵抗テーブル182を参照することにより、単電池111の内部抵抗値を取得する。さらに単電池111の充電継続時間を指定することにより、充電継続時間毎の内部抵抗値を取得することができる。
 内部抵抗テーブル182の充電継続時間毎の2次元マップをどの程度の時間間隔で設けるかは、電池システム100の仕様などに応じて適宜定めればよい。例えば、図4に例示した2次元マップを、充電継続時間1秒毎に設けることができる。
 以上、電池システム100の構成について説明した。次に、電池システム100の動作について、基本的な考え方と動作手順を説明する。
<実施の形態1:システム動作の考え方>
 単電池111の内部抵抗値は、当該単電池111の温度とSOCに応じて変化する。単電池111の温度は単電池制御部121から、単電池111のSOCは前述した方法を用いて、それぞれ取得することができる。組電池制御部150は、これらを用いて単電池111の内部抵抗値を取得し、適切な許容充電電流を定める。
 ただし、単電池111の内部抵抗値は充電継続時間によっても変化する。そこで本実施形態1では、内部抵抗テーブル182を充電継続時間毎に設け、単電池111のより正確な内部抵抗値を得ることができるようにした。これにより、許容充電電流をさらに正確に求めることができる。
 なお、組電池110を構成する単電池111間には温度ばらつきが生じ、温度が最も高いときと、温度が最も低いときとで単電池111の内部抵抗値が異なり、許容電流の値にも影響が出る可能性がある。そこで、2つ以上の単電池制御部121が測定した2つ以上の温度測定結果を用いて組電池110における最高温度と最低温度を求め、組電池110における最高温度と最低温度に対応する許容電流をそれぞれ計算し、いずれか低い方の許容電流を最終的な許容電流値として採用することとした。
 図5は、電池システム100が備える組電池制御部150の各単電池111の許容充電電流を求める手法を制御ブロックで表した図である。単電池111の許容最大端子電圧をVmaxとすると、許容充電電流は下記式2によって求めることができる。下記式2のOCVは、式1の計算結果を用いることもできるし、単電池111に出入りする電流を積分することによりSOCを得る場合は、SOCの計算結果を図3のSOCテーブル181でOCVに変換した結果を用いることもできる。図5では、一例として、単電池111のSOCを入力として用いる場合を示した。
 許容充電電流=(Vmax-OCV)/内部抵抗値 ・・・(式2)
 この許容充電電流を、単電池111の温度が最も高いときと温度が最も低いときのそれぞれについて求め、いずれか小さいほうを最終的に採用する。
 図6は、電池システム100が備える組電池制御部150の組電池110の許容充電電流を求める手法を制御ブロックで表した図である。組電池制御部150は、図5で説明した手法に加えて単電池111毎のSOCを入力して単電池111毎における許容充電電流を算出した後、最も小さい充電電流を最終的な許容充電電流として採用する。直列接続した全ての単電池111に流れる電流は同じになるため、各単電池111の中で最も小さい許容充電電流を採用することにより、全ての単電池111の電圧がVmaxを超えない充電制御を実現することができる。
 最終的に決定した組電池110の許容充電電流を用いて、充電時の組電池充電電圧を計算し、許容充電電流と組電池充電電圧とを乗算することにより、組電池110の許容充電電力を計算することができる。
 組電池充電電圧は、最終的に決定した許容充電電流を通電した際に見込まれる組電池110の総電圧である。組電池充電電圧は、組電池110を構成する単電池111毎にSOCや温度などを入力して求められる許容充電電流で充電した場合の各単電池111の電圧を合計した結果としてもよいし、組電池110を構成する単電池111の平均SOCや平均温度などを入力して求められる許容充電電流で充電した場合の単電池111の平均電圧を直列数で乗算した結果としてもよい。
 前述した単電池111毎の電圧を求めて電圧の合計値を計算する方法と、単電池111の平均電圧を求めて直列数で乗算する方法のどちらを採用してもよいが、本実施形態では単電池111の平均電圧を求めて直列数で乗算する方法を採用する。下記式3を用いてその方法を説明する。
 下記式3における平均OCVは、単電池111毎の式1の計算結果の平均値、または単電池111毎に求めた電流積分のSOCの平均値を図3のSOCテーブル181により平均OCVへと変換した結果などを用いる。下記式3における平均内部抵抗値は、式1と図3を用いて求めた単電池111毎のSOCまたは単電池111毎の電流積分のSOCの平均値と、組電池110から測定した複数の温度の平均値と、充電継続時間とを図4の内部抵抗テーブル182に入力して取得する。
 組電池充電電圧=直列数×
   (平均OCV+許容充電電流×平均内部抵抗値) ・・・(式3)
 許容充電電力=許容充電電流×組電池充電電圧 ・・・(式4)
 図7は、前述した入力パラメータから、許容充電電流と許容充電電力を計算する際の処理イメージを示す図である。
 組電池制御部150が前述した許容充電電力までの一連の計算を実行し、車両制御部200に計算結果を送信し、車両制御部200が受信した許容充電電力の範囲内で組電池110を充電するようインバータ400等に指令を発信する。このようにすることで、組電池110を構成する単電池111が何れもVmaxを超えない範囲で、組電池110を充電することができる。
<実施の形態1:システムの動作手順>
 以下では、電池システム100が単電池111を充電する際に、各単電池111の充電電力を許容範囲内に収めるための動作手順について説明する。
(ステップ1:単電池111のOCVを取得する)
 組電池制御部150は、単電池管理部120等の測定結果を用いて、式1により単電池111のOCVを得る。ただし、無負荷時の場合は単電池管理部120が測定した電圧をそのままOCVとして扱うことができる。
(ステップ2:単電池111のSOCを取得する)
