WO2012161218A1 - 配線板および配線板の製造方法 - Google Patents

配線板および配線板の製造方法 Download PDF

Info

Publication number
WO2012161218A1
WO2012161218A1 PCT/JP2012/063186 JP2012063186W WO2012161218A1 WO 2012161218 A1 WO2012161218 A1 WO 2012161218A1 JP 2012063186 W JP2012063186 W JP 2012063186W WO 2012161218 A1 WO2012161218 A1 WO 2012161218A1
Authority
WO
WIPO (PCT)
Prior art keywords
hole
metal plate
base material
wiring board
plate
Prior art date
Application number
PCT/JP2012/063186
Other languages
English (en)
French (fr)
Inventor
公教 尾崎
靖弘 小池
裕明 浅野
晴光 佐藤
大城 渡辺
忠義 可知
鈴木 隆弘
仁 志満津
哲也 古田
雅夫 三宅
貴弘 早川
智朗 浅井
良 山内
Original Assignee
株式会社 豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 豊田自動織機 filed Critical 株式会社 豊田自動織機
Priority to EP12789574.6A priority Critical patent/EP2717658B1/en
Priority to KR1020137030367A priority patent/KR20130140889A/ko
Priority to JP2013516414A priority patent/JP5742936B2/ja
Priority to US14/118,636 priority patent/US9332638B2/en
Priority to CN201280024409.6A priority patent/CN103563495B/zh
Publication of WO2012161218A1 publication Critical patent/WO2012161218A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/11Printed elements for providing electric connections to or between printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0094Filling or covering plated through-holes or blind plated vias, e.g. for masking or for mechanical reinforcement
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/4038Through-connections; Vertical interconnect access [VIA] connections
    • H05K3/4084Through-connections; Vertical interconnect access [VIA] connections by deforming at least one of the conductive layers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0263High current adaptations, e.g. printed high current conductors or using auxiliary non-printed means; Fine and coarse circuit patterns on one circuit board
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/11Printed elements for providing electric connections to or between printed circuits
    • H05K1/115Via connections; Lands around holes or via connections
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0302Properties and characteristics in general
    • H05K2201/0305Solder used for other purposes than connections between PCB or components, e.g. for filling vias or for programmable patterns
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/095Conductive through-holes or vias
    • H05K2201/09509Blind vias, i.e. vias having one side closed
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/09654Shape and layout details of conductors covering at least two types of conductors provided for in H05K2201/09218 - H05K2201/095
    • H05K2201/0969Apertured conductors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/03Metal processing
    • H05K2203/033Punching metal foil, e.g. solder foil
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/11Treatments characterised by their effect, e.g. heating, cooling, roughening
    • H05K2203/1178Means for venting or for letting gases escape
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/4038Through-connections; Vertical interconnect access [VIA] connections
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/4038Through-connections; Vertical interconnect access [VIA] connections
    • H05K3/4046Through-connections; Vertical interconnect access [VIA] connections using auxiliary conductive elements, e.g. metallic spheres, eyelets, pieces of wire
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/49155Manufacturing circuit on or in base
    • Y10T29/49165Manufacturing circuit on or in base by forming conductive walled aperture in base

Definitions

  • the present invention relates to a wiring board and a method for manufacturing the wiring board.
  • the interlayer connection in the substrate is generally performed by copper plating.
  • a copper plating layer 304 formed on the inner wall surface of the through hole 303 is formed between the front surface layer (for example, copper foil) 301 and the back surface layer (for example, copper foil) 302 on the insulating substrate 300. Connecting.
  • a large current for example, 120 amperes
  • Patent Document 1 discloses a technique for flowing a large current. Specifically, in the printed wiring board, a plurality of current through holes penetrating the front surface side and the back surface side of the substrate are arranged densely. As a result, a large current of 50 to 180 amperes can be passed without using a bus bar.
  • An object of the present invention is to provide a wiring board and wiring capable of flowing a large current through a conductive path connecting a metal plate on the front surface and a metal plate on the back surface and reducing the amount of conductive material constituting the conductive path. It is in providing the manufacturing method of a board.
  • a wiring board is bonded to a substrate having a front surface, a back surface, and a side surface, a first metal plate bonded to the surface, and the back surface.
  • a second metal plate, and a conductive path configured to conduct between the first metal plate and the second metal plate.
  • the conductive path is provided in an internal space defined by an inner wall surface of a base material through-hole formed in the base material or an external space outside the side surface of the base material.
  • the conductive path includes the first metal plate, the second metal plate, and a conductive material that electrically connects the first metal plate and the second metal plate.
  • At least one of the first metal plate and the second metal plate is joined to the base material, and a bent portion extending so as to be bent from the joint portion so as to cover the inner wall surface or the side surface. And have.
  • the inside of the bent part is filled with the conductive material.
  • At least one of the first metal plate and the second metal plate is bent from the joint portion so as to cover the joint portion joined to the base material and the inner wall surface or the side surface. It has a bent part that extends. A conductive material is filled in the inner portion of the bent portion.
  • the conductive path electrically connects the first metal plate joined to the surface of the base material, the second metal plate joined to the back surface of the base material, the first metal plate and the second metal plate. And a conductive material to be connected.
  • the first metal plate and the second metal plate conduct in the internal space of the base material through hole penetrating the base material or the external space outside the side surface of the base material. Thereby, a big electric current can be sent through the conductive path which connects a 1st metal plate and a 2nd metal plate.
  • the space filled with the conductive material is narrowed, the amount of the conductive material to be filled can be reduced.
  • the first metal plate includes a first joint as the joint and a first bent part as the bent part.
  • the first bent portion bends toward the back surface.
  • the second metal plate has a second joint portion as the joint portion and a second bent portion as the bent portion.
  • the second bent portion is bent toward the surface so as to cover the inner wall surface or the side surface together with the first bent portion.
  • the conductive material is filled between the first bent portion and the second bent portion.
  • the place where the conductive material is filled is between the first bent portion that is bent toward the back surface of the base material and the second bent portion that is bent toward the surface of the base material, Since the bent portion and the second bent portion are bent toward the base material side, it is easy to flow downward after the conductive material is melted.
  • the second metal plate has a through hole at a portion facing the internal space or the external space.
  • the conductive path is provided in the internal space.
  • the first bent portion bends from the opening end of the base material through hole that opens to the surface toward the internal space, and has a through hole at a portion corresponding to the central portion of the base material through hole. ing.
  • the second bent portion is bent toward the internal space from the opening end of the base material through hole that opens to the back surface, and is inserted into the through hole of the first bent portion.
  • a plurality of the through holes formed in the second metal plate are provided on a circumference around the central axis of the base material through hole having a circular cross section.
  • the conductive path can be more reliably inspected by a plurality of through holes provided on the circumference around the central axis of the base material through hole having a circular cross section.
  • the plurality of through holes formed in the second metal plate are arranged at equiangular intervals.
  • the conductive path can be inspected more reliably.
  • the wiring board according to the second aspect of the present invention includes a base material having a front surface, a back surface, and a base material through hole, a first metal plate bonded to the front surface, and a second metal bonded to the back surface.
  • a metal plate and a conductive path provided in the internal space of the through hole so as to conduct electricity between the first metal plate and the second metal plate.
  • the conductive path includes the first metal plate, the second metal plate, and a conductive material that electrically connects the first metal plate and the second metal plate.
  • the second metal plate has a joint portion joined to the base material and an extending portion extending from the joint portion to the opening portion of the base material through hole.
  • a plate material having a through hole is disposed in the internal space. The conductive material is filled in the through holes of the plate material.
  • the second metal plate has the joint portion joined to the base material and the extending portion extending from the joint portion to the opening portion of the base material through hole.
  • a plate material having a through hole is disposed in the internal space of the substrate through hole.
  • a conductive material is filled in the through hole of the plate material.
  • the conductive path electrically connects the first metal plate joined to the surface of the base material, the second metal plate joined to the back surface of the base material, the first metal plate and the second metal plate. And a conductive material to be connected.
  • the first metal plate and the second metal plate conduct in the internal space of the base material through hole penetrating the base material. Thereby, a big electric current can be sent through the conductive path which connects a 1st metal plate and a 2nd metal plate.
  • the space filled with the conductive material is narrowed by the plate material disposed in the space filled with the conductive material, the amount of the conductive material to be filled can be reduced.
  • the extending portion has a through hole communicating with the through hole of the plate member.
  • the first metal plate has a joint part joined to the base material and an extending part extending from the joint part to the opening of the base material through hole.
  • the extending portion has a through hole smaller than the base material through hole.
  • the through hole of the plate material communicates with the through hole of the first metal plate, and the conductive material is filled into the through hole of the first metal plate and the through hole of the plate material.
  • the wiring board is bonded to the base having a front surface, a back surface, and a side surface, a first metal plate bonded to the front surface, and the back surface.
  • a second metal plate and a conductive path configured to conduct between the first metal plate and the second metal plate, the conductive path being a base material formed on the base material Provided in an internal space defined by an inner wall surface of the through hole, the conductive path includes the first metal plate, the second metal plate, the first metal plate, and the second metal plate. And a conductive material that electrically connects the conductive paths.
  • At least one of the first metal plate and the second metal plate has a joint part joined to the base material and a bent part extending to bend from the joint part so as to cover the inner wall surface.
  • the method for manufacturing the wiring board includes a step of bonding the first metal plate to the front surface, and a step of bonding the second metal plate to the back surface so as to block one opening end of the base material through hole.
  • the first metal plate is joined to the surface of the base material, and the second metal plate closes one opening end of the base material through hole on the back surface of the base material Are joined together.
  • a solder paste is applied to a portion corresponding to the other opening end of the base material through hole on the surface of the first metal plate.
  • the solder paste is reflowed and the inside of the bent portion including the inside of the through hole is removed as a conductive material while the gas is extracted from the through hole formed in the part facing the base material internal space in the second metal plate. Solder is filled.
  • Solder wettability is stabilized by removing the gas from the substrate through-holes in the reflow process in manufacturing the wiring board.
  • the wiring board is bonded to the base having a front surface, a back surface, and a side surface, a first metal plate bonded to the front surface, and the back surface.
  • a second metal plate, and a conductive path configured to conduct between the first metal plate and the second metal plate.
  • the conductive path is provided in an internal space defined by an inner wall surface of a base material through hole formed in the base material, and the conductive path includes the first metal plate, the second metal plate, and the A conductive material that electrically connects the first metal plate and the second metal plate.
  • the method of manufacturing the wiring board is a step of arranging the second metal plate having a through hole on the back surface, and the through hole of the second metal plate corresponds to the opening of the base material through hole.
  • the through hole of the first metal plate communicates with the through hole of the plate material, the process, the through hole of the second metal plate, the through hole of the first metal plate, and the penetration of the plate material. Filling the space formed by the holes with solder as a conductive material , Comprising a.
  • the second metal plate is disposed on the back surface of the base material and has a through hole that is located at the opening of the base material through hole and is smaller than the base material through hole. Is done.
  • a plate material that is communicated with the through hole of the second metal plate and has a through hole larger than the through hole of the second metal plate is arranged inside the base material through hole.
  • a first metal plate in which a through hole communicating with the through hole of the plate material is formed on the surface of the substrate.
  • solder as a conductive material is filled in the through hole of the first metal plate including the inside of the through hole of the second metal plate and the internal space of the through hole of the plate material.
  • the wiring board according to the second aspect can be obtained.
  • a large current can be passed through the conductive path connecting the front and back, and the amount of conductive material constituting the conductive path can be reduced.
  • (A) is a plan view of the wiring board according to the first embodiment of the present invention
  • (b) is a longitudinal sectional view taken along line II in FIG. 1 (a)
  • (c) is a bottom view of the wiring board.
  • (A) is a plan view of the wiring board for explaining the manufacturing process of the wiring board of FIG. 1 (a)
  • (b) is a longitudinal sectional view taken along line II-II of (a)
  • (c) is wiring.
  • (A) is a plan view of the wiring board for explaining the manufacturing process of the wiring board of FIG. 1,
  • (b) is a longitudinal sectional view taken along line III-III of (a)
  • (c) is a lower surface of the wiring board.
  • FIG. 1 is a plan view of the wiring board for explaining the manufacturing process of the wiring board of FIG. 1
  • (b) is a longitudinal sectional view taken along line IV-IV of (a)
  • (c) is a lower surface of the wiring board.
  • Figure. (A) is a top view of the wiring board based on the 2nd Embodiment of this invention
  • (b) is a longitudinal cross-sectional view along the VV line of (a)
  • (c) is a bottom view of a wiring board.
  • 5A is a plan view of the wiring board for explaining the manufacturing process of the wiring board of FIG. 5A
  • FIG. 5B is a longitudinal sectional view taken along line VI-VI of FIG. 5A
  • FIG. 5A is a plan view of the wiring board for explaining the manufacturing process of the wiring board in FIG. 5
  • FIG. 5B is a longitudinal sectional view taken along line VII-VII in FIG. 5A
  • FIG. Figure. 5A is a plan view of the wiring board for explaining the manufacturing process of the wiring board of FIG. 5
  • FIG. 5B is a longitudinal sectional view taken along line VIII-VIII of FIG. 5A
  • FIG. Figure. (A) is a top view of the wiring board based on the 3rd Embodiment of this invention
  • (b) is a longitudinal cross-sectional view along the IX-IX line of (a)
  • (c) is a bottom view of a wiring board.
  • FIG. 9A is a plan view of the wiring board for explaining the manufacturing process of the wiring board of FIG. 9A
  • FIG. 9B is a longitudinal sectional view taken along line XX of FIG. 9A
  • (A) is a top view of the wiring board based on the 4th Embodiment of this invention
  • (b) is a longitudinal cross-sectional view along the XI-XI line of (a)
  • (c) is a bottom view of a wiring board.
  • (A)-(c) is a longitudinal cross-sectional view of a wiring board for demonstrating the manufacturing process of the wiring board of Fig.11 (a).
  • (A), (b) is a longitudinal cross-sectional view of a wiring board for demonstrating the manufacturing process of the wiring board of Fig.11 (a). The longitudinal cross-sectional view of the wiring board for a comparison.
  • (A)-(c) is a longitudinal cross-sectional view for demonstrating the application
  • (A)-(c) is a longitudinal cross-sectional view for demonstrating the application process of the solder paste for a comparison.
  • (A)-(c) is a longitudinal cross-sectional view for demonstrating the manufacturing process of a modification.
  • the wiring board 10 is configured using a thick copper substrate. That is, the first copper plate 30 as the first metal plate is bonded to the upper surface of the insulating substrate 20 as the base material. A second copper plate 40 as a second metal plate is bonded to the lower surface of the insulating substrate 20. The first copper plate 30 is patterned into a desired shape to form a current path. Further, the second copper plate 40 is patterned into a desired shape to form a current path.
  • a glass / epoxy resin substrate can be used for the insulating substrate 20.
  • the thickness of the insulating substrate 20 is 400 ⁇ m, for example, the thickness of the first copper plate 30 is 500 ⁇ m, for example, and the thickness of the second copper plate 40 is 500 ⁇ m, for example.
  • the conductor pattern made of the first copper plate 30 and the conductor pattern made of the second copper plate 40 are electrically connected in the following configuration.
  • the wiring board 10 is bonded to the first copper plate 30 bonded to the front surface (upper surface) of the insulating substrate 20 and the rear surface (lower surface) of the insulating substrate 20 inside the base material through hole 21 penetrating the insulating substrate 20.
  • a conductive path 50 is formed to conduct with the second copper plate 40 to be formed.
  • the base material through-hole 21 is circular.
  • the conductive path 50 includes a first copper plate 30, a second copper plate 40, and a solder 60 as a conductive material that electrically connects the first copper plate 30 and the second copper plate 40.
  • the first copper plate 30 has a first bent portion 32.
  • the first bent portion 32 extends from the first joint portion 31 and is bent toward the back surface side (lower surface side) of the insulating substrate 20. Specifically, the first bent portion 32 is bent into the inside of the base material through hole 21 from the opening portion on the surface side (upper surface side) of the insulating substrate 20 in the base material through hole 21. The first bent portion 32 linearly extends obliquely downward from the opening of the substrate through hole 21.
  • a through hole 33 is formed at a portion corresponding to the central portion of the base material through hole 21 in the first bent portion 32. The through hole 33 is circular.
  • Two through holes 43 and 44 are formed in the second copper plate 40, and the second copper plate 40 has a second bent portion 42, and the second bent portion 42 has a first bent portion 42.
  • the second joint 41 extends from the second joint 41.
  • the second bent portion 42 is formed at a portion corresponding to the central portion of the base material through hole 21.
  • the second bent portion 42 has a slanted portion 42a and a horizontal portion 42b.
  • the second bent part 42 is arranged so as to bend toward the surface side (upper surface side) of the insulating substrate 20 and to cover the inner wall surface of the substrate through-hole 21 together with the first bent part 32.
  • the inclined portion 42 a of the second bent portion 42 is obliquely upward from the opening on the back surface side (lower surface side) of the insulating substrate 20 in the base material through hole 21 toward the inside of the base material through hole 21. It is bent so as to extend linearly and is inserted into the through hole 33 of the first bent portion 32.
  • a horizontal portion 42b is located at the tip of the inclined portion 42a.
  • the horizontal portion 42b is circular in plan view, and the upper surface of the horizontal portion 42b is a horizontal plane.
  • the upper surface of the horizontal portion 42b is slightly lower than the upper surface of the wiring board 10 (the upper surface of the first copper plate 30).
  • the through holes 43 and 44 are provided in a portion of the second copper plate 40 facing the inside of the base material through hole 21. Specifically, the through holes 43 and 44 are formed between the outer periphery of the opening of the base material through hole 21 in the second copper plate 40 and the root portion of the second bent part 42. More specifically, the through holes 43 and 44 are formed in a portion closer to the inclined portion 42a in the second copper plate 40.
  • the two through holes 43 and 44 are provided on the circumference centering on the center O of the circular base material through hole 21.
  • the through holes (43, 44) are arranged at equiangular intervals.
  • the through holes 43 and 44 are circular.
  • solder 60 is filled in the space between the first bent part 32 and the second bent part 42 including the inside of the through holes 43 and 44. It can be visually observed that the solder 60 is poured by the through holes 43 and 44, that is, it can be ensured that the solder 60 is poured by the through holes 43 and 44.
  • a first copper plate 30 is bonded to the surface of the insulating substrate 20 and a second copper plate 40 is bonded to the back surface of the insulating substrate 20.
  • the space between the first bent part 32 and the second bent part 42 is filled with solder 60.
  • the first copper plate 30 and the second copper plate 40 are electrically connected to each other by the solder 60.
  • a current I flows from the first copper plate 30 to the second copper plate 40. Specifically, a current flows from the first bent portion 32 to the second bent portion 42 through the solder 60. At this time, a large current (for example, 120 amperes) can be passed.
  • a large current for example, 120 amperes
  • a large current for example, 120 amperes
  • an insulating substrate 20, a first copper plate 30, and a second copper plate 40 are prepared.
  • a base material through hole 21 is formed in the insulating substrate 20.
  • a first bent portion 32 is formed on the first copper plate 30.
  • a second bent portion 42 is formed on the second copper plate 40.
  • the first copper plate 30 is bonded to the upper surface of the insulating substrate 20 and the second copper plate 40 is bonded to the lower surface of the insulating substrate 20.
  • the first bent portion 32 of the first copper plate 30 is positioned in the base material through hole 21 of the insulating substrate 20.
  • the second bent portion 42 of the second copper plate 40 is arranged in the base material through hole 21 of the insulating substrate 20 so as to cover the inner wall surface of the base material through hole 21 together with the first bent portion 32.
  • a gap is formed between the first bent portion 32 and the second bent portion 42, and this gap is a space for filling the solder 60.
  • the solder paste 61 is applied to the formation region of the through hole 33 (on the horizontal portion 42 b of the second bent portion 42) and the periphery thereof in the first copper plate 30.
  • the application of the solder paste 61 is performed in a state where the region other than the application region of the solder paste 61 in the substrate through hole 21 is covered with a metal mask. That is, the upper surface of the wiring board 10 is flat, and a copper plate surface having no protrusion is secured, so that the solder paste can be printed in a desired region.
  • the solder paste is applied also in the area where the surface mount component is arranged in the area other than the double-sided connection part (base material through hole 21) in the wiring board 10.
  • the solder having fluidity flows between the first bent portion 32 and the second bent portion 42 below the application region of the solder paste 61. As shown in FIG. 1, the space between the first bent portion 32 and the second bent portion 42 is filled with the solder 60. In addition, the solder 60 is filled in the through holes 43 and 44.
  • the reflow solder 60 is sufficiently between the first bent portion 32 and the second bent portion 42. It can be seen that it is contained, and the quality of soldering can be judged. Specifically, since the second copper plate 40 has a red-black color and the solder 60 has a silver color, it can be easily identified. Thereby, a connection can be guaranteed.
  • the solder 60 when the solder 60 is filled between the first bent portion 32 and the second bent portion 42, the solder 60 is filled in the through holes 43 and 44. If not, it will look like this: The solder 60 cannot be visually recognized through the through holes 43 and 44. Thereby, it turns out that it is a soldering defect. That is, it can be seen that even if it is melted by solder reflow, it does not spread sufficiently. That is, the connection cannot be guaranteed.
  • causes of the failure include, for example, a low reflow temperature, a short reflow time, and the difficulty of spreading the solder due to oxidation on the surface of the copper plate.
  • the through holes 43 and 44 are formed in the lower second copper plate 40, and the solder paste 61 is applied to the upper first copper plate 30. It can be seen from the through holes 43 and 44 of the copper plate 40 that the solder 60 has flowed. That is, it can be confirmed that the solder 60 has flowed.
  • a conductive path 50 is configured from the first copper plate 30, the second copper plate 40, and the solder 60 that electrically connects the first copper plate 30 and the second copper plate 40.
  • This conductive path 50, the front surface and the back surface are conductive inside the substrate through-hole 21. Thereby, a big electric current can be sent through the conductive path 50 which connects front and back.
  • the surface of the substrate when a thick copper plating layer 305 is formed by extending the plating time to flow a large current (for example, 120 amperes), the surface of the substrate also rises by ⁇ H. Mounting on the surface and applying solder are difficult. In other words, it is necessary to take measures for the unevenness. In addition, the plating process time becomes long and the substrate cost increases.
  • the surface of the substrate can be a flat surface, and electronic components can be easily mounted on the surface of the substrate. Further, the plating process time is not prolonged, and an increase in substrate cost can be avoided.
  • the solder 60 as the conductive material is filled in the inner portions of the bent portions 32 and 42, and the space filled with the solder 60 becomes narrow, so that the amount of the solder 60 to be filled can be reduced.
  • the “inner side of the bent portions 32 and 42” corresponds to a space between the first copper plate 30 and the second copper plate 40 that form a conductive path.
  • “the inner part of the bent parts 32, 42” corresponds to the space between the first bent part 32 and the second bent part 42.
  • first copper plate 30 as the first metal plate is extended from the first joint portion 31 joined to the insulating substrate 20 as the base material, and is bent to the back side of the insulating substrate 20.
  • a bent portion 32 is provided.
  • the second copper plate 40 as the second metal plate extends from the second joint portion 41 joined to the insulating substrate 20, bends to the surface side of the insulating substrate 20, and the first bent portion 32. And it has the 2nd bending part 42 arrange
  • a solder 60 as a conductive material is filled between the first bent portion 32 and the second bent portion 42.
  • the place where the solder 60 as the conductive material is filled (the place where the solder 60 is placed) is the first bent portion 32 bent to the back side of the insulating substrate 20 and the second bent to the front surface side of the insulating substrate 20. Since it is between the bent portion 42 and bent toward the insulating substrate 20, the solder 60 is likely to flow downward after melting.
  • Through holes 43 and 44 are formed at portions of the second copper plate 40 facing the inside of the substrate through holes 21.
  • the conductive path 50 can be inspected by the through holes 43 and 44. That is, it can be visually confirmed from the through holes 43 and 44 that the solder 60 is filled between the first bent portion 32 and the second bent portion 42, and the conductive path 50 is inspected. It can be carried out. That is, it can be confirmed that a portion serving as a current path through which a large current flows is filled with the solder 60 as a conductive material.
  • the first bent portion 32 is bent from the opening on the surface side of the insulating substrate 20 in the base material through hole 21 into the base material through hole 21 and corresponds to the center portion of the base material through hole 21.
  • the through-hole 33 is formed in.
  • the second bent portion 42 is bent into the inside of the base material through hole 21 from the opening on the back surface side of the insulating substrate 20 in the base material through hole 21 and into the through hole 33 of the first bent portion 32. Has been inserted. Therefore, electrical connection can be reliably performed using the conductive path 50 formed inside the substrate through hole 21.
  • the conductive path 50 is provided. The inspection can be performed more reliably.
  • the wiring board (thick copper substrate) 10 of the present embodiment is preferably used for an electric vehicle, a hybrid vehicle, and a train. The same applies to the wiring boards (thick copper substrates) of other embodiments.
  • FIG. 1 shows a wiring board on which a conductive path for conducting the first copper plate 30 and the second copper plate 40 is formed inside the substrate through-hole 21.
  • a conductive path 55 that conducts the first copper plate 30 and the second copper plate 40 on the side surface side of the insulating substrate 20 is formed.
  • the conductive path 55 includes a first copper plate 30, a second copper plate 40, and a solder 65 as a conductive material that electrically connects the first copper plate 30 and the second copper plate 40.
  • the first copper plate 30 has a first bent portion 35 that extends from the first bonding portion 31 bonded to the insulating substrate 20 and bends to the back surface side (lower surface side) of the insulating substrate 20.
  • the first bent portion 35 linearly extends obliquely downward from the side surface 22 of the insulating substrate 20.
  • the second copper plate 40 is extended from the second joint portion 41 joined to the insulating substrate 20, bent to the front surface side (upper surface side) of the insulating substrate 20, and together with the first bent portion 35. It has the 2nd bending part 45 arrange
  • the second bent portion 45 has an inclined portion 45a and a horizontal portion 45b.
  • the oblique portion 45a of the second bent portion 45 extends linearly obliquely upward.
  • the horizontal portion 45b of the second bent portion 45 extends in the horizontal direction from the upper end of the inclined portion 45a.
  • the upper surface of the horizontal portion 45b is the same height as the upper surface of the wiring board 10 (the upper surface of the first copper plate 30).
  • a through hole 47 is provided in a portion of the second copper plate 40 facing the side surface of the insulating substrate 20. Specifically, the through hole 47 is formed at a position substantially in contact with the side surface 22 of the insulating substrate 20 as shown in FIG. Further, as shown in FIG. 5C, the through hole 47 is formed at the center in the width direction of the second copper plate 40.
  • the through hole 47 has a circular shape.
  • Solder 65 is filled between the first bent portion 35 and the second bent portion 45 including the inside of the through hole 47.
  • an insulating substrate 20, a first copper plate 30, and a second copper plate 40 are prepared.
  • a first bent portion 35 is formed in the first copper plate 30.
  • a second bent portion 45 is formed in the second copper plate 40.
  • the first copper plate 30 is bonded to the upper surface of the insulating substrate 20 and the second copper plate 40 is bonded to the lower surface of the insulating substrate 20.
  • the first bent portion 35 of the first copper plate 30 is positioned at the side surface 22 of the insulating substrate 20.
  • the second bent portion 45 of the second copper plate 40 is disposed at the portion of the side surface 22 of the insulating substrate 20 so as to cover the side surface 22 of the insulating substrate 20 together with the first bent portion 35.
  • a gap is formed between the first bent portion 35 and the second bent portion 45, and this gap is a filling space for the solder 65.
  • solder paste 66 is applied. That is, the upper surface of the wiring board 10 is flat, and a copper plate surface having no protrusion is secured, so that the solder paste can be printed in a desired region.
  • a metal mask is located in a partial region (front end side) of the upper surface of the horizontal portion 45 b of the second bent portion 45.
  • solder 65 As shown in FIG.
  • the through hole 47 is filled with solder 65. Also, it is possible to determine whether soldering is good or not by visually recognizing the filling of the solder 65 into the through hole 47 from the back surface (lower surface).
  • solder 65 when the solder 65 is filled between the first bent portion 35 and the second bent portion 45, the solder 65 is not filled in the through hole 47. If it looks like this: The solder 65 cannot be visually recognized through the through hole 47. Thereby, it turns out that it is a soldering defect.
  • the first copper plate 30 as the first metal plate and the second copper plate 40 as the second metal plate are joined to the insulating substrate 20 as the base material. , 41, bent to the insulating substrate 20 side, and has bent portions 35, 45 disposed so as to cover the side surface of the insulating substrate 20.
  • solder 65 as a conductive material is filled in the bent portions 35 and 45.
  • a through hole 47 is provided in a portion of the second copper plate 40 facing the side surface 22 side of the insulating substrate 20, and solder as a conductive material is provided inside the bent portions 35 and 45 including the inside of the through hole 47. 65 is filled. Thereby, a big electric current can be sent through the conductive path which connects front and back.
  • the space filled with the solder 65 as the conductive material is narrowed, the amount of the solder 65 to be filled can be reduced. Furthermore, it can be visually recognized from the through hole 47 that the solder 65 as the conductive material is filled in the bent portions 35 and 45, and the conductive path can be inspected.
  • first copper plate 30 and the second copper plate 40 may have a bent portion.
  • first copper plate 30 of FIG. 5 may be extended horizontally outward from the side surface 22 of the insulating substrate 20.
  • the first copper plate 30 as the first metal plate is bonded to the upper surface of the insulating substrate 20, and the second metal plate as the second metal plate is bonded to the lower surface of the insulating substrate 20.
  • a copper plate 40 is bonded.
  • the first copper plate 30 bonded to the upper surface of the insulating substrate 20 is patterned into a desired shape to form a current path.
  • the second copper plate 40 bonded to the lower surface of the insulating substrate 20 is patterned into a desired shape to form a current path.
  • the conductor pattern made of the first copper plate 30 and the conductor pattern made of the second copper plate 40 are electrically connected.
  • the wiring board 10 is bonded to the first copper plate 30 bonded to the front surface (upper surface) of the insulating substrate 20 and the rear surface (lower surface) of the insulating substrate 20 inside the base material through hole 21 penetrating the insulating substrate 20.
  • a conductive path 50 is formed to conduct with the second copper plate 40 to be formed.
  • the base material through-hole 21 is circular.
  • the conductive path 50 includes a first copper plate 30, a second copper plate 40, and a solder 110 that electrically connects the first copper plate 30 and the second copper plate 40.
  • the first copper plate 30 has a bent portion 37.
  • the bent portion 37 extends from the first bonding portion 31 bonded to the insulating substrate 20 and is bent toward the back surface side (lower surface side) of the insulating substrate 20.
  • the bent portion 37 linearly extends obliquely downward from the opening of the substrate through hole 21 and is disposed so as to cover the inner wall surface of the substrate through hole 21.
  • a through hole 38 is formed at a portion corresponding to the central portion of the base material through hole 21 in the bent portion 37.
  • the through hole 38 has a circular shape.
  • the second copper plate 40 extends horizontally without being bent, and a circular through hole 49 is formed in the second copper plate 40.
  • the through hole 49 is located at the center of the substrate through hole 21.
  • the inside of the substrate through hole 21 including the inside of the through hole 49 is filled with solder 110. Through the through hole 49, it is possible to degas during the solder reflow, and it is possible to visually check that the solder 110 is poured. That is, it can be assured that the solder 110 is poured.
  • the solder paste 111 is applied to the formation region of the through hole 38 in the first copper plate 30 and the periphery thereof. Then, by heating in the solder reflow furnace, the solder having fluidity flows downward from the application region of the solder paste 111, and as shown in FIG. The space between the copper plate 30 and the second copper plate 40 is filled with the solder 110. In addition, the solder 110 is filled in the through hole 49. At this time, if there is no through hole 49, the gas (air) confined in the space between the solder paste 111 and the second copper plate 40 is warmed when the solder is melted during the solder reflow, and the volume is increased.
  • the solder paste 111 may be scattered due to the increase.
  • the through hole 49 is formed in the second copper plate 40, when the gas confined in the space between the solder paste 111 and the second copper plate 40 is warmed, the through hole 49 allows gas to escape. As the gas is extracted in this manner, the solder wettability is stabilized.
  • solder 110 is sufficiently contained by reflow, and the quality of soldering can be determined.
  • the wiring board As a structure of the wiring board, at least one of the first copper plate 30 as the first metal plate and the second copper plate 40 as the second metal plate is joined to the insulating substrate 20 as the base material. It has a bent portion 37 that extends from the joint portions 31, 41, is bent toward the insulating substrate 20, and is disposed so as to cover the inner wall surface of the base material through hole 21. Further, solder 110 as a conductive material is filled in the bent portion 37. Further, a through hole 49 is provided in a portion of the second copper plate 40 facing the inside of the substrate through hole 21, and a solder 110 as a conductive material is placed inside the bent portion 37 including the inside of the through hole 49. Filled.
  • a big electric current can be sent through the conductive path 50 which connects front and back.
  • the space filled with the solder 110 as the conductive material is narrowed, the amount of the solder 110 to be filled can be reduced.
  • the through hole 49 is formed in a portion of the second copper plate 40 as the second metal plate that faces the inside of the substrate through hole 21, and the through hole 49 vents the gas in the substrate through hole 21.
  • a metal plate joining process As a method of manufacturing a wiring board, a metal plate joining process, a coating process, and a reflow process are included.
  • the metal plate joining step the first copper plate 30 as the first metal plate is joined to the surface of the insulating substrate 20 as the base material, and the second metal plate is attached to the back surface of the insulating substrate 20.
  • the second copper plate 40 is joined in a state in which one opening of the base material through hole 21 is closed.
  • the solder paste 111 is applied to the other opening of the substrate through hole 21 on the surface of the first copper plate 30. As shown in FIG.
  • the solder paste 111 is reflowed to remove the gas from the through hole 49 formed in the portion facing the inside of the substrate through hole 21 in the second copper plate 40.
  • a solder 110 as a conductive material is filled in the bent portion 37 including the inside.
  • the solder wettability is stabilized by removing the gas from the substrate through-hole 21 in the reflow process during the production of the wiring board.
  • a metal plate (washer) 270 as a plate material is provided in the solder supply space.
  • the solder supply space can be narrowed by the metal plate (washer) 270.
  • the quantity of the solder to supply can be reduced and a solder can be apply
  • the metal plate (washer) 270 and providing the through holes 271, 233, and 243 in the copper plates 230 and 240 it is possible to confirm degassing and solder filling in the through holes 243.
  • the wiring board 210 is configured using a thick copper substrate. That is, the first copper plate 230 as the first metal plate is bonded to the upper surface of the insulating substrate 220 as the base material. A second copper plate 240 as a second metal plate is bonded to the lower surface of the insulating substrate 220. The first copper plate 230 is patterned into a desired shape to form a current path. Further, the second copper plate 240 is patterned into a desired shape to form a current path.
  • a glass / epoxy resin substrate can be used for the insulating substrate 220.
  • the thickness of the insulating substrate 220 is, for example, 400 ⁇ m
  • the thickness of the first copper plate 230 is, for example, 500 ⁇ m
  • the thickness of the second copper plate 240 is, for example, 500 ⁇ m.
  • the conductor pattern made of the first copper plate 230 and the conductor pattern made of the second copper plate 240 are electrically connected in the following configuration.
  • the wiring board 210 composed of a thick copper substrate includes a first copper plate 230 bonded to the surface (upper surface) of the insulating substrate 220 inside the base material through hole 221 that penetrates the insulating substrate 220, and an insulating substrate.
  • a conductive path 250 is formed to conduct with the second copper plate 240 joined to the back surface (lower surface) of 220.
  • the substrate through hole 221 has a circular shape.
  • the conductive path 250 includes a first copper plate 230, a second copper plate 240, and solder 260 as a conductive material that electrically connects the first copper plate 230 and the second copper plate 240.
  • the first copper plate 230 has a first extending portion 232.
  • the first extending part 232 extends horizontally from the first joining part 231 joined to the insulating substrate 220 to one opening of the base material through hole 221.
  • a first through hole 233 is formed at a portion corresponding to the central portion of the base material through hole 221 in the first extending portion 232.
  • the first through hole 233 located at one opening of the base material through hole 221 has a circular shape and is smaller than the base material through hole 221.
  • the second copper plate 240 has a second extending portion 242.
  • the second extending portion 242 extends horizontally from the second joining portion 241 joined to the insulating substrate 220 to the other opening of the base material through hole 221.
  • a second through hole 243 is formed in a portion corresponding to the central portion of the base material through hole 221 in the second extending portion 242.
  • the second through hole 243 located at the other opening of the substrate through hole 221 has a circular shape.
  • the second through hole 243 is smaller than the substrate through hole 221 and smaller than the first through hole 233.
  • the second through hole 243 is provided at a portion facing the inside of the base material through hole 221 in the second copper plate 240.
  • a metal plate (washer) 270 is disposed inside the base material through hole 221 in the insulating substrate 220.
  • the metal plate 270 has a disk shape and engages with the substrate through hole 221.
  • a third through hole 271 is formed at the center of the metal plate 270.
  • the third through hole 271 has a circular shape.
  • the third through hole 271 communicates with the first through hole 233 and the second through hole 243 and is smaller than the first through hole 233 and larger than the second through hole 243.
  • the first through hole 233 and the third through hole 271 including the inside of the second through hole 243 are filled with solder 260 as a conductive material. It can be visually observed through the second through-hole 243 that the solder 260 is poured. That is, it can be assured that the solder 260 is poured.
  • the first copper plate 230 is bonded to the surface of the insulating substrate 220 and the second copper plate 240 is bonded to the back surface of the insulating substrate 220.
  • a metal plate 270 is disposed inside the substrate through hole 221, and solder 260 is filled in the through holes 233 and 271 including the inside of the through hole 243.
  • the first copper plate 230 and the second copper plate 240 are electrically connected to each other by the solder 260.
  • a current flows from the first copper plate 230 to the second copper plate 240. Specifically, a current flows from the first extending portion 232 to the second extending portion 242 through the solder 260. At this time, a large current (for example, 120 amperes) can be passed.
  • a large current for example, 120 amperes
  • a large current for example, 120 amperes
  • a large current can be passed between the layers by devising the shapes of the copper plates 230 and 240 on both sides and soldering.
  • a through hole 243 is formed in the second copper plate 240.
  • a base material through hole 221 is formed in the insulating substrate 220 as the core material, and adhesives 222 and 223 are applied to both surfaces of the insulating substrate 220.
  • the 2nd copper plate 240 in which the through-hole 243 which is located in the opening part of the base material through-hole 221 and smaller than the base-material through-hole 221 was formed in the back surface of the insulated substrate 220 is arrange
  • a metal plate 270 that is in communication with the through hole 243 of the second copper plate 240 and has a through hole 271 larger than the through hole 243 is disposed inside the base material through hole 221. To do. When the metal plate (washer) 270 is disposed, the metal plate (washer) 270 need only be fitted. That is, the metal plate (washer) 270 is positioned at the opening of the core material (insulating base material 220).
  • a first copper plate 230 having a through hole 233 communicating with the through hole 271 of the metal plate 270 is disposed on the surface of the insulating substrate 220.
  • the laminated body of the insulating substrate 220 and the copper plates 230, 240 is heated and pressed using the upper and lower plates 280, 290 to be completely joined. That is, it joins with the adhesives 222 and 223 by applying heat and pressure with a laminating press.
  • solder 260 as a conductive material is placed in the through hole 233 of the first copper plate 230 including the inside of the through hole 243 of the second copper plate 240 and the through hole 271 of the metal plate 270. Fill.
  • solder paste is applied to the formation region of the through hole 233 on the surface of the first copper plate 230 and the periphery thereof. Then, by heating in the solder reflow furnace, the solder having fluidity flows downward from the application area of the solder paste, and the first copper plate including the inside of the through hole 243 of the second copper plate 240. The solder 260 is filled in the through holes 233 of the 230 and the through holes 271 of the metal plate 270.
  • the through hole 243 is formed in the second copper plate 240, when the gas (air) confined in the space between the solder paste and the second copper plate 240 is warmed, the gas passes through the through hole 243. Can escape. By removing the gas, the solder wettability is stabilized. Further, by visually confirming the filling of the solder 260 into the through-hole 243 from the back surface (lower surface) of the wiring board 210, it can be seen that the solder 260 by reflow is sufficiently contained, and the quality of soldering can be determined. .
  • the amount of solder can be saved by raising the metal plate (washer) 270.
  • FIG. 16 the present embodiment using the metal plate (washer) 270 of FIG. 16 is compared with the comparative example not using the metal plate (washer) 270 of FIG.
  • a metal plate (washer) 270 in FIGS. 16A, 16B, and 16C, a mask 265 is disposed and a solder paste 262 is applied to a desired region by a squeegee 266.
  • the solder paste 262 adheres to the substrate-side surfaces S1, S2, S3, and S4 by the force of the flux, and the mask 265 is removed as shown in FIG. 16C.
  • the solder paste 262 cleanly separates from the mask 265.
  • FIG. 16B the case of FIG.
  • the bonding surfaces of the solder paste 262 become S1 and S2, and the bonding surfaces decrease. For this reason, when the mask 265 is removed because the adhesive strength of the solder paste 262 is weak, the solder paste 262 may adhere to the mask 265 as shown in FIG.
  • the solder paste adheres to the metal plate (washer) 270, so that it is possible to prevent the solder paste from adhering to the mask when the mask is removed.
  • a through hole 243 is provided at a portion corresponding to the center of the base material through hole 221, and air is vented (degassed) using this through hole 243. By using it as a hole, the solder filling amount can be confirmed.
  • the first extending portion 232 may not be provided.
  • the second copper plate 240 has a second extending portion 242 extending from the joint portion 241 joined to the insulating substrate 220 to the opening of the base material through hole 221.
  • a metal plate 270 in which a through hole 271 was formed was disposed inside the substrate through hole 221, and solder 260 as a conductive material was filled in the through hole 271 of the metal plate 270. Therefore, a large current can flow through the conductive path 250 connecting the front and back sides.
  • the space filled with the solder 260 is narrowed by the metal plate 270 disposed in the space filled with the solder 260, the amount of the solder 260 to be filled can be reduced.
  • a through hole 243 communicating with the through hole 271 of the metal plate 270 was formed in the extended portion 242 of the second copper plate 240. With this through hole 243, it is possible to perform at least one of degassing in the substrate through hole 221 (through hole 271) and inspection of the conductive path.
  • the first copper plate 230 extends from the joint portion 231 joined to the insulating substrate 220 to the opening portion of the base material through hole 221, and forms a first through hole 233 smaller than the base material through hole 221.
  • the extending portion 232 is provided.
  • a metal plate 270 having a through hole 271 communicating with the through hole 233 of the first copper plate 230 is disposed inside the substrate through hole 221, and the through hole 233 of the first copper plate 230 and the through hole of the metal plate 270 are arranged. 271 is filled with solder 260 as a conductive material. Therefore, it is preferable for positioning the metal plate 270.
  • the method for manufacturing a wiring board includes a second metal plate arranging step, a plate material arranging step, a first metal plate arranging step, and a solder filling step.
  • the second copper plate 240 is formed on the back surface of the insulating substrate 220 and is located at the opening of the base material through hole 221 and has a through hole 243 smaller than the base material through hole 221.
  • the metal plate 270 that communicates with the through hole 243 of the second copper plate 240 and has a larger through hole 271 than the through hole 243 of the second copper plate 240 is formed inside the base material through hole 221. Deploy.
  • a first copper plate 230 in which a through hole 233 communicating with the through hole 271 of the metal plate 270 is formed on the surface of the insulating substrate 220 is arranged.
  • the solder 260 as the conductive material is filled into the through holes 233 of the first copper plate 230 and the through holes 271 of the metal plate 270 including the inside of the through holes 243 of the second copper plate 240.
  • the wiring board (10) can be obtained.
  • a metal plate (washer) 270 in which a through hole 271 is formed may be bonded onto the second copper plate 240. More specifically, as shown in FIG. 18A, a second copper plate 240 is disposed on the stage 295, and an adhesive 223 is applied to the upper surface of the second copper plate 240. A die 296 is disposed on the second copper plate 240, and a die hole 296a is formed in the die 296. An unprocessed metal plate 297 is disposed on the die 296, a stripper 298 is disposed thereon, and a stripper hole 298 a is formed in the stripper 298. A punch 299 enters the stripper hole 298a.
  • the punch 299 is lowered into the stripper hole 298a, and the metal plate 297 is punched out as shown in FIG. 18 (b) to form a metal plate (washer) 270 having a through hole 271. Further, the punch 299 is lowered into the die hole 296a, and the punched washer (the metal plate 270 having the through hole 271) is pressed against the adhesive 223.
  • the punch 299 is raised and the die 296 is raised.
  • the metal plate (washer) 270 in which the through hole 271 is formed is bonded onto the second copper plate 240.
  • the insulating substrate 220 in which the base material through-hole 221 is formed is bonded onto the second copper plate 240.
  • burrs are generated by punching by bonding the washer (the metal plate 270 having the through hole 271) to the upper surface of the second copper plate 240, but this bites into the adhesive 223. Therefore, the adhesive strength can be further improved.
  • the adhesive 223 is preferably conductive.
  • a metal plate 297 having a through hole 271 formed in advance may be used.
  • the embodiment is not limited to the above, and may be embodied as follows, for example.
  • the wiring boards 10 and 210 are configured using a thick copper substrate, the present invention is not limited to this, and for example, an aluminum plate or the like may be used as a metal plate instead of a copper plate.
  • solder was used as the conductive material, other low melting point metals may be used.
  • the bending angle of the first bent part 32, the bending angle of the second bent part 42 (slanted part 42a), the bending angle of the first bent part 35, the second bent part 45 ( The bending angle of the inclined portion 45a) is not limited.
  • the number of through holes formed in the second metal plate is not limited. For example, about 1 to 4 pieces may be prepared. In the case of a plurality of through holes, the through holes are preferably arranged at equal angular intervals.
  • the metal plate on which the bent portion is formed is extended from the joint portion joined to the base material, and the metal plate on which the bent portion is not formed is provided on the base material. It is good also as a structure which is not extended from the junction part joined.
  • wiring board 220 ... insulating substrate, 221 ... Substrate through hole, 230 ... first copper plate, 231 ... first joint, 232 ... first extension, 233 ... first through hole, 240 ... second copper plate, 241 ... second 242 ... second extending portion, 243 ... second through hole, 250 ... conductive path, 260 ... solder, 270 ... metal plate, 271 ... 3 of the through-hole.

Abstract

 導電路50は第一の銅板30と第二の銅板40とはんだ60とから構成されている。第一の銅板30は、絶縁基板20に接合される第一の接合部31から延設され、絶縁基板20の裏面に向かって折れ曲がる第一の折曲り部32を有する。第二の銅板40は、絶縁基板20に接合される第二の接合部41から延設され、絶縁基板20の表面へ向かって折れ曲がり、かつ、第一の折曲り部32と共に基材貫通孔21の内壁面を覆うように配置される第二の折曲り部42を有する。第二の銅板40における基材貫通孔21の内部を臨む部位には貫通孔43,44が設けられ、貫通孔43,44の内部を含めた第一の折曲り部32と第二の折曲り部42との間に、はんだ60が充填されている。これにより、第一の銅板30と第二の銅板40とを接続する導電路を通して大きな電流を流すことができるとともに、導電路を構成する導電材の量を少なくすることができる配線板および配線板の製造方法を提供する。

Description

配線板および配線板の製造方法
 本発明は、配線板および配線板の製造方法に関するものである。
 基板内の層間接続は、一般的に銅めっきにより行われている。例えば、図19に示すように、絶縁基板300での表面層(例えば銅箔)301と裏面層(例えば銅箔)302との間を、貫通孔303の内壁面に形成した銅めっき層304で接続する。このような一般的な銅めっきで層間接続した場合、銅めっき層304に大きな電流(例えば120アンペア)は流せない。
 特許文献1には大電流を流すための技術が開示されている。詳しくは、プリント配線板において、基板の表面側と裏面側とを貫通する電流用スルーホールを複数本密集させて配置する。これにより、バスバーを用いずに50~180アンペアの大電流を流すことができる。
特開2010-267649号公報
 ところで、図19の構成において、銅めっき層304に大きな電流(例えば120アンペア)は流せないので、図20に示すように、めっき時間を長くして厚い銅めっき層305を形成することが考えられる。ところが、基板の表面もΔHだけ盛り上がってしまい、後工程における電子部品の基板表面への実装、はんだの塗布が困難になる。
 本発明の目的は、表面の金属板と裏面の金属板とを接続する導電路を通して大きな電流を流すことができるとともに、導電路を構成する導電材の量を少なくすることができる配線板および配線板の製造方法を提供することにある。
 上記目的を達成するため、本発明の第1の態様に係る配線板は、表面と裏面と側面とを有する基材と、前記表面に接合される第一の金属板と、前記裏面に接合される第二の金属板と、前記第一の金属板と第二の金属板との間を導電するように構成される導電路とを備える。同導電路は、前記基材に形成された基材貫通孔の内壁面によって画定される内部空間または前記基材の側面より外側の外部空間に設けられる。前記導電路は、前記第一の金属板と、前記第二の金属板と、前記第一の金属板と前記第二の金属板とを電気的に接続する導電材とを含む。前記第一の金属板および前記第二の金属板の少なくとも一方は、前記基材に接合される接合部と、前記内壁面または前記側面を覆うように前記接合部から折れ曲がるように延びる折曲り部とを有する。前記折曲り部の内側部に前記導電材が充填される。
 上記構成によれば、第一の金属板および第二の金属板の少なくとも一方は、前記基材に接合される接合部と、前記内壁面または前記側面を覆うように前記接合部から折れ曲がるように延びる折曲り部を有する。折曲り部の内側部に導電材が充填されている。
 導電路は、基材の表面に接合される第一の金属板と、基材の裏面に接合される第二の金属板と、第一の金属板と第二の金属板とを電気的に接続する導電材とを含む。この導電路によって、基材を貫通する基材貫通孔の内部空間または基材の側面より外側の外部空間にて第一の金属板と第二の金属板とが導電する。これにより、第一の金属板と第二の金属板とを接続する導電路を通して大きな電流を流すことができる。また、導電材が充填される空間が狭くなるので、充填する導電材の量を少なくすることができる。
 好ましくは、前記第一の金属板は、前記接合部としての第一の接合部と前記折曲り部としての第一の折曲り部とを有する。同第一の折曲り部は前記裏面に向かって折れ曲がる。前記第二の金属板は、前記接合部としての第二の接合部と前記折曲り部としての第二の折曲り部とを有する。同第二の折曲り部は前記第一の折曲り部と共に前記内壁面または前記側面を覆うように前記表面に向かって折れ曲がる。前記導電材は前記第一の折曲り部と前記第二の折曲り部との間に充填される。
 上記構成によれば、第一の金属板と第二の金属板とを接続する導電路を通して大きな電流を流すことができる。また、導電材が充填される箇所は、基材の裏面に向かって折れ曲がる第一の折曲り部と、基材の表面に向かって折れ曲がる第二の折曲り部との間であり、第一の折曲り部及び第二の折曲り部は基材側に折れ曲がっているので、導電材が溶融してから下側へ流れやすくなる。
 好ましくは、前記第二の金属板は、前記内部空間または前記外部空間に臨む部位に貫通孔を有する。
 上記構成によれば、貫通孔によって、基材貫通孔内のガス抜き、および、導電路の検査の少なくとも一方を行うことが可能となる。
 好ましくは、前記導電路は前記内部空間に設けられる。前記第一の折曲り部は、前記表面に開口する前記基材貫通孔の開口端から前記内部空間に向かって折れ曲がるとともに、前記基材貫通孔の中心部に対応する部位に貫通孔を有している。前記第二の折曲り部は、前記裏面に開口する前記基材貫通孔の開口端から前記内部空間に向かって折れ曲がるとともに、前記第一の折曲り部の貫通孔内に挿入されている。
 上記構成によれば、基材貫通孔の内部空間に形成された導電路を用いて確実に電気的接続をすることができる。
 好ましくは、前記第二の金属板に形成されている前記貫通孔は、断面円形の前記基材貫通孔の中心軸線を中心とした円周上に複数設けられている。
 上記構成によれば、断面円形の基材貫通孔の中心軸線を中心とした円周上に複数設けられた貫通孔により、導電路の検査をより確実に行うことができる。
 好ましくは、前記第二の金属板に形成されている前記複数の貫通孔は等角度間隔をもって配置されている。
 上記構成によれば、複数の貫通孔は等角度間隔をもって配置されているので、導電路の検査をより確実に行うことができる。
 本発明の第2の態様に係る配線板は、表面と裏面と基材貫通孔とを有する基材と、前記表面に接合される第一の金属板と、前記裏面に接合される第二の金属板と、前記第一の金属板と第二の金属板との間を導電するように前記貫通孔の内部空間に設けられる導電路とを備える。前記導電路は、前記第一の金属板と、前記第二の金属板と、前記第一の金属板と前記第二の金属板とを電気的に接続する導電材とを含む。前記第二の金属板は、前記基材に接合される接合部と同接合部から前記基材貫通孔の開口部に延びる延設部とを有する。前記内部空間に貫通孔を有する板材が配置される。前記板材の貫通孔の内部に前記導電材が充填される。
 上記構成によれば、第二の金属板は、前記基材に接合される接合部と同接合部から前記基材貫通孔の開口部に延びる延設部とを有する。基材貫通孔の内部空間には、貫通孔を有する板材が配置されている。板材の貫通孔の内部に導電材が充填されている。
 導電路は、基材の表面に接合される第一の金属板と、基材の裏面に接合される第二の金属板と、第一の金属板と第二の金属板とを電気的に接続する導電材とを含む。この導電路によって、基材を貫通する基材貫通孔の内部空間にて第一の金属板と第二の金属板とが導電する。これにより、第一の金属板と第二の金属板とを接続する導電路を通して大きな電流を流すことができる。また、導電材が充填される空間に配した板材により、導電材が充填される空間が狭くなるので、充填する導電材の量を少なくすることができる。
 好ましくは、前記延設部は、前記板材の貫通孔と連通する貫通孔を有する。
 上記構成によれば、第二の金属板における延設部が有する貫通孔によって、基材貫通孔内のガス抜き、および、導電路の検査の少なくとも一方を行うことが可能となる。
 好ましくは、前記第一の金属板は、前記基材に接合される接合部と同接合部から前記基材貫通孔の開口部に延びる延設部とを有する。同延設部は前記基材貫通孔よりも小さい貫通孔を有している。前記板材の前記貫通孔は前記第一の金属板の貫通孔と連通し、前記第一の金属板の貫通孔および前記板材の貫通孔の内部に前記導電材が充填される。
 
 本発明の第3の態様に係る配線板の製造方法において、配線板は、表面と裏面と側面とを有する基材と、前記表面に接合される第一の金属板と、前記裏面に接合される第二の金属板と、前記第一の金属板と第二の金属板との間を導電するように構成される導電路であって、同導電路は前記基材に形成された基材貫通孔の内壁面によって画定される内部空間に設けられ、前記導電路は、前記第一の金属板と、前記第二の金属板と、前記第一の金属板と前記第二の金属板とを電気的に接続する導電材とを含む、前記導電路と、を備える。前記第一の金属板および前記第二の金属板の少なくとも一方は、前記基材に接合される接合部と、前記内壁面を覆うように前記接合部から折れ曲がるように延びる折曲り部とを有する。前記配線板の製造方法は、前記表面に前記第一の金属板を接合する工程と、前記裏面に前記基材貫通孔の一方の開口端を塞ぐように前記第二の金属板を接合する工程と、前記第一の金属板の表面において前記基材貫通孔の他方の開口端に対応する部位にはんだペーストを塗布する工程と、前記第二の金属板において前記内部空間に臨む部位に貫通孔を形成する工程と、前記はんだペーストをリフローして前記第二の金属板の貫通孔からガスを抜きながら当該貫通孔と前記折曲り部の内側部とによって形成された空間に導電材としてのはんだを充填する工程と、を備える。
 上記構成によれば、金属板接合工程において、基材の表面に第一の金属板が接合されるとともに基材の裏面に第二の金属板が基材貫通孔の一方の開口端を塞ぐ状態で接合される。塗布工程において、第一の金属板の表面において基材貫通孔の他方の開口端に対応する部位には、はんだペーストが塗布される。リフロー工程において、はんだペーストがリフローされて第二の金属板における基材内部空間に臨む部位に形成した貫通孔からガスが抜かれながら貫通孔の内部を含む折曲り部の内側部に導電材としてのはんだが充填される。
 これにより、第1の態様に記載の配線板を得ることが可能となる。この配線板の製造の際のリフロー工程において基材貫通孔内のガスが抜かれることにより、はんだ濡れ性が安定する。
 本発明の第4の態様に係る配線板の製造方法において、配線板は、表面と裏面と側面とを有する基材と、前記表面に接合される第一の金属板と、前記裏面に接合される第二の金属板と、前記第一の金属板と第二の金属板との間を導電するように構成される導電路と、を備える。同導電路は前記基材に形成された基材貫通孔の内壁面によって画定される内部空間に設けられ、前記導電路は、前記第一の金属板と、前記第二の金属板と、前記第一の金属板と前記第二の金属板とを電気的に接続する導電材とを含む。前記配線板の製造方法は、前記裏面に貫通孔を有する前記第二の金属板を配置する工程であって、前記第二の金属板の貫通孔は、前記基材貫通孔の開口部と対応するように位置するとともに前記基材貫通孔よりも小さい開口面積を有する、前記工程と、前記基材貫通孔に貫通孔を有する板材を配置する工程であって、前記板材の貫通孔は、前記第二の金属板の貫通孔と連通するとともに第二の金属板の貫通孔よりも大きい開口面積を有する、前記工程と、前記表面に貫通孔を有する前記第一の金属板を配置する工程であって、前記第一の金属板の貫通孔は前記板材の貫通孔と連通する、前記工程と、前記第二の金属板の貫通孔と前記第一の金属板の貫通孔と前記板材の貫通孔とによって形成された空間に導電材としてのはんだを充填する工程と、を備える。
 上記構成によれば、第二の金属板配置工程において、基材の裏面に、基材貫通孔の開口部に位置し基材貫通孔よりも小さい貫通孔を形成した第二の金属板が配置される。板材配置工程において、基材貫通孔の内部に、第二の金属板の貫通孔と連通し、かつ第二の金属板の貫通孔よりも大きい貫通孔を形成した板材が配置される。第一の金属板材配置工程において、基材の表面に、板材の貫通孔と連通する貫通孔を形成した第一の金属板が配置される。充填工程において、第二の金属板の貫通孔の内部を含めた第一の金属板の貫通孔および板材の貫通孔の内部空間に導電材としてのはんだが充填される。
 上記構成によれば、第2の態様に係る配線板を得ることが可能となる。
 本発明によれば、表裏を接続する導電路を通して大きな電流を流すことができるとともに、導電路を構成する導電材の量を少なくすることができる。
(a)は本発明の第1の実施形態に係る配線板の平面図、(b)は図1(a)のI-I線に沿った縦断面図、(c)は配線板の下面図。 (a)は図1(a)の配線板の製造工程を説明するための配線板の平面図、(b)は(a)のII-II線に沿った縦断面図、(c)は配線板の下面図。 (a)は図1の配線板の製造工程を説明するための配線板の平面図、(b)は(a)のIII-III線に沿った縦断面図、(c)は配線板の下面図。 (a)は図1の配線板の製造工程を説明するための配線板の平面図、(b)は(a)のIV-IV線に沿った縦断面図、(c)は配線板の下面図。 (a)は本発明の第2の実施形態に係る配線板の平面図、(b)は(a)のV-V線に沿った縦断面図、(c)は配線板の下面図。 (a)は図5(a)の配線板の製造工程を説明するための配線板の平面図、(b)は(a)のVI-VI線に沿った縦断面図、(c)は配線板の下面図。 (a)は図5の配線板の製造工程を説明するための配線板の平面図、(b)は(a)のVII-VII線に沿った縦断面図、(c)は配線板の下面図。 (a)は図5の配線板の製造工程を説明するための配線板の平面図、(b)は(a)のVIII-VIII線に沿った縦断面図、(c)は配線板の下面図。 (a)は本発明の第3の実施形態に係る配線板の平面図、(b)は(a)のIX-IX線に沿った縦断面図、(c)は配線板の下面図。 (a)は図9(a)の配線板の製造工程を説明するための配線板の平面図、(b)は(a)のX-X線に沿った縦断面図、(c)は配線板の下面図。 (a)は本発明の第4の実施形態に係る配線板の平面図、(b)は(a)のXI-XI線に沿った縦断面図、(c)は配線板の下面図。 図11(a)の配線板の分解断面図。 (a)~(c)は図11(a)の配線板の製造工程を説明するための配線板の縦断面図。 (a),(b)は図11(a)の配線板の製造工程を説明するための配線板の縦断面図。 比較のための配線板の縦断面図。 (a)~(c)は図11(a)の配線板のはんだペーストの塗布工程を説明するための縦断面図。 (a)~(c)は比較のためのはんだペーストの塗布工程を説明するための縦断面図。 (a)~(c)は変形例の製造工程を説明するための縦断面図。 従来の配線板の縦断面図。 従来の配線板の縦断面図。
 (第1の実施形態)
 以下、本発明を具体化した第1の実施形態を図面に従って説明する。
 図1に示すように、配線板10は厚銅基板を用いて構成している。つまり、基材としての絶縁基板20の上面に、第一の金属板としての第一の銅板30が接着されている。また、絶縁基板20の下面に、第二の金属板としての第二の銅板40が接着されている。第一の銅板30は、所望の形状にパターニングされ、電流経路となる。また、第二の銅板40は、所望の形状にパターニングされ、電流経路となる。
 具体的には、絶縁基板20には、例えば、ガラス・エポキシ樹脂基板を用いることができる。また、絶縁基板20の厚さは、例えば400μm、第一の銅板30の厚さは、例えば500μmであり、第二の銅板40の厚さは、例えば500μmである。
 そして、第一の銅板30からなる導体パターンと第二の銅板40からなる導体パターンとが、以下の構成にて電気的に接続されている。
 配線板10は、絶縁基板20を貫通する基材貫通孔21の内部にて、絶縁基板20の表面(上面)に接合される第一の銅板30と、絶縁基板20の裏面(下面)に接合される第二の銅板40とを導電する導電路50が形成されている。基材貫通孔21は円形をなしている。
 導電路50は、第一の銅板30と、第二の銅板40と、第一の銅板30と第二の銅板40とを電気的に接続する導電材としてのはんだ60とを含む。
 第一の銅板30は第一の折曲り部32を有する。第一の折曲り部32は、第一の接合部31から延設され、絶縁基板20の裏面側(下面側)へ折れ曲がっている。詳しくは、第一の折曲り部32は、基材貫通孔21における絶縁基板20の表面側(上面側)の開口部から基材貫通孔21の内部に折れ曲がっている。第一の折曲り部32は、基材貫通孔21の開口部から斜め下方に直線的に延びている。また、第一の折曲り部32における基材貫通孔21の中央部に対応する部位には貫通孔33が形成されている。貫通孔33は円形をなしている。
 第二の銅板40には2つの貫通孔43,44が形成されているとともに、第二の銅板40は第二の折曲り部42を有しており、第二の折曲り部42は、第二の接合部41から延設されている。また、第二の折曲り部42は基材貫通孔21の中央部に対応する部位に形成されている。また、第二の折曲り部42は斜状部42aと水平部42bを有する。第二の折曲り部42は、絶縁基板20の表面側(上面側)へ折れ曲がり、かつ、第一の折曲り部32と共に基材貫通孔21の内壁面を覆うように配置されている。詳しくは、第二の折曲り部42の斜状部42aは、基材貫通孔21における絶縁基板20の裏面側(下面側)の開口部から基材貫通孔21の内部に向かって斜め上方に直線的に延びるように折れ曲がるとともに第一の折曲り部32の貫通孔33内に挿入されている。斜状部42aの先端には水平部42bが位置している。水平部42bは平面視で円形をなすとともに、水平部42bの上面は水平面をなしている。水平部42bの上面は、配線板10における上面(第一の銅板30の上面)から若干低くなっている。
 貫通孔43,44は、第二の銅板40における基材貫通孔21の内部を臨む部位に設けられている。詳しくは、貫通孔43,44は、第二の銅板40における基材貫通孔21の開口部の外周と第二の折曲り部42の根元部分との間において形成されている。より詳しくは、第二の銅板40における斜状部42aにより近い部位に貫通孔43,44が形成されている。2つの貫通孔43,44は、円形の基材貫通孔21の中心Oを中心とした円周上に設けられている。各貫通孔(43,44)は等角度間隔をもって配置されている。貫通孔43,44は円形をなしている。
 また、貫通孔43,44の内部を含む第一の折曲り部32と第二の折曲り部42との間の空間に、はんだ60が充填されている。貫通孔43,44により、はんだ60が流し込まれていることを目視することができるすなわち、貫通孔43,44により、はんだ60が流し込まれていることを保証することができる。
 次に、このように構成した配線板10の作用について説明する。
 図1において、絶縁基板20の表面に第一の銅板30が接合されているとともに絶縁基板20の裏面に第二の銅板40が接合されている。第一の折曲り部32と第二の折曲り部42との間の空間には、はんだ60が充填されている。第一の銅板30と第二の銅板40とは、互いに、はんだ60により導電している。
 そして、第一の銅板30から第二の銅板40に電流Iが流れる。詳しくは、第一の折曲り部32から、はんだ60を通して第二の折曲り部42に電流が流れる。このとき、大きな電流(例えば120アンペア)を流すことができる。
 このように、両面の銅板30,40の形状を工夫し、はんだ付けにより、層間に大きな電流(例えば120アンペア)を流すことができる。
 次に、このように構成した配線板10の製造方法について説明する。
 まず、図2に示すように、絶縁基板20と、第一の銅板30と、第二の銅板40とを用意する。ここで、絶縁基板20には基材貫通孔21が形成されている。また、第一の銅板30には第一の折曲り部32が形成されている。さらに、第二の銅板40には第二の折曲り部42が形成されている。
 そして、絶縁基板20の上面に第一の銅板30を接着するとともに絶縁基板20の下面に第二の銅板40を接着する。このとき、絶縁基板20の基材貫通孔21に第一の銅板30の第一の折曲り部32を位置させる。また、絶縁基板20の基材貫通孔21に第二の銅板40の第二の折曲り部42を、第一の折曲り部32と共に基材貫通孔21の内壁面を覆うように配置させる。第一の折曲り部32と第二の折曲り部42との間に空隙が形成され、この空隙は、はんだ60の充填空間となっている。
 引き続き、図3に示すように、第一の銅板30における貫通孔33の形成領域(第二の折曲り部42の水平部42bの上)およびその周囲に、はんだペースト61を塗布する。このはんだペースト61の塗布は、基材貫通孔21での、はんだペースト61の塗布領域以外の領域はメタルマスクで覆った状態で行われる。つまり、配線板10の上面は平坦であり、凸のない銅板表面を確保しており、所望の領域に、はんだペーストを印刷することができる。また、当該はんだペースト塗布工程において、配線板10における両面接続部位(基材貫通孔21)以外の他の領域における表面実装部品の配置領域においても、はんだペーストを塗布する。
 そして、はんだリフロー炉において加熱することにより、流動性を有するはんだが、はんだペースト61の塗布領域よりも下方の第一の折曲り部32と第二の折曲り部42との間に流入していき、図1に示すように、第一の折曲り部32と第二の折曲り部42との間が、はんだ60により充填される。また、貫通孔43,44内に、はんだ60が充填される。
 また、裏面(下面)から、貫通孔43,44へのはんだ60の充填を視認することにより、リフローによるはんだ60が第一の折曲り部32と第二の折曲り部42との間に充分入っていることが分かり、はんだ付けの良否を判定することができる。具体的には、第二の銅板40は赤黒い色であり、はんだ60は銀色をしているので、容易に判別することができる。これにより、接続を保証することができる。
 つまり、図4に示すように、第一の折曲り部32と第二の折曲り部42との間に、はんだ60を充填する際に、貫通孔43,44内に、はんだ60が充填されていない場合、次のようになる。貫通孔43,44を通して、はんだ60を視認するこができない。これにより、はんだ付け不良であることが分かる。つまり、はんだリフローで溶けても充分拡がっていないことが分かる。即ち、接続保証できない。不良の原因としては、例えば、リフロー温度が低い、リフロー時間が短い、銅板の表面が酸化によりはんだが拡がりにくくなっている等が挙げられる。
 このようにして、はんだ付け性確認用に複数の貫通孔(43,44)を用意しておき、出荷検査時に、はんだ濡れ性の確認を行うことができる。
 つまり、下側の第二の銅板40に貫通孔43,44を形成しておき、上側の第一の銅板30に、はんだペースト61を塗布した状態から、はんだリフロー後に、下側の第二の銅板40の貫通孔43,44から視認してはんだ60が流れたことが分かる。すなわち、はんだ60が流れたことを確認することができる。
 以上のごとく本実施形態によれば、以下のような利点を得ることができる。
 (1)第一の銅板30と、第二の銅板40と、第一の銅板30と第二の銅板40とを電気的に接続する、はんだ60とから導電路50が構成され、この導電路50によって、基材貫通孔21の内部にて表面と裏面とが導電する。これにより、表裏を接続する導電路50を通して大きな電流を流すことができる。
 詳しく説明する。
 大きな電流(例えば120アンペア)を流すべく、図20に示すように、めっき時間を長くして厚い銅めっき層305を形成すると、基板の表面もΔHだけ盛り上がってしまい、後工程における電子部品の基板表面への実装、はんだの塗布が困難になる。つまり、凹凸のために対策を講じる必要が生じる。また、めっき工程時間が長くなり、基板コストが増えてしまう。これに対し本実施形態においては、基板の表面を平坦面とすることができ、電子部品の基板表面への実装を容易に行うことができる。また、めっき工程時間が長くなることもなく、基板コストの増大を回避することができる。
 また、折曲り部32,42の内側部に導電材としてのはんだ60を充填しており、はんだ60が充填される空間が狭くなるので、充填するはんだ60の量を少なくすることができる。「折曲り部32,42の内側部」とは、導電路を形成する第一の銅板30と第二の銅板40との間の空間に相当する。第1の実施形態では、「折曲り部32,42の内側部」は第一の折曲り部32と第二の折曲り部42との間の空間に相当する。
 また、第一の金属板としての第一の銅板30は、基材としての絶縁基板20に接合される第一の接合部31から延設され、絶縁基板20の裏面側へ折れ曲がる第一の折曲り部32を有する。第二の金属板としての第二の銅板40は、絶縁基板20に接合される第二の接合部41から延設され、絶縁基板20の表面側へ折れ曲がり、かつ、第一の折曲り部32と共に基材貫通孔21の内壁面を覆うように配置される第二の折曲り部42を有する。第一の折曲り部32と第二の折曲り部42との間に導電材としてのはんだ60を充填している。よって、導電材としてのはんだ60が充填される箇所(はんだ60が載る所)は、絶縁基板20の裏面側へ折れ曲がる第一の折曲り部32と、絶縁基板20の表面側へ折れ曲がる第二の折曲り部42との間であり、絶縁基板20側に折れ曲がっているので、はんだ60が溶融してから下側へ流れやすくなる。
 第二の銅板40における基材貫通孔21の内部を臨む部位には貫通孔43,44が形成されている。よって、貫通孔43,44によって、導電路50の検査を行うことが可能となる。つまり、貫通孔43,44から、第一の折曲り部32と第二の折曲り部42との間に、はんだ60が充填されていることを視認することができ、導電路50の検査を行うことができる。即ち、大きな電流が流れる電流経路となる部位に導電材としてのはんだ60が充填されていることを確認することができる。
 (2)第一の折曲り部32は、基材貫通孔21における絶縁基板20の表面側の開口部から基材貫通孔21の内部に折れ曲がるとともに基材貫通孔21の中心部に対応する部位には貫通孔33が形成されている。また、第二の折曲り部42は、基材貫通孔21における絶縁基板20の裏面側の開口部から基材貫通孔21の内部に折れ曲がるとともに第一の折曲り部32の貫通孔33内に挿入されている。よって、基材貫通孔21の内部に形成された導電路50を用いて確実に電気的接続を実施することができる。
 (3)第二の銅板40に形成されている貫通孔(43,44)は、円形の基材貫通孔21の中心Oを中心とした円周上に複数設けられているので、導電路50の検査をより確実に行うことができる。
 (4)第二の銅板40に形成されている各貫通孔(43,44)は等角度間隔をもって配置されているので、導電路の検査をより確実に行うことができる。
 (5)本実施形態の配線板(厚銅基板)10は、電気自動車、ハイブリッド車および電車に用いると好ましい。これは、他の実施形態の配線板(厚銅基板)についても同様である。
 (第2の実施形態)
 次に、第2の実施形態を、第1の実施形態との相違点を中心に説明する。
 図1においては基材貫通孔21の内部にて第一の銅板30と第二の銅板40とを導電する導電路が形成される配線板を示した。本実施形態では図5に示すように、絶縁基板20の側面側にて第一の銅板30と第二の銅板40とを導電する導電路55が形成されている。導電路55は、第一の銅板30と、第二の銅板40と、第一の銅板30と第二の銅板40とを電気的に接続する導電材としてのはんだ65とを含む。
 第一の銅板30は、絶縁基板20に接合される第一の接合部31から延設され、絶縁基板20の裏面側(下面側)へ折れ曲がる第一の折曲り部35を有する。第一の折曲り部35は、絶縁基板20の側面22から斜め下方に直線的に延びている。一方、第二の銅板40は、絶縁基板20に接合される第二の接合部41から延設され、絶縁基板20の表面側(上面側)へ折れ曲がり、かつ、第一の折曲り部35と共に絶縁基板20の側面22を覆うように配置される第二の折曲り部45を有する。
 第二の折曲り部45は斜状部45aと水平部45bとを有する。第二の折曲り部45の斜状部45aは斜め上方に直線的に延びている。また、第二の折曲り部45の水平部45bは斜状部45aの上端から水平方向に延びている。水平部45bの上面は配線板10における上面(第一の銅板30の上面)と同一高さとなっている(面一)となっている。
 第二の銅板40における絶縁基板20の側面側を臨む部位には貫通孔47が設けられている。詳しくは、貫通孔47は、図5(b)に示すように絶縁基板20の側面22にほぼ接する位置に形成されている。また、図5(c)に示すように貫通孔47は、第二の銅板40の幅方向の中心に形成されている。貫通孔47は円形をなしている。
 貫通孔47の内部を含めた第一の折曲り部35と第二の折曲り部45との間に、はんだ65が充填されている。
 次に、このように構成した配線板10の製造方法について説明する。
 まず、図6に示すように、絶縁基板20と、第一の銅板30と、第二の銅板40とを用意する。第一の銅板30においては第一の折曲り部35が形成されている。また、第二の銅板40においては第二の折曲り部45が形成されている。
 そして、絶縁基板20の上面に第一の銅板30を接着するとともに絶縁基板20の下面に第二の銅板40を接着する。このとき、絶縁基板20の側面22の部位に第一の銅板30の第一の折曲り部35を位置させる。また、絶縁基板20の側面22の部位に第二の銅板40の第二の折曲り部45を、第一の折曲り部35と共に絶縁基板20の側面22を覆うように配置させる。第一の折曲り部35と第二の折曲り部45との間に空隙が形成され、この空隙は、はんだ65の充填空間となっている。
 引き続き、図7に示すように、絶縁基板20の側面側における第一の銅板30の第一の折曲り部35と第二の銅板40の第二の折曲り部45との隙間部分およびその周囲に、はんだペースト66を塗布する。つまり、配線板10の上面は平坦であり、凸のない銅板表面を確保しており、所望の領域に、はんだペーストを印刷することができる。当該はんだペースト66の塗布工程において、第二の折曲り部45の水平部45bの上面の一部領域(先端側)にメタルマスクが位置する。
 そして、はんだリフロー炉において加熱することにより図5に示すように、第一の折曲り部35と第二の折曲り部45との間が、はんだ65により充填される。また、貫通孔47内に、はんだ65が充填される。また、裏面(下面)から、貫通孔47へのはんだ65の充填を視認することによりはんだ付けの良否を判定することができる。
 つまり、図8に示すように、第一の折曲り部35と第二の折曲り部45との間に、はんだ65を充填する際に、貫通孔47内に、はんだ65が充填されていない場合、次のようになる。貫通孔47を通して、はんだ65を視認するこができない。これにより、はんだ付け不良であることが分かる。
 以上のごとく本実施形態によれば、以下のような利点を得ることができる。
 (5)配線板の構造として、第一の金属板としての第一の銅板30および第二の金属板としての第二の銅板40は、基材としての絶縁基板20に接合される接合部31,41から延設され、絶縁基板20側へ折れ曲がり、かつ、絶縁基板20の側面を覆うように配置される折曲り部35,45を有する。また、折曲り部35,45の内方に導電材としてのはんだ65を充填している。さらに、第二の銅板40における絶縁基板20の側面22側を臨む部位には貫通孔47が設けられ、貫通孔47の内部を含めた折曲り部35,45の内方に導電材としてのはんだ65を充填している。これにより、表裏を接続する導電路を通して大きな電流を流すことができる。また、導電材としてのはんだ65が充填される空間が狭くなるので、充填するはんだ65の量を少なくすることができる。さらに、貫通孔47から、折曲り部35,45の内方に導電材としてのはんだ65が充填されていることを視認することができ、導電路の検査を行うことができる。
 なお、第一の銅板30および第二の銅板40のうち一方のみに折曲り部を有していてもよい。具体的には、例えば図5の第一の銅板30は絶縁基板20の側面22から外方に水平に延設されていてもよい。
 (第3の実施形態)
 次に、第3の実施形態を、第1の実施形態との相違点を中心に説明する。
 図9に示すように、絶縁基板20の上面に、第一の金属板としての第一の銅板30が接着されているとともに、絶縁基板20の下面に、第二の金属板としての第二の銅板40が接着されている。絶縁基板20の上面に接着された第一の銅板30は、所望の形状にパターニングされ、電流経路となる。また、絶縁基板20の下面に接着された第二の銅板40は、所望の形状にパターニングされ、電流経路となる。
 第一の銅板30からなる導体パターンと第二の銅板40からなる導体パターンとが電気的に接続される。
 配線板10は、絶縁基板20を貫通する基材貫通孔21の内部にて、絶縁基板20の表面(上面)に接合される第一の銅板30と、絶縁基板20の裏面(下面)に接合される第二の銅板40とを導電する導電路50が形成されている。基材貫通孔21は円形をなしている。
 導電路50は、第一の銅板30と、第二の銅板40と、第一の銅板30と第二の銅板40とを電気的に接続するはんだ110とを含む。第一の銅板30は折曲り部37を有する。折曲り部37は、絶縁基板20に接合される第一の接合部31から延設され、絶縁基板20の裏面側(下面側)へ折れ曲がっている。折曲り部37は、基材貫通孔21の開口部から斜め下方に直線的に延び、基材貫通孔21の内壁面を覆うように配置されている。また、折曲り部37における基材貫通孔21の中央部に対応する部位には貫通孔38が形成されている。貫通孔38は円形をなしている。
 第二の銅板40は折り曲げられることなく水平に延設され、第二の銅板40には円形の貫通孔49が形成されている。この貫通孔49は基材貫通孔21の中央部に位置している。貫通孔49の内部を含めた基材貫通孔21の内部には、はんだ110が充填されている。貫通孔49により、はんだリフローの際のガス抜きをすることができるとともに、はんだ110が流し込まれていることを目視することができる。すなわち、はんだ110が流し込まれていることを保証することができる。
 つまり、製造工程において、図10に示すように第一の銅板30における貫通孔38の形成領域およびその周囲に、はんだペースト111を塗布する。そして、はんだリフロー炉において加熱することにより、流動性を有するはんだが、はんだペースト111の塗布領域よりも下方に流入していき、図9に示すように、基材貫通孔21の内部において第一の銅板30と第二の銅板40との間が、はんだ110により充填される。また、貫通孔49内に、はんだ110が充填される。この際、貫通孔49が無い場合には、はんだリフローを行う際のはんだ溶融時に、はんだペースト111と第二の銅板40との間の空間に閉じ込められたガス(空気)が温められ、体積が増えることによりはんだペースト111が飛散してしまう虞がある。ここで、本実施形態においては第二の銅板40に貫通孔49が形成されているので、はんだペースト111と第二の銅板40との間の空間に閉じ込められたガスが温められると、貫通孔49を通してガスを逃がすことができる。このようにしてガスが抜かれることにより、はんだ濡れ性が安定する。
 また、配線板10の裏面(下面)から、貫通孔49へのはんだ110の充填を視認することにより、リフローによるはんだ110が充分入っていることが分かり、はんだ付けの良否を判定することができる。
 以上のごとく本実施形態によれば、以下のような利点を得ることができる。
 (6)配線板の構造として、第一の金属板としての第一の銅板30および第二の金属板としての第二の銅板40の少なくとも一方は、基材としての絶縁基板20に接合される接合部31,41から延設され、絶縁基板20側へ折れ曲がり、かつ、基材貫通孔21の内壁面を覆うように配置される折曲り部37を有する。また、折曲り部37の内方に導電材としてのはんだ110を充填している。さらに、第二の銅板40における基材貫通孔21の内部を臨む部位には貫通孔49が設けられ、貫通孔49の内部を含めた折曲り部37の内方に導電材としてのはんだ110が充填されている。これにより、表裏を接続する導電路50を通して大きな電流を流すことができる。また、導電材としてのはんだ110が充填される空間が狭くなるので、充填するはんだ110の量を少なくすることができる。さらに、貫通孔49から、折曲り部37の内方に導電材としてのはんだ110が充填されていることを視認することができ、導電路の検査を行うことができる。広義には、第二の金属板としての第二の銅板40における基材貫通孔21の内部を臨む部位には貫通孔49が形成され、貫通孔49によって、基材貫通孔21内のガス抜き、および、導電路50の検査の少なくとも一方を行うことが可能となる。
 (7)配線板の製造方法として、金属板接合工程と塗布工程とリフロー工程とを有する。図10に示すように、金属板接合工程では、基材としての絶縁基板20の表面に第一の金属板としての第一の銅板30を接合するとともに絶縁基板20の裏面に第二の金属板としての第二の銅板40を基材貫通孔21の一方の開口部を塞ぐ状態で接合する。塗布工程では、第一の銅板30の表面における基材貫通孔21の他方の開口部に、はんだペースト111を塗布する。図9に示すように、リフロー工程では、はんだペースト111をリフローして第二の銅板40における基材貫通孔21の内部を臨む部位に形成した貫通孔49からガスを抜きながら貫通孔49の内部を含めた折曲り部37の内方に導電材としてのはんだ110を充填する。これにより、図9に示す配線板が得られる。この配線板の製造の際のリフロー工程において基材貫通孔21内のガスが抜かれることにより、はんだ濡れ性が安定する。
 これは、第1の実施形態での貫通孔43,44についても言えることであり、図3および図1を用いて説明したはんだリフロー工程において貫通孔44,43から基材貫通孔21内のガスを抜くことができる。
 (第4の実施形態)
 次に、第4の実施形態を、図11~図14を用いて説明する。
 図11,12に示すように、本実施形態においては、はんだ供給空間に板材としての金属板(ワッシャ)270を設けている。金属板(ワッシャ)270により、はんだ供給空間を狭くすることができる。これにより、供給するはんだの量を減らすことができ、マスクを用いたはんだ塗布時にはんだをスムーズに塗布することができる。さらに、金属板(ワッシャ)270を設けるとともに銅板230,240に貫通孔271,233,243を設けることによって、貫通孔243にてガス抜き、および、はんだの充填の確認が可能となる。
 以下、詳しく説明する。
 配線板210は厚銅基板を用いて構成している。つまり、基材としての絶縁基板220の上面に、第一の金属板としての第一の銅板230が接着されている。また、絶縁基板220の下面に、第二の金属板としての第二の銅板240が接着されている。第一の銅板230は、所望の形状にパターニングされ、電流経路となる。また、第二の銅板240は、所望の形状にパターニングされ、電流経路となる。
 具体的には、絶縁基板220には、例えば、ガラス・エポキシ樹脂基板を用いることができる。また、絶縁基板220の厚さは、例えば400μm、第一の銅板230の厚さは、例えば500μmであり、第二の銅板240の厚さは、例えば500μmである。
 そして、第一の銅板230からなる導体パターンと第二の銅板240からなる導体パターンとが、以下の構成にて電気的に接続されている。
 厚銅基板にて構成される配線板210は、絶縁基板220を貫通する基材貫通孔221の内部にて、絶縁基板220の表面(上面)に接合される第一の銅板230と、絶縁基板220の裏面(下面)に接合される第二の銅板240とを導電する導電路250が形成されている。基材貫通孔221は円形をなしている。
 導電路250は、第一の銅板230と、第二の銅板240と、第一の銅板230と第二の銅板240とを電気的に接続する導電材としてのはんだ260とを含む。
 第一の銅板230は第一の延設部232を有する。第一の延設部232は、絶縁基板220に接合される第一の接合部231から基材貫通孔221の一方の開口部に水平に延設されている。また、第一の延設部232における基材貫通孔221の中央部に対応する部位には第1の貫通孔233が形成されている。基材貫通孔221の一方の開口部に位置する第1の貫通孔233は、円形をなし、基材貫通孔221よりも小さい。
 第二の銅板240は第二の延設部242を有する。第二の延設部242は、絶縁基板220に接合される第二の接合部241から基材貫通孔221の他方の開口部に水平に延設されている。また、第二の延設部242における基材貫通孔221の中央部に対応する部位には第2の貫通孔243が形成されている。基材貫通孔221の他方の開口部に位置する第2の貫通孔243は、円形をなしている。第2の貫通孔243は基材貫通孔221よりも小さく、かつ、第1の貫通孔233よりも小さい。第2の貫通孔243は、第二の銅板240における基材貫通孔221の内部を臨む部位に設けられている。
 絶縁基板220における基材貫通孔221の内部には金属板(ワッシャ)270が配置されている。金属板270は円板状をなし、基材貫通孔221に係合する。また、金属板270の中央部には第3の貫通孔271が形成されている。第3の貫通孔271は円形をなしている。第3の貫通孔271は第1の貫通孔233および第2の貫通孔243と連通し、かつ、第1の貫通孔233よりも小さく、第2の貫通孔243よりも大きい。
 また、第2の貫通孔243の内部を含めた第1の貫通孔233および第3の貫通孔271の内部に導電材としてのはんだ260が充填されている。第2の貫通孔243により、はんだ260が流し込まれていることを目視することができる。すなわち、はんだ260が流し込まれていることを保証することができる。
 次に、このように構成した配線板210の作用について説明する。
 図11において、絶縁基板220の表面に第一の銅板230が接合されているとともに絶縁基板220の裏面に第二の銅板240が接合されている。また、基材貫通孔221の内部に金属板270が配置されているとともに、貫通孔243の内部を含めた貫通孔233,271の内部にはんだ260が充填されている。第一の銅板230と第二の銅板240とは、互いに、はんだ260により導電している。
 そして、第一の銅板230から第二の銅板240に電流が流れる。詳しくは、第一の延設部232から、はんだ260を通して第二の延設部242に電流が流れる。このとき、大きな電流(例えば120アンペア)を流すことができる。
 このように、両面の銅板230,240の形状を工夫し、はんだ付けにより、層間に大きな電流(例えば120アンペア)を流すことができる。
 なお、金属板(ワッシャ)270に電流が流れてもよい。
 次に、このように構成した配線板210の製造方法について説明する。
 図13(a)に示すように、第二の銅板240に貫通孔243を形成する。図13(b)に示すように、コア材としての絶縁基板220には基材貫通孔221が形成されているとともに絶縁基板220の両面には接着剤222,223が塗布されている。そして、絶縁基板220の裏面に、基材貫通孔221の開口部に位置し基材貫通孔221よりも小さい貫通孔243を形成した第二の銅板240を配置する。
 図13(c)に示すように、基材貫通孔221の内部に、第二の銅板240の貫通孔243と連通し、かつ貫通孔243よりも大きい貫通孔271を形成した金属板270を配置する。この金属板(ワッシャ)270の配置の際、金属板(ワッシャ)270を嵌め込むだけでよい。即ち、コア材(絶縁基材220)の開口部で金属板(ワッシャ)270が位置決めされる。
 図14(a)に示すように、絶縁基板220の表面に、金属板270の貫通孔271と連通する貫通孔233を形成した第一の銅板230を配置する。
 図14(b)に示すように、上下のプレート280,290を用いて絶縁基板220、銅板230,240の積層体を加熱しつつ押圧して完全に接合する。つまり、積層プレスにより熱と圧力をかけて接着剤222,223で接合する。
 引き続き、図11に示すように、第二の銅板240の貫通孔243の内部を含めた第一の銅板230の貫通孔233および金属板270の貫通孔271の内部に導電材としてのはんだ260を充填する。
 詳しくは、第一の銅板230の表面における貫通孔233の形成領域およびその周囲にはんだペーストを塗布する。そして、はんだリフロー炉において加熱することにより、流動性を有するはんだが、はんだペーストの塗布領域よりも下方に流入していき、第二の銅板240の貫通孔243の内部を含めた第一の銅板230の貫通孔233および金属板270の貫通孔271の内部にはんだ260が充填される。
 この際、第二の銅板240に貫通孔243が形成されているので、はんだペーストと第二の銅板240との間の空間に閉じ込められたガス(空気)が温められると、貫通孔243を通してガスを逃がすことができる。ガスが抜かれることにより、はんだ濡れ性が安定する。また、配線板210の裏面(下面)から、貫通孔243へのはんだ260の充填を視認することにより、リフローによるはんだ260が充分入っていることが分かり、はんだ付けの良否を判定することができる。
 例えば、図15の場合においては層間を電気的に接続するために、大量のはんだが必要となる。これに対し図11に示す本実施形態では金属板(ワッシャ)270でかさ上げすることにより、はんだ量を節約できる。
 また、図16の金属板(ワッシャ)270を用いる本実施形態と、図17の金属板(ワッシャ)270を用いない比較例を対比する。金属板(ワッシャ)270を用いる場合、図16(a),(b),(c)において、マスク265を配置するとともにスキージ266によりはんだペースト262を所望の領域に塗布する。この際、図16(b)に示すように、はんだペースト262がフラックスの力で基板側の面S1,S2,S3,S4において接着し、図16(c)に示すようにマスク265を外した時にマスク265からはんだペースト262がきれいに分離する。一方、金属板(ワッシャ)270を用いない図17の場合、図17(b)に示すように、はんだペースト262の接着面がS1,S2となり、接着面が減少する。そのため、はんだペースト262の接着力が弱くマスク265を外した時に、図17(c)に示すようにマスク265にはんだペースト262が付着し基板にはんだペーストが残らない可能性がある。
 このようにして、はんだペースト塗布工程において、金属板(ワッシャ)270にはんだペーストが接着するので、マスクを外すときにはんだペーストがマスクに付着することを防ぐことができる。
 また、図11における下側の第二の銅板240において基材貫通孔221の中央に対応する部位に貫通孔243が設けられ、この貫通孔243を用いて空気抜き(ガス抜き)を行ったり、のぞき穴として用いることにより、はんだ充填量の確認を行うことができる。
 なお、第一の銅板230において、第一の延設部232は無くてもよい。
 以上のごとく本実施形態によれば、以下のような利点を得ることができる。
 (8)配線板の構造として、第二の銅板240は、絶縁基板220に接合される接合部241から基材貫通孔221の開口部に延設された第二の延設部242を有する。基材貫通孔221の内部に、貫通孔271を形成した金属板270が配置され、金属板270の貫通孔271の内部に導電材としてのはんだ260を充填した。よって、表裏を接続する導電路250を通して大きな電流を流すことができる。また、はんだ260が充填される空間に配した金属板270により、はんだ260が充填される空間が狭くなるので、充填するはんだ260の量を少なくすることができる。
 (9)第二の銅板240における延設部242には、金属板270の貫通孔271と連通する貫通孔243を形成した。この貫通孔243によって、基材貫通孔221(貫通孔271)内のガス抜き、および、導電路の検査の少なくとも一方を行うことが可能となる。
 (10)第一の銅板230は、絶縁基板220に接合される接合部231から基材貫通孔221の開口部に延設され、基材貫通孔221よりも小さい貫通孔233を形成した第一の延設部232を有する。基材貫通孔221の内部に、第一の銅板230の貫通孔233と連通する貫通孔271を形成した金属板270が配置され、第一の銅板230の貫通孔233および金属板270の貫通孔271の内部に導電材としてのはんだ260を充填してなる。よって、金属板270を位置決めする上で好ましい。
 (11)配線板の製造方法は、第二の金属板配置工程と板材配置工程と第一の金属板配置工程とはんだ充填工程とを有する。第二の金属板配置工程では、絶縁基板220の裏面に、基材貫通孔221の開口部に位置し基材貫通孔221よりも小さい貫通孔243を形成した第二の銅板240を配置する。板材配置工程では、基材貫通孔221の内部に、第二の銅板240の貫通孔243と連通し、かつ第二の銅板240の貫通孔243よりも大きい貫通孔271を形成した金属板270を配置する。第一の金属板配置工程では、絶縁基板220の表面に、金属板270の貫通孔271と連通する貫通孔233を形成した第一の銅板230を配置する。はんだ充填工程では、第二の銅板240の貫通孔243の内部を含めた第一の銅板230の貫通孔233および金属板270の貫通孔271の内部に導電材としてのはんだ260を充填する。これにより、(10)の配線板を得ることが可能となる。
 本実施形態の変形例について言及する。
 図18(c)に示すようにして第二の銅板240の上に、貫通孔271を形成した金属板(ワッシャ)270を接着してもよい。詳しく説明すると、図18(a)に示すように、ステージ295の上に第二の銅板240を配置し、この第二の銅板240の上面には接着剤223が塗布されている。第二の銅板240の上にダイ296を配置し、このダイ296にはダイ穴296aが形成されている。ダイ296の上に、加工前の金属板297が配置され、その上にストリッパ298が配置され、ストリッパ298にはストリッパ穴298aが形成されている。ストリッパ穴298aにはパンチ299が入る。
 そして、パンチ299をストリッパ穴298aに下降させ、図18(b)に示すごとく金属板297を打ち抜いて、貫通孔271を有する金属板(ワッシャ)270を形成する。さらにパンチ299をダイ穴296aに下降させて、打ち抜いたワッシャ(貫通孔271を有する金属板270)を接着剤223に押圧する。
 その後、パンチ299を上昇させるとともにダイ296を上昇させる。これにより、図18(c)に示すように、第二の銅板240の上に、貫通孔271を形成した金属板(ワッシャ)270が接着される。
 引き続き、図13(c)に示すように、第二の銅板240の上に、基材貫通孔221を形成した絶縁基板220を接着することになる。
 図18を用いて説明したようにワッシャ(貫通孔271を形成した金属板270)を第二の銅板240の上面に接着することにより、打ち抜きによりバリが発生するが、それが接着剤223に食い込むため、さらに接着強度を向上させることができる。
 なお、この場合、接着剤223は導電性を有すると好ましい。また、図18(a)において金属板297は貫通孔271を予め形成したものを用いてもよい。
 実施形態は前記に限定されるものではなく、例えば、次のように具体化してもよい。
 配線板10,210は厚銅基板を用いて構成したが、これに限定されるものではなく、例えば銅板に代わり、アルミ板等を金属板として用いてもよい。
 導電材として、はんだを用いたが、他の低融点金属を用いてもよい。
 第一の折曲り部32の折曲げ角度、第二の折曲り部42(斜状部42a)の折曲げ角度、第一の折曲り部35の折曲げ角度、第二の折曲り部45(斜状部45a)の折曲げ角度は問わない。
 第二の金属板に形成する貫通孔の個数は問わない。例えば、1~4個程度用意すればよい。複数の貫通孔の場合、貫通孔はそれぞれ等角度間隔をもって配置されているとよい。
 第1~第3の実施形態において、折曲り部が形成されている金属板については基材に接合される接合部から延設され、折曲り部が形成されていない金属板については基材に接合される接合部から延設されていない構成としてもよい。
 10…配線板、20…絶縁基板、21…基材貫通孔、22…側面、30…第一の銅板、31…第一の接合部、32…第一の折曲り部、33…貫通孔、35…第一の折曲り部、37…折曲り部、40…第二の銅板、41…第二の接合部、42…第二の折曲り部、43…貫通孔、44…貫通孔、45…第二の折曲り部、47…貫通孔、49…貫通孔、50…導電路、55…導電路、60…はんだ、65…はんだ、110…はんだ、210…配線板、220…絶縁基板、221…基材貫通孔、230…第一の銅板、231…第一の接合部、232…第一の延設部、233…第1の貫通孔、240…第二の銅板、241…第二の接合部、242…第二の延設部、243…第2の貫通孔、250…導電路、260…はんだ、270…金属板、271…第3の貫通孔。

Claims (11)

  1.  表面と裏面と側面とを有する基材と、
     前記表面に接合される第一の金属板と、
     前記裏面に接合される第二の金属板と、
     前記第一の金属板と第二の金属板との間を導電するように構成される導電路であって、同導電路は前記基材に形成された基材貫通孔の内壁面によって画定される内部空間または前記基材の側面より外側の外部空間に設けられ、前記導電路は、前記第一の金属板と、前記第二の金属板と、前記第一の金属板と前記第二の金属板とを電気的に接続する導電材とを含む、前記導電路と、を備え、
     前記第一の金属板および前記第二の金属板の少なくとも一方は、前記基材に接合される接合部と、前記内壁面または前記側面を覆うように前記接合部から折れ曲がるように延びる折曲り部とを有し、
     前記折曲り部の内側部に前記導電材が充填される、配線板。
  2.  前記第一の金属板は、前記接合部としての第一の接合部と前記折曲り部としての第一の折曲り部とを有し、同第一の折曲り部は前記裏面に向かって折れ曲がり、
     前記第二の金属板は、前記接合部としての第二の接合部と前記折曲り部としての第二の折曲り部とを有し、同第二の折曲り部は前記第一の折曲り部と共に前記内壁面または前記側面を覆うように前記表面に向かって折れ曲がり、
     前記導電材は前記第一の折曲り部と前記第二の折曲り部との間に充填される、請求項1に記載の配線板。
  3.  前記第二の金属板は、前記内部空間または前記外部空間に臨む部位に貫通孔を有する、請求項1または2に記載の配線板。
  4.  前記導電路は前記内部空間に設けられ、
     前記第一の折曲り部は、前記表面に開口する前記基材貫通孔の開口端から前記内部空間に向かって折れ曲がるとともに、前記基材貫通孔の中心部に対応する部位に貫通孔を有しており、
     前記第二の折曲り部は、前記裏面に開口する前記基材貫通孔の開口端から前記内部空間に向かって折れ曲がるとともに、前記第一の折曲り部の貫通孔内に挿入されている、請求項2または3に記載の配線板。
  5.  前記第二の金属板に形成されている前記貫通孔は、断面円形の前記基材貫通孔の中心軸線を中心とした円周上に複数設けられている、請求項3に記載の配線板。
  6.  前記第二の金属板に形成されている前記複数の貫通孔は等角度間隔をもって配置されている、請求項5に記載の配線板。
  7.  表面と裏面と基材貫通孔とを有する基材と、
     前記表面に接合される第一の金属板と、
     前記裏面に接合される第二の金属板と、
     前記第一の金属板と第二の金属板との間を導電するように前記基材貫通孔の内部空間に設けられる導電路であって、前記導電路は、前記第一の金属板と、前記第二の金属板と、前記第一の金属板と前記第二の金属板とを電気的に接続する導電材とを含む、前記導電路と、を備え、
     前記第二の金属板は、前記基材に接合される接合部と同接合部から前記基材貫通孔の開口部に延びる延設部とを有し、
     前記内部空間に、前記基材貫通孔と連通する貫通孔を有する板材が配置され、
     前記板材の貫通孔の内部に前記導電材が充填される、配線板。
  8.  前記延設部は、前記板材の貫通孔と連通する貫通孔を有する、請求項7に記載の配線板。
  9.  前記第一の金属板は、前記基材に接合される接合部と同接合部から前記基材貫通孔の開口部に延びる延設部とを有し、同延設部は前記基材貫通孔よりも小さい貫通孔を有しており、
     前記板材の前記貫通孔は前記第一の金属板の貫通孔と連通し、前記第一の金属板の貫通孔および前記板材の貫通孔の内部に前記導電材が充填される、請求項7または8に記載の配線板。
  10.  表面と裏面と側面とを有する基材と、
     前記表面に接合される第一の金属板と、
     前記裏面に接合される第二の金属板と、
     前記第一の金属板と第二の金属板との間を導電するように構成される導電路であって、同導電路は前記基材に形成された基材貫通孔の内壁面によって画定される内部空間に設けられ、前記導電路は、前記第一の金属板と、前記第二の金属板と、前記第一の金属板と前記第二の金属板とを電気的に接続する導電材とを含む、前記導電路と、を備え、
     前記第一の金属板および前記第二の金属板の少なくとも一方は、前記基材に接合される接合部と、前記内壁面を覆うように前記接合部から折れ曲がるように延びる折曲り部とを有する、
    配線板の製造方法であって、
     前記表面に前記第一の金属板を接合する工程と、
     前記裏面に前記基材貫通孔の一方の開口端を塞ぐように前記第二の金属板を接合する工程と、
     前記第一の金属板の表面において前記基材貫通孔の他方の開口端に対応する部位にはんだペーストを塗布する工程と、
     前記第二の金属板において前記内部空間に臨む部位に貫通孔を形成する工程と、
     前記はんだペーストをリフローして前記第二の金属板の貫通孔からガスを抜きながら当該貫通孔と前記折曲り部の内側部とによって形成された空間に導電材としてのはんだを充填する工程と、
    を備える、配線板の製造方法。
  11.  表面と裏面と側面とを有する基材と、
     前記表面に接合される第一の金属板と、
     前記裏面に接合される第二の金属板と、
     前記第一の金属板と第二の金属板との間を導電するように構成される導電路であって、同導電路は前記基材に形成された基材貫通孔の内壁面によって画定される内部空間に設けられ、前記導電路は、前記第一の金属板と、前記第二の金属板と、前記第一の金属板と前記第二の金属板とを電気的に接続する導電材とを含む、前記導電路と、
    を備える配線板の製造方法であって、
     前記裏面に貫通孔を有する前記第二の金属板を配置する工程であって、前記第二の金属板の貫通孔は、前記基材貫通孔と連通するとともに前記基材貫通孔よりも小さい開口面積を有する、前記工程と、
     前記基材貫通孔に貫通孔を有する板材を配置する工程であって、前記板材の貫通孔は、前記第二の金属板の貫通孔と連通するとともに前記第二の金属板の貫通孔よりも大きい開口面積を有する、前記工程と、
     前記表面に貫通孔を有する前記第一の金属板を配置する工程であって、前記第一の金属板の貫通孔は前記板材の貫通孔と連通する、前記工程と、
     前記第二の金属板の貫通孔と前記第一の金属板の貫通孔と前記板材の貫通孔とによって形成された空間に導電材としてのはんだを充填する工程と、
    を備える、配線板の製造方法。
PCT/JP2012/063186 2011-05-26 2012-05-23 配線板および配線板の製造方法 WO2012161218A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP12789574.6A EP2717658B1 (en) 2011-05-26 2012-05-23 Wiring board and method for manufacturing wiring board
KR1020137030367A KR20130140889A (ko) 2011-05-26 2012-05-23 배선판 및 배선판의 제조 방법
JP2013516414A JP5742936B2 (ja) 2011-05-26 2012-05-23 配線板および配線板の製造方法
US14/118,636 US9332638B2 (en) 2011-05-26 2012-05-23 Wiring board and method for manufacturing wiring board
CN201280024409.6A CN103563495B (zh) 2011-05-26 2012-05-23 布线板以及布线板的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011118332 2011-05-26
JP2011-118332 2011-05-26

Publications (1)

Publication Number Publication Date
WO2012161218A1 true WO2012161218A1 (ja) 2012-11-29

Family

ID=47217294

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/063186 WO2012161218A1 (ja) 2011-05-26 2012-05-23 配線板および配線板の製造方法

Country Status (7)

Country Link
US (1) US9332638B2 (ja)
EP (1) EP2717658B1 (ja)
JP (1) JP5742936B2 (ja)
KR (1) KR20130140889A (ja)
CN (1) CN103563495B (ja)
TW (1) TWI451817B (ja)
WO (1) WO2012161218A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015093249A1 (ja) * 2013-12-19 2015-06-25 株式会社 豊田自動織機 配線板
WO2015093250A1 (ja) * 2013-12-19 2015-06-25 株式会社 豊田自動織機 配線板の製造方法
WO2015125951A1 (ja) * 2014-02-24 2015-08-27 株式会社村田製作所 多層基板の製造方法および多層基板

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019212747A (ja) * 2018-06-05 2019-12-12 日本ケミコン株式会社 バスバー積層体及びそれを備える電子部品実装モジュール、バスバー積層体の製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54156167A (en) * 1978-05-31 1979-12-08 Matsushita Electric Ind Co Ltd Method of producing double side printed circuit board
JPS5511174Y2 (ja) * 1972-11-29 1980-03-11
JPH10126013A (ja) * 1996-10-21 1998-05-15 Nec Corp 配線基板
JP2001284800A (ja) * 2000-02-18 2001-10-12 Eupec Europaeische Ges Fuer Leistungshalbleiter Mbh & Co Kg はんだによるスルーコンタクトを有する出力半導体モジュールのための基板及び該基板の製作法
JP2010267649A (ja) 2009-05-12 2010-11-25 Tibc:Kk プリント配線板

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4064357A (en) * 1975-12-02 1977-12-20 Teledyne Electro-Mechanisms Interconnected printed circuits and method of connecting them
FR2439322A1 (fr) 1978-10-19 1980-05-16 Cii Honeywell Bull Procede et dispositif de liaison de deux elements et outil pour l'execution du procede
CA1100319A (en) 1979-05-10 1981-05-05 Eugene E. Young Oil return system and method
GB2085233A (en) 1980-08-19 1982-04-21 Renishaw Electrical Ltd Electric circuit board assembly
US4769269A (en) * 1983-12-05 1988-09-06 E. I. Du Pont De Nemours And Company Article containing conductive through-holes
JPH0437087A (ja) 1990-05-31 1992-02-07 Toshiba Corp 印刷配線板装置並びにその装置に用いるハトメ及びその取付け方法
DE59309575D1 (de) 1992-06-15 1999-06-17 Heinze Dyconex Patente Verfahren zur herstellung von leiterplatten unter verwendung eines halbzeuges mit extrem dichter verdrahtung für die signalführung
ATE137079T1 (de) 1992-06-15 1996-05-15 Heinze Dyconex Patente Verfahren zur herstellung von nachträglich konditionierbaren kontaktstellen an schaltungsträgern und schaltungsträger mit solchen kontaktstellen
EP0575292B1 (de) * 1992-06-15 1996-03-13 Dyconex Patente Ag Verfahren zur Herstellung von Substraten mit Durchführungen
US5433819A (en) * 1993-05-26 1995-07-18 Pressac, Inc. Method of making circuit boards
TW512467B (en) * 1999-10-12 2002-12-01 North Kk Wiring circuit substrate and manufacturing method therefor
JP2002185120A (ja) 2000-12-19 2002-06-28 Toshiba Corp 部品実装基板およびその製造方法
JP2005072095A (ja) * 2003-08-20 2005-03-17 Alps Electric Co Ltd 電子回路ユニットおよびその製造方法
JP2006093577A (ja) 2004-09-27 2006-04-06 Hitachi Cable Ltd 半導体装置用転写フィルム基板及びその製造方法並びにそれを用いた半導体装置
JP2006303126A (ja) * 2005-04-20 2006-11-02 Oki Electric Ind Co Ltd プリント配線基板の製造方法
KR101046890B1 (ko) * 2005-06-15 2011-07-06 이비덴 가부시키가이샤 다층 프린트 배선판
JP2008021637A (ja) * 2006-06-12 2008-01-31 Fujikura Ltd ソケットとその製造方法及び半導体装置
JP5629580B2 (ja) * 2007-09-28 2014-11-19 テッセラ,インコーポレイテッド 二重ポスト付きフリップチップ相互接続
US8324723B2 (en) * 2008-03-25 2012-12-04 Bridge Semiconductor Corporation Semiconductor chip assembly with bump/base heat spreader and dual-angle cavity in bump
ES2369840T3 (es) * 2009-03-30 2011-12-07 Eberspächer Catem Gmbh & Co. Kg Dispositivo calefactor eléctrico para un automóvil.
TWI400025B (zh) * 2009-12-29 2013-06-21 Subtron Technology Co Ltd 線路基板及其製作方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5511174Y2 (ja) * 1972-11-29 1980-03-11
JPS54156167A (en) * 1978-05-31 1979-12-08 Matsushita Electric Ind Co Ltd Method of producing double side printed circuit board
JPH10126013A (ja) * 1996-10-21 1998-05-15 Nec Corp 配線基板
JP2001284800A (ja) * 2000-02-18 2001-10-12 Eupec Europaeische Ges Fuer Leistungshalbleiter Mbh & Co Kg はんだによるスルーコンタクトを有する出力半導体モジュールのための基板及び該基板の製作法
JP2010267649A (ja) 2009-05-12 2010-11-25 Tibc:Kk プリント配線板

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2717658A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015093249A1 (ja) * 2013-12-19 2015-06-25 株式会社 豊田自動織機 配線板
WO2015093250A1 (ja) * 2013-12-19 2015-06-25 株式会社 豊田自動織機 配線板の製造方法
JP2015119097A (ja) * 2013-12-19 2015-06-25 株式会社豊田自動織機 配線板
JP2015119098A (ja) * 2013-12-19 2015-06-25 株式会社豊田自動織機 配線板及び配線板の製造方法
WO2015125951A1 (ja) * 2014-02-24 2015-08-27 株式会社村田製作所 多層基板の製造方法および多層基板

Also Published As

Publication number Publication date
TW201301965A (zh) 2013-01-01
TWI451817B (zh) 2014-09-01
EP2717658A4 (en) 2015-08-12
EP2717658A1 (en) 2014-04-09
JP5742936B2 (ja) 2015-07-01
EP2717658B1 (en) 2017-10-18
US20140151106A1 (en) 2014-06-05
KR20130140889A (ko) 2013-12-24
CN103563495A (zh) 2014-02-05
JPWO2012161218A1 (ja) 2014-07-31
US9332638B2 (en) 2016-05-03
CN103563495B (zh) 2016-10-12

Similar Documents

Publication Publication Date Title
US8069558B2 (en) Method for manufacturing substrate having built-in components
JP5931799B2 (ja) 層間接続基板およびその製造方法
TW200810626A (en) Method for manufacturing multilayer wiring board
JP2007073866A (ja) 部品内蔵配線板
JP2007335701A (ja) 積層基板の製造方法
JP2007273654A (ja) フレキシブル回路基板、フレキシブル回路基板の製造方法および電子機器
JP5742936B2 (ja) 配線板および配線板の製造方法
KR20110077042A (ko) 인쇄회로기판조립체의 제조방법
WO2013005576A1 (ja) 配線板
JP5958768B2 (ja) 回路構成体
JP2019047127A (ja) 樹脂多層基板
JP2013073989A (ja) 表面実装型受動素子部品、部品キャリアテープ、部品内蔵配線板
JP2010098021A (ja) 部品内蔵配線基板および部品内蔵配線基板の製造方法
CN213126630U (zh) 树脂基板以及电子设备
JP2014157857A (ja) 部品内蔵樹脂多層基板およびその製造方法
WO2013137401A1 (ja) 電子部品搭載用基板の製造方法及び電子部品搭載用基板
JP4856567B2 (ja) プリント配線板及び電子部品実装基板
JP2005039136A (ja) 回路基板および回路基板の接続方法
JP5003528B2 (ja) 電子部品モジュールの製造方法
JP2006269466A (ja) プリント回路基板およびその製造方法
JP5428539B2 (ja) 配線基板の製造方法
JP4556723B2 (ja) 接合方法および配線板の製造方法
JP5807670B2 (ja) 配線板
CN118042733A (en) Electronic assembly method, circuit board assembly and communication equipment
JP2006324282A (ja) 多層プリント配線板及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12789574

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013516414

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137030367

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012789574

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14118636

Country of ref document: US