JP6364127B2 - 蓄電池アレーの故障診断装置および故障診断方法 - Google Patents

蓄電池アレーの故障診断装置および故障診断方法 Download PDF

Info

Publication number
JP6364127B2
JP6364127B2 JP2017524274A JP2017524274A JP6364127B2 JP 6364127 B2 JP6364127 B2 JP 6364127B2 JP 2017524274 A JP2017524274 A JP 2017524274A JP 2017524274 A JP2017524274 A JP 2017524274A JP 6364127 B2 JP6364127 B2 JP 6364127B2
Authority
JP
Japan
Prior art keywords
charge amount
storage battery
battery array
differentiating
value obtained
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2017524274A
Other languages
English (en)
Other versions
JPWO2016203655A1 (ja
Inventor
古田 太
太 古田
剛 有金
有金  剛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Publication of JPWO2016203655A1 publication Critical patent/JPWO2016203655A1/ja
Application granted granted Critical
Publication of JP6364127B2 publication Critical patent/JP6364127B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3828Arrangements for monitoring battery or accumulator variables, e.g. SoC using current integration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Description

本発明は、リチウムイオン二次電池などの蓄電池アレーの故障診断技術に関する。
リチウムイオン二次電池(以下、「蓄電池」という)は、エネルギ密度が高い特徴を活かして、情報通信機器用電源および家庭用電源として開発されてきた。現在では、特に携帯端末の電源として広く普及している。さらに、地球温暖化対策や化石燃料代替の観点から、ハイブリッド自動車および電気自動車用電源、スマートグリッド用の負荷平準用蓄電池や医療現場での無停電電源装置などとして期待されている。リチウムイオン二次電池の適用範囲が広がるにつれて、安全性の確保が強く求められるようになってきた。
蓄電池は、正極にリチウムとコバルトまたはニッケルまたはマンガンなどとの複合酸化物が用いられ、負極には炭素系材料が用いられている。図9に蓄電池の簡単な原理図を示す。充電時にはリチウムイオンが、リチウムの複合酸化物から生成され、正極から負極に向けて移動し、負極の炭素原子間に吸蔵される。一方放電時は、負極に吸蔵されていたリチウムイオンが負極から放出され、正極に向けて移動し、再び複合酸化物に吸蔵される。こうして蓄電池は、正極および負極でのリチウムイオンの放出と吸蔵により、充放電動作を行う。例として、リチウムコバルト酸化物を用いた蓄電池で以下の反応式が挙げられる。なお、右側へ向かう反応が充電時、左側へ向かう反応が放電時を表す。
正極での反応:LiCoO ⇔ Li1−xCoO+xLi+xe
負極での反応:xLi+xe+C ⇔ Li
蓄電池の電池容量は、充放電動作で吸蔵、放出できるリチウムイオンの量、つまり、電池を構成する電極の大きさで決まる。この容量を超える電荷を充放電すると各電極にて過剰のリチウムイオンを吸蔵、放出することになる。各電極で不可逆変化を起こし、充放電動作ができなくなる。例えば、過放電の場合は以下の式の不可逆的な反応がおき、
過放電による分解:LiO+CoO ← LiCoO+Li+e
過充電の場合は以下の式で表される不可逆反応がおき、
過充電による分解:LiCoO → CoO+Li+e
正極が分解し元に戻らない。
さらに蓄電池は充放電動作に関して、正常に動作する領域と発熱や爆発などの危険な領域が隣接している。具体的には、電池の容量に対してより過充放電を行うと、発熱や爆発の危険性がある。これは、過充放電により、上述の電極における不可逆的な析出物の生成が原因である。
このため、蓄電池は定格容量を超える充放電は制限され、さらに上記発熱を防ぐため、個々の電池には電流センサ、電圧センサおよび温度センサが取り付けられている。
蓄電池は、その充電状況(SOC:State of Charge)に応じて電圧に変化が生じ、また過充放電の異常事態では温度上昇がおきる。このため、個々の電池の電圧、電流および温度を監視することで電池の健全性を監視することができる。しかし、図10に示すような大規模な蓄電池システムでは、数100から数1000の複数の電池が直並列された構成をとっている為、上述の監視システムも階層的かつ大規模なものとなる。この監視システムの例を図10に示す。数−数10単位の電池を直並列に接続して1個の蓄電池モジュール1010が構成される。この段階で個々の電池に対し電圧、電流、温度をモジュールレベル監視装置1001で監視し、モジュールごとに結果が集約される。さらにこのモジュールを数−数10個組み合わせた蓄電池パック1020を構成し、構成要素である個々のモジュールの情報をパック単位で集約して、パックレベル監視装置1002で監視する。蓄電システムはさらにこの蓄電池パックを複数個接続し、蓄電池ブロック1030として構成し、ブロック単位で集約してブロックレベル監視装置1003で監視する。図において、符号1040はインバータ装置を表し、符号1050は故障表示モニタを表す。