 組電池制御部150は、ステップ1で取得した単電池111のOCVとSOCテーブル181を用いて、単電池111のSOCを取得する。単電池111に出入りする電流を積分するSOC計算方式を採用する場合は、電流検知部130で測定した電流値を積分してSOCを取得する。さらに、許容電力の計算に備えて、ステップ1で説明した単電池111のOCVから平均OCVを計算するか、ここで求めたSOCの平均値である平均SOCを図3のSOCテーブル181で平均OCVに変換しておくとよい。
(ステップ3:単電池111の温度を取得する)
 組電池制御部150は、単電池群112毎に設けた単電池制御部121を用いて、2つ以上の単電池群112の温度を取得する。単電池111毎に温度検知部125を設けている場合は、単電池111毎に温度を取得する。取得した2つ以上の温度から、許容電流の計算用に最高温度と最低温度を求め、許容電力の計算用に平均温度を求めておく。
(ステップ4:充電継続時間を取得する)
 組電池制御部150は、単電池111を充電している継続時間を取得する。例えば、単電池111の充電を開始した時点でカウントを開始し、充電が継続している間はカウントアップする。このカウントした結果を充電継続時間として用いる。
(ステップ5:充電継続時間に対応する内部抵抗値を取得する)
 組電池制御部150は、ステップ2~ステップ4で取得した、単電池111のSOC、温度、充電継続時間を用いて内部抵抗テーブル182を参照し、対応する内部抵抗値を取得する。
(ステップ6:単電池111の許容充電電流を求める)
 組電池制御部150は、図5および図6で説明した手法を用いて、単電池111の許容充電電流を求める。
(ステップ7:許容充電電力を求める)
 組電池制御部150は、ステップ6で求めた許容充電電流を入力として式3および式4の計算を実施し、許容充電電力を求める。車両制御部200が許容充電電力を求める機能を備えている場合は、組電池制御部150が許容充電電流までを求めて車両制御部200に送信し、車両制御部200が許容充電電力の計算を実施してもよい。車両制御部200は、受信または自身で計算した許容充電電力の範囲内で組電池110が充電されるように各種演算や処理、インバータ400や充電器420への指令の発信を行う。
(ステップ8:充電を継続する間は以上を繰り返す)
 組電池制御部150は、以上のステップ1~ステップ7の動作を繰り返し実行する。これにより、充電継続時間に応じて単電池111の内部抵抗値を切り替え、常に最適な許容充電電流を用いて許容充電電力を求め、充電制御を実施することができる。
<実施の形態1:まとめ>
 以上のように、本実施形態1に係る電池システム100は、単電池111の温度とSOCに応じた内部抵抗値を記述した2次元マップを充電継続時間毎に設けた、内部抵抗テーブル182を備えている。電池システム100は、単電池111の温度、SOC、充電継続時間を用いて内部抵抗テーブル182から単電池111の内部抵抗値を取得し、これに基づき単電池111の許容充電電流を求める。これにより、充電継続時間に応じて単電池111の内部抵抗値が変化しても、これに追従して最適な許容充電電流を取得し、充電制御を実施することができる。
 なお、本実施形態1において、単電池111を充電する際の動作を説明したが、放電時の動作についても同様の手法を用いることができる。すなわち、内部抵抗テーブル182は、放電継続時間毎に内部抵抗値を記述するようにしておく。図5は充電継続時間を入力しているが、これに替えて放電継続時間を入力するようにし、式2の上限電圧Vmaxを下限電圧Vminに替えることにより、許容放電電流を算出する。そして図6と同様に、各単電池111について許容放電電流を求め、その中で最も絶対値が小さくなった値を最終的な許容放電電流値として採用する。
<実施の形態2>
 実施形態1では、充放電継続時間に応じて、許容充放電電流を求める際に用いる単電池111の内部抵抗値を切り替える例を説明した。この手法は、電気自動車のように充放電時間が比較的長い運用形態を想定している場合には有効であるが、ハイブリッド電気自動車のように電池を用いる時間が比較的短い運用形態の下では必ずしも必須ではないと考えられる。
 そこで本発明の実施形態2では、電池システム100が、電気自動車に電力を供給する動作モードと、ハイブリッド電気自動車に電力を供給する動作モードとを切り替えて動作する場合において、許容充放電電流を算出する手順を、動作モードの切り替えにともなって切り替える動作例を説明する。電池システム100の構成は実施形態1と概ね同様であるため、以下では差異点を中心に説明する。
 図8は、本実施形態2に係る電池システム100が備える組電池制御部150の組電池110の許容充電電流を求める手法を制御ブロックで表した図である。
 組電池制御部150は、車両制御部200からの指示にしたがって、電池システム100をハイブリッド電気自動車モード(HEVモード)で動作させるか、電気自動車モード(EVモード)で動作させるかを切り替える。
 組電池制御部150は、電池システム100をEVモードで動作させる場合は、実施形態1で説明した手法を用いて、許容充放電電流を算出する。一方、電池システム100をHEVモードで動作させる場合は、充放電継続時間によって内部抵抗値を切り替えず、固定の内部抵抗値を用いる。いずれの内部抵抗値を用いるかは、電池システム100の仕様などに応じて適宜定める。
 ただし、EVモードと比較して、HEVモードは組電池110が充放電する時間が比較的短い運用形態であるため、EVモードよりも充放電継続時間が短い内部抵抗値を採用して許容電流を計算する。なお、HEVモードで短い時間を想定した内部抵抗値を使用することは、許容電流を求めた後に行う許容電力の計算でも同様である。HEVモードではEVモードと比して時間が短い内部抵抗値を固定値として用いることにより、組電池制御部150の演算処理を簡素化できる。
