WO2012147144A1 - 内燃機関の燃焼生成物生成量推定装置、デポジット剥離量推定装置、デポジット堆積量推定装置、および、燃料噴射制御装置 - Google Patents

内燃機関の燃焼生成物生成量推定装置、デポジット剥離量推定装置、デポジット堆積量推定装置、および、燃料噴射制御装置 Download PDF

Info

Publication number
WO2012147144A1
WO2012147144A1 PCT/JP2011/060027 JP2011060027W WO2012147144A1 WO 2012147144 A1 WO2012147144 A1 WO 2012147144A1 JP 2011060027 W JP2011060027 W JP 2011060027W WO 2012147144 A1 WO2012147144 A1 WO 2012147144A1
Authority
WO
WIPO (PCT)
Prior art keywords
amount
fuel injection
deposit
outlet
inlet
Prior art date
Application number
PCT/JP2011/060027
Other languages
English (en)
French (fr)
Inventor
雅里 池本
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to CN201180004933.2A priority Critical patent/CN102933837B/zh
Priority to US13/696,767 priority patent/US9435307B2/en
Priority to PCT/JP2011/060027 priority patent/WO2012147144A1/ja
Priority to EP11864597.7A priority patent/EP2703635B1/en
Priority to JP2011538740A priority patent/JP5240367B2/ja
Publication of WO2012147144A1 publication Critical patent/WO2012147144A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1806Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for characterised by the arrangement of discharge orifices, e.g. orientation or size
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D41/221Safety or indicating devices for abnormal conditions relating to the failure of actuators or electrically driven elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M65/00Testing fuel-injection apparatus, e.g. testing injection timing ; Cleaning of fuel-injection apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/06Fuel-injection apparatus having means for preventing coking, e.g. of fuel injector discharge orifices or valve needles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to a combustion product generation amount estimation device, a deposit separation amount estimation device, a deposit accumulation amount estimation device, and a fuel injection control device for an internal combustion engine.
  • An internal combustion engine in which a fuel injection valve is arranged so that fuel is directly injected into a combustion chamber is known. Further, in such an internal combustion engine, a combustion product (that is, a substance generated in connection with fuel combustion) is generated, and this combustion product is generated in the injection hole region (that is, inside the fuel injection hole of the fuel injection valve). And a region outside the fuel injection hole and in the vicinity of the inlet of the fuel injection hole and a region outside the fuel injection hole and in the vicinity of the outlet of the fuel injection hole) It is also known to deposit this wall surface on the “hole surface”.
  • a combustion product that is, a substance generated in connection with fuel combustion
  • the fuel injection control device for an internal combustion engine described in Patent Document 1 the amount of combustion products accumulated on the wall surface of the nozzle hole (hereinafter, the combustion product deposited on the wall surface of the nozzle hole is referred to as “deposit”).
  • the deposit amount is referred to as “deposit accumulation amount” or more, the fuel injection from the fuel injection valve is controlled so that the deposit is separated from the wall surface of the injection hole.
  • the deposit accumulation amount is used to determine whether or not the deposit should be peeled off from the wall surface of the injection hole. Therefore, in the patent document, it is necessary to estimate the deposit accumulation amount.
  • the amount of fuel actually injected from the fuel injection valve is referred to as an actual fuel injection amount
  • the amount required as fuel to be injected from the fuel injection valve is referred to as a required fuel injection amount
  • the deposit accumulation amount is zero.
  • the command value given to the fuel injection valve to inject the fuel of the required fuel injection amount from the fuel injection valve is referred to as the fuel injection command value
  • deposits are accumulated on the wall surface of the nozzle hole.
  • the actual fuel injection amount is smaller than the required fuel injection amount, and the actual fuel injection amount is smaller than the required fuel injection amount.
  • the deposit accumulation amount is estimated based on the difference between the actual fuel injection amount and the required fuel injection amount. In this case, it is estimated that the larger the difference between the actual fuel injection amount and the required fuel injection amount, the larger the deposit accumulation amount.
  • a metal component for example, zinc, calcium, magnesium, etc.
  • the fuel reacts with the combustion gas to generate a combustion product derived from the metal component.
  • combustion products such as carbonate and oxalate are generated in the injection hole region (ie, the injection hole region near the fuel injection hole inlet), while the injection hole region (ie, the injection near the fuel injection hole outlet).
  • the injection hole region ie, the injection near the fuel injection hole outlet.
  • combustion products such as lower carboxylates were generated.
  • the deposit accumulated in the injection hole inlet region (hereinafter, this deposit is referred to as “inlet deposit”) has an influence on fuel injection (that is, fuel injection from the fuel injection valve). It has been found that the deposits deposited in the nozzle hole exit region (hereinafter referred to as “exit deposits”) have different effects on fuel injection. Therefore, in order to maintain the characteristics relating to the fuel injection at the desired characteristics, it is necessary to grasp such influence separately for the injection hole inlet region and the injection hole outlet region. That is, it is necessary to grasp such an influence for each region where deposits will be accumulated. And in order to grasp such influence for every area, it is necessary to grasp the deposit accumulation amount for every area. That is, it is necessary to separately grasp the deposit amount of the inlet deposit and the deposit amount of the outlet deposit.
  • inlet combustion product production amount the amount of combustion products produced in the following (hereinafter referred to as “inlet combustion product production amount”) and the amount of combustion products produced one after another in the nozzle hole outlet region (hereinafter referred to as “outlet combustion product production amount”). Production amount)).
  • an object of the present invention is to estimate the combustion product generation amount for each region, estimate the deposit separation amount for each region, and estimate the deposit accumulation amount for each region.
  • the invention of the present application relates to an internal combustion engine having a fuel injection valve, which is a region inside the fuel injection hole of the fuel injection valve, a region near the inlet of the fuel injection hole, and a region outside the fuel injection hole.
  • a fuel injection valve which is a region inside the fuel injection hole of the fuel injection valve, a region near the inlet of the fuel injection hole, and a region outside the fuel injection hole.
  • the amount of the combustion product generated by the combustion of the fuel and the region inside the fuel injection hole of the fuel injection valve Combustion generation generated due to fuel combustion in an injection hole outlet region composed of a region near the fuel injection hole outlet and a region outside the fuel injection hole and in the vicinity of the fuel injection hole outlet
  • the present invention relates to a combustion product generation amount estimation device that estimates an inlet combustion product generation amount and an outlet combustion product generation amount by calculating an outlet combustion product generation amount that is an amount of a product.
  • region are calculated
  • An inlet combustion product generation amount is calculated based on the temperature of the injection hole inlet region, and an outlet combustion product generation amount is calculated based on the temperature of the injection hole outlet region.
  • the amount of combustion product generated is estimated separately for the area around the inlet of the fuel injection hole (ie, the injection hole inlet area) and the area around the outlet of the fuel injection hole (ie, the injection hole outlet area). can do. That is, according to the present invention, it is possible to estimate the combustion product generation amount for each region.
  • Another invention of the present application is an internal combustion engine provided with a fuel injection valve, which is a region inside the fuel injection hole of the fuel injection valve, a region near the inlet of the fuel injection hole, and a region outside the fuel injection hole.
  • Inlet deposit separation amount which is the amount of combustion products to be separated out of the combustion products accumulated in the injection hole inlet region composed of the region near the inlet of the fuel injection hole, and the inside of the fuel injection hole of the fuel injection valve Of the combustion products deposited in the nozzle hole area composed of the area near the outlet of the fuel injection hole and the area outside the fuel injection hole and in the vicinity of the fuel injection hole outlet.
  • the present invention relates to a deposit peeling amount estimation device that estimates an inlet deposit peeling amount and an outlet deposit peeling amount by calculating an outlet deposit peeling amount that is an amount of a combustion product to be peeled.
  • the inlet deposit separation amount is calculated on the basis of the inlet deposit accumulation amount, which is the amount of the combustion products accumulated in the nozzle hole inlet region, and the combustion generation accumulated in the nozzle hole outlet region.
  • the exit deposit peeling amount is calculated based on the exit deposit accumulation amount that is the amount of the object.
  • the deposit peeling amount can be estimated separately for the injection hole inlet region and the injection hole outlet region. That is, according to the present invention, the deposit peeling amount can be estimated for each region.
  • an inlet deposit accumulation amount that is an amount of combustion products accumulated in the nozzle hole inlet region and an outlet deposit that is an amount of combustion products accumulated in the nozzle hole outlet region.
  • the present invention relates to a deposit accumulation amount estimation device that estimates an entrance deposit accumulation amount and an exit deposit accumulation amount by calculating a deposition amount.
  • the inlet deposit accumulation amount is calculated by subtracting the inlet deposit separation amount calculated by the deposit separation amount estimation device from the inlet combustion product generation amount calculated by the combustion product generation amount estimation device.
  • the outlet deposit accumulation amount is calculated by subtracting the outlet deposit separation amount calculated by the deposit separation amount estimation device from the outlet combustion product generation amount calculated by the combustion product generation amount estimation device.
  • the deposit accumulation amount can be estimated separately for the injection hole inlet region and the injection hole outlet region. That is, according to the present invention, the deposit accumulation amount can be estimated for each region.
  • the combustion product deposited in the nozzle hole inlet region decomposes when the temperature of the nozzle hole inlet region exceeds a certain temperature
  • the combustion product deposited in the nozzle hole inlet region decomposes.
  • the temperature is obtained as the inlet deposit decomposition temperature
  • the inlet deposit accumulation amount is preferably calculated as zero.
  • the combustion product accumulated in the nozzle hole outlet region decomposes when the temperature of the nozzle hole outlet region exceeds a certain temperature
  • the combustion product deposited in the nozzle hole outlet region decomposes.
  • the temperature is obtained as the outlet deposit decomposition temperature
  • the amount of accumulated outlet deposit is preferably calculated as zero.
  • the outlet deposit accumulation amount is accurately determined. Can be calculated.
  • a fuel injection command value which is a command value given to the fuel injection valve to inject fuel from the fuel injection valve, is set as a basic fuel injection command value corresponding to the required fuel injection amount, and corresponds to the required fuel injection amount
  • the basic fuel injection command value is corrected according to the amount of deposit deposit.
  • the required fuel injection amount of fuel can be injected into the fuel injection valve.
  • the basic fuel injection command value corresponding to the required fuel injection amount is given to the fuel injection valve when combustion products are accumulated in the injection hole inlet region, the combustion that has accumulated in the injection hole inlet region
  • the required fuel injection amount of fuel is not injected from the fuel injection valve due to the influence of the product. That is, the amount of fuel actually injected from the fuel injection valve deviates from the required fuel injection amount.
  • the degree of this deviation changes in accordance with the amount of combustion products accumulated in the nozzle hole inlet region (that is, the amount of inlet deposit). Therefore, if the basic fuel injection command value is corrected according to the deposit amount of the deposit, even if combustion products are deposited in the injection hole inlet region, the required fuel injection amount of fuel can be injected into the fuel injection valve. It can be done.
  • the fuel injection pressure to be targeted as the fuel injection pressure that is the pressure of the fuel injected from the fuel injection valve is set as the basic fuel injection pressure, and the fuel injection pressure is controlled to the basic fuel injection pressure
  • the basic fuel injection pressure is increased when the outlet deposit accumulation amount is greater than the inlet deposit accumulation amount, and the fuel injection pressure is controlled to the increased basic fuel injection pressure.
  • atomization of the fuel injected from the fuel injection valve when combustion products are accumulated in the nozzle hole outlet region can be efficiently promoted. That is, if combustion products are accumulated in the injection hole outlet region, the degree of atomization of fuel injected from the fuel injection valve (hereinafter, this fuel is referred to as “injected fuel”) decreases. On the other hand, when the fuel injection pressure is increased, atomization of the injected fuel is promoted. Therefore, when combustion products are accumulated in the nozzle hole outlet region, increasing the fuel injection pressure compensates for a decrease in the degree of atomization of the injected fuel due to the combustion products accumulated in the nozzle hole outlet region. .
  • the outlet deposit accumulation amount is less than or equal to the inlet deposit accumulation amount
  • the compensation effect of the decrease in the degree of atomization of the injected fuel due to the increase in the fuel injection pressure is relatively low. Therefore, in a situation where the deposit amount of the outlet deposit is larger than the deposit amount of the inlet deposit and the compensation effect of the decrease in the degree of atomization of the fuel injection due to the increase of the fuel injection pressure is relatively high, the fuel is increased by increasing the basic fuel injection pressure. Since the injection pressure is increased, atomization of the injected fuel can be promoted efficiently.
  • the combustion products accumulated in the nozzle hole outlet region can be efficiently separated from the nozzle hole outlet region. That is, when the fuel injection pressure is increased to a relatively high pressure, the combustion products accumulated in the nozzle hole outlet region can be separated from the nozzle hole outlet region.
  • the deposit amount of the inlet deposit is relatively large, the separation effect of the combustion products deposited in the nozzle hole outlet region due to the increase of the fuel injection pressure is relatively low. Therefore, the injection hole is deposited under a situation where the deposit amount of the deposit is equal to or less than the predetermined deposit amount of the deposit and the separation effect of the combustion products accumulated in the nozzle hole outlet region due to the increase of the fuel injection pressure is relatively high.
  • the fuel injection pressure is increased to a pressure at which the combustion products accumulated in the outlet area are separated from the nozzle hole outlet area, so that the combustion products accumulated in the nozzle hole area are efficiently separated from the nozzle hole area. It can be made.
  • FIG. 1 is a diagram showing an internal combustion engine to which the present invention is applied. It is the figure which showed the front-end
  • FIG. 1 10 is a main body of the internal combustion engine, 11 is a cylinder block, and 12 is a cylinder head.
  • a cylinder bore 13 is formed in the cylinder block 11.
  • a piston 14 is disposed in the cylinder bore 13.
  • the piston 14 is connected to the crankshaft 16 via a connecting rod 15.
  • an intake port 17 and an exhaust port 18 are formed in the cylinder head 12.
  • the cylinder head 12 is also provided with an intake valve 19 for opening and closing the intake port 17 and an exhaust valve 20 for opening and closing the exhaust port 18.
  • a combustion chamber 21 is defined by the upper wall surface of the piston 14, the inner peripheral wall surface of the cylinder bore 13, and the lower wall surface of the cylinder head 12.
  • the intake port 17 is connected to an intake pipe (not shown) via an intake manifold (not shown) and constitutes a part of the intake passage.
  • the exhaust port 18 is connected to an exhaust pipe (not shown) via an exhaust manifold (not shown) and constitutes a part of the exhaust passage.
  • a fuel injection valve 22 is disposed on the cylinder head 12.
  • the fuel injection valve 22 has a nozzle 30 and a needle 31.
  • a cavity (hereinafter referred to as “internal cavity”) is formed inside the nozzle 30.
  • the needle 31 is accommodated so that the movement along the center axis line (namely, center axis line of the fuel injection valve 22) CA of the nozzle 30 is possible.
  • the tip of the needle 31 is tapered.
  • the fuel passage 32 at the tip of the nozzle 30 forms a so-called sac 33 (hereinafter, the fuel passage 32 means a fuel passage excluding the sack 33). Furthermore, a plurality of fuel injection holes 34 are formed at the tip of the nozzle 30. These fuel injection holes 34 communicate between the sac 33 in the nozzle 30 (that is, in the fuel injection valve 22) and the outside of the nozzle 30 (that is, outside the fuel injection valve 22).
  • the gap between the suck 33 and the fuel passage 32 is set. Communication is interrupted. At this time, fuel is not injected from the fuel injection hole 34 of the fuel injection valve 22.
  • the needle 31 is moved in the nozzle 30 so that the outer peripheral wall surface of the tapered tip portion of the needle 31 is separated from the inner peripheral wall surface of the nozzle 30, the sac 33 and the fuel passage 32 communicate with each other. The fuel flows into the fuel passage 32 or the sac 33. The fuel that has flowed into the sac 33 flows into the fuel injection hole 34 through the inlet of the fuel injection hole 34 and is injected from the outlet through the fuel injection hole 34.
  • the fuel injection valve 22 is disposed in the cylinder head 12 so as to inject fuel directly into the combustion chamber 21.
  • the fuel injection valve 22 is arranged in the cylinder head 12 so that the fuel injection hole is exposed in the combustion chamber 21.
  • the fuel injection valve 22 is connected to a pressure accumulating chamber (that is, a so-called common rail) 24 via a fuel supply passage 23.
  • the pressure accumulating chamber 24 is connected to a fuel tank (not shown) via a fuel supply passage 25. Fuel is supplied to the pressure accumulating chamber 24 from a fuel tank through a fuel supply passage 25. A high-pressure fuel is stored in the pressure accumulating chamber 24. Further, high pressure fuel is supplied to the fuel injection valve 22 from the pressure accumulation chamber 24 through the fuel supply passage 23.
  • the pressure accumulating chamber 24 is provided with a pressure sensor 26 for detecting the pressure of the fuel inside.
  • a cooling water passage 27 for flowing cooling water is formed in the cylinder block 11.
  • the cooling water passage 27 is formed so as to surround the cylinder bore 13. Therefore, at least the inside of the combustion chamber 21 is cooled by the cooling water flowing in the cooling water passage 27.
  • the cylinder block 11 is provided with a temperature sensor 28 for detecting the temperature of the cooling water flowing in the cooling water passage 27.
  • the internal combustion engine has an electronic control unit 40.
  • the electronic control unit 40 includes a microcomputer, and is connected to each other by a bidirectional bus 41.
  • a CPU (microprocessor) 42, a ROM (read only memory) 43, a RAM (random access memory) 44, a backup RAM 45, and an interface 46 are connected.
  • Have The interface 46 is connected to the fuel injection valve 22, the pressure sensor 26, and the temperature sensor 28.
  • the electronic control unit 40 controls the operation of the fuel injection valve 22, receives an output value corresponding to the fuel pressure from the pressure sensor 26, and receives an output value corresponding to the coolant temperature from the temperature sensor 28.
  • the “wall surface” is “the surface of the fuel injection valve that defines the fuel injection hole of the fuel injection valve”, and the “wall surface on the inlet side” “Wall surface near the entrance”, “wall surface near the exit hole” is “wall surface near the exit of the fuel injection hole out of the wall surface”, and “wall surface adjacent to the entrance” is “fuel injection hole”
  • the fuel injection valve wall surface outside the fuel injection valve wall surface adjacent to the inlet side injection hole wall surface, and the nozzle hole outlet adjacent wall surface is the fuel injection valve wall surface outside the fuel injection hole
  • the fuel injection valve wall surface adjacent to the outlet-side nozzle hole wall surface, and the “hole hole inlet wall surface” is the “wall surface composed of the inlet-side nozzle hole wall surface and the nozzle hole inlet-adjacent wall surface”.
  • Combustion gas is “gas generated by the combustion of fuel in the combustion chamber”
  • fuel injection is “injection of fuel from the fuel injection hole of the fuel injection valve”
  • fuel injection pressure "Is” pressure of fuel injected from the fuel injection hole of the fuel injection valve ".
  • nozzle hole temperature is “the temperature inside the fuel injection hole of the fuel injection valve”
  • the injection hole inlet temperature is “the temperature of the injection hole inlet region”
  • the injection hole outlet temperature is “the injection hole temperature”. The temperature of the exit area ”.
  • the production amount of combustion products produced in the injection hole inlet region during a predetermined period (that is, a predetermined period) according to the following equation 1 ( XPin, which is referred to as “inlet combustion product new generation amount” hereinafter, is calculated, and the amount of combustion product generated in the nozzle hole region during the predetermined period according to the following equation 2 XPout is calculated (the production amount is referred to as “new production amount of the outlet combustion product”).
  • the predetermined period is not particularly limited and may be arbitrarily set.
  • the predetermined period is a period between two consecutive fuel injections in a specific fuel injection valve.
  • XPin Cm ⁇ Ain ⁇ Tin (1)
  • XPout Cm ⁇ Aout ⁇ Tout (2)
  • “Cm” is “concentration of the metal component in the fuel (hereinafter simply referred to as“ metal component concentration ”). This metal component concentration may be, for example, a concentration measured in advance or a concentration measured as appropriate during engine operation.
  • “Tin” is “the nozzle hole inlet temperature at a specific time point during the predetermined period”.
  • “Tout” is “a nozzle hole outlet temperature at a specific time point during the predetermined period”.
  • “Ain” is a coefficient adapted to accurately calculate the new amount of inlet combustion products related to the metal component concentration Cm and the nozzle hole inlet temperature Tin.
  • “Aout” is a coefficient adapted to accurately calculate the new amount of the outlet combustion product generated related to the metal component concentration Cm and the nozzle hole outlet temperature Tout.
  • combustion products are not deposited on the wall surface of the nozzle hole or the wall adjacent to the nozzle hole inlet.
  • combustion products in the form of metal-derived products are deposited not only on the wall surface adjacent to the nozzle hole outlet but also on the wall surface of the nozzle hole and the wall adjacent to the nozzle hole inlet. Became clear. The reason why the metal-derived product accumulates on the wall surface of the nozzle hole and the wall adjacent to the inlet of the nozzle hole is presumed as follows.
  • the fuel injection valve when the fuel injection valve is arranged in the internal combustion engine so that the fuel injection valve directly injects the fuel into the combustion chamber, that is, the fuel injection hole of the fuel injection valve is exposed in the combustion chamber, Enters the fuel injection hole, and this combustion gas reacts with the fuel in the fuel injection hole and in the vicinity of the inlet to produce a metal-derived product. Since the adhesion force of the metal-derived product to the wall surface is relatively strong, it adheres to the wall surface of the injection hole and the adjacent wall surface of the injection hole despite the strong fuel flow in the fuel injection hole and at the inlet. And deposit. This is presumed to be the reason why the metal-derived products accumulate on the wall surface of the nozzle hole and the wall surface adjacent to the nozzle hole inlet.
  • the combustion product containing the metal-derived product in the injection hole outlet adjacent wall surface, the injection hole wall surface, and the injection hole inlet adjacent wall surface (hereinafter, these wall surfaces are simply referred to as “wall surface”) (hereinafter referred to as this combustion).
  • the combustion product deposited on the wall surface (hereinafter, the combustion product deposited on the wall surface is referred to as “deposit”) It obstructs the flow of fuel. Therefore, even if a command value that can cause the fuel injection valve to inject the fuel that is originally required (hereinafter, this amount is referred to as “required fuel injection amount”) to the fuel injection valve is required. There is a possibility that the fuel injection amount of fuel is not injected from the fuel injection valve.
  • the output characteristics and exhaust characteristics of the internal combustion engine may deteriorate. Therefore, it is indispensable to know whether or not there is a possibility that such deterioration of the internal combustion engine's output characteristics and exhaust characteristics will be suppressed or improved, and such characteristics may be deteriorated. Knowing the presence or absence of sex is not a little useful. In order to know whether or not there is a possibility of such a deterioration in characteristics, it is necessary to accurately know the amount of deposit deposited on the wall surface (hereinafter, this amount is referred to as “deposit accumulation amount”).
  • the deposit amount varies depending on the shape of the wall surface and the temperature of the surrounding atmosphere.
  • the shape of the nozzle hole inlet wall surface and the nozzle hole outlet wall surface are often different from each other, and the nozzle hole inlet temperature and the nozzle hole outlet temperature are often different from each other.
  • the influence of the inlet deposit on the characteristics related to fuel injection is different from the influence of the outlet deposit on the characteristics related to fuel injection.
  • the influence of the inlet deposit on the fuel injection amount is larger than that of the outlet deposit.
  • the influence of the outlet deposit on the atomization of the injected fuel is larger than that of the inlet deposit.
  • the ease of peeling of the outlet deposit from the nozzle hole exit region is higher than the ease of peeling of the inlet deposit from the nozzle hole inlet region.
  • the deposit accumulation amount the amount of deposit accumulated in the injection hole entrance region
  • the deposit accumulation amount the amount of deposit accumulated in the nozzle hole outlet region
  • this amount is referred to as “exit deposit accumulation amount”.
  • the new amount of the combustion product at the inlet varies depending on the metal component concentration and the nozzle hole inlet temperature. More specifically, when the nozzle hole inlet temperature is the same, the new amount of inlet combustion product generated increases as the metal component concentration increases. Further, when the metal component concentration is the same, the new amount of inlet combustion product generated increases as the injection hole inlet temperature increases. Therefore, in order to accurately calculate the new amount of the inlet combustion product, the metal component concentration and the nozzle hole inlet temperature should be considered in the calculation. For the same reason, in order to accurately calculate the new amount of the outlet combustion product, the metal component concentration and the nozzle hole outlet temperature should be considered in the calculation.
  • the inlet combustion product new production amount XPin is based on the product of the metal component concentration Cm and the injection hole inlet temperature Tin. Is calculated. That is, the inlet combustion product new generation amount XPin is calculated using the metal component concentration Cm and the nozzle hole inlet temperature Tin as variables.
  • the new inlet combustion product generation amount XPin calculated by Expression 1 increases as the metal component concentration Cm increases and increases as the injection hole inlet temperature Tin increases. That is, the calculation of the new amount of inlet combustion product generated by Equation 1 takes into account that the higher the metal component concentration or the higher the nozzle hole inlet temperature, the larger the amount of new inlet combustion product generated. Therefore, the combustion product production amount estimation of the present embodiment has an advantage that the new production amount of the inlet combustion product can be accurately calculated.
  • the outlet combustion product new production amount XPout is based on the product of the metal component concentration Cm and the nozzle hole outlet temperature Tout. Calculated. That is, the outlet combustion product new generation amount XPout is calculated using the metal component concentration Cm and the nozzle hole outlet temperature Tout as variables. Further, the outlet combustion product new generation amount XPout calculated by Expression 2 increases as the metal component concentration increases or the nozzle hole outlet temperature increases. In other words, the calculation of the new amount of outlet combustion product generated by Equation 2 takes into account that the higher the metal component concentration or the higher the nozzle hole outlet temperature, the larger the amount of new outlet combustion product generated. Therefore, the combustion product production amount estimation of the present embodiment has an advantage that the new production amount of the outlet combustion product can be accurately calculated.
  • a coefficient representing the ease with which the inlet deposit peels from the nozzle hole inlet region during a predetermined period (that is, a predetermined period) according to the following equation (3):
  • this coefficient is referred to as an “inlet deposit peeling ease coefficient” KRin
  • a coefficient representing the ease with which the outlet deposit peels from the nozzle hole outlet region during the predetermined period according to the following equation 4 (hereinafter referred to as this coefficient).
  • KRout is calculated (referred to as “exit deposit peelability coefficient”).
  • the predetermined period is not particularly limited and may be arbitrarily set.
  • the predetermined period is a period between two consecutive fuel injections in a specific fuel injection valve.
  • TXDin is “the entrance deposit accumulation amount calculated in the previous deposit accumulation amount estimation”.
  • FKRin is “a function adapted to calculate an appropriate entrance deposit peelability coefficient by applying the entrance deposit accumulation amount”.
  • TXDout is “an outlet deposit accumulation amount calculated in the previous deposit accumulation amount estimation”.
  • FKRout is “a function adapted so that an appropriate exit deposit peelability factor can be calculated by applying the exit deposit accumulation amount”.
  • the amount of deposit peeled from the nozzle hole inlet region during the predetermined period (hereinafter, this amount is referred to as “new inlet deposit peeling amount”) XRin is calculated according to the following equation 5.
  • the amount of deposit peeled off from the nozzle hole outlet region during the predetermined period (hereinafter, this amount is referred to as “exit deposit new peel amount”) XRout is calculated according to the following equation (6).
  • P is “a fuel injection pressure at a specific time point during the predetermined period (hereinafter simply referred to as“ fuel injection pressure ”)”. This fuel injection pressure is obtained from, for example, the output value of the pressure sensor 26 at a specific point in time during the predetermined period. Of course, instead of the fuel injection pressure at a specific point in time during the predetermined period, the average fuel injection pressure during the predetermined period may be used.
  • KRin is an entrance deposit peelability coefficient calculated according to Equation 3
  • KRout is an exit deposit peelability coefficient calculated according to Equation 4.
  • the new amount of inlet deposit peeling varies depending on the fuel injection pressure and the ease of peeling of the inlet deposit (that is, the ease of peeling of the inlet deposit from the nozzle hole inlet region). More specifically, when the ease of inlet deposit peeling is the same, the amount of new inlet deposit peeling increases as the fuel injection pressure increases. In addition, when the fuel injection pressure is the same, the new amount of inlet deposit separation increases as the ease of inlet deposit separation increases. Therefore, in order to accurately calculate the inlet deposit new peel amount, the fuel injection pressure and the ease of inlet deposit peel should be considered in the calculation. For the same reason, in order to accurately calculate the outlet deposit new peeling amount, the fuel injection pressure and the outlet deposit peeling ease should be considered in the calculation.
  • the inlet deposit new peeling amount XRin is calculated by multiplying the fuel injection pressure P by the inlet deposit peeling ease coefficient KRin.
  • the inlet deposit new peel amount XRin is calculated using the fuel injection pressure P and the inlet deposit peelability coefficient KRin as variables.
  • the inlet deposit new peel amount XRin calculated by Expression 5 increases as the fuel injection pressure P increases, and increases as the inlet deposit peelability coefficient KRin increases. That is, the calculation of the inlet deposit peeling amount according to Equation 5 takes into account that the higher the fuel injection pressure or the higher the ease of inlet deposit peeling, the larger the inlet deposit peeling amount. Therefore, the deposit peeling amount estimation of the present embodiment has an advantage that the entrance deposit peeling amount can be accurately calculated.
  • the outlet deposit new peeling amount XRout is calculated by multiplying the fuel injection pressure P by the outlet deposit peeling ease coefficient KRout. . That is, the outlet deposit new peel amount XRout is calculated using the fuel injection pressure P and the exit deposit peelability coefficient KRout as variables.
  • the outlet deposit new peel amount XRout calculated by Expression 6 increases as the fuel injection pressure P increases, and increases as the outlet deposit peel ease coefficient KRout increases. That is, the calculation of the outlet deposit peeling amount according to Equation 6 takes into account that the higher the fuel injection pressure or the higher the ease of outlet deposit peeling, the larger the outlet deposit peeling amount. Therefore, the deposit peeling amount estimation of this embodiment has an advantage that the outlet deposit peeling amount can be calculated accurately.
  • the deposit accumulated in the region away from the wall surface receives a larger pressure from the fuel flowing in the fuel injection hole than the deposit accumulated in the region near the wall surface.
  • This pressure becomes a force for peeling the deposit from the wall surface (hereinafter, this force is referred to as “peeling force”).
  • peeling force a force for peeling the deposit from the wall surface.
  • the inlet deposit peeling coefficient used for the calculation does not depend on the constant value regardless of the entrance deposit deposition amount, but changes according to the entrance deposit deposition amount.
  • the factor to be used should be adopted.
  • a coefficient that changes according to the outlet deposit accumulation amount should be adopted as the outlet deposit peeling property coefficient used for the calculation.
  • the entrance deposit peeling ease coefficient KRin is calculated by a function having the inlet deposit accumulation amount TXDin as a variable. That is, the entrance deposit accumulation amount is taken into account in the calculation of the entrance deposit peeling ease coefficient according to Equation 3. Therefore, the deposit peeling amount estimation according to the present embodiment has an advantage that the entrance deposit peeling ease coefficient can be accurately calculated, and the inlet deposit peeling amount can be accurately calculated.
  • the function FKRin for calculating the entrance deposit peelability coefficient is a function for calculating the entrance deposit peelability coefficient KRin that is larger as the entrance deposit accumulation amount TXDin is larger.
  • the outlet deposit peeling ease coefficient KRout is calculated by a function having the outlet deposit accumulation amount TXDout as a variable. That is, the outlet deposit accumulation amount is taken into account in the calculation of the outlet deposit peeling ease coefficient according to Equation 4. Therefore, the deposit peeling amount estimation according to the present embodiment has an advantage that the exit deposit peeling ease coefficient can be accurately calculated and, in turn, the outlet deposit peeling amount can be accurately calculated.
  • the function FKRout for calculating the outlet deposit peelability coefficient is a function for calculating the larger outlet deposit peelability coefficient KRout as the outlet deposit accumulation amount TXDout is larger.
  • deposits are uniformly deposited on the injection hole inlet wall surface, and the thickness of the inlet deposit (that is, the thickness of the deposit from the injection hole inlet wall surface) is constant regardless of the region. It is assumed that there is. However, if deposits do not deposit uniformly on the injection hole inlet wall surface, it is assumed that deposits do not uniformly deposit on the injection hole inlet wall surface as a function used to calculate the entrance deposit peeling ease coefficient. By using a function obtained by analyzing the data of the entrance deposit accumulation amount and the entrance deposit peeling amount, an entrance deposit peeling ease coefficient for accurately calculating the entrance deposit peeling amount can be calculated.
  • the inlet deposit is more easily peeled off than the outlet deposit. Therefore, from the viewpoint of more accurately grasping the deposit peeling amount, it is preferable to grasp the inlet deposit peeling amount and the outlet deposit peeling amount separately.
  • the deposit peeling amount estimation of the present embodiment since the entrance deposit peeling amount and the outlet deposit peeling amount are calculated separately, there is an advantage that the deposit peeling amount can be calculated more accurately.
  • the new deposit amount of the inlet deposit during the predetermined period according to the following equation (7) (that is, the amount of the inlet deposit newly deposited in the nozzle hole inlet region during the predetermined period) XDin is calculated, and the new deposit amount of the outlet deposit during the predetermined period (that is, the amount of the outlet deposit newly deposited in the nozzle hole outlet region in the predetermined period) XDout is calculated according to the following equation 8.
  • XDin XPin ⁇ XRin (7)
  • XDout XPout ⁇ XRout (8)
  • the entrance deposit accumulation amount TXDin is calculated according to the following equation 9 and the exit deposit accumulation amount TXDout is calculated according to the following equation 10.
  • TXDin TXDin + XDin (9)
  • TXDout TXDout + XDout (10)
  • TXDin on the left side of Equation 9 is “the entrance deposit accumulation amount calculated by the current deposit accumulation amount estimation”, and “TXDin” on the right side of Equation 9 is “the entrance deposit calculated by the previous deposit accumulation amount estimation”. It is “deposition amount”.
  • TXDout on the left side of Equation 10 is “exit deposit accumulation amount calculated by current deposit accumulation amount estimation”, and “TXDout” on the right side of Equation 10 is “exit deposit accumulation amount calculated by previous deposit accumulation amount estimation”. It is “deposition amount”.
  • the advantages of deposit accumulation amount estimation according to this embodiment will be described.
  • the new inlet deposit amount By subtracting the new inlet deposit separation amount during the predetermined period from the new inlet combustion product generation amount during the predetermined period, the new inlet deposit amount can be obtained.
  • the deposit accumulation amount estimation of the present embodiment as shown in Equation 7, by subtracting the inlet deposit new separation amount during the predetermined period from the inlet combustion product new generation amount during the predetermined period. Since the new deposit amount of the inlet deposit is calculated, and the new generated amount of the inlet combustion product and the new deposit amount of the inlet deposit are values calculated as accurate amounts, the new deposit amount of the inlet deposit is accurately calculated. Then, by adding up the new deposit amount, the deposit amount can be obtained.
  • the new entrance deposit accumulation amount XDin calculated according to Equation 7 is added to the already calculated entrance deposit accumulation amount TXDin.
  • the latest entrance deposit accumulation amount is calculated by. Therefore, the deposit accumulation amount estimation of this embodiment has an advantage that the entrance deposit accumulation amount can be accurately calculated.
  • the new deposit amount of the outlet deposit can be obtained by subtracting the new deposit amount of the outlet deposit during the predetermined period from the new generation amount of the outlet combustion product during the predetermined period.
  • the deposit accumulation amount estimation of the present embodiment as shown in Expression 10, by subtracting the outlet deposit new separation amount during the predetermined period from the new outlet combustion product generation amount during the predetermined period.
  • the new deposit amount of the outlet deposit is calculated, and the new deposit amount of the outlet combustion product and the new deposit amount of the outlet deposit are values calculated as accurate amounts. Therefore, the new deposit amount of the outlet deposit is accurately calculated. And if this new deposit amount of the exit deposit is integrated, the deposit amount of the exit deposit can be obtained.
  • the new outlet deposit accumulation amount XDout calculated according to Equation 8 is added to the already calculated outlet deposit accumulation amount TXDout. Is used to calculate the latest outlet deposit accumulation. Therefore, the deposit accumulation amount estimation according to the present embodiment has an advantage that the exit deposit accumulation amount can be accurately calculated.
  • FIG. 3 An example of this routine is shown in FIG.
  • the routine in FIG. 3 is executed every time a predetermined time elapses.
  • step 101 the nozzle hole inlet temperature Tin, the nozzle hole outlet temperature Tout, the fuel injection pressure P, the inlet deposit accumulation amount TXDin calculated by the previous routine, and The exit deposit accumulation amount TXDout calculated by the previous main routine is acquired.
  • step 102 the inlet combustion product new generation amount XPin is calculated by applying the nozzle hole inlet temperature Tin acquired in step 101 to the above equation 1, and the nozzle hole outlet temperature acquired in step 101 is calculated.
  • Tout the outlet combustion product new generation amount XPout is calculated.
  • step 103 the entrance deposit deposition amount coefficient KRin is calculated by applying the entrance deposit deposition amount TXDin acquired in step 101 to the above equation 3, and the exit deposit deposition amount TXDout acquired in step 101 is calculated. Is applied to the above equation 4, the outlet deposit peelability coefficient KRout is calculated.
  • step 104 the inlet deposit new peel amount XRin is calculated by applying the fuel injection pressure P acquired in step 101 and the inlet deposit peelability coefficient KRin calculated in step 103 to the above equation 5.
  • the outlet deposit new peel amount XRout is calculated by applying the fuel injection pressure P acquired in step 101 and the exit deposit peelability coefficient KRout calculated in step 103 to the above equation 6.
  • step 105 the new inlet combustion product amount XPin calculated in step 102 and the new inlet deposit separation amount XRin calculated in step 104 are applied to the above equation 7, whereby the new inlet deposit amount XDin is obtained.
  • the outlet deposit new deposition amount XDout is calculated by applying the outlet combustion product new generation amount XPout calculated in step 102 and the outlet deposit new separation amount XRout calculated in step 104 to the above equation 8. Is done.
  • the inlet deposit new deposit amount XDin calculated at step 105 is calculated by applying the new inlet deposit deposit amount XDin calculated at step 105 to the above equation 9, and the outlet deposit new deposit amount XDout calculated at step 105. Is applied to the above equation 10 to calculate the outlet deposit accumulation amount TXDout.
  • step 107 it is determined whether or not the injection hole outlet temperature Tout acquired in step 101 is equal to or higher than a predetermined injection hole outlet temperature Toutth (Tout ⁇ Toutth).
  • the routine proceeds to step 108.
  • the routine ends as it is.
  • the entrance deposit accumulation amount calculated by the present routine is the amount TXDin calculated in step 106
  • the exit deposit accumulation amount calculated by the present routine is the amount TXDout calculated in step 106. .
  • step 107 When it is determined in step 107 that Tout ⁇ Toutth and the routine proceeds to step 108, the outlet deposit accumulation amount TXDout calculated in step 106 is set to zero, and the routine ends.
  • the entrance deposit accumulation amount calculated by the present routine is the amount TXDin calculated in step 106, and the exit deposit accumulation amount calculated by the present routine is zero.
  • the carbonate is decomposed when the ambient temperature is higher than a certain temperature.
  • the portion where the carbonate is deposited as a deposit is the nozzle hole inlet region. Therefore, in the above-described embodiment, when the nozzle hole inlet temperature becomes equal to or higher than a predetermined temperature (that is, the decomposition temperature of the carbonate constituting the deposit), the deposit accumulation amount containing carbonate as a component of the entrance deposit accumulation amount. It is also possible to newly calculate the entrance deposit accumulation amount with zero being zero.
  • the predetermined temperature is obtained as a temperature at which the carbonate is decomposed by experiments or the like, and may be any temperature as long as it is a predetermined temperature. For example, the predetermined temperature is approximately 300 ° C.
  • this may be applied to lower carboxylates and oxalates as well. That is, if the temperature at which the lower carboxylate constituting the deposit is decomposed is known in advance, in the above-described embodiment, the portion where the lower carboxylate is deposited as a deposit is the nozzle hole exit region.
  • the nozzle hole outlet temperature is equal to or higher than a predetermined temperature (that is, the decomposition temperature of the lower carboxylate constituting the deposit)
  • the deposit accumulation amount containing the lower carboxylate as a component of the outlet deposit accumulation amount is set to zero. You may make it newly calculate an exit deposit accumulation amount.
  • the portion where the oxalate is deposited as a deposit is the injection hole entrance region.
  • the hole entrance temperature is equal to or higher than the predetermined temperature (that is, the decomposition temperature of the oxalate constituting the deposit)
  • the amount of deposit deposited with the amount of deposit deposited with oxalate as a component of the amount of deposit deposited is zero. May be newly calculated.
  • deposits composed of carbonate or oxalate are deposited in the injection hole entrance region, and deposits composed of lower carboxylates are deposited in the injection hole exit region.
  • the deposit components deposited in each region are not limited to those described above, but vary depending on the properties of the fuel, the shape of the fuel injection holes, the state of the environment around the fuel injection holes, and the like. Therefore, even if the deposit components deposited in each region are different from those of the above-described embodiments, the fuel properties, the shape of the fuel injection holes, the state of the surrounding environment of the fuel injection holes, and the like are taken into consideration.
  • the amount of combustion product generated for each region, the amount of deposit separation for each region, and the amount of deposit deposited for each region are accurately estimated. can do.
  • the fuel injection control of this embodiment is a control for controlling the fuel injection amount, and the fuel injection amount error caused by the inlet deposit (that is, the actual fuel injection amount when the inlet deposit is zero is expressed as “scheduled fuel injection”.
  • amount it is “the deviation of the actual fuel injection amount with respect to the planned fuel injection amount”, and includes control for compensating for this hereinafter simply referred to as “fuel injection amount error”).
  • this fuel injection control is referred to as “fuel injection amount control”.
  • the fuel injection amount that can cause the internal combustion engine to output the required torque when the inlet deposit accumulation amount is zero is obtained in advance as the basic fuel injection amount corresponding to the required torque.
  • the smallest amount (this amount may be zero) of the inlet deposit accumulation amount that causes the fuel injection amount error that needs to be compensated is determined in advance as the predetermined inlet deposit accumulation amount.
  • the smallest amount among the fuel injection amounts in which the fuel injection amount error has a positive value is obtained in advance as the predetermined fuel injection amount. Yes.
  • the basic fuel injection amount corresponding to the required torque is set.
  • the basic fuel injection amount is set as the target fuel injection amount as it is regardless of whether the basic fuel injection amount is equal to or greater than the predetermined fuel injection amount, A fuel injection command value corresponding to the target fuel injection amount is given to the fuel injection valve.
  • the inlet deposit accumulation amount is equal to or larger than the predetermined inlet deposit accumulation amount, it is determined whether or not the basic fuel injection amount is equal to or larger than the predetermined fuel injection amount.
  • the fuel injection amount obtained by increasing the basic fuel injection amount by a predetermined amount is set as the target fuel injection amount.
  • a fuel injection command value corresponding to the amount is given to the fuel injection valve.
  • the fuel injection amount obtained by reducing the basic fuel injection amount by a predetermined amount is set as the target fuel injection amount.
  • a fuel injection command value corresponding to is provided to the fuel injection valve.
  • the basic fuel injection amount is set as the target fuel injection amount when combustion products are accumulated as an inlet deposit in the injection hole inlet region, and a fuel injection command value corresponding to this target fuel injection amount is given to the fuel injection valve
  • the basic fuel injection amount of fuel is not injected from the fuel injection valve due to the influence of the inlet deposit. That is, the actual fuel injection amount deviates from the basic fuel injection amount. And this deviation
  • shift amount (namely, fuel injection amount error) changes according to an entrance deposit accumulation amount.
  • the basic fuel injection amount corrected so that the fuel injection amount error becomes zero according to the inlet deposit accumulation amount is set as the target fuel injection amount, and a fuel injection command value corresponding to this target fuel injection amount is given to the fuel injection valve. Then, even if combustion products have accumulated in the injection hole inlet region, the basic fuel injection amount of fuel is injected from the fuel injection valve. Therefore, the fuel injection amount control of the present embodiment has an advantage that the fuel of the basic fuel injection amount can be injected into the fuel injection valve and the required torque can be output to the internal combustion engine.
  • the fuel injection amount control of the present embodiment is applied when the air-fuel ratio is controlled to a specific air-fuel ratio in order to maintain a specific performance (for example, performance related to exhaust emission) of the internal combustion engine high.
  • a specific performance for example, performance related to exhaust emission
  • the fuel of the basic fuel injection amount can be injected into the fuel injection valve, the air-fuel ratio can be controlled to a specific air-fuel ratio, and the specific performance of the internal combustion engine can be maintained high. The advantage that it can be obtained.
  • the basic fuel injection amount when the inlet deposit accumulation amount is equal to or larger than the predetermined inlet deposit accumulation amount, the basic fuel injection amount is increased when the basic fuel injection amount is equal to or larger than the predetermined fuel injection amount.
  • the basic fuel injection amount is reduced.
  • the actual fuel injection amount is there is a recognition that the actual fuel injection amount becomes smaller than the basic fuel injection amount as the inlet deposit accumulation amount becomes smaller than the basic fuel injection amount.
  • the actual fuel injection amount is basically based on the accumulation of combustion products as deposits in the injection hole inlet region. It becomes less than the fuel injection amount.
  • the actual fuel injection amount will be the basic fuel injection if combustion products are deposited as deposits in the injection hole inlet region. It is not less than the amount, but on the contrary it increases.
  • a fuel injection period (that is, a period during which fuel is injected from the fuel injection hole, and corresponds to a period in which the outer wall surface of the tapered tip of the needle is separated from the inner wall surface of the nozzle tip. ) Is a little longer.
  • the fuel injection period is relatively long. Therefore, it is better to reduce the amount of fuel passing through the fuel injection holes than to extend the fuel injection period due to the increase in fuel pressure in the sack. It is dominant to the fuel injection amount.
  • the fuel injection amount is relatively large and the combustion products are deposited as deposits in the injection hole inlet region, it is assumed that the actual fuel injection amount becomes smaller than the basic fuel injection amount.
  • the fuel injection period is relatively short. Therefore, the fuel injection period is longer due to the increase in the pressure of the fuel in the sack than the fuel quantity passing through the fuel injection amount is reduced. It is dominant to the fuel injection amount.
  • the fuel injection amount is relatively small and the combustion products are deposited as deposits in the injection hole inlet region, it is presumed that the actual fuel injection amount becomes larger than the basic fuel injection amount.
  • the predetermined amount for increasing the basic fuel injection amount (hereinafter, this amount is referred to as “predetermined increase”) is an amount that can compensate for the fuel injection amount error.
  • the value is set to increase the fuel injection amount.
  • a predetermined increase ratio for increasing the basic fuel injection amount by a predetermined ratio may be used.
  • the predetermined increase amount or the predetermined increase ratio may be a constant amount or a ratio regardless of the inlet deposit accumulation amount or the basic fuel injection amount, or an amount or a ratio set in consideration of the inlet deposit accumulation amount. It may also be an amount or a ratio set in consideration of the basic fuel injection amount.
  • the predetermined increase amount or the predetermined increase rate is set in consideration of the entrance deposit accumulation amount
  • the predetermined increase amount or the predetermined increase rate is set to a larger value as the entrance deposit accumulation amount increases.
  • the predetermined increase amount or the predetermined increase rate is set in consideration of the basic fuel injection amount, for example, the predetermined increase amount or the predetermined increase rate is set to a larger value as the basic fuel injection amount increases.
  • the predetermined amount for reducing the basic fuel injection amount (hereinafter, this amount is referred to as “predetermined amount of reduction”) is a value that decreases the fuel injection amount to an amount that can compensate for the fuel injection amount error. Will be set to.
  • a predetermined reduction rate that reduces the basic fuel injection amount by a predetermined rate may be used.
  • the predetermined amount of reduction or the predetermined amount of reduction may be a constant amount or a ratio regardless of the inlet deposit accumulation amount or the basic fuel injection amount, or an amount or a ratio set in consideration of the inlet deposit accumulation amount. It may also be an amount or a ratio set in consideration of the basic fuel injection amount.
  • the predetermined reduction amount or the predetermined reduction rate is set in consideration of the entrance deposit accumulation amount
  • the predetermined reduction amount or the predetermined reduction rate is set to a larger value as the entrance deposit accumulation amount increases.
  • the predetermined amount of reduction or the predetermined amount of reduction is set in consideration of the basic fuel injection amount, for example, the predetermined amount of reduction or the predetermined amount of reduction is set to a larger value as the basic fuel injection amount increases.
  • the predetermined increase amount, the predetermined increase rate, or the predetermined decrease amount or the predetermined decrease rate is set to “a value that increases or decreases the fuel injection amount so that the fuel injection amount error is reduced”. May be.
  • FIG. 4 An example of this routine is shown in FIG.
  • the routine of FIG. 4 is executed every time a predetermined time elapses.
  • step 201 the basic fuel injection amount Qb is set.
  • step 202 an entrance deposit accumulation amount TXDin is obtained.
  • step 203 it is determined whether or not the entrance deposit accumulation amount TXDin acquired in step 202 is equal to or greater than a predetermined entrance deposit accumulation amount TXDinth (TXDin ⁇ TXDinth).
  • TXDin ⁇ TXDinth a predetermined entrance deposit accumulation amount TXDinth
  • step 204 it is determined whether or not the basic fuel injection amount Qb acquired in step 201 is equal to or greater than a predetermined fuel injection amount Qbth (Qb ⁇ Qbth). Is done. If it is determined that Qb ⁇ Qbth, the routine proceeds to step 205. On the other hand, if it is determined that Qb ⁇ Qbth, the routine proceeds to step 206.
  • step 204 When it is determined in step 204 that Qb ⁇ Qbth and the routine proceeds to step 205, the basic fuel injection amount Qb acquired in step 201 is corrected by a predetermined amount, and the routine is executed in step 207. Proceed to On the other hand, if it is determined in step 204 that Qb ⁇ Qbth and the routine proceeds to step 206, the basic fuel injection amount Qb obtained in step 201 is corrected by a predetermined amount, and the routine is executed. Proceed to step 207.
  • step 207 the basic fuel injection amount Qb acquired in step 201 is set as the target fuel injection amount as it is, and the fuel injection command value Qv corresponding to the target fuel injection amount is set.
  • step 205 the basic fuel injection amount Qb increased in step 205 is set as the target fuel injection amount, and the fuel injection command value Qv corresponding to the target fuel injection amount is set.
  • step 206 the basic fuel injection amount Qb reduced in step 206 is set as the target fuel injection amount, and the fuel injection command value Qv corresponding to the target fuel injection amount is set.
  • step 208 the fuel injection command value Qv set at step 207 is given to the fuel injection valve, and the routine ends.
  • the fuel injection control of this embodiment is a control for controlling the fuel injection pressure and includes a control for compensating for a decrease in the degree of atomization of the injected fuel caused by the outlet deposit.
  • this fuel injection control is referred to as “first fuel injection pressure control”.
  • first fuel injection pressure control a pressure suitable as the fuel injection pressure when the deposit amount at the entrance and the deposit amount at the exit are both zero is obtained in advance as the basic fuel injection pressure.
  • the smallest amount of the deposited deposit amount that causes a decrease in the atomization degree of the injected fuel caused by the exit deposit that needs to be compensated (hereinafter this decrease is simply referred to as “a decrease in the atomization degree of the injected fuel”). (This amount may be zero) is determined in advance as the predetermined outlet deposit accumulation amount.
  • the basic fuel injection pressure is set to the target fuel injection pressure as it is, and the fuel injection pressure is controlled to this target fuel injection pressure.
  • the fuel injection pressure obtained by increasing the basic fuel injection pressure by a predetermined value is set as the target fuel injection pressure, and the fuel injection pressure is set to this target fuel injection pressure.
  • the pressure is controlled.
  • the advantages of the first fuel injection pressure control will be described. If combustion products are accumulated as outlet deposits in the nozzle hole outlet region, the atomization degree of the injected fuel is reduced. On the other hand, increasing the fuel injection pressure increases the degree of atomization of the injected fuel. Therefore, if the fuel injection pressure is increased so that the atomization degree of the injected fuel becomes the desired atomization degree according to the deposit amount of the outlet deposit, even if combustion products are accumulated in the nozzle hole outlet region The atomization degree of the injected fuel becomes the desired atomization degree. In the first fuel injection pressure control, the fuel injection pressure is increased when the amount of deposit in the outlet deposit is relatively large and the decrease in the atomization degree of the injected fuel is relatively large. Therefore, in the first fuel injection pressure control, the atomization degree of the injected fuel can be maintained at the desired atomization degree, and consequently the performance related to the exhaust emission of the internal combustion engine can be maintained at the expected performance. There is an advantage that you can.
  • predetermined pressure increase compensates for a decrease in the degree of atomization of the injected fuel.
  • the fuel injection pressure is set to a value that can be increased to a pressure that can be achieved.
  • a predetermined pressure increase ratio that increases the basic fuel injection pressure by a predetermined ratio may be used.
  • the predetermined pressure increase amount or the predetermined pressure increase ratio may be a constant value or a ratio irrespective of the outlet deposit accumulation amount, or may be a value or a ratio set in consideration of the outlet deposit accumulation amount. Good.
  • the predetermined pressure increase amount or the predetermined pressure increase ratio may be set to a larger value as the outlet deposit accumulation amount is larger.
  • the predetermined pressure increase amount or the predetermined pressure increase ratio may be set to “a value for increasing the fuel injection pressure”.
  • FIG. 5 An example of this routine is shown in FIG.
  • the routine in FIG. 5 is executed every time a predetermined time elapses.
  • step 301 the exit deposit accumulation amount TXDout is acquired.
  • step 302 it is determined whether or not the outlet deposit accumulation amount TXDout acquired in step 301 is equal to or larger than a predetermined outlet deposit accumulation amount TXDoutth (TXDout ⁇ TXDoutth).
  • TXDout ⁇ TXDoutth a predetermined outlet deposit accumulation amount TXDoutth
  • the routine proceeds to step 303.
  • TXDout ⁇ TXDoutth the routine proceeds directly to step 304.
  • step 302 When it is determined in step 302 that TXDout ⁇ TXDoutth and the routine proceeds to step 303, the basic fuel injection pressure Pb is corrected to be increased by a predetermined value, and the routine proceeds to step 304.
  • step 304 the basic fuel injection pressure Pb is set to the target fuel injection pressure as it is, and the pump command value Pv corresponding to the target fuel injection pressure is set.
  • step 303 the basic fuel injection pressure Pb increased in step 303 is set as the target fuel injection pressure, and the pump command value Pv corresponding to the target fuel injection pressure is set.
  • step 305 the pump command value Pv set at step 304 is given to the fuel pump, and the routine ends.
  • the fuel injection control of this embodiment is a control for controlling the fuel injection pressure, and includes a control for separating the outlet deposit from the nozzle hole outlet region.
  • this fuel injection control is referred to as “second fuel injection pressure control”.
  • a pressure suitable as a fuel injection pressure when the deposit amount at the entrance and the deposit amount at the exit are both zero is obtained in advance as the basic fuel injection pressure.
  • the smallest amount (the amount may be zero) of the outlet deposit accumulation amount that requires the outlet deposit to be peeled is obtained in advance as the predetermined outlet deposit accumulation amount.
  • the basic fuel injection pressure is set to the target fuel injection pressure as it is, and the fuel injection pressure is controlled to this target fuel injection pressure.
  • the fuel injection pressure obtained by increasing the basic fuel injection pressure by a predetermined value is set as the target fuel injection pressure, and the fuel injection pressure is set to this target fuel injection pressure. The pressure is controlled.
  • the advantages of the second fuel injection pressure control will be described. If combustion products are accumulated as outlet deposits in the nozzle hole outlet region, the atomization degree of the injected fuel is reduced.
  • the outlet deposit is mainly composed of a lower carboxylate, and this lower carboxylate can be peeled off with a relatively small increase in fuel injection pressure. Then, if the outlet deposit is peeled from the nozzle hole outlet region, the atomization degree of the injected fuel is improved. Therefore, if it is determined that it is desirable to positively peel the outlet deposit from the nozzle hole outlet region, it is desirable to peel the outlet deposit from the nozzle hole outlet region by increasing the fuel injection pressure.
  • the second fuel injection pressure control when it is determined that the outlet deposit is relatively large and the outlet deposit needs to be peeled off, the outlet deposit is peeled off from the nozzle hole outlet region by increasing the fuel injection pressure. Therefore, the second fuel injection pressure control has an advantage that the degree of atomization of the injected fuel can be improved and, consequently, the performance related to the exhaust emission of the internal combustion engine can be improved.
  • predetermined pressure increase for increasing the basic fuel injection pressure is set to a pressure at which the outlet deposit can be peeled off.
  • the value for increasing the fuel injection pressure is set.
  • a predetermined pressure increase ratio that increases the basic fuel injection pressure by a predetermined ratio may be used.
  • the predetermined pressure increase amount or the predetermined pressure increase ratio may be a constant value or a ratio irrespective of the outlet deposit accumulation amount, or may be a value or a ratio set in consideration of the outlet deposit accumulation amount. Good.
  • the predetermined pressure increase or the predetermined pressure increase ratio may be set as follows.
  • the deposit accumulated in the region away from the wall surface receives a greater pressure from the fuel flowing in the fuel injection hole than the deposit accumulated in the region near the wall surface. And this pressure becomes the force (namely, peeling force) which peels a deposit from a wall surface.
  • peeling force the force which peels a deposit from a wall surface.
  • the predetermined pressure increase amount or the predetermined pressure increase ratio is set in consideration of the outlet deposit accumulation amount, the predetermined pressure increase amount or the predetermined pressure increase ratio is set to a smaller value as the outlet deposit accumulation amount is larger. May be.
  • the outlet deposit is more easily peeled off as the amount of the outlet deposit is larger, the outlet deposit is harder to peel off as the amount of the deposited deposit is smaller. Therefore, if the outlet deposit is to be peeled off when the amount of the deposited deposit is small, it is necessary to raise the fuel injection pressure relatively large, and even if the fuel injection pressure is raised relatively large, the outlet deposit is peeled off. It may not be possible.
  • the predetermined outlet deposit accumulation amount of the second fuel injection pressure control is set to “an amount in which the outlet deposit cannot be peeled even if the fuel injection pressure is raised relatively large”, the outlet deposit is peeled off. It is possible to avoid unnecessary increase in the fuel injection pressure.
  • the degree of atomization of the injected fuel can be reduced by separating the outlet deposit from the nozzle hole outlet region without causing the outlet deposit to peel from the nozzle hole outlet region to such an extent that the decrease in the atomization degree of the injected fuel becomes zero.
  • the predetermined pressure increase amount or the predetermined pressure increase ratio may be set to “a value for separating the outlet deposit from the nozzle hole outlet region”.
  • step 401 the exit deposit accumulation amount TXDout is acquired.
  • step 402 it is determined whether or not the exit deposit accumulation amount TXDout acquired in step 401 is equal to or greater than a predetermined exit deposit accumulation amount TXDoutth (TXDout ⁇ TXDoutth).
  • TXDout ⁇ TXDoutth a predetermined exit deposit accumulation amount TXDoutth
  • step 403 When it is determined in step 402 that TXDout ⁇ TXDoutth and the routine proceeds to step 403, correction is performed to increase the basic fuel injection pressure Pb by a predetermined value, and the routine proceeds to step 404.
  • step 402 the basic fuel injection pressure Pb is set to the target fuel injection pressure as it is, and the pump command value Pv corresponding to the target fuel injection pressure is set.
  • step 403 the basic fuel injection pressure Pb increased in step 403 is set as the target fuel injection pressure, and the pump command value Pv corresponding to the target fuel injection pressure is set.
  • step 405 the pump command value Pv set at step 404 is given to the fuel pump, and the routine ends.
  • the fuel injection control of this embodiment is control for controlling the fuel injection pressure, and includes control for separating the inlet deposit from the injection hole inlet region.
  • this fuel injection control is referred to as “third fuel injection pressure control”.
  • a pressure suitable as a fuel injection pressure when the deposit amount at the entrance and the deposit amount at the exit are both zero is obtained in advance as the basic fuel injection pressure.
  • the smallest amount (this amount may be zero) of the entrance deposit accumulation amount that requires the entrance deposit to be peeled is obtained in advance as the predetermined entrance deposit accumulation amount.
  • the basic fuel injection pressure is set to the target fuel injection pressure as it is, and the fuel injection pressure is controlled to this target fuel injection pressure.
  • the fuel injection pressure obtained by increasing the basic fuel injection pressure by a predetermined value is set as the target fuel injection pressure, and the fuel injection pressure is set to this target fuel injection pressure. The pressure is controlled.
  • the basic fuel injection amount is set as the target fuel injection amount when combustion products are accumulated as an inlet deposit in the injection hole inlet region, and a fuel injection command value corresponding to this target fuel injection amount is given to the fuel injection valve
  • the basic fuel injection amount of fuel is not injected from the fuel injection valve due to the influence of the inlet deposit. That is, a fuel injection amount error occurs.
  • the inlet deposit is mainly composed of carbonates and oxalates, and these carbonates and oxalates are difficult to peel off with a relatively small increase in fuel injection pressure.
  • the inlet deposit accumulates in the injection hole inlet region, and even if a relatively large increase in the fuel injection pressure is required, the fuel injection pressure is increased and the inlet deposit is injected into the injection hole. It may be desirable to peel away from the entrance region. Therefore, if it is determined that it is desirable to positively peel the inlet deposit from the nozzle hole inlet region, it is desirable to peel the inlet deposit from the nozzle hole inlet region by increasing the fuel injection pressure.
  • the third fuel injection pressure control when it is determined that the deposit amount of the inlet deposit is relatively large and the inlet deposit needs to be peeled off, the inlet deposit is peeled off from the injection hole inlet region by increasing the fuel injection pressure.
  • the third fuel injection pressure control has an advantage that the fuel injection amount error can be eliminated, and the required torque can be output to the internal combustion engine. Further, when the third fuel injection pressure control is applied when the air-fuel ratio is controlled to a specific air-fuel ratio in order to maintain a specific performance (for example, performance related to exhaust emission) of the internal combustion engine high, Since the fuel injection amount error can be eliminated, the air-fuel ratio can be controlled to a specific air-fuel ratio, and as a result, the specific performance of the internal combustion engine can be maintained high.
  • predetermined pressure increase is a pressure that can peel off the inlet deposit.
  • the value for increasing the fuel injection pressure is set.
  • a predetermined pressure increase ratio that increases the basic fuel injection pressure by a predetermined ratio may be used.
  • the predetermined pressure increase amount or the predetermined pressure increase ratio may be a constant value or a ratio regardless of the inlet deposit accumulation amount, or may be a value or a ratio set in consideration of the inlet deposit accumulation amount. Good.
  • the predetermined pressure increase or the predetermined pressure increase ratio may be set as follows.
  • the deposit accumulated in the region away from the wall surface receives a greater pressure from the fuel flowing in the fuel injection hole than the deposit accumulated in the region near the wall surface. And this pressure becomes the force (namely, peeling force) which peels a deposit from a wall surface.
  • peeling force the force which peels a deposit from a wall surface.
  • the predetermined pressure increase amount or the predetermined pressure increase ratio is set in consideration of the inlet deposit accumulation amount, the predetermined pressure increase amount or the predetermined pressure increase ratio is set to a smaller value as the inlet deposit accumulation amount is larger. May be.
  • the entrance deposit is more easily peeled off as the entrance deposit accumulation amount is larger, the entrance deposit is more difficult to peel off as the entrance deposit accumulation amount is smaller. Therefore, if the inlet deposit is to be peeled off when the amount of the deposited deposit is small, it is necessary to raise the fuel injection pressure relatively large. Even if the fuel injection pressure is raised relatively large, the inlet deposit is peeled off. It may not be possible.
  • the predetermined inlet deposit accumulation amount of the third fuel injection pressure control is set to “an amount in which the inlet deposit cannot be peeled even if the fuel injection pressure is relatively increased,” the inlet deposit is peeled off. It is possible to avoid unnecessary increase in the fuel injection pressure.
  • the predetermined pressure increase amount or the predetermined pressure increase ratio may be set to “a value that separates the inlet deposit from the injection hole inlet region so that the fuel injection amount error becomes small”.
  • step 501 the entrance deposit accumulation amount TXDin is acquired.
  • step 502 it is determined whether or not the entrance deposit accumulation amount TXDin acquired in step 501 is equal to or greater than a predetermined entrance deposit accumulation amount TXDinth (TXDin ⁇ TXDinth).
  • TXDin ⁇ TXDinth a predetermined entrance deposit accumulation amount TXDinth
  • the routine proceeds to step 503.
  • the routine proceeds directly to step 504.
  • step 503 correction is performed to increase the basic fuel injection pressure Pb by a predetermined value, and the routine proceeds to step 504.
  • step 504 When the routine directly proceeds from step 502 to step 504, the basic fuel injection pressure Pb is set to the target fuel injection pressure as it is, and the pump command value Pv corresponding to the target fuel injection pressure is set.
  • step 503 the basic fuel injection pressure Pb increased in step 503 is set as the target fuel injection pressure, and the pump command value Pv corresponding to the target fuel injection pressure is set.
  • step 505 the pump command value Pv set at step 504 is given to the fuel pump, and the routine ends.
  • the fuel injection control of this embodiment is a control for controlling the fuel injection pressure and includes a control for compensating for a decrease in the degree of atomization of the injected fuel caused by the outlet deposit.
  • this fuel injection control is referred to as “fourth fuel injection pressure control”.
  • a pressure suitable as the fuel injection pressure when the deposit amount at the entrance and the deposit amount at the exit are both zero is obtained in advance as the basic fuel injection pressure.
  • the basic fuel injection pressure is set to the target fuel injection pressure as it is, and the fuel injection pressure is controlled to this target fuel injection pressure.
  • the fuel injection pressure obtained by increasing the basic fuel injection pressure by a predetermined value is set as the target fuel injection pressure, and the fuel injection pressure is set to the target fuel injection pressure. Is controlled.
  • the advantage of the fourth fuel injection pressure control will be described. If combustion products are accumulated as outlet deposits in the nozzle hole outlet region, the atomization degree of the injected fuel is reduced. On the other hand, increasing the fuel injection pressure increases the degree of atomization of the injected fuel. However, if the amount of deposit deposit is large, the increase in the degree of atomization of the injected fuel due to the increase in the fuel injection pressure is small. This becomes prominent when the entrance deposit accumulation amount is larger than the exit deposit accumulation amount. That is, the efficiency of increasing the degree of atomization of the injected fuel due to the increase in fuel injection pressure is low.
  • the efficiency of increasing the atomization degree of the fuel injection due to the increase of the fuel injection pressure is high.
  • the fuel injection pressure is increased when the outlet deposit accumulation amount is larger than the inlet deposit accumulation amount and the efficiency of increasing the atomization degree of the fuel injection due to the increase in the fuel injection pressure is high. Therefore, in the fourth fuel injection pressure control, the atomization degree of the injected fuel can be efficiently maintained at the desired atomization degree. As a result, the performance related to the exhaust emission of the internal combustion engine can be efficiently changed to the expected performance. There is an advantage that it can be maintained.
  • the predetermined value for increasing the basic fuel injection pressure (hereinafter, this value is referred to as “predetermined pressure increase”) is the atomization of the injected fuel caused by the outlet deposit.
  • the fuel injection pressure is set to a value that increases to a pressure that can compensate for the decrease in the degree.
  • a predetermined pressure increase ratio that increases the basic fuel injection pressure by a predetermined ratio may be used.
  • the predetermined pressure increase amount or the predetermined pressure increase ratio may be a constant value or a ratio irrespective of the outlet deposit accumulation amount, or may be a value or a ratio set in consideration of the outlet deposit accumulation amount. Good.
  • the predetermined pressure increase amount or the predetermined pressure increase ratio may be set to a larger value as the outlet deposit accumulation amount is larger.
  • the predetermined pressure increase amount or the predetermined pressure increase ratio may be set to “a value for increasing the fuel injection pressure”.
  • FIG. 8 An example of this routine is shown in FIG.
  • the routine of FIG. 8 is executed every time a predetermined time elapses.
  • step 601 the entrance deposit accumulation amount TXDin and the exit deposit accumulation amount TXDout are acquired.
  • step 602 it is determined whether or not the outlet deposit accumulation amount TXDout acquired in step 601 is larger than the inlet deposit accumulation amount TXDin acquired in step 601 (TXDin ⁇ TXDout).
  • TXDin ⁇ TXDout the routine proceeds to step 603.
  • the routine directly proceeds to step 604.
  • step 602 When it is determined in step 602 that TXDin ⁇ TXDout and the routine proceeds to step 603, the basic fuel injection pressure Pb is corrected to be increased by a predetermined value, and the routine proceeds to step 604.
  • step 604 When the routine directly proceeds from step 602 to step 604, the basic fuel injection pressure Pb is set to the target fuel injection pressure as it is, and the pump command value Pv corresponding to the target fuel injection pressure is set.
  • step 603 the basic fuel injection pressure Pb increased in step 603 is set as the target fuel injection pressure, and the pump command value Pv corresponding to the target fuel injection pressure is set.
  • step 605 the pump command value Pv set at step 604 is given to the fuel pump, and the routine ends.
  • the fuel injection control of this embodiment is a control for controlling the fuel injection pressure, and includes a control for separating the outlet deposit from the nozzle hole outlet region.
  • this fuel injection control is referred to as “fifth fuel injection pressure control”.
  • a pressure suitable as the fuel injection pressure when the deposit amount at the entrance and the deposit amount at the exit are both zero is obtained in advance as the basic fuel injection pressure. Further, even if the fuel injection pressure is increased, the minimum amount of the deposit deposit amount that does not cause separation of the sufficient deposit deposit is obtained in advance as the predetermined deposit deposit amount, and the deposit deposit needs to be stripped.
  • the smallest amount among the accumulation amounts is obtained in advance as a predetermined outlet deposit accumulation amount (this amount may be zero).
  • the basic fuel injection pressure is set to the target fuel injection pressure as it is, and the fuel injection pressure is controlled to this target fuel injection pressure.
  • the fuel injection pressure obtained by increasing the basic fuel injection pressure by a predetermined value is set as the target. The fuel injection pressure is set, and the fuel injection pressure is controlled to this target fuel injection pressure.
  • the advantage of the fifth fuel injection pressure control will be described. If combustion products are accumulated as outlet deposits in the nozzle hole outlet region, the atomization degree of the injected fuel is reduced.
  • the outlet deposit is mainly composed of a lower carboxylate, and this lower carboxylate can be peeled off with a relatively small increase in fuel injection pressure. Then, if the outlet deposit is peeled from the nozzle hole outlet region, the atomization degree of the injected fuel is improved.
  • the inlet deposit accumulation amount is large, the amount of separation of the outlet deposit due to the increase of the fuel injection pressure is reduced. In other words, when the amount of deposited deposit is large, the separation efficiency of the outlet deposit due to the increase of the fuel injection pressure is low.
  • the fuel injection pressure control has an advantage that the atomization degree of the injected fuel can be improved efficiently, and consequently the performance related to the exhaust emission of the internal combustion engine can be improved efficiently.
  • predetermined pressure increase for increasing the basic fuel injection pressure is such that the inlet deposit accumulation amount is equal to the predetermined inlet deposit accumulation amount.
  • the fuel injection pressure is set to a value that increases to a pressure at which the outlet deposit can be peeled off under the following conditions.
  • a predetermined pressure increase ratio that increases the basic fuel injection pressure by a predetermined ratio may be used.
  • the predetermined pressure increase amount or the predetermined pressure increase ratio may be a constant value or a ratio irrespective of the outlet deposit accumulation amount, or may be a value or a ratio set in consideration of the outlet deposit accumulation amount. Good.
  • the predetermined pressure increase or the predetermined pressure increase ratio may be set as follows.
  • the deposit accumulated in the region away from the wall surface receives a greater pressure from the fuel flowing in the fuel injection hole than the deposit accumulated in the region near the wall surface. And this pressure becomes the force (namely, peeling force) which peels a deposit from a wall surface.
  • peeling force the force which peels a deposit from a wall surface.
  • the predetermined pressure increase amount or the predetermined pressure increase ratio is set in consideration of the outlet deposit accumulation amount, the predetermined pressure increase amount or the predetermined pressure increase ratio is set to a smaller value as the outlet deposit accumulation amount is larger. May be.
  • the outlet deposit is more easily peeled off as the amount of the outlet deposit is larger, the outlet deposit is harder to peel off as the amount of the deposited deposit is smaller. Therefore, if the outlet deposit is to be peeled off when the amount of the deposited deposit is small, it is necessary to raise the fuel injection pressure relatively large, and even if the fuel injection pressure is raised relatively large, the outlet deposit is peeled off. It may not be possible.
  • the predetermined outlet deposit accumulation amount of the second fuel injection pressure control is set to “an amount in which the outlet deposit cannot be peeled even if the fuel injection pressure is raised relatively large”, the outlet deposit is peeled off. It is possible to avoid unnecessary increase in the fuel injection pressure.
  • the degree of atomization of the injected fuel can be reduced by separating the outlet deposit from the nozzle hole outlet region without causing the outlet deposit to peel from the nozzle hole outlet region to such an extent that the decrease in the atomization degree of the injected fuel becomes zero.
  • the predetermined pressure increase amount or the predetermined pressure increase ratio may be set to “a value for separating the outlet deposit from the nozzle hole outlet region”.
  • step 701 the entrance deposit accumulation amount TXDin and the exit deposit accumulation amount TXDout are acquired.
  • step 702 the inlet deposit accumulation amount TXDin acquired in step 701 is equal to or smaller than the predetermined inlet deposit accumulation amount TXDinth (TXDin ⁇ TXDinth), and the outlet deposit accumulation amount TXDout acquired in step 701 is the predetermined outlet deposit accumulation amount. It is determined whether or not it is equal to or greater than TXDoutth (TXDout ⁇ TXDoutth).
  • TXDout ⁇ TXDoutth the routine proceeds to step 703.
  • the routine directly proceeds to step 704.
  • step 702 When it is determined in step 702 that TXDin ⁇ TXDinth and TXDout ⁇ TXDoutth, and the routine proceeds to step 703, correction is performed in which the basic fuel injection pressure Pb is increased by a predetermined value, and the routine is executed in step 704. Proceed to
  • step 704 When the routine directly proceeds from step 702 to step 704, the basic fuel injection pressure Pb is set to the target fuel injection pressure as it is, and the pump command value Pv corresponding to the target fuel injection pressure is set.
  • step 703 the basic fuel injection pressure Pb increased in step 703 is set as the target fuel injection pressure, and the pump command value Pv corresponding to the target fuel injection pressure is set.
  • step 705 the pump command value Pv set at step 704 is given to the fuel pump, and the routine ends.
  • the fuel injection control in which two or more fuel injection controls among the above-described fuel injection controls (that is, the fuel injection amount control and the first fuel injection pressure control to the fifth fuel injection pressure control) are appropriately combined is also included in the present invention. It is in the range.
  • the nozzle hole outlet temperature Tout is calculated according to the following equation 11.
  • Equation 11 “Ta” is “intake air temperature (ie, temperature of air sucked into the combustion chamber)”, and “Pa” is “intake air pressure (ie, pressure of air taken into the combustion chamber)”.
  • Pcmax is “maximum in-cylinder pressure (that is, the highest pressure in the combustion chamber during one engine cycle)”
  • is “the specific heat ratio of the air taken into the combustion chamber”
  • A is “a conversion coefficient for converting the maximum in-cylinder temperature (that is, the highest temperature among the temperatures in the combustion chamber during one engine cycle) into the nozzle hole outlet temperature”.
  • the nozzle hole outlet temperature Tout is calculated according to the following equation 12.
  • Ta is “intake air temperature”
  • Pa is “intake pressure”
  • Ti is “fuel injection timing (that is, fuel injection timing from the fuel injection valve in one engine cycle)”.
  • Pi is “fuel injection pressure”
  • E is “actual compression ratio”
  • is “specific heat ratio of air sucked into the combustion chamber”
  • a Is a “conversion coefficient for converting the maximum in-cylinder temperature into the nozzle hole outlet temperature”
  • b”, “c”, and “d” are “in-cylinder temperature (the cylinder temperature that is raised by the combustion of fuel in one engine cycle ( That is, the coefficient for calculating the temperature in the combustion chamber from the fuel injection timing, the fuel injection pressure, and the intake pressure ”.
  • the average injection hole temperature (that is, the average temperature in the fuel injection hole) Tave is calculated according to the following equation (13).
  • Equation 13 “N” is “engine speed”, “Ti” is “fuel injection timing”, “Pi” is “fuel injection pressure”, “TQ” is “engine torque”, “Tw” is “cooling water temperature”, “Pa” is “intake pressure”, “a” “b” “c” “d” “e” “f” “g” are “the engine speeds”. , “A coefficient for calculating the average injection hole temperature from the fuel injection timing, the fuel injection pressure, the engine torque, the coolant temperature, and the intake pressure”.
  • the nozzle hole inlet temperature Tin is calculated according to the following equation (14).
  • Tave is “an average nozzle hole temperature calculated according to Expression 13”
  • Tout is “an injection hole outlet temperature calculated according to Expression 11 or 12”
  • a is “average” “Coefficient for calculating the nozzle hole inlet temperature from Expression 14 based on the nozzle hole temperature and the nozzle hole outlet temperature”.
  • the nozzle hole inlet temperature Tin is calculated according to the following equation 15.
  • Equation 15 “Tave” is “an average nozzle hole temperature calculated according to Equation 13”
  • Tout is “an nozzle hole temperature calculated according to Equation 11 or Equation 12”
  • a” “b” Is a “coefficient for calculating the nozzle hole inlet temperature from Equation 15 based on the average nozzle hole temperature and nozzle hole outlet temperature”.
  • FIG. 10 An example of this routine is shown in FIG.
  • the routine of FIG. 10 is executed every time a predetermined time elapses.
  • step 801 the intake air temperature Ta, the intake pressure Pa, the maximum in-cylinder pressure Pcmax, the engine speed N, the fuel injection timing Ti, the fuel injection pressure Pi, the engine torque TQ, and The cooling water temperature Tw is acquired.
  • step 802 the nozzle hole outlet temperature Tout is calculated by applying the intake air temperature Ta, the intake pressure Pa, and the maximum in-cylinder pressure Pcmax acquired in step 801 to the above equation 11.
  • step 803 by applying the engine speed N, fuel injection timing Ti, fuel injection pressure Pi, engine torque TQ, cooling water temperature Tw, and intake pressure Pa acquired in step 801 to the above equation (13).
  • An average nozzle hole temperature Tave is calculated.
  • step 804 the nozzle hole inlet temperature Tin is obtained by applying the nozzle hole outlet temperature Tout calculated in step 802 and the average nozzle hole temperature Tave calculated in step 803 to the above equation 14 or 15. And the routine ends.
  • the routine of FIG. 11 is executed every time a predetermined time elapses.
  • the routine of FIG. 11 is started, first, at step 901, the intake air temperature Ta, the intake air pressure Pa, the engine speed N, the fuel injection timing Ti, the fuel injection pressure Pi, the engine torque TQ, and the cooling water temperature Tw. Is acquired.
  • the nozzle hole outlet temperature Tout is calculated by applying the intake air temperature Ta, intake air pressure Pa, fuel injection timing Ti, and fuel injection pressure Pi acquired at step 901 to the above equation 12.
  • step 903 by applying the engine speed N, fuel injection timing Ti, fuel injection pressure Pi, engine torque TQ, cooling water temperature Tw, and intake pressure Pa acquired in step 901 to the above equation 13.
  • An average nozzle hole temperature Tave is calculated.
  • step 904 the nozzle hole inlet temperature Tin is obtained by applying the nozzle hole outlet temperature Tout calculated in step 902 and the average nozzle hole temperature Tave calculated in step 903 to the above equation 14 or 15. And the routine ends.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

本発明は、燃料噴射弁(22)を備えた内燃機関(10)において、噴孔入口領域に堆積している燃焼生成物のうち剥離する燃焼生成物の量である入口デポジット剥離量と、噴孔出口領域に堆積している燃焼生成物のうち剥離する燃焼生成物の量である出口デポジット剥離量と、を算出することによって、入口デポジット剥離量と出口デポジット剥離量とを推定するデポジット剥離量推定装置に関する。本発明では、噴孔入口領域に堆積している燃焼生成物の量である入口デポジット堆積量に基づいて入口デポジット剥離量が算出されると共に、噴孔出口領域に堆積している燃焼生成物の量である出口デポジット堆積量に基づいて出口デポジット剥離量が算出される。

Description

内燃機関の燃焼生成物生成量推定装置、デポジット剥離量推定装置、デポジット堆積量推定装置、および、燃料噴射制御装置
 本発明は、内燃機関の燃焼生成物生成量推定装置、デポジット剥離量推定装置、デポジット堆積量推定装置、および、燃料噴射制御装置に関する。
 燃料が燃焼室内に直接噴射されるように燃料噴射弁が配置された内燃機関が知られている。また、このような内燃機関では、燃焼生成物(すなわち、燃料の燃焼に関連して生成される物質)が生成され、この燃焼生成物が噴孔領域(すなわち、燃料噴射弁の燃料噴射孔内部の領域と燃料噴射孔外部の領域であって燃料噴射孔の入口近傍の領域と燃料噴射孔外部の領域であって燃料噴射孔の出口近傍の領域とからなる領域)の燃料噴射弁壁面(以下この壁面を「噴孔壁面」という)に堆積することも知られている。そして、このように噴孔壁面に燃焼生成物が堆積すると、所期の量の燃料を燃料噴射弁に噴射させるための指令が燃料噴射弁に送られたとしても、燃料噴射弁から所期の量の燃料が噴射されないことがある。そして、燃料噴射弁から所期の量の燃料が噴射されない場合、内燃機関の出力特性や排気特性が低下することがある。そこで、特許文献1に記載の内燃機関の燃料噴射制御装置では、噴孔壁面に堆積している燃焼生成物の量(以下、噴孔壁面に堆積している燃焼生成物を「デポジット」といい、このデポジットの量を「デポジット堆積量」という)が基準量以上であるときには、デポジットを噴孔壁面から剥離させるように燃料噴射弁からの燃料噴射を制御するようにしている。
 ところで、特許文献1に記載の燃料噴射装置では、デポジットを噴孔壁面から剥離させるべきか否かを判断するためにデポジット堆積量が用いられる。したがって、特許文献では、デポジット堆積量を推定する必要がある。ここで、燃料噴射弁から実際に噴射される燃料の量を実燃料噴射量と称し、燃料噴射弁から噴射させる燃料として要求される量を要求燃料噴射量と称し、デポジット堆積量が零であるときに要求燃料噴射量の燃料を燃料噴射弁から噴射させるために燃料噴射弁に与えられる指令値を燃料噴射指令値と称したとき、特許文献1では、デポジットが噴孔壁面に堆積していると実燃料噴射量が要求燃料噴射量よりも少なくなり、しかも、デポジット堆積量が多いほど実燃料噴射量が要求燃料噴射量よりも少なくなるとの認識から、実燃料噴射量が要求燃料噴射量よりも少ないときに実燃料噴射量と要求燃料噴射量との間の差に基づいてデポジット堆積量が推定される。なお、この場合、実燃料噴射量と要求燃料噴射量との間の差が大きいほどデポジット堆積量が多いと推定される。
特開2009-275100号公報 特開2010-65537号公報
 ところで、本願の発明者の研究により、燃料中の金属成分(例えば、亜鉛、カルシウム、マグネシウムなど)が燃焼ガスと反応することによって金属成分由来の燃焼生成物が生成され、しかも、噴孔入口領域(すなわち、燃料噴射孔の入口近傍の噴孔領域)では、例えば、炭酸塩やシュウ酸塩などの燃焼生成物が生成され、一方、噴孔出口領域(すなわち、燃料噴射孔の出口近傍の噴孔領域)では、例えば、低級カルボン酸塩などの燃焼生成物が生成されることが明らかとなった。
 そして、本願の発明者の研究により、噴孔入口領域に堆積しているデポジット(以下このデポジットを「入口デポジット」という)が燃料噴射(すなわち、燃料噴射弁からの燃料の噴射)に与える影響と噴孔出口領域に堆積しているデポジット(以下このデポジットを「出口デポジット」という)が燃料噴射に与える影響とが互いに異なることが判明した。したがって、燃料噴射に関する特性を所望の特性に維持するためには、こうした影響を噴孔入口領域と噴孔出口領域とに分けて把握する必要がある。つまり、こうした影響をデポジットが堆積するであろう領域毎に把握する必要がある。そして、こうした影響を領域毎に把握するためには、デポジット堆積量を領域毎に把握する必要がある。つまり、入口デポジットの堆積量と出口デポジットの堆積量とをそれぞれ別個に把握する必要がある。
 そして、機関運転中(すなわち、内燃機関の運転中)、燃焼生成物は次々に生成されることから、入口デポジット堆積量と出口デポジット堆積量とを把握するためには、噴孔入口領域において次々に生成される燃焼生成物の量(以下この量を「入口燃焼生成物生成量」という)と噴孔出口領域において次々に生成される燃焼生成物の量(以下この量を「出口燃焼生成物生成量」という)とを推定する必要がある。
 また、機関運転中に次々に生成される燃焼生成物が全て噴孔壁面に堆積し且つ噴孔壁面にいったん堆積した燃焼生成物(すなわち、デポジット)が噴孔入口壁面や噴孔出口壁面から剥離しないのであれば、入口燃焼生成物生成量および出口燃焼生成物生成量から入口デポジット堆積量および出口デポジット堆積量を求めることもできる。しかしながら、実際には、燃焼生成物が次々に生成される間にも、デポジットが噴孔入口壁面や噴孔出口壁面から剥離することもある。したがって、入口デポジット堆積量および出口デポジット堆積量を把握するためには、噴孔入口領域におけるデポジットの剥離量と噴孔出口領域におけるデポジットの剥離量とを推定する必要がある。
 そこで、本発明の目的は、燃焼生成物生成量を領域毎に推定し、デポジット剥離量を領域毎に推定し、デポジット堆積量を領域毎に推定することにある。
 本願の発明は、燃料噴射弁を備えた内燃機関において、燃料噴射弁の燃料噴射孔内部の領域であって燃料噴射孔の入口寄りの領域と燃料噴射孔外部の領域であって燃料噴射孔の入口近傍の領域とから構成される噴孔入口領域において燃料の燃焼に起因して生成される燃焼生成物の量である入口燃焼生成物生成量と、燃料噴射弁の燃料噴射孔内部の領域であって燃料噴射孔の出口寄りの領域と燃料噴射孔外部の領域であって燃料噴射孔の出口近傍の領域とから構成される噴孔出口領域において燃料の燃焼に起因して生成される燃焼生成物の量である出口燃焼生成物生成量と、を算出することによって、入口燃焼生成物生成量と出口燃焼生成物生成量とを推定する燃焼生成物生成量推定装置に関する。そして、本発明では、噴孔入口領域の温度と噴孔出口領域の温度とが個別に求められる。そして、噴孔入口領域の温度に基づいて入口燃焼生成物生成量が算出されると共に、噴孔出口領域の温度に基づいて出口燃焼生成物生成量が算出される。
 本発明によれば、燃料噴射孔の入口周辺の領域(すなわち、噴孔入口領域)と燃料噴射孔の出口周辺の領域(すなわち、噴孔出口領域)とに分けて燃焼生成物生成量を推定することができる。つまり、本発明によれば、領域毎に燃焼生成物生成量を推定することができる。
 また、本願の別の発明は、燃料噴射弁を備えた内燃機関において、燃料噴射弁の燃料噴射孔内部の領域であって燃料噴射孔の入口寄りの領域と燃料噴射孔外部の領域であって燃料噴射孔の入口近傍の領域とから構成される噴孔入口領域に堆積している燃焼生成物のうち剥離する燃焼生成物の量である入口デポジット剥離量と、燃料噴射弁の燃料噴射孔内部の領域であって燃料噴射孔の出口寄りの領域と燃料噴射孔外部の領域であって燃料噴射孔の出口近傍の領域とから構成される噴孔出口領域に堆積している燃焼生成物のうち剥離する燃焼生成物の量である出口デポジット剥離量と、を算出することによって、入口デポジット剥離量と出口デポジット剥離量とを推定するデポジット剥離量推定装置に関する。そして、本発明では、噴孔入口領域に堆積している燃焼生成物の量である入口デポジット堆積量に基づいて入口デポジット剥離量が算出されると共に、噴孔出口領域に堆積している燃焼生成物の量である出口デポジット堆積量に基づいて出口デポジット剥離量が算出される。
 本発明によれば、噴孔入口領域と噴孔出口領域とに分けてデポジット剥離量を推定することができる。つまり、本発明によれば、領域毎にデポジット剥離量を推定することができる。
 また、本願の別の発明は、前記噴孔入口領域に堆積している燃焼生成物の量である入口デポジット堆積量と前記噴孔出口領域に堆積している燃焼生成物の量である出口デポジット堆積量とを算出することによって入口デポジット堆積量と出口デポジット堆積量とを推定するデポジット堆積量推定装置に関する。そして、本発明では、前記燃焼生成物生成量推定装置によって算出される入口燃焼生成物生成量から前記デポジット剥離量推定装置によって算出される入口デポジット剥離量を差し引くことによって入口デポジット堆積量が算出されると共に、前記燃焼生成物生成量推定装置によって算出される出口燃焼生成物生成量から前記デポジット剥離量推定装置によって算出される出口デポジット剥離量を差し引くことによって出口デポジット堆積量が算出される。
 本発明によれば、噴孔入口領域と噴孔出口領域とに分けてデポジット堆積量を推定することができる。つまり、本発明によれば、領域毎にデポジット堆積量を推定することができる。
 なお、噴孔入口領域の温度が或る温度以上になると噴孔入口領域に堆積している燃焼生成物が分解する場合には、前記噴孔入口領域に堆積している燃焼生成物が分解する温度が入口デポジット分解温度として求められ、前記噴孔入口領域の温度が該入口デポジット分解温度以上であるときには入口デポジット堆積量が零として算出されると好ましい。
 これによれば、噴孔入口領域の温度が入口デポジット分解温度以上となり、噴孔入口領域に堆積している燃焼生成物が分解してしまう状況が生じたとしても、入口デポジット堆積量を正確に算出することができる。
 また、噴孔出口領域の温度が或る温度以上になると噴孔出口領域に堆積している燃焼生成物が分解する場合には、前記噴孔出口領域に堆積している燃焼生成物が分解する温度が出口デポジット分解温度として求められ、前記噴孔出口領域の温度が該出口デポジット分解温度以上であるときには出口デポジット堆積量が零として算出されると好ましい。
 これによれば、噴孔出口領域の温度が出口デポジット分解温度以上となり、噴孔出口領域に堆積している燃焼生成物が分解してしまう状況が生じたとしても、出口デポジット堆積量を正確に算出することができる。
 また、燃料噴射弁から燃料を噴射させるために燃料噴射弁に与えられる指令値である燃料噴射指令値が要求燃料噴射量に対応して基本燃料噴射指令値として設定され、要求燃料噴射量に対応した基本燃料噴射指令値が燃料噴射弁に与えることによって燃料噴射弁から燃料を噴射させる場合において、入口デポジット堆積量に応じて前記基本燃料噴射指令値が補正されると好ましい。
 これによれば、噴孔入口領域に燃焼生成物が堆積していたとしても、要求燃料噴射量の燃料を燃料噴射弁に噴射させることができる。すなわち、噴孔入口領域に燃焼生成物が堆積しているときに要求燃料噴射量に対応した基本燃料噴射指令値が燃料噴射弁に与えられたとしても、噴孔入口領域に堆積している燃焼生成物の影響で要求燃料噴射量の燃料が燃料噴射弁から噴射されない。つまり、燃料噴射弁から実際に噴射される燃料の量が要求燃料噴射量からずれてしまう。そして、このずれの程度は、噴孔入口領域に堆積している燃焼生成物の量(すなわち、入口デポジット堆積量)に応じて変化する。したがって、入口デポジット堆積量に応じて基本燃料噴射指令値を補正すれば、噴孔入口領域に燃焼生成物が堆積していたとしても、要求燃料噴射量の燃料を燃料噴射弁に噴射させることができるのである。
 また、燃料噴射弁から噴射される燃料の圧力である燃料噴射圧として目標とすべき燃料噴射圧が基本燃料噴射圧として設定され、該基本燃料噴射圧に燃料噴射圧が制御される場合において、出口デポジット堆積量が入口デポジット堆積量よりも多いときに前記基本燃料噴射圧が増大され、該増大された基本燃料噴射圧に燃料噴射圧が制御されると好ましい。
 これによれば、噴孔出口領域に燃焼生成物が堆積しているときに燃料噴射弁から噴射される燃料の微粒化を効率良く促進することができる。すなわち、噴孔出口領域に燃焼生成物が堆積していると燃料噴射弁から噴射される燃料(以下この燃料を「噴射燃料」という)の微粒化度合が低下してしまう。一方、燃料噴射圧を上昇させると噴射燃料の微粒化が促進される。したがって、噴孔出口領域に燃焼生成物が堆積している場合、燃料噴射圧を上昇させれば噴孔出口領域に堆積している燃焼生成物による噴射燃料の微粒化度合の低下が補償される。ところが、出口デポジット堆積量が入口デポジット堆積量以下である場合、燃料噴射圧の上昇による噴射燃料の微粒化度合の低下の補償効果が比較的低い。したがって、出口デポジット堆積量が入口デポジット堆積量よりも多く、燃料噴射圧の上昇による燃料噴射の微粒化度合の低下の補償効果が比較的高い状況下において、基本燃料噴射圧を増大させることによって燃料噴射圧を上昇させることから、噴射燃料の微粒化を効率良く促進することができるのである。
 また、入口デポジット堆積量が予め定められた入口デポジット堆積量以下であって且つ出口デポジット堆積量が予め定められた出口デポジット堆積量以上であるときに燃料噴射弁から噴射される燃料の圧力である燃料噴射圧が前記噴孔出口領域に堆積している燃焼生成物を該噴孔出口領域から剥離させる圧力まで上昇させると好ましい。
 これによれば、噴孔出口領域に堆積している燃焼生成物を噴孔出口領域から効率良く剥離させることができる。すなわち、燃料噴射圧を比較的高い圧力にまで上昇させると噴孔出口領域に堆積している燃焼生成物を噴孔出口領域から剥離させることができる。ところが、入口デポジット堆積量が比較的多い場合、燃料噴射圧の上昇による噴孔出口領域に堆積している燃焼生成物の剥離効果が比較的低い。したがって、入口デポジット堆積量が予め定められた入口デポジット堆積量以下であり、燃料噴射圧の上昇による噴孔出口領域に堆積している燃焼生成物の剥離効果が比較的高い状況下において、噴孔出口領域に堆積している燃焼生成物を噴孔出口領域から剥離させる圧力まで燃料噴射圧を上昇させることから、噴孔出口領域に堆積している燃焼生成物を噴孔出口領域から効率良く剥離させることができるのである。
本発明が適用される内燃機関を示した図である。 図1に示された内燃機関の燃料噴射弁の先端部分を示した図である。 本発明のデポジット堆積量推定を実行するルーチンの一例を示した図である。 本発明の燃料噴射量制御を実行するルーチンの一例を示した図である。 本発明の第1燃料噴射圧制御を実行するルーチンの一例を示した図である。 本発明の第2燃料噴射圧制御を実行するルーチンの一例を示した図である。 本発明の第3燃料噴射圧制御を実行するルーチンの一例を示した図である。 本発明の第4燃料噴射圧制御を実行するルーチンの一例を示した図である。 本発明の第5燃料噴射圧制御を実行するルーチンの一例を示した図である。 本発明の噴孔温度の算出を実行するルーチンの一例を示した図である。 本発明の噴孔温度の算出を実行するルーチンの一例を示した図である。
 以下、図面を参照して本発明の実施形態について説明する。まず、本発明が適用される内燃機関の構成について説明する。この内燃機関が図1に示されている。図1において、10は内燃機関の本体、11はシリンダブロック、12はシリンダヘッドをそれぞれ示している。シリンダブロック11内には、シリンダボア13が形成されている。シリンダボア13内には、ピストン14が配置されている。ピストン14は、コンロッド15を介してクランクシャフト16に接続されている。一方、シリンダヘッド12には、吸気ポート17と排気ポート18とが形成されている。また、シリンダヘッド12には、吸気ポート17を開いたり閉じたりするための吸気弁19と、排気ポート18を開いたり閉じたりするための排気弁20とが配置されている。また、ピストン14の上壁面とシリンダボア13の内周壁面とシリンダヘッド12の下壁面とによって燃焼室21が画成されている。
 なお、吸気ポート17は、吸気マニホルド(図示せず)を介して吸気管(図示せず)に接続され、吸気通路の一部を構成する。一方、排気ポート18は、排気マニホルド(図示せず)を介して排気管(図示せず)に接続され、排気通路の一部を構成する。
 また、シリンダヘッド12には、燃料噴射弁22が配置されている。燃料噴射弁22は、図2に示されているように、ノズル30とニードル31とを有する。ノズル30の内部には、空洞(以下「内部空洞」という)が形成されている。そして、この内部空洞内にニードル31がノズル30の中心軸線(すなわち、燃料噴射弁22の中心軸線)CAに沿って移動可能に収容されている。また、ニードル31の先端部は、テーパ形状にされている。そして、ニードル31がノズル30の内部空洞内に収容されたとき、ノズル30の内周壁面(すなわち、ノズル30の内部空洞を画成する壁面)とニードル31の外周壁面との間に燃料を通すための燃料通路32が形成される。また、ノズル30の先端部における燃料通路32は、いわゆるサック33を形成している(以下、燃料通路32とは、このサック33を除いた燃料通路のことを意味することとする)。さらに、ノズル30の先端部には、複数の燃料噴射孔34が形成されている。これら燃料噴射孔34は、ノズル30内(すなわち、燃料噴射弁22内)のサック33とノズル30の外部(すなわち、燃料噴射弁22の外部)とを連通している。
 そして、ニードル31のテーパ形状の先端部の外周壁面がノズル30の先端部の内周壁面に当接するようにニードル31がノズル30内に位置決めされたとき、サック33と燃料通路32との間の連通が遮断される。このときには燃料噴射弁22の燃料噴射孔34から燃料は噴射されない。一方、ニードル31のテーパ形状の先端部の外周壁面がノズル30の先端部の内周壁面から離れるようにニードル31がノズル30内において移動せしめられると、サック33と燃料通路32とが互いに連通し、燃料通路32かサック33に燃料が流入する。そして、サック33に流入した燃料は、燃料噴射孔34の入口を介して同燃料噴射孔34に流入し、同燃料噴射孔34を介してその出口から噴射される。
 また、燃料噴射弁22は、燃焼室21内に燃料を直接噴射するようにシリンダヘッド12に配置されている。云い方を換えれば、燃料噴射弁22は、その燃料噴射孔が燃焼室21内に露出するようにシリンダヘッド12に配置されている。
 また、燃料噴射弁22は、燃料供給通路23を介して蓄圧室(すなわち、いわゆるコモンレール)24に接続されている。蓄圧室24は、燃料供給通路25を介して燃料タンク(図示せず)に接続されている。蓄圧室24には、燃料タンクから燃料供給通路25を介して燃料が供給される。そして、蓄圧室24には、高圧の燃料が貯留されている。また、燃料噴射弁22には、蓄圧室24から燃料供給通路23を介して高圧の燃料が供給される。また、蓄圧室24には、その内部の燃料の圧力を検出するための圧力センサ26が配置されている。
 また、シリンダブロック11内には、冷却水を流すための冷却水通路27が形成されている。冷却水通路27は、シリンダボア13を包囲するように形成されている。したがって、少なくとも、冷却水通路27内を流れる冷却水によって燃焼室21内部が冷却される。また、シリンダブロック11には、冷却水通路27内を流れる冷却水の温度を検出するための温度センサ28が配置されている。
 また、内燃機関は、電子制御装置40を有する。電子制御装置40は、マイクロコンピュータからなり、双方向バス41によって互いに接続されたCPU(マイクロプロセッサ)42、ROM(リードオンリメモリ)43、RAM(ランダムアクセスメモリ)44、バックアップRAM45、および、インターフェース46を有する。インターフェース46は、燃料噴射弁22、圧力センサ26、および、温度センサ28に接続されている。電子制御装置40は、燃料噴射弁22の動作を制御すると共に、圧力センサ26から燃料の圧力に対応する出力値を受け取り、温度センサ28から冷却水の温度に対応する出力値を受け取る。
 次に、本発明の燃焼生成物生成量推定の実施形態について説明する。なお、以下の説明において「噴孔壁面」は「燃料噴射弁の燃料噴射孔を画成する燃料噴射弁壁面」であり、「入口側噴孔壁面」は「噴孔壁面のうち燃料噴射孔の入口寄りの噴孔壁面」であり、「出口側噴孔壁面」は「噴孔壁面のうち燃料噴射孔の出口寄りの噴孔壁面」であり、「噴孔入口隣接壁面」は「燃料噴射孔の外部の燃料噴射弁壁面であって、入口側噴孔壁面に隣接する燃料噴射弁壁面」であり、「噴孔出口隣接壁面」は「燃料噴射孔の外部の燃料噴射弁壁面であって、出口側噴孔壁面に隣接する燃料噴射弁壁面」であり、「噴孔入口壁面」は「入口側噴孔壁面と噴孔入口隣接壁面とから構成される壁面」であり、「噴孔出口壁面」は「出口側噴孔壁面と噴孔出口隣接壁面とから構成される壁面」である。また「噴孔入口領域」は「噴孔入口壁面周辺の領域」であり、「噴孔出口領域」は「噴孔出口壁面周辺の領域」である。また「燃焼生成物」は「燃料の燃焼に関連して生成される物質」であり、「入口デポジット」は「噴孔入口領域に堆積している燃焼生成物」であり、「出口デポジット」は「噴孔出口領域に堆積している燃焼生成物」である。また「燃焼ガス」は「燃焼室内で燃料が燃焼することによって発生するガス」であり、「燃料噴射」とは「燃料噴射弁の燃料噴射孔からの燃料の噴射」であり、「燃料噴射圧」は「燃料噴射弁の燃料噴射孔から噴射される燃料の圧力」である。また「噴孔温度」は「燃料噴射弁の燃料噴射孔内部の温度」であり、「噴孔入口温度」は「噴孔入口領域の温度」であり、「噴孔出口温度」は「噴孔出口領域の温度」である。
 本発明の燃焼生成物生成量推定の実施形態の1つでは、次式1に従って所定期間(すなわち、予め定められた期間)中に噴孔入口領域にて生成される燃焼生成物の生成量(以下この生成量を「入口燃焼生成物新規生成量」という)XPinが算出されると共に、次式2に従って上記所定期間中に噴孔出口領域にて生成される燃焼生成物の生成量(以下この生成量を「出口燃焼生成物新規生成量」という)XPoutが算出される。なお、所定期間は、特に制限されるものではなく、任意に設定されればよく、例えば、特定の燃料噴射弁において連続する2回の燃料噴射の間の期間である。
 XPin=Cm×Ain×Tin   …(1)
 XPout=Cm×Aout×Tout   …(2)
 式1および式2において「Cm」は「燃料中の金属成分の濃度(以下単に「金属成分濃度」という)である。この金属成分濃度は、例えば、予め測定された濃度でもよいし、機関運転中に適宜測定される濃度でもよい。式1において「Tin」は「上記所定期間中の特定の時点における噴孔入口温度」である。式2において「Tout」は「上記所定期間中の特定の時点における噴孔出口温度」である。式1において「Ain」は、金属成分濃度Cmおよび噴孔入口温度Tinに関連する入口燃焼生成物新規生成量が正確に算出されるように適合された係数である。式2において「Aout」は、金属成分濃度Cmおよび噴孔出口温度Toutに関連する出口燃焼生成物新規生成量が正確に算出されるように適合された係数である。
 次に、本実施形態の燃焼生成物生成量推定の利点について説明する。燃料が燃焼室内に直接噴射されるように燃料噴射弁が配置されている内燃機関では、噴孔出口隣接壁面に燃焼生成物が堆積することが知られている。また、燃料中の金属成分(例えば、亜鉛、カルシウム、マグネシウムなど)が燃焼ガスと反応することによって金属成分由来の燃焼生成物(例えば、低級カルボン酸塩、炭酸塩、シュウ酸塩などであり、以下この燃焼生成物を「金属由来生成物」という)が生成され、この金属由来生成物も噴孔出口隣接壁面に堆積することが本願の発明者の研究により明らかとなった。また、この金属由来生成物は噴孔壁面や噴孔入口隣接壁面にも堆積することが本願の発明者の研究により明らかとなった。
 次に、金属由来生成物について簡単に説明する。従来、噴孔壁面や噴孔入口隣接壁面には燃焼生成物が堆積することはないものと認識されていた。しかしながら、本願の発明者の研究によれば、上述したように、噴孔出口隣接壁面だけでなく噴孔壁面や噴孔入口隣接壁面にも金属由来生成物の形態の燃焼生成物が堆積することが明らかとなった。このように噴孔壁面や噴孔入口隣接壁面にも金属由来生成物が堆積する理由は以下のように推察される。すなわち、燃料噴射弁が燃料を燃焼室内に直接噴射するように、すなわち、燃料噴射弁の燃料噴射孔が燃焼室内部に露出するように燃料噴射弁が内燃機関に配置されている場合、燃焼ガスが燃料噴射孔に入り込み、この燃焼ガスが燃料噴射孔内およびその入口近傍において燃料と反応し、金属由来生成物が生成される。そして、この金属由来生成物の壁面への付着力が比較的強いことから、燃料噴射孔内およびその入口において強い燃料の流れがあるにも係わらず、噴孔壁面および噴孔入口隣接壁面に付着し堆積する。これが金属由来生成物が噴孔壁面や噴孔入口隣接壁面にも堆積する理由であると推察されるのである。
 ところで、このように噴孔出口隣接壁面、噴孔壁面、および、噴孔入口隣接壁面(以下これら壁面をまとめて単に「壁面」という)に金属由来生成物を含む燃焼生成物(以下、この燃焼生成物には金属由来生成物が含まれるものとする)が堆積していると、壁面に堆積している燃焼生成物(以下、壁面に堆積している燃焼生成物を「デポジット」という)が燃料の流れを阻害してしまう。したがって、本来であれば要求されている量(以下この量を「要求燃料噴射量」という)の燃料を燃料噴射弁に噴射させることができる指令値が燃料噴射弁に与えられたとしても、要求燃料噴射量の燃料が燃料噴射弁から噴射されない可能性がある。
 そして、要求燃料噴射量の燃料が燃料噴射弁から噴射されない場合、内燃機関の出力特性や排気特性が低下してしまう可能性がある。したがって、こうした内燃機関の出力特性や排気特性の低下を抑制し或いは改善しようとする場合にはこうした特性の低下が生じる可能性の有無を知ることは不可欠であるし、こうした特性の低下が生じる可能性の有無を知ることは少なからず有用である。そして、こうした特性の低下が生じる可能性の有無を知るためには、壁面に堆積しているデポジットの量(以下この量を「デポジット堆積量」という)を正確に知ることが必要である。
 一方、デポジット堆積量は、壁面の形状や壁面を取り巻く雰囲気の温度によって異なる。そして、噴孔入口壁面の形状と噴孔出口壁面の形状とは互いに異なっていることが多く、また、噴孔入口温度と噴孔出口温度とは互いに異なっていることも多い。また、入口デポジットが燃料噴射に関する特性に与える影響と出口デポジットが燃料噴射に関する特性に与える影響とも互いに異なる。例えば、入口デポジットが燃料噴射量に与える影響は、出口デポジットのそれよりも大きい。一方、出口デポジットが噴射燃料の微粒化に与える影響は、入口デポジットのそれよりも大きい。また、噴孔出口領域からの出口デポジットの剥離の容易さは、噴孔入口領域からの入口デポジットの剥離の容易さよりも高い。以上のことに鑑みたとき、より適切に、内燃機関の出力特性や排気特性の低下を抑制し或いは改善しようとする場合、デポジット堆積量を噴孔入口領域に堆積しているデポジットの量(以下この量を「入口デポジット堆積量」という)と噴孔出口領域に堆積しているデポジットの量(以下この量を「出口デポジット堆積量」という)とに分けて知ることが必要である。
 ところで、機関運転中(すなわち、内燃機関の運転中)、燃料噴射弁から次々に燃料が噴射されるのであるから、燃焼生成物は次々に生成される。そして、斯くして生成される燃焼生成物が壁面に堆積することによってデポジットが形成される。したがって、入口デポジット堆積量および出口デポジット堆積量を知るためには、噴孔入口領域において次々に生成される燃焼生成物の量(すなわち、入口燃焼生成物新規生成量)および噴孔出口領域において次々に生成される燃焼生成物の量(すなわち、出口燃焼生成物新規生成量)を知る必要がある。
 そして、入口燃焼生成物新規生成量は、金属成分濃度および噴孔入口温度に応じて変わる。より具体的に言えば、噴孔入口温度が同じ場合、入口燃焼生成物新規生成量は、金属成分濃度が高いほど多い。また、金属成分濃度が同じ場合、入口燃焼生成物新規生成量は、噴孔入口温度が高いほど多い。したがって、入口燃焼生成物新規生成量を正確に算出するためには、その算出に金属成分濃度と噴孔入口温度とが考慮されるべきである。同様の理由から、出口燃焼生成物新規生成量を正確に算出するためには、その算出に金属成分濃度と噴孔出口温度とが考慮されるべきである。
 ここで、本実施形態の燃焼生成物生成量推定では、式1に示されているように、入口燃焼生成物新規生成量XPinは、金属成分濃度Cmと噴孔入口温度Tinとの積に基づいて算出される。つまり、入口燃焼生成物新規生成量XPinは、金属成分濃度Cmと噴孔入口温度Tinとを変数として算出される。そして、式1によって算出される入口燃焼生成物新規生成量XPinは、金属成分濃度Cmが高いほど多く、噴孔入口温度Tinが高いほど多い。つまり、式1による入口燃焼生成物新規生成量の算出には、金属成分濃度が高いほど或いは噴孔入口温度が高いほど入口燃焼生成物新規生成量が多いことが考慮されている。したがって、本実施形態の燃焼生成物生成量推定には、入口燃焼生成物新規生成量を正確に算出することができるという利点がある。
 また、本実施形態の燃焼生成物生成量推定では、式2に示されているように、出口燃焼生成物新規生成量XPoutは、金属成分濃度Cmと噴孔出口温度Toutとの積に基づいて算出される。つまり、出口燃焼生成物新規生成量XPoutは、金属成分濃度Cmと噴孔出口温度Toutとを変数として算出される。そして、式2によって算出される出口燃焼生成物新規生成量XPoutは、金属成分濃度が高いほど或いは噴孔出口温度が高いほど多い。つまり、式2による出口燃焼生成物新規生成量の算出には、金属成分濃度が高いほど或いは噴孔出口温度が高いほど出口燃焼生成物新規生成量が多いことが考慮されている。したがって、本実施形態の燃焼生成物生成量推定には、出口燃焼生成物新規生成量を正確に算出することができるという利点がある。
 次に、本発明のデポジット剥離量推定の実施形態について説明する。本発明のデポジット剥離量生成量推定の実施形態の1つでは、次式3に従って所定期間(すなわち、予め定められた期間)中に入口デポジットが噴孔入口領域から剥離する容易さを表す係数(以下この係数を「入口デポジット剥離容易性係数」という)KRinが算出されると共に、次式4に従って上記所定期間中に出口デポジットが噴孔出口領域から剥離する容易さを表す係数(以下この係数を「出口デポジット剥離容易性係数」という)KRoutが算出される。なお、所定期間は、特に制限されるものではなく、任意に設定されればよく、例えば、特定の燃料噴射弁において連続する2回の燃料噴射の間の期間である。
 KRin=FKRin(TXDin)   …(3)
 KRout=FKRout(TXDout)   …(4)
 式3において「TXDin」は「前回のデポジット堆積量推定において算出された入口デポジット堆積量」である。式3において「FKRin」は「入口デポジット堆積量を適用することによって適切な入口デポジット剥離容易性係数を算出することができるように適合された関数」である。式4において「TXDout」は「前回のデポジット堆積量推定において算出された出口デポジット堆積量」である。式4において「FKRout」は「出口デポジット堆積量を適用することによって適切な出口デポジット剥離容易性係数を算出することができるように適合された関数」である。
 そして、本実施形態のデポジット剥離量推定では、次式5に従って上記所定期間中に噴孔入口領域から剥離したデポジットの量(以下この量を「入口デポジット新規剥離量」という)XRinが算出されると共に、次式6に従って上記所定期間中に噴孔出口領域から剥離したデポジットの量(以下この量を「出口デポジット新規剥離量」という)XRoutが算出される。
 XRin=P×KRin   …(5)
 XRout=P×KRout   …(6)
 式5および式6において「P」は「上記所定期間中の特定の時点における燃料噴射圧(以下単に「燃料噴射圧」という)」である。この燃料噴射圧は、例えば、上記所定期間中の特定の時点における圧力センサ26の出力値から求められる。もちろん、上記所定期間中の特定の時点における燃料噴射圧に代えて、上記所定期間中の平均の燃料噴射圧が用いられてもよい。また、式5において「KRin」は式3に従って算出される入口デポジット剥離容易性係数であり、式6において「KRout」は式4に従って算出される出口デポジット剥離容易性係数である。
 次に、本実施形態のデポジット剥離量推定の利点について説明する。上述したように次々に生成される燃焼生成物が全て壁面に堆積し且つ壁面にいったん堆積した燃焼生成物(すなわち、デポジット)が壁面から剥離されないのであれば、次々に生成される燃料生成物の量を積算すれば、デポジット堆積量を正確に求めることができる。しかしながら、実際には、燃焼生成物が次々に生成され、これら燃焼生成物が壁面に堆積する間にも、デポジットが壁面から剥離することがある。したがって、入口デポジット堆積量および出口デポジット堆積量を正確に求めるためには、その算出に、噴孔入口領域および噴孔出口領域において次々に生成される燃焼生成物の量を考慮するだけでなく、噴孔入口領域から剥離するデポジットの量(すなわち、入口デポジット新規剥離量)および噴孔出口領域から剥離するデポジットの量(すなわち、出口デポジット新規剥離量)も考慮する必要がある。
 ところで、入口デポジット新規剥離量は、燃料噴射圧および入口デポジット剥離容易性(すなわち、噴孔入口領域からの入口デポジットの剥離のし易さ)に応じて変わる。より具体的に言えば、入口デポジット剥離容易性が同じ場合、入口デポジット新規剥離量は、燃料噴射圧が高いほど多い。また、燃料噴射圧が同じ場合、入口デポジット新規剥離量は、入口デポジット剥離容易性が高いほど多い。したがって、入口デポジッ新規ト剥離量を正確に算出するためには、その算出に燃料噴射圧と入口デポジット剥離容易性とが考慮されるべきである。同様の理由から、出口デポジット新規剥離量を正確に算出するためには、その算出に燃料噴射圧と出口デポジット剥離容易性とが考慮されるべきである。
 ここで、本実施形態のデポジット剥離量推定では、式5に示されているように、入口デポジット新規剥離量XRinは、燃料噴射圧Pに入口デポジット剥離容易性係数KRinを乗算することによって算出される。つまり、入口デポジット新規剥離量XRinは、燃料噴射圧Pと入口デポジット剥離容易性係数KRinとを変数として算出される。そして、式5によって算出される入口デポジット新規剥離量XRinは、燃料噴射圧Pが高いほど多く、入口デポジット剥離容易性係数KRinが大きいほど多い。つまり、式5による入口デポジット剥離量の算出には、燃料噴射圧が高いほど或いは入口デポジット剥離容易性が高いほど入口デポジット剥離量が多いことが考慮されている。したがって、本実施形態のデポジット剥離量推定には、入口デポジット剥離量を正確に算出することができるという利点がある。
 また、本実施形態のデポジット剥離量推定では、式6に示されているように、出口デポジット新規剥離量XRoutは、燃料噴射圧Pに出口デポジット剥離容易性係数KRoutを乗算することによって算出される。つまり、出口デポジット新規剥離量XRoutは、燃料噴射圧Pと出口デポジット剥離容易性係数KRoutとを変数として算出される。そして、式6によって算出される出口デポジット新規剥離量XRoutは、燃料噴射圧Pが高いほど多く、出口デポジット剥離容易性係数KRoutが大きいほど多い。つまり、式6による出口デポジット剥離量の算出には、燃料噴射圧が高いほど或いは出口デポジット剥離容易性が高いほど出口デポジット剥離量が多いことが考慮されている。したがって、本実施形態のデポジット剥離量推定には、出口デポジット剥離量を正確に算出することができるという利点がある。
 ところで、壁面から離れた領域に堆積しているデポジットは、壁面に近い領域に堆積しているデポジットに比べて、燃料噴射孔内を流れる燃料から大きな圧力を受ける。そして、この圧力は、デポジットを壁面から剥離させる力(以下この力を「剥離力」という)となる。ここで、噴孔入口壁面にデポジットが一様に堆積しているとすれば、入口デポジット堆積量(すなわち、噴孔入口領域に堆積しているデポジットの量)が多いほど、噴孔入口壁面からのデポジットの厚みが厚い。したがって、入口デポジット堆積量が多いほど、噴孔入口壁面から離れた領域に堆積しているデポジットの量が多く、したがって、入口デポジットが受ける剥離力も大きい。このため、燃料噴射圧が同じであっても、入口デポジット堆積量が多いほど、入口デポジット剥離量が多い。したがって、入口デポジット剥離量を正確に算出するためには、その算出に用いられる入口デポジット剥離性係数として、入口デポジット堆積量に無関係に一定の値の係数ではなく、入口デポジット堆積量に応じて変化する係数を採用すべきである。同様の理由から、出口デポジット剥離量を正確に算出するためには、その算出に用いられる出口デポジット剥離性係数として、出口デポジット堆積量に応じて変化する係数を採用すべきである。
 ここで、本実施形態のデポジット剥離量推定では、式3に示されているように、入口デポジット剥離容易性係数KRinは、入口デポジット堆積量TXDinを変数とする関数によって算出される。つまり、式3による入口デポジット剥離容易性係数の算出には、入口デポジット堆積量が考慮されている。したがって、本実施形態のデポジット剥離量推定には、入口デポジット剥離容易性係数を正確に算出することができ、ひいては、入口デポジット剥離量を正確に算出することができるという利点がある。
 なお、当然のことながら、入口デポジット剥離容易性係数を算出するための関数FKRinは、入口デポジット堆積量TXDinが多いほど大きい入口デポジット剥離容易性係数KRinが算出される関数である。
 また、本実施形態のデポジット剥離量推定では、式4に示されているように、出口デポジット剥離容易性係数KRoutは、出口デポジット堆積量TXDoutを変数とする関数によって算出される。つまり、式4による出口デポジット剥離容易性係数の算出には、出口デポジット堆積量が考慮されている。したがって、本実施形態のデポジット剥離量推定には、出口デポジット剥離容易性係数を正確に算出することができ、ひいては、出口デポジット剥離量を正確に算出することができるという利点がある。
 なお、当然のことながら、出口デポジット剥離容易性係数を算出するための関数FKRoutは、出口デポジット堆積量TXDoutが多いほど大きい出口デポジット剥離容易性係数KRoutが算出される関数である。
 なお、上述した実施形態のデポジット剥離量推定では、噴孔入口壁面に一様にデポジットが堆積して入口デポジットの厚み(すなわち、噴孔入口壁面からのデポジットの厚み)が領域に係わらず一定であることを前提にしている。しかしながら、噴孔入口壁面に一様にデポジットが堆積しないのであれば、入口デポジット剥離容易性係数を算出するために用いられる関数として、噴孔入口壁面に一様にデポジットが堆積しないことを前提に入口デポジット堆積量と入口デポジット剥離量とのデータを解析して求められた関数を用いることによって、入口デポジット剥離量を正確に算出するための入口デポジット剥離容易性係数を算出することができる。
 同様に、噴孔出口壁面に一様にデポジットが堆積しないのであれば、出口デポジット剥離容易性係数を算出するために用いられる関数として、噴孔出口壁面に一様にデポジットが堆積しないことを前提に出口デポジット堆積量と出口デポジット剥離量とのデータを解析して求められた関数を用いることによって、出口デポジット剥離量を正確に算出するための出口デポジット剥離容易性係数を算出することができる。
 次に、壁面から剥離するデポジットの量を入口デポジット剥離量と出口デポジット剥離量とに分けて算出するさらなる利点について説明する。噴孔入口領域には、炭酸塩やシュウ酸塩を成分とするデポジットが堆積しやすい。これら炭酸塩やシュウ酸塩は、燃料噴射孔に流入して同燃料噴射孔内を流れる燃料によって噴孔入口領域から剥離されやすい。一方、噴孔出口領域には、低級カルボン酸塩を成分とするデポジットが堆積しやすい。この低級カルボン酸塩は、燃料噴射孔内を流れて同燃料噴射孔から噴射される燃料によって噴孔出口領域から剥離されづらい。つまり、燃料噴射圧が同じであり且つデポジット厚さ(すなわち、壁面からのデポジットの厚み)が同じであっても、出口デポジットよりも入口デポジットのほうが剥離しやすいのである。したがって、デポジット剥離量をより正確に把握するという観点では、入口デポジット剥離量と出口デポジット剥離量とを分けて把握することが好ましい。
 本実施形態のデポジット剥離量推定では、入口デポジット剥離量と出口デポジット剥離量とを分けて算出していることから、デポジット剥離量をより正確に算出することができるという利点がある。
 次に、本発明のデポジット堆積量推定の実施形態について説明する。本発明のデポジット堆積量推定の実施形態の1つでは、次式7に従って上記所定期間中の入口デポジット新規堆積量(すなわち、上記所定期間に噴孔入口領域に新たに堆積する入口デポジットの量)XDinが算出されると共に、次式8に従って上記所定期間中の出口デポジット新規堆積量(すなわち、上記所定期間に噴孔出口領域に新たに堆積する出口デポジットの量)XDoutが算出される。
 XDin=XPin-XRin   …(7)
 XDout=XPout-XRout   …(8)
 式7において「XPin」は「式1に従って算出される入口燃焼生成物新規生成量」であり、「XRin」は「式3に従って算出される入口デポジット新規剥離量」である。式8において「XPout」は「式2に従って算出される出口燃焼生成物新規生成量」であり、「XRout」は「式4に従って算出される出口デポジット新規剥離量」である。
 そして、本実施形態のデポジット堆積量推定では、次式9に従って入口デポジット堆積量TXDinが算出されると共に、次式10に従って出口デポジット堆積量TXDoutが算出される。
 TXDin=TXDin+XDin   …(9)
 TXDout=TXDout+XDout   …(10)
 式9の左辺の「TXDin」が「今回のデポジット堆積量推定によって算出される入口デポジット堆積量」であり、式9の右辺の「TXDin」は「前回のデポジット堆積量推定によって算出された入口デポジット堆積量」である。式10の左辺の「TXDout」が「今回のデポジット堆積量推定によって算出される出口デポジット堆積量」であり、式10の右辺の「TXDout」は「前回のデポジット堆積量推定によって算出された出口デポジット堆積量」である。
 次に、本実施形態のデポジット堆積量推定の利点について説明する。上記所定期間中の入口燃焼生成物新規生成量から上記所定期間中の入口デポジット新規剥離量を差し引けば、入口デポジット新規堆積量が得られる。ここで、本実施形態のデポジット堆積量推定では、式7に示されているように、上記所定期間中の入口燃焼生成物新規生成量から上記所定期間中の入口デポジット新規剥離量を差し引くことによって入口デポジット新規堆積量が算出され、入口燃焼生成物新規生成量および入口デポジット新規剥離量がそれぞれ正確な量として算出された値であることから、入口デポジット新規堆積量が正確に算出される。そして、この入口デポジット新規堆積量を積算すれば、入口デポジット堆積量が得られる。ここで、本実施形態のデポジット堆積量推定では、式9に示されているように、式7に従って算出される入口デポジット新規堆積量XDinを既に算出されている入口デポジット堆積量TXDinに加算することによって最新の入口デポジット堆積量が算出される。したがって、本実施形態のデポジット堆積量推定には、入口デポジット堆積量を正確に算出することができるという利点がある。
 同様に、上記所定期間中の出口燃焼生成物新規生成量から上記所定期間中の出口デポジット新規剥離量を差し引けば、出口デポジット新規堆積量が得られる。ここで、本実施形態のデポジット堆積量推定では、式10に示されているように、上記所定期間中の出口燃焼生成物新規生成量から上記所定期間中の出口デポジット新規剥離量を差し引くことによって出口デポジット新規堆積量が算出され、出口燃焼生成物新規生成量および出口デポジット新規剥離量がそれぞれ正確な量として算出された値であることから、出口デポジット新規堆積量が正確に算出される。そして、この出口デポジット新規堆積量を積算すれば、出口デポジット堆積量が得られる。ここで、本実施形態のデポジット堆積量推定では、式10に示されているように、式8に従って算出される出口デポジット新規堆積量XDoutを既に算出されている出口デポジット堆積量TXDoutに加算することによって最新の出口デポジット堆積量が算出される。したがって、本実施形態のデポジット堆積量推定には、出口デポジット堆積量を正確に算出することができるという利点がある。
 次に、上述した実施形態のデポジット堆積量推定を実行するルーチンについて説明する。このルーチンの一例が図3に示されている。図3のルーチンは、所定時間が経過する毎に実行される。
 図3のルーチンが開始されると、始めに、ステップ101において、噴孔入口温度Tin、噴孔出口温度Tout、燃料噴射圧P、前回の本ルーチンによって算出された入口デポジット堆積量TXDin、および、前回の本ルーチンによって算出された出口デポジット堆積量TXDoutが取得される。次いで、ステップ102において、ステップ101で取得された噴孔入口温度Tinを上式1に適用することによって入口燃焼生成物新規生成量XPinが算出されると共に、ステップ101で取得された噴孔出口温度Toutを上式2に適用することによって出口燃焼生成物新規生成量XPoutが算出される。次いで、ステップ103において、ステップ101で取得された入口デポジット堆積量TXDinを上式3に適用することによって入口デポジット剥離容易性係数KRinが算出されると共に、ステップ101で取得された出口デポジット堆積量TXDoutを上式4に適用することによって出口デポジット剥離容易性係数KRoutが算出される。
 次いで、ステップ104において、ステップ101で取得された燃料噴射圧Pとステップ103で算出された入口デポジット剥離容易性係数KRinとを上式5に適用することによって入口デポジット新規剥離量XRinが算出されると共に、ステップ101で取得された燃料噴射圧Pとステップ103で算出された出口デポジット剥離容易性係数KRoutとを上式6に適用することによって出口デポジット新規剥離量XRoutが算出される。次いで、ステップ105において、ステップ102で算出された入口燃焼生成物新規生成量XPinとステップ104で算出された入口デポジット新規剥離量XRinとを上式7に適用することによって入口デポジット新規堆積量XDinが算出されると共に、ステップ102で算出された出口燃焼生成物新規生成量XPoutとステップ104で算出された出口デポジット新規剥離量XRoutとを上式8に適用することによって出口デポジット新規堆積量XDoutが算出される。次いで、ステップ106において、ステップ105で算出された入口デポジット新規堆積量XDinを上式9に適用することによって入口デポジット堆積量TXDinが算出されると共に、ステップ105で算出された出口デポジット新規堆積量XDoutを上式10に適用することによって出口デポジット堆積量TXDoutが算出される。
 次いで、ステップ107において、ステップ101で取得された噴孔出口温度Toutが所定噴孔出口温度Toutth以上である(Tout≧Toutth)か否かが判別される。ここで、Tout≧Toutthであると判別されたときには、ルーチンはステップ108に進む。一方、Tout<Toutthであると判別されたときには、ルーチンはそのまま終了する。この場合、今回の本ルーチンによって算出された入口デポジット堆積量はステップ106で算出された量TXDinであり、今回の本ルーチンによって算出された出口デポジット堆積量はステップ106で算出された量TXDoutである。
 ステップ107でTout≧Toutthであると判別され、ルーチンがステップ108に進むと、ステップ106で算出された出口デポジット堆積量TXDoutが零とされ、ルーチンが終了する。この場合、今回の本ルーチンによって算出された入口デポジット堆積量はステップ106で算出された量TXDinであり、今回の本ルーチンによって算出された出口デポジット堆積量は零である。
 ところで、デポジットを構成する成分(すなわち、低級カルボン酸塩、炭酸塩、および、シュウ酸塩)のうち炭酸塩は、その周囲の温度が或る温度以上になると分解してしまう。また、上述した実施形態において、炭酸塩がデポジットとして堆積する部位は、噴孔入口領域である。そこで、上述した実施形態において、噴孔入口温度が所定の温度(すなわち、デポジットを構成する炭酸塩の分解温度)以上になったときに入口デポジット堆積量のうち炭酸塩を成分とするデポジット堆積量を零として入口デポジット堆積量を新たに算出するようにしてもよい。なお、上記所定の温度は、炭酸塩が分解する温度として実験等によって求められ、予め定められた温度であれば如何なる温度でもよいが、一例を挙げれば、概ね300℃である。
 もちろん、このことを低級カルボン酸塩やシュウ酸塩に関して同様に適用してもよい。すなわち、デポジットを構成する低級カルボン酸塩が分解してしまう温度が予め判っているのであれば、上述した実施形態において、低級カルボン酸塩がデポジットとして堆積する部位は、噴孔出口領域であるので、噴孔出口温度が所定の温度(すなわち、デポジットを構成する低級カルボン酸塩の分解温度)以上になったときに出口デポジット堆積量のうち低級カルボン酸塩を成分とするデポジット堆積量を零として出口デポジット堆積量を新たに算出するようにしてもよい。また、デポジットを構成するシュウ酸塩が分解してしまう温度が予め判っているのであれば、上述した実施形態において、シュウ酸塩がデポジットとして堆積する部位は、噴孔入口領域であるので、噴孔入口温度が所定の温度(すなわち、デポジットを構成するシュウ酸塩の分解温度)以上になったときに入口デポジット堆積量のうちシュウ酸塩を成分とするデポジット堆積量を零として入口デポジット堆積量を新たに算出するようにしてもよい。
 上述した実施形態は、噴孔入口領域には、炭酸塩やシュウ酸塩を成分とするデポジットが堆積し、噴孔出口領域には、低級カルボン酸塩を成分とするデポジットが堆積するとの認識を前提にした実施形態である。しかしながら、各領域に堆積するデポジットの成分は、上述の限りではなく、燃料の性状、燃料噴射孔の形状、燃料噴射孔の周辺環境の状態などによって異なる。したがって、各領域に堆積するデポジットの成分が上述した実施形態のものとは異なる場合であっても、燃料の性状、燃料噴射孔の形状、燃料噴射孔の周辺環境の状態などを考慮したうえで、上述した実施形態に関連して説明した本発明の技術思想を利用することによって、領域毎の燃焼生成物生成量、領域毎のデポジット剥離量、および、領域毎のデポジット堆積量を正確に推定することができる。
 次に、本発明の燃料噴射制御の1つの実施形態について説明する。この実施形態の燃料噴射制御は、燃料噴射量を制御する制御であって、入口デポジットに起因する燃料噴射量誤差(すなわち、入口デポジットが零であるときの実際の燃料噴射量を「予定燃料噴射量」とした場合において、「予定燃料噴射量に対する実際の燃料噴射量のずれ」であり、以下、これを単に「燃料噴射量誤差」という)を補償する制御を含むものである。以下、この燃料噴射制御を「燃料噴射量制御」と称する。この燃料噴射量制御では、入口デポジット堆積量が零であるときに内燃機関に要求トルクを出力させることができる燃料噴射量が要求トルクに応じた基本燃料噴射量として予め求められている。また、補償する必要がある燃料噴射量誤差を生じさせる入口デポジット堆積量のうち最も少ない量(この量は零であってもよい)が所定入口デポジット堆積量として予め求められている。また、燃料噴射量誤差が正の値となる燃料噴射量(すなわち、実燃料噴射量が目標燃料噴射量よりも少なくなる燃料噴射量)のうち最も少ない量が所定燃料噴射量として予め求められている。
 そして、機関運転中(すなわち、内燃機関の運転中)、要求トルクに応じた基本燃料噴射量が設定される。そして、入口デポジット堆積量が所定入口デポジット堆積量よりも少ないときには、基本燃料噴射量が所定燃料噴射量以上であるか否かに係わらず、基本燃料噴射量がそのまま目標燃料噴射量に設定され、この目標燃料噴射量に対応する燃料噴射指令値が燃料噴射弁に与えられる。一方、入口デポジット堆積量が所定入口デポジット堆積量以上であるときには、基本燃料噴射量が所定燃料噴射量以上であるか否かが判断される。ここで、基本燃料噴射量が所定燃料噴射量以上であると判断されたときには、基本燃料噴射量を予め定められた量だけ増量した燃料噴射量が目標燃料噴射量に設定され、この目標燃料噴射量に対応する燃料噴射指令値が燃料噴射弁に与えられる。一方、基本燃料噴射量が所定燃料噴射量よりも少ないと判断されたときには、基本燃料噴射量を予め定められた量だけ減量した燃料噴射量が目標燃料噴射量に設定され、この目標燃料噴射量に対応する燃料噴射指令値が燃料噴射弁に与えられる。
 次に、本実施形態の燃料噴射量制御の利点について説明する。噴孔入口領域に燃焼生成物が入口デポジットとして堆積しているときに基本燃料噴射量を目標燃料噴射量とし、この目標燃料噴射量に対応した燃料噴射指令値が燃料噴射弁に与えられたとしても、入口デポジットの影響で基本燃料噴射量の燃料が燃料噴射弁から噴射されない。つまり、実燃料噴射量が基本燃料噴射量からずれてしまう。そして、このずれ量(すなわち、燃料噴射量誤差)は、入口デポジット堆積量に応じて変化する。したがって、入口デポジット堆積量に応じて燃料噴射量誤差が零となるように補正した基本燃料噴射量を目標燃料噴射量とし、この目標燃料噴射量に対応した燃料噴射指令値が燃料噴射弁に与えられれば、噴孔入口領域に燃焼生成物が堆積していたとしても、基本燃料噴射量の燃料が燃料噴射弁から噴射される。したがって、本実施形態の燃料噴射量制御には、基本燃料噴射量の燃料を燃料噴射弁に噴射させることができ、ひいては、要求トルクを内燃機関に出力させることができるという利点がある。また、内燃機関の特定の性能(例えば、排気エミッションに関する性能)を高く維持するために空燃比を特定の空燃比に制御するようにしている場合に本実施形態の燃料噴射量制御が適用されれば、基本燃料噴射量の燃料を燃料噴射弁に噴射させることができるのであるから、空燃比を特定の空燃比に制御することができ、ひいては、内燃機関の特定の性能を高く維持することができるという利点が得られる。
 また、本実施形態の燃料噴射量制御では、入口デポジット堆積量が所定入口デポジット堆積量以上である場合において、基本燃料噴射量が所定燃料噴射量以上であるときには基本燃料噴射量を増量し、基本燃料噴射量が所定燃料噴射量よりも少ないときには基本燃料噴射量を減量している。このように基本燃料噴射量に応じて基本燃料噴射量を増量する補正をするのか減量する補正をするのかを変えているのは、以下の理由による。
 すなわち、基本燃料噴射量に対応する燃料噴射指令値を燃料噴射弁に与えたときに、噴孔入口領域に燃焼生成物がデポジットとして堆積していると、一般的には、実燃料噴射量が基本燃料噴射量よりも少なくなり、しかも、入口デポジット堆積量が多いほど実燃料噴射量が基本燃料噴射量よりも少なくなるとの認識がある。確かに、燃料噴射量(すなわち、燃料噴射弁から噴射される燃料の量)が比較的多い場合には、噴孔入口領域に燃焼生成物がデポジットとして堆積していると実燃料噴射量が基本燃料噴射量よりも少なくなる。しかしながら、燃料噴射量が比較的少ない(特に、燃料噴射量が微少な量である)場合には、噴孔入口領域に燃焼生成物がデポジットとして堆積していると実燃料噴射量が基本燃料噴射量よりも少なくならず、逆に多くなる。
 すなわち、噴孔入口領域に燃焼生成物がデポジットとして堆積していると燃料噴射孔内を燃料が流れづらくなる。このため、燃料噴射量が多かろうが少なかろうが、噴孔入口領域に燃焼生成物がデポジットとして堆積していると燃料噴射孔を通過することができる燃料の量が少なくなる。ところが、燃料噴射孔を通過することができる燃料の量が少なくなる分だけ、燃料噴射弁のサック内の燃料の圧力が上昇する。そして、このサック内の燃料の圧力の上昇によって、燃料噴射弁のニードルの開弁速度(すなわち、ニードルのテーパ形状の先端部の外壁面がノズルの先端部の内周壁面から離れるようにニードルが移動する速度)が速くなる。このため、燃料噴射期間(すなわち、燃料噴射孔から燃料が噴射されている期間であり、ニードルのテーパ形状の先端部の外壁面がノズルの先端部の内周壁面から離れている期間に相当する)が少なからず長くなる。ところが、燃料噴射量が比較的多い場合、燃料噴射期間が比較的長いことから、サック内の燃料の圧力の上昇による燃料噴射期間の長期化よりも燃料噴射孔を通過する燃料の少量化のほうが燃料噴射量に対して支配的である。その結果、燃料噴射量が比較的多い場合に噴孔入口領域に燃焼生成物がデポジットとして堆積していると、実燃料噴射量が基本燃料噴射量よりも少なくなるものと推察される。一方、燃料噴射量が比較的少ない場合、燃料噴射期間が比較的短いことから、燃料噴射量を通過する燃料の少量化よりもサック内の燃料の圧力の上昇による燃料噴射期間の長期化のほうが燃料噴射量に対して支配的である。その結果、燃料噴射量が比較的少ない場合に噴孔入口領域に燃焼生成物がデポジットとして堆積していると、実燃料噴射量が基本燃料噴射量よりも多くなるものと推察される。
 以上の理由から、本実施形態の燃料噴射量制御では、基本燃料噴射量に応じて基本燃料噴射量を増量する補正をするのか減量する補正をするのかを変えているのである。
 なお、以上の事項に鑑みたとき、基本燃料噴射量を増量させるための上記予め定められた量(以下この量を「所定増量分」という)は、燃料噴射量誤差を補償することができる量まで燃料噴射量を増大させる値に設定されることになる。
 また、所定増量分を用いる代わりに、基本燃料噴射量を所定の割合だけ増量させる所定増量割合を用いるようにしてもよい。そして、所定増量分または所定増量割合は、入口デポジット堆積量や基本燃料噴射量に係わらず一定の量または割合であってもよいし、入口デポジット堆積量を考慮して設定される量または割合であってもよいし、基本燃料噴射量を考慮して設定される量または割合であってもよい。ここで、所定増量分または所定増量割合が入口デポジット堆積量を考慮して設定される場合、所定増量分または所定増量割合は入口デポジット堆積量が多いほど大きい値に設定される。また、所定増量分または所定増量割合が基本燃料噴射量を考慮して設定される場合、所定増量分または所定増量割合は、例えば、基本燃料噴射量が多いほど大きい値に設定される。
 また、基本燃料噴射量を減量させるための上記予め定められた量(以下この量を「所定減量分」という)は、燃料噴射量誤差を補償することができる量まで燃料噴射量を減少させる値に設定されることになる。
 また、所定減量分を用いる代わりに、基本燃料噴射量を所定の割合だけ減量させる所定減量割合を用いるようにしてもよい。そして、所定減量分または所定減量割合は、入口デポジット堆積量や基本燃料噴射量に係わらず一定の量または割合であってもよいし、入口デポジット堆積量を考慮して設定される量または割合であってもよいし、基本燃料噴射量を考慮して設定される量または割合であってもよい。ここで、所定減量分または所定減量割合が入口デポジット堆積量を考慮して設定される場合、所定減量分または所定減量割合は入口デポジット堆積量が多いほど大きい値に設定される。また、所定減量分または所定減量割合が基本燃料噴射量を考慮して設定される場合、所定減量分または所定減量割合は、例えば、基本燃料噴射量が多いほど大きい値に設定される。
 なお、燃料噴射量誤差が零になるように燃料噴射量を増量または減量させなくても、燃料噴射量誤差が小さくなる程度に燃料噴射量を増量または減量させることによって、実燃料噴射量を基本燃料噴射量に近づけることができ、このことにも利点がある。したがって、本実施形態の燃料噴射量制御において所定増量分または所定増量割合あるいは所定減量分または所定減量割合が「燃料噴射量誤差が小さくなる程度に燃料噴射量を増量または減量する値」に設定されてもよい。
 次に、上述した実施形態の燃料噴射量制御を実行するルーチンについて説明する。このルーチンの一例が図4に示されている。図4のルーチンは、所定時間が経過する毎に実行される。
 図4のルーチンが開始されると、始めに、ステップ201において、基本燃料噴射量Qbが設定される。次いで、ステップ202において、入口デポジット堆積量TXDinが取得される。次いで、ステップ203において、ステップ202で取得された入口デポジット堆積量TXDinが所定入口デポジット堆積量TXDinth以上である(TXDin≧TXDinth)か否かが判別される。ここで、TXDin≧TXDinthであると判別されたときには、ルーチンはステップ204に進む。一方、TXDin<TXDinthであると判別されたときには、ルーチンはステップ207に直接進む。
 ステップ203でTXDin≧TXDinthであると判別され、ルーチンがステップ204に進むと、ステップ201で取得された基本燃料噴射量Qbが所定燃料噴射量Qbth以上である(Qb≧Qbth)か否かが判別される。ここで、Qb≧Qbthであると判別されたときには、ルーチンはステップ205に進む。一方、Qb<Qbthであると判別されたときには、ルーチンはステップ206に進む。
 ステップ204でQb≧Qbthであると判別され、ルーチンがステップ205に進むと、ステップ201で取得された基本燃料噴射量Qbが予め定められた量だけ増量される補正が行われ、ルーチンがステップ207に進む。一方、ステップ204でQb<Qbthであると判別され、ルーチンがステップ206に進むと、ステップ201で取得された基本燃料噴射量Qbが予め定められた量だけ減量される補正が行われ、ルーチンがステップ207に進む。
 ルーチンがステップ203からステップ207に直接進んだ場合、ステップ201で取得された基本燃料噴射量Qbがそのまま目標燃料噴射量に設定されて該目標燃料噴射量に対応する燃料噴射指令値Qvが設定される。一方、ルーチンがステップ205からステップ207に進んだ場合、ステップ205で増量された基本燃料噴射量Qbが目標燃料噴射量に設定されて該目標燃料噴射量に対応する燃料噴射指令値Qvが設定される。一方、ルーチンがステップ206からステップ207に進んだ場合、ステップ206で減量された基本燃料噴射量Qbが目標燃料噴射量に設定されて該目標燃料噴射量に対応する燃料噴射指令値Qvが設定される。次いで、ステップ208において、ステップ207で設定された燃料噴射指令値Qvが燃料噴射弁に与えられ、ルーチンが終了する。
 次に、本発明の燃料噴射制御の別の実施形態について説明する。この実施形態の燃料噴射制御は、燃料噴射圧を制御する制御であって、出口デポジットに起因する噴射燃料の微粒化度合の低下を補償する制御を含むものである。以下、この燃料噴射制御を「第1燃料噴射圧制御」と称する。この第1燃料噴射圧制御では、入口デポジット堆積量も出口デポジット堆積量も零であるときの燃料噴射圧として適した圧力が基本燃料噴射圧として予め求められている。また、補償する必要がある出口デポジットに起因する噴射燃料の微粒化度合の低下(以下この低下を単に「噴射燃料の微粒化度合の低下」という)を生じさせる出口デポジット堆積量のうち最も少ない量(この量は零であってもよい)が所定出口デポジット堆積量として予め求められている。そして、機関運転中、出口デポジット堆積量が所定出口デポジット堆積量よりも少ないときには、基本燃料噴射圧がそのまま目標燃料噴射圧に設定され、この目標燃料噴射圧に燃料噴射圧が制御される。一方、出口デポジット堆積量が所定出口デポジット堆積量以上であるときには、基本燃料噴射圧を予め定められた値だけ増大した燃料噴射圧が目標燃料噴射圧に設定され、この目標燃料噴射圧に燃料噴射圧が制御される。
 次に、第1燃料噴射圧制御の利点について説明する。噴孔出口領域に燃焼生成物が出口デポジットとして堆積していると、噴射燃料の微粒化度合が低下してしまう。一方、燃料噴射圧を上昇させれば、噴射燃料の微粒化度合が高くなる。したがって、出口デポジット堆積量に応じて噴射燃料の微粒化度合が所期の微粒化度合となるように燃料噴射圧を上昇させれば、噴孔出口領域に燃焼生成物が堆積していたとしても、噴射燃料の微粒化度合が所期の微粒化度合となる。第1燃料噴射圧制御では、出口デポジット堆積量が比較的多く、噴射燃料の微粒化度合の低下が比較的大きいときに、燃料噴射圧を上昇させる。したがって、第1燃料噴射圧制御には、噴射燃料の微粒化度合を所期の微粒化度合に維持することができ、ひいては、内燃機関の排気エミッションに関する性能を所期の性能に維持することができるという利点がある。
 なお、以上の事項に鑑みたとき、基本燃料噴射圧を増大させるための上記予め定められた値(以下この値を「所定増圧分」という)は、噴射燃料の微粒化度合の低下を補償することができる圧力まで燃料噴射圧を上昇させる値に設定されることになる。
 また、所定増圧分を用いる代わりに、基本燃料噴射圧を所定の割合だけ増大させる所定増圧割合を用いるようにしてもよい。そして、所定増圧分または所定増圧割合は、出口デポジット堆積量に係わらず一定の値または割合であってもよいし、出口デポジット堆積量を考慮して設定される値または割合であってもよい。ここで、所定増圧分または所定増圧割合が出口デポジット堆積量を考慮して設定される場合、一般的には、出口デポジット堆積量が多いほど噴射燃料の微粒化度合の低下が大きくなる傾向にあることから、出口デポジット堆積量が多いほど所定増圧分または所定増圧割合を大きい値に設定するようにしてもよい。
 なお、噴射燃料の微粒化度合の低下が零になるように燃料噴射圧を上昇させなくても、少なくとも燃料噴射圧を上昇させることには、噴射燃料の微粒化度合を改善するという利点がある。したがって、第1燃料噴射圧制御において所定増圧分または所定増圧割合が「燃料噴射圧を上昇させる値」に設定されてもよい。
 次に、上述した実施形態の第1燃料噴射圧制御を実行するルーチンについて説明する。このルーチンの一例が図5に示されている。図5のルーチンは、所定時間が経過する毎に実行される。
 図5のルーチンが開始されると、始めに、ステップ301において、出口デポジット堆積量TXDoutが取得される。次いで、ステップ302において、ステップ301で取得された出口デポジット堆積量TXDoutが所定出口デポジット堆積量TXDoutth以上である(TXDout≧TXDoutth)か否かが判別される。ここで、TXDout≧TXDoutthであると判別されたときには、ルーチンはステップ303に進む。一方、TXDout<TXDoutthであると判別されたときには、ルーチンはステップ304に直接進む。
 ステップ302でTXDout≧TXDoutthであると判別され、ルーチンがステップ303に進むと、基本燃料噴射圧Pbが予め定められた値だけ増圧される補正が行われ、ルーチンがステップ304に進む。
 ルーチンがステップ302からステップ304に直接進んだ場合、基本燃料噴射圧Pbがそのまま目標燃料噴射圧に設定されて該目標燃料噴射圧に対応するポンプ指令値Pvが設定される。一方、ルーチンがステップ303からステップ304に進んだ場合、ステップ303で増圧された基本燃料噴射圧Pbが目標燃料噴射圧に設定されて該目標燃料噴射圧に対応するポンプ指令値Pvが設定される。次いで、ステップ305において、ステップ304で設定されたポンプ指令値Pvが燃料ポンプに与えられ、ルーチンが終了する。
 次に、本発明の燃料噴射制御のさらに別の実施形態について説明する。この実施形態の燃料噴射制御は、燃料噴射圧を制御する制御であって、出口デポジットを噴孔出口領域から剥離させるための制御を含むものである。以下、この燃料噴射制御を「第2燃料噴射圧制御」と称する。この第2燃料噴射圧制御では、入口デポジット堆積量も出口デポジット堆積量も零であるときの燃料噴射圧として適した圧力が基本燃料噴射圧として予め求められている。また、出口デポジットを剥離させる必要が生じる出口デポジット堆積量のうち最も少ない量(この量は零であってもよい)が所定出口デポジット堆積量として予め求められている。そして、機関運転中、出口デポジット堆積量が所定出口デポジット堆積量よりも少ないときには、基本燃料噴射圧がそのまま目標燃料噴射圧に設定され、この目標燃料噴射圧に燃料噴射圧が制御される。一方、出口デポジット堆積量が所定出口デポジット堆積量以上であるときには、基本燃料噴射圧を予め定められた値だけ増大した燃料噴射圧が目標燃料噴射圧に設定され、この目標燃料噴射圧に燃料噴射圧が制御される。
 次に、第2燃料噴射圧制御の利点について説明する。噴孔出口領域に燃焼生成物が出口デポジットとして堆積していると、噴射燃料の微粒化度合が低下してしまう。一方、出口デポジットは、主に、低級カルボン酸塩から構成されており、この低級カルボン酸塩は、比較的小さい燃料噴射圧の上昇でもって剥離させることができる。そして、出口デポジットを噴孔出口領域から剥離させれば、噴射燃料の微粒化度合が改善される。したがって、出口デポジットを噴孔出口領域から積極的に剥離させることが望ましいと判断されるのであれば、燃料噴射圧の上昇によって出口デポジットを噴孔出口領域から剥離させることが望ましい。第2燃料噴射圧制御では、出口デポジット堆積量が比較的多く、出口デポジットを剥離させる必要があると判断したときに、燃料噴射圧の上昇によって出口デポジットを噴孔出口領域から剥離させる。したがって、第2燃料噴射圧制御には、噴射燃料の微粒化度合を改善させることができ、ひいては、内燃機関の排気エミッションに関する性能を改善させることができるという利点がある。
 なお、以上の事項に鑑みたとき、基本燃料噴射圧を増大させるために上記予め定められた値(以下この値を「所定増圧分」という)は、出口デポジットを剥離させることができる圧力まで燃料噴射圧を上昇させる値に設定されることになる。
 また、所定増圧分を用いる代わりに、基本燃料噴射圧を所定の割合だけ増大させる所定増圧割合を用いるようにしてもよい。そして、所定増圧分または所定増圧割合は、出口デポジット堆積量に係わらず一定の値または割合であってもよいし、出口デポジット堆積量を考慮して設定される値または割合であってもよい。ここで、所定増圧分または所定増圧割合が出口デポジット堆積量を考慮して設定される場合、以下のように所定増圧分または所定増圧割合を設定するようにしてもよい。
 すなわち、壁面から離れた領域に堆積しているデポジットは、壁面に近い領域に堆積しているデポジットに比べて、燃料噴射孔内を流れる燃料から大きな圧力を受ける。そして、この圧力は、デポジットを壁面から剥離させる力(すなわち、剥離力)となる。ここで、噴孔出口壁面にデポジットが一様に堆積しているとすれば、出口デポジット堆積量が多いほど、噴孔出口壁面からのデポジットの厚みが厚い。したがって、出口デポジット堆積量が多いほど、噴孔出口壁面から離れた領域に堆積しているデポジットの量が多く、したがって、出口デポジットが受ける剥離力も大きい。このため、燃料噴射圧が同じであっても、出口デポジット堆積量が多いほど、出口デポジットは剥離しやすいことになる。云い方を換えれば、出口デポジット堆積量が多いほど、小さい燃料噴射圧の上昇でもって出口デポジットを剥離させることができる。したがって、所定増圧分または所定増圧割合が出口デポジット堆積量を考慮して設定される場合、出口デポジット堆積量が多いほど所定増圧分または所定増圧割合が小さい値に設定されるようにしてもよい。
 また、出口デポジット堆積量が多いほど出口デポジットが剥離しやすいのであるから、逆に、出口デポジット堆積量が少ないほど出口デポジットが剥離しづらい。したがって、出口デポジット堆積量が少ないときに出口デポジットを剥離させようとすると、燃料噴射圧を比較的大きく上昇させる必要があるし、燃料噴射圧を比較的大きく上昇させたとしても出口デポジットを剥離させることができない可能性もある。ここで、第2燃料噴射圧制御の上記所定出口デポジット堆積量を「燃料噴射圧を比較的大きく上昇させたとしても出口デポジットを剥離させることができない量」に設定すれば、出口デポジットを剥離させようとする燃料噴射圧の上昇を無駄に行うことが回避される。
 なお、噴射燃料の微粒化度合の低下が零になる程度に出口デポジットを噴孔出口領域から剥離させなくても、出口デポジットを噴孔出口領域から剥離させることには、噴射燃料の微粒化度合を改善するという利点がある。したがって、第2燃料噴射圧制御において所定増圧分または所定増圧割合が「出口デポジットを噴孔出口領域から剥離させる値」に設定されてもよい。
 次に、上述した実施形態の第2燃料噴射圧制御を実行するルーチンについて説明する。このルーチンの一例が図6に示されている。図6のルーチンは、所定時間が経過する毎に実行される。
 図6のルーチンが開始されると、始めに、ステップ401において、出口デポジット堆積量TXDoutが取得される。次いで、ステップ402において、ステップ401で取得された出口デポジット堆積量TXDoutが所定出口デポジット堆積量TXDoutth以上である(TXDout≧TXDoutth)か否かが判別される。ここで、TXDout≧TXDoutthであると判別されたときには、ルーチンはステップ403に進む。一方、TXDout<TXDoutthであると判別されたときには、ルーチンはステップ404に直接進む。
 ステップ402でTXDout≧TXDoutthであると判別され、ルーチンがステップ403に進むと、基本燃料噴射圧Pbが予め定められた値だけ増圧される補正が行われ、ルーチンがステップ404に進む。
 ルーチンがステップ402からステップ404に直接進んだ場合、基本燃料噴射圧Pbがそのまま目標燃料噴射圧に設定されて該目標燃料噴射圧に対応するポンプ指令値Pvが設定される。一方、ルーチンがステップ403からステップ404に進んだ場合、ステップ403で増圧された基本燃料噴射圧Pbが目標燃料噴射圧に設定されて該目標燃料噴射圧に対応するポンプ指令値Pvが設定される。次いで、ステップ405において、ステップ404で設定されたポンプ指令値Pvが燃料ポンプに与えられ、ルーチンが終了する。
 次に、本発明の燃料噴射制御のさらに別の実施形態について説明する。この実施形態の燃料噴射制御は、燃料噴射圧を制御する制御であって、入口デポジットを噴孔入口領域から剥離させるための制御を含むものである。以下、この燃料噴射制御を「第3燃料噴射圧制御」と称する。この第3燃料噴射圧制御では、入口デポジット堆積量も出口デポジット堆積量も零であるときの燃料噴射圧として適した圧力が基本燃料噴射圧として予め求められている。また、入口デポジットを剥離させる必要が生じる入口デポジット堆積量のうち最も少ない量(この量は零であってもよい)が所定入口デポジット堆積量として予め求められている。そして、機関運転中、入口デポジット堆積量が所定入口デポジット堆積量よりも少ないときには、基本燃料噴射圧がそのまま目標燃料噴射圧に設定され、この目標燃料噴射圧に燃料噴射圧が制御される。一方、入口デポジット堆積量が所定入口デポジット堆積量以上であるときには、基本燃料噴射圧を予め定められた値だけ増大した燃料噴射圧が目標燃料噴射圧に設定され、この目標燃料噴射圧に燃料噴射圧が制御される。
 次に、第3燃料噴射圧制御の利点について説明する。噴孔入口領域に燃焼生成物が入口デポジットとして堆積しているときに基本燃料噴射量を目標燃料噴射量とし、この目標燃料噴射量に対応した燃料噴射指令値が燃料噴射弁に与えられたとしても、入口デポジットの影響で基本燃料噴射量の燃料が燃料噴射弁から噴射されない。つまり、燃料噴射量誤差が発生する。一方、入口デポジットは、主に、炭酸塩やシュウ酸塩から構成されており、これら炭酸塩やシュウ酸塩は、比較的小さい燃料噴射圧の上昇でもって剥離させることが困難である。しかしながら、燃料噴射量誤差が比較的大きくなるほど入口デポジットが噴孔入口領域に堆積してしまい、比較的大きい燃料噴射圧の上昇が必要であるとしても燃料噴射圧を上昇させて入口デポジットを噴孔入口領域から剥離させるほうが望ましい場合もある。したがって、入口デポジットを噴孔入口領域から積極的に剥離させることが望ましいと判断されるのであれば、燃料噴射圧の上昇によって入口デポジットを噴孔入口領域から剥離させることが望ましい。第3燃料噴射圧制御では、入口デポジット堆積量が比較的多く、入口デポジットを剥離させる必要があると判断したときに、燃料噴射圧の上昇によって入口デポジットを噴孔入口領域から剥離させる。したがって、第3燃料噴射圧制御には、燃料噴射量誤差を解消することができ、ひいては、要求トルクを内燃機関に出力させることができるという利点がある。また、内燃機関の特定の性能(例えば、排気エミッションに関する性能)を高く維持するために空燃比を特定の空燃比に制御するようにしている場合に第3燃料噴射圧制御が適用されれば、燃料噴射量誤差を解消することができるのであるから、空燃比を特定の空燃比に制御することができ、ひいては、内燃機関の特定の性能を高く維持することができるという利点が得られる。
 なお、以上の事項に鑑みたとき、基本燃料噴射圧を増大させるための上記予め定められた値(以下この値を「所定増圧分」という)は、入口デポジットを剥離させることができる圧力まで燃料噴射圧を上昇させる値に設定されることになる。
 また、所定増圧分を用いる代わりに、基本燃料噴射圧を所定の割合だけ増大させる所定増圧割合を用いるようにしてもよい。そして、所定増圧分または所定増圧割合は、入口デポジット堆積量に係わらず一定の値または割合であってもよいし、入口デポジット堆積量を考慮して設定される値または割合であってもよい。ここで、所定増圧分または所定増圧割合が入口デポジット堆積量を考慮して設定される場合、以下のように所定増圧分または所定増圧割合を設定するようにしてもよい。
 すなわち、壁面から離れた領域に堆積しているデポジットは、壁面に近い領域に堆積しているデポジットに比べて、燃料噴射孔内を流れる燃料から大きな圧力を受ける。そして、この圧力は、デポジットを壁面から剥離させる力(すなわち、剥離力)となる。ここで、噴孔入口壁面にデポジットが一様に堆積しているとすれば、入口デポジット堆積量が多いほど、噴孔入口壁面からのデポジットの厚みが厚い。したがって、入口デポジット堆積量が多いほど、噴孔入口壁面から離れた領域に堆積しているデポジットの量が多く、したがって、入口デポジットが受ける剥離力も大きい。このため、燃料噴射圧が同じであっても、入口デポジット堆積量が多いほど、入口デポジットは剥離しやすいことになる。云い方を換えれば、入口デポジット堆積量が多いほど、小さい燃料噴射圧の上昇でもって入口デポジットを剥離させることができる。したがって、所定増圧分または所定増圧割合が入口デポジット堆積量を考慮して設定される場合、入口デポジット堆積量が多いほど所定増圧分または所定増圧割合が小さい値に設定されるようにしてもよい。
 また、入口デポジット堆積量が多いほど入口デポジットが剥離しやすいのであるから、逆に、入口デポジット堆積量が少ないほど入口デポジットが剥離しづらい。したがって、入口デポジット堆積量が少ないときに入口デポジットを剥離させようとすると、燃料噴射圧を比較的大きく上昇させる必要があるし、燃料噴射圧を比較的大きく上昇させたとしても入口デポジットを剥離させることができない可能性もある。ここで、第3燃料噴射圧制御の上記所定入口デポジット堆積量を「燃料噴射圧を比較的大きく上昇させたとしても入口デポジットを剥離させることができない量」に設定すれば、入口デポジットを剥離させようとする燃料噴射圧の上昇を無駄に行うことが回避される。
 なお、燃料噴射量誤差が解消される程度に入口デポジットを噴孔入口領域から剥離させなくても、燃料噴射量誤差が小さくなる程度に入口デポジットを噴孔入口領域から剥離させることによって、実燃料噴射量を基本燃料噴射量に近づけることができ、このことにも利点がある。したがって、第3燃料噴射圧制御において所定増圧分または所定増圧割合が「燃料噴射量誤差が小さくなる程度に入口デポジットを噴孔入口領域から剥離させる値」に設定されてもよい。
 次に、上述した実施形態の第3燃料噴射圧制御を実行するルーチンについて説明する。このルーチンの一例が図7に示されている。図7のルーチンは、所定時間が経過する毎に実行される。
 図7のルーチンが開始されると、始めに、ステップ501において、入口デポジット堆積量TXDinが取得される。次いで、ステップ502において、ステップ501で取得された入口デポジット堆積量TXDinが所定入口デポジット堆積量TXDinth以上である(TXDin≧TXDinth)か否かが判別される。ここで、TXDin≧TXDinthであると判別されたときには、ルーチンはステップ503に進む。一方、TXDin<TXDinthであると判別されたときには、ルーチンはステップ504に直接進む。
 ステップ502でTXDin≧TXDinthであると判別され、ルーチンがステップ503に進むと、基本燃料噴射圧Pbが予め定められた値だけ増圧される補正が行われ、ルーチンがステップ504に進む。
 ルーチンがステップ502からステップ504に直接進んだ場合、基本燃料噴射圧Pbがそのまま目標燃料噴射圧に設定されて該目標燃料噴射圧に対応するポンプ指令値Pvが設定される。一方、ルーチンがステップ503からステップ504に進んだ場合、ステップ503で増圧された基本燃料噴射圧Pbが目標燃料噴射圧に設定されて該目標燃料噴射圧に対応するポンプ指令値Pvが設定される。次いで、ステップ505において、ステップ504で設定されたポンプ指令値Pvが燃料ポンプに与えられ、ルーチンが終了する。
 次に、本発明の燃料噴射制御のさらに別の実施形態について説明する。この実施形態の燃料噴射制御は、燃料噴射圧を制御する制御であって、出口デポジットに起因する噴射燃料の微粒化度合の低下を補償する制御を含むものである。以下、この燃料噴射制御を「第4燃料噴射圧制御」と称する。この第4燃料噴射圧制御では、入口デポジット堆積量も出口デポジット堆積量も零であるときの燃料噴射圧として適した圧力が基本燃料噴射圧として予め求められている。そして、機関運転中、出口デポジット堆積量が入口デポジット堆積量以下であるときには、基本燃料噴射圧がそのまま目標燃料噴射圧に設定され、この目標燃料噴射圧に燃料噴射圧が制御される。一方、出口デポジット堆積量が入口デポジット堆積量よりも多いときには、基本燃料噴射圧を予め定められた値だけ増大した燃料噴射圧が目標燃料噴射圧に設定され、この目標燃料噴射圧に燃料噴射圧が制御される。
 次に、第4燃料噴射圧制御の利点について説明する。噴孔出口領域に燃焼生成物が出口デポジットとして堆積していると、噴射燃料の微粒化度合が低下してしまう。一方、燃料噴射圧を上昇させれば、噴射燃料の微粒化度合が高くなる。しかしながら、入口デポジット堆積量が多いと、燃料噴射圧の上昇による噴射燃料の微粒化度合の上昇が小さくなる。そして、このことは、入口デポジット堆積量が出口デポジット堆積量よりも多いときに顕著となる。つまり、燃料噴射圧の上昇による噴射燃料の微粒化度合の上昇効率が低い。したがって、逆に、出口デポジット堆積量が入口デポジット堆積量よりも多ければ、燃料噴射圧の上昇による燃料噴射の微粒化度合の上昇効率が高い。第4燃料噴射圧制御では、出口デポジット堆積量が入口デポジット堆積量よりも多く、燃料噴射圧の上昇による燃料噴射の微粒化度合の上昇効率が高いときに、燃料噴射圧を上昇させる。したがって、第4燃料噴射圧制御には、効率良く噴射燃料の微粒化度合を所期の微粒化度合に維持することができ、ひいては、効率良く内燃機関の排気エミッションに関する性能を所期の性能に維持することができるという利点がある。
 なお、以上の事項に鑑みたとき、基本燃料噴射圧を増大させるための上記予め定められた値(以下この値を「所定増圧分」という)は、出口デポジットに起因する噴射燃料の微粒化度合の低下を補償することができる圧力まで燃料噴射圧を上昇させる値に設定されることになる。
 また、所定増圧分を用いる代わりに、基本燃料噴射圧を所定の割合だけ増大させる所定増圧割合を用いるようにしてもよい。そして、所定増圧分または所定増圧割合は、出口デポジット堆積量に係わらず一定の値または割合であってもよいし、出口デポジット堆積量を考慮して設定される値または割合であってもよい。ここで、所定増圧分または所定増圧割合が出口デポジット堆積量を考慮して設定される場合、一般的には、出口デポジット堆積量が多いほど噴射燃料の微粒化度合の低下が大きくなる傾向にあることから、出口デポジット堆積量が多いほど所定増圧分または所定増圧割合を大きい値に設定するようにしてもよい。
 なお、噴射燃料の微粒化度合の低下が零になるように燃料噴射圧を上昇させなくても、少なくとも燃料噴射圧を上昇させることには、噴射燃料の微粒化度合を改善するという利点がある。したがって、第4燃料噴射圧制御において所定増圧分または所定増圧割合が「燃料噴射圧を上昇させる値」に設定されてもよい。
 次に、上述した実施形態の第4燃料噴射圧制御を実行するルーチンについて説明する。このルーチンの一例が図8に示されている。図8のルーチンは、所定時間が経過する毎に実行される。
 図8のルーチンが開始されると、始めに、ステップ601において、入口デポジット堆積量TXDinおよび出口デポジット堆積量TXDoutが取得される。次いで、ステップ602において、ステップ601で取得された出口デポジット堆積量TXDoutがステップ601で取得された入口デポジット堆積量TXDinよりも多い(TXDin<TXDout)か否かが判別される。ここで、TXDin<TXDoutであると判別されたときには、ルーチンはステップ603に進む。一方、TXDin≧TXDoutであると判別されたときには、ルーチンはステップ604に直接進む。
 ステップ602でTXDin<TXDoutであると判別され、ルーチンがステップ603に進むと、基本燃料噴射圧Pbが予め定められた値だけ増圧される補正が行われ、ルーチンがステップ604に進む。
 ルーチンがステップ602からステップ604に直接進んだ場合、基本燃料噴射圧Pbがそのまま目標燃料噴射圧に設定されて該目標燃料噴射圧に対応するポンプ指令値Pvが設定される。一方、ルーチンがステップ603からステップ604に進んだ場合、ステップ603で増圧された基本燃料噴射圧Pbが目標燃料噴射圧に設定されて該目標燃料噴射圧に対応するポンプ指令値Pvが設定される。次いで、ステップ605において、ステップ604で設定されたポンプ指令値Pvが燃料ポンプに与えられ、ルーチンが終了する。
 次に、本発明の燃料噴射制御のさらに別の実施形態について説明する。この実施形態の燃料噴射制御は、燃料噴射圧を制御する制御であって、出口デポジットを噴孔出口領域から剥離させるための制御を含むものである。以下、この燃料噴射制御を「第5燃料噴射圧制御」と称する。この第5燃料噴射圧制御では、入口デポジット堆積量も出口デポジット堆積量も零であるときの燃料噴射圧として適した圧力が基本燃料噴射圧として予め求められている。また、燃料噴射圧を上昇させたとしても十分な出口デポジットの剥離を生じさせない入口デポジット堆積量のうち最も少ない量が所定入口デポジット堆積量として予め求められ、出口デポジットを剥離させる必要が生じる出口デポジット堆積量のうち最も少ない量が所定出口デポジット堆積量(この量は零であってもよい)として予め求められている。そして、機関運転中、出口デポジット堆積量に係わらず入口デポジット堆積量が所定入口デポジット堆積量よりも多いとき、或いは、入口デポジット堆積量に係わらず出口デポジット堆積量が所定出口デポジット堆積量よりも少ないときには、基本燃料噴射圧がそのまま目標燃料噴射圧に設定され、この目標燃料噴射圧に燃料噴射圧が制御される。一方、入口デポジット堆積量が所定入口デポジット堆積量以下であって且つ出口デポジット堆積量が所定出口デポジット堆積量以上であるときには、基本燃料噴射圧を予め定められた値だけ増大した燃料噴射圧が目標燃料噴射圧に設定され、この目標燃料噴射圧に燃料噴射圧が制御される。
 次に、第5燃料噴射圧制御の利点について説明する。噴孔出口領域に燃焼生成物が出口デポジットとして堆積していると、噴射燃料の微粒化度合が低下してしまう。一方、出口デポジットは、主に、低級カルボン酸塩から構成されており、この低級カルボン酸塩は、比較的小さい燃料噴射圧の上昇でもって剥離させることができる。そして、出口デポジットを噴孔出口領域から剥離させれば、噴射燃料の微粒化度合が改善される。しかしながら、入口デポジット堆積量が多いと、燃料噴射圧の上昇による出口デポジットの剥離量が少なくなる。つまり、入口デポジット堆積量が多いと、燃料噴射圧の上昇による出口デポジットの剥離効率が低い。したがって、逆に、入口デポジット堆積量が少なければ、燃料噴射圧の上昇による出口デポジットの剥離効率が高い。噴第5燃料噴射圧制御では、入口デポジット堆積量が比較的少なく且つ出口デポジット堆積量が比較的多く、燃料噴射圧の上昇による燃料噴射の微粒化度合の上昇効率が高いときに、燃料噴射圧を上昇させる。したがって、第5燃料噴射圧制御には、効率良く噴射燃料の微粒化度合を改善させることができ、ひいては、効率良く内燃機関の排気エミッションに関する性能を改善させることができるという利点がある。
 なお、以上の事項に鑑みたとき、基本燃料噴射圧を増大させるために上記予め定められた値(以下この値を「所定増圧分」という)は、入口デポジット堆積量が所定入口デポジット堆積量以下である状況下において出口デポジットを剥離させることができる圧力まで燃料噴射圧を上昇させる値に設定されることになる。
 また、所定増圧分を用いる代わりに、基本燃料噴射圧を所定の割合だけ増大させる所定増圧割合を用いるようにしてもよい。そして、所定増圧分または所定増圧割合は、出口デポジット堆積量に係わらず一定の値または割合であってもよいし、出口デポジット堆積量を考慮して設定される値または割合であってもよい。ここで、所定増圧分または所定増圧割合が出口デポジット堆積量を考慮して設定される場合、以下のように所定増圧分または所定増圧割合を設定するようにしてもよい。
 すなわち、壁面から離れた領域に堆積しているデポジットは、壁面に近い領域に堆積しているデポジットに比べて、燃料噴射孔内を流れる燃料から大きな圧力を受ける。そして、この圧力は、デポジットを壁面から剥離させる力(すなわち、剥離力)となる。ここで、噴孔出口壁面にデポジットが一様に堆積しているとすれば、出口デポジット堆積量が多いほど、噴孔出口壁面からのデポジットの厚みが厚い。したがって、出口デポジット堆積量が多いほど、噴孔出口壁面から離れた領域に堆積しているデポジットの量が多く、したがって、出口デポジットが受ける剥離力も大きい。このため、燃料噴射圧が同じであっても、出口デポジット堆積量が多いほど、出口デポジットは剥離しやすいことになる。云い方を換えれば、出口デポジット堆積量が多いほど、小さい燃料噴射圧の上昇でもって出口デポジットを剥離させることができる。したがって、所定増圧分または所定増圧割合が出口デポジット堆積量を考慮して設定される場合、出口デポジット堆積量が多いほど所定増圧分または所定増圧割合が小さい値に設定されるようにしてもよい。
 また、出口デポジット堆積量が多いほど出口デポジットが剥離しやすいのであるから、逆に、出口デポジット堆積量が少ないほど出口デポジットが剥離しづらい。したがって、出口デポジット堆積量が少ないときに出口デポジットを剥離させようとすると、燃料噴射圧を比較的大きく上昇させる必要があるし、燃料噴射圧を比較的大きく上昇させたとしても出口デポジットを剥離させることができない可能性もある。ここで、第2燃料噴射圧制御の上記所定出口デポジット堆積量を「燃料噴射圧を比較的大きく上昇させたとしても出口デポジットを剥離させることができない量」に設定すれば、出口デポジットを剥離させようとする燃料噴射圧の上昇を無駄に行うことが回避される。
 なお、噴射燃料の微粒化度合の低下が零になる程度に出口デポジットを噴孔出口領域から剥離させなくても、出口デポジットを噴孔出口領域から剥離させることには、噴射燃料の微粒化度合を改善するという利点がある。したがって、第5燃料噴射圧制御において所定増圧分または所定増圧割合が「出口デポジットを噴孔出口領域から剥離させる値」に設定されてもよい。
 次に、上述した実施形態の第5燃料噴射圧制御を実行するルーチンについて説明する。このルーチンの一例が図9に示されている。図9のルーチンは、所定時間が経過する毎に実行される。
 図9のルーチンが開始されると、始めに、ステップ701において、入口デポジット堆積量TXDinおよび出口デポジット堆積量TXDoutが取得される。次いで、ステップ702において、ステップ701で取得された入口デポジット堆積量TXDinが所定入口デポジット堆積量TXDinth以下であり(TXDin≦TXDinth)且つステップ701で取得された出口デポジット堆積量TXDoutが所定出口デポジット堆積量TXDoutth以上である(TXDout≧TXDoutth)か否かが判別される。ここで、TXDin≦TXDinthで且つTXDout≧TXDoutthであると判別されたときには、ルーチンはステップ703に進む。一方、TXDin>TXDinthであると判別されたとき、或いは、TXDout<TXDoutthであると判別されたときには、ルーチンはステップ704に直接進む。
 ステップ702でTXDin≦TXDinthで且つTXDout≧TXDoutthであると判別され、ルーチンがステップ703に進むと、基本燃料噴射圧Pbが予め定められた値だけ増圧される補正が行われ、ルーチンがステップ704に進む。
 ルーチンがステップ702からステップ704に直接進んだ場合、基本燃料噴射圧Pbがそのまま目標燃料噴射圧に設定されて該目標燃料噴射圧に対応するポンプ指令値Pvが設定される。一方、ルーチンがステップ703からステップ704に進んだ場合、ステップ703で増圧された基本燃料噴射圧Pbが目標燃料噴射圧に設定されて該目標燃料噴射圧に対応するポンプ指令値Pvが設定される。次いで、ステップ705において、ステップ704で設定されたポンプ指令値Pvが燃料ポンプに与えられ、ルーチンが終了する。
 なお、上述した燃料噴射制御(すなわち、燃料噴射量制御、および、第1燃料噴射圧制御~第5燃料噴射圧制御)のうち2つ以上の燃料噴射制御を適宜組み合わせた燃料噴射制御も本発明の範囲内にある。
 次に、本発明の噴孔温度(詳細には、噴孔入口温度、および、噴孔出口温度)の算出の実施形態について説明する。1つの実施形態では、次式11に従って噴孔出口温度Toutが算出される。
Figure JPOXMLDOC01-appb-M000001
 式11において「Ta」は「吸気温度(すなわち、燃焼室に吸入される空気の温度)」であり、「Pa」は「吸気圧力(すなわち、燃焼室に吸入される空気の圧力)」であり、「Pcmax」は「最大筒内圧(すなわち、1機関サイクル中の燃焼室内の圧力のうち最も高い圧力)」であり、「κ」は「燃焼室に吸入された空気の比熱比」であり、「a」は「最大筒内温度(すなわち、1機関サイクル中の燃焼室内の温度のうち最も高い温度)を噴孔出口温度に変換するための変換係数」である。
 また、別の実施形態では、次式12に従って噴孔出口温度Toutが算出される。
Figure JPOXMLDOC01-appb-M000002
 式12において「Ta」は「吸気温度」であり、「Pa」は「吸気圧力」であり、「Ti」は「燃料噴射タイミング(すなわち、1機関サイクルにおいて燃料噴射弁から燃料を噴射するタイミング)」であり、「Pi」は「燃料噴射圧」であり、「E」は「実圧縮比」であり、「κ」は「燃焼室に吸入された空気の比熱比」であり、「a」は「最大筒内温度を噴孔出口温度に変換するための変換係数」であり、「b」「c」「d」は「1機関サイクルにおける燃料の燃焼によって上昇せしめられる分の筒内温度(すなわち、燃焼室内の温度)を燃料噴射タイミング、燃料噴射圧、および、吸気圧力から算出するための係数」である。
 また、1つの実施形態では、次式13に従って平均噴孔温度(すなわち、燃料噴射孔内の平均温度)Taveが算出される。
Figure JPOXMLDOC01-appb-M000003
 式13において「N」は「機関回転数」であり、「Ti」は「燃料噴射タイミング」であり、「Pi」は「燃料噴射圧」であり、「TQ」は「機関トルク」であり、「Tw」は「冷却水温度」であり、「Pa」は「吸気圧力」であり、「a」「b」「c」「d」「e」「f」「g」は「これら機関回転数、燃料噴射タイミング、燃料噴射圧、機関トルク、冷却水温度、および、吸気圧力から平均噴孔温度を算出するための係数」である。
 そして、1つの実施形態では、次式14に従って噴孔入口温度Tinが算出される。
Figure JPOXMLDOC01-appb-M000004
 式14において「Tave」は「式13に従って算出される平均噴孔温度」であり、「Tout」は「式11または式12に従って算出される噴孔出口温度」であり、「a」は「平均噴孔温度および噴孔出口温度に基づいて式14から噴孔入口温度を算出するための係数」である。
 また、別の実施形態では、次式15に従って噴孔入口温度Tinが算出される。
Figure JPOXMLDOC01-appb-M000005
 式15において「Tave」は「式13に従って算出される平均噴孔温度」であり、「Tout」は「式11または式12に従って算出される噴孔出口温度」であり、「a」「b」は「平均噴孔温度および噴孔出口温度に基づいて式15から噴孔入口温度を算出するための係数」である。
 次に、上述した実施形態の噴孔温度の算出を実行するルーチンについて説明する。このルーチンの一例が図10に示されている。図10のルーチンは、所定時間が経過する毎に実行される。
 図10のルーチンが開始されると、始めに、ステップ801において、吸気温度Ta、吸気圧力Pa、最大筒内圧Pcmax、機関回転数N、燃料噴射タイミングTi、燃料噴射圧Pi、機関トルクTQ、および、冷却水温度Twが取得される。次いで、ステップ802において、ステップ801で取得された吸気温度Ta、吸気圧力Pa、および、最大筒内圧Pcmaxを上式11に適用することによって噴孔出口温度Toutが算出される。次いで、ステップ803において、ステップ801で取得された機関回転数N、燃料噴射タイミングTi、燃料噴射圧Pi、機関トルクTQ、冷却水温度Tw、および、吸気圧力Paを上式13に適用することによって平均噴孔温度Taveが算出される。次いで、ステップ804において、ステップ802で算出された噴孔出口温度Tout、および、ステップ803で算出された平均噴孔温度Taveを上式14または上式15に適用することによって噴孔入口温度Tinが算出され、ルーチンが終了する。
 次に、上述した実施形態の噴孔温度の算出を実行する別のルーチンについて説明する。このルーチンが図11に示されている。図11のルーチンは、所定時間が経過する毎に実行される。
 図11のルーチンが開始されると、始めに、ステップ901において、吸気温度Ta、吸気圧力Pa、機関回転数N、燃料噴射タイミングTi、燃料噴射圧Pi、機関トルクTQ、および、冷却水温度Twが取得される。次いで、ステップ902において、ステップ901で取得された吸気温度Ta、吸気圧力Pa、燃料噴射タイミングTi、および、燃料噴射圧Piを上式12に適用することによって噴孔出口温度Toutが算出される。次いで、ステップ903において、ステップ901で取得された機関回転数N、燃料噴射タイミングTi、燃料噴射圧Pi、機関トルクTQ、冷却水温度Tw、および、吸気圧力Paを上式13に適用することによって平均噴孔温度Taveが算出される。次いで、ステップ904において、ステップ902で算出された噴孔出口温度Tout、および、ステップ903で算出された平均噴孔温度Taveを上式14または上式15に適用することによって噴孔入口温度Tinが算出され、ルーチンが終了する。

Claims (8)

  1.  燃料噴射弁を備えた内燃機関において、燃料噴射弁の燃料噴射孔内部の領域であって燃料噴射孔の入口寄りの領域と燃料噴射孔外部の領域であって燃料噴射孔の入口近傍の領域とから構成される噴孔入口領域において燃料の燃焼に起因して生成される燃焼生成物の量である入口燃焼生成物生成量と、燃料噴射弁の燃料噴射孔内部の領域であって燃料噴射孔の出口寄りの領域と燃料噴射孔外部の領域であって燃料噴射孔の出口近傍の領域とから構成される噴孔出口領域において燃料の燃焼に起因して生成される燃焼生成物の量である出口燃焼生成物生成量と、を算出することによって、入口燃焼生成物生成量と出口燃焼生成物生成量とを推定する燃焼生成物生成量推定装置であって、噴孔入口領域の温度と噴孔出口領域の温度とが個別に求められ、噴孔入口領域の温度に基づいて入口燃焼生成物生成量が算出されると共に、噴孔出口領域の温度に基づいて出口燃焼生成物生成量が算出される燃焼生成物生成量推定装置。
  2.  燃料噴射弁を備えた内燃機関において、燃料噴射弁の燃料噴射孔内部の領域であって燃料噴射孔の入口寄りの領域と燃料噴射孔外部の領域であって燃料噴射孔の入口近傍の領域とから構成される噴孔入口領域に堆積している燃焼生成物のうち剥離する燃焼生成物の量である入口デポジット剥離量と、燃料噴射弁の燃料噴射孔内部の領域であって燃料噴射孔の出口寄りの領域と燃料噴射孔外部の領域であって燃料噴射孔の出口近傍の領域とから構成される噴孔出口領域に堆積している燃焼生成物のうち剥離する燃焼生成物の量である出口デポジット剥離量と、を算出することによって、入口デポジット剥離量と出口デポジット剥離量とを推定するデポジット剥離量推定装置であって、噴孔入口領域に堆積している燃焼生成物の量である入口デポジット堆積量に基づいて入口デポジット剥離量が算出されると共に、噴孔出口領域に堆積している燃焼生成物の量である出口デポジット堆積量に基づいて出口デポジット剥離量が算出されるデポジット剥離量推定装置。
  3.  前記噴孔入口領域に堆積している燃焼生成物の量である入口デポジット堆積量と前記噴孔出口領域に堆積している燃焼生成物の量である出口デポジット堆積量とを算出することによって入口デポジット堆積量と出口デポジット堆積量とを推定するデポジット堆積量推定装置であって、請求項1に記載の燃焼生成物生成量推定装置によって算出される入口燃焼生成物生成量から請求項2に記載のデポジット剥離量推定装置によって算出される入口デポジット剥離量を差し引くことによって入口デポジット堆積量が算出されると共に、請求項1に記載の燃焼生成物生成量推定装置によって算出される出口燃焼生成物生成量から請求項2に記載のデポジット剥離量推定装置によって算出される出口デポジット剥離量を差し引くことによって出口デポジット堆積量が算出されるデポジット堆積量推定装置。
  4.  前記噴孔入口領域に堆積している燃焼生成物が分解する温度が入口デポジット分解温度として求められ、前記噴孔入口領域の温度が該入口デポジット分解温度以上であるときには入口デポジット堆積量が零として算出される請求項3に記載のデポジット堆積量推定装置。
  5.  前記噴孔出口領域に堆積している燃焼生成物が分解する温度が出口デポジット分解温度として求められ、前記噴孔出口領域の温度が該出口デポジット分解温度以上であるときには出口デポジット堆積量が零として算出される請求項3または4に記載のデポジット堆積量推定装置。
  6.  燃料噴射弁から燃料を噴射させるために燃料噴射弁に与えられる指令値である燃料噴射指令値が要求燃料噴射量に対応して基本燃料噴射指令値として設定され、要求燃料噴射量に対応した基本燃料噴射指令値が燃料噴射弁に与えることによって燃料噴射弁から燃料を噴射させる内燃機関の燃料噴射制御装置であって、請求項3~5のいずれか1つに記載のデポジット堆積量推定装置によって算出される入口デポジット堆積量が取得され、入口デポジット堆積量に応じて前記基本燃料噴射指令値が補正される燃料噴射制御装置。
  7.  燃料噴射弁から噴射される燃料の圧力である燃料噴射圧として目標とすべき燃料噴射圧が基本燃料噴射圧として設定され、該基本燃料噴射圧に燃料噴射圧が制御される内燃機関の燃料噴射制御装置であって、請求項3~5のいずれか1つに記載のデポジット堆積量推定装置によって算出される入口デポジット堆積量および出口デポジット堆積量が取得され、出口デポジット堆積量が入口デポジット堆積量よりも多いときに前記基本燃料噴射圧が増大され、該増大された基本燃料噴射圧に燃料噴射圧が制御される燃料噴射制御装置。
  8.  請求項3~5のいずれか1つに記載のデポジット堆積量推定装置によって算出される入口デポジット堆積量および出口デポジット堆積量が取得され、入口デポジット堆積量が予め定められた入口デポジット堆積量以下であって且つ出口デポジット堆積量が予め定められた出口デポジット堆積量以上であるときに燃料噴射弁から噴射される燃料の圧力である燃料噴射圧が前記噴孔出口領域に堆積している燃焼生成物を該噴孔出口領域から剥離させる圧力まで上昇させる内燃機関の燃料噴射制御装置。
PCT/JP2011/060027 2011-04-25 2011-04-25 内燃機関の燃焼生成物生成量推定装置、デポジット剥離量推定装置、デポジット堆積量推定装置、および、燃料噴射制御装置 WO2012147144A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201180004933.2A CN102933837B (zh) 2011-04-25 2011-04-25 内燃机的燃烧产物生成量推断装置、淀积物剥离量推断装置、淀积物堆积量推断装置以及燃料喷射控制装置
US13/696,767 US9435307B2 (en) 2011-04-25 2011-04-25 Combustion product production amount estimation device, deposit separation amount estimation device, deposit accumulation amount estimation device, and fuel injection control device of internal combustion engine
PCT/JP2011/060027 WO2012147144A1 (ja) 2011-04-25 2011-04-25 内燃機関の燃焼生成物生成量推定装置、デポジット剥離量推定装置、デポジット堆積量推定装置、および、燃料噴射制御装置
EP11864597.7A EP2703635B1 (en) 2011-04-25 2011-04-25 Combustion product production amount estimation device, deposit separation amount estimation device, deposit accumulation amount estimation device, and fuel injection control device of internal combustion engine.
JP2011538740A JP5240367B2 (ja) 2011-04-25 2011-04-25 内燃機関の燃焼生成物生成量推定装置、デポジット剥離量推定装置、デポジット堆積量推定装置、および、燃料噴射制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/060027 WO2012147144A1 (ja) 2011-04-25 2011-04-25 内燃機関の燃焼生成物生成量推定装置、デポジット剥離量推定装置、デポジット堆積量推定装置、および、燃料噴射制御装置

Publications (1)

Publication Number Publication Date
WO2012147144A1 true WO2012147144A1 (ja) 2012-11-01

Family

ID=47071687

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/060027 WO2012147144A1 (ja) 2011-04-25 2011-04-25 内燃機関の燃焼生成物生成量推定装置、デポジット剥離量推定装置、デポジット堆積量推定装置、および、燃料噴射制御装置

Country Status (5)

Country Link
US (1) US9435307B2 (ja)
EP (1) EP2703635B1 (ja)
JP (1) JP5240367B2 (ja)
CN (1) CN102933837B (ja)
WO (1) WO2012147144A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012147143A1 (ja) * 2011-04-25 2012-11-01 トヨタ自動車株式会社 内燃機関のデポジット堆積量推定装置
WO2016018375A1 (en) 2014-07-31 2016-02-04 Cummins Inc. Method for reducing carbon/coke in fuel injectors in dual fuel applications
EP3341605A4 (en) * 2015-08-27 2019-05-08 Westport Power Inc. DEGRADATION REDUCTION FOR INJECTORS OF GASEOUS FUEL
US9797358B2 (en) * 2015-12-03 2017-10-24 GM Global Technology Operations LLC System and method for controlling an engine to remove soot deposits from the fuel injectors of the engine

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007239686A (ja) * 2006-03-10 2007-09-20 Toyota Motor Corp 内燃機関の制御装置
JP2007321592A (ja) * 2006-05-30 2007-12-13 Toyota Motor Corp 燃料噴射弁
JP2008115824A (ja) * 2006-11-07 2008-05-22 Toyota Motor Corp 燃料噴射装置
JP2008196363A (ja) * 2007-02-12 2008-08-28 Denso Corp 燃料噴射弁
JP2009167935A (ja) * 2008-01-17 2009-07-30 Denso Corp インジェクタ
JP2009275100A (ja) 2008-05-14 2009-11-26 Fujifilm Corp 三次元造形用材料、三次元造形物の製造方法及び三次元造形物
JP2010065537A (ja) 2008-09-08 2010-03-25 Denso Corp 内燃機関の燃料噴射制御装置及び燃料噴射制御システム

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AUPQ708100A0 (en) * 2000-04-20 2000-05-18 Orbital Engine Company (Australia) Proprietary Limited Deposit control in fuel injector nozzles
JP2002285885A (ja) * 2001-03-28 2002-10-03 Tokyo Gas Co Ltd 内燃機関の燃料噴射装置及び方法
JP2003106192A (ja) * 2001-09-27 2003-04-09 Toyota Motor Corp 内燃機関の燃料噴射制御装置
DE10148663A1 (de) * 2001-10-02 2003-04-10 Daimler Chrysler Ag Abgasreinigungsanlage einer Brennkraftmaschine
JP4100346B2 (ja) * 2004-01-13 2008-06-11 トヨタ自動車株式会社 エンジンの燃料噴射制御装置
JP2006057538A (ja) * 2004-08-20 2006-03-02 Toyota Motor Corp 内燃機関の筒内燃料噴射手段に付着する付着物の量を推定する推定装置および内燃機関の制御装置
JP4428293B2 (ja) * 2005-06-07 2010-03-10 トヨタ自動車株式会社 内燃機関の制御装置
EP1887074B1 (en) * 2006-08-04 2011-09-14 Infineum International Limited Method and use for the prevention of fuel injector deposits
US20080060608A1 (en) * 2006-09-07 2008-03-13 Angela Priscilla Breakspear Method and use for the prevention of fuel injector deposits
JP2008231996A (ja) * 2007-03-20 2008-10-02 Toyota Motor Corp 内燃機関の制御装置
JP4433000B2 (ja) * 2007-06-15 2010-03-17 トヨタ自動車株式会社 内燃機関の制御装置
JP2009002229A (ja) * 2007-06-21 2009-01-08 Toyota Motor Corp 内燃機関の制御装置
JP2009257100A (ja) 2008-04-11 2009-11-05 Toyota Motor Corp 内燃機関の噴射制御装置
WO2012147143A1 (ja) * 2011-04-25 2012-11-01 トヨタ自動車株式会社 内燃機関のデポジット堆積量推定装置
JP5704152B2 (ja) * 2012-11-28 2015-04-22 トヨタ自動車株式会社 燃料噴射装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007239686A (ja) * 2006-03-10 2007-09-20 Toyota Motor Corp 内燃機関の制御装置
JP2007321592A (ja) * 2006-05-30 2007-12-13 Toyota Motor Corp 燃料噴射弁
JP2008115824A (ja) * 2006-11-07 2008-05-22 Toyota Motor Corp 燃料噴射装置
JP2008196363A (ja) * 2007-02-12 2008-08-28 Denso Corp 燃料噴射弁
JP2009167935A (ja) * 2008-01-17 2009-07-30 Denso Corp インジェクタ
JP2009275100A (ja) 2008-05-14 2009-11-26 Fujifilm Corp 三次元造形用材料、三次元造形物の製造方法及び三次元造形物
JP2010065537A (ja) 2008-09-08 2010-03-25 Denso Corp 内燃機関の燃料噴射制御装置及び燃料噴射制御システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2703635A4 *

Also Published As

Publication number Publication date
US9435307B2 (en) 2016-09-06
EP2703635A1 (en) 2014-03-05
JPWO2012147144A1 (ja) 2014-07-28
EP2703635A4 (en) 2015-12-23
CN102933837B (zh) 2015-03-25
EP2703635B1 (en) 2017-07-19
JP5240367B2 (ja) 2013-07-17
US20130054123A1 (en) 2013-02-28
CN102933837A (zh) 2013-02-13

Similar Documents

Publication Publication Date Title
JP5240367B2 (ja) 内燃機関の燃焼生成物生成量推定装置、デポジット剥離量推定装置、デポジット堆積量推定装置、および、燃料噴射制御装置
US7433776B1 (en) System and method for quantizing fuel dilution of engine motor due to post-injection fueling to regenerate an exhaust aftertreatment device
JP5083584B1 (ja) 内燃機関のデポジット堆積量推定装置
US20100122525A1 (en) Exhaust purification control device and exhaust purification system of internal combustion engine
JP2011027041A (ja) 内燃機関の燃料ポンプ制御装置
KR101716596B1 (ko) 연료 분사 장치 및 그 제어 방법
JP2016014380A (ja) 内燃機関の制御装置
CN104937246A (zh) 内燃机
JP5874826B2 (ja) 燃料噴射装置
JP2007040212A (ja) 内燃機関の制御装置
CN105308304A (zh) 内燃机的凝结水处理装置
JP2010071126A (ja) 直接噴射式内燃機関の燃料噴射制御装置
JP5614543B2 (ja) 内燃機関のデポジット剥離量推定装置およびデポジット堆積量推定装置
JP4144360B2 (ja) 蓄圧式燃料噴射装置
JP5375271B2 (ja) 燃料噴射制御装置
JP6135587B2 (ja) 燃料噴霧制御装置
JP5621989B2 (ja) 内燃機関のデポジット剥離量推定装置およびデポジット堆積量推定装置
JP2014206070A (ja) 内燃機関の燃料噴射制御装置
US20160245214A1 (en) Control Device for Internal Combustion Engine and Control Method for Internal Combustion Engine
JP5522779B2 (ja) 燃料噴射量補正における補正量制御方法及びコモンレール式燃料噴射制御装置
JP5664483B2 (ja) 内燃機関の燃料噴射制御装置
JP2000027718A (ja) リーンバーンエンジンの空燃比制御および蒸発燃料パージ制御装置
JP2014129738A (ja) 内燃機関の燃料噴射制御装置
JP5718610B2 (ja) 内燃機関の制御装置
JP5853935B2 (ja) 燃料噴射装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180004933.2

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2011538740

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13696767

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11864597

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2011864597

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011864597

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE