WO2014122721A1 - 電池制御装置 - Google Patents

電池制御装置 Download PDF

Info

Publication number
WO2014122721A1
WO2014122721A1 PCT/JP2013/052547 JP2013052547W WO2014122721A1 WO 2014122721 A1 WO2014122721 A1 WO 2014122721A1 JP 2013052547 W JP2013052547 W JP 2013052547W WO 2014122721 A1 WO2014122721 A1 WO 2014122721A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
voltage
unit
state
calculated
Prior art date
Application number
PCT/JP2013/052547
Other languages
English (en)
French (fr)
Inventor
亮平 中尾
洋平 河原
彰彦 工藤
大川 圭一朗
直行 五十嵐
Original Assignee
日立ビークルエナジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立ビークルエナジー株式会社 filed Critical 日立ビークルエナジー株式会社
Priority to PCT/JP2013/052547 priority Critical patent/WO2014122721A1/ja
Priority to US14/765,741 priority patent/US9952288B2/en
Priority to JP2014560546A priority patent/JP6111275B2/ja
Publication of WO2014122721A1 publication Critical patent/WO2014122721A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/3644Constructional arrangements
    • G01R31/3648Constructional arrangements comprising digital calculation means, e.g. for performing an algorithm
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3835Arrangements for monitoring battery or accumulator variables, e.g. SoC involving only voltage measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3842Arrangements for monitoring battery or accumulator variables, e.g. SoC combining voltage and current measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery

Definitions

  • the present invention relates to a device for controlling a battery.
  • Battery systems installed in electric vehicles (EV), plug-in hybrid vehicles (PHEV), and hybrid vehicles (HEV) are designed to maximize battery performance while preventing overcharging and overdischarging of the batteries that make up the battery system.
  • a battery control device that detects the voltage, temperature, and current of the battery and calculates the state of charge (SOC) and the state of deterioration (State of Health: SOH) of the battery based on these.
  • the SOC of a battery there is a current integration method using a capacity value obtained by integrating current values flowing through the battery and a full charge capacity of the battery.
  • the internal resistance value of the battery is calculated based on the ratio (dV / dI) of the change in current flowing through the battery (dI) and the change in battery voltage (dV).
  • dV battery voltage
  • Battery SOH can be used as a guide for battery system replacement.
  • Patent Document 1 a technique for comparing an SOH obtained by calculation with a predetermined threshold and displaying a warning lamp when it is determined that the battery needs to be replaced is disclosed.
  • Patent Document 1 cannot diagnose how accurate the SOH obtained by calculation is, that is, the accuracy of the calculation result. If it is unclear whether or not the SOH calculation result is accurate, there is a possibility that a warning lamp that prompts replacement of the battery or the like may be turned on incorrectly.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a battery control device that can verify the accuracy of the calculation result of the SOC or SOH of the battery.
  • the battery control device calculates the measurement parameter of the battery using the SOC or SOH of the battery, and compares it with the measured value, thereby diagnosing the likelihood of the SOC or SOH of the battery.
  • the reliability of the battery control device can be ensured by diagnosing the accuracy of the calculation results of SOC and SOH. Further, when the likelihood of the calculation result of SOC or SOH is lowered, it is possible to notify the user to that effect and to prompt the user to replace the battery.
  • FIG. 3 is a control block diagram of the assembled battery control unit 150.
  • FIG. It is a figure which shows the structural example of the SOC table 181 which the memory
  • FIG. It is a figure explaining the method in which the battery state calculating part 151 calculates SOH of the cell 111.
  • FIG. 2 is an equivalent circuit diagram of a single battery 111.
  • FIG. 6 is a control block diagram of an assembled battery control unit 150 according to Embodiment 3.
  • FIG. 6 is a control block diagram of an assembled battery control unit 150 according to Embodiment 3.
  • FIG. 1 It is a figure which shows the waveform of the electric current in the charge by the charger 420, a voltage, and temperature. It is a figure which shows the change of the battery electric current and battery both-ends voltage accompanying charging / discharging of the cell 111.
  • FIG. 1 shows the waveform of the electric current in the charge by the charger 420, a voltage, and temperature. It is a figure which shows the change of the battery electric current and battery both-ends voltage accompanying charging / discharging of the cell 111.
  • PHEV plug-in hybrid vehicle
  • the configuration of the embodiment described below can also be applied to a power storage device control circuit of a power storage device that constitutes a power supply for an industrial vehicle such as a passenger vehicle such as a hybrid vehicle (HEV) or an electric vehicle (EV) or a hybrid railway vehicle.
  • a power storage device control circuit of a power storage device that constitutes a power supply for an industrial vehicle such as a passenger vehicle such as a hybrid vehicle (HEV) or an electric vehicle (EV) or a hybrid railway vehicle.
  • HEV hybrid vehicle
  • EV electric vehicle
  • the assembled batteries are configured by connecting the cells in series.
  • the assembled batteries may be configured by connecting the cells connected in parallel, or by connecting the cells connected in series.
  • a battery pack may be configured by connecting batteries in parallel.
  • FIG. 1 is a diagram showing a configuration of a battery system 100 according to Embodiment 1 of the present invention and its surroundings.
  • Battery system 100 is connected to inverter 400 via relays 300 and 310, and connected to charger 420 via relays 320 and 330.
  • the battery system 100 includes an assembled battery 110, a single battery management unit 120, a current detection unit 130, a voltage detection unit 140, an assembled battery control unit 150, and a storage unit 180.
  • the assembled battery 110 is composed of a plurality of unit cells 111.
  • the unit cell management unit 120 monitors the state of the unit cell 111.
  • the current detection unit 130 detects a current flowing through the battery system 100.
  • the voltage detection unit 140 detects the total voltage of the assembled battery 110.
  • the assembled battery control unit 150 detects the state of the assembled battery 110 and also manages the state.
  • the assembled battery control unit 150 includes the battery voltage and temperature of the unit cell 111 transmitted by the unit cell management unit 120, the current value flowing through the battery system 100 transmitted by the current detection unit 130, and the voltage of the assembled battery 110 transmitted by the voltage detection unit 140. Receives the total voltage value. The assembled battery control unit 150 detects the state of the assembled battery 110 based on the received information. The result of the state detection by the assembled battery control unit 150 is transmitted to the single cell management unit 120 and the vehicle control unit 200.
  • the assembled battery 110 is configured by electrically connecting a plurality of unit cells 111 capable of storing and releasing electrical energy (charging and discharging DC power) in series.
  • the unit cells 111 constituting the assembled battery 110 are grouped into a predetermined number of units when performing state management / control.
  • the grouped unit cells 111 are electrically connected in series to form unit cell groups 112a and 112b.
  • the number of the single cells 111 constituting the single cell group 112 may be the same in all the single cell groups 112, or the number of the single cells 111 may be different for each single cell group 112.
  • the single cell management unit 120 monitors the state of the single cells 111 constituting the assembled battery 110.
  • the unit cell management unit 120 includes a unit cell control unit 121 provided for each unit cell group 112.
  • cell control units 121 a and 121 b are provided corresponding to the cell groups 112 a and 112 b.
  • the unit cell control unit 121 monitors and controls the state of the unit cells 111 constituting the unit cell group 112.
  • unit cells 111 are electrically connected in series to form unit cell groups 112a and 112b, and the unit cell groups 112a and 112b are further electrically connected in series.
  • An assembled battery 110 including a total of eight unit cells 111 was connected.
  • the assembled battery control unit 150 and the single cell management unit 120 transmit and receive signals via an insulating element 170 typified by a photocoupler and a signal communication unit 160.
  • a communication means between the assembled battery control unit 150 and the unit cell control units 121a and 121b constituting the unit cell management unit 120 will be described.
  • the cell control units 121a and 121b are connected in series according to the descending order of potentials of the cell groups 112a and 112b monitored by each.
  • a signal transmitted from the assembled battery control unit 150 to the unit cell management unit 120 is input to the unit cell control unit 121 a via the insulating element 170 and the signal communication unit 160.
  • the output of the unit cell control unit 121a is input to the unit cell control unit 121b via the signal communication unit 160, and the output of the lowest unit cell control unit 121b is supplied to the assembled battery control unit via the insulating element 170 and the signal communication unit 160.
  • the insulating element 170 is not interposed between the unit cell control unit 121a and the unit cell control unit 121b, but signals can be transmitted and received through the insulating element 170.
  • the storage unit 180 includes an internal resistance characteristic of the assembled battery 110, the single battery 111, and the single battery group 112, a fully charged capacity, a polarization voltage, a deterioration characteristic, individual difference information, an SOC and an open circuit voltage (OCV: Open Circuit Voltage). ) Is stored. Furthermore, characteristic information such as the single cell management unit 120, the single cell control unit 121, and the assembled battery control unit 150 can be stored in advance. Even when the operations of the battery system 100, the assembled battery control unit 150, and the like are stopped, various information stored in the storage unit 180 is retained. In the present embodiment, the storage unit 180 is configured to be installed outside the assembled battery control unit 150 or the unit cell management unit 120. However, the assembled battery control unit 150 or the unit cell management unit 120 includes the storage unit 180. The above information may be stored in this.
  • the assembled battery control unit 150 uses the information received from the unit cell management unit 120, the current detection unit 130, the voltage detection unit 140, and the vehicle control unit 200, and the SOC table 181 described later, and the SOC of one or more unit cells 111. , SOH, charge / dischargeable current and power are calculated. And based on a calculation result, information is output to the cell management part 120 and the vehicle control part 200.
  • the vehicle control unit 200 controls the inverter 400 connected to the battery system 100 via the relays 300 and 310 using the information transmitted by the assembled battery control unit 150. Moreover, the battery charger 420 connected to the battery system 100 via the relays 320 and 330 is controlled. During traveling of the vehicle, the battery system 100 is connected to the inverter 400 and drives the motor generator 410 using the energy stored in the assembled battery 110. At the time of charging, the battery system 100 is connected to the charger 420 and is charged by supplying power from a household power supply or a desk lamp.
  • the charger 420 is used when charging the assembled battery 110 using an external power source typified by a home or a desk lamp.
  • the charger 420 is configured to control a charging voltage, a charging current, and the like based on a command from the vehicle control unit 200, but the control may be performed based on a command from the assembled battery control unit 150.
  • the charger 420 may be installed inside the vehicle according to the configuration of the vehicle, the performance of the charger 420, the purpose of use, the installation conditions of the external power source, and the like, or may be installed outside the vehicle.
  • the battery system 100 When the vehicle system on which the battery system 100 is mounted starts and runs, the battery system 100 is connected to the inverter 400 under the control of the vehicle control unit 200, and the motor uses the energy stored in the assembled battery 110. Generator 410 is driven, and assembled battery 110 is charged by the power generated by motor generator 410 during regeneration.
  • a vehicle including the battery system 100 is connected to an external power source represented by a household or desk lamp, the battery system 100 and the charger 420 are connected based on information transmitted by the vehicle control unit 200, and the set The battery 110 is charged until a predetermined condition is met.
  • the energy stored in the assembled battery 110 by charging is used when the vehicle is driven next time, or is used to operate electrical components inside and outside the vehicle. Further, if necessary, it may be discharged to an external power source represented by a household power source.
  • FIG. 2 is a diagram showing a circuit configuration of the unit cell control unit 121.
  • the cell control unit 121 includes a voltage detection circuit 122, a control circuit 123, a signal input / output circuit 124, and a temperature detection unit 125.
  • the voltage detection circuit 122 measures the voltage between the terminals of each unit cell 111.
  • the control circuit 123 receives measurement results from the voltage detection circuit 122 and the temperature detection unit 125, and transmits the measurement results to the assembled battery control unit 150 via the signal input / output circuit 124.
  • it is determined that the circuit configuration that is generally implemented in the unit cell control unit 121 and that equalizes the voltage and SOC variation between the unit cells 111 generated due to self-discharge and variation in consumption current is known. The description is omitted.
  • the temperature detection unit 125 included in the unit cell control unit 121 in FIG. 2 has a function of measuring the temperature of the unit cell group 112.
  • the temperature detection unit 125 measures one temperature as the entire cell group 112 and treats the temperature as a temperature representative value of the cell 111 constituting the cell group 112.
  • the temperature measured by the temperature detection unit 125 is used for various calculations for detecting the state of the cell 111, the cell group 112, or the assembled battery 110. Since FIG. 2 is based on this assumption, the single battery control unit 121 is provided with one temperature detection unit 125.
  • a temperature detection unit 125 may be provided for each single cell 111 to measure the temperature for each single cell 111, and various calculations may be performed based on the temperature for each single cell 111. In this case, the number of temperature detection units 125 Therefore, the configuration of the unit cell control unit 121 becomes complicated.
  • the temperature detection unit 125 is simply shown.
  • a temperature sensor is installed on the temperature measurement target, and the installed temperature sensor outputs temperature information as a voltage, and the measurement result is transmitted to the signal input / output circuit 124 via the control circuit 123. Outputs the measurement result outside the unit cell control unit 121.
  • a function for realizing this series of flows is implemented as a temperature detection unit 125 in the single cell control unit 121, and the voltage detection circuit 122 can be used for measuring temperature information (voltage).
  • FIG. 3 is a control block diagram of the assembled battery control unit 150.
  • the assembled battery control unit 150 includes a battery state calculation unit 151, a parameter calculation unit 152, and a probability diagnosis unit 153.
  • the assembled battery control unit 150 is input with the both-end voltage of the unit cell 111 output from the unit cell management unit 120, the temperature measurement value of the unit cell 111, and the battery current output from the current detection unit 130.
  • the diagnosis result of whether the unit cell 111 is overcharged or overdischarged, the abnormal signal output when a communication error or the like occurs in the unit cell management unit 120, the total number of the assembled batteries 110 output by the voltage detection unit 140 A voltage value, a signal output from the vehicle control unit 200, and the like are also input.
  • the battery state calculation unit 151 uses the SOC table 181 describing the input information, the internal resistance of the single cell 111 stored in the storage unit 180 in advance, and the relationship between the SOC and the open circuit voltage (OCV). Then, the SOC and SOH of the unit cell 111 are calculated. A method for calculating the SOC and SOH will be described later. In addition, the battery state calculation unit 151 performs calculations for performing voltage equalization control, calculations for controlling the charge / discharge amount, and the like. The battery state calculation unit 151 outputs each calculation result and a command based on the calculation result to the single cell management unit 120 and the vehicle control unit 200.
  • the parameter calculation unit 152 calculates the voltage across the unit cell 111 based on the battery current value output from the current detection unit 130, the SOC calculation result output from the battery state calculation unit 151, and the SOH calculation result, and the calculation result (hereinafter referred to as “the calculation result”). , Referred to as model voltage) is output to the probability diagnosis unit 153. That is, the parameter calculation unit 152 does not directly measure the voltage across the unit cell 111 but calculates the voltage of the unit cell 111 by calculation. The accuracy of this calculation result depends on the calculation accuracy of SOC and SOH.
  • the accuracy diagnosis unit 153 receives the model voltage calculated by the parameter calculation unit 152 and the both-ends voltage of the unit cell 111 output from the unit cell management unit 120, and compares the model voltage with the both-ends voltage to thereby obtain a battery state calculation unit.
  • the probability of the SOH obtained by 151 is diagnosed. Details of the diagnostic method will be described later.
  • FIG. 4 is a diagram illustrating a configuration example of the SOC table 181 stored in the storage unit 180.
  • the SOC table 181 is data describing a correspondence relationship between the OCV of the unit cell 111 and the SOC of the unit cell 111 in the form of a table or a function.
  • FIG. 5 is a diagram showing another configuration example of the SOC table 181.
  • the SOC table 181 can also describe the correspondence between the OCV of the unit cell 111 and the SOC of the unit cell 111 for each temperature of the unit cell 111 in the form of a data table, for example.
  • FIG. 6 is a diagram for explaining another method in which the battery state calculation unit 151 calculates the SOC of the unit cell 111.
  • the SOC of the unit cell 111 can be obtained by integrating the current value flowing through the battery pack 110 based on the following formula 1.
  • the battery state calculation unit 151 can obtain the OCV by subtracting the IR drop and Vp from the closed circuit voltage CCV, for example, and can apply this to the SOC table 181 to obtain the SOC of the unit cell 111. Then, the final SOC of the unit cell 111 is determined according to the following formula 1.
  • SOC0 is the SOC at the start of charge / discharge, and is determined based on the SOC table 181 (SOCMap in Formula 1).
  • Ic is the charging current [A]
  • Id is the discharging current [A]
  • Qmax is the full charge capacity [Ah] of the unit cell 111
  • is the charging efficiency.
  • FIG. 7 is a diagram for explaining a method in which the battery state calculation unit 151 calculates the SOH of the single battery 111.
  • the battery state calculation unit 151 defines the increase rate of the internal resistance of the unit cell 111 as SOH, and obtains SOH according to the following equation 2.
  • R1 indicates the current internal resistance [ ⁇ ] of the unit cell 111.
  • R0 SOC, T
  • the value of R0 can be stored in advance in the storage unit 180 as a data table described according to the SOC and temperature of the unit cell 111. According to the following formula 4, R0 corresponding to the SOC and temperature during the charge / discharge period can be obtained.
  • the battery state calculation unit 151 can obtain the SOH of the unit cell 111 by applying the values of R1 and R0 obtained by Equation 3 and Equation 4 to Equation 2.
  • the internal resistance to be mounted on the RMap in Equation 4 may be an internal resistance corresponding to the definition of SOH, may be defined for SOH calculation, or RoMap described later may be utilized.
  • the battery state calculation unit 151 uses the SOC, SOH, and battery temperature of the single cell 111 during the charge / discharge period, so that the voltage across the single cell 111 does not exceed the upper limit voltage or the lower limit voltage. Is calculated.
  • the allowable discharge current Idmax can be obtained by the following equation 5a, and the allowable charging current can be obtained by the following equation 5b.
  • OCVMMap corresponds to the SOC table 181.
  • RMap is a data table that describes the correspondence between SOC, temperature, and internal resistance, and can be stored in the storage unit 180 in advance.
  • RMap can be substituted by RoMap and RpMap described in Equation 6 below.
  • FIG. 8 is an equivalent circuit diagram of the unit cell 111.
  • the equivalent circuit shown in FIG. 8 includes a DC power source that simulates the open circuit voltage OCV of the battery, Ro that represents the electrical resistance of an electrode, an electrolyte, and the like, and Rp and C that represent the loss due to the electrochemical reaction of the battery. It has a circuit configuration in which parallel circuits are connected in series.
  • the parameter calculation unit 152 can calculate the closed circuit voltage CCV when the current I is supplied to the equivalent circuit shown in FIG.
  • OCVMMap is a data table that describes the correspondence between the SOC and temperature of the unit cell 111 and OCV
  • RoMap and RpMap are data tables that describe the correspondence between the SOC and temperature of the unit cell 111 and each of Ro and Rp. Can be stored.
  • the parameter calculation unit 152 calculates the closed circuit voltage CCV (model voltage) of the single battery 111 based on Equation 6, and outputs the calculated value to the probability diagnosis unit 153. Note that the equivalent circuit illustrated in FIG. 8 is an example, and other equivalent circuits and corresponding arithmetic expressions may be used.
  • ⁇ Embodiment 1 Method 1 for diagnosing the probability of SOH>
  • the probability diagnosing unit 153 compares the model voltage calculated by the parameter calculation unit 152 with the voltage across the cell 111 (hereinafter, actual voltage) transmitted by the cell control units 121a and 121b, so that the parameter calculation unit 152 Diagnose the accuracy of the calculated SOH. In the first embodiment, this is diagnosed by detecting a difference between the actual voltage and the model voltage.
  • a method for detecting the difference between the actual voltage and the model voltage will be described.
  • FIG. 9 shows that there is a difference between the model voltage and the actual voltage, and the current value is negative when discharging and positive when charging.
  • the battery voltage during discharge is shown as an example.
  • the model voltage is calculated using SOH. Therefore, as shown in FIG. There is a difference from the actual voltage.
  • FIG. 9A shows an error when the calculation result of SOH is higher than true SOH at the time of discharging. In this case, the model voltage is lower than the actual voltage.
  • FIG. 9B shows an error when the calculation result of SOH is lower than the true SOH at the time of discharging. In this case, the model voltage is higher than the actual voltage.
  • FIG. 9 shows the vertical relationship between the voltages during discharging, the vertical relationship between the actual voltage and the model voltage during charging is opposite to that shown in FIG.
  • the certainty diagnosis unit 153 can diagnose that the calculation accuracy of the SOH calculated by the parameter calculation unit 152 is low.
  • the certainty diagnosis unit 153 outputs a warning signal indicating the fact to the host device (for example, the vehicle control unit 200).
  • the host device can prompt the user to request repair of the vehicle, such as battery replacement, by turning on a warning lamp, for example. The same applies to warnings issued by the probability diagnosis unit 153 in the following example.
  • FIG. 10 is a diagram for explaining another method in which the probability diagnosis unit 153 diagnoses the probability of the SOH calculation result.
  • attention is paid to the actual voltage when a current corresponding to the allowable charging current or the allowable discharging current calculated by the battery state calculation unit 151 flows. It is assumed that the actual voltage when the allowable charging / discharging current flows is defined in advance in a storage device such as an internal register of the accuracy diagnosis unit 153 as an upper limit voltage or a lower limit voltage allowed as the voltage across the unit cell 111. .
  • the actual voltage should exactly match the upper limit voltage or the lower limit voltage when a current corresponding to the allowable charge current or the allowable discharge current flows.
  • the value of the allowable charging current or the allowable discharging current shown in Equation 5 is small, so when a current corresponding to the allowable charging current or the allowable discharging current is energized, As shown in FIG. 10A, the actual voltage does not reach the upper limit voltage or the lower limit voltage, and the voltage fluctuation range at the time of charge / discharge is smaller than the true value.
  • the certainty diagnosis unit 153 can diagnose the certainty of the SOH calculation result by detecting the phenomenon shown in FIG. Specifically, when the model voltage is a value corresponding to the allowable charging / discharging current, the probability of the SOH calculation result can be diagnosed depending on whether or not the actual voltage has reached the upper and lower limit voltages.
  • ⁇ Embodiment 1 Method 3 for diagnosing the probability of SOH>
  • the diagnostic method described in FIGS. 9 to 10 is preferably performed under the condition that the influence of heat generation of the unit cell 111 due to charging / discharging is small, for example, when the vehicle is started. The reason for this will be described below with reference to FIG.
  • FIG. 11 is a diagram showing changes in both-end voltage and temperature of the unit cell 111 accompanying charging and discharging.
  • the upper diagram in FIG. 11 shows changes in battery current.
  • 11 shows the change in battery temperature, the dotted line is the detected value by the temperature detector 125, and the solid line is the internal temperature of the unit cell 111.
  • FIG. The lower diagram in FIG. 11 shows the change in the voltage across the cell 111, the dotted line is the model voltage, and the solid line is the actual voltage.
  • the unit cell 111 generates heat and increases in temperature as it is charged and discharged. At this time, a temperature distribution is generated inside the single cell 111, and the temperature inside the single cell 111 is high and decreases as it approaches the surface.
  • the temperature detection unit 125 acquires the temperature of the surface of the unit cell 111, not the temperature inside the unit cell 111. Therefore, a temperature difference between the inside and the surface occurs, and this causes an error in the calculation result.
  • the internal resistance values (RMap, RoMap, RpMap) of the single cells 111 used in Equation 5 and Equation 6 are determined based on the detection result of the temperature detection unit 152.
  • the value acquired by the temperature detection unit 152 is lower than the internal temperature of the unit cell 111.
  • the internal resistance value is estimated to be high. Therefore, when charging / discharging progresses and a temperature difference occurs between the surface and the inside of the battery, as shown in FIG. 10, even if the calculation result of SOH is correct, the model voltage of Equation 5 is higher than the actual voltage during charging. It is calculated to be high, and is calculated to be lower than the actual voltage during discharge. Therefore, it can be said that the diagnostic method described in FIGS. 9 and 10 is preferably performed under the condition that the influence of heat generation of the unit cell 111 is small.
  • FIG. 12 is a diagram showing changes in voltage and temperature across the unit cell 111 when SOH is calculated to be smaller than the true value.
  • the relationship between the model voltage and the actual voltage at the time of charging / discharging is inherently as shown in FIG.
  • the probability diagnosis unit 153 detects the phenomenon shown in FIG. 12, the probability diagnosis unit 153 increases the likelihood of the SOH calculation result even under conditions where it is not desirable to implement the method described with reference to FIGS. Can be diagnosed.
  • the battery system 100 can diagnose the probability of the SOH calculation result by comparing the model voltage calculated using the calculation result of the SOC and the SOH with the actual voltage. . Thereby, the reliability of the battery system 100 can be ensured.
  • FIG. 13 is a diagram showing changes in both-end voltage and battery current as the battery is charged and discharged.
  • the model voltage represented by Equation 6 can be regarded as OCV. it can. Therefore, in the second embodiment, the probability diagnosing unit 153 diagnoses the likelihood of the SOC by converting the SOC calculated based on the expression 1 into the OCV based on the SOC table 181 and comparing it with the model voltage. For example, when the difference between the two is equal to or greater than a predetermined threshold, it can be diagnosed that the SOC is not accurate.
  • the unit cell 111 Since the above-described SOC diagnosis needs to be performed during a period in which it can be considered that the battery current is not flowing, the unit cell 111 performs charging / discharging as shown in FIG. It is not a period. As explained in the first embodiment, the probability of SOH is diagnosed during the period in which the cell 111 is charging and discharging. Thereby, both SOC and SOH can be diagnosed in the charge / discharge cycle.
  • Embodiment 3 In the first embodiment, the method of diagnosing the probability of SOH by comparing the model voltage and the actual voltage has been described. In Embodiment 3 of the present invention, a method of diagnosing the probability of SOH by comparing the actual temperature of the unit cell 111 and its predicted value will be described.
  • FIG. 14 is a control block diagram of the assembled battery control unit 150 according to the third embodiment.
  • the configuration of the assembled battery control unit 150 is the same as in the first and second embodiments, but the input parameters for each unit are different. Other configurations are the same as those in the first and second embodiments.
  • the function of the battery state calculation unit 151 is the same as that described in the first embodiment.
  • the parameter calculation unit 152 calculates the current internal temperature of the unit cell 111 based on the battery current value output from the current detection unit 130, the SOC calculation result output from the battery state calculation unit 151, and the SOH calculation result, and calculates the calculation result. Output to the probability diagnosis unit 153.
  • the certainty diagnosis unit 153 diagnoses the certainty of the SOH calculation result by comparing the temperature calculation value calculated by the parameter calculation unit 152 and the battery temperature (actual temperature) output by the single cell management unit 120.
  • the parameter calculation unit 152 can calculate the temperature T (t) of the unit cell 111 based on the following formula 7. This corresponds to calculating the temperature T (t) by integrating the Joule heat generated by the internal resistance of the unit cell 111.
  • T (t) is a temperature calculation value [° C.]
  • Qp (t) is Joule heat [J] generated when a current flows through the internal resistance of the battery
  • Qs (t) is an amount of heat accompanying the electrochemical reaction of the battery.
  • [J] and Qb (t) indicate the heat release amount [J] based on the difference between the ambient temperature and the battery temperature
  • HC indicates the heat capacity [J / K].
  • Qp (t), Qs (t), and Qb (t) are each expressed by the following formula 8.
  • ⁇ S is the amount of entropy change [J / mol / K]
  • F is the Faraday constant [C / mol]
  • HTC is the heat transfer coefficient [J / K / m ⁇ 2]
  • Acell is the battery surface area [m ⁇ 2]
  • Tamb is Ambient temperature [° C] is indicated.
  • the parameter calculation unit 152 needs to calculate the temperature of the unit cell 111 using SOC and SOH and measure the actual temperature of the unit cell 111 for comparison with the temperature.
  • the temperature detection unit 125 that measures the surface temperature of the cell 111 accurately acquires the battery temperature (actual temperature) of the cell 111. You may not be able to.
  • temperature distribution arises in the assembled battery 110 during a charging / discharging period, temperature differs for every single cell 111. FIG. For this reason, in order to accurately diagnose the probability of the SOH calculation result according to the temperature, temperature information for each unit cell 111 is required.
  • the temperature detector 125 may be provided for each single cell 111, but this is expensive. Further, when such a configuration is adopted, the parameter calculation unit 153 also takes into consideration the influence of the temperature distribution in the battery system 100 and the influence of the temperature distribution in the single battery 111, and calculates the temperature calculation value based on a highly accurate calculation model. There is a need to seek. For this reason, it is difficult to diagnose the probability by simply comparing the temperature calculated by Equation 7 with the temperature measurement value of the temperature detector 125.
  • the voltage / current pattern of the unit cell 111 is substantially constant during charging by the charger 420.
  • a charge profile for example, a temperature at the end of charge or a temperature rise value
  • SOC, SOH, and temperature at the start of charging is measured in advance and stored in a database in the form of table data or the like.
  • a charging profile for example, temperature at the end of charging or a temperature rise value
  • the actual temperature for each unit cell 111 can be obtained indirectly.
  • the accuracy diagnosis unit 153 compares the temperature read from the database of the charge profile according to the SOC, SOH, and temperature at the start of charging (hereinafter, actual temperature) with the temperature calculation value calculated by the parameter calculation unit 152.
  • the probability of the SOH calculation result included in Equation 7 is diagnosed. In the third embodiment, this is diagnosed by detecting a difference between the actual temperature and the temperature calculation value.
  • a method for detecting a difference between the actual temperature and the temperature calculation value will be described.
  • FIG. 15 is a diagram showing waveforms of current, voltage, and temperature during charging by the charger 420.
  • the waveform is shown when CC-CV (Constant Current-Constant Voltage) charging is performed in which charging is performed with a certain constant current until the target battery voltage is reached, and then the battery voltage is kept constant.
  • CC-CV Constant Current-Constant Voltage
  • CP-CV Constant Power-Constant Voltage
  • the calculation result of Qp (t) in Expression 8 is lower than the true value, so that the temperature calculation result is lower than the actual temperature.
  • the calculation result of Qp (t) is higher than the true value, the calculation result of Qp (t) is higher than the true value, so that the temperature calculation result is higher than the actual temperature. That is, since the influence of the error included in the SOH calculation result is reflected in the temperature calculation value, the accuracy of the SOH calculation result can be diagnosed by comparing the actual temperature with the temperature calculation value. Specifically, when the difference between the two is equal to or greater than a predetermined threshold, it can be diagnosed that the SOH calculation result is deviated from the true value.
  • the battery system 100 can diagnose the probability of the SOH calculation result based on the battery temperature and the actual temperature calculated using the SOC and SOH calculation results.
  • FIG. 16 is a diagram showing changes in the battery current and the voltage across the battery accompanying charging / discharging of the unit cell 111.
  • the current detection unit 130 detects the battery current at a timing indicated by a white circle.
  • the voltage detection unit 140 detects the voltage across the battery at the timing indicated by the black square. Since the model voltage is calculated according to the detected current, the timing of the model voltage is the same as the detection timing of the battery current and is indicated by a black circle in the lower diagram of FIG. Therefore, the model voltage timing and the actual voltage timing are shifted as shown in the lower diagram of FIG.
  • the accuracy diagnosis unit 153 compares the model voltage with the actual voltage, the two may greatly deviate from each other. For example, as shown in the lower part of FIG. 16, when the model voltage and the actual voltage are acquired before and after the accidental charging / discharging, the accuracy diagnosing unit 153 deviates greatly from SOH (or SOC). It is diagnosed that the calculation result is inaccurate. Since this diagnosis result is diagnosed from a viewpoint different from the originally intended accuracy of SOH, it is desirable to identify the cause of the diagnosis result and notify the user.
  • the model voltage (black circle) in the first half is smaller than OCV, whereas the actual voltage (black square) in the latter half is larger than OCV.
  • the magnitude relationship between the model voltage and the OCV and the magnitude relationship between the actual voltage and the OCV are not changed. That is, it is considered that the magnitude relationship is reversed because the measurement timing of the battery current and the measurement timing of the actual voltage are different at the time when charging / discharging is switched.
  • the probability diagnosis unit 153 indicates that the SOH calculation result is diagnosed as being incorrect due to the measurement timing shift as described above.
  • the host device for example, the vehicle control unit 200
  • the user can take measures such as temporarily holding the battery replacement and determining whether the warning continues.
  • the battery system 100 diagnoses the accuracy of the SOH calculation result depending on whether the magnitude relationship between the model voltage and the OCV and the magnitude relationship between the actual voltage and the OCV are reversed. Determine the cause of the result. Accordingly, it is possible to prompt an appropriate measure by notifying the user of a diagnosis result caused by the synchronization difference in measurement timing.
  • the present invention is not limited to the above-described embodiment, and includes various modifications.
  • the above embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to the one having all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment.
  • the configuration of another embodiment can be added to the configuration of a certain embodiment. Further, with respect to a part of the configuration of each embodiment, another configuration can be added, deleted, or replaced.
  • Embodiments 1 to 4 a plurality of methods for diagnosing SOH calculation results have been described. However, it is conceivable that final diagnostic results can be obtained by applying these diagnostic methods individually and performing weighted averaging. Alternatively, as described in FIG. 12 and the second embodiment, it is conceivable to use another diagnostic method as an alternative during a period that is not suitable for using a specific diagnostic method.
  • the above components, functions, processing units, processing means, etc. may be realized in hardware by designing some or all of them, for example, with an integrated circuit.
  • Each of the above-described configurations, functions, and the like may be realized by software by interpreting and executing a program that realizes each function by the processor.
  • Information such as programs, tables, and files for realizing each function can be stored in a recording device such as a memory, a hard disk, an SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, or a DVD.
  • battery system 110 assembled battery 111: single battery 112: single battery group 120: single battery management unit 121: single battery control unit 122: voltage detection circuit 123: control circuit 124: signal input Output circuit, 125: temperature detection unit, 130: current detection unit, 140: voltage detection unit, 150: assembled battery control unit, 151: battery state calculation unit, 152: parameter calculation unit, 153: probability diagnosis unit, 160: Signal communication means, 170: insulating element, 180: storage unit, 200: vehicle control unit, 300 to 330: relay, 400: inverter, 410: motor generator, 420: charger.