 前述では、車両制御部200からの指示にしたがって組電池制御部150の動作をEVモードかHEVモードかを切り替える方法を述べたが、組電池制御部150は常に、HEVモード用の許容電流または電力と、EVモード用の許容電流または電力とを並行して計算する方法を採用することもできる。この場合は、車両制御部200がHEVモードとEVモードの2種類の許容電流若しくは電力を受信し、車両制御部200が必要に応じて何れか一方または2つの許容電流若しくは電力を使用して組電池110の充放電制御を実施する。この場合でも、電池システム100がHEVモードで動作するときは、EVモードで動作するときよりも充放電継続時間が短いと想定した内部抵抗値を用いて許容電流若しくは電力を算出する。
 2つの許容電流または電力を並行して求めることにより、EVモードで車両走行中にHEVモードで想定される許容電流若しくは電力を把握し、HEVモードで車両走行中にEVモードで想定される許容電流または電力を把握することができる。これにより、車両の走行モードを切り替える際に、モード切替後の組電池110の充放電性能、さらには組電池110を用いた車両の走行性能を考慮できる車両システムを提供できる。また、2つのモードで動作する組電池110の充放電性能に基づいて車両性能を確認し、車両の全体制御を決定できる車両システムを実現することができる。
<実施の形態3>
 以上の実施形態1~2において、単電池111の劣化状態(SOH)を加味して許容充放電電流を算出するようにしてもよい。ここでのSOHは劣化に伴う内部抵抗の上昇率のことを意味しており、単電池111が新品のときは値が1であり、劣化するに応じて値が1よりも大きくなるものとする。本発明の実施形態3では、SOHを加味した動作例を説明する。単電池111のSOHを取得する手法としては、任意の公知技術を用いることができるので、本実施形態3では言及しない。ただし、ここでのSOHは単電池111毎に内部抵抗上昇率を検知した結果とし、これを単電池111毎の許容電流演算に適用することを想定している。
 図9は、本実施形態3に係る電池システム100が備える組電池制御部150の各単電池111の許容充電電流を求める手法を制御ブロックで表した図である。単電池111のSOHを加味する場合、単電池111の許容最大端子電圧をVmaxとすると、許容充電電流は以下の式5によって求めることができる。
 許容充電電流=(Vmax-OCV)/(内部抵抗値×SOH) ・・・(式5)
 この許容充電電流を、単電池111の温度が最も高いときと温度が最も低いときのそれぞれについて求め、いずれか小さいほうを採用する。許容放電電流を計算する際にも、同様の処理を実行する。
 図10は、本実施形態3に係る電池システム100が備える組電池制御部150の組電池110の許容充電電流を求める手法を制御ブロックで表した図である。本実施形態3では、単電池111のSOHを加味して許容充電電流を求めるので、各単電池111の許容充電電流を求める際に、各単電池111のSOCとSOHとを双方用いることになる。各単電池111のSOCとSOHとを用いて単電池111毎に許容電流を求め、その中で最も小さい許容電流を採用することにより、組電池110を構成する単電池111のSOCやSOHばらつきを考慮に入れた充放電制御を実現する。
 許容電力を計算する際にもSOHを加味することができる。許容充電電力を計算する際に必要な組電池充電電圧は、組電池110を構成する単電池111毎に求めた許容電流を通電した時の電圧の合計を用いるか、または組電池110を構成する単電池111の許容電流を通電した際の平均電圧を直列数で乗算して得られることは、前述の通りである。単電池111の平均電圧を求めて直列数で乗算する方法にSOHを加える場合、式3に平均SOHをパラメータとして追加して式6のように表現する。
 組電池充電電圧=直列数×
   (平均OCV+許容充電電流×平均内部抵抗値×平均SOH) ・・・(式6)
 以上のように求めた組電池充電電圧と許容充電電流とを乗算した結果が許容充電電力である。
 図11は、式5や式6を用いて、許容充電電流と許容充電電力を計算する際の処理イメージを示す図である。
 組電池110を構成する単電池111毎に求めた許容電流を通電した時の電圧の合計を組電池充電電圧として用いる場合は、式6に替えて、組電池110を構成する単電池111毎にSOCやSOH、温度を入力して許容充電電流で充電した場合の各単電池111の電圧を求め、これら単電池111の電圧を合計する。
 前述では許容充電電流・充電電力について述べたが、放電側に関してもSOHを加味して同様の処理を行うことができる。具体的には、式5のVmaxをVminに替えることにより、許容放電電流が求められる。さらに、式6の許容充電電流を許容放電電流に替えることにより、許容放電電力を得ることができる。
 本実施形態では、組電池110を構成する単電池111間のSOCやSOHがばらついた場合でも、これを考慮した組電池110の許容充電電流または電力、許容放電電流または電力を求め、これらを車両制御部200に送信することにより、組電池110をより確実に充放電制御することができる。
 以上、本発明者によってなされた発明を実施形態に基づき具体的に説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることは言うまでもない。
 また、上記各構成、機能、処理部などは、それらの全部または一部を、例えば集積回路で設計することによりハードウェアとして実現することもできるし、プロセッサがそれぞれの機能を実現するプログラムを実行することによりソフトウェアとして実現することもできる。各機能を実現するプログラム、テーブルなどの情報は、メモリやハードディスクなどの記憶装置、ICカード、DVDなどの記憶媒体に格納することができる。
 100:電池システム、110:組電池、111:単電池、112:単電池群、120:単電池管理部、121:単電池制御部、122:電圧検出回路、123:制御回路、124:信号入出力回路、125:温度検知部、130:電流検知部、140:電圧検知部、150:組電池制御部、160:信号通信手段、170:絶縁素子、180:記憶部、181:SOCテーブル、182:内部抵抗テーブル、200:車両制御部、300~330:リレー、400:インバータ、410:モータジェネレータ、420:充電器。

Claims (10)

  1.  単電池が複数接続された組電池を制御する制御部と、
     前記単電池または前記組電池の端子間電圧を測定する電圧測定部と、
     前記単電池または前記組電池に流れる電流を測定する電流測定部と、
     前記単電池または前記組電池の温度を測定する温度測定部と、
     前記単電池の温度、充電状態、内部抵抗値、および前記単電池を充電または放電する継続時間の対応関係を示した内部抵抗の特性情報を格納する記憶部と、
     を備え、
     前記内部抵抗の特性情報は、
      前記継続時間の値毎に前記対応関係を記述しており、
     前記制御部は、
      前記電圧測定部または前記電流測定部の測定結果を用いて前記単電池の充電状態を取得し、
      前記単電池の温度、充電状態、および前記継続時間に対応する前記内部抵抗値を前記内部抵抗の特性情報から取得し、
      前記単電池の上限電圧または下限電圧、開回路電圧、および前記内部抵抗値を用いて、前記単電池の充電電流または放電電流を算出し、その値にしたがって前記単電池の充電または放電を制御する
     ことを特徴とする電池制御装置。
  2.  前記制御部は、
      前記組電池の動作モードを、電気自動車に電力を供給する動作モードと、ハイブリッド電気自動車に電力を供給する動作モードとで切り替えて動作させ、
      電気自動車に電力を供給する動作モードで前記組電池を動作させるときは、前記単電池を充電または放電する継続時間に対応する前記内部抵抗値を用いて、前記単電池の充電電流または放電電流を算出する
     ことを特徴とする請求項1記載の電池制御装置。
  3.  前記制御部は、
      前記組電池の動作モードを、電気自動車に電力を供給する動作モードと、ハイブリッド電気自動車に電力を供給する動作モードとで切り替えて動作させ、
      ハイブリッド電気自動車に電力を供給する動作モードで前記組電池を動作させるときは、いずれかの前記継続時間に対応する前記内部抵抗値を固定的に用いて、前記単電池の充電電流または放電電流を算出する
     ことを特徴とする請求項1記載の電池制御装置。
  4.  前記制御部は、
      前記組電池の動作モードを、電気自動車に電力を供給する動作モードと、ハイブリッド電気自動車に電力を供給する動作モードとで切り替えて動作させ、
      ハイブリッド電気自動車に電力を供給する動作モードで前記組電池を動作させるときは、電気自動車に電力を供給する動作モードで前記組電池を動作させるときよりも短い前記継続時間に対応する前記内部抵抗値を用いて、前記単電池の充電電流または放電電流を算出する
     ことを特徴とする請求項1記載の電池制御装置。
  5.  前記制御部は、
      前記単電池の上限電圧または下限電圧、開回路電圧、前記内部抵抗値、および前記単電池の劣化状態を用いて、前記単電池の充電電流または放電電流を算出する
     ことを特徴とする請求項1記載の電池制御装置。
  6.  前記制御部は、
      前記単電池の温度のうち最も高いものに対応する前記内部抵抗値を求めて算出した前記単電池の充電電流または放電電流と、前記単電池の温度のうち最も低いものに対応する前記内部抵抗値を求めて算出した前記単電池の充電電流または放電電流とのうち、いずれか小さいほうを用いて、前記単電池の充電または放電を制御する
     ことを特徴とする請求項1記載の電池制御装置。
  7.  前記制御部は、
      各前記単電池の充電電流または放電電流のうち最も小さいものを用いて、前記単電池の充電または放電を制御する
     ことを特徴とする請求項1記載の電池制御装置。
  8.  前記記憶部は、
      前記単電池の開回路電圧と充電状態の対応関係を示したSOCの特性情報を格納し、
     前記制御部は、
      前記単電池の開回路電圧と前記SOCの特性情報を用いて前記単電池の現在の充電状態を取得する
     ことを特徴とする請求項1記載の電池制御装置。
  9.  請求項1記載の電池制御装置と、
     単電池が複数接続された組電池と、
     を有し、
     前記電池制御装置は、前記単電池または前記組電池を制御する
     ことを特徴とする電池システム。
  10.  単電池が複数接続された組電池を制御する制御部と、
     前記単電池または前記組電池の端子間電圧を測定する電圧測定部と、
     前記単電池または前記組電池に流れる電流を測定する電流測定部と、
     前記単電池または前記組電池の温度を測定する温度測定部と、
     前記単電池の温度、充電状態、および内部抵抗値の対応関係を示した内部抵抗の特性情報を格納する記憶部と、
     を備え、
     前記制御部は、
      前記電圧測定部または前記電流測定部の測定結果を用いて前記単電池の充電状態を取得し、
      前記単電池の温度と充電状態に対応する前記内部抵抗値を前記内部抵抗の特性情報から取得し、
      前記単電池の上限電圧または下限電圧、開回路電圧、および前記内部抵抗値を用いて、前記単電池の充電電流または放電電流を算出し、最も小さくなる充電電流または放電電流を最終的な許容電流とし、
      前記最終的な許容電流を通電した際の前記単電池の電圧の合計値、または前記単電池の平均電圧に直列数を乗算した結果を前記最終的な許容電流と乗算することにより、許容電力を求める
     ことを特徴とする電池制御装置。
PCT/JP2011/063358 2011-06-10 2011-06-10 電池制御装置、電池システム WO2012169063A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2011/063358 WO2012169063A1 (ja) 2011-06-10 2011-06-10 電池制御装置、電池システム
US14/124,590 US9252624B2 (en) 2011-06-10 2011-06-10 Battery control device and battery system
JP2013519328A JP5715694B2 (ja) 2011-06-10 2011-06-10 電池制御装置、電池システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/063358 WO2012169063A1 (ja) 2011-06-10 2011-06-10 電池制御装置、電池システム

