WO2018061449A1 - 電池制御装置、電池システム及び車両 - Google Patents

電池制御装置、電池システム及び車両 Download PDF

Info

Publication number
WO2018061449A1
WO2018061449A1 PCT/JP2017/027361 JP2017027361W WO2018061449A1 WO 2018061449 A1 WO2018061449 A1 WO 2018061449A1 JP 2017027361 W JP2017027361 W JP 2017027361W WO 2018061449 A1 WO2018061449 A1 WO 2018061449A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
battery characteristic
characteristic
current
value
Prior art date
Application number
PCT/JP2017/027361
Other languages
English (en)
French (fr)
Inventor
大輝 小松
啓 坂部
雅浩 米元
晋 山内
大川 圭一朗
亮平 中尾
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to DE112017003472.8T priority Critical patent/DE112017003472T5/de
Priority to US16/328,953 priority patent/US11084385B2/en
Publication of WO2018061449A1 publication Critical patent/WO2018061449A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/64Constructional details of batteries specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/28Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the electric energy storing means, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/16Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to battery ageing, e.g. to the number of charging cycles or the state of health [SoH]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/11Controlling the power contribution of each of the prime movers to meet required power demand using model predictive control [MPC] strategies, i.e. control methods based on models predicting performance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0031Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using battery or load disconnect circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00302Overcharge protection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present invention relates to a battery control device using a lithium ion battery or the like, a battery system, and a vehicle, in particular, a method for calculating a current limit value.
  • the allowable current calculation is a part of the safety function for preventing deterioration and abnormal reaction due to overvoltage of the battery, and it is required to output a sufficiently small current so as not to cause these.
  • an excessively small current value is output for safety control, the output of the battery is excessively limited thereby deteriorating the advantage of using the battery.
  • the internal state and parameters of the battery such as the open circuit voltage of the battery (hereinafter referred to as OCV) and internal resistance information. It is also important to predict the battery state after the current application in consideration of the time for applying the maximum current.
  • OCV open circuit voltage of the battery
  • the SOC fluctuates in a short time. Therefore, it is necessary to correct the battery parameters according to the predicted slope of the OCV associated with the SOC change and predict the battery state. .
  • this prediction is difficult when there is a steep change region where the OCV changes steeply in a certain SOC.
  • Patent Document 1 is a prior art related to allowable current calculation.
  • the allowable current is calculated from the internal resistance, upper / lower limit voltage, and current OCV X seconds after an arbitrary time after applying the current.
  • the control of a battery having a steep change region is not targeted, the same allowable current calculation process is performed in the entire SOC region.
  • the allowable current is calculated from the current battery state or considering a fixed resistance value, but the OCV is steep according to the SOC, such as the inflection point of the SOC-OCV curve of the battery.
  • the SOC such as the inflection point of the SOC-OCV curve of the battery.
  • a battery control device for calculating an allowable current of a battery having a battery characteristic low change region with a small change in battery characteristics and a battery characteristic steep change region in which the battery characteristic change is larger than the battery characteristic low change region.
  • a battery control device that calculates a battery characteristic value using an absolute value of a slope larger than an absolute value of a slope in a current battery characteristic when the battery characteristic sudden change region is entered after a time.
  • the battery information after application of the allowable current is appropriately predicted without increasing the amount of data to be mounted. It becomes possible to control in a safe direction. Further, since the data amount is not increased excessively, it can be implemented even in a system in which the data capacity is limited.
  • Battery system configuration example Battery model example Example of allowable current calculation unit corresponding to OCV steep change region SOC-OCV curve of battery with steep change region Control flow of the present invention
  • Example of allowable current calculation unit corresponding to the steep change region of battery characteristics Example of allowable current calculation unit in parameter map corresponding to steep change region of battery characteristics Configuration example of a vehicle hybrid system
  • FIG. 1 shows a battery system according to the present invention. This configuration is used in a wide range of applications such as a power storage device for mobile objects, a power storage device for grid connection stabilization, a battery system 1 that stores electric power, an inverter 104 that charges and discharges the battery system 1, and an inverter And a host controller 103 that controls the battery system 1 and the inverter 104.
  • a power storage device for mobile objects such as a power storage device for mobile objects, a power storage device for grid connection stabilization, a battery system 1 that stores electric power, an inverter 104 that charges and discharges the battery system 1, and an inverter And a host controller 103 that controls the battery system 1 and the inverter 104.
  • the battery system 1 performs battery control value calculations such as power storage and discharge, and SOC and allowable current, which are control values necessary for these.
  • the host controller 103 controls the battery module 100 and issues power input / output commands to the inverter 104 according to the state of the load 105, the control value of the battery output from the battery system 1, and other external commands.
  • the inverter 104 inputs and outputs power to the battery module 100 and the load 105 in accordance with a command from the host controller 103.
  • the load 105 is, for example, a three-phase AC motor or a power system.
  • the voltage output from the battery module 100 is a DC voltage that changes according to the charging rate, and in many cases, power cannot be directly provided to the load 105 that requires AC. Therefore, the inverter 104 performs conversion from DC to AC and voltage conversion as necessary. With such a configuration, the battery system can appropriately supply an output suitable for the load.
  • the configuration of the battery system 1 for realizing this configuration will be described.
  • the battery system 1 includes a battery module 100, a battery information acquisition unit 101, and a battery control device 102.
  • the battery system 1 stores and discharges power, and calculates battery control values such as SOC and allowable current.
  • the battery module 100 is composed of a plurality of batteries. Each battery is connected in series or in parallel according to the output voltage and capacity required for the battery module 100. This series number is determined in consideration of the fact that the output voltage of the battery changes according to its SOC.
  • the battery information acquisition unit 101 includes a current sensor 106 that measures the current value flowing through the battery, a temperature sensor 107 that measures the battery surface temperature, and a voltage sensor 108 that measures the battery voltage.
  • One voltage sensor 108 is installed for each battery. As a result, the voltage difference between the batteries can be measured, and the equalization control of the battery voltages based on this can be performed.
  • One or more temperature sensors 107 are installed in order to grasp the temperature difference in the battery module 100. When one is installed, it is possible to measure the temperature at a point where the maximum temperature in the battery module 100 can be predicted at a minimum cost. When a plurality of devices are installed, it is possible to construct a control in consideration of the minimum temperature and the maximum temperature by measuring the temperature variation in the battery module 100.
  • the battery control device 102 mainly includes a battery equivalent circuit model calculation unit 109, a battery deterioration level calculation unit 110, and an allowable current calculation unit 111.
  • the battery equivalent circuit model calculation unit 109 calculates battery internal information such as SOC, OCV, and influence of polarization from the current, temperature, and voltage information output by the battery information acquisition unit 101.
  • the battery deterioration degree calculation unit 110 calculates SOH, which is the battery deterioration degree, based on this information.
  • the allowable current calculation unit 111 calculates an allowable current that is the maximum current that can be charged and discharged based on the SOH and the internal information of the battery.
  • the battery control apparatus 102 outputs the battery internal state, SOH, and allowable current calculated by the battery equivalent circuit model calculation unit 109, the battery deterioration level calculation unit 110, and the allowable current calculation unit 111 to the host controller.
  • the host controller 103 can send a power output command corresponding to the load to the battery in consideration of the battery state.
  • the battery equivalent circuit model calculation unit 109 calculates the internal state of the battery such as the SOC using the battery equivalent circuit.
  • the configuration of the battery equivalent circuit model used for the calculation is shown in FIG.
  • the battery equivalent circuit model used in the present embodiment has an OCV as the voltage source 200, a DC resistance representing the resistance of the electrolytic solution, etc. as a resistance 201, and the polarization portion 202 derived from the concentration polarization of ions in the electrolytic solution.
  • the resistance component is represented by the resistor 203 and the polarization capacitance component is represented by the capacitor 204, and the sum of these represents the current voltage (closed circuit voltage, hereinafter referred to as CCV) of the battery.
  • CCV closed circuit voltage
  • one polarization term is used.
  • the current battery SOC, OCV, polarization voltage, resistance of each part, etc. can be calculated from the battery information of the current value, voltage value, and temperature measured by the battery information acquisition unit 101 described above. It becomes possible. By doing in this way, the battery voltage value which is the information which added all information, such as polarization, is isolate
  • the purpose of the allowable current calculation unit 111 is to calculate the allowable current that is the maximum current that can be charged and discharged.
  • the maximum current that can be charged / discharged is the maximum current at which the CCV when the current is applied does not reach the upper and lower limit voltages set in order to prevent battery deterioration and runaway. In this embodiment, calculation is performed so that the voltage after n seconds of current application does not exceed the upper limit voltage 4.2V and the lower limit voltage 2.8V.
  • the allowable current calculation unit 111 includes an SOC-OCV steep change region determination unit 300, an SOC correction unit 301, a battery characteristic parameter map unit 302, and an allowable current calculation unit 303.
  • the OCV deviates from the linear behavior with respect to the SOC because the reaction energy of the battery electrode varies depending on the SOC range due to the step structure of the graphite deinsertion reaction. . Therefore, for example, in a battery having an SOC-OCV curve as shown in FIG. 4, the OCV is obtained using the representative value of the OCV slope in the steep change regions 400 and 401, and other than the steep change region, that is, the low change regions 402 and 403. Then, another process is performed without using the representative value of the slope of the OCV.
  • the steep change region is, for example, a region where the slope of the OCV for each SOC 1% is different by 1 mV /% or more between the SOCs 1%. The definition of this area is appropriately determined by the target accuracy of the allowable current.
  • the allowable current calculation unit 111 performs control so that the upper and lower limit voltages are not exceeded by always using the maximum value of the OCV slope within the range as the slope of the OCV in the vicinity of the steep change region.
  • the vicinity of the steep change region is defined as the entire area between the data having the steep change region.
  • the battery characteristic parameter map unit 302 implements OCV as a parameter map every 10% of SOC
  • the vicinity of the steep change region is a range of 10% between the data to which the steep change region belongs.
  • the battery characteristic parameter map unit 302 can use a storage device that functions as a storage unit such as a RAM.
  • the SOC-OCV steep change region determination unit 300 needs to be processed so as not to exceed the upper / lower limit voltage when there is a region where the steep change is present between the data points predetermined in the battery characteristic parameter map unit 302. to decide. Specifically, it is determined whether or not the region needs to be corrected by comparing the information of the steep change regions 400 and 401 set in advance with the SOC information of the current battery. When the correction process is unnecessary, the SOC information output from the battery equivalent circuit model calculation unit 109 is output to the battery characteristic parameter map unit 302. When the correction is necessary, the SOC information is sent to the SOC correction unit 301. Is output.
  • the SOC correction unit 301 corrects the input SOC information to an SOC representative value that refers to the OCV inclination representative value stored in the battery characteristic parameter map unit 302, and outputs it to the battery characteristic parameter map unit 302.
  • the OCV slope representative value is the maximum value of the OCV slope within the steep change region.
  • Battery characteristic parameter map unit 302 outputs upper / lower limit voltage, DC resistance value, polarization term, and OCV slope corresponding to SOC information, temperature, and current value. These data are stored as map data.
  • the value input to the battery characteristic parameter map unit 302 is a value on a grid point of the map data
  • the reference value of the map data is output as it is. If the input values are values between the grid points of the map data, the upper limit voltage, DC resistance, polarization resistance, and OCV slope are calculated from the values by interpolation processing between the map data.
  • the OCV slope when the SOC representative value is input, the OCV slope representative value corresponding to the SOC representative value is referred to and used to calculate the OCV.
  • the allowable current calculation unit 303 uses the information from the parameter map 302 to calculate the allowable current using (Equation 1).
  • V limit is the upper / lower limit voltage
  • OCV 0 is the current OCV
  • VP_0 is the current polarization voltage
  • R DC is the DC resistance corresponding to the resistor 201
  • G OCV is the current value of the OCV amount that changes during the application of the allowable current for n seconds. divided by
  • R P is a value obtained by subtracting the R DC from the DC resistance value after application of the n seconds current (hereinafter n seconds th polarization resistance).
  • Step S100 corresponds to battery information input from the battery equivalent circuit model calculation unit 109 to the allowable current calculation unit 111, receives battery information such as SOC and OCV from the caller of the control flow, and passes it to step S101.
  • Step S101 corresponds to the processing in the SOC-OCV steep change region determination unit 300, and determines whether the SOC is near the steep change region described above. When it is near the steep change region, the process proceeds to step S102, and when it is not near the steep change region, the process proceeds to step S103.
  • step S102 corresponding to the calculation in the SOC correction unit 301, the SOC is corrected to the SOC representative value corresponding to the steep change region including the SOC, and the process proceeds to step S104.
  • the SOC representative value is an SOC value corresponding to the OCV inclination representative value (maximum value) as described above.
  • the OCV slope is stored as map data for every SOC 10%, for example, in the allowable current calculation in the discharge direction of the steep change region 400, if the SOC is 10 to 20%, the SOC representative value is corrected to 20%. If the SOC is 0 to 10%, it is corrected to the SOC representative value of 10%.
  • the SOC is 70 to 80%, it is corrected to the SOC representative value of 70%. Since the judgment value of the representative value and the range differs depending on the number of data maps, the required high output and the degree of safety, it can be designed for each system.
  • step S103 the current SOC is selected as it is, and the process proceeds to step S104.
  • Step S104 corresponds to the calculation of the battery characteristic parameter map unit 302 that refers to the slope representative value of the OCV from the SOC representative value from the map data.
  • the immediately preceding step is step S102, since the SOC representative value has come as the SOC, the corresponding slope representative value of the OCV is referred to.
  • the immediately preceding step is step S103, since the current SOC value has come, the interpolation processing is performed between the map data of the OCV slope, and the corresponding OCV slope is obtained.
  • Step S105 corresponds to the process in the allowable current calculation unit 303, and the allowable current calculation is performed together with the obtained OCV or OCV slope representative value and the other values received in step S100.
  • the negative electrode material used in the battery of the present invention is an active material mainly composed of graphite or silicon. This is because such a substance has a distinct difference between the steep change region and the low change region, and is easy to control.
  • the battery control apparatus 102 described in the present embodiment includes a battery characteristic low change region 402 in which a change in battery characteristics is small, and battery characteristic steep change regions 400 and 401 in which the battery characteristic change is larger than the battery characteristic low change region,
  • a value larger than the absolute value of the current battery characteristic slope is used.
  • An allowable current calculation unit 111 that calculates a battery characteristic value and calculates an allowable current using the battery characteristic value is provided.
  • the SOC-OCV curve has an inflection point, that is, a battery having a steep change region
  • the battery information after application of the allowable current is appropriately obtained without increasing the amount of data to be mounted. Therefore, it is possible to control in a safe direction. Further, since the data amount is not increased excessively, it can be implemented even in a system in which the data capacity is limited.
  • Example 2 Next, Example 2 will be described.
  • the influence of the sudden change in inclination was considered only on the OCV inclination, but the value that changes according to the battery state such as SOC is not only the OCV, but the resistance value of the resistor 201 and the n-second polarization resistance also change. . Further, not only the SOC but also the temperature and current value affect the DC resistance and the like. Therefore, in the present embodiment, a configuration for correcting temperature and current in addition to the SOC correction shown in the first embodiment will be described with reference to FIG. The description of the parts already described with reference to FIGS. 1 to 5 is omitted.
  • the difference in configuration between the present embodiment and the first embodiment is that the battery state steep change region determination unit 500 that determines whether or not the battery state other than the SOC is a steep change region, and the battery state SOC, temperature, current
  • the battery state correction unit 501 corrects all of them to their representative values.
  • FIG. 6 shows a second embodiment. Similar to the SOC-OCV steep change region determination unit 300, the SOC-OCV steep change region determination unit 500 of the present embodiment changes the slope of the OCV, the resistance 201, and the n-second polarization resistance depending on the SOC, current, and temperature. It is determined whether or not it is in the vicinity of the steep change region. Then, the determination result, the SOC, the current, and the temperature are output to the SOC correction unit 501.
  • the SOC correction unit 501 corrects the SOC, current, and temperature to representative values corresponding to the OCV inclination representative values, the resistance 201 representative value determined in the same manner, and the resistance representative value of the polarization 202, respectively. And output to the battery characteristic parameter map unit 302.
  • the current and temperature are corrected and the representative values are also referred to for the resistance 201 and the n-second polarization resistance, so that the SOC-resistance R DC and the T-polarization in addition to the SOC-OCV.
  • R DC the SOC-resistance
  • T-polarization the SOC-resistance in addition to the SOC-OCV.
  • the SOC correction unit 501 corresponds to each of the SOC, current, and temperature so that the OCV inclination representative value, the resistance 201 representative value determined in the same manner, and the resistance representative value of the polarization 202 are referred to.
  • the representative value is corrected and output to the battery characteristic parameter map unit 302.
  • Example 3 Next, Example 3 will be described.
  • the representative value such as the slope of the OCV is determined as the maximum value.
  • the representative value is larger than the absolute value of the current OCV slope, and is different from the first embodiment and the second embodiment in that the representative value is equal to or smaller than the OCV slope maximum value in the section. . Accordingly, since the allowable current can be safely processed without excessively suppressing the allowable current, the safety of the battery can be easily maintained even when the characteristics of the battery change unexpectedly.
  • the representative value such as the slope of the OCV is set to be equal to or smaller than the maximum value of the slope, and is larger than the current absolute value of the slope of the OCV.
  • Example 4 Next, Example 4 will be described.
  • the tilt information is newly introduced as map data.
  • the map data is different from other sections in the vicinity of the steep change region. Yes. Details will be described with reference to FIG. Note that the description of the parts described in FIGS. 1 to 6 is omitted.
  • the allowable current calculation unit 111 includes a SOC-OCV steep change region corresponding battery characteristic parameter map unit 600 and an allowable current calculation unit 303.
  • the SOC-OCV steep change region corresponding battery characteristic parameter map unit 600 receives the battery state from the current sensor 106, the temperature sensor 107, and the battery equivalent circuit model calculation unit 109, and based on this, the battery upper limit voltage V limit and R DC Etc. are output.
  • a detailed parameter map in which the number of data points in the steep change region is increased is introduced into the SOC-OCV steep change region corresponding battery characteristic parameter map unit 600. Thereby, the error of each parameter near the steep change region is reduced.
  • the number of data points may be increased over the entire area, but the slope increases in the steep change region while minimizing the increase in the number of data points by differentiating the sharp change region and other low battery characteristic change regions by the data points. Control in the safe direction. The problem is that the number of data points increases, but even in this configuration, it is possible to determine a steep change region and achieve both safety and high output.
  • the allowable current control is performed using the SOC-OCV steep change region corresponding battery characteristic parameter map unit 600 stored in advance, instead of using the directly measured slope of the SOC-OCV steep change region.
  • Example 5 Finally, Example 5 will be described.
  • the configuration of the vehicle hybrid system is shown in FIG.
  • the vehicle hybrid system includes a battery system 700, an inverter 701, a motor 702, a hybrid controller 703, an engine 704, and tires 705.
  • Battery system 700 sends information on allowable current or the like to hybrid controller 703 corresponding to the steep change region as appropriate as shown in the first embodiment.
  • the hybrid controller 703 grasps the information from the battery system 700, the state of the engine 704, etc., and determines the output ratio of the engine 703 and the motor 701 so that the necessary driving force can be output from the tire 705. Commands are given to each part. Based on the command, the battery system 700 supplies power to the inverter 701 and drives the motor 702. Similarly, the engine 704 operates based on the command, and drives the tire 705 together with the output of the motor 702.
  • the hybrid controller 703 similarly uses the information of the battery system 700 to obtain the regenerative power. Judge and regenerate power. In this way, by determining the output ratio of the motor or engine via the allowable current calculated according to the steep change region of the battery characteristics, the input / output load requirements can be satisfied, and the battery safety and battery It is possible to achieve both output, that is, low fuel consumption.
  • the battery control apparatus 102 includes a battery characteristic low change region 402 in which a change in battery characteristics is small, and battery characteristic steep change regions 400 and 401 in which a change in battery characteristics is larger than the battery characteristic low change region.
  • the battery control device 102 that calculates the allowable current of the battery has a battery characteristic steep change region 400 or 401 after a predetermined time from the current state, the battery is used by using a value larger than the absolute value of the current battery characteristic slope.
  • An allowable current calculation unit 111 that calculates a characteristic value and calculates an allowable current using the battery characteristic value is provided.
  • the SOC-OCV curve has an inflection point, that is, a battery having a steep change region
  • the battery information after application of the allowable current is appropriately obtained without increasing the amount of data to be mounted. Therefore, it is possible to control in a safe direction. Further, since the data amount is not increased excessively, it can be implemented even in a system in which the data capacity is limited.
  • a value larger than the absolute value of the current battery characteristic gradient is less than or equal to the absolute value of the maximum gradient in the battery characteristic steep change regions 400 and 401.
  • the value larger than the current absolute value of the battery characteristic slope is the absolute value of the maximum slope in the battery characteristic steep change regions 400 and 401.
  • an active material mainly composed of graphite or silicon is used as the negative electrode material used in the battery. This is because such a substance has a distinct difference between the steep change region and the low change region, and is easy to control.
  • the battery control apparatus 102 further includes a storage unit, and the storage unit stores SOC-OCV characteristic map data.
  • the absolute value of the current battery characteristic inclination is the map data. It is calculated from By adopting such a configuration, it is possible to carry out accurate allowable current control continuously, since the error that appears when calculating directly measured data is not taken into the data.
  • the secondary battery system 1 includes a battery characteristic low change region 402 in which a change in battery characteristics is small, and battery characteristic steep change regions 400 and 401 in which the change in battery characteristics is larger than the battery characteristic low change region 402. And a battery control device 102 that calculates an allowable current of the battery.
  • the battery has a permissible current calculation unit 111 that calculates a battery characteristic value using a value larger than the absolute value of the slope of the battery characteristic and calculates a permissible current using the battery characteristic value.
  • the vehicle according to the present invention includes a battery characteristic low change region 402 in which the battery characteristic change is small, and battery characteristic steep change regions 400 and 401 in which the battery characteristic change is larger than the battery characteristic low change region 402.
  • a motor 702 that is electrically connected to the battery, an engine 704, and a vehicle control device 703 that calculates an output ratio of the engine 704 and the motor 702.
  • the battery characteristic value is calculated using a value larger than the current absolute value of the battery characteristic inclination, and the output ratio between the engine 704 and the motor 702 is calculated using the battery characteristic value.
  • An output ratio calculation unit for calculating is provided.
  • the present invention is not limited to the above-described embodiments, and various designs can be made without departing from the spirit of the present invention described in the claims. It can be changed.
  • the above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to one having all the configurations described.
  • a part of the configuration of an embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of an embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

既存の許容電流演算アルゴリズムでは電池特性に急峻変化領域を有する電池の制御で過大な電流を流してしまうが、電流を絞り出力を抑えてしまうと電池性能を十分に利用できない。また、データ点数を増やす対応策では、データ量が増えマイコンに搭載できない。電池特性の変化が小さい電池特性低変化領域と電池特性の変化が前記電池特性低変化領域よりも大きい電池特性急峻変化領域を有する電池の許容電流を演算する電池制御装置において、現在の状態から所定時間後に前記電池特性急峻変化領域に入る場合、現在の電池特性における傾きの絶対値よりも大きな傾きの絶対値を用いて電池特性値を算出することを特徴とする電池制御装置。

Description

電池制御装置、電池システム及び車両
 本発明は、リチウムイオン電池等を用いた電池制御装置、電池システム及び車両の、特に電流制限値の算出方法に関する。
 近年、地球温暖化問題に対応するため、エネルギーの有効利用が可能な電池に注目が集まっている。特に、移動体向け蓄電装置や系統連系安定化用蓄電装置といった電池システムは、化石燃料への依存度を下げることが可能であるため、一層の普及が期待されている。これらシステムの性能を引き出すには電池の充電率(State of Charge、以下SOCと略す)や劣化度(State of Health、以下SOHと略す)、充放電可能な最大電流(許容電流)といったパラメータを用いた適切な充放電制御や、各電池の充電率均等化が必要である。これらを実現するため各電池には電池電圧計測用の回路(セルコントローラ)が取り付けられ、これらセルコントローラから送信される情報に基づき中央演算処理装置(CPU)を搭載したバッテリコントローラが前記演算や動作を実行する。
 中でも許容電流演算は、電池の過電圧による劣化、異常反応を防ぐための安全機能の一部であり、これらを起こさないよう充分小さな電流を出力することが求められる。しかし、安全制御をするために過剰に小さな電流値を出力してしまうと、これにより電池の出力を過剰に制限してしまい、電池を用いる利点を損ねてしまう。安全性と高出力を両立する許容電流演算を行うには、電池が過電圧とならない最大の電流値を算出することが望まれる。
 電池が過電圧とならない最大電流を演算するためには、電池の開放電圧(Open Circuit Voltage、以下OCVと略す)や内部抵抗情報等の電池の内部状態やパラメータを使う必要がある。また、最大電流を印加する時間を考慮して、電流印加後の電池状態を予測することも重要となる。特に、急な入出力を求められる移動体向け蓄電装置では、SOCが短時間で変動するため、SOC変化に伴うOCVの予測傾きに応じて電池パラメータを補正し、電池状態を予測する必要がある。しかし、あるSOCでOCVが急峻に変化するような急峻変化領域がある場合は、この予測が困難である。
 許容電流演算に関する先行技術には特許文献1がある。この文献では、電流を印加してから任意時間後X秒目の内部抵抗、上下限電圧、現在のOCVから許容電流を演算している。一方、急峻な変化領域を有する電池の制御を対象としていないため、全SOC領域で同一の許容電流演算処理を行っている。しかし、急峻変化領域を有する電池を安全性と高出力を両立した上で制御するには、これを加味した制御構築が必須である。
WO2012/169063
 許容電流演算方法においては、現在の電池状態から、もしくは固定の抵抗値を考慮して許容電流を演算しているが、電池のSOC-OCV曲線の変曲点等、OCVがSOCに応じて急峻な変化をする領域を考慮し、任意時間後のOCVを予測した制御は行われていない。そのため、変曲点等の急峻変化領域近傍で任意時間後のOCV見積もりに誤差が生じても、過大な電流を出力してしまわないよう許容電流を小さめに演算するようなマージンを設ける必要がある。このようなマージンを設けるとOCV見積もりに誤差が無い領域でも許容電流を小さめに演算してしまい電池の出力を制限しすぎてしまうため、安全性と高出力を両立するためには急峻領域に対応した許容電流演算が必要である。
 電池特性の変化が小さい電池特性低変化領域と電池特性の変化が前記電池特性低変化領域よりも大きい電池特性急峻変化領域を有する電池の許容電流を演算する電池制御装置において、現在の状態から所定時間後に前記電池特性急峻変化領域に入る場合、現在の電池特性における傾きの絶対値よりも大きな傾きの絶対値を用いて電池特性値を算出することを特徴とする電池制御装置。
 本発明によれば、SOC-OCV曲線に変曲点、急峻変化領域を有するような電池であっても、実装するデータ量を増やすことなく、許容電流印加後の電池情報を適切に予測し、安全方向に制御することが可能となる。また、データ量を余分に増やすことがないのでデータ容量に制限があるような系でも実装が可能となる。
電池システムの構成例 電池モデルの例 OCVの急峻変化領域に対応する許容電流演算部の例 急峻変化領域を有する電池のSOC-OCV曲線 本発明の制御フロー 電池特性の急峻変化領域に対応する許容電流演算部の例 電池特性の急峻変化領域対応済パラメータマップに有する許容電流演算部の例 車両のハイブリッドシステムの構成例
 以下、図1から8を用いて実施例1から5を説明する。
 《実施例1》
 以下、第一の実施例について説明する。図1に本発明にかかる電池システムを示す。この構成は移動体向け蓄電装置、系統連系安定化用蓄電装置等幅広い用途で使用される形態であり、電力を蓄える電池システム1と、電池システム1に対し充放電を行うインバータ104と、インバータに接続された負荷105と、電池システム1やインバータ104を制御する上位コントローラ103から構成される。
 電池システム1は、電力の蓄電や放電及びこれらに必要な制御値であるSOCや許容電流等の電池の制御値演算を行う。上位コントローラ103は、負荷105の状態や電池システム1が出力した電池の制御値、その他外部からの指令に応じ電池モジュール100の制御や、インバータ104に対する電力の入出力指令を行う。インバータ104は上位コントローラ103からの指令に従い、電池モジュール100及び負荷105に対して電力の入出力を行う。負荷105は例えば三相交流モータや電力系統である。
 電池モジュール100の出力する電圧は充電率に応じて変化する直流電圧であり、多くの場合交流を必要とする負荷105へ電力を直接提供することはできない。そこで、インバータ104は必要に応じ直流から交流への変換や電圧の変換を行う。このような構成にすることで、電池システムは負荷に適した出力を適宜供給することが可能となる。以下、この構成を実現するための電池システム1の構成について述べる。
 電池システム1は電池モジュール100と、電池情報取得部101と、電池制御装置102から構成され、電力の蓄電・放電をし、SOC・許容電流といった電池の制御値を演算する。
 電池モジュール100は複数の電池から構成される。各電池は電池モジュール100に要求される出力電圧や容量に応じ、直列、又は並列に接続されている。この直列数は、電池の出力電圧がそのSOCに応じ変化することを考慮して決定する。
 電池情報取得部101は、電池に流れる電流値を測定する電流センサ106、電池表面温度を測定する温度センサ107、電池電圧を測定する電圧センサ108から成る。
 電流センサ107は電池モジュール100と外部との間に1つ、もしくは複数設置する場合がある。1つ設置した場合にはコストを最小限に抑えることが可能である。複数設置した場合には並列接続している電池間の電流配分を把握することが可能である。
 電圧センサ108は各電池に1つ設置する。これにより各電池間の電圧差測定が可能となり、これを元にした各電池電圧の均等化制御が可能となる。
 温度センサ107も電池モジュール100内の温度差を把握するために1つ、もしくは複数設置する。1つ設置した場合には、最小限のコストで電池モジュール100内の最高温度になる予測できる地点の温度を計測できる。複数設置した場合には、電池モジュール100内の温度ばらつきを計測することで、最低温度や最高温度を考慮した制御構築が可能となる。
 電池制御装置102は主に電池等価回路モデル演算部109、電池劣化度演算部110、許容電流演算部111から成る。電池の等価回路モデル演算部109は電池情報取得部101が出力した電流、温度、電圧の情報からSOC、OCV、分極の影響等といった電池内部情報を算出する。電池劣化度演算部110はこの情報を元に電池の劣化度であるSOHを演算する。許容電流演算部111はこのSOH及び電池の内部情報を元にして充放電可能な最大電流である許容電流を演算する。電池制御装置102は、これら電池等価回路モデル演算部109と電池劣化度演算部110、許容電流演算部111が演算した電池の内部状態やSOH、許容電流を上位コントローラに出力する。このように上位コントローラ103に電池の制御に必要な情報を出力する構成にすることで、上位コントローラ103は電池状態を考慮した上で、負荷に対応した電力出力指令を電池に送ることができる。
 電池等価回路モデル演算部109は電池の等価回路を用いてSOC等の電池内部状態を演算する。演算に用いる電池等価回路モデルの構成を図2に示す。本実施例で使用する電池等価回路モデルは、OCVを電圧源200で、電解液の抵抗等を表現する直流抵抗を抵抗201で、電解液中のイオンの濃度分極等に由来する分極部202の抵抗成分を抵抗203で、分極容量成分をキャパシタ204でそれぞれ表現し、これらの足し合わせで電池の現在の電圧(Closed circuit voltage、以下CCVと略す)を表現する。なお、本実施例では分極項を1個としているが、複数個用いて高精度化を図ってもよい。この等価回路モデルを用いることで、前述した電池情報取得部101で測定した電流値,電圧値,温度の各電池情報から、現在の電池のSOCやOCV,分極電圧、各部の抵抗等の演算が可能となる。このようにすることで、分極等全情報を足し合わせた情報である電池電圧値を分離し、直接測定することができない現在の電池の内部状態を間接的に得ることができる。
 続いて許容電流演算部111の構成を図3に示す。許容電流演算部111の目的は充放電可能な最大電流である許容電流を算出することである。充放電可能な最大電流とは、電流を印加した時のCCVが、電池の劣化及び暴走を防ぐために設定した上下限電圧に到達しないような最大の電流となる。本実施例では電流印加n秒後の電圧が上限電圧4.2V、下限電圧2.8Vを超えないように演算する。この許容電流演算部111は、SOC-OCV急峻変化領域判断部300、SOC補正部301、電池特性パラメータマップ部302、許容電流計算部303から成る。
 許容電流を演算するためには、SOCに対する電池の特性、例えばSOCとOCVの関係を考慮する必要がある。そこで、演算を行う際にはSOCとOCVの関係を離散的にマッピングしたパラメータマップを用いて、あるSOCにおけるOCVの値を求める。離散値から連続値への変換は、例えば線形的な内挿により行う。これにより、少ないデータ量で電池の各特性間の関係を参照することが可能となる。
 しかし、電池には、SOCに対して電池状態が急峻に変化する領域を有するものがある。この急峻変化領域の一例としては、黒鉛の脱挿入反応のステップ構造等により電池の電極の反応エネルギーがSOC範囲によって異なるために、SOCに対してOCVが線形的な振る舞いから乖離する場合が挙げられる。そこで、例えば図4に示したようなSOC-OCV曲線を持つ電池では、急峻変化領域400、401ではOCV傾きの代表値を使ってOCVを求め、急峻変化領域以外、つまり低変化領域402、403ではOCVの傾きの代表値を使わずに別処理をする。急峻変化領域とは、例えばSOC1%毎のOCVの傾きが、SOC1%間で1mV/%以上異なる傾きとなっている領域である。この領域の定義は、適宜許容電流の目標精度によって決める。
 そして許容電流演算部111は、急峻変化領域近傍では常にOCVの傾きとしてその範囲内のOCVの傾きの最大値を用いることで上下限電圧を超過しないような制御をする。本実施例では、急峻変化領域近傍とは、急峻変化領域があるデータ間全域と定義する。例えば電池特性パラメータマップ部302がOCVをSOC10%毎にパラメータマップとして実装している場合、急峻変化領域近傍は急峻変化領域が属するデータ間10%の範囲となる。なお、この電池特性パラメータマップ部302は、RAM等の記憶部として機能する記憶装置を使用することが出来る。
 SOC-OCV急峻変化領域判断部300は、電池特性パラメータマップ部302にあらかじめ定めていたデータ点間に、この急峻に変化する領域がある場合に、上下限電圧を超過しないような処理が必要か判断する。具体的には、あらかじめ定めていた急峻変化領域400、401の情報と現在の電池のSOC情報を比較することで、補正が必要な領域であるか否かを判断する。補正処理が不要な場合は電池等価回路モデル演算部109が出力したSOC情報を電池特性パラメータマップ部302にSOC情報を出力し、補正が必要な領域である場合にはSOC補正部301へSOC情報を出力する。
 SOC補正部301は、入力されたSOC情報を電池特性パラメータマップ部302に格納したOCVの傾き代表値を参照するSOC代表値に補正し、電池特性パラメータマップ部302へ出力する。このOCVの傾き代表値は、急峻変化領域内でOCVの傾きの最大値とする。これにより、急峻変化領域近傍でも安全性と高出力を両立した許容電流演算が行える。
 電池特性パラメータマップ部302は、SOC情報,温度,電流値に対応した上下限電圧,直流抵抗値,分極項,OCVの傾きを出力する。これらのデータはマップデータとして格納されている。電池特性パラメータマップ部302に入力された値がマップデータの格子点上の値である場合はマップデータの参照値をそのまま出力する。入力された値がマップデータの格子点間の値である場合は、それぞれの値から、上限電圧,直流抵抗,分極抵抗,OCVの傾きをマップデータ間の内挿処理により算出する。なおOCVの傾きに関しては、SOC代表値が入力された場合は、それに対応するOCVの傾き代表値を参照し、これを用いてOCVを演算する。このように急峻変化領域400、401とそれ以外の領域(低変化領域402、403)の処理を分けることで、現在の状態から所定時間後に電池特性急峻変化領域に入る場合でも安全性と高出力を両立した制御が可能となり、またそれ以外の場合は通常の処理同様の高出力性を維持することが可能となる。
 許容電流計算部303は、パラメータマップ302からの情報を用いて許容電流を(式1)を用いて計算する。
Figure JPOXMLDOC01-appb-M000001
 Vlimitは上下限電圧、OCVは現在のOCV、VP_0は現在の分極電圧、RDCは抵抗201に対応する直流抵抗、GOCVはn秒許容電流印加間に変化するOCV量を電流値で割ったもの、Rはn秒間電流を印加した後の直流抵抗値からRDCを引いた値(以後n秒目分極抵抗)である。図3では充放電方向を考慮していないように記載しているが、実際の制御では充放電方向によってn秒後の電池電圧予測方向が異なるため、充放電に分けて2つの処理を行う。
 具体的な制御フローについては図5を用いて説明する。制御フローはステップS100からS106からなる。制御フローはステップS100より開始する。ステップS100は、電池等価回路モデル演算部109から許容電流演算部111への電池情報入力に対応し、制御フローの呼び出し元からSOCやOCV等の電池情報を受け取り、ステップS101へと渡す。
 ステップS101はSOC-OCV急峻変化領域判断部300での処理に対応し、SOCが前述した急峻変化領域近傍であるかを判断する。急峻変化領域近傍である場合はステップS102に進み、急峻変化領域近傍でない場合はステップS103に進む。
 ステップS102では、SOC補正部301での演算に対応し、SOCを、そのSOCが含まれる急峻変化領域に対応するSOC代表値に補正し、ステップS104に進む。SOC代表値とは、上述した通りOCVの傾き代表値(最大値)に対応するSOC値である。本実施例では、図4に示したように急峻変化領域400、401を有する。SOC10%毎のマップデータとしてOCV傾きを格納しているので、例えば急峻変化領域400の放電方向の許容電流演算においては、SOC10~20%であれば、SOC代表値である20%に補正し、SOC0~10%であればSOC代表値である10%に補正している。一方、急峻変化領域401の充電方向の許容電流演算においては、SOC70~80%であればSOC代表値である70%に補正している。この代表値と範囲の判断基準は、データマップの数、求められる高出力と安全性の程度によって異なるため、そのシステム毎に設計する事が可能である。
 一方、ステップS103では現在のSOCをそのまま選択し、ステップS104に進む。
 ステップS104は、SOC代表値からOCVの傾き代表値をマップデータから参照する、電池特性パラメータマップ部302の演算に対応する。直前のステップがステップS102の場合はSOCとしてSOC代表値が来ているのでこれに対応するOCVの傾き代表値を参照する。直前のステップがステップS103の場合、現在のSOC値が来ているのでOCVの傾きのマップデータ間を内挿処理し、対応するOCVの傾きを求める。
 そして最後にステップS105へと進む。ステップS105は許容電流計算部303での処理に対応し、求めたOCV又はOCVの傾き代表値と、ステップS100で受け取った他の値と共に許容電流演算を行う。このOCV又はOCVの傾き代表値で分ける処理により、急峻変化領域400、401とそれ以外の領域(低変化領域402、403)の両方で、高出力性と安全性を両立した許容電流演算が可能となる。
 また、本発明の電池に用いられる負極材料は黒鉛又はシリコンを主剤とする活物質が用いられる。このような物質は特に急峻変化領域と低変化領域の差がはっきりしており、制御が容易だからである。
 以上、簡単に本実施例をまとめる。本実施例に記載の電池制御装置102は、電池特性の変化が小さい電池特性低変化領域402と、電池特性の変化が前記電池特性低変化領域よりも大きい電池特性急峻変化領域400、401と、を有する電池の許容電流を演算する電池制御装置102において、現在の状態から所定時間後に電池特性急峻変化領域400、401に入る場合、現在の電池特性の傾きの絶対値よりも大きな値を用いて電池特性値を算出し、電池特性値を用いて許容電流を演算する許容電流演算部111を有する。このような構成にすることによって、SOC-OCV曲線に変曲点、つまり急峻変化領域を有するような電池であっても、実装するデータ量を増やすことなく、許容電流印加後の電池情報を適切に予測し、安全方向に制御することが可能となる。また、データ量を余分に増やすことがないのでデータ容量に制限があるような系でも実装が可能となる。
 《実施例2》
 続いて実施例2について説明する。実施例1ではOCV傾きにのみ傾き急変の影響を考慮していたが、SOC等の電池状態に応じて変化する値はOCVだけではなく、抵抗201の抵抗値やn秒目分極抵抗も変化する。また、直流抵抗等にはSOCだけでなく、温度や電流値も影響を与える。そこで本実施例では実施例1で示したSOCの補正に加え、温度及び電流についても補正する構成について、図6を用いて説明する。なお、既に図1から図5で説明した部分については説明を省略する。本実施例と実施例1との構成の違いは、SOC以外の電池状態に対しても急峻変化領域か否かの判断を行う電池状態急峻変化領域判断部500と、電池状態SOC,温度,電流全てをそれぞれの代表値に補正する電池状態補正部501である。
 図6は第2の実施例である。本実施例のSOC-OCV急峻変化領域判断部500はSOC-OCV急峻変化領域判断部300と同様に、SOCや電流、温度によりOCVの傾きや抵抗201、n秒目分極抵抗が急峻に変化する急峻変化領域近傍にあるか判断する。そして判断結果及びSOC、電流、温度をSOC補正部501に出力する。
 SOC補正部501はSOC、電流、温度がOCV傾き代表値や、これと同様にして定める抵抗201代表値、分極202の抵抗代表値を参照する値となるよう、それぞれに対応した代表値に補正し、電池特性パラメータマップ部302に出力する。
 このように本実施例では電流や温度についても補正を行い抵抗201やn秒目分極抵抗に関しても代表値を参照するようにすることで、SOC―OCV以外にSOC-抵抗RDCやT-分極項RDC等の傾きが急変しうる値に関しても、実施例1のOCV傾き同様に安全性と出力の両立が可能となる。
 以上、本実施例について簡単にまとめる。本実施例では、SOC補正部501がSOC、電流、温度がOCV傾き代表値や、これと同様にして定める抵抗201代表値、分極202の抵抗代表値を参照する値となるよう、それぞれに対応した代表値に補正し、電池特性パラメータマップ部302に出力することとした。このような構成にすることによって、OC―OCV以外にSOC-抵抗RDCやT-分極項RDC等の傾きが急変しうる値に関しても、実施例1のOCV傾き同様に安全性と出力の両立が可能となる。
 《実施例3》
 続いて実施例3について説明する。実施例1、2がOCVの傾き等の代表値を最大値と定めていたが、安全性を特に考慮して最大値以下の値を用いることも可能である。つまり、実施例3では代表値は現在のOCVの傾きの絶対値よりも大きな値とし、当該区間のOCVの傾き最大値以下とした点が第1の実施例、及び第2の実施例と異なる。これにより、過度に許容電流を抑えすぎず、安全に方向に処理できるため、電池の特性が想定外の変化をした場合でも電池の安全性を保ちやすくなる。
 以上、簡単に本実施例についてまとめる。本実施例では、OCVの傾き等の代表値を傾きの最大値以下とした上で現在のOCVの傾きの絶対値よりも大きな値とした。このような構成にすることによって、許容電流制御において、過度に許容電流を抑えすぎず、安全性を向上させることが出来る。
 《実施例4》
 続いて実施例4について説明する。上記実施例1、実施例2、及び実施例3では傾き情報を新たにマップデータとして導入しているが、本実施例では急峻変化領域近傍において、他の区間とは異なるマップデータとした構成としている。詳細については図7を用いて説明する。なお、図1から6で説明した部分については説明を省略する。この構成では、許容電流演算部111はSOC-OCV急峻変化領域対応済電池特性パラメータマップ部600と許容電流演算部303から成る。
 SOC-OCV急峻変化領域対応済電池特性パラメータマップ部600は、電流センサ106、温度センサ107、電池等価回路モデル演算部109から電池状態を受け取り、これを元に電池の上限電圧VlimitやRDC等を出力する。ここで、SOC-OCV急峻変化領域対応済電池特性パラメータマップ部600には、急峻変化領域におけるデータ点数を増やした詳細なパラメータマップを導入する。これにより急峻変化領域近傍における各パラメータの誤差を減らしている。データ点数は全域で増やしてもよいが、急峻変化領域と他の電池特性低変化領域とをデータ点数で差別化することで、データ点数の増加を最小限に抑えつつ急峻変化領域で傾きが上昇し安全方向に制御する。データ点数は増えてしまうことが課題であるが、この構成でも急峻変化領域を判断し安全性と高出力を両立させることが可能となる。
 以上、本実施例について簡単にまとめる。本実施例では、直接測定したSOC-OCV急峻変化領域の傾きを用いるのではなく、あらかじめ記憶したSOC-OCV急峻変化領域対応済電池特性パラメータマップ部600を用いて許容電流制御を行った。このような構成にすることによって、直接測定されたデータを演算する際に載る誤差をデータに取り込まないため、継続して正確な許容電流制御を行うことが可能となる。
 《実施例5》
 最後に実施例5を説明する。本実施例ではハイブリッド車両において電池特性の急峻変化領域を考慮した構成について説明する。車両のハイブリッドシステムの構成を図8に示す。この車両のハイブリッドシステムは、電池システム700、インバータ701、モータ702、ハイブリッドコントローラ703、エンジン704、タイヤ705から構成される。
 電池システム700は実施例1に示したように適宜急峻変化領域に対応して許容電流の情報等をハイブリッドコントローラ703に送る。タイヤ705を駆動する場合、ハイブリッドコントローラ703は、電池システム700からの情報、エンジン704の状態等を把握し、タイヤ705から必要な駆動力を出力できるようエンジン703とモータ701の出力比率を決定し各部に指令を出す。その指令を元に、電池システム700はインバータ701に電力を供給し、モータ702を駆動する。エンジン704も同様に指令を元に動作し、モータ702の出力とあわせタイヤ705を駆動する。
 車両を減速するためにタイヤ705を用いて運動エネルギーを回生し、電力をモータ702経由で電池システム700に供給する場合でも同様に、回生可能な電力をハイブリッドコントローラ703が電池システム700の情報等から判断し、電力回生する。このように、電池特性の急峻変化領域に応じて演算した許容電流を介してモータやエンジンの出力比率を決定することで、入出力負荷の要求を満たし、かつ電池の安全性と、電池の高出力、すなわち低燃費との両立が可能となる。
 以上、本発明について簡単にまとめる。本発明に記載の電池制御装置102は、電池特性の変化が小さい電池特性低変化領域402と、電池特性の変化が前記電池特性低変化領域よりも大きい電池特性急峻変化領域400、401と、を有する電池の許容電流を演算する電池制御装置102において、現在の状態から所定時間後に電池特性急峻変化領域400、401に入る場合、現在の電池特性の傾きの絶対値よりも大きな値を用いて電池特性値を算出し、電池特性値を用いて許容電流を演算する許容電流演算部111を有する。このような構成にすることによって、SOC-OCV曲線に変曲点、つまり急峻変化領域を有するような電池であっても、実装するデータ量を増やすことなく、許容電流印加後の電池情報を適切に予測し、安全方向に制御することが可能となる。また、データ量を余分に増やすことがないのでデータ容量に制限があるような系でも実装が可能となる。
 また、本発明に記載の電池制御装置102は現在の電池特性の傾きの絶対値よりも大きな値は、電池特性急峻変化領域400、401内における最大の傾きの絶対値以下である。このような構成にすることによって、許容電流制御において、過度に許容電流を抑えすぎず、安全性を向上させることが出来る。
 また、本発明に記載の電池制御装置102は、現在の電池特性の傾きの絶対値よりも大きな値は、電池特性急峻変化領域400、401内における最大の傾きの絶対値である。このような構成にすることによって、最大限安全を考慮した上で許容電流制御を行うことが可能である。
 また、本発明に記載の電池制御装置102は、電池に用いられる負極材料には黒鉛又はシリコンを主剤とする活物質が用いられる。このような物質は特に急峻変化領域と低変化領域の差がはっきりしており、制御が容易だからである。
 また、本発明に記載の電池制御装置102は、さらに記憶部を有し、記憶部にはSOC-OCV特性のマップデータが記憶されており、現在の電池特性の傾きの絶対値は前記マップデータから算出されたものである。このような構成にすることによって、直接測定されたデータを演算する際に載る誤差をデータに取り込まないため、継続して正確な許容電流制御を行うことが可能となる。
 また、本発明に記載の二次電池システム1は、電池特性の変化が小さい電池特性低変化領域402と、電池特性の変化が電池特性低変化領域402よりも大きい電池特性急峻変化領域400、401と、を有する電池と電池の許容電流を演算する電池制御装置102と、を有し、電池制御装置102は、現在の状態から所定時間後に電池特性急峻変化領域400、401に入る場合、現在の電池特性の傾きの絶対値よりも大きな値を用いて電池特性値を算出し、電池特性値を用いて許容電流を演算する許容電流演算部111を有する。
 また、本発明に記載の車両は、電池特性の変化が小さい電池特性低変化領域402と、電池特性の変化が電池特性低変化領域402よりも大きい電池特性急峻変化領域400、401と、を有する電池と電気的に接続されるモータ702と、エンジン704と、エンジン704とモータ702との出力比を演算する車両制御装置703と、を備え、車両制御装置は、現在の状態から所定時間後に電池特性急峻変化領域400、401に入る場合、現在の電池特性の傾きの絶対値よりも大きな値を用いて電池特性値を算出し、電池特性値を用いてエンジン704とモータ702との出力比を演算する出力比演算部を有する。このような構成とすることによって、入出力負荷の要求を満たし、かつ電池の安全性と、電池の高出力、すなわち低燃費との両立が可能となる。
 以上、本発明の実施形態について詳述したが、本発明は、前記の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の精神を逸脱しない範囲で、種々の設計変更を行うことができるものである。例えば、前記した実施の形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。さらに、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
100:電池モジュール
101:電池情報取得部
102:電池制御装置
103:上位コントローラ
104:インバータ
105:負荷
106:電流センサ
107:温度センサ
108:電圧センサ
109:電池等価回路モデル演算部
110:電池劣化度演算部
111:許容電流演算部
200:OCV
201:直流抵抗
202:分極項
203:分極抵抗
204:分極キャパシタ
300:SOC-OCV急峻変化領域判断部
301:SOC補正部
302:電池パラメータマップ部
303:許容電流計算部
400:急峻変化領域1
401:急峻変化領域2
500:電池状態急峻変化領域判断部
501:電池状態補正部
600:電池特性急峻変化領域対応済電池特性パラメータマップ部
700:電池システム
701:インバータ
702:モータ
703:ハイブリッドコントローラ 
704:エンジン
705:入出力要求

Claims (8)

  1.  電池特性の変化が小さい電池特性低変化領域と、電池特性の変化が前記電池特性低変化領域よりも大きい電池特性急峻変化領域と、を有する電池の許容電流を演算する電池制御装置において、現在の状態から所定時間後に前記電池特性急峻変化領域に入る場合、現在の電池特性の傾きの絶対値よりも大きな値を用いて電池特性値を算出し、前記電池特性値を用いて許容電流を演算する許容電流演算部を有することを特徴とする電池制御装置。
  2.  請求項1に記載の電池制御装置において、前記現在の電池特性の傾きの絶対値よりも大きな値は、前記電池特性急峻変化領域内における最大の傾きの絶対値以下であることを特徴とする電池制御装置。
  3.  請求項2に記載の電池制御装置において、前記現在の電池特性の傾きの絶対値よりも大きな値は、前記電池特性急峻変化領域内における最大の傾きの絶対値であることを特徴とする電池制御装置。
  4.  請求項2又は3に記載の電池制御装置において、前記電池特性はSOC―OCV特性であることを特徴とする電池制御装置。
  5.  請求項4に記載の電池制御装置において、前記電池に用いられる負極材料には黒鉛又はシリコンを主剤とする活物質が用いられることを特徴とする電池制御装置。
  6.  請求項4または5に記載の電池制御装置において、当該電池制御装置はさらに記憶部を有し、前記記憶部にはSOC-OCV特性のマップデータが記憶されており、前記現在の電池特性の傾きの絶対値は前記マップデータから算出されたものであることを特徴とする電池制御装置。
  7.  電池特性の変化が小さい電池特性低変化領域と、電池特性の変化が前記電池特性低変化領域よりも大きい電池特性急峻変化領域と、を有する電池と前記電池の許容電流を演算する電池制御装置と、を有する電池システムにおいて、前記電池制御装置は、現在の状態から所定時間後に前記電池特性急峻変化領域に入る場合、現在の電池特性の傾きの絶対値よりも大きな値を用いて電池特性値を算出し、前記電池特性値を用いて許容電流を演算する許容電流演算部を有することを特徴とする電池システム。
  8.  電池特性の変化が小さい電池特性低変化領域と、電池特性の変化が前記電池特性低変化領域よりも大きい電池特性急峻変化領域と、を有する電池と前記電池と電気的に接続されるモータと、エンジンと、前記エンジンと前記モータとの出力比を演算する車両制御装置と、を備えた車両において、前記車両制御装置は、現在の状態から所定時間後に前記電池特性急峻変化領域に入る場合、現在の電池特性の傾きの絶対値よりも大きな値を用いて電池特性値を算出し、前記電池特性値を用いて前記エンジンと前記モータとの出力比を演算する出力比演算部を有することを特徴とする車両。
PCT/JP2017/027361 2016-09-30 2017-07-28 電池制御装置、電池システム及び車両 WO2018061449A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112017003472.8T DE112017003472T5 (de) 2016-09-30 2017-07-28 Batteriesteuervorrichtung, batteriesystem und fahrzeug
US16/328,953 US11084385B2 (en) 2016-09-30 2017-07-28 Battery control device, battery system, and vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-192515 2016-09-30
JP2016192515A JP6764553B2 (ja) 2016-09-30 2016-09-30 電池制御装置、電池システム及び車両

Publications (1)

Publication Number Publication Date
WO2018061449A1 true WO2018061449A1 (ja) 2018-04-05

Family

ID=61763369

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/027361 WO2018061449A1 (ja) 2016-09-30 2017-07-28 電池制御装置、電池システム及び車両

Country Status (4)

Country Link
US (1) US11084385B2 (ja)
JP (1) JP6764553B2 (ja)
DE (1) DE112017003472T5 (ja)
WO (1) WO2018061449A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109733248A (zh) * 2019-01-09 2019-05-10 吉林大学 基于路径信息的纯电动汽车剩余里程模型预测方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7136048B2 (ja) * 2019-08-21 2022-09-13 トヨタ自動車株式会社 制御装置
DE102020201506A1 (de) 2020-02-07 2021-08-12 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zur Ladezustandsermittlung einer elektrischen Energiespeichereinheit
WO2021226797A1 (zh) * 2020-05-11 2021-11-18 东莞新能德科技有限公司 电池容量预估方法、电子装置和存储介质
FR3122536B1 (fr) * 2021-04-29 2023-06-30 Psa Automobiles Sa Contrôle d'un ensemble électrique pour une batterie électrique d'un véhicule automobile
US20230194615A1 (en) * 2021-12-17 2023-06-22 GM Global Technology Operations LLC Determination and utilization of over-predictive battery state of charge

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012054019A (ja) * 2010-08-31 2012-03-15 Calsonic Kansei Corp バッテリ
WO2012169063A1 (ja) * 2011-06-10 2012-12-13 日立ビークルエナジー株式会社 電池制御装置、電池システム
JP2013178202A (ja) * 2012-02-29 2013-09-09 Mitsubishi Heavy Ind Ltd 充電率演算システムおよび充電率演算方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4215171B2 (ja) * 2001-08-13 2009-01-28 日立マクセル株式会社 電池容量検出方法
JP4930482B2 (ja) * 2008-09-30 2012-05-16 株式会社デンソー バッテリの充放電制御装置
JP6295858B2 (ja) * 2014-07-02 2018-03-20 日産自動車株式会社 バッテリ管理装置
WO2017024411A1 (en) * 2015-08-13 2017-02-16 Charged Engineering Inc. Methods and systems for determining battery charge or formation completeness
KR102121872B1 (ko) * 2017-01-24 2020-06-11 닛산 지도우샤 가부시키가이샤 전동 차량의 제어 방법, 및 제어 장치
DE112018007494B4 (de) * 2018-04-17 2024-06-13 Mitsubishi Electric Corporation Speicherbatterie-diagnoseeinrichtung, speicherbatterie-diagnoseverfahren und speicherbatterie-steuerungssystem
JP6916233B2 (ja) * 2019-03-18 2021-08-11 本田技研工業株式会社 車両制御装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012054019A (ja) * 2010-08-31 2012-03-15 Calsonic Kansei Corp バッテリ
WO2012169063A1 (ja) * 2011-06-10 2012-12-13 日立ビークルエナジー株式会社 電池制御装置、電池システム
JP2013178202A (ja) * 2012-02-29 2013-09-09 Mitsubishi Heavy Ind Ltd 充電率演算システムおよび充電率演算方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109733248A (zh) * 2019-01-09 2019-05-10 吉林大学 基于路径信息的纯电动汽车剩余里程模型预测方法

Also Published As

Publication number Publication date
US20190242948A1 (en) 2019-08-08
JP6764553B2 (ja) 2020-10-07
JP2018057191A (ja) 2018-04-05
US11084385B2 (en) 2021-08-10
DE112017003472T5 (de) 2019-04-04

Similar Documents

Publication Publication Date Title
WO2018061449A1 (ja) 電池制御装置、電池システム及び車両
KR101605491B1 (ko) 비수 이차 전지의 제어 장치 및 제어 방법
CN109155446B (zh) 用于管理电池的装置和方法
KR102468385B1 (ko) 친환경 차량 배터리의 충전시간 예측 방법
US8854010B2 (en) Control apparatus and control method for electric storage apparatus
CN108370073B (zh) 电池控制装置、动力系统
US8981729B2 (en) Charging control apparatus and charging control method for battery
JP5761378B2 (ja) 二次電池の制御装置および制御方法
JP4925060B2 (ja) 電池状態推定装置
US10530180B2 (en) Battery output monitoring device and battery output monitoring method
KR20060130509A (ko) 배터리의 충전 또는 방전 출력 조정방법 및 장치
JP2009052925A (ja) 二次電池の充電状態推定装置及びプログラム
JP5716691B2 (ja) 電池システムおよび非水二次電池の充放電制御方法
US10367359B2 (en) Power control apparatus and power control system
JP2014157662A (ja) 電池システム
JP5720554B2 (ja) 非水二次電池の制御装置および制御方法
JP2017129409A (ja) 二次電池の制御システム
CN112140888A (zh) 车载电源装置的控制装置
KR20180057275A (ko) 배터리 제어 방법 및 장치
US20140343876A1 (en) Electric storage system
JP4874646B2 (ja) 電池用制御装置、電動車両、及び二次電池の制御方法
JP2007110841A (ja) 組電池の容量調整装置
JP6459864B2 (ja) バッテリ制御装置
KR101539810B1 (ko) 배터리 팩 제어방법 및 제어장치
JP6350366B2 (ja) 充放電制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17855407

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17855407

Country of ref document: EP

Kind code of ref document: A1