WO2012165049A1 - 負極にリチウムをドープ及び脱ドープする方法及びリチウム二次電池用負極の製造方法 - Google Patents

負極にリチウムをドープ及び脱ドープする方法及びリチウム二次電池用負極の製造方法 Download PDF

Info

Publication number
WO2012165049A1
WO2012165049A1 PCT/JP2012/059540 JP2012059540W WO2012165049A1 WO 2012165049 A1 WO2012165049 A1 WO 2012165049A1 JP 2012059540 W JP2012059540 W JP 2012059540W WO 2012165049 A1 WO2012165049 A1 WO 2012165049A1
Authority
WO
WIPO (PCT)
Prior art keywords
doping
lithium
negative electrode
amount
less
Prior art date
Application number
PCT/JP2012/059540
Other languages
English (en)
French (fr)
Inventor
入山 次郎
徹也 梶田
川崎 大輔
沼田 達治
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to US14/114,948 priority Critical patent/US9123928B2/en
Priority to JP2013517917A priority patent/JP5975024B2/ja
Priority to CN201280025943.9A priority patent/CN103563132B/zh
Publication of WO2012165049A1 publication Critical patent/WO2012165049A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/0459Electrochemical doping, intercalation, occlusion or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method of doping and dedoping lithium to a negative electrode, and a method of manufacturing a negative electrode for a lithium secondary battery.
  • Patent Document 1 discloses a lithium secondary battery having a negative electrode using silicon oxide as a negative electrode active material.
  • Patent Document 2 discloses a method of discharging a non-aqueous electrolyte secondary battery using an oxide of silicon containing lithium as a negative electrode active material. More specifically, Patent Document 2 discloses a discharge control method of a non-aqueous electrolyte secondary battery that performs control so that the negative electrode voltage with respect to the lithium reference electrode does not exceed 0.6 V.
  • Patent Document 3 discloses a non-aqueous secondary battery which is a silicon compound in which the negative electrode active material is represented by M x Si and the degree of crystallinity calculated by differential scanning calorimetry is in the range of 10 to 60%. It is done.
  • a charging method is disclosed that uses this non-aqueous secondary battery and terminates charging in a range in which the potential of the negative electrode with respect to metal lithium is higher than 100 mV.
  • Patent Document 4 discloses a method of using a lithium secondary battery using, as a negative electrode, an electrode provided with an active material layer containing silicon on a current collector. More specifically, there is disclosed a use method in which charge and discharge are performed in a range in which the potential of the negative electrode is 0.8 V (vs. Li / Li + ) or less, except at the time of the first charge.
  • Patent Document 5 discloses a secondary battery including a negative electrode including silicon (Si) as a constituent element and having a molar ratio of lithium atoms to silicon atoms (Li / Si) of 4.0 or less.
  • the objective of this invention is to provide the negative electrode excellent in cycling characteristics.
  • the inventors of the present invention conducted intensive studies and found that when silicon oxide is used as a negative electrode active material, lithium is locally doped to silicon oxide, so that the capacity retention rate is lowered due to repeated charge and discharge. I thought that it was.
  • silicon oxide used as a negative electrode active material
  • lithium ion conductivity of silicon oxide is low before lithium is doped, and increases as the amount of lithium doped increases. Therefore, the lithium concentration tends to be locally uneven in the negative electrode, and there is a tendency that a portion containing lithium at a high concentration and an unreacted portion are mixed in the negative electrode.
  • One of the embodiments is It is a method of doping and dedoping lithium only after being produced on a negative electrode for a lithium secondary battery containing silicon oxide as an active material, It is a doping and de-doping method of lithium characterized by doping the lithium in the following current value range (A) and in the following doping amount range (B).
  • Current value range (A) a relationship between a voltage V of the negative electrode with respect to the lithium reference electrode and dQ / dV which is a ratio of the change amount dQ of lithium dedoping amount Q of the negative electrode to the change amount dV of the voltage V
  • Doping amount range (B) a doping amount range in which only one peak appears at 1 V or less on the V-dQ / dV curve.
  • V ⁇ represents a relationship between a voltage V of the negative electrode with respect to the lithium reference electrode after the doping and dQ / dV which is a ratio of a change amount dQ of the lithium dedoping amount Q of the negative electrode to a change amount dV of the voltage V
  • dQ / dV represents a ratio of a change amount dQ of the lithium dedoping amount Q of the negative electrode to a change amount dV of the voltage V
  • One of the embodiments is a negative electrode for a lithium secondary battery doped and de-doped with lithium by the above method.
  • One of the embodiments is a lithium secondary battery having the above-described negative electrode.
  • One of the embodiments is (1) forming a negative electrode active material layer containing silicon oxide as an active material; (2) doping and de-doping lithium into the negative electrode active material layer; Including In the method for producing a negative electrode for a lithium secondary battery, the doping in the step (2) is performed in the following current value range (A) and in the following doping amount range (B).
  • One of the embodiments is (1) forming a negative electrode active material layer containing silicon oxide as an active material; (2) doping and de-doping lithium into the negative electrode active material layer; Including
  • the doping in the step (2) is the voltage V of the negative electrode active material layer after the doping with respect to the lithium reference electrode, and the variation dQ of the lithium dedoping amount Q of the anode active material with respect to the variation dV of the voltage V
  • the V-dQ / dV curve representing the relationship between dQ / dV, which is the ratio of D, at a doping amount at which only one peak appears at 1 V or less, and at a current value at which the doping amount is maximum It is a manufacturing method of the negative electrode for lithium secondary batteries.
  • V-dQ / dV curve at the time of the de-doping of SiO negative electrode (A numerical value [mAh / g] represents the lithium dope amount per SiO unit weight.).
  • the inventors of the present invention have found that when silicon oxide is electrochemically doped with lithium, when the doping amount is small, 1 V (Li / Li + ) or less on the V-dQ / dV curve at the time of de-doping, I found that only one gentle peak appears around 0.5V. In addition, the peak intensity of this first peak increases as the doping amount increases, and when the doping amount exceeds a certain value, the second peak appears overlapping with the first peak in the vicinity of 0.3 V. Found.
  • the first peak is referred to as the high potential side peak
  • the second peak is referred to as the low potential side peak.
  • the peak of the high potential side peak is around 0.5 V
  • the peak of the low potential side peak is around 0.3 V.
  • V represents the potential of the negative electrode relative to Li
  • dQ / dV represents the change in battery capacity with respect to the voltage change of the negative electrode.
  • the present inventors have found that the lithium doping amount in which the low potential side peak appears near 0.3 V varies depending on the current value when doping is performed for the first time after the negative electrode is manufactured (see FIG. 2). .
  • the first doping after the production when the current value is large, a second peak appears with a small doping amount.
  • the upper limit of the doping amount at which the peak on the low potential side begins to appear that is, the doping amount at which only one peak appears, gradually increases.
  • the doping amount at which the low potential side peak starts to appear becomes constant, and does not increase further.
  • FIG. 2 shows the relationship between the current density and the upper limit value of the doping amount where only one peak appears when SiO is doped with lithium.
  • the upper limit of the doping amount at which only one peak appears increases gradually, and reaches about 2300 mAh / g. After that, even if the current is reduced, the upper limit value of the doping amount at which only one peak appears is substantially constant and is the maximum value.
  • the amount of Li doping in which this inherent phase transition occurs varies depending on the ratio of silicon (Si) and oxygen (O) in the silicon oxide, and is about 2300 mAh / g in the case of SiO. This value tends to decrease as the proportion of oxygen in the silicon oxide increases, and this value tends to increase as the proportion of silicon increases. It is preferable that SiO be a stoichiometric composition.
  • the inventors of the present invention have found that oxidation and reduction of silicon oxide to 1 V or less on the V-dQ / dV curve when a sufficiently small current is used. It has been found that the lithium doping amount can be maximized so that only one reaction peak appears. Furthermore, it has been found that when lithium is doped into silicon oxide at this sufficiently small current value, lithium can be uniformly doped.
  • the inventors of the present invention should make lithium doping first performed after producing a negative electrode containing silicon oxide so that only one peak described above appears at a high potential side with a sufficiently small current as described above. It was found that the charge / discharge reaction proceeds uniformly in the subsequent use by dedoping after carrying out below the doping amount.
  • the reason why the performance of the negative electrode is improved is not particularly limited by the present invention, but by carrying out lithium doping and de-doping, which are performed first after producing the negative electrode under such conditions, It is speculated that this is due to the formation of a route for lithium to enter uniformly in the silicon oxide.
  • individual peak potentials and peak intensities can be determined by fitting the original data, for example, by superposition of arbitrary Gaussian functions.
  • noise can be removed by smoothing the data.
  • smoothing process for example, a SAVITZKY-GOLAY algorithm, an adjacent averaging process, or the like can be used.
  • the peak intensity can be determined by calculating the area of each peak.
  • ORIGIN data analysis software made by ORIGINLAB CORPORATION, see http://WWW.LIGHTSTONE.CO.JP/ORIGIN/PA.HTM
  • This software applies the least squares method, has NLSF (NONLINEAR LEAST SQUARES FITTER-nonlinear curve fitting mechanism), and can curve a curve having any plural peaks with a Gaussian function.
  • One of the embodiments is It is a method of doping and dedoping lithium only after being produced on a negative electrode for a lithium secondary battery containing silicon oxide as an active material, A method of doping and dedoping lithium characterized in that it is carried out at a current within the following current value range (A) and at a doping amount within the following doping amount range (B).
  • Current value range (A) a relationship between a voltage V of the negative electrode with respect to the lithium reference electrode and dQ / dV which is a ratio of the change amount dQ of lithium dedoping amount Q of the negative electrode to the change amount dV of the voltage V In the V-dQ / dV curve that represents, the range of current values at which the amount of doping at which only one peak appears below 1 V is maximum.
  • Doping amount range (B) a doping amount range in which only one peak appears at 1 V or less on the V-dQ / dV curve.
  • V represents the potential of the negative electrode with respect to Li
  • dQ / dV represents the change in battery capacity with respect to the voltage change of the negative electrode. That is, in the V-dQ / dV graph, dQ / dV, which is a ratio of the change amount dQ of the discharge capacity Q of the lithium secondary battery to the change amount dV of the voltage V relative to the lithium reference electrode of the negative electrode, Represents a relationship.
  • the doping amount at which only one peak appears at 1 V or less gradually increases.
  • the upper limit of the doping amount at which only one peak appears at 1 V or less becomes constant and becomes maximum.
  • the doping amount is the maximum value of the doping amount at which only one peak appears at 1 V or less.
  • a current is made to flow and the lithium is doped within the range of the current value in which only one peak appears at 1 V or less at which the amount of doping is maximum.
  • the current value at which only one peak appears at 1 V or lower is the upper limit value of the dope amount at which only one peak appears at 1 V or less. It is the current value included in the current value range that is at a constant maximum. For example, in the case where the silicon oxide is SiO and the current density is about 0.12 A / cm 2 or less, the doping amount in which only one peak appears at 1 V or less is maximum. In the current value range where the current density is about 0.12 A / cm 2 or less, the upper limit of the doping amount at which only one peak appears at 1 V or less is almost constant and the maximum value, and the doping amount is about 2300 mAh / g.
  • the current value at which only one peak appears at 1 V or less is the maximum current value, so that the dope amount at which only one peak appears at 1 V or less is about 2300 mAh / g.
  • the current density of the current value is about 0.12 A / cm 2 or less.
  • the doping amount is performed in the range of the doping amount in which only one peak appears at 1 V or less on the V-dQ / dV curve. Further, from the viewpoint of forming a more uniform path, it is preferable to dope lithium to the maximum value of the doping amount in which only one peak appears at 1 V or less.
  • the doping amount range (B) is, for example, from the viewpoint of being able to form a uniform route of lithium, for example, a doping appears where only one peak appears at 1 V or less than half of the maximum of the doping amount It is less than the maximum value of the quantity. Further, the doping amount range (B) is more preferably 2/3 or more of the maximum value of the doping amount at which only one peak appears at 1 V or less. Further, the doping amount range (B) is more preferably 3/4 or more of the maximum value of the doping amount in which only one peak appears at 1 V or less.
  • lithium is dedoped.
  • Lithium is preferably dedoped to an SOC of 0%.
  • the current density at the time of lithium dedoping is not particularly limited, but is preferably 0.2 A / cm 2 or less from the viewpoint that a more uniform path is easily formed, 0.1 A / cm 2 It is more preferable that it is the following and it is still more preferable that it is 0.05 A / cm ⁇ 2 > or less.
  • the charge and discharge reaction proceeds uniformly in the subsequent use of the negative electrode.
  • the reason for this is presumed to be that a path of lithium uniformly enters the silicon oxide is formed, but the present embodiment is not limited by this assumption.
  • Lithium doping of the negative electrode may be performed before assembling the battery, or may be performed in the battery after assembling the battery. It is preferable to carry out in a battery, after assembling a battery from a viewpoint of cost and a man-hour.
  • the lithium source can use part of lithium contained in the positive electrode as it is.
  • a source of lithium such as lithium foil or lithium alloy foil, may be placed at an appropriate place in the battery. In this case, it is necessary to take measures such as attaching an external terminal to lithium foil or the like in order to control the current to be doped, and arranging a separator in order to prevent short circuit with the negative electrode.
  • the maximum value of the lithium doping amount that causes only one peak due to the oxidation-reduction reaction of silicon oxide appears, and the current per negative electrode area required to obtain this maximum value
  • the upper limit of the density can be obtained by using a half cell with a separately prepared negative electrode in advance.
  • the upper limit of the current density per negative electrode area necessary to obtain the maximum value of the doping amount at which only one peak appears at 1 V or less is the thickness of the negative electrode, the amount of the conductivity imparting agent in the negative electrode, the electrolyte used, etc.
  • the doping is carried out at a current density equal to or less than the upper limit of the upper limit of the above.
  • the lithium doping and dedoping methods of the present embodiment can be performed once or more, and are preferably performed twice or more. By repeating the process a plurality of times, the negative electrode can be more excellent in cycle characteristics.
  • the reason why the conditions for doping lithium for the first time after being produced on a negative electrode containing silicon oxide is important is not particularly limited to the present invention, but when silicon oxide is rapidly doped with lithium, It is presumed that there is some structural change that causes the localized state of lithium to be biased to the silicon oxide. Therefore, in the manufacturing method of the present embodiment, the conditions for initially doping lithium are important.
  • the peak on the low potential side appears near 0.3 V and the peak on the high potential side appears near 0.5 V .
  • the state of charge for example, is 100% of SOC indicating the state of charge of the battery, and the state of discharge is, for example, 0% of SOC.
  • this embodiment can also be expressed as follows.
  • V ⁇ represents a relationship between a voltage V of the negative electrode with respect to the lithium reference electrode after the doping and dQ / dV which is a ratio of a change amount dQ of the lithium dedoping amount Q of the negative electrode to a change amount dV of the voltage V
  • dQ / dV represents a ratio of a change amount dQ of the lithium dedoping amount Q of the negative electrode to a change amount dV of the voltage V
  • the lithium doping in this embodiment is performed at a current value at which the doping amount at which only one peak appears at 1 V or less is maximized.
  • the current value at which only one peak appears at 1 V or less is the maximum current value when the doping amount at which 1 peak appears at 1 V or less is almost constant. It is the current value included in the current value range. For example, when the silicon oxide is SiO, when the current density is about 0.12 A / cm 2 or less, the doping amount in which only one peak appears at 1 V or less is maximum. In the current value range where the current density is about 0.12 A / cm 2 or less, the upper limit of the doping amount at which only one peak appears at 1 V or less is almost constant and maximum, and the value is about 2300 mAh / g is there.
  • the current value at which only one peak appears at 1 V or less is the maximum current value, so that the dope amount at which only one peak appears at 1 V or less is about 2300 mAh / g.
  • the current density of the current value is about 0.12 A / cm 2 or less.
  • the lithium doping amount is a doping amount in which only one peak appears at 1 V or less on the V-dQ / dV curve.
  • the lithium doping amount is preferably a half or more of the maximum value of the doping amount at which only one peak appears at 1 V or less.
  • the lithium doping amount is more preferably 2/3 or more of the maximum value of the doping amount at which only one peak appears at 1 V or less.
  • the lithium doping amount is more preferably 3/4 or more of the maximum value of the doping amount at which only one peak appears at 1 V or less.
  • the lithium doping amount is particularly preferably the maximum value of the doping amount where only one peak appears at 1 V or less.
  • the range of 5%, preferably 3% above and below the maximum value of the doping amount calculated in advance is preferable from the viewpoint of the effect of the invention. It is understood that it is included in the embodiment.
  • the above-mentioned doping and de-doping can be performed once or more times, and by performing twice or more times, a more uniform lithium path can be formed.
  • this embodiment can also be grasped
  • the lithium secondary battery of the present embodiment can include a negative electrode, a positive electrode, an electrolytic solution, a separator, and an outer package.
  • a negative electrode a positive electrode
  • an electrolytic solution a separator
  • an outer package an outer package
  • the lithium secondary battery of the present embodiment includes the negative electrode subjected to the lithium doping and dedoping methods of the present embodiment.
  • the negative electrode has a negative electrode active material containing silicon oxide.
  • the negative electrode is formed by disposing a negative electrode active material on a negative electrode current collector.
  • the negative electrode active material can be bound on the negative electrode current collector by a negative electrode binder.
  • the negative electrode active material of the present embodiment contains a silicon oxide as described above.
  • Silicon oxide is not particularly limited, for example, represented by SiO x (0 ⁇ x ⁇ 2 ).
  • the silicon oxide can be free of lithium until it receives the doping and de-doping processes of this embodiment.
  • the silicon oxide may contain Li, and the silicon oxide containing Li is represented by, for example, SiLi y O z (y> 0, 2>z> 0).
  • the silicon oxide may contain a trace amount of metal element or nonmetal element.
  • the silicon oxide can contain, for example, 0.1 to 5% by mass of one or more elements selected from nitrogen, boron and sulfur.
  • the electrical conductivity of the silicon oxide can be improved by containing a trace amount of metal elements and nonmetal elements.
  • the silicon oxide may be crystalline or amorphous.
  • the potential at which the peak appears may be slightly deviated from 300mV and 500mV shown in FIG. 1, but when the lithium doping amount is small, the peak is one One point is that there is no difference that another peak appears on the low potential side when the lithium doping amount exceeds a certain value. Therefore, as in the case of SiO, it is possible to determine the maximum value of the lithium doping amount such that only one peak due to the redox reaction appears, and the upper limit of the current density per negative electrode area required to obtain the maximum value. .
  • the negative electrode can also contain a conductivity imparting agent.
  • a conductivity imparting agent a publicly known thing can be used as a conductivity imparting agent,
  • a carbon material is mentioned preferably.
  • graphite, amorphous carbon, diamond-like carbon, a carbon nanotube, or these composites etc. can be mentioned, for example.
  • graphite having high crystallinity has high electric conductivity, and is excellent in adhesion to a current collector made of a metal such as copper and voltage flatness.
  • amorphous carbon having low crystallinity has a relatively small volume expansion, so the effect of alleviating the volume expansion of the entire negative electrode is high, and deterioration due to nonuniformity such as grain boundaries and defects hardly occurs.
  • the content of the silicon oxide in the negative electrode active material is preferably 40% by mass or more and 99% by mass or less, and more preferably 50% by mass or more and 95% by mass or less from the viewpoint of the cycle characteristics improvement effect. More preferably, it is 60% by mass or more and 90% by mass or less.
  • the content of the carbon material in the negative electrode active material is preferably 1% by mass or more and 40% by mass or less, and more preferably 2% by mass or more and 30% by mass or less.
  • the silicon oxide in the negative electrode active material preferably has all or a part of an amorphous structure. It is considered that silicon oxide having an amorphous structure has relatively few elements due to nonuniformity such as grain boundaries and defects. The fact that all or part of the silicon oxide has an amorphous structure can be confirmed by X-ray diffraction measurement (general XRD measurement). Specifically, when the silicon oxide does not have an amorphous structure, a peak unique to the silicon oxide is observed, but when all or a part of the silicon oxide has an amorphous structure, the silicon oxide is a silicon oxide. Peaks unique to are observed as broad.
  • the silicon oxide and the carbon material are not particularly limited, but particulate materials can be used.
  • the negative electrode active material containing a silicon oxide and a carbon material can be obtained, for example, by mixing by mechanical milling.
  • a negative electrode active material containing a silicon oxide and a carbon material can be obtained, for example, by performing a CVD process on a silicon oxide in an atmosphere containing an organic gas such as methane gas. In this case, depending on the selection of conditions, it is also possible to obtain a composite in which a silicon oxide is coated with a carbon material.
  • binder for the negative electrode for example, polyvinylidene fluoride (PVdF), vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, styrene-butadiene copolymer rubber, polytetrafluoroethylene , Polypropylene, polyethylene, polyimide, polyamide imide and the like can be used. Among them, polyimide (PI) or polyamideimide (PAI) is preferable because of its strong binding property.
  • the amount of the binder for the negative electrode to be used is 5 to 25 parts by mass with respect to 100 parts by mass of the negative electrode active material from the viewpoint of "sufficient binding ability" and "high energy" which are in a trade-off relationship. Is preferred.
  • the negative electrode current collector is not particularly limited, but aluminum, nickel, copper, silver, and their alloys are preferable from the viewpoint of electrochemical stability. As the shape, foil, flat form, mesh form is mentioned.
  • the negative electrode can be produced, for example, by forming a negative electrode active material layer containing a negative electrode active material and a negative electrode binder on a negative electrode current collector.
  • Examples of the method of forming the negative electrode active material layer include a doctor blade method, a die coater method, a CVD method, and a sputtering method.
  • a thin film of aluminum, nickel, or an alloy thereof may be formed by a method such as vapor deposition or sputtering to form a negative electrode current collector.
  • the positive electrode is formed by disposing a positive electrode active material on a positive electrode current collector.
  • the positive electrode active material can be bound on the positive electrode current collector by a positive electrode binder.
  • the positive electrode active material is not particularly limited, for example, LiMnO 2, LixMn 2 O 4 (0 ⁇ x ⁇ 2) lithium manganate having a lithium manganate or spinel structure having a layered structure, such as; LiCoO 2 or LiNiO 2 or those obtained by replacing part of these transition metals with other metals.
  • the positive electrode active material may include, for example, LiFePO 4 having a crystal structure of olivine also. These positive electrode active materials can also be used singly or in combination of two or more.
  • the binder for the positive electrode the same one as the binder for the negative electrode can be used.
  • polyvinylidene fluoride is preferable from the viewpoint of versatility and low cost.
  • the amount of the positive electrode binder to be used is 2 to 10 parts by mass with respect to 100 parts by mass of the positive electrode active material from the viewpoint of "sufficient binding ability" and "high energy” which are in a trade-off relationship. Is preferred.
  • the positive electrode current collector the same one as the negative electrode current collector can be used.
  • a conductive auxiliary material may be added to the positive electrode active material layer containing the positive electrode active material for the purpose of reducing the impedance.
  • the conductive auxiliary include carbonaceous fine particles such as graphite, carbon black and acetylene black.
  • the material of the electrolytic solution is not particularly limited as long as it is stable at the redox potential of metal lithium, and a known non-aqueous electrolytic solution can be employed.
  • the non-aqueous electrolytic solvent is not particularly limited, but because it is stable at the redox potential of metal lithium, cyclic carbonates such as propylene carbonate, ethylene carbonate, butylene carbonate, vinylene carbonate and the like; dimethyl carbonate, And linear carbonates such as diethyl carbonate, ethyl methyl carbonate and dipropyl carbonate; lactones such as ⁇ -butyrolactone.
  • the non-aqueous electrolyte can be used singly or in combination of two or more.
  • electrolyte salt examples include LiPF 6 , LiAsF 6 , LiAlCl 4 , LiClO 4 , LiBF 4 , LiSbF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , Li (CF 3 SO 2 ) 2 , LiN (CF 3 SO 2) 2 ) and the like.
  • the electrolyte salt can be used singly or in combination of two or more.
  • an ionic liquid can be used as the electrolytic solution.
  • the ionic liquid include quaternary ammonium-imide salts.
  • the electrolytic solution is not limited to the liquid form, and includes the solid form.
  • the secondary battery which concerns on this embodiment can be set as the structure by which the electrode element by which the positive electrode and the negative electrode were opposingly arranged, and electrolyte solution were included in the exterior body.
  • the shape of the secondary battery may be any of cylindrical, flat wound square, laminated square, coin, flat wound laminate type and laminate type.
  • the outer package can be appropriately selected as long as it is stable to the electrolyte and has sufficient water vapor barrier properties, and is not particularly limited.
  • a metal can, a laminate film, etc. can be used, for example. From the viewpoint of suppressing volumetric expansion, it is preferable to use an aluminum laminate film as the laminate film.
  • the peak on the low potential side is not particularly limited, but appears near 0.3 V, and the peak on the high potential side appears near 0.5 V.
  • the state of charge for example, is 100% of SOC indicating the state of charge of the battery, and the state of discharge is, for example, 0% of SOC.
  • Each peak intensity can be obtained by approximating each peak with a Gaussian function and calculating its area.
  • the embodiment of the present invention is a manufacturing method of the anode for lithium secondary batteries It can also be expressed as
  • the negative electrode active material layer is preferably formed on the negative electrode current collector.
  • the negative electrode precursor for a lithium secondary battery can be obtained by doping lithium into the negative electrode precursor comprising the negative electrode current collector and the negative electrode active material layer by the method described above.
  • the step (2) is performed at least once, but is preferably repeated a plurality of times.
  • the embodiment of the present invention can also be expressed as follows as a method of manufacturing a negative electrode for a lithium secondary battery.
  • step (2) is the voltage V of the negative electrode active material layer after the doping with respect to the lithium reference electrode, and the variation dQ of the lithium dedoping amount Q of the anode active material with respect to the variation dV of the voltage V
  • V-dQ / dV curve representing the relationship between dQ / dV, which is the ratio of D, at a doping amount at which only one peak appears at 1 V or less, and at a current value at which the doping amount is maximum
  • ⁇ Negative electrode> Silicon monoxide (average particle diameter D 50 25 ⁇ m) manufactured by High Purity Chemical Corporation, carbon black (# 3030B manufactured by Mitsubishi Chemical Corporation), and polyamic acid (trade name: U-varnish A manufactured by Ube Industries, Ltd.)
  • NMP n-methylpyrrolidone
  • the negative electrode slurry was applied to a 10 ⁇ m thick copper foil using a doctor blade. After heating at 120 ° C. for 7 minutes, NMP was dried and used as a negative electrode. A plurality of negative electrodes were prepared. Thereafter, the negative electrode was heated at 350 ° C. for 30 minutes using an electric furnace under a nitrogen atmosphere.
  • ⁇ Preparation of half cell> A plurality of half cells using metallic lithium for the obtained negative electrode and counter electrode were produced.
  • As an electrolytic solution a mixed solvent of ethylene carbonate and diethyl carbonate (volume ratio) containing 1.0 mol / l of LiPF 6 electrolyte salt was used.
  • the half cell of the negative electrode is charged and discharged in the range of 3.0 to 4.2 V to change the lithium doping amount to the negative electrode and the doping current density, and the V-dQ / dV curve during lithium dedoping I asked for.
  • the lithium doping amount was selected in the range of 1500 to 2800 mAh / g, and the doping current density per unit area of the negative electrode was selected in the range of 0.02 to 0.24 mA / cm 2 .
  • the current density at lithium dedoping was all 0.01 mA / cm 2 .
  • FIG. 1 A V-dQ / dV curve during lithium dedoping at a doping current density of 0.02 mA / cm 2 is shown in FIG. From this figure, it is when the lithium doping amount per unit weight of silicon oxide is 2300 mAh / g or less that only one peak appears at 1 V or less on the V-dQ / dV curve during lithium dedoping. I understand.
  • the doping current density per unit area of the negative electrode was changed, and the upper limit of the lithium doping amount at which only one peak appeared at 1 V or less on the V-dQ / dV curve at the lithium dedoping was determined.
  • the results are shown in FIG. From FIG. 2, when the doping current density is 0.12 mA / cm 2 or less, the upper limit of the lithium doping amount is approximately 2300 mAh / g, where only one peak appears at 1 V or less on the V-dQ / dV curve at lithium dedoping Is constant.
  • the current density becomes larger than 0.12 mA / cm 2 the upper limit of the lithium doping amount appears so that only one peak appears at 1 V or less.
  • the doping current density is 0.12 mA / cm 2 or less
  • the lithium doping amount per unit weight of silicon oxide is 2300 mAh / g
  • lithium is doped in the negative electrode
  • lithium is contained in the negative electrode. It turns out that it can dope uniformly.
  • ⁇ Secondary battery> An aluminum terminal and a nickel terminal were respectively welded to the above-mentioned positive electrode and negative electrode. These were superimposed via a separator to produce an electrode element.
  • the positive electrode contains lithium that can be doped with 2650 mAh / g of lithium per unit weight of silicon oxide contained in the negative electrode.
  • the electrode element was covered with a laminate film and an electrolytic solution was injected, and then the laminate film was heat-sealed and sealed while reducing pressure, thereby preparing a plurality of flat plate type lithium secondary batteries.
  • a polypropylene film was used for the separator.
  • As a laminate film a polypropylene film vapor-deposited with aluminum was used.
  • As an electrolytic solution a mixed solvent of ethylene carbonate and diethyl carbonate (volume ratio) containing 1.0 mol / l of LiPF 6 electrolyte salt was used.
  • Example 1 Lithium Doping to Negative Electrode in Battery
  • the prepared lithium secondary battery was subjected to lithium doping to the negative electrode at an electric current density per unit area of the negative electrode of 0.02 mA / cm 2 18 hours after the injection of the electrolytic solution.
  • the lithium doping amount per unit weight of silicon oxide contained in the negative electrode was 2300 mAh / g.
  • the cell was discharged to 3.0 V with a current density of 0.02 mA / cm 2 to de-dope lithium from the negative electrode.
  • the charging was performed by the CCCV method (a constant current density of 0.2 mA / cm 2 up to 4.2 V, and keeping the voltage constant for one hour after reaching 4.2 V).
  • the discharge was a CC method (constant current density 0.2 mA / cm 2 ).
  • Examples 2 to 5 The same procedure as in Example 1 was carried out except that the current density per unit area of negative electrode in lithium doping to the negative electrode in the battery was set to 0.03, 0.06, 0.09, 0.12 mA / cm 2 respectively. A discharge cycle test was performed.
  • the capacity retention rates at the 200th cycle of the lithium secondary batteries of the example and the comparative example are shown in Table 1 and FIG.
  • the capacity retention rate indicates the ratio of the 200th discharge capacity to the discharge capacity of the first cycle.
  • the batteries of Examples 1 to 5 have a capacity retention ratio of at least 85% after 200 cycles, while the batteries of Comparative Examples 1 to 4 have capacity retention after 200 cycles.
  • the rate is below 74%.
  • Embodiments of the present invention can also be expressed as shown in the following appendices.
  • Lithium doping and de-doping methods characterized in that the lithium is doped in the following current value range (A) and in the following doping amount range (B); Current value range (A); a relationship between a voltage V of the negative electrode with respect to the lithium reference electrode and dQ / dV which is a ratio of the change amount dQ of lithium dedoping amount Q of the negative electrode to the change amount dV of the voltage V In the V-dQ / dV curve that represents, the range of current values at which the doping amount at which only one peak appears below 1 V is maximum, Doping amount range (B): a doping amount range in which only one peak appears at 1 V or less on the V-dQ / dV curve.
  • the silicon oxide is SiO
  • the current density in the current value range (A) is more than 0 and 0.12 A / cm 2 or less
  • V ⁇ represents a relationship between a voltage V of the negative electrode with respect to the lithium reference electrode after the doping and dQ / dV which is a ratio of a change amount dQ of the lithium dedoping amount Q of the negative electrode to a change amount dV of the voltage V
  • the silicon oxide is SiO
  • the current density of the current value is greater than 0 and 0.12 A / cm 2 or less

Abstract

 本実施形態の目的は、サイクル特性に優れた負極を提供することである。 本実施形態は、活物質としてケイ素酸化物を含むリチウム二次電池用の負極に作製されてから初めてリチウムをドープ及び脱ドープする方法であって、下記電流値範囲(A)内で、かつ下記ドープ量範囲(B)内で、前記リチウムをドープすることを特徴とするリチウムのドープ及び脱ドープ方法;電流値範囲(A);前記負極のリチウム基準極に対する電圧Vと、前記電圧Vの変化量dVに対する前記負極のリチウム脱ドープ量Qの変化量dQの割合であるdQ/dVと、の関係を表すV-dQ/dV曲線上において、1V以下にピークが一つのみ現れるドープ量が最大となる電流値の範囲、ドープ量範囲(B);前記V-dQ/dV曲線上において、1V以下にピークが一つのみ現れるドープ量の範囲。

Description

負極にリチウムをドープ及び脱ドープする方法及びリチウム二次電池用負極の製造方法
 本発明は、負極にリチウムをドープ及び脱ドープする方法及びリチウム二次電池用負極の製造方法に関する。
 特許文献1には、負極活物質としてケイ素酸化物を用いた負極を有するリチウム二次電池が開示されている。
 また、特許文献2には、負極活物質としてリチウムを含有するケイ素の酸化物を用いた非水電解質二次電池を放電させる方法が開示されている。より具体的には、特許文献2には、リチウム基準極に対する負極電圧が0.6Vを超えない範囲で放電させるように制御する非水電解質二次電池の放電制御方法が開示されている。
 また、特許文献3には、負極活物質がMSiで示され、示差走査熱量測定により算出される結晶化度が10~60%の範囲にあるケイ素化合物である非水二次電池が開示されている。また、この非水二次電池を用い、金属リチウムに対する負極の電位が100mVより高い電位となる範囲で充電を終了する充電方法が開示されている。
 また、特許文献4には、集電体の上にシリコンを含む活物質層を設けた電極を負極として用いたリチウム二次電池の使用方法が開示されている。より具体的には、初回の充電時を除き、負極の電位が0.8V(vs.Li/Li)以下である範囲で充放電する使用方法が開示されている。
 また、特許文献5には、構成元素としてケイ素(Si)を含み、リチウム原子のケイ素原子に対するモル比(Li/Si)が4.0以下である負極を備える二次電池が開示されている。
特許2997741号明細書 特許4088993号明細書 特許3771846号明細書 特許4212439号明細書 特開2005-235734号公報
 しかし、特許文献1に開示されるような負極活物質としてケイ素酸化物を用いたリチウム二次電池では、充放電の繰り返しにより容量維持率が低下する場合があり、サイクル特性の改善が望まれていた。
 また、特許文献2~5に開示されている電池においても、リチウム二次電池のサイクル特性を改善できない場合がある。
 そこで、本発明の目的は、サイクル特性に優れた負極を提供することである。
 本発明者らは、鋭意検討したところ、ケイ素酸化物を負極活物質として用いた場合、リチウムが局所的にケイ素酸化物にドープされるために、充放電の繰り返しにより容量維持率の低下が起こっているものと考えた。負極活物質としてケイ素酸化物を用いた負極を有するリチウム二次電池では、ケイ素酸化物のリチウムイオン導電性は、リチウムがドープされる前では低く、ドープされたリチウム量が多いほど高くなる。そのため、負極内で局所的にリチウム濃度が偏りやすく、負極内でリチウムを高濃度で含む箇所と未反応の箇所が混在する傾向がある。負極内で局所的にリチウム濃度が偏ったまま充放電が繰り返されると、リチウム濃度が高い部分が充放電に伴う体積変化が大きくなる。そのため、リチウム濃度が高い部分が集電体から剥落し、電池の放電容量の低下に繋がっているものと考えた。
 そこで、本発明者らは、負極の不均一な反応状態を抑制し得る手段について鋭意検討したところ、本実施形態に至った。
 本実施形態の一は、
 活物質としてケイ素酸化物を含むリチウム二次電池用の負極に作製されてから初めてリチウムをドープ及び脱ドープする方法であって、
 下記電流値範囲(A)内で、かつ下記ドープ量範囲(B)内で、前記リチウムをドープすることを特徴とするリチウムのドープ及び脱ドープ方法である。
 電流値範囲(A);前記負極のリチウム基準極に対する電圧Vと、前記電圧Vの変化量dVに対する前記負極のリチウム脱ドープ量Qの変化量dQの割合であるdQ/dVと、の関係を表すV-dQ/dV曲線上において、1V以下にピークが一つのみ現れるドープ量が最大となる電流値の範囲、
 ドープ量範囲(B);前記V-dQ/dV曲線上において、1V以下にピークが一つのみ現れるドープ量の範囲。
 本実施形態の一は、
 活物質としてケイ素酸化物を含むリチウム二次電池用の負極に作製されてから初めてリチウムをドープ及び脱ドープする方法であって、
 該ドープ後の前記負極のリチウム基準極に対する電圧Vと、前記電圧Vの変化量dVに対する前記負極のリチウム脱ドープ量Qの変化量dQの割合であるdQ/dVと、の関係を表すV-dQ/dV曲線上において、1V以下にピークが一つのみ現れるドープ量で、かつ、該ドープ量が最大となる電流値で、
 前記リチウムをドープすることを特徴とするリチウムのドープ及び脱ドープ方法である。
 本実施形態の一は、上記の方法でリチウムがドープ及び脱ドープされたリチウム二次電池用の負極である。
 本実施形態の一は、上記の負極を有するリチウム二次電池である。
 本実施形態の一は、
 (1)活物質としてケイ素酸化物を含む負極活物質層を形成する工程と、
 (2)前記負極活物質層に、リチウムをドープ及び脱ドープする工程と、
を含み、
 前記工程(2)における前記ドープが、下記電流値範囲(A)内で、かつ下記ドープ量範囲(B)内で、行われることを特徴とするリチウム二次電池用負極の製造方法である。
 電流値範囲(A);前記負極活物質層のリチウム基準極に対する電圧Vと、前記電圧Vの変化量dVに対する前記負極活物質層のリチウム脱ドープ量Qの変化量dQの割合であるdQ/dVと、の関係を表すV-dQ/dV曲線上において、1V以下にピークが一つのみ現れるドープ量が最大となる電流値の範囲、
 ドープ量範囲(B);前記V-dQ/dV曲線上において、1V以下にピークが一つのみ現れるドープ量の範囲。
 本実施形態の一は、
 (1)活物質としてケイ素酸化物を含む負極活物質層を形成する工程と、
 (2)前記負極活物質層に、リチウムをドープ及び脱ドープする工程と、
を含み、
 前記工程(2)における前記ドープが、該ドープ後の前記負極活物質層のリチウム基準極に対する電圧Vと、前記電圧Vの変化量dVに対する前記負極活物質のリチウム脱ドープ量Qの変化量dQの割合であるdQ/dVと、の関係を表すV-dQ/dV曲線上において、1V以下にピークが一つのみ現れるドープ量で、かつ、該ドープ量が最大となる電流値で、行われるリチウム二次電池用負極の製造方法である。
 本実施形態のリチウムのドープ及び脱ドープ方法を用いることにより、充放電サイクル後の容量維持率に優れた負極を提供することができる。
 また、本実施形態の製造方法により、充放電サイクル後の容量維持率に優れた負極を提供することができる。
SiO負極の脱ドープ時のV―dQ/dV曲線(数値[mAh/g]はSiO単位重量当りのリチウムドープ量を表す。)。
V―dQ/dV曲線上の1V(Li/Li)以下にピークが一つのみ現れるSiOの単位重量当たりのリチウムドープ量の上限値と負極単位面積当たりのリチウムドープ電流密度との関係を示すグラフである。
実施例および比較例の充放サイクル試験後の容量維持率を示すグラフである。
 本発明者等は、ケイ素酸化物にリチウムを電気化学的にドープしていくと、ドープ量が少ない時には、脱ドープ時のV-dQ/dV曲線上の1V(Li/Li)以下に、0.5V付近を頂きとするなだらかなピークが一つだけ現れることを発見した。また、この一つ目のピークはドープ量が増えるに従ってピーク強度が大きくなり、ドープ量がある値を超えるとさらに0.3V付近に二つ目のピークが一つ目のピークに重なって現れることを発見した。以下、一つ目のピークを高電位側ピークと称し、二つ目のピークを低電位側ピークと称す。高電位側ピークの頂きは0.5V付近であり、低電位側ピークの頂きは0.3V付近である。また、さらにドープ量を増やすと、低電位側ピークの強度が大きくなることを発見した(図1参照)。なお、VはLiに対する負極の電位、dQ/dVは負極の電圧変化に対する電池容量変化を表す。
 これらの事象はケイ素酸化物にリチウムを電気化学的にドープしていくと、ドープ量がある一定量を超えたとき、酸化還元電位の異なる二つの相が生じることを示唆しているものと考えられる。
 さらに、本発明者等は、0.3V付近に低電位側ピークが現れるリチウムドープ量は、負極が作製されてから初めてドープを行う際の電流値によって変化することを見出した(図2参照)。作製されてから一番初めのドープにおいて、電流値が大きい場合は少ないドープ量で二つ目のピークが現れる。そして、その電流値から流す電流を小さくしてドープを行うと、低電位側のピークが現れ始めるドープ量、つまりピークが一つのみ現れるドープ量の上限値が次第に大きくなる。しかし、電流値がある一定値以下になると、低電位側ピークが現れ始めるドープ量は一定となり、それ以上は増加しなくなる。図2にSiOにリチウムをドープした場合、ピークが一つのみ現れるドープ量の上限値と電流密度との関係を示す。図2において、電流密度が小さくなるにつれて、ピークが一つのみ現れるドープ量の上限値は次第に大きくなっていき、約2300mAh/gに達する。その後は電流を小さくしても、ピークが一つのみ現れるドープ量の上限値はほぼ一定となり、最大値となっている。
 これは、リチウムがドープされる前のケイ素酸化物のリチウムイオン導電性がリチウムがドープされたケイ素酸化物にくらべて非常に小さいために生じる現象と考えられる。ケイ素酸化物のイオン導電性が小さいため、大きい電流でリチウムをドープすると、負極内で局所的にリチウム濃度が偏りやすい。そして、リチウム濃度が高い部分とリチウムと未反応の部分が混在するため、少ないドープ量で二つ目のピークが出現するものと推測される。一方、十分小さい電流値でドープすると、Liドープ反応がケイ素酸化物全体で均一に起こるため、本来の相転移が起こる一定のLiドープ量で、二つ目の低電位側ピークが出現するものと推測される。
 この本来の相転移が起こるLiドープ量は、ケイ素酸化物中のケイ素(Si)と酸素(O)の割合によって変化し、SiOの場合は約2300mAh/gである。ケイ素酸化物中の酸素の割合が多くなるとこの値は小さくなる傾向があり、ケイ素の割合が多くなるとこの値は大きくなる傾向がある。SiOは化学量論組成であることが好ましい。
 したがって、本発明者等は、活物質としてケイ素酸化物を用いたリチウム二次電池用負極において、十分小さな電流を用いると、V-dQ/dV曲線上の1V以下に、ケイ素酸化物の酸化還元反応によるピークが一つのみ現れるようなリチウムドープ量を最大にできることを見出した。さらに、この十分小さい電流値でリチウムをケイ素酸化物にドープした場合、リチウムを均一にドープできることがわかった。
 さらに、本発明者らは、ケイ素酸化物を含む負極を作製してから一番初めに行うリチウムドープを、上述のように十分小さな電流でかつ上述のピークが高電位側に一つのみ現れるようなドープ量以下で実施した後、脱ドープさせることにより、その後の使用において充放電反応が均一に進行することを見出した。負極の性能が改善される理由としては、特に本発明を制限されるものではないが、負極を作製してから一番初めに行うリチウムドープ及び脱ドープをこのような条件で実施することにより、ケイ素酸化物中に均一にリチウムが入り込む経路が形成されるためと推測される。
 ここで、V-dQ/dV曲線上において、例えば、任意のガウス関数の重ね合わせで、元のデータをフィッテングすることにより、個々のピーク電位とピーク強度を求めることができる。フィッテングを行う際、データをスムージング化することにより、ノイズを取り除くことができる。スムージング化処理には、例えば、SAVITZKY-GOLAYアルゴリズム、隣接平均処理などを用いることができる。フィッテングの後、各ピークの面積を計算することによりピーク強度を求めることができる。データのフィッテング、スムージング化、面積計算を行うことができるソフトとして、例えば、ORIGIN(ORIGINLAB CORPORATION社製のデータ解析用ソフト、HTTP://WWW.LIGHTSTONE.CO.JP/ORIGIN/PA.HTM 参照)を用いることができる。このソフトは最小二乗法を応用した、NLSF(NONLINEAR LEAST SQUARES FITTER -非線形曲線フィット機構)を有し、任意の複数ピークを持つ曲線をガウス関数でフィッテングすることができる。
 以上より、本発明者らは、以下の本実施形態を見出すに至った。
 本実施形態の一は、
 活物質としてケイ素酸化物を含むリチウム二次電池用の負極に作製されてから初めてリチウムをドープ及び脱ドープする方法であって、
 下記電流値範囲(A)内の電流で、かつ下記ドープ量範囲(B)内のドープ量で実施されることを特徴とするリチウムのドープ及び脱ドープ方法。
 電流値範囲(A);前記負極のリチウム基準極に対する電圧Vと、前記電圧Vの変化量dVに対する前記負極のリチウム脱ドープ量Qの変化量dQの割合であるdQ/dVと、の関係を表すV-dQ/dV曲線上において、1V以下にピークが一つのみ現れるドープ量が最大となる電流値の範囲。
 ドープ量範囲(B);前記V-dQ/dV曲線上において、1V以下にピークが一つのみ現れるドープ量の範囲。
 V-dQ/dVグラフにおいて、VはLiに対する負極の電位、dQ/dVは負極の電圧変化に対する電池容量変化を表す。つまり、V-dQ/dVグラフは、負極のリチウム基準極に対する電圧Vの変化量dVに対するリチウム二次電池の放電容量Qの変化量dQの割合であるdQ/dVと、前記電圧Vと、の関係を表す。
 上述で説明したように、一番初めのドープにおいて、電流値が大きい場合は少ないドープ量で二つ目のピークが現れる。そして、その電流値から電流を小さくしてドープを行うと、低電位側のピークが現れ始めるドープ量、つまり1V以下にピークが一つのみ現れるドープ量の上限値が次第に大きくなる。しかし、電流値がある一定値以下になると、1V以下にピークが一つのみ現れるドープ量の上限値は一定となり、最大となる。この1V以下にピークが一つのみ現れるドープ量の上限値が一定となったときのドープ量が、1V以下にピークが一つのみ現れるドープ量の最大値となる。そして、本実施形態では、1V以下にピークが一つのみ現れるドープ量が最大となる電流値の範囲内で電流を流してリチウムをドープする。
 より具体的に説明すると、1V以下にピークが一つのみ現れるドープ量が最大となる電流値とは、図2に示すように、1V以下にピークが一つのみ現れるドープ量の上限値がほぼ一定に最大となっている電流値範囲に含まれる電流値のことである。例えば、ケイ素酸化物がSiOである場合であって、電流密度が約0.12A/cm以下の場合、1V以下にピークが一つのみ現れるドープ量が最大となっている。電流密度が約0.12A/cm以下となる電流値範囲では、1V以下にピークが一つのみ現れるドープ量の上限値がほぼ一定で最大値となっており、そのドープ量は約2300mAh/gである。つまり、ケイ素酸化物がSiOの場合、1V以下にピークが一つのみ現れるドープ量が最大値となる電流値とは、1V以下にピークが一つのみ現れるドープ量が約2300mAh/gとなるような電流値のことを指し、その電流値の電流密度は約0.12A/cm以下である。
 本実施形態において、ドープ量は、V-dQ/dV曲線上において、1V以下にピークが一つのみ現れるドープ量の範囲で行われる。また、より均一な経路を形成するという観点から、1V以下にピークが一つのみ現れるドープ量の最大値までリチウムをドープすることが好ましい。
 ドープ量範囲(B)は、リチウムの均一な経路を形成できるという観点から、例えば、1V以下にピークが一つのみ現れるドープ量の最大値の半分以上、1V以下にピークが一つのみ現れるドープ量の最大値以下である。また、ドープ量範囲(B)は、1V以下にピークが一つのみ現れるドープ量の最大値の2/3以上であることがより好ましい。また、ドープ量範囲(B)は、1V以下にピークが一つのみ現れるドープ量の最大値の3/4以上であることがさらに好ましい。
 本実施形態では、上述のようにリチウムをドープした後、リチウムを脱ドープさせる。リチウムはSOCが0%になるまで脱ドープさせることが望ましい。
 リチウムの脱ドープ時の電流密度は、特に制限されるものではなくが、より均一な経路が形成され易いという観点から、0.2A/cm以下であることが好ましく、0.1A/cm以下であることがより好ましく、0.05A/cm以下であることがさらに好ましい。
 本実施形態の方法によりリチウムをドープ及び脱ドープさせることにより、その後の負極の使用において充放電反応が均一に進行する。この理由としては、ケイ素酸化物中に均一にリチウムが入り込む経路が形成されるためと推測されるが、本実施形態がこの推測により限定されるものではない。
 負極へのリチウムドープは、電池を組み立てる前に行ってもよいし、電池を組み立てた後に電池内で行っても良い。コスト、工数の観点から電池を組み立てた後に電池内で行うことが好ましい。電池内で負極にリチウムをドープする場合、リチウム源は、正極中に含まれるリチウムの一部をそのまま用いることができる。または、リチウム箔やリチウム合金箔のような、リチウム源になるものを電池内の適当な場所に配置してもよい。この場合、ドープする電流を制御するためリチウム箔等には外部端子をつけ、さらに負極とショートさせないためにセパレータを配置させるなどの対策を取る必要がある。
 また、電池内でリチウムドープを行う場合は、ケイ素酸化物の酸化還元反応によるピークが一つのみ現れるようなリチウムドープ量の最大値、およびこの最大値を得るのに必要な負極面積当りの電流密度の上限を、あらかじめ別に用意した負極でハーフセルを用いて求めておくことができる。
 また、1V以下にピークが一つのみ現れるドープ量の最大値を得るのに必要な負極面積当りの電流密度の上限は、負極の厚み、負極中の導電付与剤の量、使用する電解液等により異なる。そのため、電池内でリチウムドープを行う場合は、あらかじめ電池に使用するものと同様の負極、電解液を用いたハーフセルを作製し、そのハーフセルのV-dQ/dV曲線から、そのハーフセルでの電流密度の上限を求めた上で、その上限値以下の電流密度で、ドープを行うことが好ましい。
 本実施形態のリチウムのドープ及び脱ドープ方法は、1回以上行うことができ、2回以上行うことが好ましい。複数回繰り返して行うことにより、よりサイクル特性に優れる負極とすることができる。
 ケイ素酸化物を含む負極に作製されてから初めてリチウムをドープする際の条件が重要な理由としては、特に本発明が制限されるものではないが、最初にケイ素酸化物にリチウムを速くドープすると、ケイ素酸化物にリチウムの局在状態を偏らせてしまうなんらかの構造変化が生じるためと推測される。したがって、本実施形態の製造方法において、最初にリチウムをドープする条件が重要となる。
 なお、本実施形態のリチウムのドープ方法及び脱ドープ方法を施した負極を充放電させると、低電位側のピークはが0.3V付近に現れ、高電位側のピークが0.5V付近に現れる。充電状態とは、例えば、電池の充電状態を示すSOCが100%であり、放電状態とは、例えば、SOCが0%である。
 また、本実施形態は以下のように表現することもできる。
 本実施形態の一は、
 活物質としてケイ素酸化物を含むリチウム二次電池用の負極に作製されてから初めてリチウムをドープ及び脱ドープする方法であって、
 該ドープ後の前記負極のリチウム基準極に対する電圧Vと、前記電圧Vの変化量dVに対する前記負極のリチウム脱ドープ量Qの変化量dQの割合であるdQ/dVと、の関係を表すV-dQ/dV曲線上において、1V以下にピークが一つのみ現れるドープ量で、かつ、該ドープ量が最大となる電流値で、
 前記リチウムをドープすることを特徴とするリチウムのドープ及び脱ドープ方法である。
 本実施形態におけるリチウムドープは、1V以下にピークが一つのみ現れるドープ量が最大となる電流値で行う。
 図2を用いてより具体的に説明すると、1V以下にピークが一つのみ現れるドープ量が最大となる電流値とは、1V以下にピークが一つのみ現れるドープ量の上限値がほぼ一定になっている電流値範囲に含まれる電流値のことである。例えば、ケイ素酸化物がSiOである場合、電流密度が約0.12A/cm以下の場合、1V以下にピークが一つのみ現れるドープ量が最大となっている。電流密度が約0.12A/cm以下となる電流値範囲では、1V以下にピークが一つのみ現れるドープ量の上限値がほぼ一定で最大となっており、その値は約2300mAh/gである。つまり、ケイ素酸化物がSiOの場合、1V以下にピークが一つのみ現れるドープ量が最大値となる電流値とは、1V以下にピークが一つのみ現れるドープ量が約2300mAh/gとなるような電流値のことを指し、その電流値の電流密度は約0.12A/cm以下である。
 リチウムをドープする量は、V-dQ/dV曲線上において、1V以下にピークが一つのみ現れるドープ量である。また、リチウムドープ量は、1V以下にピークが一つのみ現れるドープ量の最大値の半分以上の量であることが好ましい。また、リチウムドープ量は、1V以下にピークが一つのみ現れるドープ量の最大値の2/3以上の量であることがより好ましい。また、リチウムドープ量は、1V以下にピークが一つのみ現れるドープ量の最大値の3/4以上であることがさらに好ましい。また、リチウムドープ量は、1V以下にピークが一つのみ現れるドープ量の最大値であることが特に好ましい。
 1V以下にピークが一つのみ現れるドープ量の最大値までリチウムをドープする場合、発明の効果の観点から、予め算出されるドープ量の最大値の上下5%、好ましくは3%の範囲は本実施形態に含まれるものと解する。
 また、上述のドープ及び脱ドープは1回以上行うことができ、2回以上行うことでさらに均一なリチウムの経路を形成することができる。
 なお、本実施形態は、サイクル特性に優れる負極又は二次電池の製造方法としても把握することもできる。
 以下、本発明の実施形態について詳しく説明する。
 本実施形態のリチウム二次電池は、負極、正極、電解液、セパレータ、及び外装体を備えることができる。以下、本実施形態のリチウム二次電池の各構成について説明する。
 [負極]
 本実施形態のリチウム二次電池は、本実施形態のリチウムのドープ及び脱ドープ方法を施された負極を備える。負極は、ケイ素酸化物を含む負極活物質を有する。また、負極は、負極活物質が負極集電体に配置されて形成される。負極活物質は、負極結着材によって負極集電体上に結着されることができる。
 本実施形態の負極活物質は、上述のように、ケイ素酸化物を含む。ケイ素酸化物は、特に限定されるものではないが、例えば、SiO(0<x<2)で表される。ケイ素酸化物は、本実施形態のドープ及び脱ドープ処理を受けるまでは、リチウムを含まないことができる。また、ケイ素酸化物はLiを含んでもよく、Liを含むケイ素酸化物は、例えばSiLi(y>0、2>z>0)で表される。また、ケイ素酸化物は微量の金属元素や非金属元素を含んでも良い。ケイ素酸化物は、例えば、窒素、ホウ素およびイオウの中から選ばれる一種または二種以上の元素を、例えば0.1~5質量%含有することができる。微量の金属元素や非金属元素を含有することで、ケイ素酸化物の電気伝導性を向上させることができる。また、ケイ素酸化物は結晶であってもよく、非晶質であってもよい。
 なお、ケイ素酸化物に微量の金属元素や非金属元素を添加した場合、ピークが現れる電位が図1に示した300mV、500mVからややずれることがあるが、リチウムドープ量が少ない時はピークが一つで、リチウムドープ量がある一定値を超えると低電位側にもう一つのピークが現れるという点は変わらない。そのため、SiOの場合と同様に酸化還元反応によるピークが一つのみ現れるようなリチウムドープ量の最大値、および、最大値を得るのに必要な負極面積当りの電流密度の上限を求めることができる。
 負極は、導電付与剤を含むこともできる。導電付与剤としては、公知のものを用いることができるが、例えば、炭素材料が好ましく挙げられる。炭素材料としては、例えば、黒鉛、非晶質炭素、ダイヤモンド状炭素、カーボンナノチューブ、またはこれらの複合物等を挙げることができる。ここで、結晶性の高い黒鉛は、電気伝導性が高く、銅などの金属からなる集電体との接着性および電圧平坦性が優れている。一方、結晶性の低い非晶質炭素は、体積膨張が比較的小さいため、負極全体の体積膨張を緩和する効果が高く、かつ結晶粒界や欠陥といった不均一性に起因する劣化が起きにくい。
 ケイ素酸化物の負極活物質中の含有量は、サイクル特性改善効果の観点から、40質量%以上99質量%以下であることが好ましく、50質量%以上95質量%以下であることがより好ましく、60質量%以上90質量%以下であることがさらに好ましい。
 炭素材料の負極活物質中の含有量は、1質量%以上40質量%以下であることが好ましく、2質量%以上30質量%以下であることがより好ましい。
 負極活物質中のケイ素酸化物は、その全部または一部がアモルファス構造であることが好ましい。アモルファス構造のケイ素酸化物は、結晶粒界や欠陥といった不均一性に起因する要素が比較的少ないと考えられる。なお、ケイ素酸化物の全部または一部がアモルファス構造を有することは、エックス線回折測定(一般的なXRD測定)にて確認することができる。具体的には、ケイ素酸化物がアモルファス構造を有しない場合には、ケイ素酸化物に固有のピークが観測されるが、ケイ素酸化物の全部または一部がアモルファス構造を有する場合は、ケイ素酸化物に固有のピークがブロードとなって観測される。
 ケイ素酸化物及び炭素材料としては、特に制限するものではないが、それぞれ粒子状のものを用いることができる。
 ケイ素酸化物と炭素材料とを含む負極活物質は、例えば、メカニカルミリングで混合することで得ることができる。また、ケイ素酸化物と炭素材料とを含む負極活物質は、例えば、ケイ素酸化物をメタンガスなどの有機物ガスを含む雰囲気下でCVD処理を行うことで得ることができる。この場合、条件の選択により、ケイ素酸化物が炭素材料で被覆された複合体を得ることもできる。
 負極用結着剤としては、例えば、ポリフッ化ビニリデン(PVdF)、ビニリデンフルオライド-ヘキサフルオロプロピレン共重合体、ビニリデンフルオライド-テトラフルオロエチレン共重合体、スチレン-ブタジエン共重合ゴム、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレン、ポリイミド、ポリアミドイミド等を用いることができる。中でも、結着性が強いことから、ポリイミド(PI)またはポリアミドイミド(PAI)が好ましい。使用する負極用結着剤の量は、トレードオフの関係にある「十分な結着力」と「高エネルギー化」の観点から、負極活物質100質量部に対して、5~25質量部であることが好ましい。
 負極集電体としては、特に制限されるものではないが、電気化学的な安定性から、アルミニウム、ニッケル、銅、銀、およびそれらの合金が好ましい。その形状としては、箔、平板状、メッシュ状が挙げられる。
 負極は、例えば、負極集電体上に、負極活物質と負極用結着剤を含む負極活物質層を形成することで作製することができる。負極活物質層の形成方法としては、ドクターブレード法、ダイコーター法、CVD法、スパッタリング法などが挙げられる。予め負極活物質層を形成した後に、蒸着、スパッタ等の方法でアルミニウム、ニッケルまたはそれらの合金の薄膜を形成して、負極集電体としてもよい。
 [正極]
 正極は、正極活物質が正極集電体に配置されて形成される。正極活物質は、正極結着材によって正極集電体上に結着されることができる。
 正極活物質としては、特に限定されるものではないが、例えば、LiMnO、LixMn(0<x<2)等の層状構造を持つマンガン酸リチウムもしくはスピネル構造を有するマンガン酸リチウム;LiCoO、LiNiOまたはこれらの遷移金属の一部を他の金属で置き換えたもの等が挙げられる。また、正極活物質としては、例えば、オリビン型の結晶構造を持つLiFePOも挙げることができる。これらの正極活物質は、一種単独または二種以上を組み合わせて使用することもできる。
 正極用結着剤としては、負極用結着剤と同様のものと用いることができる。中でも、汎用性や低コストの観点から、ポリフッ化ビニリデンが好ましい。使用する正極用結着剤の量は、トレードオフの関係にある「十分な結着力」と「高エネルギー化」の観点から、正極活物質100質量部に対して、2~10質量部であることが好ましい。
 正極集電体としては、負極集電体と同様のものを用いることができる。
 正極活物質を含む正極活物質層には、インピーダンスを低下させる目的で、導電補助材を添加してもよい。導電補助材としては、グラファイト、カーボンブラック、アセチレンブラック等の炭素質微粒子が挙げられる。
 [電解液]
 電解液の材料としては、金属リチウムの酸化還元電位で安定であれば特に限定されるものではなく、公知の非水電解液を採用することができる。
 電解液としては、電解質塩を非水電解溶媒に溶解したものが好ましい。
 非水電解溶媒としては、特に制限されるものではないが、金属リチウムの酸化還元電位で安定である理由から、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ビニレンカーボネート等の環状カーボネート類と;ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、ジプロピルカーボネート等の鎖状カーボネート類;γブチロラクトン等のラクトン類を挙げることができる。非水電解液は、一種を単独で、または二種以上を組み合わせて使用することができる。
 電解質塩としては、例えば、LiPF、LiAsF、LiAlCl、LiClO、LiBF、LiSbF、LiCFSO、LiCFCO、Li(CFSO、LiN(CFSO、等のリチウム塩が挙げられる。電解質塩は、一種を単独で、または二種以上を組み合わせて使用することができる。
 また、電解液としては、他にも、イオン液体を用いることができる。イオン液体としては、例えば、4級アンモニウム-イミド塩等を挙げることができる。
 また、電解液は、液体状のものに限られず、固体状のものも含まれる。固体状の電解液としては、例えば、上記の液体状の電解液をポリアクリロニトリルやポリアクリレートなどのポリマーに含浸させたゲル電解質や、LiPON、LiS-LiP(x=1~2、y=2~4)のような固体電解質等が挙げられる。
 [セパレータ]
 セパレータとしては、特に限定されるものではなく、公知のものを採用することができる。セパレータとして、例えば、ポリプロピレン、ポリエチレン等の多孔質フィルムや不織布を用いることができる。
 [外装体]
 本実施形態に係る二次電池は、正極および負極が対向配置された電極素子と、電解液とが外装体に内包された構成とすることができる。二次電池の形状は、円筒型、扁平捲回角型、積層角型、コイン型、扁平捲回ラミネート型および積層ラミネート型のいずれも採用できる。
 外装体としては、電解液に安定で、かつ十分な水蒸気バリア性を持つものであれば、適宜選択することができ、特に制限されるものではない。外装体としては、例えば金属缶やラミネートフィルムなどを用いることができる。ラミネートフィルムとしては、体積膨張を抑制する観点から、アルミニウムラミネートフィルムを用いることが好ましい。
 低電位側のピークは、特に制限されるものではないが、0.3V付近に現れ、高電位側のピークは0.5V付近に現れる。
 充電状態とは、例えば、電池の充電状態を示すSOCが100%であり、放電状態とは、例えば、SOCが0%である。
 それぞれのピーク強度は各ピークをガウス関数で近似し、その面積を計算することにより求められる。
 以上、本実施形態について説明したが、上述のリチウムのドープ及び脱ドープ方法を実施することにより負極が製造されると捉えた場合、本発明の実施形態は、リチウム二次電池用負極の製造方法として以下のようにも表現することができる。
 (1)活物質としてケイ素酸化物を含む負極活物質層を形成する工程と、
 (2)前記負極活物質層に、リチウムをドープ及び脱ドープする工程と、を含み、
 前記工程(2)における前記ドープが、下記電流値範囲(A)内で、かつ下記ドープ量範囲(B)内で、行われることを特徴とするリチウム二次電池用負極の製造方法;
 電流値範囲(A);前記負極活物質層のリチウム基準極に対する電圧Vと、前記電圧Vの変化量dVに対する前記負極活物質層のリチウム脱ドープ量Qの変化量dQの割合であるdQ/dVと、の関係を表すV-dQ/dV曲線上において、1V以下にピークが一つのみ現れるドープ量が最大となる電流値の範囲、
 ドープ量範囲(B);前記V-dQ/dV曲線上において、1V以下にピークが一つのみ現れるドープ量の範囲。
 負極活物質層は負極集電体の上に形成されることが好ましい。また、この場合、負極集電体と負極活物質層とからなる負極前駆体に上述の方法でリチウムをドープすることによりリチウム二次電池用負極を得ることができる。
 前記工程(2)は少なくとも1回行われるが、複数回繰り返されることが好ましい。
 また、本発明の実施形態は、リチウム二次電池用負極の製造方法として以下のようにも表現することができる。
 (1)活物質としてケイ素酸化物を含む負極活物質層を形成する工程と、
 (2)前記負極活物質層に、リチウムをドープ及び脱ドープする工程と、
を含み、
 前記工程(2)における前記ドープが、該ドープ後の前記負極活物質層のリチウム基準極に対する電圧Vと、前記電圧Vの変化量dVに対する前記負極活物質のリチウム脱ドープ量Qの変化量dQの割合であるdQ/dVと、の関係を表すV-dQ/dV曲線上において、1V以下にピークが一つのみ現れるドープ量で、かつ、該ドープ量が最大となる電流値で、行われるリチウム二次電池用負極の製造方法。
 (実施例)
 <負極>
 高純度化学社製の一酸化ケイ素(平均粒子直径D50=25μm)と、カーボンブラック(三菱化学社製、#3030B)と、ポリアミック酸(宇部興産社製、商品名;U-ワニスA)とを、それぞれ、83:2:15の質量比で計量し、それらをn-メチルピロリドン(NMP)とホモジナイザーを用いて混合し、負極スラリーを調製した。NMPと固形分の質量比は、57:43とした。負極スラリーを厚さ10μmの銅箔に、ドクターブレードを用いて塗布した。120度Cで7分間加熱し、NMPを乾燥させ負極とした。負極は複数枚作製した。その後、負極を窒素雰囲気下にて、電気炉を用いて350℃で30分間加熱した。
 <正極>
 日亜化学製のコバルト酸リチウムと、カーボンブラック(三菱化学社製、#3030B)と、ポリフッ化ビニリデン(クレハ社製、#2400)とを、それぞれ、95:2:3の質量比で計量し、それらをNMPと混合し、正極スラリーを調製した。NMPと固形分の質量比は52:48とした。正極スラリーを厚さ15μmのアルミニウム箔に、ドクターブレードを用いて塗布後、120度Cで5分間加熱し乾燥した。正極を複数枚作製した。
 <ハーフセルの作製>
 得られた負極と対極に金属リチウムとを用いたハーフセルを複数作製した。電解液には、1.0mol/lのLiPF6電解質塩を含むエチレンカーボネートとジエチルカーボネートとの7:3(体積比)混合溶媒を用いた。
 次に、負極のハーフセルを3.0~4.2V範囲で充放電させ、負極へのリチウムドープ量と、ドープ電流密度と、を変化させたときのリチウム脱ドープ時のV-dQ/dV曲線を求めた。
 リチウムドープ量は1500~2800mAh/g、負極単位面積当たりのドープ電流密度は0.02~0.24mA/cmの範囲から選択した。リチウム脱ドープ時の電流密度は、全て0.01mA/cmとした。
 ドープ電流密度が0.02mA/cmの場合におけるリチウム脱ドープ時のV-dQ/dV曲線を図1に示す。この図から、リチウム脱ドープ時のV-dQ/dV曲線上の1V以下にピークが一つのみ現れるのは、シリコン酸化物の単位重量当たりのリチウムドープ量が2300mAh/g以下の場合であることが分かる。
 データの解析には、上述のORIGIN(ORIGINLAB CORPORATION社製のデータ解析用ソフト)を用いたフィッテングにより行った。
 また、負極単位面積当たりのドープ電流密度を変え、リチウム脱ドープ時のV-dQ/dV曲線上の1V以下にピークが一つのみ現れるリチウムドープ量の上限を求めた。結果を図2に示す。図2より、ドープ電流密度が0.12mA/cm以下の場合、リチウム脱ドープ時のV-dQ/dV曲線上の1V以下にピークが一つのみ現れるリチウムドープ量の上限がほぼ2300mAh/gで一定である。また、0.12mA/cmよりも電流密度が大きくなると、それに従い、1V以下にピークが一つのみ現れるリチウムドープ量の上限が小さくなっていくことが分かる。
 この結果から、ドープ電流密度を0.12mA/cm以下にして、ケイ素酸化物の単位重量当たりのリチウムドープ量を2300mAh/gにして、負極にリチウムをドープすれば、この負極中にリチウムを均一にドープできることがわかる。
 <二次電池>
 上述の正極及び負極にそれぞれアルミ端子及びニッケル端子を溶接した。これらを、セパレータを介して重ね合わせて電極素子を作製した。正極は、負極中に含まれるケイ素酸化物の単位重量当たりに2650mAh/gのリチウムをドープできるリチウムを含有する。
 電極素子をラミネートフィルムで外装し電解液を注入した後、減圧しながらラミネートフィルムを熱融着して封止を行い、平板型のリチウム二次電池を複数作製した。セパレータには、ポリプロピレンフィルムを用いた。ラミネートフィルムには、アルミニウムを蒸着したポリプロピレンフィルムを用いた。電解液には、1.0mol/lのLiPF6電解質塩を含むエチレンカーボネートとジエチルカーボネートとの7:3(体積比)混合溶媒を用いた。
 (実施例1)
 <電池内での負極へのリチウムドープ>
 作製したリチウム二次電池を、電解液を注入してから18時間後に、負極単位面積当たりの電流密度を0.02mA/cmにして、負極へのリチウムドープを行った。負極中に含まれるケイ素酸化物の単位重量当たりのリチウムドープ量は2300mAh/gとした。
 ドープ後、電流密度を0.02mA/cmとして、電池を3.0Vまで放電させ、リチウムを負極から脱ドープさせた。
 <リチウム二次電池の評価>
 その後、3.0~4.2Vの範囲で充放電サイクル試験を行った。
 充電は、CCCV方式(4.2Vまでは一定電流密度を0.2mA/cmとし)、4.2Vに達した後は電圧を一定に一時間保つ)で行った。放電は、CC方式(一定電流密度0.2mA/cm)とした。
 充放電サイクル試験にはアスカ電子株式会社製の充放電試験装置ACD-100Mを用いた。
 (実施例2~5)
 電池内での負極へのリチウムドープにおける負極単位面積当たりの電流密度をそれぞれ、0.03、0.06、0.09、0.12mA/cmとした以外は、実施例1と同様に充放電サイクル試験を行った。
 (比較例1~4)
 電池内での負極へのリチウムドープにおける負極単位面積当たりの電流密度をそれぞれ、0.15、0.18、0.21、0.24mA/cmとした以外は、実施例1と同様に充放電サイクル試験を行った。
 実施例と比較例のリチウム二次電池の200サイクル目の容量維持率を表1、図3に示す。ここで容量維持率とは初回サイクルの放電容量に対する200回目の放電容量の比を表す。
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、実施例1~5の電池は200サイクル後の容量維持率がいずれも85%以上であるのに対して、比較例1~4の電池の200サイクル後の容量維持率は74%以下である。
 以上に示したように、本実施形態のリチウムのドープ及び脱ドープ方法を用いることにより、充放電サイクル後の容量維持率に優れたリチウム二次電池を提供することができる。
 本発明の実施形態は以下の付記に示すようにも表現することができる。
 (付記1)
 活物質としてケイ素酸化物を含むリチウム二次電池用の負極に作製されてから初めてリチウムをドープ及び脱ドープする方法であって、
 下記電流値範囲(A)内で、かつ下記ドープ量範囲(B)内で、前記リチウムをドープすることを特徴とするリチウムのドープ及び脱ドープ方法;
 電流値範囲(A);前記負極のリチウム基準極に対する電圧Vと、前記電圧Vの変化量dVに対する前記負極のリチウム脱ドープ量Qの変化量dQの割合であるdQ/dVと、の関係を表すV-dQ/dV曲線上において、1V以下にピークが一つのみ現れるドープ量が最大となる電流値の範囲、
 ドープ量範囲(B);前記V-dQ/dV曲線上において、1V以下にピークが一つのみ現れるドープ量の範囲。
 (付記2)
 前記ドープ量範囲(B)は、1V以下にピークが一つのみ現れるドープ量の最大値の半分以上、1V以下にピークが一つのみ現れるドープ量の最大値以下である付記1に記載のリチウムのドープ及び脱ドープ方法。
 (付記3)
 前記ケイ素酸化物がSiOであり、
 前記電流値範囲(A)の電流密度が0より大きく0.12A/cm以下であり、
 前記ドープ量範囲(B)が約2300mAh/g以下である付記1又は2に記載のリチウムのドープ及び脱ドープ方法。
 (付記4)
 活物質としてケイ素酸化物を含むリチウム二次電池用の負極に作製されてから初めてリチウムをドープ及び脱ドープする方法であって、
 該ドープ後の前記負極のリチウム基準極に対する電圧Vと、前記電圧Vの変化量dVに対する前記負極のリチウム脱ドープ量Qの変化量dQの割合であるdQ/dVと、の関係を表すV-dQ/dV曲線上において、1V以下にピークが一つのみ現れるドープ量で、かつ、該ドープ量が最大となる電流値で、
 前記リチウムをドープすることを特徴とするリチウムのドープ及び脱ドープ方法。
 (付記5)
 前記ドープ量は、1V以下にピークが一つのみ現れるドープ量の最大値である付記4に記載のリチウムのドープ及び脱ドープ方法。
 (付記6)
 前記ケイ素酸化物がSiOであり、
 前記電流値の電流密度が0より大きく0.12A/cm以下であり、
 前記ドープ量が約2300mAh/gである付記5に記載のリチウムのドープ及び脱ドープ方法。
 (付記7)
 脱ドープ時の電流密度が0.2A/cm以下である付記1乃至6のいずれかに記載のリチウムのドープ及び脱ドープ方法。
 (付記8)
 前記ピークは前記ケイ素酸化物の酸化還元反応に由来する付記1乃至7のいずれかに記載のリチウムのドープ及び脱ドープ方法。
 (付記9)
 付記1乃至8のいずれかに記載の方法でリチウムがドープ及び脱ドープされたリチウム二次電池用の負極。
 (付記10)
 付記9に記載の負極を有するリチウム二次電池。
 この出願は、2011年5月27日に出願された日本出願特願2011-119232を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 以上、実施形態及び実施例を参照して本願発明を説明したが、本願発明は上記実施形態及び実施例に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 
 

Claims (15)

  1.  (1)活物質としてケイ素酸化物を含む負極活物質層を形成する工程と、
     (2)前記負極活物質層に、リチウムをドープ及び脱ドープする工程と、
    を含み、
     前記工程(2)における前記ドープが、下記電流値範囲(A)内で、かつ下記ドープ量範囲(B)内で、行われることを特徴とするリチウム二次電池用負極の製造方法;
     電流値範囲(A);前記負極活物質層のリチウム基準極に対する電圧Vと、前記電圧Vの変化量dVに対する前記負極活物質層のリチウム脱ドープ量Qの変化量dQの割合であるdQ/dVと、の関係を表すV-dQ/dV曲線上において、1V以下にピークが一つのみ現れるドープ量が最大となる電流値の範囲、
     ドープ量範囲(B);前記V-dQ/dV曲線上において、1V以下にピークが一つのみ現れるドープ量の範囲。
  2.  前記ドープ量範囲(B)は、1V以下にピークが一つのみ現れるドープ量の最大値の半分以上、1V以下にピークが一つのみ現れるドープ量の最大値以下である請求項1に記載のリチウム二次電池用負極の製造方法。
  3.  前記ケイ素酸化物がSiOであり、
     前記電流値範囲(A)の電流密度が0より大きく0.12A/cm以下であり、
     前記ドープ量範囲(B)が約2300mAh/g以下である請求項1又は2に記載のリチウム二次電池用負極の製造方法。
  4.  (1)活物質としてケイ素酸化物を含む負極活物質層を形成する工程と、
     (2)前記負極活物質層に、リチウムをドープ及び脱ドープする工程と、
    を含み、
     前記工程(2)における前記ドープが、該ドープ後の前記負極活物質層のリチウム基準極に対する電圧Vと、前記電圧Vの変化量dVに対する前記負極活物質のリチウム脱ドープ量Qの変化量dQの割合であるdQ/dVと、の関係を表すV-dQ/dV曲線上において、1V以下にピークが一つのみ現れるドープ量で、かつ、該ドープ量が最大となる電流値で、行われるリチウム二次電池用負極の製造方法。
  5.  前記ドープ量は、1V以下にピークが一つのみ現れるドープ量の最大値である請求項4に記載のリチウム二次電池用負極の製造方法。
  6.  前記ケイ素酸化物がSiOであり、
     前記電流値の電流密度が0より大きく0.12A/cm以下であり、
     前記ドープ量が約2300mAh/gである請求項5に記載のリチウム二次電池用負極の製造方法。
  7.  前記工程(2)における前記脱ドープ時の電流密度が0.2A/cm以下である請求項1乃至6のいずれかに記載のリチウム二次電池用負極の製造方法。
  8.  前記ピークは前記ケイ素酸化物の酸化還元反応に由来する請求項1乃至7のいずれかに記載のリチウム二次電池用負極の製造方法。
  9.  請求項1乃至8のいずれかに記載の製造方法で得られたリチウム二次電池用負極を有するリチウム二次電池。
  10.  活物質としてケイ素酸化物を含むリチウム二次電池用の負極に作製されてから初めてリチウムをドープ及び脱ドープする方法であって、
     下記電流値範囲(A)内で、かつ下記ドープ量範囲(B)内で、前記リチウムをドープすることを特徴とするリチウムのドープ及び脱ドープ方法;
     電流値範囲(A);前記負極のリチウム基準極に対する電圧Vと、前記電圧Vの変化量dVに対する前記負極のリチウム脱ドープ量Qの変化量dQの割合であるdQ/dVと、の関係を表すV-dQ/dV曲線上において、1V以下にピークが一つのみ現れるドープ量が最大となる電流値の範囲、
     ドープ量範囲(B);前記V-dQ/dV曲線上において、1V以下にピークが一つのみ現れるドープ量の範囲。
  11.  前記ドープ量範囲(B)は、1V以下にピークが一つのみ現れるドープ量の最大値の半分以上、1V以下にピークが一つのみ現れるドープ量の最大値以下である請求項10に記載のリチウムのドープ及び脱ドープ方法。
  12.  活物質としてケイ素酸化物を含むリチウム二次電池用の負極に作製されてから初めてリチウムをドープ及び脱ドープする方法であって、
     該ドープ後の前記負極のリチウム基準極に対する電圧Vと、前記電圧Vの変化量dVに対する前記負極のリチウム脱ドープ量Qの変化量dQの割合であるdQ/dVと、の関係を表すV-dQ/dV曲線上において、1V以下にピークが一つのみ現れるドープ量で、かつ、該ドープ量が最大となる電流値で、
     前記リチウムをドープすることを特徴とするリチウムのドープ及び脱ドープ方法。
  13.  前記ドープ量は、1V以下にピークが一つのみ現れるドープ量の最大値である請求項12に記載のリチウムのドープ及び脱ドープ方法。
  14.  脱ドープ時の電流密度が0.2A/cm以下である請求項10乃至13のいずれかに記載のリチウムのドープ及び脱ドープ方法。
  15.  請求項10乃至14のいずれかに記載の方法でリチウムがドープ及び脱ドープされたリチウム二次電池用の負極。
PCT/JP2012/059540 2011-05-27 2012-04-06 負極にリチウムをドープ及び脱ドープする方法及びリチウム二次電池用負極の製造方法 WO2012165049A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/114,948 US9123928B2 (en) 2011-05-27 2012-04-06 Method for doping and dedoping lithium into and from negative electrode and method for producing negative electrode for lithium secondary battery
JP2013517917A JP5975024B2 (ja) 2011-05-27 2012-04-06 負極にリチウムをドープ及び脱ドープする方法及びリチウム二次電池用負極の製造方法
CN201280025943.9A CN103563132B (zh) 2011-05-27 2012-04-06 在负极中掺杂和脱掺杂锂的方法以及制造锂二次电池用负极的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-119232 2011-05-27
JP2011119232 2011-05-27

Publications (1)

Publication Number Publication Date
WO2012165049A1 true WO2012165049A1 (ja) 2012-12-06

Family

ID=47258914

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/059540 WO2012165049A1 (ja) 2011-05-27 2012-04-06 負極にリチウムをドープ及び脱ドープする方法及びリチウム二次電池用負極の製造方法

Country Status (4)

Country Link
US (1) US9123928B2 (ja)
JP (1) JP5975024B2 (ja)
CN (1) CN103563132B (ja)
WO (1) WO2012165049A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103698714A (zh) * 2014-01-02 2014-04-02 清华大学 电池容量衰减机理辨识方法及系统
US20140099558A1 (en) * 2012-10-09 2014-04-10 Semiconductor Energy Laboratory Co., Ltd. Power storage device
WO2014199554A1 (ja) * 2013-06-14 2014-12-18 信越化学工業株式会社 珪素含有材料、非水電解質二次電池用負極及びその製造方法並びに非水電解質二次電池及びその製造方法
JP2015111547A (ja) * 2013-10-29 2015-06-18 信越化学工業株式会社 負極活物質、負極活物質の製造方法、並びに、リチウムイオン二次電池
JP2017188319A (ja) * 2016-04-06 2017-10-12 信越化学工業株式会社 負極活物質、混合負極活物質材料、及び負極活物質の製造方法
JP2019533878A (ja) * 2016-09-02 2019-11-21 イーオーセル リミテッド シリコン:シリコンケイ酸リチウム複合基質にシリコンナノ粒子が埋め込まれた体積変化補償型のシリコン−酸化シリコン−リチウム複合材料、及び反復的な原位置外製造プロセス

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5682955B2 (ja) * 2010-08-04 2015-03-11 Necエナジーデバイス株式会社 リチウム二次電池の制御システム、およびリチウム二次電池の状態検出方法
EP3422377B1 (en) * 2016-02-26 2021-06-30 Musashi Energy Solutions Co., Ltd. Doping system, and method for manufacturing electrodes, batteries and capacitors
KR20190029711A (ko) * 2016-10-19 2019-03-20 오사카 티타늄 테크놀로지스 캄파니 리미티드 산화규소계 음극재 및 그 제조 방법
CN111183537B (zh) * 2017-07-18 2023-07-18 日产自动车株式会社 负极活性物质的预掺杂方法、以及电气设备用电极及电气设备的制造方法
US11949091B2 (en) * 2018-02-28 2024-04-02 Panasonic Intellectual Property Management Co., Ltd. Charging method of non-aqueous electrolyte secondary battery, and charging system of non-aqueous electrolyte secondary battery
CN112467116A (zh) * 2020-11-30 2021-03-09 湖南中科星城石墨有限公司 石墨包覆材料及其制备方法、电池负极

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008177346A (ja) * 2007-01-18 2008-07-31 Sanyo Electric Co Ltd エネルギー貯蔵デバイス
JP2009076372A (ja) * 2007-09-21 2009-04-09 Shin Etsu Chem Co Ltd 非水系二次電池
JP2009076373A (ja) * 2007-09-21 2009-04-09 Shin Etsu Chem Co Ltd 非水系二次電池
WO2010071166A1 (ja) * 2008-12-19 2010-06-24 Necトーキン株式会社 非水電解液二次電池用負極、それを用いた非水電解液二次電池、および非水電解液二次電池用負極の製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3033221B2 (ja) 1990-03-30 2000-04-17 株式会社日立製作所 電子回路装置
JP2997741B2 (ja) 1992-07-29 2000-01-11 セイコーインスツルメンツ株式会社 非水電解質二次電池及びその製造方法
JP4088993B2 (ja) 1998-02-13 2008-05-21 株式会社ジーエス・ユアサコーポレーション 非水電解質二次電池の放電制御方法
JP3771846B2 (ja) 2002-01-15 2006-04-26 日立マクセル株式会社 非水二次電池及びその充電方法
JP4212439B2 (ja) 2003-09-12 2009-01-21 三洋電機株式会社 リチウム二次電池の使用方法
JP4843936B2 (ja) 2004-01-20 2011-12-21 ソニー株式会社 二次電池およびその充放電方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008177346A (ja) * 2007-01-18 2008-07-31 Sanyo Electric Co Ltd エネルギー貯蔵デバイス
JP2009076372A (ja) * 2007-09-21 2009-04-09 Shin Etsu Chem Co Ltd 非水系二次電池
JP2009076373A (ja) * 2007-09-21 2009-04-09 Shin Etsu Chem Co Ltd 非水系二次電池
WO2010071166A1 (ja) * 2008-12-19 2010-06-24 Necトーキン株式会社 非水電解液二次電池用負極、それを用いた非水電解液二次電池、および非水電解液二次電池用負極の製造方法

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9362564B2 (en) * 2012-10-09 2016-06-07 Semiconductor Energy Laboratory Co., Ltd. Power storage device
US20140099558A1 (en) * 2012-10-09 2014-04-10 Semiconductor Energy Laboratory Co., Ltd. Power storage device
US10128541B2 (en) 2012-10-09 2018-11-13 Semiconductor Energy Laboratory Co., Ltd. Power storage device
US9847555B2 (en) 2012-10-09 2017-12-19 Semiconductor Energy Laboratory Co., Ltd. Power storage device
US9620820B2 (en) 2012-10-09 2017-04-11 Semiconductor Energy Laboratory Co., Ltd. Power storage device
JP2015002036A (ja) * 2013-06-14 2015-01-05 信越化学工業株式会社 珪素含有材料、非水電解質二次電池用負極及びその製造方法並びに非水電解質二次電池及びその製造方法
WO2014199554A1 (ja) * 2013-06-14 2014-12-18 信越化学工業株式会社 珪素含有材料、非水電解質二次電池用負極及びその製造方法並びに非水電解質二次電池及びその製造方法
JP2015111547A (ja) * 2013-10-29 2015-06-18 信越化学工業株式会社 負極活物質、負極活物質の製造方法、並びに、リチウムイオン二次電池
US9929399B2 (en) 2013-10-29 2018-03-27 Shin-Etsu Chemical Co., Ltd. Negative electrode active material, method for producing a negative electrode active material, and lithium ion secondary battery
US10283756B2 (en) 2013-10-29 2019-05-07 Shin-Etsu Chemical Co., Ltd. Negative electrode active material, method for producing a negative electrode active material, and lithium ion secondary battery
CN103698714A (zh) * 2014-01-02 2014-04-02 清华大学 电池容量衰减机理辨识方法及系统
JP2017188319A (ja) * 2016-04-06 2017-10-12 信越化学工業株式会社 負極活物質、混合負極活物質材料、及び負極活物質の製造方法
JP7019284B2 (ja) 2016-04-06 2022-02-15 信越化学工業株式会社 負極活物質、混合負極活物質材料、及び負極活物質の製造方法
JP2019533878A (ja) * 2016-09-02 2019-11-21 イーオーセル リミテッド シリコン:シリコンケイ酸リチウム複合基質にシリコンナノ粒子が埋め込まれた体積変化補償型のシリコン−酸化シリコン−リチウム複合材料、及び反復的な原位置外製造プロセス

Also Published As

Publication number Publication date
JP5975024B2 (ja) 2016-08-23
JPWO2012165049A1 (ja) 2015-02-23
US20140076729A1 (en) 2014-03-20
CN103563132B (zh) 2016-03-23
CN103563132A (zh) 2014-02-05
US9123928B2 (en) 2015-09-01

Similar Documents

Publication Publication Date Title
US10991946B2 (en) Polymerization process for forming polymeric ultrathin conformal coatings on electrode materials
JP5975024B2 (ja) 負極にリチウムをドープ及び脱ドープする方法及びリチウム二次電池用負極の製造方法
JP5348706B2 (ja) 非水電解液二次電池用負極、それを用いた非水電解液二次電池、および非水電解液二次電池用負極の製造方法
JP6314831B2 (ja) 負極活物質およびその製造方法、並びにリチウム二次電池
US20160276671A1 (en) Negative electrode active material and method for producing the same
JP6056845B2 (ja) リチウム二次電池用負極の製造方法
CN102110853A (zh) 锂离子二次电池、其负极、电动工具、电动车和能量储存系统
JP2017022120A (ja) リチウムイオン二次電池
JP6179404B2 (ja) 二次電池の製造方法
WO2015015883A1 (ja) リチウム二次電池及びリチウム二次電池用電解液
JP2016186921A (ja) リチウムイオン二次電池
Park et al. Polyimide/carbon black composite nanocoating layers as a facile surface modification strategy for high-voltage lithium ion cathode materials
CN107949935A (zh) 锂离子二次电池
WO2016031085A1 (en) Anode material for lithium ion battery
JP2012252951A (ja) 非水電解質二次電池
JP6927303B2 (ja) リチウムイオン二次電池
JP6992362B2 (ja) リチウムイオン二次電池
JPWO2012029645A1 (ja) 二次電池およびそれに用いる二次電池用電解液
JP5573875B2 (ja) 非水電解質溶液およびリチウムイオン二次電池
JP2022547282A (ja) 電池システム、その使用方法、およびそれを含む電池パック
JP2017182946A (ja) リチウム二次電池用電解液およびこれを備えるリチウム二次電池
JP2015125965A (ja) 非水電解液二次電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280025943.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12793647

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14114948

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2013517917

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12793647

Country of ref document: EP

Kind code of ref document: A1