従来の電池監視技術は、個々の電池に電圧センサ、電流センサおよび温度センサを取り付ける必要がある。システム全体から見ると、電池の数は数100個以上と膨大なものであり、センサの数も同様となる。さらに電池の配置が三次元的であればセンサの配置も同様となる。個々のセンサが正常かどうかの確認や故障した場合のメンテナンスが困難なものとなる。またセンサが故障すると監視システムを停止せざるを得なくなり、センサの個数が増加するとそのシステムの障害の確率も増加する。
また、監視システムがモジュール、パック、さらにブロックと階層構造になっており、その層ごとの集約機能と層間での通信が必要となる。このため、各センサからの情報を集約する部分さらに通信部分での故障が監視システムの障害の頻度を上げることになり、システム全体の信頼性を低下させることになる。
また、特許文献1にあるような簡易な診断方法が提案されているが、これは、複数の蓄電池を直並列に接続した蓄電池アレーの端電圧と電流を計測し、正常な場合と現状の電池アレーの静電容量の違いから、現状の蓄電池の異常を検出する機能のみの提供となる。
特開2014−81258号公報
本発明の目的は、個々の電池に取り付けられたセンサや複雑に階層化された監視システムを用いることなく、複数の蓄電池を直並列に接続した蓄電池アレーの端電圧と電流を計測するのみで蓄電池を監視し、最低限、並列に接続されている蓄電池の最小の正常電池数、言い換えると最大故障数を推定し、蓄電池アレーの有効な容量を求めることで過充放電を防止する診断システムを提供することにある。本発明の前記ならびにそのほかの目的と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。
上記課題を解決するために、本発明の代表的な「蓄電池アレーの故障診断装置」の一つは、インバータ装置に接続された蓄電池アレーの故障診断装置であって、前記蓄電池アレーの端電圧を計測する電圧センサと、前記蓄電池アレーに流れる電流を計測する電流センサと、前記電流センサで検出した電流情報を積算して電荷量を求める積算器と、前記端電圧を前記電荷量で微分した値の変化が緩慢となる電荷量、或いは、前記端電圧を前記電荷量で2回微分した値が極小値をとる電荷量を求め、当該電荷量から断線した故障電池の並列における最大数を推定する故障数推定部とを備えるものである。
また、本発明の代表的な「蓄電池アレーの故障診断方法」の一つは、インバータ装置に接続された蓄電池アレーの故障診断方法であって、前記蓄電池アレーの端電圧を計測するステップと、前記蓄電池アレーに流れる電流を積算して電荷量を計測するステップと、前記端電圧を前記電荷量で微分した値の変化が緩慢となる電荷量、或いは、前記端電圧を前記電荷量で2回微分した値が極小値をとる電荷量を求めるステップと、前記求めた電荷量から、断線した故障電池の並列における最大数を推定するステップと、を備えるものである。
本発明によれば、インバータの制御で使用する電圧センサと電流センサを用いて、個々の蓄電池にセンサを取り付けることなく、蓄電池アレー全体での並列モジュール内の正常電池の最小個数、言い換えると最大故障数が推定できる。さらに、蓄電池アレーの有効な容量がわかり、過充放電を防止する制御ができる。
本発明の第1の実施例における蓄電池アレーの故障診断装置の構成図。 本発明の第1の実施例における故障数推定部の構成図。 本発明の第1の実施例における故障数推定部の記録部の構成図。 本発明の第1の実施例の説明に使用する蓄電池アレーの構成図。 蓄電池アレーの故障パターンを示す表。 蓄電池アレーの正常な電池の最小並列数を示す表。 蓄電池アレーの放電電荷量に対する電圧特性図。 蓄電池アレーの放電電荷量に対するdV/dQの特性図。 蓄電池アレーの放電電荷量するdV/dQの特性図。 本発明の第2の実施例における蓄電池アレーの故障診断装置の構成図。 リチウムイオン二次電池の原理を説明する図。 従来の蓄電池の監視システムを説明する図。 本発明の第5の実施例における初期化プログラムのフローチャート図。 本発明の第5の実施例における初回実行プログラムのフローチャート図。 本発明の第5の実施例における故障検出プログラムのフローチャート図。 本発明の第6の実施例における故障検出プログラムのフローチャート図。 本発明の第7の実施例における故障検出プログラムのフローチャート図。
以下に、本発明を実施例により説明する。この実施例は本発明を用いた一例であり、本発明は本実施例により限定されるものではない。
本発明の第1の実施例を、図1、図2を用いて説明する。まず、図1に、本発明のリチウムイオン二次電池(以下、「蓄電池」という)を直並列して構成したリチウムイオン二次電池アレー102(以下、「蓄電池アレー」という)と充放電制御を行うインバータ装置103の接続の様子を示す。
蓄電池アレー102は、電池100をN個並列に接続したリチウムイオン二次電池並列モジュール101(以下、「並列モジュール」という)をM個直列に接続することで構成される。一方、インバータ装置は、蓄電池アレーの端電圧を計測するための電圧センサ112および蓄電池アレーに流れる電流を計測するための電流センサ111を有する。またインバータ装置は、系統に接続し蓄電池アレーを充放電するための主回路113、リアクトル114、トランス115、交流電圧センサ116、交流電流センサ117および運転制御部120で構成される。さらにインバータ装置103は、電流センサ111からの電流情報を積算して電荷量情報に変換する積算器131と、積算器からの電荷量情報と電圧センサ112からの電圧情報および蓄電池アレー情報記憶部134に前もって記録された定格容量と並列数をもとに、蓄電池アレー102を構成する並列モジュールの中に含まれる正常な電池の最小個数、言い換えると最大故障数を推定する故障数推定部132と、正常電池の最小数/最大故障数を表示する表示パネル133で構成される故障検出部130を含む。インバータ装置103への充放電指令は操作パネルや上位制御に相当する装置(ここでは上位制御)104から行う。この装置に、正常電池の最小数/最大故障数や定格容量を合わせて、現状の有効容量を表示させることもできる。
さらに、上位制御104に有効容量の情報を与えた上で、充放電動作において定格容量に達していなくても、有効容量を超過したことで動作に制限をかけることもできる。
故障数推定部132の構成を図2Aおよび図2Bに示す。図2Aに示すように故障数推定部は、2つの微分ブロック201,201と極値判定ブロック202、記録部203および故障数判定部204から構成される。ここで、2つの微分ブロック201,201と極値判定ブロック202とで変曲点検出部200を構成する。充放電動作をする際に電荷量(Q)に対する電荷差分と電圧差分の比(ΔV/ΔQ)を微分ブロック201にて計算し求める。その比(ΔV/ΔQ)の曲率が変化する、つまり変化が平坦(もしくは変化が揺るやか)になる電荷量Qをもとめるため、微分ブロック201にてΔV/ΔQをさらに電荷量で微分したΔV/ΔQを求め、極値判定部202にて極小値かどうかを検出し、極小値を取る際の電荷量を記録部203にてその際の電荷量をQ(k=1,2,3,・・・)として記憶する。その電荷量と序数および定格容量を用いて、故障数判定部204は以下の手順で電池アレー内の並列モジュールの故障電池数を出力する。
記録部203の例を図2Bに示す。記録部203は2つの記録テーブル221、222をもち、充放電指令に従い記録を充電動作と放電動作で使い分けるように構成される。入力された電荷量はスイッチ205によりフラグの極値判定の結果が真であると、後段の切り替え部206に伝達され、充放電指令により、テーブル221もしくはテーブル222に振り分けられる。フラグが真になった回数だけK値が増加し、各テーブルに順次記録される。
故障数判定部204は記録部203の記録テーブルをもとに、以下の計算で故障数を判定する。たとえば、すべての正常な電池が装着されている初期段階において、充放電動作を行い上記一連の電荷量(Q0K;k=0、1、2、・・I)を放電動作用の記録テーブル221に記録する。その上限は電池アレーの定格容量QNOMである。何回か電池アレーを運用したあとに、現状の電池アレーの電池の故障数を判定するために、初期値のうち記録した電荷量定格電池容量Q0Iと現状の放電で記録した電荷量の最大値の比(α=max(Q;0≦k≦I)/Q0I)を求め、その比αから電池アレーを構成する並列モジュールの正常な電池の最小個数([α×N])もしくは故障した電池の最大数[(1−α)×N]を出力する。
検出ブロックの故障数を推定する原理を図3、図4A、図4B、図5,図6および図7を用いて説明する。図3は説明に使用する電池アレー302を示す。この電池アレーは、電池100、3個を並列接続して構成する並列モジュール301を2個直列接続して構成される。一般に電池アレーの定格容量は、電池アレーを構成する並列モジュール内の並列数Nで決まり、全並列モジュールにおける電池の並列数はすべてNに設定される。しかし、故障(断線)した電池を含む数電池アレーにおいては、電池アレーを構成する複数の並列モジュールのなかで並列数が最も少ない正常な電池数が電池アレーの実質的な容量となる。たとえば、電池アレー302のなかで並列モジュール301の電池1個が故障した場合は、同並列モジュールの正常電池数は2個、電池アレー全体でも電池容量は2個分となる。また、並列モジュール301の電池が2個故障し、並列モジュール301の電池が1個故障した場合は、並列モジュール301の正常な電池数は1個、並列モジュール301の正常な電池数は2個となるが、アレー全体では正常な電池数がより少ない並列モジュール301の1個分が実質的な容量となる。この状態で電池容量2個分の充放電を実施すると、並列モジュール301の正常な電池に対して過充放電な状態となり、この残存する正常な電池は急激に劣化する。この劣化を最小限に抑えるにはこの減少した容量の中で充放電制御を行う必要があり、アレー全体での実質的な電池容量、言い換えると並列モジュール内の電池の最大故障数を早急に検出する必要がある。
個々の電池では、ある電荷量での電池端電圧の大きさを監視することで、電池の故障を把握することができる。しかし、複数の電池を直並列して構成される電池アレーの場合、その端電圧の監視では故障を検出することは困難である。図5に、電池アレーを一定電流で放電させた場合の電圧特性を示す。ここでは、図4Aで示す6つの故障パターンを作成し、それぞれについての電圧特性を同図に示す。各並列モジュールの正常な電池数とアレー全体での有効な電池数を図4Bに合わせて示す。電池を直並列に接続した二次電池アレーの場合も、例えば電池1個あたりの定格容量2000Cとして、判別の電圧を6Vとすると、おおむね故障数に依存した電圧降下曲線を描く。しかし、故障パターン1のように実際には2個故障しているにもかかわらず、すべて正常なパターンREFと故障パターン2の中間を取り、故障数は曖昧になるものがある。6Vに到達した際、故障パターン1では、5000C放電してしまい、故障していない他の電池に対して過放電を防ぐことができない。これは、故障した電池が電池アレーのどの位置に配置されていたかにより、電池間の接続抵抗や故障した電池から電池アレーの両端にいたるまでに経由する電池の内部抵抗の総和が異なるためである。抵抗の総和が異なると、それにともなう電圧降下も異なってくる。このため、故障した電池が電池アレーのどの位置に配置されているかにより、アレーの端電圧での電圧降下がばらついてくる。このため、単純に端電圧の電圧降下だけで故障数を検出することは困難といえる。同様のことは、並列モジュール内での電池故障数が2個の場合を含んでいる故障パターン3と故障パターン5でも起こりえる。
そこで、電池アレーの端電圧Vの代わりにdV/dQを評価することとした。図6に、先述の図4Aに示す6つの故障パターンに対し、それぞれについて電池アレーを一定電流で放電させた場合の−dV/dQ特性を示す。各故障パターンにおいてdV/dQ特性の変化が緩慢になる領域は、リチウムイオン二次電池において負極(カーボン電極)からリチウムイオンが抜けるデインターカレーションによって電極の構造が変化している最中であることを示す。一個の電池単体を放電し、放電電荷量Qに対しdV/dQ特性を計測するとこのデインターカレーションによる平坦な状態が数回起きる。ここで、このデインターカレーション状態の際の電荷量をデインターカレーションポイント(小さいものから順にQ単体k;k=1、2、…)と呼ぶことにする。図7はデインターカレーションポイントを見つけるためにdV/dQの変化が緩慢になる部分をより強調する目的でさらに電荷量で微分したdV/dQ特性を示す。図6と比較して、図7では平坦部ではなく極小値をとる領域の電荷量がデインターカレーションポイントとなる。
電池アレーが全て同じ種類かつ正常な電池で構成されていれば、1個の健全な電池単体の特性を電荷量方向に並列数だけ等倍した特性となり、デインターカレーションポイントも並列数Nだけ等倍される(小さいものから順に、Q健全アレーk=N×Q健全単体k;k=1、2、…)。定格容量QNOMで放電動作をすれば、これに対応するデインターカレーションポイントQ健全アレーIが定まる。つまり以下の式が成立する。
NOM=β×N×Q健全単体I (1)
ここで、Iは記録すべきデインターカレーションポイントの最大数、βは、定格容量と最終デインターカレーションの対応比で1に近い値である。
しかし、故障(断線)した電池を含む電池アレーの場合は、そのdV/dQ特性のデインターカレーションポイントが変化する。具体的には、故障した電池を含む並列モジュールのdV/dQ特性には、残存する正常な電池数N´で定まる電荷量でデインターカレーションポイント(Q故障モジュールk=N´×Q健全単体k;k=1、2、…、N´<N)が現れる。このため、電池アレーの端電圧から放電電荷量Qに対するdV/dQ特性を評価すると、健全な場合と比較してより小さいデインターカレーションポイント(Q故障アレーk=N´×Q健全単体k;k=1、2、…、N´<N)が現れる。
よって、正常な電池で充放電動作をさせたときのデインターカレーションポイントの最大個数Iを求めておけば、もともとの並列数Nと残存する正常な電池数N´の関係は以下の式であらわされ、それらの比を算出することができる。
N´/N=N´×Q単体健全I/N×Q単体健全I
=Q故障アレーI/Q健全アレーI (2)
このデインターカレーションポイントの変化は電池間の接続抵抗や電池の内部抵抗の影響を受けない。このため、故障した電池の位置に依存せずに、故障した電池を有する並列モジュールの正常電池数が把握可能となる。
さらに複数の並列モジュールで故障した電池が存在した場合には、それぞれの並列モジュールの正常な電池の数をN´,N´,・・・とすると、それぞれの並列モジュールのdV/dQ特性のデインターカレーションポイントは(Qlk=N´×Q単体k;l=1,2,…、K=1,2,…)となる。アレー全体のdV/dQ特性においては、残存する正常な電池数のもっとも少ない並列モジュールのdV/dQ特性デインターカレーションポイント(Qlk=min(N´;l=1,2、…)×Q単体k;K=1,2、…)がそのまま電池アレーのデインターカレーションポイントとして現われる。電池アレーの放電動作において、dV/dQもしくはdV/dQを評価し、デインターカレーションポイントを記録することで、電池アレーの並列モジュール内の正常な電池の最小数を把握できる。
故障アレーI/Q健全アレーI=min(N´;I=1,2,…)/N (3)
以上のことから、定格容量と電池のデインターカレーションポイントの最大序数Iと現状の放電動作でデインターカレーションポイントを記録することで、電池アレーを構成する並列モジュール内の正常な電池の最小数を算出できる。言い換えると、最大故障数がわかる。
図4Bと図6もしくは図7を対比させても明らかなように、放電動作でのdV/dQ特性の平坦部もしくはdV/dQ特性の極小値を示すデインターカレーションポイントはそれぞれの故障パターンの正常な電池数と一致する。逆に言うと、故障した電池の位置に関わらず最大故障数のみを反映している。
充電動作の場合にも、リチウムイオン二次電池において負極(カーボン電極)へリチウムイオンが入り込むインターカレーションがおき電極の構造が変化するため、充電電化量Qに対して、dV/dQを計測すると変化が緩慢になる領域が出てくる。このため、放電時と同様の方法を適用し、dV/dQやdV/dQを計測しインターカレーションポイントを記録することで、並列モジュール内にある最小の正常電池数つまり最大故障数を算出することができる。
実際のインバータ装置では離散的な電圧信号や電流信号を扱うので、微分値として、差分値ΔV/ΔQもしくはΔV/ΔQを評価することになる。また、実際には電圧センサや電流センサの誤差が含まれるので、デインターカレーションポイントと定格容量値の比に最も近い整数を故障数とする。
本実施例によれば、インバータの制御で使用する電圧センサと電流センサを用いて、個々の蓄電池にセンサを取り付けることなく、蓄電池アレー全体での並列モジュール内の正常電池の最小個数、言い換えると最大故障数を推定できる。さらに、蓄電池アレーの有効な容量がわかり、過充放電を防止する制御ができる。
本発明の第2の実施例について説明する。この実施例は、図1で示すインバータ装置の図2Aで示す故障数推定部132の記録部203において、最大序数Iのデインターカレーションポイント/インターカレーションポイントが記録された段階で、故障数を計算する前に電池の故障を示すアラームをあげることを特徴とする。このアラームを上位制御104に充放電中止命令として入力する。
実施例1で説明したとおり、すべて正常な電池で構成された初期の充放電動作で、使用する蓄電池のデインターカレーションポイント/インターカレーションポイントと最大序数Iが明らかになる。記録の過程において、最大序数Iとなるところがその蓄電池の容量的な限界とみなすことができる。現行の充放電動作においても、使用する蓄電池のデインターカレーションポイント/インターカレーションポイントの最大序数Iとなる部分がその電池アレーの限界となる。
本実施例によれば、蓄電池アレーの並列モジュールの正常な電池の最小個数を求めなくても、放電量の限界値を示し、放電動作を止めることにより、残存する正常電池の過放電を防止できる。なお、充電動作も同様に説明できる。
本発明の第3の実施例について説明する。本実施例は、図1で示すインバータ装置の図2Aで示す故障数推定部132の記録部203において、序数K(1<K<I)のデインターカレーションポイント/インターカレーションポイントが記録された段階で、次のデインターカレーションポイント/インターカレーションポイントを計算し、最大序数Iに達する前に正常電池の最小数、言い換えると最大故障数を予測する。
実施例1で説明したとおり、すべて正常な電池で構成された初期の充放電動作で、使用する蓄電池のデインターカレーションポイント/インターカレーションポイントと最大序数Iが明らかになる。隣接するデインターカレーションポイントの比は、現行の充放電動作においても、同様である。よって、現行の充放電動作で得られる蓄電池のデインターカレーションポイント/インターカレーションポイントの一部と初期の隣接するデインターカレーションポイントの比を用いて、現行の充放電動作で得られる蓄電池のデインターカレーションポイント/インターカレーションポイントの残りのポイントが予測できる。
本実施例によれば、すべて正常な電池で構成された初期の充放電動作で、使用する蓄電池のデインターカレーションポイント/インターカレーションポイントと最大序数Iが明らかにしておけば、現行の充放電動作を一部行うだけで、電池アレーを構成する並列モジュール内の正常な電池の最小数を算出できる。言い換えると、最大故障数がわかる。
本発明の第4の実施例について図8を用いて説明する。本実施例は、図1で示すインバータ装置の電流センサ111から得られる電流情報のかわりに、交流電流センサ116と交流電圧センサ117から得られる交流電流および交流電圧を用いて電力計算部801にて有効電力を計算し、そこから直流電圧で除することで直流電流を求めるものである。直流電流を求めたあとの故障数検出方法は実施例1と同様である。
本実施例によれば、第一に直流電流センサ111を省略できることである。第2に電流の検出精度が高いこと、特に計測した電流値の経時変化が小さいことである。直流電流センサ111はホール効果を利用して検出する方式が主である。この効果は温度の影響を受けやすいので、逐次校正をしないと、経時変化が生じ正確な電流が計測できない。一方、交流電流センサ117は電磁誘導を利用するので、温度の影響を受けない。経時変化も小さく校正も不要である。故障数検出では、微妙な電流の変化を利用するので、それに使う電流情報は経時変化の小さい高精度なセンサからの情報を利用するのが望ましい。本実施例は、その要求に沿ってなされるものである。
実施例1では正常な電池の最小数の算出を、図2Aおよび図2Bで示した制御ブロックで構成して実現したが、マイコンによるシーケンシャルなプログラム処理でも実装が可能である。実施例1の故障検出部130に相当するプログラムのフローチャートを図11乃至図12Bに示し、本実施例を説明する。
蓄電池アレーの端電圧および蓄電池アレーを流れる電流をそれぞれ電圧センサ112および電流センサ111から得、A/D変換器(図示せず)で読み出し、マイコン(図示せず)に入力する。ここからの動作は初期化プログラム1101、初回実行プログラム1201および故障検出プログラム1202を搭載したマイコンが実施する。
この初期化プログラム1101はインバータの動作開始時にのみ実行され、以下のフローを実施しメインに戻る。初期化プログラムは、接続される蓄電池の定格容量値QNOMと並列モジュール内の電池並列数Nをそれぞれ設定する(S01)。ついで、故障検出プログラムで使用する積算電荷量Q(0)を0に初期化する(S02)。
初回実行プログラム1201および故障検出プログラム1202の構成はほぼ同じである。初回実行プログラム1201はすべて健全な蓄電池で構成された蓄電池アレーを初回充放電する際に実行されるのに対し、故障検出プログラム1202は初回実行プログラムで一通り充放電が終わった後、通常の充放電動作で実行される。初回実行プログラムおよび故障検出プログラムは、インバータメインプログラムからタイマ割り込みなどによって定期的(数m〜数100ms間隔)で呼び出され、以下のフローを実行し、メインに戻る。
初回実行プログラム1201は、まず、n回目(n≧1)の呼び出しで得られた電流をこれまでの積算値すなわち電荷量Q(n−1)に加え、新しい電荷量Q(n)とする(S03)。得られた電圧V(n)を積算した電荷量Q(n)で2回微分(ΔV(n)/ΔQ(n))する(S04)。前回微分値との差分をとり、増減状況から極小値を検出する(S05〜S07)。その際の運転状況、つまり充電動作もしくは放電動作に応じて(S08)、電荷量Q(n)をそれぞれデインターカレーション初回配列とインターカレーション初回配列に記録する(S09、S11)。その際、序数kを1だけ増加させる(S10,S12)。一般的なインバータ装置であれば、定格容量になると充放電動作を終えるので、必要十分なデインターカレーションポイントやインターカレーションポイントが記録されることとなる。または、定格容量値と比較して充放電終了したことを発信するステージを設けてもよい。
故障検出プログラム1202は、初回実行プログラム1201と同様にデインターカレーションポイントとインターカレーションポイントを記録してゆく。ただし、格納する配列が異なり、初回配列ではなく現行配列となる(S29、S30)。最大序数を迎えたとき(S33)に初回実行配列と現行配列の電荷量を比較して、大きく異なる場合(S34)は、その比に並列数を乗じ、より近い整数を算出する(S35)。比較の目安は、故障した電池1個分の容量とする。これが、並列モジュール内に存在する正常電池数の最小のケースとなる。この正常数または、故障数をメインプログラムに発信するか戻り値としてメインに戻る。
本実施例によれば、実施例1と同様に、インバータの制御で使用する電圧センサと電流センサを用いて、個々の蓄電池にセンサを取り付けることなく、蓄電池アレー全体での並列モジュール内の正常電池の最小個数、言い換えると最大故障数を推定できる。さらに、蓄電池アレーの有効な容量がわかり、過充放電を防止する制御ができる。
実施例2では充放電動作で最大序数Iを迎えた時点で動作を中止する構成を示したが、マイコンによるシーケンシャルなプログラム処理でも実装が可能である。実施例2の故障検出部130に相当するプログラムのフローチャートを図13に示し本実施例を説明する。初期化プログラム、初回実行プログラムは実施例5と同様であるので省略する。ただし、最大序数Iは初回実行プログラムで求められているものとする。
図13に故障検出プログラム1302のフローを示す。n回目(n≧1)の呼び出しで得られた電流をこれまでの積算値すなわち電荷量Q(n−1)に加え、新しい電荷量Q(n)とする(S23)。得られた電圧V(n)を積算した電荷量Q(n)で2回微分(ΔV(n)/ΔQ(n))する(S24)。前回微分値との差分をとり、増減状況から極小値を検出する(S25〜S27)。その際の運転状況、つまり充電動作もしくは放電動作に応じて(S28)、電荷量Q(n)をそれぞれデインターカレーションとインターカレーションの場合に分けて、序数を1だけ増加させる(S30,S32)。この際、現行配列への記録はあっても良いし、しなくてもかまわない(S29とS31)。この序数が、初回実行プログラムで得られた最大序数Iと比較して(S33)同等となった場合に、動作を中断するサインをメインプログラムに発信(S35)して戻る。同時に正常電池数を計算してもよい(S34)。
本実施例によれば、実施例2と同様に、蓄電池アレーの並列モジュールの正常な電池の最小個数を求めなくても、放電量の限界値を示し、放電動作を止めることにより、残存する正常電池の過放電或いは過充電を防止できる。
実施例3では充放電動作の途中で正常電池数の推定を行い、最大序数Iを迎えた時点で動作を中止する構成を示したが、マイコンによるシーケンシャルなプログラム処理でも実装が可能である。実施例3の故障検出部130に相当するプログラムのフローチャートを図14に示し、本実施例を説明する。初期化プログラム、初回実行プログラムは実施例5と同様であるので省略する。
故障検出プログラム1402は、初回実行プログラムと同様にデインターカレーションポイントとインターカレーションポイントを記録してゆく。ただし、格納する配列が異なり、初回配列ではなく現行配列となる。さらに同じ序数での初回実行配列と現行配列の電荷量を比較して(S33)、大きく異なる場合は、その比に並列数を乗じより近い整数を算出する(S34)。比較の目安は、故障した電池1個分の容量とする。これが、並列モジュール内に存在する正常電池数の最小のケースとなる。この正常数または、故障数をメインプログラムに発信するか戻り値としてメインプログラムに戻る。
本実施例によれば、実施例3と同様に、すべて正常な電池で構成された初期の充放電動作で、使用する蓄電池のデインターカレーションポイント/インターカレーションポイントと最大序数Iを明らかにしておけば、現行の充放電動作を一部行うだけで、電池アレーを構成する並列モジュール内の正常な電池の最小数を算出できる。
100:リチウムイオン二次電池、101:リチウムイオン二次電池並列モジュール、102:リチウムイオン二次電池アレー、103:インバータ装置、104:上位制御装置、111:電流センサ、112:電圧センサ、113:主回路、114:リアクトル、115:トランス、116:交流電圧センサ、117:交流電流センサ、120:運転制御部、130:故障検出部、131:積算器、132:故障数推定部、133:表示パネル、134:電池アレー情報記憶部、200:変曲点検出部、201:微分ブロック、202:極値判定ブロック、203:記録部、204:故障数判定部、205:スイッチ、206:切り換えブロック、221:記録用テーブル、222:記録用テーブル、301:リチウムイオン二次電池並列モジュール、302:リチウムイオン二次電池アレー、801:電力計算部、802:直流電流算出部、1001:モジュールレベル監視装置、1002:パックレベル監視装置、1003:ブロックレベル監視装置、1010:蓄電池モジュール、1020:蓄電池パック、1030:蓄電池ブロック、1040:インバータ装置、1050:故障表示モニタ、1101:初期化プログラム、1201:初回実行プログラム、1202:故障検出プログラム、1302:故障検出プログラム、1402:故障検出プログラム。

Claims (15)

  1. インバータ装置に接続された蓄電池アレーの故障診断装置であって、
    前記蓄電池アレーの端電圧を計測する電圧センサと、
    前記蓄電池アレーに流れる電流を計測する電流センサと、
    前記電流センサで検出した電流情報を積算して電荷量を求める積算器と、
    前記端電圧を前記電荷量で微分した値の変化が緩慢となる電荷量、或いは、前記端電圧を前記電荷量で2回微分した値が極小値をとる電荷量を求め、当該電荷量から断線した故障電池の並列における最大数を推定する故障数推定部と
    を備える蓄電池アレーの故障診断装置。
  2. 請求項1に記載の蓄電池アレーの故障診断装置において、
    前記蓄電池アレーに流れる電流を計測する電流センサに代えて、
    インバータ装置の交流電流センサと交流電圧センサから得られる交流電流および交流電圧を用いて有効電力を計算する電力計算部と、
    前記有効電力を前記電圧センサからの電圧情報で除することにより直流電流を求める直流電流算出部と、
    を備える蓄電池アレーの故障診断装置。
  3. 請求項1に記載の蓄電池アレーの故障診断装置において、
    前記故障数推定部は、
    前記端電圧を前記電荷量で微分した値の変化が緩慢となる電荷量、或いは、前記端電圧を前記電荷量で2回微分した値が極小値をとる電荷量を求めて順次記録し、記録した電荷量の最大値と定格電荷量とを比較し、断線した故障電池の並列における最大数を推定する蓄電池アレーの故障診断装置。
  4. 請求項1に記載の蓄電池アレーの故障診断装置において、
    前記故障数推定部は、
    前記端電圧を前記電荷量で微分した値の変化が緩慢となる電荷量、或いは、前記端電圧を前記電荷量で2回微分した値が極小値をとる電荷量を求めて順次記録し、記録したある電荷量の定数倍と定格電荷量とを比較し、断線した故障電池の並列における最大数を推定する蓄電池アレーの故障診断装置。
  5. 請求項4に記載の蓄電池アレーの故障診断装置において、
    前記定数は、正常な電池が接続されている初期運転時に電荷量で充放電スキャンして、前記端電圧を前記電荷量で微分した値の変化が緩慢となる電荷量、或いは、前記端電圧を前記電荷量で2回微分した値が極小値をとる電荷量を求めて順次記録し、記録した電荷量間の比から選択する蓄電池アレーの故障診断装置。
  6. 請求項3に記載の蓄電池アレーの故障診断装置において、
    前記故障数推定部は、端電圧を電荷量で微分した値の変化が緩慢となる前記電荷量、或いは、端電圧を電荷量で2回微分した値が極小値をとる前記電荷量の最大序数Iを記録した時、アラームを出す蓄電池アレーの故障診断装置。
  7. 請求項4に記載の蓄電池アレーの故障診断装置において、
    前記故障数推定部は、前記端電圧を電荷量で微分した値の変化が緩慢となる前記電荷量、或いは、端電圧を電荷量で2回微分した値が極小値をとる前記電荷量の序数K(1<K<I)を記録した時、次の前記電荷量を計算し、断線した故障電池の並列における最大数を推定する蓄電池アレーの故障診断装置。
  8. 請求項1に記載の蓄電池アレーの故障診断装置において、
    前記故障数推定部は、
    前記電圧センサからの電圧情報Vと前記積算器からの電荷量情報Qとの微分dV/dQの変曲点を検出する変曲点検出部と、
    前記dV/dQの変曲点と、前記蓄電池アレーの定格容量と蓄電池の並列数とから、故障した電池の最大個数を求める故障判定部と
    を備える蓄電池アレーの故障診断装置。
  9. 請求項に記載の蓄電池アレーの故障診断装置において、
    前記変曲点検出部は、
    dV/dQを求める微分ブロックと、
    V/dQを求める微分ブロックと、
    V/dQの極値を求める極値判定ブロックと、
    を備える蓄電池アレーの故障診断装置。
  10. 請求項1に記載の蓄電池アレーの故障診断装置において、
    故障電池の並列における最大数から現時点での有効な電池容量を推定し、蓄電池アレーの充放電制御に制限をかける蓄電池アレーの故障診断装置。
  11. インバータ装置に接続された蓄電池アレーの故障診断方法であって、
    前記蓄電池アレーの端電圧を計測するステップと、
    前記蓄電池アレーに流れる電流を積算して電荷量を計測するステップと、
    前記端電圧を前記電荷量で微分した値の変化が緩慢となる電荷量、或いは、前記端電圧を前記電荷量で2回微分した値が極小値をとる電荷量を求めるステップと、
    前記求めた電荷量から、断線した故障電池の並列における最大数を推定するステップと、
    を備える蓄電池アレーの故障診断方法。
  12. 請求項11に記載の蓄電池アレーの故障診断方法において、
    前記端電圧を前記電荷量で微分した値の変化が緩慢となる電荷量、或いは、前記端電圧を前記電荷量で2回微分した値が極小値をとる電荷量を順次記録し、前記電荷量の最大序数Iを記録した時、アラームを出すステップを備える蓄電池アレーの故障診断方法。
  13. 請求項11に記載の蓄電池アレーの故障診断方法において、
    前記端電圧を前記電荷量で微分した値の変化が緩慢となる電荷量、或いは、前記端電圧を前記電荷量で2回微分した値が極小値をとる電荷量を順次記録し、前記電荷量の序数K(1<K<I)を記録した時、次の前記電荷量を計算し、断線した故障電池の並列における最大数を推定するステップを備える蓄電池アレーの故障診断方法。
  14. 請求項11に記載の蓄電池アレーの故障診断方法において、
    前記断線した故障電池の並列における最大数を推定するステップは、
    前記端電圧を前記電荷量で微分した値の変化が緩慢となる電荷量、或いは、前記端電圧を前記電荷量で2回微分した値が極小値をとる電荷量を順次記録するステップと、
    記録した電荷量の最大値と定格電荷量とを比較して、断線した故障電池の並列における最大数を推定するステップと
    を備える蓄電池アレーの故障診断方法。
  15. 請求項11に記載の蓄電池アレーの故障診断方法において、
    前記断線した故障電池の並列における最大数を推定するステップは、
    前記端電圧を前記電荷量で微分した値の変化が緩慢となる電荷量、或いは、前記端電圧を前記電荷量で2回微分した値が極小値をとる電荷量を順次記録するステップと、
    記録したある電荷量の定数倍と定格電荷量とを比較し、断線した故障電池の並列における最大数を推定するステップと
    を備える蓄電池アレーの故障診断方法。
JP2017524274A 2015-06-19 2015-06-19 蓄電池アレーの故障診断装置および故障診断方法 Expired - Fee Related JP6364127B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/067792 WO2016203655A1 (ja) 2015-06-19 2015-06-19 蓄電池アレーの故障診断装置および故障診断方法

Publications (2)

Publication Number Publication Date
JPWO2016203655A1 JPWO2016203655A1 (ja) 2018-02-22
JP6364127B2 true JP6364127B2 (ja) 2018-07-25

Family

ID=57545246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017524274A Expired - Fee Related JP6364127B2 (ja) 2015-06-19 2015-06-19 蓄電池アレーの故障診断装置および故障診断方法

Country Status (2)

Country Link
JP (1) JP6364127B2 (ja)
WO (1) WO2016203655A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6301048B1 (ja) * 2017-10-05 2018-03-28 三菱電機株式会社 組電池の管理装置および組電池システム
CN108544925B (zh) * 2018-04-02 2019-10-01 北京理工大学 电池管理系统
JP7056363B2 (ja) * 2018-05-10 2022-04-19 トヨタ自動車株式会社 電池システム
US10955453B2 (en) 2018-10-18 2021-03-23 Ford Global Technologies, Llc Neuro-adaptive onboard/offboard fault detector for digital charging
WO2021186550A1 (ja) * 2020-03-17 2021-09-23 Tdk株式会社 二次電池の制御装置、電池パックおよび二次電池の制御方法
US20240288498A1 (en) 2021-05-13 2024-08-29 Mitsubishi Electric Corporation Storage battery diagnosis device and storage battery system
KR20220159818A (ko) 2021-05-26 2022-12-05 주식회사 엘지에너지솔루션 배터리 모니터링 장치 및 방법
JP7509119B2 (ja) * 2021-11-15 2024-07-02 トヨタ自動車株式会社 電池の劣化診断装置、及び電池の劣化診断方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007132896A1 (ja) * 2006-05-16 2007-11-22 Ube Industries, Ltd. 蓄電デバイスおよび蓄電システム
US8860420B2 (en) * 2011-09-16 2014-10-14 Blackberry Limited Diagnostic use of physical and electrical battery parameters and storing relative condition data
US9461490B2 (en) * 2013-03-13 2016-10-04 GM Global Technology Operations LLC Method and apparatus for evaluating a rechargeable battery

Also Published As

Publication number Publication date
WO2016203655A1 (ja) 2016-12-22
JPWO2016203655A1 (ja) 2018-02-22

Similar Documents

Publication Publication Date Title
JP6364127B2 (ja) 蓄電池アレーの故障診断装置および故障診断方法
US20240118344A1 (en) Device detecting abnormality of secondary battery, abnormality detection method, and program
JP6111275B2 (ja) 電池制御装置
US9252624B2 (en) Battery control device and battery system
JP6084225B2 (ja) 電池制御装置、二次電池システム
JP6033155B2 (ja) 電池制御装置
WO2014132403A1 (ja) 二次電池劣化度判定装置
JP2016091613A (ja) 電池システム及び容量回復方法
JP5670556B2 (ja) 電池制御装置
US20140239914A1 (en) Battery controller
CN104237795A (zh) 通过相同电压传感器测量多个电池单元的失衡探测
US20140184236A1 (en) Battery control apparatus and battery system
WO2014115294A1 (ja) 電池制御装置、電池システム
JP2014036497A (ja) 蓄電システムおよび均等化方法
JP2016023968A (ja) 電池状態検知装置、二次電池システム、電池状態検知プログラム、電池状態検知方法
JP2018529304A (ja) バッテリーセルのバランシング方法及びシステム
JP2016023967A (ja) 電池状態検知装置、二次電池システム、電池状態検知プログラム、電池状態検知方法
KR20210099939A (ko) 리튬 플레이팅 검출 방법, 이를 이용한 배터리 관리 방법 및 장치
CN103872727B (zh) 一种锂离子动力电池最大使用电流的确定方法
US10333182B2 (en) Estimation of cell voltage excursion in the presence of battery pack sensing faults
WO2015059738A1 (ja) 二次電池制御装置および二次電池制御方法
Raj et al. Critical Review on Battery Management Systems
TWI856802B (zh) 二次電池的異常檢測裝置及二次電池
US20240066993A1 (en) Battery Diagnosis Device, Battery Management System, Battery Pack, Electric Vehicle And Battery Diagnosis Method
JP2022548918A (ja) バッテリー診断装置及び方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171025

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180629

R150 Certificate of patent or registration of utility model

Ref document number: 6364127

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees