WO2019187680A1 - 二次電池制御装置 - Google Patents

二次電池制御装置 Download PDF

Info

Publication number
WO2019187680A1
WO2019187680A1 PCT/JP2019/004344 JP2019004344W WO2019187680A1 WO 2019187680 A1 WO2019187680 A1 WO 2019187680A1 JP 2019004344 W JP2019004344 W JP 2019004344W WO 2019187680 A1 WO2019187680 A1 WO 2019187680A1
Authority
WO
WIPO (PCT)
Prior art keywords
soc
voltage drop
secondary battery
value
unit
Prior art date
Application number
PCT/JP2019/004344
Other languages
English (en)
French (fr)
Inventor
ソクチョル 申
鈴木 修一
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Publication of WO2019187680A1 publication Critical patent/WO2019187680A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/40Electric propulsion with power supplied within the vehicle using propulsion power supplied by capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L55/00Arrangements for supplying energy stored within a vehicle to a power network, i.e. vehicle-to-grid [V2G] arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/569Constructional details of current conducting connections for detecting conditions inside cells or batteries, e.g. details of voltage sensing terminals
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present invention relates to a secondary battery control device.
  • a secondary battery system such as a power supply device using a secondary battery as a power storage means, a distributed power storage device, or an electric vehicle is equipped with a battery control circuit that manages the state of the battery.
  • Typical examples of indices used by the battery control circuit to manage the state of the battery include a state of charge (SOC: State Of Charge), a deterioration state (SOH: State Of Health), allowable current, allowable power, and the like. is there.
  • SOC indicates how much the battery is charged (how much charge remains in the battery), and the SOH indicates how much the battery has deteriorated from the initial state. It is.
  • the allowable current is the maximum value of the current that can be charged and discharged by the battery, and the allowable power is a value obtained by multiplying the allowable current by the battery voltage.
  • Patent Document 1 discloses a fuel cell in which both reaction gases are supplied to each reaction gas channel to generate power, a power storage device that charges and discharges power generated by the fuel cell, and the fuel cell.
  • an auxiliary machine driven by the power of the power storage device a voltage detection unit that detects a voltage of the power storage device, a deterioration determination unit that determines deterioration of the power storage device, and the power storage device supplied to the auxiliary device
  • a steady state determination unit that determines whether or not the power to be in a steady state for a predetermined time, and when the deterioration determination unit determines that the steady state determination unit is in the steady state for the predetermined time,
  • a fuel cell system is described in which deterioration of the power storage device is determined based on a voltage of the power storage device detected by a voltage detection unit.
  • the deterioration determination is performed based on the voltage of the power storage device when the power storage device is in a steady state for a predetermined time, the deterioration determination of the power storage device is accurately performed. be able to. Based on the deterioration determination result, for example, by determining the output upper limit value or the SOC usage range of the power storage device, the power storage device can be fully utilized from the time when the power storage device is new and used.
  • Patent Literature 1 when the power generation of the fuel cell is stopped and a constant current is supplied from the power storage device, it is determined that the power storage device is in a steady state, and the current value detected at this time Degradation is determined using the voltage value. Therefore, the deterioration determination cannot be performed during the operation of the secondary battery system, and therefore the SOC usage range cannot be optimized.
  • the secondary battery control device includes a SOC estimation unit that estimates the SOC (charge state) of the secondary battery, and a voltage drop based on the OCV (open circuit voltage) and CCV (closed circuit voltage) of the secondary battery. Based on the relationship between the voltage drop calculation unit to be calculated, the SOC estimated by the SOC estimation unit, and the voltage drop calculated by the voltage drop calculation unit, the range of SOC used in charging and discharging of the secondary battery Or a use SOC determining unit that determines a center value.
  • FIG. 1 It is a figure which shows the structure of the battery system which concerns on one Embodiment of this invention, and its periphery. It is a figure which shows the circuit structure of a cell control part. It is a block diagram showing the processing content which an assembled battery control part performs in the 1st Embodiment of this invention. It is a circuit diagram which shows the equivalent circuit of a cell. It is a figure which shows the example of the map information memorize
  • a lithium ion battery is used to connect unit cells in series to form an assembled battery, but a unit battery is connected in series to form an assembled battery.
  • the assembled battery may be configured by connecting in series the single cells connected in series.
  • FIG. 1 is a diagram showing a configuration of a battery system 100 and its surroundings according to an embodiment of the present invention.
  • Battery system 100 is connected to inverter 400 via relays 300a and 300b, and is connected to charger 420 via relays 300c and 300d.
  • the battery system 100 includes an assembled battery 110, a single battery management unit 120, a current detection unit 130, a voltage detection unit 140, and an assembled battery control unit 150.
  • the assembled battery 110 is composed of a plurality of unit cells 111.
  • the unit cell management unit 120 monitors the state of the unit cell 111.
  • the current detection unit 130 detects a current flowing through the battery system 100.
  • the voltage detection unit 140 detects the total voltage of the assembled battery 110.
  • the assembled battery control unit 150 detects the state of the assembled battery 110 and also manages the state.
  • the assembled battery control unit 150 functions as a secondary battery control device that controls the assembled battery 110 by detecting the state of the assembled battery 110 that is a secondary battery in the battery system 100.
  • the assembled battery control unit 150 includes a battery voltage and temperature of each unit cell 111 transmitted by the unit cell management unit 120, a current value flowing through the battery system 100 transmitted by the current detection unit 130, and an assembled battery transmitted by the voltage detection unit 140. A total voltage value of 110 is received.
  • the assembled battery control unit 150 detects the state of the assembled battery 110 based on the received information, and performs charge / discharge control of the assembled battery 110. The result of the state detection by the assembled battery control unit 150 is transmitted to the single cell management unit 120 and the vehicle control unit 200.
  • the assembled battery 110 is configured by electrically connecting a plurality of unit cells 111 capable of storing and releasing electrical energy (charging and discharging DC power) in series.
  • the unit cells 111 constituting the assembled battery 110 are grouped into a predetermined number of units when performing state management / control.
  • the grouped unit cells 111 are electrically connected in series to form unit cell groups 112a and 112b.
  • the number of the single cells 111 constituting the single cell group 112 may be the same in all the single cell groups 112, or the number of the single cells 111 may be different for each single cell group 112.
  • the single cell management unit 120 monitors the state of the single cells 111 constituting the assembled battery 110.
  • the unit cell management unit 120 includes a unit cell control unit 121 provided for each unit cell group 112.
  • cell control units 121 a and 121 b are provided corresponding to the cell groups 112 a and 112 b.
  • the unit cell control unit 121 monitors and controls the state of the unit cells 111 constituting the unit cell group 112.
  • unit cells 111 are electrically connected in series to form unit cell groups 112a and 112b, and the unit cell groups 112a and 112b are further electrically connected in series.
  • an assembled battery 110 including a total of eight unit cells 111 was obtained.
  • the assembled battery control unit 150 and the single cell management unit 120 transmit and receive signals via an insulating element 170 typified by a photocoupler and a signal communication unit 160.
  • a communication means between the assembled battery control unit 150 and the unit cell control units 121a and 121b constituting the unit cell management unit 120 will be described.
  • the cell control units 121a and 121b are connected in series according to the descending order of potentials of the cell groups 112a and 112b monitored by each.
  • a signal transmitted from the assembled battery control unit 150 to the unit cell management unit 120 is input to the unit cell control unit 121 a via the insulating element 170 and the signal communication unit 160.
  • the output of the unit cell control unit 121a is input to the unit cell control unit 121b via the signal communication unit 160, and the output of the lowest unit cell control unit 121b is supplied to the assembled battery control unit via the insulating element 170 and the signal communication unit 160.
  • the insulating element 170 is not interposed between the unit cell control unit 121a and the unit cell control unit 121b, but signals can be transmitted and received through the insulating element 170.
  • the assembled battery control unit 150 includes a storage unit 151.
  • the storage unit 151 includes an internal resistance characteristic of the assembled battery 110, the single battery 111, and the single battery group 112, a fully charged capacity, a polarization voltage, a deterioration characteristic, individual difference information, an SOC and an open circuit voltage (OCV: Open Circuit Voltage). Stores information such as correspondence relationships. Furthermore, characteristic information such as the single cell management unit 120, the single cell control unit 121, and the assembled battery control unit 150 can be stored in advance. Even when the operations of the battery system 100, the assembled battery control unit 150, and the like are stopped, various information stored in the storage unit 151 is retained.
  • the assembled battery control unit 150 uses the information received from the single cell management unit 120, the current detection unit 130, the voltage detection unit 140, and the vehicle control unit 200, respectively, and the SOC, SOH, and allowable charge of one or more single cells 111. • Perform calculations to detect discharge current and power. And based on a calculation result, information is output to the single battery management part 120 or the vehicle control part 200, and charging / discharging control of the assembled battery 110 is performed.
  • the vehicle control unit 200 controls the inverter 400 connected to the battery system 100 via the relays 300a and 300b using the information transmitted by the assembled battery control unit 150. Moreover, the battery charger 420 connected to the battery system 100 via the relays 300c and 300d is controlled. During traveling of the vehicle, the battery system 100 is connected to the inverter 400 and drives the motor generator 410 using the energy stored in the assembled battery 110. At the time of charging, the battery system 100 is connected to a charger 420 and is charged by supplying power from a household power source or a charging stand.
  • the charger 420 is used when charging the assembled battery 110 using an external power source represented by a home or a charging stand.
  • the charger 420 is configured to control a charging voltage, a charging current, and the like based on a command from the vehicle control unit 200, but the control may be performed based on a command from the assembled battery control unit 150.
  • the charger 420 may be installed inside the vehicle according to the configuration of the vehicle, the performance of the charger 420, the purpose of use, the installation conditions of the external power source, and the like, or may be installed outside the vehicle.
  • the battery system 100 When the vehicle system on which the battery system 100 is mounted starts and runs, the battery system 100 is connected to the inverter 400 under the control of the vehicle control unit 200, and the motor uses the energy stored in the assembled battery 110.
  • the generator 410 is driven.
  • the assembled battery 110 is charged with the power generated by the motor generator 410.
  • the battery system 100 and the charger 420 are connected based on information transmitted from the vehicle control unit 200, The battery 110 is charged until a predetermined condition is met.
  • the energy stored in the assembled battery 110 by charging is used when the vehicle is driven next time, or is used to operate electrical components inside and outside the vehicle. Further, if necessary, it may be discharged to an external power source represented by a household power source.
  • FIG. 2 is a diagram showing a circuit configuration of the unit cell control unit 121.
  • the cell control unit 121 includes a voltage detection circuit 122, a control circuit 123, a signal input / output circuit 124, and a temperature detection unit 125.
  • the voltage detection circuit 122 measures the voltage between the terminals of each unit cell 111.
  • the control circuit 123 receives measurement results from the voltage detection circuit 122 and the temperature detection unit 125, and transmits the measurement results to the assembled battery control unit 150 via the signal input / output circuit 124.
  • it is determined that the circuit configuration that is generally implemented in the unit cell control unit 121 and that equalizes the voltage and SOC variation between the unit cells 111 generated due to self-discharge and variation in consumption current is known. The description is omitted.
  • the temperature detection unit 125 included in the unit cell control unit 121 in FIG. 2 has a function of measuring the temperature of the unit cell group 112.
  • the temperature detection unit 125 measures one temperature as the entire cell group 112 and treats the temperature as a temperature representative value of the cell 111 constituting the cell group 112.
  • the temperature measured by the temperature detection unit 125 is used for various calculations for detecting the state of the cell 111, the cell group 112, or the assembled battery 110. Since FIG. 2 is based on this assumption, the single battery control unit 121 is provided with one temperature detection unit 125.
  • a temperature detection unit 125 may be provided for each single cell 111 to measure the temperature for each single cell 111, and various calculations may be performed based on the temperature for each single cell 111. In this case, the number of temperature detection units 125 Therefore, the configuration of the unit cell control unit 121 becomes complicated.
  • the temperature detection unit 125 is simply shown. Actually, a temperature sensor is installed on the temperature measurement target, and the installed temperature sensor outputs temperature information as a voltage. The measurement result is transmitted to the signal input / output circuit 124 via the control circuit 123, and the signal input / output circuit 124 outputs the measurement result to the outside of the unit cell control unit 121. A function for realizing this series of flows is implemented as a temperature detection unit 125 in the single cell control unit 121, and the voltage detection circuit 122 can be used for measuring temperature information (voltage).
  • the assembled battery control unit 150 is realized by a microcomputer or the like, and can execute various processes and calculations as described below by executing various programs.
  • FIG. 3 is a block diagram showing the processing contents performed by the assembled battery control unit 150 in the first embodiment of the present invention.
  • the assembled battery control unit 150 includes a storage unit 151 configured by a flash memory or the like, and includes functional blocks of an SOC estimation unit 152, a voltage drop calculation unit 153, and a used SOC determination unit 154. These functional blocks respectively represent a part of processing and calculation performed by the assembled battery control unit 150.
  • the SOC estimation unit 152 determines the assembled battery 110 based on the voltage between the terminals of the single cell 111 detected by the voltage detection circuit 122, the current I measured by the current detection unit 130, and the temperature T measured by the temperature detection unit 125.
  • the SOC of each unit cell 111 to be configured is estimated. Note that a voltage obtained by dividing the voltage of the assembled battery 110 measured by the voltage detection unit 140 by the series number of the single cells 111 may be used as the inter-terminal voltage of the single cells 111.
  • SOC estimation processing based on voltage will be described.
  • FIG. 4 is a circuit diagram showing an equivalent circuit of the unit cell 111.
  • the unit cell 111 includes a voltage source 401, a DC resistance 402, a polarization resistance 403, and a capacitance component 404.
  • the polarization resistor 403 and the capacitance component 404 are connected in parallel, and the parallel connection pair, the voltage source 401, and the DC resistor 402 are connected in series.
  • the OCV is used for the calculation of the SOC (charged state), but the CCV is measured in a situation where the unit cell 111 is charged and discharged, and it is impossible to directly measure the OCV. Therefore, the OCV is calculated by subtracting the IR drop and the polarization voltage Vp from the CCV according to the following formula (2) obtained by modifying the formula (1).
  • OCV CCV-I x Ro-Vp (2)
  • the resistance value Ro and the polarization voltage Vp of the DC resistor 402 can be determined by the characteristic information extracted from the unit cell 111.
  • the characteristic information of the unit cell 111 is stored in advance in the storage unit 151 as a value obtained experimentally by charging and discharging the unit cell 111. If the characteristic information used when determining the resistance value Ro and the polarization voltage Vp of the DC resistor 402 is changed in accordance with the SOC, temperature, current, etc. of the unit cell 111, a highly accurate OCV can be obtained. . Further, the inter-terminal voltage CCV is obtained by dividing the measurement result of the voltage detection unit 140 by the serial number of the single cells 111, and the current I is obtained from the measurement result of the current detection unit 130.
  • the OCV value is calculated from the CCV value measured during charging / discharging of the unit cell 111, and the SOC is estimated based on this value.
  • the unit cell 111 is charged / discharged.
  • the SOC may be estimated using the value of the OCV measured when there is not.
  • the SOC estimation unit 152 can also perform the SOC estimation of the unit cell 111 by the following equation (3).
  • SOC0 represents the initial SOC value before charging / discharging of the unit cell 111
  • the current I represents the measured value of the current detector 130.
  • Qmax represents the capacity of the single battery 111 when fully charged, and this is stored in advance in the storage unit 151 as a value obtained experimentally by charging or discharging the single battery 111 or the assembled battery 110.
  • SOCi SOC0 + 100 ⁇ ⁇ Idt / Qmax (3)
  • the SOC estimation unit 152 may perform the SOC detection using either the formula (2) or the formula (3).
  • the SOC value obtained by the SOC estimation unit 152 is output from the SOC estimation unit 152 to the storage unit 151 at a predetermined cycle.
  • the voltage drop calculation unit 153 calculates a voltage drop that is a difference between the OCV and the CCV based on the voltage between the terminals of the unit cell 111 detected by the voltage detection circuit 122.
  • the value of the OCV at this time may be obtained from the CCV using the above equation (2), or the voltage between the terminals of the unit cell 111 detected by the voltage detection circuit 122 when the unit cell 111 is not charged or discharged. May be used.
  • the voltage drop value calculated by the voltage drop calculation unit 153 is output from the voltage drop calculation unit 153 to the storage unit 151 in a predetermined cycle synchronized with the SOC estimation unit 152.
  • the storage unit 151 stores map information representing the relationship between the SOC and the voltage drop based on the SOC value output from the SOC estimation unit 152 and the voltage drop value output from the voltage drop calculation unit 153.
  • the In this map information a plurality of SOC values estimated by the SOC estimation unit 152 at different timings during charging / discharging of the assembled battery 110 and a plurality of voltage drops calculated by the voltage drop calculation unit 153 at timing synchronized with the SOC values. Values are recorded in association with each other.
  • FIG. 5 is a diagram illustrating an example of map information stored in the storage unit 151.
  • map information 501 shown in FIG. 5 a plurality of SOC values including SOC1 to SOC6 and a plurality of voltage drop values including ⁇ V1 to ⁇ V6 are recorded in association with each other.
  • current values including I1 to I6 and temperatures including T1 to T6 are further recorded in association with each other.
  • the current values I1 to I6 represent the values of the current I of the single cells 111 measured by the current detector 130 at the time of obtaining SOC1 to SOC6 and ⁇ V1 to ⁇ V6, respectively.
  • the temperatures T1 to T6 are SOC1 to SOC6 and ⁇ V1 to ⁇ V6 Represents the value of the temperature T of the single cell 111 measured by the temperature detection unit 125 at the time of acquisition.
  • the format of the map information stored in the storage unit 151 is not limited to that of FIG. 5 as long as the corresponding SOC, voltage drop, current, and temperature values can be referred to each other.
  • the used SOC determining unit 154 refers to the map information stored in the storage unit 151, and determines the SOC range used in charging / discharging the assembled battery 110 based on the map information. And the range of SOC which charges / discharges the assembled battery 110 is restrict
  • the used SOC determining unit 154 of the present embodiment determines the SOC range to be used in charging / discharging the assembled battery 110 from the map information stored in the storage unit 151 by a method as described below.
  • FIG. 6 is a flowchart showing a flow of processing performed by the assembled battery control unit 150 in the first embodiment of the present invention.
  • the assembled battery control unit 150 according to the present embodiment executes the process shown in the flowchart of FIG. 6 for each predetermined processing cycle, for example, during charging / discharging of the assembled battery 110.
  • step S10 the assembled battery control unit 150 acquires the voltage, current, and temperature of each unit cell 111 in the assembled battery 110, respectively.
  • the assembled battery control unit 150 receives the measured values of the voltage and temperature of each unit cell 111 transmitted from the unit cell management unit 120 and the current value transmitted from the current detection unit 130, so that these Get the value.
  • the total voltage value of the assembled battery 110 transmitted from the voltage detection unit 140 may be received, and the voltage of each unit cell 111 may be acquired based on the total voltage value.
  • step S ⁇ b> 20 the assembled battery control unit 150 estimates the SOC by the SOC estimation unit 152.
  • the SOC of each unit cell 111 is estimated by the method described above.
  • step S30 the assembled battery control unit 150 uses the voltage drop calculation unit 153 to calculate a voltage drop corresponding to the difference between the OCV and the CCV.
  • the values of OCV and CCV are respectively obtained from the voltage acquired in step S10, and the voltage drop can be calculated by calculating the difference between them.
  • the voltage drop may be calculated by estimating the OCV value corresponding to the CCV based on the current and temperature values acquired in step S10 and calculating the difference between them.
  • the charging / discharging of the assembled battery 110 after charging / discharging after a certain time or more, the discharging performed after charging within a certain rate range, or within the certain rate range It is preferable to use the voltage acquired at the time of charging performed after discharging at.
  • step S40 the assembled battery control unit 150 associates the SOC and voltage drop values obtained in steps S20 and S30 with the current and temperature values obtained in step S10, respectively, and maps information in the storage unit 151. To record. Thereby, the map information illustrated in FIG. 5 is stored in the storage unit 151, and the map information is updated every time the SOC and the voltage drop value are calculated.
  • step S50 the assembled battery control unit 150 determines whether or not a predetermined number or more of data is recorded in the map information stored in the storage unit 151.
  • step S40 determines whether or not a predetermined number or more of data is recorded in the map information stored in the storage unit 151.
  • the assembled battery control unit 150 refers to the map information stored in the storage unit 151 by the use SOC determination unit 154, and classifies the SOC and voltage drop values in the map information for each current and temperature. .
  • each data obtained by combining the SOC and the voltage drop value is classified into a plurality of groups. For example, when referring to the map information 501 illustrated in FIG. 5, it is determined from the current and temperature values of each row whether the SOC and voltage drop values of each row are classified into a plurality of preset groups. By doing so, the used SOC determination unit 154 can classify the map information 501.
  • step S70 the assembled battery control unit 150 uses the SOC determining unit 154 to identify the group having the largest number of data among the plurality of groups classified in step S60, and includes the SOC and voltage drop value included in this group. To extract. As a result, the SOC and voltage drop values at the current I and the temperature T at which the battery pack 110 is charged and discharged most frequently can be acquired from the map information stored in the storage unit 151.
  • step S80 the assembled battery control unit 150 uses the SOC and the voltage drop value extracted in step S70 by the use SOC determination unit 154 to calculate an average value of the voltage drop for each predetermined SOC range.
  • the minimum value that can be taken by the SOC of each unit cell 111 is 10%
  • the maximum value is 80%
  • a 50% SOC range is preset in increments of 1% between the minimum value and the maximum value. Keep it.
  • one or more voltage drop values corresponding to each SOC range are acquired from the SOC and voltage drop values extracted in step S70, and the average value is obtained. In this manner, the average value of the voltage drop is calculated for each set SOC range.
  • FIG. 7 is a diagram showing an example of the average value of the voltage drop for each SOC range calculated by the above method.
  • the average voltage drop is 0.21V in the SOC range of 10% to 60%, and the average voltage drop is 0.20V in the SOC range of 11% to 61%. It shows that there is.
  • the average value of the voltage drop is shown for each SOC range set in increments of 1% from 30% to 80%.
  • the assembled battery control unit 150 determines that the average value of the voltage drop among the plurality of SOC ranges in which the average value of the voltage drop is calculated in step S80 by the use SOC determination unit 154. Specify the minimum SOC range. Then, this SOC range is determined as the SOC range used when charging / discharging the assembled battery 110. For example, in the average value list 701 illustrated in FIG. 7, the average value of the voltage drop is calculated to be 0.08 V in the SOC range of 25% to 75%, and this is the minimum value. In this case, the used SOC determining unit 154 determines the used SOC range of each unit cell 111 in the assembled battery 110 from 25% to 75%.
  • the used SOC determination unit 154 is used for charging / discharging the assembled battery 110 based on the relationship between the SOC estimated by the SOC estimation unit 152 and the voltage drop calculated by the voltage drop calculation unit 153 by the processing as described above. The range of SOC to be performed can be determined. If step S90 is performed, the assembled battery control part 150 will complete
  • the assembled battery control unit 150 functions as a secondary battery control device that controls the assembled battery 110 that is a secondary battery.
  • the assembled battery control unit 150 calculates a voltage drop based on an SOCV (open circuit voltage) and CCV (closed circuit voltage) of the assembled battery 110, and an SOC estimation unit 152 that estimates the SOC (charged state) of the assembled battery 110.
  • the SOC used to determine the SOC range used for charging / discharging the battery pack 110 A determination unit 154. Since it did in this way, optimization of a SOC use range can be aimed at during operation of battery system 100 which is a secondary battery system.
  • the assembled battery control unit 150 further includes a storage unit 151 that stores map information 501 representing the relationship between the SOC and the voltage drop.
  • the map information 501 is synchronized with the SOC estimation unit 152 and SOC1 to SOC6 that are SOC values estimated by the SOC estimation unit 152 at different timings during charging and discharging of the assembled battery 110.
  • ⁇ V1 to ⁇ V6, which are voltage drop values calculated by the voltage drop calculation unit 153 at the timing, are recorded in association with each other. Since it did in this way, the value of SOC and the voltage drop which the use SOC determination part 154 uses in determination of a use SOC range can be hold
  • the used SOC determination unit 154 calculates an average value of the voltage drop for each predetermined SOC range based on the map information 501 (step S80), and sets the SOC range where the calculated average value of the voltage drop is the smallest. It is determined as the SOC range used in charging / discharging of the battery 110 (step S90). Since it did in this way, the range of SOC used in charging / discharging of the assembled battery 110 can be determined with an appropriate value.
  • the map information 501 further records the current and temperature of the assembled battery 110 in association with each other. Based on the current and temperature, the used SOC determining unit 154 classifies each data obtained by combining the corresponding SOC value and voltage drop value in the map information 501 into a plurality of groups (step S60), Using the SOC value and voltage drop value included in the group with the largest number of data in the group (step S70), the SOC range used for charging / discharging the assembled battery 110 is determined (steps S80 and S90). . Since it did in this way, the optimal SOC range in charging / discharging of the assembled battery 110 can be determined from the SOC and voltage drop value at the current and temperature at which the charging / discharging of the assembled battery 110 is most frequently performed.
  • step S50 When the combined SOC value and the voltage drop value in the map information 501 are recorded more than a predetermined number of data (step S50: Yes), the used SOC determination unit 154 records the information in steps S60 to S90. A process is performed and the range of SOC used in charging / discharging of the assembled battery 110 is determined. Since it did in this way, it can prevent calculating the SOC range with a big error by lack of data.
  • FIG. 8 is a block diagram showing the processing contents performed by the assembled battery control unit 150a in the second embodiment of the present invention.
  • the assembled battery control unit 150a in FIG. 8 outputs information on the used SOC center value from the used SOC determination unit 154 instead of the used SOC range. Is different. Except this point, it has the same configuration as the assembled battery control unit 150.
  • FIG. 9 is a flowchart showing a flow of processing performed by the assembled battery control unit 150a in the second embodiment of the present invention.
  • the assembled battery control unit 150a of the present embodiment executes the process shown in the flowchart of FIG. 9 at predetermined processing cycles, for example, during charging / discharging of the assembled battery 110.
  • step S80a the assembled battery control unit 150a uses the SOC and the voltage drop value extracted in step S70 by the use SOC determination unit 154 to identify the SOC value that minimizes the voltage drop value. Then, this SOC value is determined as the center SOC when charging / discharging the assembled battery 110.
  • the SOC determining unit 154 of the assembled battery control unit 150a performs the assembled battery based on the relationship between the SOC estimated by the SOC estimating unit 152 and the voltage drop calculated by the voltage drop calculating unit 153 by the process described above. The center value of the SOC used in 110 charge / discharge can be determined. If step S80a is performed, the assembled battery control part 150a will complete
  • the assembled battery control unit 150a functions as a secondary battery control device that controls the assembled battery 110 that is a secondary battery.
  • the assembled battery control unit 150a calculates a voltage drop based on an SOCV (open circuit voltage) and CCV (closed circuit voltage) of the assembled battery 110, and an SOC estimation unit 152 that estimates the SOC (charged state) of the assembled battery 110.
  • the used SOC determination unit 154 identifies the SOC value that minimizes the voltage drop based on the map information 501, and uses the identified SOC value as the center value of the SOC used in charging / discharging the assembled battery 110. Determine (step S80a). Since it did in this way, the center value of SOC used in charging / discharging of the assembled battery 110 can be determined with an appropriate value.
  • FIG. 10 is a block diagram showing the processing contents performed by the assembled battery control unit 150b in the third embodiment of the present invention.
  • the assembled battery control unit 150b of FIG. 10 performs storage control between the SOC estimation unit 152, the voltage drop calculation unit 153, and the storage unit 151. The difference is that it further includes a portion 155. Except this point, it has the same configuration as the assembled battery control unit 150.
  • the storage control unit 155 includes the SOC value output from the SOC estimation unit 152, the voltage drop value output from the voltage drop calculation unit 153, the current I measured by the current detection unit 130, and the temperature detection unit 125.
  • the temperature T measured by is input.
  • the storage control unit 155 controls updating of map information stored in the storage unit 151 based on these pieces of information. Specifically, it is determined whether or not the current I and the temperature T satisfy the predetermined conditions, and only when it is determined that both satisfy the conditions, the SOC and voltage drop values are recorded and updated in the map information. To do.
  • the SOC and voltage drop values obtained by the SOC estimation unit 152 and the voltage drop calculation unit 153 are discarded without being recorded in the map information. . Therefore, the SOC and voltage drop values at this time are not used when the use SOC determination unit 154 determines the use SOC range.
  • FIG. 11 is a flowchart showing a flow of processing performed by the assembled battery control unit 150b in the third embodiment of the present invention. For example, during the charging / discharging of the assembled battery 110, the assembled battery control unit 150b according to the present embodiment executes the process shown in the flowchart of FIG.
  • step S10 the assembled battery control unit 150b acquires the voltage, current, and temperature of each unit cell 111 in the assembled battery 110, respectively, as described with reference to FIG.
  • step S11b the assembled battery control unit 150b determines whether the current acquired in step S10 is within a predetermined current rate range by the storage control unit 155. As a result, if the value of the acquired current I is within a predetermined current rate range, for example, within a range of 5C to 5.2C, the process proceeds to step S12b. Otherwise, the process returns to step S10 and waits until the next acquisition timing. After that, continue to acquire voltage, current, and temperature.
  • step S12b the assembled battery control unit 150b determines whether the temperature acquired in step S10 is within a predetermined temperature range by the storage control unit 155. As a result, if the acquired temperature T is within a predetermined temperature range, for example, not less than 35 ° C. and not more than 40 ° C., the process proceeds to step S20. Otherwise, the process returns to step S10 and waits until the next acquisition timing. Then continue to acquire voltage, current, and temperature.
  • the assembled battery control unit 150b performs the same processing as described in FIG.
  • the assembled battery control unit 150b causes the storage control unit 155 to associate the SOC and voltage drop values obtained by the SOC estimation unit 152 and the voltage drop calculation unit 153 in steps S20 and S30, respectively, and 151 is recorded in the map information.
  • the mapping information combining at least the SOC and voltage drop values is stored in the storage unit 151, and when the predetermined current and temperature conditions are satisfied, the map is calculated each time the SOC and voltage drop values are calculated. Information is updated.
  • steps S50, S80, and S90 the assembled battery control unit 150b performs the same processing as described in FIG.
  • the processing of steps S60 and S70 in FIG. 6 is further executed, so that the SOC and voltage drop values in the map information are determined as current and temperature.
  • the processing may be performed after steps S80 and S90 are extracted after the SOC and the voltage drop value included in the group with the largest number of data are extracted. If step S90 is performed, the assembled battery control part 150b will complete
  • the map information includes the SOC estimation unit 152 and the voltage drop calculation unit 153 when the current of the assembled battery 110 is within a predetermined current rate range and the temperature of the assembled battery 110 is within a predetermined temperature range. Are respectively recorded SOC values and voltage drop values.
  • the used SOC determining unit 154 determines the SOC range used in charging / discharging the assembled battery 110 using the SOC value and the voltage drop value recorded in the map information (steps S80 and S90). Since it did in this way, the range of SOC optimal in charging / discharging of the assembled battery 110 from the value of SOC and voltage drop in the electric current and temperature in which the assembled battery 110 is frequently used, reducing the data amount collected by map information. Can be determined.
  • the storage control unit 155 executes the processes of steps S11b and S12b, so that when both the current condition and the temperature condition are satisfied, the SOC and the voltage drop value are mapped information.
  • the SOC and voltage drop values are recorded in the map information when either the current condition or the temperature condition is satisfied.
  • the map information includes the SOC estimation unit 152 and the voltage drop calculation unit when the current of the assembled battery 110 is within a predetermined current rate range or the temperature of the assembled battery 110 is within a predetermined temperature range.
  • the SOC value and the voltage drop value acquired by each 153 may be recorded.
  • the use SOC determination unit 154 determines the SOC range used in charging / discharging of the assembled battery 110 by executing the processes of steps S80 and S90.
  • the center value of the SOC used in charging / discharging the assembled battery 110 may be determined.
  • a fourth embodiment of the present invention will be described.
  • the assembled battery control unit 150c described below is used to perform charge / discharge control of the assembled battery 110. An example of performing this will be described.
  • FIG. 12 is a block diagram showing the processing contents performed by the assembled battery control unit 150c in the fourth embodiment of the present invention.
  • the assembled battery control unit 150c of FIG. 12 does not receive current and temperature information into the storage control unit 155, and the used SOC determination unit The difference is that the information of the used SOC center value is output from 154 instead of the used SOC range. Except this point, it has the same configuration as the assembled battery control unit 150b.
  • FIG. 13 is a flowchart showing a flow of processing performed by the assembled battery control unit 150c in the fourth embodiment of the present invention. For example, during the charging / discharging of the assembled battery 110, the assembled battery control unit 150c of the present embodiment executes the process shown in the flowchart of FIG.
  • step S31c the assembled battery control unit 150c uses the storage control unit 155 to specify which of the plurality of preset SOC categories the SOC value estimated by the SOC estimation unit 152 in step S20 belongs to.
  • a plurality of SOC classifications are set in advance in predetermined SOC increments within a predetermined SOC range. For example, in the SOC range of 40 to 60%, four SOC categories are set in increments of 5%.
  • step S31c it is specified to which of the SOC categories the SOC value estimated in step S20 belongs.
  • step S32c the assembled battery control unit 150c determines whether the storage control unit 155 has already recorded a predetermined upper limit number n of voltage drop data in the map information for the SOC classification specified in step S31c. Determine whether.
  • the value of n can be arbitrarily set as long as it is an integer of 1 or more, and a different value may be set for each SOC division. Further, the value of n may be changed according to the data collection period.
  • step S33c the assembled battery control unit 150c uses the storage control unit 155 to store the voltage drop value calculated by the voltage drop calculation unit 153 in step S30 and the data recorded in the map information by the SOC classification specified in step S31c. Compare the voltage drop value that you represent. As a result, if a voltage drop value larger than any of the data recorded in the map information is calculated, the process proceeds to step S40c. Otherwise, the calculated voltage drop value is recorded in the map information. If it is smaller than the minimum value of the data, the process proceeds to step S50c.
  • step S40c the assembled battery control unit 150c causes the storage control unit 155 to associate the SOC and voltage drop values obtained by the SOC estimation unit 152 and the voltage drop calculation unit 153 in steps S20 and S30, respectively, and 151 is recorded in the map information.
  • the SOC and the voltage drop value are recorded in the map information in association with the SOC classification specified in step S31c. If n pieces of data have already been recorded in the SOC classification, the one with the smallest voltage drop value is deleted, and the newly obtained SOC and voltage drop value are newly recorded instead. This replaces the map information data. At this time, only the voltage drop value may be recorded without recording the SOC value.
  • the map information stores the voltage drop value in the storage unit 151 by the predetermined upper limit number n in descending order of the voltage drop value in predetermined SOC increments, and the voltage drop calculation unit 153 records the map information in the map information.
  • the map information is updated.
  • step S50c the assembled battery control unit 150c determines whether or not the upper limit number n of data is recorded in all the SOC classifications in the map information stored in the storage unit 151.
  • step S40c When the processing of step S40c is repeated at least n times for each SOC segment, and n pieces of data representing the voltage drop value are recorded in each SOC segment in the map information, an affirmative determination is made in step S50c. Proceed to step S80c.
  • step S50c determines whether or not the upper limit number n of data is recorded in all the SOC classifications in the map information stored in the storage unit 151.
  • step S80c the assembled battery control unit 150c uses the voltage drop value recorded in the map information by the use SOC determination unit 154 to calculate an average value of n voltage drops for each SOC section.
  • a plurality of SOC sections preset in the map information for example, each of four SOC sections set in increments of 5% in the SOC range of 40 to 60% are recorded in the map information.
  • the average value of the voltage drop in the n data is calculated.
  • step S81c the assembled battery control unit 150c specifies the SOC classification in which the average value of the voltage drop calculated in step S80c is minimized by the use SOC determination unit 154. Then, this SOC classification is determined as the central SOC when charging / discharging the assembled battery 110. Note that, by using the SOC classification specified at this time as the central SOC as it is, the central value of the SOC used for charging / discharging the assembled battery 110 may be determined within a range corresponding to the step size of the SOC classification. Alternatively, any SOC value may be specified within the range of the specified SOC classification, and this may be determined as the central SOC.
  • the used SOC determining unit 154 of the assembled battery control unit 150c performs the assembled battery based on the relationship between the SOC estimated by the SOC estimating unit 152 and the voltage drop calculated by the voltage drop calculating unit 153 by the process described above.
  • the center value of the SOC used in 110 charge / discharge can be determined. If step S81c is performed, the assembled battery control part 150c will complete
  • the voltage drop value is recorded by a predetermined upper limit number n in descending order of the voltage drop value in predetermined SOC increments.
  • the use SOC determination unit 154 calculates the average value of the voltage drop at the upper limit number n in predetermined SOC increments using the voltage drop value recorded in the map information (step S80c), and calculates the calculated predetermined SOC increments.
  • the center value of the SOC used in charging / discharging of the assembled battery 110 is determined using the average value of the voltage drop for each (step S81c).
  • the optimum SOC in charging / discharging of the assembled battery 110 is determined.
  • a central value can be determined.
  • Step S33c Yes
  • the storage control unit 155 updates the map information (Step S33c). S40c). Since it did in this way, the value of the voltage drop recorded on map information can be kept up-to-date.
  • the use SOC determination unit 154 determines the central value of the SOC used in charging / discharging the assembled battery 110 by executing the processes of steps S80c and S81c has been described.
  • the SOC range used in charging / discharging the assembled battery 110 may be determined.
  • a fifth embodiment of the present invention will be described.
  • charging of the assembled battery 110 is performed by using an assembled battery control unit 150d described below instead of the assembled battery control units 150, 150a, 150b, and 150c described in the first to fourth embodiments.
  • An example of performing deterioration determination together with discharge control will be described.
  • FIG. 14 is a block diagram showing the processing contents performed by the assembled battery control unit 150d in the fifth embodiment of the present invention.
  • the assembled battery control unit 150d in FIG. 14 is different from the assembled battery control unit 150 in the first embodiment illustrated in FIG. 3 in that it further includes a deterioration determination unit 156. Except this point, it has the same configuration as the assembled battery control unit 150.
  • the value of the voltage drop output from the voltage drop calculation unit 153 is input to the deterioration determination unit 156.
  • the deterioration determination unit 156 determines the degree of deterioration of the battery pack 110 based on the input voltage drop value. For example, the value of the voltage drop from the operation start time of the battery system 100 is accumulated, and by determining how much the internal resistance has increased in each unit cell 111 of the assembled battery 110 from the change state, The degree of deterioration can be determined.
  • the deterioration determination unit 156 outputs information on the determined deterioration degree to the single cell management unit 120 and the vehicle control unit 200.
  • the assembled battery control unit 150d further includes a deterioration determination unit 156 that determines the degree of deterioration of the assembled battery 110 based on the voltage drop calculated by the voltage drop calculation unit 153. Since it did in this way, it can know how much the assembled battery 110 deteriorated.
  • the assembled battery control unit 150d is configured by combining the deterioration determination unit 156 with the assembled battery control unit 150 described in the first embodiment.
  • the assembled battery control units 150a to 150c and the deterioration determination unit 156 described in the fourth embodiment may be combined.
  • the used SOC determination unit 154 determines the range or center value of the SOC used for charging / discharging the assembled battery 110 while the electric vehicle is traveling with respect to the assembled battery 110 mounted on the electric vehicle. Can be changed.
  • the SOC range in which the voltage drop value can be acquired during charge / discharge is narrow, and the SOC range necessary for the map information cannot be sufficiently covered.
  • the data may be interpolated by obtaining the voltage drop value from the data already obtained by extrapolation.
  • the voltage drop data in the required SOC range is obtained. May be acquired.
  • each component included in each of the assembled battery control units 150 and 150a to 150d may be realized by software executed by a microcomputer or the like, or an FPGA (Field-Programmable Gate Array ) Or the like. These may be used in combination.
  • battery system 110 assembled battery 111: single battery 112: single battery group 120: single battery management unit 121: single battery control unit 122: voltage detection circuit 123: control circuit 124: signal input Output circuit, 125: temperature detection unit, 130: current detection unit, 140: voltage detection unit, 150, 150a, 150b, 150c, 150d: assembled battery control unit, 151: storage unit, 152: SOC estimation unit, 153: voltage Descent calculation unit, 154: used SOC determination unit, 155: storage control unit, 156: deterioration determination unit, 160: signal communication means, 170: insulation element, 200: vehicle control unit, 300a to 300d: relay, 400: inverter, 410: motor generator, 420: charger

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

二次電池システムの運用中にSOC使用範囲の最適化を図る。組電池制御部150は、二次電池である組電池の制御を行う二次電池制御装置として機能する。組電池制御部150は、組電池のSOC(充電状態)を推定するSOC推定部152と、組電池のOCV(開回路電圧)およびCCV(閉回路電圧)に基づく電圧降下を演算する電圧降下演算部153と、SOC推定部152が推定したSOCと、電圧降下演算部153が演算した電圧降下との関係に基づいて、組電池の充放電において使用するSOCの範囲を決定する使用SOC決定部154とを備える。

Description

二次電池制御装置
 本発明は、二次電池制御装置に関する。
 蓄電手段として二次電池を用いた電源装置、分散型電力貯蔵装置、電気自動車等の二次電池システムには、一般に、電池の状態を管理する電池制御回路が搭載されている。この電池制御回路が電池の状態を管理するために用いる指標の代表的な例としては、充電状態(SOC:State Of Charge)、劣化状態(SOH:State Of Health)、許容電流、許容電力などがある。SOCは、電池がどの程度まで充電されているか(電池に放電可能な電荷量がどの程度残っているか)を示すものであり、SOHは、電池が初期状態からどの程度劣化しているかを示すものである。許容電流は、電池が充放電可能な電流の最大値であり、許容電力は、許容電流に電池電圧を乗算した値である。
 近年、二次電池システムでは高出力化および長寿命化の需要がますます高まっており、これを達成するために、電池の充放電に使用されるSOC使用範囲の最適化が求められている。SOC使用範囲の最適化に関して、下記特許文献1の技術が知られている。特許文献1には、両反応ガスが各反応ガス流路に供給されて発電を行う燃料電池と、前記燃料電池で発電された電力を充電するとともに、電力を放電する蓄電装置と、前記燃料電池又は前記蓄電装置の電力により駆動される補機と、前記蓄電装置の電圧を検出する電圧検出部と、前記蓄電装置の劣化を判定する劣化判定部と、前記蓄電装置から前記補機に供給される電力が、所定時間定常状態にあるかどうかを判定する定常状態判定部と、を備え、前記劣化判定部は、前記定常状態判定部により前記所定時間定常状態にあると判定されたとき、前記電圧検出部により検出した前記蓄電装置の電圧に基づいて前記蓄電装置の劣化を判定することを特徴とする燃料電池システムが記載されている。特許文献1の燃料電池システムによれば、前記蓄電装置が所定時間定常状態にあるときの前記蓄電装置の電圧に基づいて劣化判定を行うようにしているため、蓄電装置の劣化判定を精度よく行うことができる。この劣化判定結果に基づき、例えば、蓄電装置の出力上限値あるいはSOC使用範囲の決定を行うことで、蓄電装置の新品時から蓄電装置の能力を十分に発揮させて使用することができる。
特開2009-231197号公報
 特許文献1に記載の技術では、燃料電池の発電を停止して蓄電装置から一定電流が供給されているときに、蓄電装置が定常状態にあると判断し、このときに検出された電流値や電圧値を用いて劣化判定を行っている。したがって、二次電池システムの運用中には劣化判定を実施できず、そのためSOC使用範囲の最適化を図ることができない。
 本発明による二次電池制御装置は、二次電池のSOC(充電状態)を推定するSOC推定部と、前記二次電池のOCV(開回路電圧)およびCCV(閉回路電圧)に基づく電圧降下を演算する電圧降下演算部と、前記SOC推定部が推定した前記SOCと、前記電圧降下演算部が演算した前記電圧降下との関係に基づいて、前記二次電池の充放電において使用するSOCの範囲または中心値を決定する使用SOC決定部と、を備える。
 本発明によれば、二次電池システムの運用中にSOC使用範囲の最適化を図ることができる。
本発明の一実施形態に係る電池システムとその周辺の構成を示す図である。 単電池制御部の回路構成を示す図である。 本発明の第1の実施形態において組電池制御部が行う処理内容を表すブロック線図である。 単電池の等価回路を示す回路図である。 記憶部に記憶されるマップ情報の例を示す図である。 本発明の第1の実施形態において組電池制御部が行う処理の流れを示すフローチャートである。 SOC範囲ごとの電圧降下の平均値の例を示す図である。 本発明の第2の実施形態において組電池制御部が行う処理内容を表すブロック線図である。 本発明の第2の実施形態において組電池制御部が行う処理の流れを示すフローチャートである。 本発明の第3の実施形態において組電池制御部が行う処理内容を表すブロック線図である。 本発明の第3の実施形態において組電池制御部が行う処理の流れを示すフローチャートである。 本発明の第4の実施形態において組電池制御部が行う処理内容を表すブロック線図である。 本発明の第4の実施形態において組電池制御部が行う処理の流れを示すフローチャートである。 本発明の第5の実施形態において組電池制御部が行う処理内容を表すブロック線図である。
 以下、本発明の実施形態を図面に基づいて説明する。以下の各実施形態では、プラグインハイブリッド自動車(PHEV)の電源を構成する電池システムに搭載される組電池制御部に対して本発明を適用した場合を例に挙げて説明する。
 また、以下の各実施形態では、リチウムイオン電池を採用して単電池を直列に接続して組電池を構成しているが、単電池を並列接続したものを直列接続して組電池を構成してもよいし、直列接続した単電池を並列接続して組電池を構成してもよい。
<第1の実施形態>
 図1は、本発明の一実施形態に係る電池システム100とその周辺の構成を示す図である。電池システム100はリレー300aと300bを介してインバータ400に接続され、リレー300cと300dを介して充電器420に接続される。電池システム100は、組電池110、単電池管理部120、電流検知部130、電圧検知部140、組電池制御部150を備える。
 組電池110は、複数の単電池111から構成される。単電池管理部120は、単電池111の状態を監視する。電流検知部130は、電池システム100に流れる電流を検知する。電圧検知部140は、組電池110の総電圧を検知する。組電池制御部150は、組電池110の状態を検知し、状態の管理等も行う。
 組電池制御部150は、電池システム100において、二次電池である組電池110の状態を検知して組電池110の制御を行う二次電池制御装置として機能する。この組電池制御部150は、単電池管理部120が送信する各単電池111の電池電圧や温度、電流検知部130が送信する電池システム100に流れる電流値、電圧検知部140が送信する組電池110の総電圧値を受け取る。組電池制御部150は、受け取ったこれらの情報をもとに、組電池110の状態を検知し、組電池110の充放電制御を実施する。組電池制御部150による状態検知の結果は、単電池管理部120や車両制御部200に送信される。
 組電池110は、電気エネルギーの蓄積および放出(直流電力の充放電)が可能な複数の単電池111を電気的に直列に接続して構成している。組電池110を構成する単電池111は、状態の管理・制御を実施する上で、所定の単位数にグループ分けされている。グループ分けされた単電池111は、電気的に直列に接続され、単電池群112a、112bを構成している。単電池群112を構成する単電池111の個数は、全ての単電池群112において同数でもよいし、単電池群112毎に単電池111の個数が異なっていてもよい。
 単電池管理部120は、組電池110を構成する単電池111の状態を監視する。単電池管理部120は、単電池群112毎に設けられた単電池制御部121を備える。図1では、単電池群112aと112bに対応して、単電池制御部121aと121bが設けられている。単電池制御部121は、単電池群112を構成する単電池111の状態を監視および制御する。
 本実施形態では、説明を簡略化するために、4個の単電池111を電気的に直列接続して単電池群112aと112bを構成し、単電池群112aと112bをさらに電気的に直列接続して合計8個の単電池111を備える組電池110とした。
 組電池制御部150と単電池管理部120は、フォトカプラに代表される絶縁素子170および信号通信手段160を介して信号を送受信する。
 組電池制御部150と、単電池管理部120を構成する単電池制御部121aおよび121bとの間の通信手段について説明する。単電池制御部121aおよび121bは、それぞれが監視する単電池群112aおよび112bの電位の高い順にしたがって直列に接続されている。組電池制御部150が単電池管理部120に送信した信号は、絶縁素子170および信号通信手段160を介して単電池制御部121aに入力される。単電池制御部121aの出力は信号通信手段160を介して単電池制御部121bに入力され、最下位の単電池制御部121bの出力は絶縁素子170および信号通信手段160を介して組電池制御部150へと伝送される。本実施形態1では、単電池制御部121aと単電池制御部121bの間は絶縁素子170を介していないが、絶縁素子170を介して信号を送受信することもできる。
 組電池制御部150は、記憶部151を有する。記憶部151は、組電池110、単電池111、単電池群112の内部抵抗特性、満充電時の容量、分極電圧、劣化特性、個体差情報、SOCと開回路電圧(OCV:Open Circuit Voltage)の対応関係などの情報を格納する。さらに、単電池管理部120、単電池制御部121、組電池制御部150などの特性情報についてもあらかじめ記憶することができる。電池システム100や組電池制御部150等の動作が停止しても、記憶部151に記憶した各種情報は保持される。
 組電池制御部150は、単電池管理部120、電流検知部130、電圧検知部140、車両制御部200からそれぞれ受け取った情報を用いて、1つ以上の単電池111のSOC、SOH、許容充電・放電電流や電力などを検知するための演算を実行する。そして、演算結果に基づいて、単電池管理部120や車両制御部200に情報を出力し、組電池110の充放電制御を行う。
 車両制御部200は、組電池制御部150が送信する情報を用いて、リレー300aと300bを介して電池システム100と接続されるインバータ400を制御する。また、リレー300cと300dを介して電池システム100に接続される充電器420を制御する。車両走行中には、電池システム100はインバータ400と接続され、組電池110が蓄えているエネルギーを用いて、モータジェネレータ410を駆動する。充電の際には、電池システム100は充電器420と接続され、家庭用の電源または充電スタンドからの電力供給によって充電される。
 充電器420は、家庭または充電スタンドに代表される外部の電源を用いて組電池110を充電する際に用いられる。本実施形態1では、充電器420は車両制御部200からの指令に基づき充電電圧や充電電流などを制御する構成としているが、組電池制御部150からの指令に基づき制御を実施してもよい。また、充電器420は車両の構成、充電器420の性能、使用目的、外部の電源の設置条件などに応じて車両内部に設置してもよいし、車両の外部に設置することもできる。
 電池システム100を搭載した車両システムが始動して走行する場合には、車両制御部200の管理のもと、電池システム100はインバータ400に接続され、組電池110が蓄えているエネルギーを用いてモータジェネレータ410を駆動する。回生時はモータジェネレータ410の発電電力により組電池110が充電される。電池システム100を備える車両が家庭用または充電スタンドに代表される外部の電源と接続された際には、車両制御部200が発信する情報に基づき電池システム100と充電器420とが接続され、組電池110が所定の条件になるまで充電される。充電によって組電池110に蓄えられたエネルギーは、次回の車両走行時に利用されるか、車両内外の電装品等を動作させるためにも利用される。さらに必要に応じて、家庭用の電源に代表される外部電源へも放出する場合がある。
 図2は、単電池制御部121の回路構成を示す図である。単電池制御部121は、電圧検出回路122、制御回路123、信号入出力回路124、温度検知部125を備える。電圧検出回路122は、各単電池111の端子間電圧を測定する。制御回路123は、電圧検出回路122および温度検知部125から測定結果を受け取り、信号入出力回路124を介して組電池制御部150に送信する。なお、単電池制御部121に一般的に実装される、自己放電や消費電流ばらつき等に伴い発生する単電池111間の電圧やSOCばらつきを均等化する回路構成は、周知のものであると判断して記載を省略した。
 図2における単電池制御部121が備える温度検知部125は、単電池群112の温度を測定する機能を有する。温度検知部125は、単電池群112全体として1つの温度を測定し、単電池群112を構成する単電池111の温度代表値としてその温度を取り扱う。温度検知部125が測定した温度は、単電池111、単電池群112、または組電池110の状態を検知するための各種演算に用いられる。図2はこれを前提とするため、単電池制御部121に1つの温度検知部125を設けた。単電池111毎に温度検知部125を設けて単電池111毎に温度を測定し、単電池111毎の温度に基づいて各種演算を実行することもできるが、この場合は温度検知部125の数が多くなる分、単電池制御部121の構成が複雑となる。
 図2では、簡易的に温度検知部125を示した。実際は温度測定対象に温度センサが設置され、設置した温度センサが温度情報を電圧として出力する。これを測定した結果が制御回路123を介して信号入出力回路124に送信され、信号入出力回路124が単電池制御部121の外に測定結果を出力する。この一連の流れを実現する機能が単電池制御部121に温度検知部125として実装され、温度情報(電圧)の測定には電圧検出回路122を用いることもできる。
 以下では組電池制御部150が行う各種演算を説明する。組電池制御部150は、マイクロコンピュータなどによって実現されるものであり、各種のプログラムを実行することで、以下に説明するような各種の処理や演算を行うことができる。
 図3は、本発明の第1の実施形態において組電池制御部150が行う処理内容を表すブロック線図である。組電池制御部150は、フラッシュメモリ等により構成される記憶部151を有すると共に、SOC推定部152、電圧降下演算部153および使用SOC決定部154の各機能ブロックを有する。これらの機能ブロックは、組電池制御部150が行う処理や演算の一部をそれぞれ表している。
 SOC推定部152は、電圧検出回路122が検出した単電池111の端子間電圧と、電流検知部130が計測した電流Iと、温度検知部125が計測した温度Tとに基づき、組電池110を構成する各単電池111のSOCの推定を行う。なお、単電池111の端子間電圧として、電圧検知部140が計測した組電池110の電圧を単電池111の直列数で除算して得られた電圧を用いてもよい。以下に、SOC推定部152が行うSOC推定のための処理内容の一例として、電圧に基づくSOCの推定処理を説明する。
 図4は単電池111の等価回路を示す回路図である。図4において、単電池111は、電圧源401と、直流抵抗402と、分極抵抗403と、キャパシタンス成分404から構成される。分極抵抗403とキャパシタンス成分404は並列接続され、その並列接続対と、電圧源401と、直流抵抗402とが直列接続されている。
 直流抵抗402の抵抗値をRoと表し、分極抵抗403とキャパシタンス成分404の並列接続対の電圧に相当する分極電圧をVpと表すと、単電池111に電流Iを印加したときの単電池111の端子間電圧(CCV:Closed Circuit Voltage)は、以下の式(1)で表される。式(1)において、OCVは電圧源401の両端電圧である。このOCVは、充放電電流が流れていない時で、かつ、その電圧が時間的に一定である時の単電池111の端子間電圧に相当する。
  CCV=OCV+I×Ro+Vp   (1)
 OCVは、SOC(充電状態)の演算に用いられるが、単電池111が充放電されている状況ではCCVが測定され、OCVを直接測定することが不可能である。このため、式(1)を変形した以下の式(2)により、CCVからIRドロップと分極電圧Vpを差し引くことで、OCVが算出される。
  OCV=CCV-I×Ro-Vp   (2)
 直流抵抗402の抵抗値Roと分極電圧Vpは、単電池111から抽出される特性情報により決定することができる。単電池111の特性情報は、単電池111を充放電することで実験的に把握した値として記憶部151に予め格納されている。なお、直流抵抗402の抵抗値Roや分極電圧Vpを決定する際に用いる特性情報を、単電池111のSOCや温度、電流などに応じて変えるようにすると、高精度なOCVを得ることができる。また、端子間電圧CCVは、電圧検知部140の計測結果を単電池111の直列数で除算したものを用いるものとし、電流Iは、電流検知部130の計測結果から得られる。
 なお、上記の説明では、単電池111の充放電中に測定したCCVの値からOCVの値を算出し、これに基づいてSOCの推定を行うこととしたが、単電池111が充放電されていないときに測定したOCVの値を用いてSOCを推定してもよい。
 次に、SOC推定部152が行うSOC推定のための処理内容の他の一例として、電流に基づくSOCの推定処理を説明する。SOC推定部152は、以下の式(3)により単電池111のSOC推定を行うこともできる。式(3)において、SOC0は単電池111の充放電前の初期SOCの値を表し、電流Iは電流検知部130の計測値を表す。また、Qmaxは単電池111の満充電時の容量を表しており、これは、単電池111または組電池110を充放電することで実験的に把握した値として記憶部151に予め格納されている。
  SOCi=SOC0+100×∫Idt/Qmax    (3)
 SOC推定部152は、式(2)、式(3)のどちらを用いたSOC検出を行っても良いものとする。SOC推定部152により求められたSOCの値は、所定の周期でSOC推定部152から記憶部151に出力される。
 電圧降下演算部153は、電圧検出回路122が検出した単電池111の端子間電圧に基づいて、OCVとCCVの差分である電圧降下を演算する。このときのOCVの値は、前述の式(2)を用いてCCVから求めてもよいし、単電池111が充放電されていないときに電圧検出回路122が検出した単電池111の端子間電圧を用いてもよい。電圧降下演算部153により演算された電圧降下の値は、SOC推定部152と同期した所定の周期で、電圧降下演算部153から記憶部151に出力される。
 記憶部151には、SOC推定部152から出力されたSOCの値と、電圧降下演算部153から出力された電圧降下の値とに基づいて、SOCと電圧降下の関係を表すマップ情報が記憶される。このマップ情報では、組電池110の充放電中にSOC推定部152がそれぞれ異なるタイミングで推定した複数のSOCの値と、これと同期したタイミングで電圧降下演算部153が演算した複数の電圧降下の値とが、互いに対応付けて記録されている。
 図5は、記憶部151に記憶されるマップ情報の例を示す図である。図5に示すマップ情報501には、SOC1~SOC6を含む複数のSOCの値と、ΔV1~ΔV6を含む複数の電圧降下の値とが、互いに対応付けて記録されている。また、これらのSOCおよび電圧降下の値に加えて、I1~I6を含む電流値と、T1~T6を含む温度とが、さらに対応付けて記録されている。電流値I1~I6は、SOC1~SOC6およびΔV1~ΔV6の取得時に電流検知部130によってそれぞれ測定された単電池111の電流Iの値を表し、温度T1~T6は、SOC1~SOC6およびΔV1~ΔV6の取得時に温度検知部125によってそれぞれ測定された単電池111の温度Tの値を表している。なお、対応するSOC、電圧降下、電流、温度の値を相互に参照できれば、記憶部151に記憶されるマップ情報の形式は図5のものに限定されない。
 使用SOC決定部154は、記憶部151に記憶されたマップ情報を参照し、これに基づいて、組電池110の充放電において使用するSOCの範囲を決定する。そして、決定した使用SOC範囲の情報を単電池管理部120や車両制御部200に出力することで、組電池110の充放電を行うSOCの範囲を制限する。
 次に、本発明の第1の実施形態における使用SOC範囲の決定方法の詳細について説明する。本実施形態の使用SOC決定部154は、以下で説明するような手法により、記憶部151に記憶されたマップ情報から、組電池110の充放電において使用するSOCの範囲を決定する。
 図6は、本発明の第1の実施形態において組電池制御部150が行う処理の流れを示すフローチャートである。本実施形態の組電池制御部150は、たとえば組電池110の充放電中に、所定の処理周期ごとに図6のフローチャートに示す処理を実行する。
 ステップS10において、組電池制御部150は、組電池110における各単電池111の電圧、電流、温度をそれぞれ取得する。ここでは、単電池管理部120から送信される各単電池111の電圧および温度の測定値と、電流検知部130から送信される電流値とを組電池制御部150において受信することで、これらの値を取得する。なお、電圧検知部140から送信される組電池110の総電圧値を受信し、これに基づいて各単電池111の電圧を取得してもよい。
 ステップS20において、組電池制御部150は、SOC推定部152によりSOCを推定する。ここでは、ステップS10で取得した電圧、電流、温度の値に基づき、前述のような方法で各単電池111のSOCを推定する。
 ステップS30において、組電池制御部150は、電圧降下演算部153により、OCVとCCVの差分に応じた電圧降下を演算する。ここでは前述のように、ステップS10で取得した電圧からOCVとCCVの値をそれぞれ求め、これらの差分を算出することで電圧降下の演算を行うことができる。あるいは、ステップS10で取得した電流や温度の値に基づいてCCVに対応するOCVの値を推定し、これらの差分を算出することで電圧降下の演算を行ってもよい。なお、CCVの値を求める際には、組電池110の充放電が一定時間以上休止された後の充放電時や、一定レート範囲内での充電後に行われた放電時、または一定レート範囲内での放電後に行われた充電時に取得された電圧を用いることが好ましい。
 ステップS40において、組電池制御部150は、ステップS20、S30でそれぞれ求めたSOCおよび電圧降下の値と、ステップS10で取得した電流および温度の値とをそれぞれ対応付けて、記憶部151のマップ情報に記録する。これにより、図5に例示したようなマップ情報が記憶部151において記憶されると共に、SOCと電圧降下の値が算出される度にマップ情報が更新される。
 ステップS50において、組電池制御部150は、記憶部151に記憶されているマップ情報において所定数以上のデータが記録されたか否かを判定する。ステップS40の処理が所定回数以上繰り返されることで、マップ情報において対応するSOCの値および電圧降下の値を組み合わせたデータが所定のデータ数以上記録された場合には、ステップS50を肯定判定してステップS60に進む。一方、これまでのステップS40の処理回数が不足しており、マップ情報において所定数以上のデータが未記録である場合には、ステップS50を否定判定してステップS10へ戻り、上記の処理を繰り返す。これにより、使用SOC範囲の決定に用いられる十分なデータが得られるまでは、マップ情報へのデータ記録を継続する。
 ステップS60において、組電池制御部150は、使用SOC決定部154により、記憶部151に記憶されているマップ情報を参照して、マップ情報におけるSOCと電圧降下の値を電流および温度ごとに分類する。ここでは、マップ情報に記録されている電流および温度の値を用いて、SOCと電圧降下の値を組み合わせた各データを複数のグループに分類する。たとえば、図5に例示したマップ情報501を参照する場合は、各行の電流および温度の値から、各行のSOCおよび電圧降下の値が予め設定された複数のグループのいずれに分類されるかを判断することで、使用SOC決定部154においてマップ情報501の分類を行うことができる。
 ステップS70において、組電池制御部150は、使用SOC決定部154により、ステップS60で分類した複数のグループのうちでデータ数が最大のグループを特定し、このグループに含まれるSOCと電圧降下の値を抽出する。これにより、組電池110の充放電が最も頻繁に行われる電流Iおよび温度TにおけるSOCと電圧降下の値を、記憶部151に記憶されたマップ情報から取得することができる。
 ステップS80において、組電池制御部150は、使用SOC決定部154により、ステップS70で抽出したSOCと電圧降下の値を用いて、所定のSOC範囲ごとに電圧降下の平均値を算出する。ここでは、たとえば各単電池111のSOCが取り得る値の最小値を10%、最大値を80%とし、この最小値から最大値の間で50%のSOC範囲を1%刻みで予め設定しておく。そして、ステップS70で抽出したSOCと電圧降下の値から、各SOC範囲に対応する一つ以上の電圧降下の値を取得して、その平均値を求める。このようにして、設定されたSOC範囲ごとに電圧降下の平均値を算出する。
 図7は、上記の手法で算出されたSOC範囲ごとの電圧降下の平均値の例を示す図である。図7に例示した平均値リスト701では、たとえば10%~60%のSOC範囲では電圧降下の平均値が0.21Vであり、11%~61%のSOC範囲では電圧降下の平均値が0.20Vであることを示している。同様に、30%~80%まで1%刻みで設定された各SOC範囲について、電圧降下の平均値がそれぞれ示されている。
 図6の説明に戻ると、ステップS90において、組電池制御部150は、使用SOC決定部154により、ステップS80で電圧降下の平均値を算出した複数のSOC範囲のうちで電圧降下の平均値が最小のSOC範囲を特定する。そして、このSOC範囲を、組電池110の充放電を行う際の使用SOC範囲に決定する。たとえば図7に例示した平均値リスト701において、25%~75%のSOC範囲で電圧降下の平均値が0.08Vと計算されており、これが最小値であったとする。この場合、使用SOC決定部154は、組電池110における各単電池111の使用SOC範囲を25%~75%に決定する。
 使用SOC決定部154は、以上説明したような処理により、SOC推定部152が推定したSOCと、電圧降下演算部153が演算した電圧降下との関係に基づいて、組電池110の充放電において使用するSOCの範囲を決定することができる。ステップS90を実行したら、組電池制御部150は図6のフローチャートに示す処理を終了する。
 以上説明した本発明の第1の実施形態によれば、以下の作用効果を奏する。
(1)組電池制御部150は、二次電池である組電池110の制御を行う二次電池制御装置として機能する。組電池制御部150は、組電池110のSOC(充電状態)を推定するSOC推定部152と、組電池110のOCV(開回路電圧)およびCCV(閉回路電圧)に基づく電圧降下を演算する電圧降下演算部153と、SOC推定部152が推定したSOCと、電圧降下演算部153が演算した電圧降下との関係に基づいて、組電池110の充放電において使用するSOCの範囲を決定する使用SOC決定部154とを備える。このようにしたので、二次電池システムである電池システム100の運用中に、SOC使用範囲の最適化を図ることができる。
(2)組電池制御部150は、SOCと電圧降下との関係を表すマップ情報501を記憶する記憶部151をさらに備える。マップ情報501には、図5に例示したように、組電池110の充放電中にSOC推定部152がそれぞれ異なるタイミングで推定したSOCの値であるSOC1~SOC6と、SOC推定部152と同期したタイミングで電圧降下演算部153が演算した電圧降下の値であるΔV1~ΔV6とが、互いに対応付けて記録されている。このようにしたので、使用SOC決定部154が使用SOC範囲の決定において用いるSOCおよび電圧降下の値を、参照しやすい形式で保持しておくことができる。
(3)使用SOC決定部154は、マップ情報501に基づいて所定のSOC範囲ごとに電圧降下の平均値を算出し(ステップS80)、算出した電圧降下の平均値が最小のSOC範囲を、組電池110の充放電において使用するSOCの範囲として決定する(ステップS90)。このようにしたので、組電池110の充放電において使用するSOCの範囲を適切な値で決定することができる。
(4)マップ情報501には、組電池110の電流および温度がさらに対応付けて記録されている。使用SOC決定部154は、この電流および温度に基づいて、マップ情報501において対応するSOCの値および電圧降下の値を組み合わせた各データを複数のグループに分類し(ステップS60)、分類した複数のグループの中でデータ数が最多のグループに含まれるSOCの値および電圧降下の値を用いて(ステップS70)、組電池110の充放電において使用するSOCの範囲を決定する(ステップS80、S90)。このようにしたので、組電池110の充放電が最も頻繁に行われる電流および温度におけるSOCと電圧降下の値から、組電池110の充放電において最適なSOCの範囲を決定することができる。
(5)使用SOC決定部154は、マップ情報501において対応するSOCの値および電圧降下の値を組み合わせたデータが所定のデータ数以上記録されると(ステップS50:Yes)、ステップS60~S90の処理を実行して、組電池110の充放電において使用するSOCの範囲を決定する。このようにしたので、データ不足によって誤差の大きいSOC範囲が算出されてしまうのを防止できる。
<第2の実施形態>
 次に、本発明の第2の実施形態について説明する。本実施形態では、第1の実施形態で説明した組電池制御部150の代わりに、以下で説明する組電池制御部150aを用いて、組電池110の充放電制御を行う例を説明する。
 図8は、本発明の第2の実施形態において組電池制御部150aが行う処理内容を表すブロック線図である。図8の組電池制御部150aは、図3に示した第1の実施形態の組電池制御部150と比べて、使用SOC決定部154から使用SOC範囲の代わりに使用SOC中心値の情報が出力される点が異なる。これ以外の点は、組電池制御部150と同様の構成を有している。
 図9は、本発明の第2の実施形態において組電池制御部150aが行う処理の流れを示すフローチャートである。本実施形態の組電池制御部150aは、たとえば組電池110の充放電中に、所定の処理周期ごとに図9のフローチャートに示す処理を実行する。
 ステップS10~S70では、組電池制御部150aは、図6で説明したのと同様の処理をそれぞれ行う。ステップS80aにおいて、組電池制御部150aは、使用SOC決定部154により、ステップS70で抽出したSOCと電圧降下の値を用いて、電圧降下の値が最小となるSOCの値を特定する。そして、このSOCの値を、組電池110の充放電を行う際の中心SOCに決定する。
 組電池制御部150aの使用SOC決定部154は、以上説明したような処理により、SOC推定部152が推定したSOCと、電圧降下演算部153が演算した電圧降下との関係に基づいて、組電池110の充放電において使用するSOCの中心値を決定することができる。ステップS80aを実行したら、組電池制御部150aは図9のフローチャートに示す処理を終了する。
 以上説明した本発明の第2の実施形態によれば、第1の実施形態で説明した(2)、(4)、(5)の作用効果に加えて、さらに以下の作用効果を奏する。
(6)組電池制御部150aは、二次電池である組電池110の制御を行う二次電池制御装置として機能する。組電池制御部150aは、組電池110のSOC(充電状態)を推定するSOC推定部152と、組電池110のOCV(開回路電圧)およびCCV(閉回路電圧)に基づく電圧降下を演算する電圧降下演算部153と、SOC推定部152が推定したSOCと、電圧降下演算部153が演算した電圧降下との関係に基づいて、組電池110の充放電において使用するSOCの中心値を決定する使用SOC決定部154とを備える。このようにしたので、第1の実施形態と同様に、二次電池システムである電池システム100の運用中に、SOC使用範囲の最適化を図ることができる。
(7)使用SOC決定部154は、マップ情報501に基づいて電圧降下が最小となるSOCの値を特定し、特定したSOCの値を、組電池110の充放電において使用するSOCの中心値として決定する(ステップS80a)。このようにしたので、組電池110の充放電において使用するSOCの中心値を適切な値で決定することができる。
<第3の実施形態>
 次に、本発明の第3の実施形態について説明する。本実施形態では、第1、第2の実施形態で説明した組電池制御部150、150aの代わりに、以下で説明する組電池制御部150bを用いて、組電池110の充放電制御を行う例を説明する。
 図10は、本発明の第3の実施形態において組電池制御部150bが行う処理内容を表すブロック線図である。図10の組電池制御部150bは、図3に示した第1の実施形態の組電池制御部150と比べて、SOC推定部152および電圧降下演算部153と記憶部151の間に、記憶制御部155をさらに有する点が異なる。これ以外の点は、組電池制御部150と同様の構成を有している。
 記憶制御部155には、SOC推定部152から出力されたSOCの値と、電圧降下演算部153から出力された電圧降下の値と、電流検知部130が計測した電流Iと、温度検知部125が計測した温度Tとが入力される。記憶制御部155は、これらの情報に基づき、記憶部151に記憶されているマップ情報の更新を制御する。具体的には、電流Iと温度Tがそれぞれ所定の条件を満たすか否かを判断し、いずれも条件を満たすと判断したときにのみ、SOCおよび電圧降下の値をマップ情報に記録して更新する。なお、電流Iと温度Tの少なくとも一方が条件を満たさないときには、SOC推定部152と電圧降下演算部153がそれぞれ求めたSOCおよび電圧降下の値は、マップ情報には記録されずに破棄される。したがって、このときのSOCおよび電圧降下の値は、使用SOC決定部154が使用SOC範囲を決定する際に利用されることはない。
 図11は、本発明の第3の実施形態において組電池制御部150bが行う処理の流れを示すフローチャートである。本実施形態の組電池制御部150bは、たとえば組電池110の充放電中に、所定の処理周期ごとに図11のフローチャートに示す処理を実行する。
 ステップS10では、組電池制御部150bは、図6で説明したのと同様に、組電池110における各単電池111の電圧、電流、温度をそれぞれ取得する。ステップS11bにおいて、組電池制御部150bは、記憶制御部155により、ステップS10で取得した電流が所定の電流レート範囲内であるか否かを判定する。その結果、取得した電流Iの値が所定の電流レート範囲内、たとえば5C以上5.2C以下の範囲内にあればステップS12bへ進み、そうでなければステップS10へ戻って次の取得タイミングまで待機した後、電圧、電流、温度の取得を継続する。
 ステップS12bにおいて、組電池制御部150bは、記憶制御部155により、ステップS10で取得した温度が所定の温度範囲内であるか否かを判定する。その結果、取得した温度Tの値が所定の温度範囲内、たとえば35℃以上40℃以下の範囲内にあればステップS20へ進み、そうでなければステップS10へ戻って次の取得タイミングまで待機した後、電圧、電流、温度の取得を継続する。
 ステップS20、S30では、組電池制御部150bは、図6で説明したのと同様の処理をそれぞれ行う。ステップS40bにおいて、組電池制御部150bは、記憶制御部155により、ステップS20、S30でSOC推定部152と電圧降下演算部153がそれぞれ求めたSOCおよび電圧降下の値をそれぞれ対応付けて、記憶部151のマップ情報に記録する。なお、第1の実施形態で説明した図6のステップS40の処理とは異なり、ここでは電流および温度の値をマップ情報に記録する必要はない。ただし、電流および温度の値をマップ情報に記録してもよい。これにより、SOCおよび電圧降下の値を少なくとも組み合わせたマップ情報が記憶部151において記憶されると共に、所定の電流条件および温度条件を満たしたときには、SOCと電圧降下の値が算出される度にマップ情報が更新される。
 ステップS50、S80、S90では、組電池制御部150bは、図6で説明したのと同様の処理をそれぞれ行う。なお、上記のように電流および温度の値をマップ情報に記録した場合には、図6のステップS60、S70の処理をさらに実行することで、マップ情報におけるSOCと電圧降下の値を電流および温度に応じて複数のグループに分類し、その中でデータ数が最大のグループに含まれるSOCと電圧降下の値を抽出してから、ステップS80およびS90の処理を行ってもよい。ステップS90を実行したら、組電池制御部150bは図11のフローチャートに示す処理を終了する。
 以上説明した本発明の第3の実施形態によれば、第1の実施形態で説明した(1)~(5)の作用効果に加えて、さらに以下の作用効果を奏する。
(8)マップ情報には、組電池110の電流が所定の電流レート範囲内であり、かつ組電池110の温度が所定の温度範囲内であるときに、SOC推定部152と電圧降下演算部153がそれぞれ取得したSOCの値および電圧降下の値が記録されている。使用SOC決定部154は、このマップ情報に記録されているSOCの値および電圧降下の値を用いて、組電池110の充放電において使用するSOCの範囲を決定する(ステップS80、S90)。このようにしたので、マップ情報で収集するデータ量を減らしつつ、組電池110が頻繁に使用される電流および温度におけるSOCと電圧降下の値から、組電池110の充放電において最適なSOCの範囲を決定することができる。
 なお、以上説明した第3の実施形態では、記憶制御部155がステップS11b、S12bの処理を実行することで、電流条件と温度条件の両方を満たした場合にSOCと電圧降下の値をマップ情報に記録することとしたが、ステップS11b、S12bの処理の一方のみを実行することで、電流条件と温度条件のいずれか一方を満たした場合にSOCと電圧降下の値をマップ情報に記録してもよい。すなわち、マップ情報には、組電池110の電流が所定の電流レート範囲内であるか、または、組電池110の温度が所定の温度範囲内であるときに、SOC推定部152と電圧降下演算部153がそれぞれ取得したSOCの値および電圧降下の値が記録されていてもよい。
 また、以上説明した第3の実施形態では、使用SOC決定部154がステップS80およびS90の処理を実行することで、組電池110の充放電において使用するSOCの範囲を決定する例を説明したが、第2の実施形態で説明したように、組電池110の充放電において使用するSOCの中心値を決定してもよい。
<第4の実施形態>
 次に、本発明の第4の実施形態について説明する。本実施形態では、第1~第3の実施形態で説明した組電池制御部150、150a、150bの代わりに、以下で説明する組電池制御部150cを用いて、組電池110の充放電制御を行う例を説明する。
 図12は、本発明の第4の実施形態において組電池制御部150cが行う処理内容を表すブロック線図である。図12の組電池制御部150cは、図10に示した第3の実施形態の組電池制御部150bと比べて、記憶制御部155に電流および温度の情報が入力されない点と、使用SOC決定部154から使用SOC範囲の代わりに使用SOC中心値の情報が出力される点が異なる。これ以外の点は、組電池制御部150bと同様の構成を有している。
 図13は、本発明の第4の実施形態において組電池制御部150cが行う処理の流れを示すフローチャートである。本実施形態の組電池制御部150cは、たとえば組電池110の充放電中に、所定の処理周期ごとに図13のフローチャートに示す処理を実行する。
 ステップS10~S30では、組電池制御部150cは、図6で説明したのと同様の処理をそれぞれ行う。ステップS31cにおいて、組電池制御部150cは、記憶制御部155により、ステップS20でSOC推定部152が推定したSOCの値が、予め設定された複数のSOC区分のうちどの区分に属するかを特定する。ここで、マップ情報には所定のSOC範囲において所定のSOC刻みで複数のSOC区分が予め設定されている。たとえば、40~60%のSOC範囲において5%刻みで4つのSOC区分が設定される。ステップS31cでは、ステップS20で推定したSOCの値が、これらのSOC区分のうちどれに属するかを特定する。
 ステップS32cにおいて、組電池制御部150cは、記憶制御部155により、ステップS31cで特定したSOC区分に対して、所定の上限数n個の電圧降下のデータがマップ情報において既に記録済みであるか否かを判定する。ここで、SOC区分に対するデータの上限数nはSOC区分ごとに予め定められており、たとえばn=5である。なお、nの値は1以上の整数であれば任意に設定可能であり、SOC区分ごとに異なる値を設定してもよい。また、データの収集期間に応じてnの値を変化させてもよい。ステップS32cの判定の結果、当該SOC区分においてn個のデータがマップ情報にまだ記録されていなければステップS33cへ進み、記録済みであればステップS40cへ進む。
 ステップS33cにおいて、組電池制御部150cは、記憶制御部155により、ステップS30で電圧降下演算部153が演算した電圧降下の値と、ステップS31cで特定したSOC区分でマップ情報に記録済みのデータが表す電圧降下の値とを比較する。その結果、マップ情報に記録済みのデータのいずれかよりも大きな電圧降下の値が演算された場合はステップS40cへ進み、そうでない場合、すなわち演算された電圧降下の値がマップ情報に記録済みのデータの最小値よりも小さい場合はステップS50cへ進む。
 ステップS40cにおいて、組電池制御部150cは、記憶制御部155により、ステップS20、S30でSOC推定部152と電圧降下演算部153がそれぞれ求めたSOCおよび電圧降下の値をそれぞれ対応付けて、記憶部151のマップ情報に記録する。ここでは、ステップS31cで特定したSOC区分に対応付けて、SOCおよび電圧降下の値をマップ情報に記録する。なお、当該SOC区分においてn個のデータが既に記録されている場合は、その中で電圧降下の値が最小のものを削除し、代わりに今回取得したSOCおよび電圧降下の値を新たに記録することで、マップ情報のデータを置き換える。このとき、SOCの値は記録せずに電圧降下の値のみを記録してもよい。また、第3の実施形態で説明した図11のステップS40bと同様に、電流および温度の値をマップ情報に記録してもよい。これにより、マップ情報には、所定のSOC刻みで電圧降下の値が大きい順に所定の上限数nだけ電圧降下の値が記憶部151において記憶されると共に、電圧降下演算部153がマップ情報に記録されている電圧降下の値よりも大きい電圧降下を演算した場合には、マップ情報が更新される。
 ステップS50cにおいて、組電池制御部150cは、記憶部151に記憶されているマップ情報において、全てのSOC区分で上限数n個のデータが記録されたか否かを判定する。ステップS40cの処理が各SOC区分について少なくともn回以上繰り返されることで、マップ情報において電圧降下の値を表すデータが各SOC区分でn個ずつ記録された場合には、ステップS50cを肯定判定してステップS80cに進む。一方、これまでのステップS40cの処理回数が不足しており、マップ情報においてn個のデータが記録されていないSOC区分が存在する場合には、ステップS50cを否定判定してステップS10へ戻り、上記の処理を繰り返す。これにより、中心SOCの決定に用いられる十分なデータが得られるまでは、マップ情報へのデータ記録を継続する。
 ステップS80cにおいて、組電池制御部150cは、使用SOC決定部154により、マップ情報に記録されている電圧降下の値を用いて、SOC区分ごとにn個の電圧降下の平均値を算出する。ここでは、前述のようにマップ情報において予め設定されている複数のSOC区分、たとえば40~60%のSOC範囲において5%刻みで設定された4つのSOC区分の各々について、マップ情報に記録されているn個のデータにおける電圧降下の平均値を算出する。
 ステップS81cにおいて、組電池制御部150cは、使用SOC決定部154により、ステップS80cで算出した電圧降下の平均値が最小となるSOC区分を特定する。そして、このSOC区分を組電池110の充放電を行う際の中心SOCに決定する。なお、このとき特定したSOC区分をそのまま中心SOCとすることで、組電池110の充放電に用いるSOCの中心値をSOC区分の刻み幅に応じた範囲で決定してもよい。あるいは、特定したSOC区分の範囲内でいずれかのSOCの値を指定し、これを中心SOCとして決定してもよい。
 組電池制御部150cの使用SOC決定部154は、以上説明したような処理により、SOC推定部152が推定したSOCと、電圧降下演算部153が演算した電圧降下との関係に基づいて、組電池110の充放電において使用するSOCの中心値を決定することができる。ステップS81cを実行したら、組電池制御部150cは図13のフローチャートに示す処理を終了する。
 以上説明した本発明の第4の実施形態によれば、第1の実施形態で説明した(1)~(5)の作用効果、および第2の実施形態で説明した(6)、(7)の作用効果に加えて、さらに以下の作用効果を奏する。
(9)マップ情報には、所定のSOC刻みで電圧降下の値が大きい順に所定の上限数nだけ電圧降下の値が記録されている。使用SOC決定部154は、マップ情報に記録されている電圧降下の値を用いて、上限数nにおける電圧降下の平均値を所定のSOC刻みで演算し(ステップS80c)、演算した所定のSOC刻みごとの電圧降下の平均値を用いて、組電池110の充放電において使用するSOCの中心値を決定する(ステップS81c)。このようにしたので、マップ情報で収集するデータ量を減らしつつ、組電池110の充放電中に最大電流付近で測定される電圧降下の最大値から、組電池110の充放電において最適なSOCの中心値を決定することができる。
(10)記憶制御部155は、電圧降下演算部153がマップ情報に記録されている電圧降下の値よりも大きい電圧降下を演算した場合に(ステップS33c:Yes)、マップ情報を更新する(ステップS40c)。このようにしたので、マップ情報に記録される電圧降下の値を最新の状態に保つことができる。
 なお、以上説明した第4の実施形態では、使用SOC決定部154がステップS80cおよびS81cの処理を実行することで、組電池110の充放電において使用するSOCの中心値を決定する例を説明したが、第1の実施形態や第3の実施形態で説明したように、組電池110の充放電において使用するSOCの範囲を決定してもよい。
<第5の実施形態>
 次に、本発明の第5の実施形態について説明する。本実施形態では、第1~第4の実施形態で説明した組電池制御部150、150a、150b、150cの代わりに、以下で説明する組電池制御部150dを用いることにより、組電池110の充放電制御とともに劣化判定を行う例を説明する。
 図14は、本発明の第5の実施形態において組電池制御部150dが行う処理内容を表すブロック線図である。図14の組電池制御部150dは、図3に示した第1の実施形態の組電池制御部150と比べて、劣化判定部156をさらに有する点が異なる。これ以外の点は、組電池制御部150と同様の構成を有している。
 劣化判定部156には、電圧降下演算部153から出力された電圧降下の値が入力される。劣化判定部156は、入力された電圧降下の値に基づいて組電池110の劣化度を判定する。たとえば、電池システム100の運用開始時点からの電圧降下の値を蓄積し、その変化状態から組電池110の各単電池111において内部抵抗がどの程度増加したかを判断することで、組電池110の劣化度を判断することができる。劣化判定部156は、決定した劣化度の情報を単電池管理部120や車両制御部200に出力する。
 以上説明した本発明の第5の実施形態によれば、第1~第4の実施形態で説明した(1)~(10)の作用効果に加えて、さらに以下の作用効果を奏する。
(11)組電池制御部150dは、電圧降下演算部153が演算した電圧降下に基づいて組電池110の劣化度を判定する劣化判定部156をさらに備える。このようにしたので、組電池110がどの程度劣化したかを知ることができる。
 なお、以上説明した第5の実施形態では、第1の実施形態で説明した組電池制御部150に劣化判定部156を組み合わせて組電池制御部150dを構成した例を説明したが、第2~第4の実施形態で説明した組電池制御部150a~150cと劣化判定部156をそれぞれ組み合わせてもよい。また、前述したこれらの変形例と劣化判定部156をそれぞれ組み合わせることも可能である。
 以上説明した各実施形態によれば、使用SOC決定部154は、電動車両に搭載された組電池110について、電動車両の走行中に、組電池110の充放電において使用するSOCの範囲または中心値を変更することが可能となる。
 なお、以上説明した各実施形態において、組電池110の充放電状態によっては、充放電中に電圧降下の値を取得可能なSOCの範囲が狭く、マップ情報に必要なSOC範囲を十分にカバーできない場合がある。このような場合、電圧降下のデータが不足しているSOC範囲については、外挿により取得済みのデータから電圧降下の値を求めてデータを補間してもよい。あるいは、マップ情報に記録されているSOCの値を参照して、データが不足しているSOC範囲で組電池110の充放電を行うように制御することで、必要なSOC範囲の電圧降下のデータを取得できるようにしてもよい。
 また、以上説明した各実施形態において、組電池制御部150,150a~150dがそれぞれ有する各構成要素は、マイクロコンピュータ等で実行されるソフトウェアにより実現してもよいし、FPGA(Field-Programmable Gate Array)等のハードウェアにより実現してもよい。また、これらを混在して使用してもよい。
 以上説明した各実施形態や各種変形例はあくまで一例であり、発明の特徴が損なわれない限り、本発明はこれらの内容に限定されるものではない。また、上記では種々の実施形態や変形例を説明したが、本発明はこれらの内容に限定されるものではない。本発明の技術的思想の範囲内で考えられるその他の態様も本発明の範囲内に含まれる。
 100:電池システム、110:組電池、111:単電池、112:単電池群、120:単電池管理部、121:単電池制御部、122:電圧検出回路、123:制御回路、124:信号入出力回路、125:温度検知部、130:電流検知部、140:電圧検知部、150,150a,150b,150c,150d:組電池制御部、151:記憶部、152:SOC推定部、153:電圧降下演算部、154:使用SOC決定部、155:記憶制御部、156:劣化判定部、160:信号通信手段、170:絶縁素子、200:車両制御部、300a~300d:リレー、400:インバータ、410:モータジェネレータ、420:充電器

Claims (11)

  1.  二次電池のSOC(充電状態)を推定するSOC推定部と、
     前記二次電池のOCV(開回路電圧)およびCCV(閉回路電圧)に基づく電圧降下を演算する電圧降下演算部と、
     前記SOC推定部が推定した前記SOCと、前記電圧降下演算部が演算した前記電圧降下との関係に基づいて、前記二次電池の充放電において使用するSOCの範囲または中心値を決定する使用SOC決定部と、を備える二次電池制御装置。
  2.  請求項1に記載の二次電池制御装置において、
     前記SOCと前記電圧降下との関係を表すマップ情報を記憶する記憶部をさらに備え、
     前記マップ情報には、前記二次電池の充放電中に前記SOC推定部がそれぞれ異なるタイミングで推定した複数の前記SOCの値と、前記SOC推定部と同期したタイミングで前記電圧降下演算部が演算した複数の前記電圧降下の値とが、互いに対応付けて記録されている二次電池制御装置。
  3.  請求項2に記載の二次電池制御装置において、
     前記使用SOC決定部は、前記マップ情報に基づいて所定のSOC範囲ごとに前記電圧降下の平均値を算出し、算出した前記電圧降下の平均値が最小のSOC範囲を、前記二次電池の充放電において使用するSOCの範囲として決定する二次電池制御装置。
  4.  請求項2に記載の二次電池制御装置において、
     前記使用SOC決定部は、前記マップ情報に基づいて前記電圧降下が最小となるSOCの値を特定し、特定した前記SOCの値を、前記二次電池の充放電において使用するSOCの中心値として決定する二次電池制御装置。
  5.  請求項2から請求項4のいずれか一項に記載の二次電池制御装置において、
     前記マップ情報には、前記二次電池の電流および温度がさらに対応付けて記録されており、
     前記使用SOC決定部は、前記電流および前記温度に基づいて、前記マップ情報において対応する前記SOCの値および前記電圧降下の値を組み合わせた各データを複数のグループに分類し、分類した前記複数のグループの中でデータ数が最多のグループに含まれる前記SOCの値および前記電圧降下の値を用いて、前記二次電池の充放電において使用するSOCの範囲または中心値を決定する二次電池制御装置。
  6.  請求項2から請求項4のいずれか一項に記載の二次電池制御装置において、
     前記マップ情報には、前記二次電池の電流が所定の電流レート範囲内であり、かつ/または前記二次電池の温度が所定の温度範囲内であるときに、前記SOC推定部と前記電圧降下演算部がそれぞれ取得した前記SOCの値および前記電圧降下の値が記録されており、
     前記使用SOC決定部は、前記マップ情報に記録されている前記SOCの値および前記電圧降下の値を用いて、前記二次電池の充放電において使用するSOCの範囲または中心値を決定する二次電池制御装置。
  7.  請求項2から請求項4のいずれか一項に記載の二次電池制御装置において、
     前記マップ情報には、所定のSOC刻みで前記電圧降下の値が大きい順に所定の上限数だけ前記電圧降下の値が記録されており、
     前記使用SOC決定部は、前記マップ情報に記録されている前記電圧降下の値を用いて、前記上限数における前記電圧降下の平均値を前記所定のSOC刻みで演算し、演算した前記所定のSOC刻みごとの前記電圧降下の平均値を用いて、前記二次電池の充放電において使用するSOCの範囲または中心値を決定する二次電池制御装置。
  8.  請求項7に記載の二次電池制御装置において、
     前記記憶部は、前記電圧降下演算部が前記マップ情報に記録されている前記電圧降下の値よりも大きい電圧降下を演算した場合に、前記マップ情報を更新する二次電池制御装置。
  9.  請求項2から請求項4のいずれか一項に記載の二次電池制御装置において、
     前記使用SOC決定部は、前記マップ情報において対応する前記SOCの値および前記電圧降下の値を組み合わせたデータが所定のデータ数以上記録されると、前記二次電池の充放電において使用するSOCの範囲または中心値を決定する二次電池制御装置。
  10.  請求項1から請求項4のいずれか一項に記載の二次電池制御装置において、
     前記二次電池は電動車両に搭載されており、
     前記使用SOC決定部は、前記電動車両の走行中に、前記二次電池の充放電において使用するSOCの範囲または中心値を変更する二次電池制御装置。
  11.  請求項1から請求項4のいずれか一項に記載の二次電池制御装置において、
     前記電圧降下演算部が演算した前記電圧降下に基づいて前記二次電池の劣化度を判定する劣化判定部をさらに備える二次電池制御装置。
PCT/JP2019/004344 2018-03-27 2019-02-07 二次電池制御装置 WO2019187680A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-059884 2018-03-27
JP2018059884A JP7168336B2 (ja) 2018-03-27 2018-03-27 二次電池制御装置

Publications (1)

Publication Number Publication Date
WO2019187680A1 true WO2019187680A1 (ja) 2019-10-03

Family

ID=68058729

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/004344 WO2019187680A1 (ja) 2018-03-27 2019-02-07 二次電池制御装置

Country Status (2)

Country Link
JP (1) JP7168336B2 (ja)
WO (1) WO2019187680A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022007709A1 (zh) * 2020-07-07 2022-01-13 深圳市道通科技股份有限公司 一种车辆蓄电池的检测方法及电池检测设备
CN115995870A (zh) * 2023-03-23 2023-04-21 深圳多为智联科技有限公司 手机电池智能管理系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000270493A (ja) * 1999-03-18 2000-09-29 Seiko Epson Corp 充電時期判別装置、電子機器、充電時期判別方法および電子機器の制御方法
JP2005037380A (ja) * 2003-06-27 2005-02-10 Furukawa Electric Co Ltd:The 蓄電池の劣化判定方法および劣化判定装置
JP2010249797A (ja) * 2009-03-26 2010-11-04 Primearth Ev Energy Co Ltd 二次電池の状態判定装置及び制御装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000270493A (ja) * 1999-03-18 2000-09-29 Seiko Epson Corp 充電時期判別装置、電子機器、充電時期判別方法および電子機器の制御方法
JP2005037380A (ja) * 2003-06-27 2005-02-10 Furukawa Electric Co Ltd:The 蓄電池の劣化判定方法および劣化判定装置
JP2010249797A (ja) * 2009-03-26 2010-11-04 Primearth Ev Energy Co Ltd 二次電池の状態判定装置及び制御装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022007709A1 (zh) * 2020-07-07 2022-01-13 深圳市道通科技股份有限公司 一种车辆蓄电池的检测方法及电池检测设备
CN115995870A (zh) * 2023-03-23 2023-04-21 深圳多为智联科技有限公司 手机电池智能管理系统

Also Published As

Publication number Publication date
JP2019176558A (ja) 2019-10-10
JP7168336B2 (ja) 2022-11-09

Similar Documents

Publication Publication Date Title
US9252624B2 (en) Battery control device and battery system
JP6111275B2 (ja) 電池制御装置
US11124072B2 (en) Battery control device and electric motor vehicle system
US10209317B2 (en) Battery control device for calculating battery deterioration based on internal resistance increase rate
US10147983B2 (en) Secondary battery system
WO2014132403A1 (ja) 二次電池劣化度判定装置
JP6324248B2 (ja) 電池状態検知装置、二次電池システム、電池状態検知プログラム、電池状態検知方法
JP5868499B2 (ja) 電池制御装置
JP5743367B2 (ja) バッテリー管理システムおよびバッテリー管理方法
CN104237795A (zh) 通过相同电压传感器测量多个电池单元的失衡探测
JP6101714B2 (ja) 電池制御装置、電池システム
JP6316690B2 (ja) 電池状態検知装置、二次電池システム、電池状態検知プログラム、電池状態検知方法
US20140239914A1 (en) Battery controller
JP6298920B2 (ja) 電池制御装置
JPWO2011125213A1 (ja) 二次電池の劣化判定装置および劣化判定方法
CN103608994A (zh) 电池控制装置、电池系统
JP7173127B2 (ja) 電池監視方法、電池監視装置及び電池監視システム
US20140184236A1 (en) Battery control apparatus and battery system
JP6171128B2 (ja) 電池制御システム、車両制御システム
WO2019187680A1 (ja) 二次電池制御装置
JP7388964B2 (ja) 二次電池装置および二次電池システム
JP5005610B2 (ja) 蓄電装置の状態検出装置
JPWO2012169061A1 (ja) 電池制御装置、電池システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19776696

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19776696

Country of ref document: EP

Kind code of ref document: A1