Publications (1)

Publication Number Publication Date
WO2012169063A1 true WO2012169063A1 (ja) 2012-12-13

Family

ID=47295665

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/063358 WO2012169063A1 (ja) 2011-06-10 2011-06-10 電池制御装置、電池システム

Country Status (3)

Country Link
US (1) US9252624B2 (ja)
JP (1) JP5715694B2 (ja)
WO (1) WO2012169063A1 (ja)

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014065453A (ja) * 2012-09-27 2014-04-17 Toyota Industries Corp ハイブリッド型荷役車両
CN103884991A (zh) * 2013-12-17 2014-06-25 惠州市亿能电子有限公司 一种单体电池直流内阻的测试方法
WO2014128904A1 (ja) * 2013-02-22 2014-08-28 株式会社 日立製作所 電池制御回路、電池システム、並びにこれを備える移動体及び電力貯蔵システム
JP2014232649A (ja) * 2013-05-29 2014-12-11 日産自動車株式会社 電池温度推定装置及び電池温度推定方法
JP2015035841A (ja) * 2013-08-07 2015-02-19 コベルコ建機株式会社 建設機械の蓄電装置充放電制御装置
WO2015086952A1 (fr) * 2013-12-12 2015-06-18 Renault S.A.S Evaluation de la quantite d'energie dans une batterie de vehicule automobile
JP2015154671A (ja) * 2014-02-18 2015-08-24 トヨタ自動車株式会社 蓄電システム
JP2017107763A (ja) * 2015-12-10 2017-06-15 日立オートモティブシステムズ株式会社 電池制御装置、動力システム
WO2017130614A1 (ja) * 2016-01-27 2017-08-03 日立オートモティブシステムズ株式会社 電池制御装置
JP2017169347A (ja) * 2016-03-16 2017-09-21 本田技研工業株式会社 二次電池制御装置
JP2017538936A (ja) * 2015-02-02 2017-12-28 エルジー・ケム・リミテッド 二次電池の抵抗ファクタ決定方法、該抵抗ファクタを用いた充電出力推定装置及び方法
WO2018003210A1 (ja) * 2016-06-28 2018-01-04 株式会社日立製作所 二次電池制御システム、二次電池制御方法
JP2018057191A (ja) * 2016-09-30 2018-04-05 日立オートモティブシステムズ株式会社 電池制御装置、電池システム及び車両
WO2018079164A1 (ja) * 2016-10-26 2018-05-03 日立オートモティブシステムズ株式会社 電池制御装置
KR20180087039A (ko) * 2017-01-24 2018-08-01 주식회사 엘지화학 배터리 관리 장치 및 방법
CN109606116A (zh) * 2019-01-03 2019-04-12 重庆工商大学 一种用于电动汽车的弹射加速控制方法及相关产品
JP2019134504A (ja) * 2018-01-29 2019-08-08 トヨタ自動車株式会社 電動車両及び電動車両の制御方法
JP2020511737A (ja) * 2017-11-03 2020-04-16 エルジー・ケム・リミテッド バッテリーの内部抵抗を最適化するためのバッテリー管理システム及び方法
US10680453B2 (en) 2015-07-02 2020-06-09 Hitachi Automotive Systems, Ltd. Battery control device
KR20200106751A (ko) * 2019-03-05 2020-09-15 현대자동차주식회사 하이브리드 차량의 주행모드 제어 장치 및 그 방법
JP2021009830A (ja) * 2019-07-03 2021-01-28 ビークルエナジージャパン株式会社 電池制御装置
JP2021044950A (ja) * 2019-09-11 2021-03-18 東芝ライフスタイル株式会社 充電装置、電気掃除機、および二次電池装置
CN113002359A (zh) * 2019-12-19 2021-06-22 丰田自动车株式会社 车辆、车辆控制系统以及车辆控制方法
JP2021097569A (ja) * 2019-12-19 2021-06-24 トヨタ自動車株式会社 車両、車両制御システム、車両制御方法
JP2021097567A (ja) * 2019-12-19 2021-06-24 トヨタ自動車株式会社 車両、車両制御システム、車両制御方法
JP2021097568A (ja) * 2019-12-19 2021-06-24 トヨタ自動車株式会社 車両、車両制御システム、車両制御方法
JP2021097566A (ja) * 2019-12-19 2021-06-24 トヨタ自動車株式会社 車両、車両制御システム、車両制御方法
JP2021179311A (ja) * 2020-05-11 2021-11-18 株式会社豊田自動織機 電池soc推定システム
WO2022092109A1 (ja) * 2020-10-27 2022-05-05 京セラ株式会社 蓄電装置、充電方法及びプログラム
WO2022107536A1 (ja) * 2020-11-20 2022-05-27 株式会社日立製作所 電池制御装置およびプログラム
JP2022540401A (ja) * 2019-10-01 2022-09-15 エルジー エナジー ソリューション リミテッド 電池電力算出装置および方法
WO2023042718A1 (ja) * 2021-09-14 2023-03-23 株式会社Gsユアサ 管理装置、蓄電装置、管理方法及びプログラム
EP4145586A4 (en) * 2020-04-27 2023-09-06 Nissan Motor Co., Ltd. OUTPUT CONTROL METHOD FOR SECONDARY BATTERY AND OUTPUT CONTROL SYSTEM FOR SECONDARY BATTERY

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012143996A1 (ja) * 2011-04-18 2012-10-26 日立ビークルエナジー株式会社 蓄電装置
US9882197B2 (en) * 2013-10-11 2018-01-30 Ec Power, Llc All climate battery and manufacturing and using the same
EP2922171B1 (en) * 2013-10-25 2019-12-04 Lg Chem, Ltd. Battery management system for transmitting secondary protection signal and diagnostic signal using a small number of insulation elements
CN103645382B (zh) * 2013-12-13 2017-01-25 艾德克斯电子(南京)有限公司 一种在线电池内阻测量装置及其测量方法
JP6294207B2 (ja) * 2014-10-17 2018-03-14 株式会社日立製作所 二次電池の制御方法
CN105990865A (zh) * 2015-02-06 2016-10-05 中兴通讯股份有限公司 一种蓄电池装置及其充放电监控方法、装置及相应的系统
KR101664077B1 (ko) * 2015-06-29 2016-10-10 현대자동차 주식회사 하이브리드 차량의 구동 모드 변환 제어 장치 및 이를 이용한 구동 모드 변환 제어 방법
GB201523108D0 (en) * 2015-12-30 2016-02-10 Hyperdrive Innovation Ltd Battery management system
DE102016205374A1 (de) * 2016-03-31 2017-10-05 Siemens Aktiengesellschaft Verfahren und Vorrichtung zum Laden einer Batterie
KR102066702B1 (ko) * 2017-01-02 2020-03-02 주식회사 엘지화학 배터리 관리 장치 및 이를 이용한 soc 캘리브레이션 방법
WO2018186465A1 (ja) * 2017-04-05 2018-10-11 株式会社Gsユアサ 蓄電装置および蓄電素子の制御方法
US10823786B2 (en) 2017-07-28 2020-11-03 Northstar Battery Company, Llc Battery with internal monitoring system
CN110015135A (zh) * 2017-09-22 2019-07-16 江苏智谋科技有限公司 电动汽车的电池管理系统与保护系统
KR102373449B1 (ko) * 2018-02-01 2022-03-10 주식회사 엘지에너지솔루션 배터리의 전력 한계 결정 방법 및 배터리 관리 시스템
JP7156373B2 (ja) * 2018-06-01 2022-10-19 住友電気工業株式会社 電池管理装置、電池情報処理システム、及び電池情報処理方法
CN109273783B (zh) * 2018-09-11 2024-01-02 众声物联(天津)科技有限公司 锂电池替换铅酸电池智能bms架构及使用方法
CN112753148A (zh) * 2018-09-27 2021-05-04 三洋电机株式会社 电源系统和管理装置
EP3808592B1 (en) * 2019-10-17 2024-01-24 Samsung SDI Co., Ltd. Method for determining the support of energy content and power of a battery
EP4165421A1 (en) * 2020-06-16 2023-04-19 Black & Decker Inc. Battery charger
CN112711197B (zh) * 2020-12-21 2022-02-11 东软睿驰汽车技术(沈阳)有限公司 一种控制参数调整方法、装置及相关产品
CN114179679B (zh) * 2021-09-27 2023-06-27 岚图汽车科技有限公司 一种动力电池温度控制方法及相关设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007157348A (ja) * 2005-11-30 2007-06-21 Panasonic Ev Energy Co Ltd 二次電池用の制御装置、二次電池の温度推定方法、及びこの方法を用いた二次電池の劣化判定方法
JP2007165211A (ja) * 2005-12-16 2007-06-28 Hitachi Vehicle Energy Ltd 蓄電池管理装置
JP2008104289A (ja) * 2006-10-19 2008-05-01 Hitachi Vehicle Energy Ltd 蓄電池管理装置およびそれを備える車両制御装置
JP2008118790A (ja) * 2006-11-06 2008-05-22 Hitachi Ltd 電源制御装置
JP2008312391A (ja) * 2007-06-15 2008-12-25 Hitachi Vehicle Energy Ltd 電池制御装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5202617A (en) * 1991-10-15 1993-04-13 Norvik Technologies Inc. Charging station for electric vehicles
JP5050325B2 (ja) * 2005-07-12 2012-10-17 日産自動車株式会社 組電池用制御装置
JP4661457B2 (ja) * 2005-08-24 2011-03-30 日産自動車株式会社 二次電池の内部抵抗検出方法
JP4715881B2 (ja) 2008-07-25 2011-07-06 トヨタ自動車株式会社 電源システムおよびそれを備えた車両
JP5268853B2 (ja) * 2009-10-08 2013-08-21 株式会社日立製作所 ハイブリッド走行制御システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007157348A (ja) * 2005-11-30 2007-06-21 Panasonic Ev Energy Co Ltd 二次電池用の制御装置、二次電池の温度推定方法、及びこの方法を用いた二次電池の劣化判定方法
JP2007165211A (ja) * 2005-12-16 2007-06-28 Hitachi Vehicle Energy Ltd 蓄電池管理装置
JP2008104289A (ja) * 2006-10-19 2008-05-01 Hitachi Vehicle Energy Ltd 蓄電池管理装置およびそれを備える車両制御装置
JP2008118790A (ja) * 2006-11-06 2008-05-22 Hitachi Ltd 電源制御装置
JP2008312391A (ja) * 2007-06-15 2008-12-25 Hitachi Vehicle Energy Ltd 電池制御装置

Cited By (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014065453A (ja) * 2012-09-27 2014-04-17 Toyota Industries Corp ハイブリッド型荷役車両
WO2014128904A1 (ja) * 2013-02-22 2014-08-28 株式会社 日立製作所 電池制御回路、電池システム、並びにこれを備える移動体及び電力貯蔵システム
JP2014232649A (ja) * 2013-05-29 2014-12-11 日産自動車株式会社 電池温度推定装置及び電池温度推定方法
JP2015035841A (ja) * 2013-08-07 2015-02-19 コベルコ建機株式会社 建設機械の蓄電装置充放電制御装置
WO2015086952A1 (fr) * 2013-12-12 2015-06-18 Renault S.A.S Evaluation de la quantite d'energie dans une batterie de vehicule automobile
FR3015048A1 (fr) * 2013-12-12 2015-06-19 Renault Sa Evaluation de la quantite d'energie dans une batterie de vehicule automobile
CN105899395A (zh) * 2013-12-12 2016-08-24 雷诺两合公司 估定机动车辆电池中的能量
CN103884991A (zh) * 2013-12-17 2014-06-25 惠州市亿能电子有限公司 一种单体电池直流内阻的测试方法
JP2015154671A (ja) * 2014-02-18 2015-08-24 トヨタ自動車株式会社 蓄電システム
JP2017538936A (ja) * 2015-02-02 2017-12-28 エルジー・ケム・リミテッド 二次電池の抵抗ファクタ決定方法、該抵抗ファクタを用いた充電出力推定装置及び方法
EP3849044A1 (en) 2015-07-02 2021-07-14 Vehicle Energy Japan Inc. Battery control device
US11247581B2 (en) 2015-07-02 2022-02-15 Vehicle Energy Japan, Inc. Battery control device
US10680453B2 (en) 2015-07-02 2020-06-09 Hitachi Automotive Systems, Ltd. Battery control device
US11515579B2 (en) 2015-12-10 2022-11-29 Vehicle Energy Japan, Inc. Cell control device, power system
JP2017107763A (ja) * 2015-12-10 2017-06-15 日立オートモティブシステムズ株式会社 電池制御装置、動力システム
JPWO2017130614A1 (ja) * 2016-01-27 2018-07-19 日立オートモティブシステムズ株式会社 電池制御装置
WO2017130614A1 (ja) * 2016-01-27 2017-08-03 日立オートモティブシステムズ株式会社 電池制御装置
US10840722B2 (en) 2016-01-27 2020-11-17 Vehicle Energy Japan, Inc. Battery control device
JP2017169347A (ja) * 2016-03-16 2017-09-21 本田技研工業株式会社 二次電池制御装置
WO2018003210A1 (ja) * 2016-06-28 2018-01-04 株式会社日立製作所 二次電池制御システム、二次電池制御方法
JP2018057191A (ja) * 2016-09-30 2018-04-05 日立オートモティブシステムズ株式会社 電池制御装置、電池システム及び車両
WO2018061449A1 (ja) * 2016-09-30 2018-04-05 日立オートモティブシステムズ株式会社 電池制御装置、電池システム及び車両
DE112017003472T5 (de) 2016-09-30 2019-04-04 Hitachi Automotive Systems, Ltd. Batteriesteuervorrichtung, batteriesystem und fahrzeug
US11084385B2 (en) 2016-09-30 2021-08-10 Vehicle Energy Japan Inc. Battery control device, battery system, and vehicle
WO2018079164A1 (ja) * 2016-10-26 2018-05-03 日立オートモティブシステムズ株式会社 電池制御装置
JPWO2018079164A1 (ja) * 2016-10-26 2019-09-12 日立オートモティブシステムズ株式会社 電池制御装置
KR20180087039A (ko) * 2017-01-24 2018-08-01 주식회사 엘지화학 배터리 관리 장치 및 방법
KR102066703B1 (ko) 2017-01-24 2020-01-15 주식회사 엘지화학 배터리 관리 장치 및 방법
JP2019515621A (ja) * 2017-01-24 2019-06-06 エルジー・ケム・リミテッド バッテリー管理装置及び方法
JP2020511737A (ja) * 2017-11-03 2020-04-16 エルジー・ケム・リミテッド バッテリーの内部抵抗を最適化するためのバッテリー管理システム及び方法
US11009555B2 (en) 2017-11-03 2021-05-18 Lg Chem, Ltd. Battery management system and method for optimizing internal resistance of battery
JP2019134504A (ja) * 2018-01-29 2019-08-08 トヨタ自動車株式会社 電動車両及び電動車両の制御方法
JP7024448B2 (ja) 2018-01-29 2022-02-24 トヨタ自動車株式会社 電動車両
CN109606116B (zh) * 2019-01-03 2022-04-26 重庆工商大学 一种用于电动汽车的弹射加速控制方法及相关产品
CN109606116A (zh) * 2019-01-03 2019-04-12 重庆工商大学 一种用于电动汽车的弹射加速控制方法及相关产品
KR20200106751A (ko) * 2019-03-05 2020-09-15 현대자동차주식회사 하이브리드 차량의 주행모드 제어 장치 및 그 방법
KR102645052B1 (ko) 2019-03-05 2024-03-08 현대자동차주식회사 하이브리드 차량의 주행모드 제어 장치 및 그 방법
JP2021009830A (ja) * 2019-07-03 2021-01-28 ビークルエナジージャパン株式会社 電池制御装置
JP7236787B2 (ja) 2019-07-03 2023-03-10 ビークルエナジージャパン株式会社 電池制御装置
JP2021044950A (ja) * 2019-09-11 2021-03-18 東芝ライフスタイル株式会社 充電装置、電気掃除機、および二次電池装置
JP7311368B2 (ja) 2019-09-11 2023-07-19 東芝ライフスタイル株式会社 充電装置、電気掃除機、および二次電池装置
US11828806B2 (en) 2019-10-01 2023-11-28 Lg Energy Solution, Ltd. Apparatus and method for calculating battery power
JP7359350B2 (ja) 2019-10-01 2023-10-11 エルジー エナジー ソリューション リミテッド 電池電力算出装置および方法
JP2022540401A (ja) * 2019-10-01 2022-09-15 エルジー エナジー ソリューション リミテッド 電池電力算出装置および方法
JP7226296B2 (ja) 2019-12-19 2023-02-21 トヨタ自動車株式会社 車両、車両制御システム
JP7251464B2 (ja) 2019-12-19 2023-04-04 トヨタ自動車株式会社 車両、車両制御システム
JP2021097569A (ja) * 2019-12-19 2021-06-24 トヨタ自動車株式会社 車両、車両制御システム、車両制御方法
CN113002359A (zh) * 2019-12-19 2021-06-22 丰田自动车株式会社 车辆、车辆控制系统以及车辆控制方法
US11833926B2 (en) 2019-12-19 2023-12-05 Toyota Jidosha Kabushiki Kaisha Vehicle, vehicle control system, and vehicle control method that can perform power-based input restriction on a secondary battery included in a current restricting battery pack
JP2021097567A (ja) * 2019-12-19 2021-06-24 トヨタ自動車株式会社 車両、車両制御システム、車両制御方法
US11858366B2 (en) 2019-12-19 2024-01-02 Toyota Jidosha Kabushiki Kaisha Vehicle, vehicle control system, and vehicle control method
JP2021097566A (ja) * 2019-12-19 2021-06-24 トヨタ自動車株式会社 車両、車両制御システム、車両制御方法
JP7272258B2 (ja) 2019-12-19 2023-05-12 トヨタ自動車株式会社 車両
JP7272259B2 (ja) 2019-12-19 2023-05-12 トヨタ自動車株式会社 車両
JP7276113B2 (ja) 2019-12-19 2023-05-18 トヨタ自動車株式会社 車両、車両制御システム
JP2021097568A (ja) * 2019-12-19 2021-06-24 トヨタ自動車株式会社 車両、車両制御システム、車両制御方法
JP2021097565A (ja) * 2019-12-19 2021-06-24 トヨタ自動車株式会社 車両、車両制御システム、車両制御方法
US11817562B2 (en) 2019-12-19 2023-11-14 Toyota Jidosha Kabushiki Kaisha Vehicle, vehicle control system, and vehicle control method
EP4145586A4 (en) * 2020-04-27 2023-09-06 Nissan Motor Co., Ltd. OUTPUT CONTROL METHOD FOR SECONDARY BATTERY AND OUTPUT CONTROL SYSTEM FOR SECONDARY BATTERY
JP2021179311A (ja) * 2020-05-11 2021-11-18 株式会社豊田自動織機 電池soc推定システム
WO2022092109A1 (ja) * 2020-10-27 2022-05-05 京セラ株式会社 蓄電装置、充電方法及びプログラム
WO2022107536A1 (ja) * 2020-11-20 2022-05-27 株式会社日立製作所 電池制御装置およびプログラム
WO2023042718A1 (ja) * 2021-09-14 2023-03-23 株式会社Gsユアサ 管理装置、蓄電装置、管理方法及びプログラム

Also Published As

Publication number Publication date
JP5715694B2 (ja) 2015-05-13
JPWO2012169063A1 (ja) 2015-02-23
US9252624B2 (en) 2016-02-02
US20140111164A1 (en) 2014-04-24

Similar Documents

Publication Publication Date Title
JP5715694B2 (ja) 電池制御装置、電池システム
JP6445190B2 (ja) 電池制御装置
JP5687340B2 (ja) 電池制御装置、電池システム
JP5819443B2 (ja) 電池制御装置、電池システム
US11124072B2 (en) Battery control device and electric motor vehicle system
CN105518924B (zh) 电池设备和电动车辆
JP6084225B2 (ja) 電池制御装置、二次電池システム
JP5868499B2 (ja) 電池制御装置
WO2014156265A1 (ja) 電池制御装置
US20140239914A1 (en) Battery controller
WO2012143996A1 (ja) 蓄電装置
WO2014122721A1 (ja) 電池制御装置
JP5670556B2 (ja) 電池制御装置
WO2014132403A1 (ja) 二次電池劣化度判定装置
JP2016091613A (ja) 電池システム及び容量回復方法
JP6101714B2 (ja) 電池制御装置、電池システム
US20140184236A1 (en) Battery control apparatus and battery system
JP2017083268A (ja) 蓄電装置、輸送機器及び制御方法
JP2013121242A (ja) Soc推定装置及び電池パック
WO2013057784A1 (ja) 電池制御装置、二次電池システム
WO2020158182A1 (ja) 電池制御装置
JP6434245B2 (ja) 充電率推定装置及び電源システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11867377

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013519328

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14124590

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11867377

Country of ref document: EP

Kind code of ref document: A1