Abstract

 電池の充電状態または劣化状態の演算結果の確からしさを検証することができる電池制装置を提供することを目的とする。 本発明に係る電池制御装置は、電池の充電状態または劣化状態を用いて電池の測定パラメータを演算し、その測定値と比較することにより、電池の充電状態または劣化状態の確からしさを診断する(図9参照)。

Description

電池制御装置
 本発明は、電池を制御する装置に関する。
 電気自動車(EV)、プラグインハイブリッド自動車(PHEV)、ハイブリッド自動車(HEV)に搭載する電池システムは、電池システムを構成する電池の過充電・過放電を防ぎつつ、電池性能を最大限に引き出すために、電池の電圧、温度、電流を検出し、これらに基づいて電池の充電状態(State Of Charge:SOC)や劣化状態(State Of Health:SOH)を演算する電池制御装置を備えている。
 電池のSOCを演算する手法として、電池を流れる電流値を積算して得られた容量値と電池の満充電容量を用いる電流積算方式がある。電池のSOHを演算する手法として、電池を流れる電流の変化分(dI)と電池電圧の変化分(dV)の比(dV/dI)に基づき電池の内部抵抗値を算出し、これを電池が新品であるときの内部抵抗と比較することによりSOHを演算する方式がある。
 電池のSOHは、電池システムの交換の目安として活用することができる。下記特許文献1では、演算により求めたSOHと所定閾値を比較し、電池の交換が必要と判断された場合に警告灯を表示させる技術が公開されている。
特開2002-369391号公報
 上記特許文献1に記載されている技術では、演算により求めたSOHがどの程度正確であるのか、すなわち演算結果の確からしさを診断することができない。SOHの演算結果が正確であるか否か不明であると、電池の交換などを促す警告灯を不正確に点灯させてしまう可能性がある。
 本発明は、上記のような課題に鑑みてなされたものであり、電池のSOCまたはSOHの演算結果の確からしさを検証することができる電池制装置を提供することを目的とする。
 本発明に係る電池制御装置は、電池のSOCまたはSOHを用いて電池の測定パラメータを演算し、その測定値と比較することにより、電池のSOCまたはSOHの確からしさを診断する。
 本発明に係る電池制御装置によれば、SOCやSOHの演算結果の確からしさを診断することにより、電池制御装置の信頼性を確保することができる。また、SOCやSOHの演算結果の確からしさが低下しているときは、その旨をユーザに通知して電池の交換などを促すことができる。
 上記した以外の課題、構成、および効果は、以下の実施形態の説明により明らかになるであろう。
実施形態1に係る電池システム100とその周辺の構成を示す図である。 単電池制御部121の回路構成を示す図である。 組電池制御部150の制御ブロック図である。 記憶部180が格納しているSOCテーブル181の構成例を示す図である。 SOCテーブル181の別構成例を示す図である。 電池状態演算部151が単電池111のSOCを演算するその他の手法を説明する図である。 電池状態演算部151が単電池111のSOHを演算する手法を説明する図である。 単電池111の等価回路図である。 モデル電圧と実電圧の間に差分が存在する様子を示す図である。 確からしさ診断部153がSOH演算結果の確からしさを診断する別手法を説明する図である。 充放電にともなう単電池111の両端電圧と温度の変化を示す図である。 SOHを真値よりも小さく演算した場合における単電池111の両端電圧と温度の変化を示す図である。 電池の充放電にともなう両端電圧と電池電流の変化を示す図である。 実施形態3における組電池制御部150の制御ブロック図である。 充電器420による充電中の電流、電圧、温度の波形を示す図である。 単電池111の充放電にともなう電池電流と電池両端電圧の変化を示す図である。
 以下、本発明の実施形態を図面に基づいて説明する。以下の実施形態では、プラグインハイブリッド自動車(PHEV)の電源を構成する電池システムに対して本発明を適用した場合を例に挙げて説明する。以下に説明する実施形態の構成は、ハイブリッド自動車(HEV)、電気自動車(EV)などの乗用車やハイブリッド鉄道車両といった産業用車両の電源を構成する蓄電装置の蓄電器制御回路にも適用できる。
 以下の実施形態では、リチウムイオン電池を採用した場合を例に挙げて説明するが、他にもニッケル水素電池、鉛電池、電気二重層キャパシタ、ハイブリッドキャパシタなどを用いることもできる。なお、以下の実施形態では単電池を直列に接続して組電池を構成しているが、単電池を並列接続したものを直列接続して組電池を構成してもよいし、直列接続した単電池を並列接続して組電池を構成してもよい。
<実施の形態1:システム構成>
 図1は、本発明の実施形態1に係る電池システム100とその周辺の構成を示す図である。電池システム100はリレー300と310を介してインバータ400に接続され、リレー320と330を介して充電器420に接続される。電池システム100は、組電池110、単電池管理部120、電流検知部130、電圧検知部140、組電池制御部150、記憶部180を備える。
 組電池110は、複数の単電池111から構成される。単電池管理部120は、単電池111の状態を監視する。電流検知部130は、電池システム100に流れる電流を検知する。電圧検知部140は、組電池110の総電圧を検知する。組電池制御部150は、組電池110の状態を検知し、状態の管理等も行う。
 組電池制御部150は、単電池管理部120が送信する単電池111の電池電圧や温度、電流検知部130が送信する電池システム100に流れる電流値、電圧検知部140が送信する組電池110の総電圧値を受け取る。組電池制御部150は、受け取った情報をもとに組電池110の状態を検知する。組電池制御部150による状態検知の結果は、単電池管理部120や車両制御部200に送信される。
 組電池110は、電気エネルギーの蓄積および放出(直流電力の充放電)が可能な複数の単電池111を電気的に直列に接続して構成されている。組電池110を構成する単電池111は、状態の管理・制御を実施する上で、所定の単位数にグループ分けされている。グループ分けされた単電池111は、電気的に直列に接続され、単電池群112a、112bを構成している。単電池群112を構成する単電池111の個数は、全ての単電池群112において同数でもよいし、単電池群112毎に単電池111の個数が異なっていてもよい。
 単電池管理部120は、組電池110を構成する単電池111の状態を監視する。単電池管理部120は、単電池群112毎に設けられた単電池制御部121を備える。図1では、単電池群112aと112bに対応して、単電池制御部121aと121bが設けられている。単電池制御部121は、単電池群112を構成する単電池111の状態を監視および制御する。
 本実施形態1では、説明を簡略化するために、4個の単電池111を電気的に直列接続して単電池群112aと112bを構成し、単電池群112aと112bをさらに電気的に直列接続して合計8個の単電池111を備える組電池110とした。
 組電池制御部150と単電池管理部120は、フォトカプラに代表される絶縁素子170および信号通信手段160を介して信号を送受信する。
 組電池制御部150と、単電池管理部120を構成する単電池制御部121aおよび121bとの間の通信手段について説明する。単電池制御部121aおよび121bは、それぞれが監視する単電池群112aおよび112bの電位の高い順にしたがって直列に接続されている。組電池制御部150が単電池管理部120に送信した信号は、絶縁素子170および信号通信手段160を介して単電池制御部121aに入力される。単電池制御部121aの出力は信号通信手段160を介して単電池制御部121bに入力され、最下位の単電池制御部121bの出力は絶縁素子170および信号通信手段160を介して組電池制御部150へと伝送される。本実施形態1では、単電池制御部121aと単電池制御部121bの間は絶縁素子170を介していないが、絶縁素子170を介して信号を送受信することもできる。
 記憶部180は、組電池110、単電池111、および単電池群112の内部抵抗特性、満充電時の容量、分極電圧、劣化特性、個体差情報、SOCと開回路電圧(OCV:Open Circuit Voltage)の対応関係などの情報を格納する。さらに、単電池管理部120、単電池制御部121、組電池制御部150などの特性情報についてもあらかじめ記憶することができる。電池システム100や組電池制御部150等の動作が停止しても、記憶部180に記憶した各種情報は保持される。本実施形態では、記憶部180は組電池制御部150または単電池管理部120の外部に設置されている構成としたが、組電池制御部150または単電池管理部120が記憶部180を備える構成とし、これに上記情報を格納してもよい。
 組電池制御部150は、単電池管理部120、電流検知部130、電圧検知部140、車両制御部200から受け取った情報、後述するSOCテーブル181を用いて、1つ以上の単電池111のSOC、SOH、充電・放電可能な電流や電力などを求める演算を実行する。そして、演算結果に基づいて、単電池管理部120や車両制御部200に情報を出力する。
 車両制御部200は、組電池制御部150が送信する情報を用いて、リレー300と310を介して電池システム100と接続されるインバータ400を制御する。また、リレー320と330を介して電池システム100に接続される充電器420を制御する。車両走行中には、電池システム100はインバータ400と接続され、組電池110が蓄えているエネルギーを用いて、モータジェネレータ410を駆動する。充電の際には、電池システム100は充電器420と接続され、家庭用の電源または電気スタンドからの電力供給によって充電される。
 充電器420は、家庭または電気スタンドに代表される外部の電源を用いて組電池110を充電する際に用いられる。本実施形態1では、充電器420は車両制御部200からの指令に基づき充電電圧や充電電流などを制御する構成としているが、組電池制御部150からの指令に基づき制御を実施してもよい。また、充電器420は車両の構成、充電器420の性能、使用目的、外部の電源の設置条件などに応じて車両内部に設置してもよいし、車両の外部に設置することもできる。
 電池システム100を搭載した車両システムが始動して走行する場合には、車両制御部200の管理のもと、電池システム100はインバータ400に接続され、組電池110が蓄えているエネルギーを用いてモータジェネレータ410を駆動し、回生時はモータジェネレータ410の発電電力により組電池110が充電される。電池システム100を備える車両が家庭用または電気スタンドに代表される外部の電源と接続された際には、車両制御部200が発信する情報に基づき電池システム100と充電器420とが接続され、組電池110が所定の条件になるまで充電される。充電によって組電池110に蓄えられたエネルギーは、次回の車両走行時に利用されるか、車両内外の電装品等を動作させるためにも利用される。さらに必要に応じて、家庭用の電源に代表される外部電源へも放出する場合がある。
 図2は、単電池制御部121の回路構成を示す図である。単電池制御部121は、電圧検出回路122、制御回路123、信号入出力回路124、温度検知部125を備える。電圧検出回路122は、各単電池111の端子間電圧を測定する。制御回路123は、電圧検出回路122および温度検知部125から測定結果を受け取り、信号入出力回路124を介して組電池制御部150に送信する。なお、単電池制御部121に一般的に実装される、自己放電や消費電流ばらつき等に伴い発生する単電池111間の電圧やSOCばらつきを均等化する回路構成は、周知のものであると判断して記載を省略した。
 図2における単電池制御部121が備える温度検知部125は、単電池群112の温度を測定する機能を有する。温度検知部125は、単電池群112全体として1つの温度を測定し、単電池群112を構成する単電池111の温度代表値としてその温度を取り扱う。温度検知部125が測定した温度は、単電池111、単電池群112、または組電池110の状態を検知するための各種演算に用いられる。図2はこれを前提とするため、単電池制御部121に1つの温度検知部125を設けた。単電池111毎に温度検知部125を設けて単電池111毎に温度を測定し、単電池111毎の温度に基づいて各種演算を実行することもできるが、この場合は温度検知部125の数が多くなる分、単電池制御部121の構成が複雑となる。
 図2では、簡易的に温度検知部125を示した。実際は温度測定対象に温度センサが設置され、設置した温度センサが温度情報を電圧として出力し、これを測定した結果が制御回路123を介して信号入出力回路124に送信され、信号入出力回路124が単電池制御部121の外に測定結果を出力する。この一連の流れを実現する機能が単電池制御部121に温度検知部125として実装され、温度情報(電圧)の測定には電圧検出回路122を用いることもできる。
 図3は、組電池制御部150の制御ブロック図である。組電池制御部150は、電池状態演算部151、パラメータ演算部152、確からしさ診断部153を備える。
 組電池制御部150は、単電池管理部120が出力する単電池111の両端電圧、単電池111の温度計測値、電流検知部130が出力する電池電流が入力される。その他、単電池111が過充電もしくは過放電であるかの診断結果、単電池管理部120に通信エラーなどが発生した場合に出力される異常信号、電圧検出部140が出力する組電池110の総電圧値、車両制御部200が出力する信号、なども入力される。
 電池状態演算部151は、入力された情報、記憶部180があらかじめ記憶している単電池111の内部抵抗、SOCと開回路電圧(OCV:Open Circuit Voltage)の関係を記述したSOCテーブル181を用いて、単電池111のSOCやSOHを演算する。SOCとSOHを演算する手法については後述する。電池状態演算部151はその他、電圧均等化制御を実施するための演算、充放電量を制御するための演算などを実施する。電池状態演算部151は、各演算結果やこれに基づく指令を、単電池管理部120や車両制御部200に出力する。
 パラメータ演算部152は、電流検知部130が出力する電池電流値、電池状態演算部151が出力するSOC演算結果およびSOH演算結果に基づき、単電池111の両端電圧を演算し、その演算結果(以降、モデル電圧と呼ぶ)を確からしさ診断部153へ出力する。すなわちパラメータ演算部152は、単電池111の両端電圧を直接測定するのではなく、演算によって単電池111の電圧を求める。この演算結果の精度は、SOCとSOHの演算精度に依拠する。
 確からしさ診断部153は、パラメータ演算部152が演算したモデル電圧と単電池管理部120が出力する単電池111の両端電圧を入力とし、モデル電圧と両端電圧を比較することにより、電池状態演算部151が求めたSOHの確からしさを診断する。診断手法の詳細については後述する。
 図4は、記憶部180が格納しているSOCテーブル181の構成例を示す図である。SOCテーブル181は、単電池111のOCVと、単電池111のSOCとの対応関係をテーブルや関数などの形式で記述したデータである。
 図5は、SOCテーブル181の別構成例を示す図である。SOCテーブル181は、単電池111のOCVと、単電池111のSOCとの間の対応関係を、例えばデータテーブルの形式で単電池111の温度毎に記述することもできる。
<実施の形態1:SOCを演算する手法>
 図6は、電池状態演算部151が単電池111のSOCを演算するその他の手法を説明する図である。単電池111のSOCは、下記式1に基づき組電池110に流れる電流値を積算することによって求めることができる。電池状態演算部151は、例えば閉回路電圧CCVからIRドロップとVpを差し引くことによりOCVを求め、これをSOCテーブル181に適用して単電池111のSOCを求めることもできるが、本実施形態1では、単電池111の最終的なSOCは、下記式1にしたがって求めることとする。
Figure JPOXMLDOC01-appb-M000001
 SOC0は、充放電開始時のSOCであり、SOCテーブル181(式1中のSOCMap)に基づいて決定される。Icは充電電流[A]、Idは放電電流[A]、Qmaxは単電池111の満充電容量[Ah]、ηは充電効率である。
<実施の形態1:SOHを演算する手法>
 図7は、電池状態演算部151が単電池111のSOHを演算する手法を説明する図である。電池状態演算部151は、単電池111の内部抵抗の上昇率をSOHと定義し、下記式2にしたがってSOHを求める。
Figure JPOXMLDOC01-appb-M000002
 R1は、現在の単電池111の内部抵抗[Ω]を示す。R0(SOC,T)は、新品時の単電池111の内部抵抗[Ω]を示す。R1は、下記式3に示すように、充放電期間中の電流変化(ΔI=I2-I1)と電圧変化(ΔV=V2-V1)の比に基づき算出することができる。
Figure JPOXMLDOC01-appb-M000003
 R0の値は、単電池111のSOCと温度に応じて記述したデータテーブルとしてあらかじめ記憶部180に格納しておくことができる。下記式4にしたがって、充放電期間中のSOCと温度に対応したR0を得ることができる。電池状態演算部151は、式3と式4によって得られるR1とR0の値を式2に適用することにより、単電池111のSOHを求めることができる。
Figure JPOXMLDOC01-appb-M000004
 尚、式4中のRMapに実装する内部抵抗は、SOHの定義に応じた内部抵抗を用いればよく、SOH演算用に定義しても良いし、後述するRoMapを活用してもよい。
<実施の形態1:許容電流を演算する手法>
 電池状態演算部151は、単電池111の両端電圧が上限電圧または下限電圧を超過しないため、充放電期間中の単電池111のSOC、SOH、電池温度を用いて、許容充電電流と許容放電電流を演算する。許容放電電流Idmaxは下記式5aで、許容充電電流は下記式5bで、それぞれ求めることができる。
Figure JPOXMLDOC01-appb-M000005
 OCVMapは、SOCテーブル181に相当する。RMapは、SOC、温度、内部抵抗の対応関係を記述したデータテーブルであり、あらかじめ記憶部180に格納しておくことができる。RMapは、後述の式6で説明するRoMapとRpMapによって代用することもできる。
<実施の形態1:パラメータ演算部152の詳細>
 図8は、単電池111の等価回路図である。図8に示す等価回路は、電池の開回路電圧OCVを模擬した直流電源、電極や電解液などの電気抵抗を表すRo、および電池の電気化学的な反応に伴う損失分を表すRpとCの並列回路を直列に接続した回路構成となっている。パラメータ演算部152は、図8に示す等価回路に電流Iが通電した場合の閉回路電圧CCVを、下記式6に基づき計算することができる。
Figure JPOXMLDOC01-appb-M000006
 OCVMapは、単電池111のSOCおよび温度とOCVの対応関係を、RoMapとRpMapは、単電池111のSOCおよび温度とRoおよびRpそれぞれの対応関係を記述したデータテーブルであり、あらかじめ記憶部180に格納しておくことができる。パラメータ演算部152は、式6に基づき単電池111の閉回路電圧CCV(モデル電圧)を演算し、確からしさ診断部153へ出力する。なお、図8に示す等価回路は1例であり、その他の等価回路および対応する演算式を用いることもできる。
<実施の形態1:SOHの確からしさを診断する手法その1>
 確からしさ診断部153は、単電池制御部121aと121bが送信する単電池111の両端電圧(以降、実電圧)とパラメータ演算部152が演算したモデル電圧を比較することにより、パラメータ演算部152が演算したSOHの確からしさを診断する。本実施形態1では、実電圧とモデル電圧との間の差分を検知することにより、これを診断する。以下、実電圧とモデル電圧との間の差分を検知する手法を説明する。
 図9は、モデル電圧と実電圧の間に差分が存在する様子を示しており、電流値は放電時をマイナス、充電時をプラスとしている。ここでは放電時の電池電圧を例に示した。SOHの演算結果が正確でなく、真のSOHと演算結果との間にズレ(誤差)が生じている場合、モデル電圧はSOHを用いて算出されるので、図9に示すようにモデル電圧と実電圧との間に差異が生じる。
 図9(a)は、放電時に、SOHの演算結果が真のSOHよりも高い場合の誤差を示す。この場合は実電圧よりもモデル電圧の方が低くなる。図9(b)は、放電時に、SOHの演算結果が真のSOHよりも低い場合の誤差を示す。この場合、実電圧よりもモデル電圧の方が高くなる。なお図9では放電時の電圧上下関係を示したが、充電時は実電圧とモデル電圧の上下関係が図9とは逆になる。
 確からしさ診断部153は、実電圧とモデル電圧の間の差分が所定閾値以上になっている場合は、パラメータ演算部152が演算したSOHの演算精度が低いと診断することができる。確からしさ診断部153は、その旨を示す警告信号を上位装置(例えば車両制御部200)に出力する。上位装置は、例えば警告ランプを点灯させるなどにより、電池交換など、車両の修理を依頼するようユーザを促すことができる。確からしさ診断部153が発する警告については以下に示す例においても同様である。
<実施の形態1:SOHの確からしさを診断する手法その2>
 図10は、確からしさ診断部153がSOH演算結果の確からしさを診断する別手法を説明する図である。図10では、電池状態演算部151が演算する許容充電電流または許容放電電流に相当する電流が流れた場合の実電圧に着目する。許容充放電電流が流れるときの実電圧は、単電池111の両端電圧として許容される上限電圧または下限電圧としてあらかじめ確からしさ診断部153の内部レジスタなどの記憶装置内に定義されているものとする。
 SOHが正確に演算されていた場合、許容充電電流または許容放電電流に相当する電流が流れると、実電圧はちょうど上限電圧または下限電圧に一致するはずである。しかし、SOHが真値よりも大きく演算されていた場合、式5で示した許容充電電流または許容放電電流の値が小さくなるため、許容充電電流または許容放電電流に相当する電流が通電したとき、図10(a)に示すように実電圧は上限電圧または下限電圧に到達せず、充放電時の電圧変動幅が真の値よりも小さくなる。SOHが真値よりも小さく演算されていた場合、式5で示した許容充電電流または許容放電電流の値が大きくなるため、許容充電電流または許容放電電流に相当する電流が通電したとき、図10(b)に示すように実電圧は上限電圧を上回るかまたは下限電圧を下回り、充放電時の電圧変動幅が真の値よりも大きくなる。
 確からしさ診断部153は、図10に示す現象を検知することにより、SOH演算結果の確からしさを診断することができる。具体的には、モデル電圧が許容充放電電流に対応する値であるとき、実電圧が上下限電圧に到達しているか否かによって、SOH演算結果の確からしさを診断することができる。
<実施の形態1:SOHの確からしさを診断する手法その3>
 図9~図10で説明した診断手法は、充放電にともなう単電池111の発熱の影響が小さい条件下、例えば車両起動時に実施することが好ましい。図11を用いてこの理由を以下に説明する。
 図11は、充放電にともなう単電池111の両端電圧と温度の変化を示す図である。図11上図は電池電流の変化を示す。図11中図は電池温度の変化を示し、点線は温度検知部125による検出値、実線は単電池111の内部温度である。図11下図は単電池111の両端電圧の変化を示す、点線はモデル電圧、実線は実電圧である。
 単電池111は充放電に伴って発熱し温度が上昇する。この時、単電池111の内部には温度分布が生じ、単電池111の内部は温度が高く、表面に近づくほど低くなる。温度検知部125が取得するのは、単電池111の表面の温度であり、単電池111の内部の温度ではないため、内部と表面との温度差が生じ、これが演算結果の誤差をもたらす。
 式5や式6において用いられる単電池111の内部抵抗値(RMap、RoMap、RpMap)は、温度検知部152の検出結果に依拠して決定される。温度検知部152が取得する値は、単電池111の内部温度よりも低くなる。一般に電池の内部抵抗は、温度が低いほど高くなる傾向があるため、温度検知部152の情報に基づき内部抵抗を決定すると、内部抵抗値は高く見積もられることになる。従って、充放電が進み電池の表面と内部の間に温度差が生じると、図10に示すように、SOHの演算結果が正しいとしても、式5のモデル電圧は、充電時は実電圧よりも高く演算され、放電時は実電圧よりも低く演算されることになる。よって、図9と図10で説明した診断手法は、単電池111の発熱の影響が小さい条件下で実施することが好ましいといえる。
 ここで、SOHを真値よりも小さく演算した場合について考える。図12は、SOHを真値よりも小さく演算した場合における単電池111の両端電圧と温度の変化を示す図である。単電池111の発熱の影響が大きく図9~図10で説明した手法を実施することが好ましくない条件下においても、図12に示すように充放電時におけるモデル電圧と実電圧の大小関係が本来起こり得る図11とは逆転した場合、つまり、単電池111のモデル電圧が実電圧よりも低い場合については、SOHの演算結果を小さく見積もっていると判断出来る。このため、確からしさ診断部153は、図12に示す現象を検知した場合には、図9~図10で説明した手法を実施することが望ましくない条件下においても、SOH演算結果の確からしさを診断することができる。
<実施の形態1:まとめ>
 以上のように、本実施形態1に係る電池システム100は、SOCとSOHの演算結果を用いて算出したモデル電圧と実電圧を比較することにより、SOH演算結果の確からしさを診断することができる。これにより、電池システム100の信頼性を確保することができる。
 本実施形態1では、式6に基づくCCVの演算値と実電圧を比較することにより、SOHの確からしさを診断する手法を説明したが、CCVではなくある電流が通電した場合の電圧変化分ΔV(t) = I(t)×RMap(SOC(t), T(t))を計算し、これと実電圧の電圧変化分とを比較することにより、SOHの確からしさを診断することもできる。
<実施の形態2>
 実施形態1の図9~図12では、SOHの確からしさについて診断することを説明したが、同様の手法によりSOCの確からしさを診断することもできる。本発明の実施形態2では、SOCの確からしさを診断する手法について説明する。電池システム100の構成は実施形態1と同様である。
 図13は、電池の充放電にともなう両端電圧と電池電流の変化を示す図である。図13に示すように、電池電流が流れていない、または電池電流が微弱で電池の両端電圧がOCVと等価であると見なせる範囲であれば、式6で表わされるモデル電圧はOCVとみなすことができる。そこで本実施形態2において、確からしさ診断部153は、式1に基づき算出したSOCをSOCテーブル181に基づきOCVに変換し、これをモデル電圧と比較することにより、SOCの確からしさを診断する。例えば、両者の差分が所定閾値以上である場合はSOCが正確でないと診断することができる。
 上述のSOC診断は、電池電流が流れていないとみなすことができる期間に実施する必要があるので、SOCの確からしさを診断する期間は図13に示すように単電池111が充放電を実施していない期間となる。単電池111が充放電を実施している期間は、実施形態1で説明したようにSOHの確からしさを診断する。これにより、充放電のサイクルにおいてSOCとSOHをともに診断することができる。
<実施の形態3>
 実施形態1では、モデル電圧と実電圧を比較することによりSOHの確からしさを診断する手法を説明した。本発明の実施形態3では、単電池111の実温度とその予測値を比較することにより、SOHの確からしさを診断する手法を説明する。
 図14は、本実施形態3における組電池制御部150の制御ブロック図である。組電池制御部150の構成は実施形態1~2と同様であるが、各部に対する入力パラメータが異なる。その他の構成については実施形態1~2と同様である。
 電池状態演算部151の機能は実施形態1で説明したものと同様である。パラメータ演算部152は、電流検知部130が出力する電池電流値、電池状態演算部151が出力するSOC演算結果とSOH演算結果に基づき、現在の単電池111の内部温度を演算し、演算結果を確からしさ診断部153へ出力する。確からしさ診断部153は、パラメータ演算部152が演算した温度演算値と単電池管理部120が出力する電池温度(実温度)を比較することにより、SOH演算結果の確からしさを診断する。
<実施の形態3:単電池111の温度演算値を求める手法>
 パラメータ演算部152は、下記式7に基づき、単電池111の温度T(t)を算出することができる。これは、単電池111の内部抵抗によって生じるジュール熱を積算することにより温度T(t)を算出することに相当する。
Figure JPOXMLDOC01-appb-M000007
 T(t)は温度演算値[℃]、Qp(t)は電池の内部抵抗に電流が流れた場合に生じるジュール熱[J]、Qs(t)は電池の電気化学的な反応に伴う熱量[J]、Qb(t)は周囲温度と電池温度との差分に基づく放熱量[J]、HCは熱容量[J/K]を示す。Qp(t)、Qs(t)、Qb(t)はそれぞれ下記式8で表わされる。
Figure JPOXMLDOC01-appb-M000008
 ΔSはエントロピー変化量[J/mol/K]、Fはファラデー定数[C/mol]、HTCは熱伝達率[J/K/m^2]、Acellは電池表面積[m^2]、Tambは周囲温度[℃]を示す。
<実施の形態3:単電池111の実温度を求める手法>
 パラメータ演算部152はSOCとSOHを用いて単電池111の温度を演算すると共に、これと比較するための単電池111の実温度を測定する必要がある。しかし、充放電期間中には、単電池111の内部に温度分布が生じるため、単電池111の表面温度を計測する温度検知部125は、単電池111の電池温度(実温度)を正確に取得することが出来ない可能性がある。また、充放電期間中は組電池110内に温度分布が生じるため、単電池111毎に温度は異なる。このため、温度に応じてSOH演算結果の確からしさを正確に診断するには、単電池111毎の温度情報が必要となる。最も単純には、単電池111毎に温度検知部125を設ければよいが、これはコスト高である。さらにこのような構成を採用すると、パラメータ演算部153も、電池システム100内の温度分布の影響や単電池111内の温度分布の影響を考慮して、高精度な演算モデルに基づき温度演算値を求める必要が生じる。このため、単純に式7で演算した温度と温度検知部125の温度計測値を比較して、確からしさを診断するのは困難である。
 そこで本実施形態3では、充電器420による充電時は単電池111の電圧電流パターンがほぼ一定であることに着目した。あらかじめ充電開始時のSOC、SOH、温度に応じた充電プロファイル(例えば、充電終了時の温度または温度上昇値)を実測し、テーブルデータなどの形式で、データベース化しておく。実際の充電時には、充電開始時のSOC、SOH、温度検知部125から取得した単電池群112毎の温度に対応する充電プロファイル(例えば、充電終了時の温度または温度上昇値)をデータベースから読み出すことにより、単電池111毎の実温度を間接的に求めることができる。
<実施の形態3:SOHの確からしさを診断する手法>
 確からしさ診断部153は、あらかじめ充電開始時のSOC、SOH、温度に応じた充電プロファイルのデータベースから読み出した温度(以降、実温度)とパラメータ演算部152が演算した温度演算値を比較することにより、式7に含まれるSOH演算結果の確からしさを診断する。本実施形態3では、実温度と温度演算値との間の差分を検知することにより、これを診断する。以下、実温度と温度演算値との間の差分を検知する手法を説明する。
 図15は、充電器420による充電中の電流、電圧、温度の波形を示す図である。ここでは、ある一定電流で目標となる電池電圧に到達するまで充電した後、電池電圧を一定に保って充電するCC-CV(Constant Current-Constant Voltage)充電を実施した際の波形を例示した。その他の充電方法としては、一定電力で所定の電圧まで充電した後、電池電圧を一定に保つCP-CV(Constant Power-Constant Voltage)充電などがある。
 図15に示すように、充電中は発熱の影響により単電池111の温度が上昇していく。式7に含まれるSOH演算結果が正確でない場合、式7によって演算される温度演算値と実温度との間にズレ(誤差)が生じる。
 SOH演算結果が真値よりも低い場合、式8のQp(t)の演算結果が真値よりも低くなるため、温度演算結果は実温度よりも低くなる。Qp(t)の演算結果が真値よりも高い場合、Qp(t)の演算結果が真値よりも高くなるため、温度演算結果は実温度よりも高くなる。すなわち、SOH演算結果に含まれる誤差の影響が温度演算値に反映されるため、実温度と温度演算値を比較することにより、SOH演算結果の確からしさを診断することができる。具体的には、両者の差分が所定閾値以上である場合は、SOH演算結果が真値からずれていると診断することができる。
<実施の形態3:まとめ>
 以上のように、本実施形態3に係る電池システム100は、SOCとSOHの演算結果を用いて算出した電池温度と実温度に基づき、SOH演算結果の確からしさを診断することができる。
<実施の形態4>
 実施形態1~3では、確からしさ診断部153は診断結果に応じて警告を発することを説明したが、診断結果の原因については通知していない。本発明の実施形態4では、SOH(またはSOC)演算結果が測定タイミングの同時性ズレに起因して不正確になっている場合、その旨を通知する動作例を説明する。電池システム100の構成は実施形態1~3と同様である。
 図16は、単電池111の充放電にともなう電池電流と電池両端電圧の変化を示す図である。図16の上図において、電流検知部130は、白丸で示すタイミングで電池電流を検出する。図16の下図において、電圧検知部140は、黒四角で示すタイミングで電池両端電圧を検出する。モデル電圧は検出した電流にしたがって演算するので、モデル電圧のタイミングは電池電流の検出タイミングと同じであり、図16下図の黒丸で示した。したがって、モデル電圧のタイミングと実電圧のタイミングは、図16下図に示すようにズレが生じる。
 図16に示すように、電流と電圧の取得タイミングがズレていると、確からしさ診断部153がモデル電圧と実電圧を比較する際に、両者が大きく乖離する可能性がある。例えば図16下図の点線で囲む部分のように、偶然に充放電を実施する前後それぞれにおいてモデル電圧と実電圧を取得すると、両者は大きく乖離するので、確からしさ診断部153はSOH(またはSOC)演算結果が不正確であると診断することになる。この診断結果は本来意図しているSOHの確からしさとは異なる観点で診断されたものであるため、診断結果をもたらした原因を特定してユーザに通知することが望ましいと考えられる。
 図16下図の点線部分に着目すると、前半のモデル電圧(黒丸)はOCVよりも小さい値であるのに対し、後半の実電圧(黒四角)はOCVよりも大きい値になっている。その他の区間においては、モデル電圧とOCVの大小関係、および実電圧とOCVの大小関係は、変化していない。すなわちこれら大小関係が反転するのは、充放電が切り替わる時点において、電池電流の測定タイミングと実電圧の測定タイミングがズレていることに起因していると考えられる。
 したがって確からしさ診断部153は、上記のような大小関係の逆転が生じた場合は、上述のような測定タイミングのズレによってSOH演算結果が不正確であると診断された旨を、例えばその旨を示す通知信号などによって上位装置(例えば車両制御部200)に通知することができる。これによりユーザは、電池交換をいったん保留して警告が継続するか否かを見極めるなどの措置を取ることができる。
<実施の形態4:まとめ>
 以上のように、本実施形態4に係る電池システム100は、モデル電圧とOCVの大小関係、および実電圧とOCVの大小関係が反転しているか否かにより、SOH演算結果の確からしさについての診断結果の原因を判定する。これにより、測定タイミングの同時性ズレに起因する診断結果をユーザに通知するなどして適切な措置を促すことができる。
 本発明は上記した実施形態に限定されるものではなく、様々な変形例が含まれる。上記実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることもできる。また、ある実施形態の構成に他の実施形態の構成を加えることもできる。また、各実施形態の構成の一部について、他の構成を追加・削除・置換することもできる。
 例えば、実施形態1~4においてSOH演算結果を診断する手法を複数説明したが、これら診断手法を個別に適用して加重平均することにより、最終的な診断結果を得ることが考えられる。あるいは図12や実施形態2で説明したように、特定の診断手法を用いるのに適していない期間においては、その他の診断手法を代替的に用いることが考えられる。
 上記各構成、機能、処理部、処理手段等は、それらの一部や全部を、例えば集積回路で設計する等によりハードウェアで実現してもよい。また、上記の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリ、ハードディスク、SSD(Solid State Drive)等の記録装置、ICカード、SDカード、DVD等の記録媒体に格納することができる。
 100:電池システム、110:組電池、111:単電池、112:単電池群、120:単電池管理部、121:単電池制御部、122:電圧検出回路、123:制御回路、124:信号入出力回路、125:温度検知部、130:電流検知部、140:電圧検知部、150:組電池制御部、151:電池状態演算部、152:パラメータ演算部、153:確からしさ診断部、160:信号通信手段、170:絶縁素子、180:記憶部、200:車両制御部、300~330:リレー、400:インバータ、410:モータジェネレータ、420:充電器。

Claims (10)

  1.  電池の動作を制御する装置であって、
     前記電池の充電状態と劣化状態を演算する状態演算部と、
     前記状態演算部が演算した前記電池の充電状態または劣化状態を用いて前記電池の測定パラメータを演算により求めるパラメータ演算部と、
     前記状態演算部が演算した前記電池の充電状態または劣化状態の確からしさを診断する診断部と、
     を備え、
     前記診断部は、
      前記パラメータ演算部が演算した前記電池の測定パラメータとその測定値を比較することにより、前記状態演算部が演算した前記電池の充電状態または劣化状態の確からしさを診断し、その診断結果を出力する
     ことを特徴とする電池制御装置。
  2.  前記電池制御装置は、前記電池の両端電圧を検出する電圧検知部を備え、
     前記パラメータ演算部は、前記状態演算部が演算した前記電池の充電状態と劣化状態を用いて前記電池の両端電圧を演算により求め、
     前記診断部は、前記パラメータ演算部が演算により求めた前記電池の両端電圧と、前記電圧検知部が検出した前記電池の両端電圧とを比較することにより、前記状態演算部が演算した前記電池の充電状態または劣化状態の確からしさを診断する
     ことを特徴とする請求項1記載の電池制御装置。
  3.  前記診断部は、
     前記電池の放電時においては、
      前記パラメータ演算部が演算により求めた前記電池の両端電圧が、前記電圧検知部が検出した前記電池の両端電圧よりも所定閾値以上大きい場合は、前記電池の劣化状態を過小に演算したものと診断し、
      前記パラメータ演算部が演算により求めた前記電池の両端電圧が、前記電圧検知部が検出した前記電池の両端電圧よりも所定閾値以上小さい場合は、前記電池の劣化状態を過大に演算したものと診断し、
     前記電池の充電時においては、
      前記パラメータ演算部が演算により求めた前記電池の両端電圧が、前記電圧検知部が検出した前記電池の両端電圧よりも所定閾値以上大きい場合は、前記電池の劣化状態を過大に演算したものと診断し、
      前記パラメータ演算部が演算により求めた前記電池の両端電圧が、前記電圧検知部が検出した前記電池の両端電圧よりも所定閾値以上小さい場合は、前記電池の劣化状態を過小に演算したものと診断する
     ことを特徴とする請求項2記載の電池制御装置。
  4.  前記電池制御装置は、
      前記電池の両端電圧を検出する電圧検知部と、
      前記電池に流れる電流を検出する電流検知部と、
     を備え、
     前記診断部は、
      前記電池に許容充電電流または許容放電電流が流れている場合において前記電池の両端電圧を前記パラメータ演算部が演算した結果と、前記電池に許容充電電流または許容放電電流が流れている場合において前記電圧検知部が検出した前記電池の両端電圧とを比較することにより、前記状態演算部が演算した前記電池の充電状態または劣化状態の確からしさを診断する
     ことを特徴とする請求項1記載の電池制御装置。
  5.  前記診断部は、
      前記電池に許容充電電流または許容放電電流が流れている場合に相当する前記電池の両端電圧を前記パラメータ演算部が演算した期間において、前記電圧検知部が検出した前記電池の両端電圧の変動量が、前記パラメータ演算部が演算した前記電池の両端電圧の変動量を所定閾値以上超過している場合は、前記電池の劣化状態を過小に演算したものと診断し、
      前記電池に許容充電電流または許容放電電流が流れている場合に相当する前記電池の両端電圧を前記パラメータ演算部が演算した期間において、前記電圧検知部が検出した前記電池の両端電圧の変動量が、前記パラメータ演算部が演算した前記電池の両端電圧の変動量を所定閾値以上下回っている場合は、前記電池の劣化状態を過大に演算したものと診断する
     ことを特徴とする請求項4記載の電池制御装置。
  6.  前記診断部は、
      前記電池が充電または放電を実施している場合において、前記パラメータ演算部が演算した前記電池の両端電圧が、前記電圧検知部が検出した前記電池の両端電圧よりも小さい場合は、前記電池の劣化状態を過小に演算したものと診断する
     ことを特徴とする請求項1記載の電池制御装置。
  7.  前記電池制御装置は、前記電池に流れる電流を検出する電流検知部を備え、
     前記診断部は、
      前記電池に電流が流れていないか、または前記電池に流れる電流が所定閾値以下であり前記電池に電流が流れていないものとみなせる場合は、前記状態演算部が演算した前記電池の充電状態の確からしさを診断し、
      前記電池が充電または放電を実施している場合は、前記状態演算部が演算した前記電池の劣化状態の確からしさを診断する
     ことを特徴とする請求項1記載の電池制御装置。
  8.  前記電池制御装置は、前記電池の温度を検出する温度検知部を備え、
     前記パラメータ演算部は、前記状態演算部が演算した前記電池の充電状態と劣化状態を用いて前記電池の内部温度を演算により求め、
     前記診断部は、前記パラメータ演算部が演算により求めた前記電池の内部温度と、前記温度検知部が検出した前記電池の温度をもとに算出した前記電池の内部温度とを比較することにより、前記状態演算部が演算した前記電池の充電状態または劣化状態の確からしさを診断する
     ことを特徴とする請求項1記載の電池制御装置。
  9.  前記診断部は、前記電池の充電時において、
      前記パラメータ演算部が演算により求めた前記電池の内部温度が、前記温度検知部が検出した前記電池の温度を基に算出した前記電池の内部温度よりも所定閾値以上大きい場合は、前記電池の劣化状態を過大に演算したものと診断し、
      前記パラメータ演算部が演算により求めた前記電池の内部温度が、前記電流検知部が検出した前記電池に流れる電流を用いて算出した前記電池の内部温度よりも所定閾値以上小さい場合は、前記電池の劣化状態を過小に演算したものと診断する
     ことを特徴とする請求項8記載の電池制御装置。
  10.  前記電池制御装置は、
      前記電池の両端電圧を検出する電圧検知部と、
      前記電池に流れる電流を検出する電流検知部と、
     を備え、
     前記診断部は、
      前記状態検知部が演算した前記電池の充電状態または劣化状態が正確ではないと診断した場合は、
      前記パラメータ演算部が演算した前記電池の両端電圧と前記電池の開回路電圧のうちいずれが大きいかを示す第1大小関係、および前記電圧検知部が検出した前記電池の両端電圧と前記電池の開回路電圧のうちいずれが大きいかを示す第2大小関係を取得し、
      前記第1大小関係が示す大小関係と、前記第2大小関係が示す大小関係とが反対である場合は、前記電流検知部の検出タイミングと前記電圧検知部の検出タイミングがズレていることにより、前記状態検知部が演算した前記電池の充電状態または劣化状態が不正確になったと診断し、その旨の診断結果を出力する
     ことを特徴とする請求項1記載の電池制御装置。
PCT/JP2013/052547 2013-02-05 2013-02-05 電池制御装置 WO2014122721A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2013/052547 WO2014122721A1 (ja) 2013-02-05 2013-02-05 電池制御装置
US14/765,741 US9952288B2 (en) 2013-02-05 2013-02-05 Battery controller
JP2014560546A JP6111275B2 (ja) 2013-02-05 2013-02-05 電池制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/052547 WO2014122721A1 (ja) 2013-02-05 2013-02-05 電池制御装置

Publications (1)

Publication Number Publication Date
WO2014122721A1 true WO2014122721A1 (ja) 2014-08-14

Family

ID=51299336

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/052547 WO2014122721A1 (ja) 2013-02-05 2013-02-05 電池制御装置

Country Status (3)

Country Link
US (1) US9952288B2 (ja)
JP (1) JP6111275B2 (ja)
WO (1) WO2014122721A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3015876A1 (en) * 2014-10-28 2016-05-04 Kabushiki Kaisha Toshiba Storage battery evaluating apparatus and method
JPWO2016038658A1 (ja) * 2014-09-08 2017-04-27 株式会社東芝 電池パック、制御回路および制御方法
CN106654405A (zh) * 2015-11-02 2017-05-10 三星电子株式会社 电池管理方法和设备
WO2019012930A1 (ja) * 2017-07-12 2019-01-17 日立オートモティブシステムズ株式会社 二次電池制御装置
CN109936204A (zh) * 2017-12-18 2019-06-25 现代自动车株式会社 具有传感器诊断功能的充电系统以及诊断应用于其的传感器的方法
JP2020533772A (ja) * 2017-09-14 2020-11-19 アーベーベー・シュバイツ・アーゲーABB Schweiz AG 再充電可能なバッテリを制御するための方法およびシステム
US11009556B2 (en) * 2018-08-30 2021-05-18 Toyota Jidosha Kabushiki Kaisha Method of estimating deteriorated state of secondary battery and secondary battery system
JP2021136830A (ja) * 2020-02-28 2021-09-13 本田技研工業株式会社 診断装置、診断システム、診断方法、及びプログラム
WO2022092109A1 (ja) * 2020-10-27 2022-05-05 京セラ株式会社 蓄電装置、充電方法及びプログラム

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5929778B2 (ja) * 2013-02-15 2016-06-08 株式会社豊田自動織機 充電率推定装置および充電率推定方法
US10481211B2 (en) * 2014-01-15 2019-11-19 Lat Enterprises, Inc. State-of-charge indicator
FR3020614B1 (fr) * 2014-04-30 2016-04-15 Renault Sa Procede et dispositif de surveillance d'une batterie electrique de vehicule
KR102165937B1 (ko) * 2014-05-30 2020-10-14 삼성전자주식회사 배터리 관리 방법 및 장치
DE102014211797A1 (de) * 2014-06-19 2015-12-24 Lufthansa Technik Ag System und Verfahren zur Überwachung einer Nickel-Cadmium-Batterie in einem Passagierflugzeug
KR101717001B1 (ko) * 2014-07-25 2017-03-15 가부시끼가이샤 도시바 내부 상태 추정 시스템 및 그 추정 방법
FR3029296B1 (fr) * 2014-11-28 2016-12-30 Renault Sa Procede automatique d'estimation de l'etat de charge d'une cellule d'une batterie
FR3029299B1 (fr) * 2014-11-28 2016-12-09 Renault Sa Procede automatique de determination de l'etat de charge d'une batterie
JP6490414B2 (ja) * 2014-12-05 2019-03-27 古河電気工業株式会社 二次電池状態検出装置および二次電池状態検出方法
KR101847685B1 (ko) * 2015-01-28 2018-04-10 주식회사 엘지화학 배터리의 상태 추정 장치 및 방법
US11144106B2 (en) 2015-04-13 2021-10-12 Semiconductor Components Industries, Llc Battery management system for gauging with low power
KR101839141B1 (ko) * 2016-10-31 2018-03-15 한국기술교육대학교 산학협력단 배터리 관리 시스템의 온도를 고려한 배터리의 수명 상태 예측 방법
KR102452548B1 (ko) * 2017-04-18 2022-10-07 현대자동차주식회사 배터리 열화 상태 추정장치, 그를 포함한 시스템 및 그 방법
JP6822300B2 (ja) * 2017-04-27 2021-01-27 トヨタ自動車株式会社 充電率推定方法および車載の電池システム
KR102525676B1 (ko) 2018-02-20 2023-04-24 에스케이온 주식회사 배터리 관리 시스템
JP7182476B2 (ja) * 2019-01-21 2022-12-02 株式会社日立製作所 二次電池モジュールの余寿命診断方法及び余寿命診断システム
US20220236329A1 (en) * 2019-06-07 2022-07-28 Vehicle Energy Japan Inc. Battery control apparatus
JP7387660B2 (ja) * 2021-02-10 2023-11-28 株式会社東芝 電池の診断方法、電池の診断装置、電池の診断システム、電池搭載機器及び電池の診断プログラム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000258513A (ja) * 1999-03-09 2000-09-22 Nissan Motor Co Ltd 電気自動車用二次電池のsoc演算方法
WO2006022073A1 (ja) * 2004-08-25 2006-03-02 Nec Corporation 内部インピーダンス検出装置、内部インピーダンス検出方法、劣化度検出装置および劣化度検出方法
JP2009190690A (ja) * 2008-02-18 2009-08-27 Autonetworks Technologies Ltd バッテリの健全度判定方法及び車両用電源装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4523738B2 (ja) 2001-06-07 2010-08-11 パナソニック株式会社 二次電池の残存容量制御方法および装置
CA2588856C (en) * 2004-11-29 2012-11-13 Lg Chem, Ltd. Method and system for battery state and parameter estimation
JP2010135075A (ja) 2008-12-02 2010-06-17 Calsonic Kansei Corp 組電池の温度推定方法及び装置
JP5459660B2 (ja) * 2009-12-16 2014-04-02 株式会社東芝 二次電池装置および車両
JP5616464B2 (ja) 2011-01-17 2014-10-29 プライムアースEvエナジー株式会社 二次電池の充電状態推定装置
US9929581B2 (en) * 2012-09-24 2018-03-27 Nissan Motor Co., Ltd. Charge control device and charge control method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000258513A (ja) * 1999-03-09 2000-09-22 Nissan Motor Co Ltd 電気自動車用二次電池のsoc演算方法
WO2006022073A1 (ja) * 2004-08-25 2006-03-02 Nec Corporation 内部インピーダンス検出装置、内部インピーダンス検出方法、劣化度検出装置および劣化度検出方法
JP2009190690A (ja) * 2008-02-18 2009-08-27 Autonetworks Technologies Ltd バッテリの健全度判定方法及び車両用電源装置

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016038658A1 (ja) * 2014-09-08 2017-04-27 株式会社東芝 電池パック、制御回路および制御方法
US9952289B2 (en) 2014-10-28 2018-04-24 Kabushiki Kaisha Toshiba Storage battery evaluating apparatus and method
EP3015876A1 (en) * 2014-10-28 2016-05-04 Kabushiki Kaisha Toshiba Storage battery evaluating apparatus and method
US10940761B2 (en) 2015-11-02 2021-03-09 Samsung Electronics Co., Ltd. Battery management method and apparatus
CN106654405A (zh) * 2015-11-02 2017-05-10 三星电子株式会社 电池管理方法和设备
CN106654405B (zh) * 2015-11-02 2021-11-12 三星电子株式会社 电池管理方法和设备
WO2019012930A1 (ja) * 2017-07-12 2019-01-17 日立オートモティブシステムズ株式会社 二次電池制御装置
JP2020533772A (ja) * 2017-09-14 2020-11-19 アーベーベー・シュバイツ・アーゲーABB Schweiz AG 再充電可能なバッテリを制御するための方法およびシステム
JP7266587B2 (ja) 2017-09-14 2023-04-28 アーベーベー・シュバイツ・アーゲー 再充電可能なバッテリを制御するための方法およびシステム
CN109936204A (zh) * 2017-12-18 2019-06-25 现代自动车株式会社 具有传感器诊断功能的充电系统以及诊断应用于其的传感器的方法
US11009556B2 (en) * 2018-08-30 2021-05-18 Toyota Jidosha Kabushiki Kaisha Method of estimating deteriorated state of secondary battery and secondary battery system
JP2021136830A (ja) * 2020-02-28 2021-09-13 本田技研工業株式会社 診断装置、診断システム、診断方法、及びプログラム
JP7424862B2 (ja) 2020-02-28 2024-01-30 本田技研工業株式会社 診断装置、診断システム、診断方法、及びプログラム
WO2022092109A1 (ja) * 2020-10-27 2022-05-05 京セラ株式会社 蓄電装置、充電方法及びプログラム

Also Published As

Publication number Publication date
US9952288B2 (en) 2018-04-24
JPWO2014122721A1 (ja) 2017-01-26
US20150369873A1 (en) 2015-12-24
JP6111275B2 (ja) 2017-04-05

Similar Documents

Publication Publication Date Title
JP6111275B2 (ja) 電池制御装置
US9685807B2 (en) Battery control device
JP6101714B2 (ja) 電池制御装置、電池システム
US10209317B2 (en) Battery control device for calculating battery deterioration based on internal resistance increase rate
JP6084225B2 (ja) 電池制御装置、二次電池システム
JP5868499B2 (ja) 電池制御装置
US10725111B2 (en) Battery state detection device, secondary battery system, program product, and battery state detection method
US20140111164A1 (en) Battery control device and battery system
WO2014132403A1 (ja) 二次電池劣化度判定装置
US10686229B2 (en) Battery state detection device, secondary battery system, program product, and battery state detection method
JP5419831B2 (ja) バッテリの劣化度推定装置
WO2012169061A1 (ja) 電池制御装置、電池システム
US20140239914A1 (en) Battery controller
US20160176308A1 (en) Battery control system and vehicle control system
CN104237795A (zh) 通过相同电压传感器测量多个电池单元的失衡探测
JP6364127B2 (ja) 蓄電池アレーの故障診断装置および故障診断方法
EP3260871B1 (en) Battery system monitoring apparatus
WO2019142550A1 (ja) 二次電池システム
US9821667B2 (en) Battery control system and vehicle control system
WO2013057784A1 (ja) 電池制御装置、二次電池システム
WO2019187680A1 (ja) 二次電池制御装置
JPWO2012169061A1 (ja) 電池制御装置、電池システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13874571

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014560546

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14765741

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13874571

Country of ref document: EP

Kind code of ref document: A1