WO2012144213A1 - 外圧に対する缶胴部の座屈強度が高く、成形性および成形後の表面性状に優れた缶用鋼板およびその製造方法 - Google Patents

外圧に対する缶胴部の座屈強度が高く、成形性および成形後の表面性状に優れた缶用鋼板およびその製造方法 Download PDF

Info

Publication number
WO2012144213A1
WO2012144213A1 PCT/JP2012/002709 JP2012002709W WO2012144213A1 WO 2012144213 A1 WO2012144213 A1 WO 2012144213A1 JP 2012002709 W JP2012002709 W JP 2012002709W WO 2012144213 A1 WO2012144213 A1 WO 2012144213A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel sheet
rolling
gpa
steel
Prior art date
Application number
PCT/JP2012/002709
Other languages
English (en)
French (fr)
Inventor
幹人 須藤
克己 小島
多田 雅毅
田中 匠
飛山 洋一
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to CN201280027406.8A priority Critical patent/CN103597110B/zh
Priority to EP12774346.6A priority patent/EP2700731A4/en
Priority to US14/112,717 priority patent/US10174393B2/en
Priority to CA2833452A priority patent/CA2833452C/en
Publication of WO2012144213A1 publication Critical patent/WO2012144213A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium

Definitions

  • the present invention relates to a steel plate for a can suitable for a can container material used as a container material for beverages and foods, and a method for producing the same, and in particular, the buckling strength of a can body portion with respect to external pressure is high, and formability and after molding
  • the present invention relates to a steel plate for cans having excellent surface properties and a method for producing the same.
  • the buckling phenomenon of the can body part is caused by the deterioration of the rigidity of the can body due to the thinning of the thickness of the can body part. Therefore, in order to improve the buckling resistance (sometimes referred to as paneling strength), a method of optimizing the size and design of the can body and increasing the rigidity of the can body can be considered.
  • a crystal orientation group ( ⁇ fiber) in which the ⁇ 111> direction is parallel to the normal direction of the plate surface can increase the Young's modulus in the 0, 45, and 90 ° directions to about 230 GPa with respect to the rolling direction.
  • the crystal orientation of the steel sheet does not show an orientation in a specific orientation, that is, the Young's modulus of the steel sheet with a random texture is about 205 GPa.
  • Patent Document 1 a steel obtained by adding Nb or Ti to ultra-low carbon steel is used, and in the hot rolling process, the reduction ratio between Ar 3 and (Ar 3 + 150 ° C.) is set to 85% or more and non-recrystallized.
  • the texture of ferrite becomes ⁇ 311 ⁇ ⁇ 011> and ⁇ 332 ⁇ ⁇ 113> orientations at the hot-rolled sheet stage, and cold rolling and recrystallization annealing are performed using these as initial orientations.
  • a technique is disclosed in which the ⁇ 211 ⁇ ⁇ 110> orientation is the main orientation and the Young's modulus in the 90 ° direction with respect to the rolling direction is increased.
  • Patent Document 2 by mass%, was added Nb, Mo, and B C weight 0.02 to 0.15% low carbon steel, the rolling reduction at Ar 3 ⁇ 950 ° C. With 50% or more, A method for producing a hot-rolled steel sheet, in which ⁇ 211 ⁇ ⁇ 110> is developed and the Young's modulus in the 90 ° direction with respect to the rolling direction is increased, is disclosed.
  • Patent Document 3 after cold rolling and annealing, secondary cold rolling of 50% or more is performed to form a strong rolling texture, that is, ⁇ fiber, and the container has a higher Young's modulus in the 90 ° direction relative to the rolling direction.
  • Steel plate manufacturing techniques are disclosed.
  • Patent Document 4 a hot-rolled sheet is cold-rolled at a rolling reduction of 60% or more, a strong ⁇ fiber is formed, and the Young's modulus in the 90 ° direction with respect to the rolling direction is increased. Manufacturing techniques are disclosed.
  • Patent Document 5 Ti, Nb, Zr, and B are added to ultra-low carbon steel, hot rolled at least 50% or more at a temperature below the Ar 3 transformation point, and after cold rolling, 400 ° C. or more.
  • a technique for manufacturing a steel plate for containers in which the Young's modulus in the 90 ° direction is increased by annealing at a recrystallization temperature or lower is disclosed.
  • Patent Document 6 performs hot rough rolling on ultra-low carbon steel under the condition that the total reduction amount is 80% or more, of which the final pass is 20% or more.
  • the material to be rolled passes through one of the rolling stands in the finish rolling mill row, it is reverse transformed by the heat generated by the rolling process and finished so that the finish rolling temperature becomes Ar3-50 ° C or higher.
  • a steel sheet that can efficiently and uniformly refine the structure of a hot-rolled steel sheet and a steel sheet for canning that is a final product, has good workability, and has no rough surface, and a method for producing the same.
  • Patent Document 7 the hot rolling conditions such as cooling after finish rolling are appropriately controlled, the crystal grains after hot rolling are made equiaxed, fine grained uniform structure, and the effect is inherited after cold rolling and annealing.
  • Patent Document 8 the pinning effect is optimized by adding Nb and controlling the amount and grain size of Nb-based precipitates based on ultra-low carbon steel, and the ferrite grain size is as fine as 6 to 10 ⁇ m. Steel sheets having excellent skin roughness resistance and manufacturing techniques thereof are disclosed.
  • Japanese Patent Laid-Open No. 5-255804 Japanese Unexamined Patent Publication No. 8-311541 JP-A-6-212353 JP-A-6-248332 JP-A-6-248339 Japanese Patent Laid-Open No. 10-8142 Japanese Patent Laid-Open No. 10-81919 JP 2010-229486 A
  • Patent Documents 1 to 5 only disclose methods for increasing the Young's modulus in the 90 ° direction with respect to the rolling direction.
  • this method when the can body part is formed by roll form forming like a three-piece can, it is possible to improve the paneling strength by forming the direction having a high Young's modulus to be the circumferential direction of the can body part.
  • the direction having a high Young's modulus is not necessarily the circumferential direction of the can body, and the effect of increasing the rigidity of the can body is not sufficiently exhibited.
  • Patent Documents 6 to 8 do not disclose any technology for compensating for the deterioration of the can body rigidity accompanying the thinning of the steel sheet.
  • the present invention has been made in view of such circumstances, solves the above-mentioned problems of the prior art, has a high buckling strength of the can body against external pressure, and has excellent formability and surface properties after forming, and its steel plate
  • An object is to provide a manufacturing method.
  • the present inventors have conducted intensive research to solve the above problems. As a result, by optimizing the chemical composition, hot rolling conditions, cold rolling conditions and annealing conditions based on ultra low carbon steel, the buckling strength of the can body against external pressure is high, and the formability and The present inventors have found that it is possible to produce a steel plate for cans having excellent surface properties, and have completed the present invention based on this finding.
  • a steel plate for cans that has a high buckling strength of the can body against an external pressure and that is excellent in formability and surface properties after forming, characterized by being 10.0 ⁇ m.
  • the buckling strength of the can body against external pressure is higher than the standard value (about 1.5 kgf / cm 2 ) provided by the can and beverage manufacturers, and it is excellent in DI moldability and deep drawing ironing moldability.
  • a steel plate for cans having excellent surface properties after forming can be obtained. Therefore, by using the steel plate for cans of the present invention for food cans, beverage cans, etc., the rigidity of the can body is improved without incurring the surface properties after molding of the two-piece can and the reduction in yield due to the occurrence of earrings. Therefore, it is possible to achieve further resource saving and cost reduction.
  • the application range of the steel plate for cans of the present invention can be expected to be applied not only to various metal cans but also to a wide range of dry battery interior cans, various home appliances / electrical parts, automotive parts and the like.
  • Such a steel plate for cans is subjected to hot rolling at a reheating temperature of 1150 to 1300 ° C. and a finishing temperature of 850 to 950 ° C. on a steel slab having the above composition, and then rolled at 500 to 640 ° C. Winding at the coiling temperature, pickling, cold rolling at a reduction ratio of 87-93%, recrystallization annealing at a recrystallization temperature of 720 ° C, and temper rolling with an elongation of 0.5-5% Can be manufactured. These are the most important requirements of the present invention.
  • the component composition of the steel plate for cans of this invention is demonstrated.
  • C 0.0005% or more and 0.0035% or less
  • the greater the amount of C dissolved in the steel the greater the yield elongation, which tends to cause age hardening and stretcher strain during processing.
  • Use the continuous annealing method In such a case, it is necessary to control so as to keep the C content as low as possible in the steelmaking stage.
  • the amount of residual solute carbon increases, cracks occur during stretch flange molding of the tightened portion, which is the final process of can making, and the amount of work hardening also increases, so wrinkles when necking and flange processing are performed. May occur. Therefore, the C content is 0.0035% or less.
  • C is an element that affects the recrystallization texture.
  • it is less than 0.0005% it is the orientation that decreases the Young's modulus in the 45 ° direction with respect to the rolling direction ⁇ 100 ⁇ ⁇ 110> orientation tends to remain, and rather the average Young's modulus is lowered. From the above, the C content is 0.0005% or more.
  • Si 0.05% or less If Si is added in a large amount, the problem of deterioration of the surface treatment property and corrosion resistance of the steel sheet occurs, so 0.05% or less, preferably 0.02% or less.
  • Mn 0.1% to 0.6% Mn needs to be added in an amount of 0.1% or more in order to prevent a decrease in hot ductility due to the impurity S contained in the steel.
  • Mn is one of the elements that lowers the Ar 3 transformation point, and can further reduce the hot rolling finish rolling temperature. For this reason, the recrystallized grain growth of ⁇ grains can be suppressed during hot rolling, and the ⁇ grains after transformation can be refined. Further, in the present invention, in addition to the effect of refining by adding B described later, Mn is added to achieve further refining, and excellent surface properties after canning are ensured. In order to obtain the above effects, Mn is 0.1% or more.
  • Mn is set to 0.6% or less.
  • P 0.02% or less
  • S Less than 0.02% S combines with Mn in steel to form MnS and precipitates in large quantities, thereby reducing the hot ductility of the steel. Therefore, S is less than 0.02%.
  • Al 0.01% or more and less than 0.10%
  • Al is an element added as a deoxidizer.
  • N and AlN it has the effect of reducing the solute N in the steel.
  • Al content is less than 0.01%, a sufficient deoxidizing effect or solute N reducing effect cannot be obtained. Therefore, Al is made 0.01% or more.
  • it is 0.10% or more not only is the above effect saturated, but also inclusions such as alumina increase, such being undesirable. Therefore, the Al content is in the range of 0.01 to less than 0.10%.
  • N 0.0030% or less N is an unavoidable impurity. As the amount of N increases, the amount of B to be fixed must be increased. Since a large increase in the amount of B added leads to an increase in cost, N should be 0.0030% or less.
  • B 0.0010% or more and B / N ⁇ 3.0 B has the effect of preventing age hardening by combining with N dissolved in the steel and precipitating as BN. Moreover, when added more than the amount necessary for precipitation as BN, it is recognized that it has the effect of making the crystal grains of the hot-rolled sheet and the annealed sheet fine. This is considered to be because B added excessively segregates as a solid solution B at the grain boundary and suppresses the grain growth of the crystal grain. In order to exhibit such an effect of refining crystal grains, it is necessary to deposit B as solid solution B after precipitating BN.
  • B is set to 0.0010% or more.
  • the increase in solid solution B excessively raises the recrystallization completion temperature in the continuous annealing process, and the risk of occurrence of in-furnace breakage and buckling increases. For this reason, B / N ⁇ 3.0.
  • B / N (B (mass%)) / 10.81) / (N (mass%) / 14.01).
  • the balance is Fe and inevitable impurities.
  • Texture Average accumulation strength f in the (111) [1-10] to (111) [-1-12] orientation is 7.0 or more (111) [1-10] to (111) [-1-12 ]
  • the Young's modulus in the 0, 45, 90 ° direction relative to the rolling direction can be increased isotropically. Therefore, the (111) It is necessary to set the average accumulated intensity f in the [1-10] to (111) [-1-12] directions to 7.0 or more.
  • E AVE 215GPa, E 0 ⁇ 210GPa, E 45 ⁇ 210GPa, E 90 ⁇ 210GPa
  • E AVE (E 0 + 2E 45 + E 90 ) / 4
  • E 0 , E 45 , and E 90 represent Young's moduli in the 0 , 45 , and 90 ° directions with respect to the rolling direction, respectively.
  • E AVE should be 215 GPa or more. By setting it to 215 GPa or more, the paneling strength is remarkably improved, and deformation of the can body due to increase or decrease in pressure outside the can in the heat sterilization treatment of the contents accompanying the thinning of the steel plate can be prevented.
  • the anisotropy of the Young's modulus of the steel plate becomes a problem. That is, among E 0 , E 45 , and E 90 , when the Young's modulus in only one direction or two directions is high and the Young's modulus in other directions is low, even if E AVE ⁇ 215 GPa is satisfied, The effect of increasing the rigidity is not sufficiently exhibited. In order to increase the rigidity of the can body, E 0 , E 45 , and E 90 need to be 210 GPa or more, respectively.
  • the base steel sheet may be exposed due to film rupture caused by peeling of the film from the steel sheet or stress concentration on the film, and the corrosion resistance may deteriorate. This occurs due to the rough surface of the steel sheet after DI forming or drawing and ironing, and the degree of this rough surface is proportional to the size of the ferrite crystal grain size. Therefore, the ferrite average crystal grain size in the rolling direction cross section of the steel sheet used for the base is 10.0 ⁇ m or less, preferably 9.0 ⁇ m or less. On the other hand, if the crystal grain size is excessively fine, the strength of the steel sheet is greatly increased due to the refinement. For this reason, the average grain size of ferrite in the cross section in the rolling direction is 6.0 ⁇ m or more.
  • ⁇ r represented by the following formula is used as an index of earrings.
  • ⁇ r (r 0 ⁇ 2r 45 + r 90 ) / 2
  • r 0 , r 45 , and r 90 represent Rankford (hereinafter sometimes referred to as r value) in directions of 0 , 45 , and 90 ° in the rolling direction, respectively.
  • r value Rankford
  • the amount of earrings is large, so the trim margin increases and the yield decreases.
  • ⁇ r needs to be in the range of ⁇ 0.4 to 0.4.
  • (DELTA) r can be made into a predetermined
  • the steel plate for cans according to the present invention is obtained by subjecting a steel slab having the above composition to hot rolling at a reheating temperature of 1150 to 1300 ° C and a finishing temperature of 850 to 950 ° C, and then at a winding temperature of 500 to 640 ° C.
  • Slab reheating temperature 1150-1300 ° C If the slab reheating temperature before hot rolling is too high, problems such as product surface defects and increased energy costs occur. On the other hand, if it is too low, it will be difficult to ensure the final finish rolling temperature. Therefore, the slab reheating temperature is 1150-1300 ° C.
  • Final finishing rolling temperature 850-950 ° C
  • winding temperature 500-640 ° C
  • the final finish rolling temperature is 850 to 950 ° C and the coiling temperature is 500 to 640 ° C from the viewpoint of grain refinement and uniformity of precipitate distribution in the hot-rolled steel sheet.
  • the final finish rolling temperature is higher than 950 ° C.
  • ⁇ grain growth after rolling occurs more violently, and the accompanying coarse ⁇ grains cause coarsening of the ⁇ grains after transformation.
  • the temperature is lower than 850 ° C., the rolling is performed below the Ar 3 transformation point, which leads to coarsening of ⁇ grains.
  • the coiling temperature is too low, the shape of the hot-rolled sheet deteriorates, and the pickling and cold rolling operations in the next process are hindered.
  • the temperature is higher than 640 ° C., the scale thickness of the steel sheet is remarkably increased, and the descaling property at the time of pickling in the next process may be deteriorated.
  • 620 ° C. or lower is preferable.
  • the pickling conditions are not particularly limited as long as the surface scale can be removed. Pickling can be performed by a commonly performed method.
  • the cold rolling rate is an important factor in controlling texture, that is, Young's modulus and ⁇ r.
  • Young's modulus and the anisotropy of the r value depend on the texture. Since the texture of the steel sheet after annealing is affected not only by the rolling reduction, but also by the addition amount of Mn and B and the winding temperature, the rolling reduction is determined by the above Mn, B addition amount and the winding in the hot rolling process. It must be set appropriately in relation to temperature. By optimizing the rolling reduction, it is possible to rotate in the (111) [1-10] to (111) [-1-12] directions effective in improving E AVE and reducing
  • E AVE ⁇ 215 GPa, E 0 ⁇ 210 GPa, E 45 ⁇ 210 GPa, E 90 ⁇ 210 GPa and ⁇ r within a desired range of ⁇ 0.4 to 0.4 by setting the rolling reduction to 87 to 93%. Can do.
  • Annealing temperature Recrystallization temperature ⁇ 720 °C
  • the annealing method is preferably a continuous annealing method from the viewpoint of material uniformity and high productivity. It is essential that the annealing temperature in continuous annealing is equal to or higher than the recrystallization temperature, but if the annealing temperature is too high, the crystal grains become coarse and rough after processing, and in thin materials such as steel plates for cans, The risk of furnace breakage and buckling will increase. For this reason, the upper limit of annealing temperature shall be 720 degreeC.
  • Elongation rate 0.5-5% (preferred conditions)
  • the elongation ratio of temper rolling is appropriately determined depending on the tempering degree of the steel sheet, but it is preferable to perform rolling at an elongation ratio of 0.5% or more in order to suppress the occurrence of stretcher strain.
  • rolling at an elongation ratio exceeding 5% or more causes a decrease in workability and elongation due to the hardening of the steel sheet, and further decreases the r value and increases the in-plane anisotropy of the r value.
  • the upper limit is preferably 5%. More preferably, it is 4% or less.
  • a steel slab was obtained by melting steel containing the component compositions A to H shown in Table 1 and the balance being Fe and inevitable impurities.
  • the obtained steel slab was reheated at 1200 ° C., and then hot rolled at a finish rolling temperature of 880 to 890 ° C. and a winding temperature of 560 to 650 ° C.
  • the steel sheet was cold-rolled at a reduction ratio of 86 to 93.5% to produce a thin steel sheet having a thickness of 0.225 to 0.260 mm.
  • the obtained thin steel sheet was annealed at an annealing temperature of 660 to 730 ° C. and an annealing time of 30 seconds in a continuous annealing furnace, and temper rolled at an elongation of 2.0%. Details are shown in Table 2.
  • Average accumulated strength f in the (111) [1-10] to (111) [-1-12] orientations of the plate surface at 1/4 thickness of the steel plate Chemical polishing (oxalic acid etching) was performed to remove the influence of processing strain, and after polishing, the integrated strength f was measured at a position of 1/4 plate thickness.
  • An X-ray diffractometer was used for the measurement, and (110), (200), (211), and (222) pole figures were created by the Schulz reflection method.
  • the average value of the accumulated intensity at 90 ° ( ⁇ 1 is a value of 5 ° interval from 0 ° to 90 °) is the average in the (111) [1-10] to (111) [-1-12] orientations It was set as the accumulation intensity.
  • R 0 is a tensile test in the rolling direction
  • r 45 is a tensile test in the 45 ° direction relative to the rolling direction
  • r 90 is a tensile test in the 90 ° direction relative to the rolling direction.
  • Each r value is shown.
  • the ferrite structure of the ferrite average crystal grain size rolling direction cross section was etched with a 3% nital solution to reveal grain boundaries, and photographed at 400 times using an optical microscope. Using the photograph obtained, the ferrite average crystal grain size was measured by a cutting method in accordance with the steel-crystal grain size microscopic test method of JIS G 0551.
  • two-piece can molding was performed on the steel sheet. Specifically, the steel plate was subjected to chromium plating (tin-free) treatment as a surface treatment, and then a laminated steel plate coated with an organic film was produced. Next, after punching into a circle, deep drawing, ironing, etc. were applied to form a can body similar to the two-piece can applied in beverage cans. The external pressure strength was measured on the can obtained as described above.
  • the method is as follows. The can was placed inside the pressurizing chamber, and pressurization inside the pressurizing chamber was carried out by introducing pressurized air into the chamber at 0.016 MPa / s via an air introduction valve.
  • the pressure inside the chamber was confirmed through a pressure gauge, a pressure sensor, an amplifier for amplifying the detection signal, a signal processing device for displaying the detection signal, data processing, and the like.
  • the critical buckling pressure that is, the external pressure strength
  • the external pressure strength should be 0.14 MPa or more with respect to the pressure change due to the heat sterilization treatment. From this, the case where the external pressure strength was higher than 0.14 MPa was indicated as ⁇ , and the case where the external pressure strength was 0.14 MPa or less was indicated as x.
  • the surface roughness of the steel plate surface after can making was measured by measuring the surface roughness of the can body and examining the maximum height Rmax.
  • the laminated film of the can body was peeled off with an NaOH solution, and the roughness of the surface of the can body steel plate having the highest degree of processing was measured. It was found that when the maximum height of the steel sheet surface Rmax was less than 7.4 ⁇ m, the steel sheet did not damage the film and the corrosion resistance was maintained.
  • the maximum height Rmax is less than 7.4 ⁇ m and the skin roughness is low ( ⁇ )
  • the maximum height Rmax is 7.4 to less than 9.5 ⁇ m
  • the skin roughness is slightly low ( ⁇ )
  • the skin roughness is 9.5 ⁇ m or more and the skin roughness is high ( ⁇ ).
  • the examples of the present invention all have an average accumulated strength of 7.0 or more in the (111) [1-10] to (111) [-1-12] orientations of the plate surface at a quarter thickness of the steel plate, E AVE ⁇ 215 GPa, E 0 , E 45 , E 90 ⁇ 210 GPa, ⁇ 0.4 ⁇ ⁇ r ⁇ 0.4 and ferrite average crystal grain size 6.0 to 10.0 ⁇ m, high external pressure strength, excellent moldability and surface properties Recognize.
  • the cold pressure ratio is lower than the range of the present invention, and ⁇ r is not less than the upper limit value of the present invention.
  • the annealing temperature exceeds the range of the present invention, the crystal grains become coarse, and rough skin is generated.
  • the cold pressure ratio exceeds the range of the present invention, and ⁇ r is not more than the lower limit value of the present invention.
  • the non-recrystallized structure is observed in part because of annealing at the recrystallization temperature or lower.
  • the coiling temperature exceeds the range of the present invention, the effect of fine graining by lowering the coiling temperature cannot be obtained, and the crystal grain size of the pressure adjusting plate is not less than the upper limit of the present invention.
  • the comparative example No. 18 is lower than the B / N of the present invention, the effect of suppressing the recrystallization of B is not sufficiently exhibited, and the crystal grain size of the pressure adjusting plate is not less than the upper limit of the present invention.
  • the comparative example of No19 exceeds the amount of C of the present invention, and the average in the (111) [1-10] to (111) [-1-12] orientations of the plate surface at the 1/4 plate thickness of the steel plate Is less than the range of the present invention, and a high Young's modulus of the steel sheet is not sufficiently obtained.
  • the comparative example of No. 20 exceeds the B / N of the present invention, the recrystallization completion temperature rises, and an unrecrystallized structure is observed in the annealing within the scope of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

座屈強度が高く成形性および成形後の表面性状に優れた缶用鋼板およびその製造方法を提供する。C:0.0005%以上0.0035%以下、Si:0.05%以下、Mn:0.1%以上0.6%以下、P:0.02%以下、S:0.02%未満、Al:0.01%以上0.10%未満、N:0.0030%以下、B:0.0010%以上かつB/N≦3.0(B/N=(B(質量%))/10.81)/(N(質量%)/14.01))を含有し、残部はFeおよび不可避的不純物からなり、鋼板の1/4板厚における板面の(111)[1-10]~(111)[-1-12]方位における平均の集積強度fが7.0以上である組織を有し、かつ、EAVE≧215GPa、E0≧210GPa、E45≧210GPa、E90≧210GPa、-0.4≦Δr≦0.4、および圧延方向断面のフェライト平均結晶粒径が6.0~10.0μmである。

Description

外圧に対する缶胴部の座屈強度が高く、成形性および成形後の表面性状に優れた缶用鋼板およびその製造方法
 本発明は、飲料品や食品の容器材料として用いられる缶容器材料に適した缶用鋼板およびその製造方法に関するもので、特に、外圧に対する缶胴部の座屈強度が高く、成形性および成形後の表面性状に優れた缶用鋼板およびその製造方法に関するものである。
 近年の環境負荷低減およびコスト削減の観点から食品や飲料缶に用いられる鋼板の使用量削減が求められており、2ピース、3ピース缶に関わらず鋼板の薄肉化が進行している。しかし、鋼板の薄肉化に伴い、製缶工程、搬送工程、市場におけるハンドリング時に外力によって缶体が変形する、内容物の加熱殺菌処理時に缶外部の圧力の増減によって缶胴部が変形(座屈)する等が問題視されている。
 従来、このような耐変形性を向上させるために鋼板の高強度化が行われてきた。しかし、鋼板の高強度化は、DI(Draw and wall Ironing)成形や深絞りしごき成形で製缶される2ピース缶の成形時の変形抵抗を高め、加工発熱が上昇し、製缶工程において問題となる。また、鋼板の高強度化は缶胴部成形後に行われるネック加工、次いで行われるフランジ成形において、ネックしわやフランジ割れの発生率を増加させてしまう。このように、鋼板の高強度化は必ずしも鋼板の薄肉化に伴う耐変形性の劣化を補う方法としては適切ではない。
 一方、缶胴部の座屈現象は、缶胴部板厚が薄肉化されたことによる缶体の剛性の劣化によって生じている。従って、耐座屈性(パネリング強度と称することもある)を向上させるためには、缶体のサイズやデザインを最適化し、缶体の剛性を高める方法が考えられる。
 また、鋼板のヤング率そのものを高め、剛性を向上させる方法が考えられる。鉄のヤング率と結晶方位とは強い相関があり、<110>方向が圧延方向に平行な結晶方位群(αファイバー)は圧延方向に対して90°となる幅方向のヤング率を高め、特に{112}<110>方位の集積を高めることで、理論的には約280GPaのヤング率を有する鋼板を得ることができる。また、<111>方向が板面法線方向に平行な結晶方位群(γファイバー)は圧延方向に対して0、45、90°方向のヤング率を約230GPaまで高めることができる。一方、鋼板の結晶方位が特定の方位への配向を示さない場合、即ち集合組織がランダムである鋼板のヤング率は、約205GPaである。
 高ヤング率を志向した鋼板は、自動車用鋼板において薄肉化に伴う車体剛性の低下を補うことを目的に数多く提供されている。
 例えば、特許文献1では、極低炭素鋼にNbあるいはTiを添加した鋼を用い、熱間圧延工程において、Ar3~(Ar3+150℃)での圧下率を85%以上とし、未再結晶オーステナイトからフェライト変態を促進することで、熱延板段階でフェライトの集合組織を{311}<011>および{332}<113>方位とし、これを初期方位として冷間圧延、再結晶焼鈍を施すことで{211}<110>方位を主方位とし、圧延方向に対して90°方向のヤング率を高める技術が開示されている。
 また、特許文献2では、質量%で、C量が0.02~0.15%の低炭素鋼にNb、Mo、Bを添加し、Ar3~950℃での圧下率を50%以上とすることで、{211}<110>を発達させ、圧延方向に対して90°方向のヤング率を高めた熱延鋼板の製造方法が開示されている。
 一方、缶用鋼板における高ヤング率を志向した鋼板としては、3ピース缶用途向けに製造方法が提供されている。
 特許文献3では、冷延、焼鈍後、50%以上の二次冷延を行い強い圧延の集合組織、即ちαファイバーを形成させ、圧延方向に対して90°方向のヤング率を高めた容器用鋼板の製造技術が開示されている。
 特許文献4では、熱延板を60%以上の圧下率で冷延し、強いαファイバーを形成させ、圧延方向に対して90°方向のヤング率を高めた、焼鈍を行わない容器用鋼板の製造技術が開示されている。
 また、特許文献5では、極低炭素鋼にTi、Nb、Zr、Bを添加し、Ar3変態点以下の温度で少なくとも50%以上の熱間圧延をし、冷間圧延後、400℃以上再結晶温度以下で焼鈍することにより、圧延方向に対して90°方向のヤング率を高めた容器用鋼板の製造技術が開示されている。
 一方で、DI成形や深絞りしごき成形で製缶される2ピース缶においては、成形後、開口部にイヤリングと呼ばれる缶胴高さの不均一が顕著に起こり、このイヤリングが大きい場合、歩留りが低下する。これを防止するために鋼板面内の異方性(Δr)を小さくするという課題がある。さらに、上述のDI成形や深絞りしごき成形等の製缶方法でラミネート鋼板を成形した場合、被覆したフィルムが製缶後に下地の鋼板から剥離して耐食性が劣化するという課題もある。つまり、下地となる鋼板には、深絞り加工やしごき加工といった高加工度成形後にフィルムとの密着性を良好に保つために表面に肌荒れが発生しない優れた表面性状を有することが重要な要素として挙げられる。
 上述の課題に対して、特許文献6では、極低炭素鋼に熱間粗圧延を全圧下量80%以上、そのうち、最終パスを20%以上とする条件下で行い、仕上熱間圧延を、被圧延材に対して仕上圧延機列のいずれかの圧延スタンドを通過する際に、圧延加工に伴う発熱により逆変態させ、仕上圧延温度がAr3-50℃以上となるように終了させることで、熱延鋼板の組織および最終製品たる製缶用鋼板の効率的に均一微細にし、加工性が良好でかつ肌荒れのない鋼板およびその製造方法を開示している。
 特許文献7では、仕上圧延後の冷却等の熱間圧延条件を適切に制御し、熱延後の結晶粒を等軸、微細粒な均一組織とし、その効果を冷延、焼鈍後に継承させることで、焼鈍板の結晶粒を均一で微細な等粒軸であり、Δrが±0.2以内にありイヤリング発生が小さく、プレス成形後の耐肌荒れ性に優れる2ピース缶用鋼板およびその製造方法を開示している。
 また、特許文献8では、極低炭素鋼をベースとし、Nbを添加してNb系析出物の量および粒径をコントロールすることでピン止め効果を最適化し、フェライト粒径を6~10μmに微細化し、優れた耐肌荒れ性を有する鋼板およびその製造技術が開示されている。
特開平5-255804号公報 特開平8-311541号公報 特開平6-212353号公報 特開平6-248332公報 特開平6-248339号公報 特開平10-8142号公報 特開平10-81919号公報 特開2010-229486号公報
 しかしながら、上記従来技術は、いずれも問題点を抱えている。
特許文献1~5では、圧延方向に対して90°方向のヤング率を高める方法しか開示されていない。この方法では3ピース缶のようなロールフォーム成形によって缶胴部を成形した場合は、高ヤング率を有する方向を缶胴部周方向になるように成形し、パネリング強度を向上させることは可能であるが、絞り加工によって缶胴部が成形される2ピース缶においては高ヤング率を有する方向が必ずしも缶胴部周方向にはならず、缶体の剛性を高める効果が充分に発現されない。また、αファイバーの集積は圧延方向に対して90°方向のヤング率は高めるが、45°方向のヤング率を著しく低下させることが知られている。したがって、上述の方法で得られた高ヤング率鋼板を2ピース缶に成形した場合、缶体の剛性を高めるどころか、逆に低下させてしまう恐れがある。また、DI成形や深絞りしごき成形で製缶される2ピース缶における成形後のイヤリングを小さくする技術およびフィルムとの密着性を良好に保つために表面に肌荒れが発生しない表面性状に関する技術については全く開示されていない。
 特許文献6~8では鋼板の薄肉化に伴う缶体剛性の劣化を補う技術については全く開示されていない。
 すなわち、鋼板の薄肉化による缶体の耐変形性の劣化を、ネック加工、フランジ加工性の劣化を伴う高強度材の適用ではなく、缶体剛性の向上を目的に鋼板のヤング率を高め、かつ、2ピース缶に求められる低イヤリング性および成形後の耐肌荒れ性(表面性状)をも備えた鋼板およびその製造方法を志向した技術は存在しなかった。
 本発明は、かかる事情に鑑みなされたもので、上述した従来技術の問題を解決し、外圧に対する缶胴部の座屈強度が高く成形性および成形後の表面性状に優れた缶用鋼板およびその製造方法を提供することを目的とする。
 本発明者らは、前記課題を解決するために鋭意研究を行った。その結果、極低炭素鋼をベースに化学成分、熱間圧延条件、冷間圧延条件および焼鈍条件を最適化することで、外圧に対する缶胴部の座屈強度が高く、成形性および成形後の表面性状に優れた缶用鋼板の製造が実現可能であることを見出し、この知見に基づいて本発明を完成するに至った。
 本発明は、以上の知見に基づきなされたもので、その要旨は以下のとおりである。
[1]成分組成は、質量%で、C:0.0005%以上0.0035%以下、Si:0.05%以下、Mn:0.1%以上0.6%以下、P:0.02%以下、S:0.02%未満、Al:0.01%以上0.10%未満、N:0.0030%以下、B:0.0010%以上かつB/N≦3.0(B/N=(B(質量%))/10.81)/(N(質量%)/14.01))を含有し、残部はFeおよび不可避的不純物からなり、鋼板の1/4板厚における板面の(111)[1-10]~(111)[-1-12]方位における平均の集積強度fが7.0以上である組織を有し、かつ、EAVE≧215GPa、E0≧210GPa、E45≧210GPa、E90≧210GPa、-0.4≦Δr≦0.4、および圧延方向断面のフェライト平均結晶粒径が6.0~10.0μmであることを特徴とする外圧に対する缶胴部の座屈強度が高く成形性および成形後の表面性状に優れた缶用鋼板。
ただし、
EAVE=(E0+2E45+E90)/4
E0、E45、E90:圧延方向に対してそれぞれ0、45、90°方向のヤング率
Δr=(r0-2r45+r90)/2
0、r45、r90:圧延方向に対してそれぞれ0、45、90°方向のランクフォード値
である。
[2]質量%で、C:0.0005%以上0.0035%、Si:0.05%以下、Mn:0.1%以上0.6%以下、P:0.02%以下、S:0.02%未満、Al:0.01%以上、0.10%未満、N:0.0030%以下、B:0.0010%以上かつB/N≦3.0 (B/N=(B(質量%))/10.81)/(N(質量%)/14.01))を含有し、残部は鉄および不可避的不純物からなる成分組成を有する鋼スラブに、再加熱温度が1150~1300℃、仕上げ温度が850~950℃の熱間圧延を施したのち、500~640℃の巻取り温度で巻取り、酸洗後、87~93%の圧下率で冷間圧延し、再結晶温度~720℃の温度で再結晶焼鈍し、調質圧延を行うことを特徴とする前記[1]の外圧に対する缶胴部の座屈強度が高く成形性および成形後の表面性状に優れた缶用鋼板の製造方法。
なお、本明細書において、鋼の成分を示す%は、すべて質量%である。
 本発明によれば、外圧に対する缶胴部の座屈強度が、製缶及び飲料メーカーが設けている基準値(約1.5kgf/cm2)より高く、DI成形性や深絞りしごき成形性に優れ、成形後の表面性状に優れた缶用鋼板が得られる。
したがって、本発明の缶用鋼板を食缶や飲料缶等に使用することで、2ピース缶の成形後表面性状およびイヤリング発生による歩留りの低下を招くことなく、缶体の剛性が向上し、鋼板の更なる薄肉化が可能になり、省資源化および低コスト化を達成することができる。また、本発明の缶用鋼板の適用範囲は、各種金属缶のみならず、乾電池内装缶、各種家電・電気部品、自動車用部品等の幅広い範囲への適用も期待できる。
 以下、本発明を詳細に説明する。
本発明の缶用鋼板は、成分組成が質量%で、C:0.0005%以上0.0035%以下、Si:0.05%以下、Mn:0.1%以上0.6%以下、P:0.02%以下、S:0.02%未満、Al:0.01%以上0.10%未満、N:0.0030%以下、B:0.0010%以上かつB/N≦3.0(B/N=(B(質量%))/10.81)/(N(質量%)/14.01))を含有し、残部はFeおよび不可避的不純物からなり、鋼板の1/4板厚における板面の(111)[1-10]~(111)[-1-12]方位における平均の集積強度fが7.0以上である組織を有し、かつ、EAVE≧215GPa、E0≧210GPa、E45≧210GPa、E90≧210GPa、-0.4≦Δr≦0.4、および圧延方向断面のフェライト平均結晶粒径が6.0~10.0μmである。そして、このような缶用鋼板は、上記成分組成を有する鋼スラブに、再加熱温度が1150~1300℃、仕上げ温度が850~950℃の熱間圧延を施したのち、500~640℃の巻取り温度で巻取り、酸洗後、87~93%の圧下率で冷間圧延し、再結晶温度~720℃の温度で再結晶焼鈍し、伸長率0.5~5%の調質圧延を行うことで製造可能となる。これらは、本発明の最も重要な要件である。
 まず、本発明の缶用鋼板の成分組成について説明する。
C:0.0005%以上0.0035%以下
一般に、鋼中に固溶しているCの量が多いほど降伏伸びが大きくなり、時効硬化や加工時のストレッチャーストレインの原因となりやすいため、連続焼鈍法を利用した場合においては、製鋼段階において、Cの含有量を極力低く抑えるように制御する必要がある。また、残存固溶炭素量が増加すると、製缶の最終工程である巻き締め部の伸びフランジ成形時に割れを生じたり、加工硬化量についても大きくなるためネック加工やフランジ加工をする際のしわが発生したりする恐れがある。以上より、C含有量は0.0035%以下とする。また、Cは再結晶集合組織に影響を及ぼす元素である。C量が少ないほど<111>方向が板面法線方向に平行な結晶方位群への集積が高まる。平均ヤング率を高めるためには、この結晶方位群への集積を高めることが必要となるが、0.0005%未満では、圧延方向に対して45°方向のヤング率を下げる方位である{100}<110>方位が残りやすくなり、かえって平均ヤング率を低下させてしまう。以上より、C含有量は0.0005%以上とする。
 Si:0.05%以下
Siは多量に添加すると、鋼板の表面処理性の劣化および耐食性の低下の問題が発生するため、0.05%以下、好ましくは0.02%以下とする。
 Mn:0.1%以上0.6%以下
Mnは、鋼中に含まれる不純物のSに起因する熱間延性の低下を防止するために0.1%以上添加する必要がある。MnはAr3変態点を低下させる元素の一つであり、熱間圧延仕上圧延温度をより低下させることができる。このために、熱間圧延時にγ粒の再結晶粒成長を抑制し、さらに変態後のα粒を微細化できる。また、本発明では、後述するB添加による細粒化効果に加えて、Mnを添加してさらなる細粒化を達成し、製缶後の優れた表面性状を確保する。以上の効果を得るために、Mnは0.1%以上とする。一方、JIS G 3303に規定されたとりべ分析値やアメリカ合衆国材料試験協会規格(ASTM)のとりべ分析値において、通常の食品容器に用いられるぶりき原板のMnの上限は0.6%以下と規定されている。よって、Mnは0.6%以下とする。
 P:0.02%以下
Pは、多量に添加すると、鋼の硬質化、耐食性の低下を引き起こす。よって、Pは0.02%以下とする。
 S:0.02%未満
Sは、鋼中でMnと結合してMnSを形成し、多量に析出することで鋼の熱間延性を低下させる。よって、Sは0.02%未満とする。
 Al:0.01%以上0.10%未満
Alは、脱酸剤として添加される元素である。また、NとAlNを形成することにより、鋼中の固溶Nを減少させる効果を有する。しかし、Alの含有量が0.01%未満では、十分な脱酸効果や固溶N低減効果が得られない。よって、Alは0.01%以上とする。一方、0.10%以上になると、上記効果が飽和するだけでなく、アルミナなどの介在物が増加するため好ましくない。よってAlの含有量は0.01以上0.10%未満の範囲とする。
 N:0.0030%以下
Nは不可避的に混入する不純物である。N量が高くなるほどこれを固定するためのBの添加量を増やさなければならない。B添加量の大幅な増加はコストアップにつながるので、Nは0.0030%以下とする。
 B:0.0010%以上、かつB/N≦3.0
Bは、鋼中に固溶したNと結合してBNとして析出することにより、時効硬化を防止する効果がある。また、BNとして析出するために必要な量以上に添加された場合は、熱延板および焼鈍板の結晶粒を微細にする効果を有することが認められている。これは、過剰に添加されたBが結晶粒界に固溶Bとして偏析し、結晶粒の粒成長を抑制するためであると考えられる。このような結晶粒の微細化効果を発揮させるためには、BNを析出させた上でさらに固溶BとしてBを存在させることが必要である。上記の時効硬化を防止する効果と結晶粒の微細化効果の両方を得るためには、本発明者らが行った種々の試験の結果から、Bは0.0010%以上必要であるとの知見を得た。以上より、Bは0.0010%以上とする。一方、固溶Bの増加は連続焼鈍工程における再結晶完了温度を過度に上昇させ、炉内破断やバックリングの発生の危険が大きくなる。このため、B/N≦3.0とする。また、実機製造においてN量は変動するので、確実に固溶Bを存在させるためにはB/N≧1.1とすることが好ましい。ただし、B/N=(B(質量%))/10.81)/(N(質量%)/14.01)である。
 残部はFeおよび不可避的不純物とする。
 次に、本発明の集合組織および材質特性について説明する。
集合組織:(111)[1-10]~(111)[-1-12]方位における平均の集積強度fが7.0以上
(111)[1-10]~(111)[-1-12]方位の集合組織を発達させることで、圧延方向に対して0、45、90°方向のヤング率を等方的に高めることができることから鋼板の1/4板厚における板面の(111)[1-10]~(111)[-1-12]方位における平均の集積強度fを7.0以上とすることが必要となる。
 EAVE≧215GPa、E0≧210GPa、E45≧210GPa、E90≧210GPa
ただし、EAVE=(E0+2E45+E90)/4であり、E0、E45、E90は圧延方向に対してそれぞれ0、45、90°方向のヤング率を表す。
缶胴部の剛性を高める観点から、EAVEは215GPa以上とする。215GPa以上とすることでパネリング強度が顕著に向上し、鋼板の薄肉化に伴う、内容物の加熱殺菌処理等における缶外部の圧力の増減による缶胴部の変形を防ぐことができる。
一方で、絞り加工によって成形される2ピース缶では、鋼板のヤング率の異方性が問題となる。すなわち、E0、E45、E90の内、一方向ないし二方向だけのヤング率が高く、その他の方向のヤング率が低い場合、EAVE≧215GPaを満足していても、缶胴部の剛性を高める効果が十分に発揮されない。缶胴部の剛性を高めるためにはE0、E45、E90をそれぞれ210GPa以上にする必要がある。
 フェライト平均結晶粒径:6.0μm~10.0μm
ラミネート鋼板においては、フィルムと鋼板の剥離やフィルムへの応力集中で発生するフィルム破断により下地鋼板が露出し耐食性が劣化する場合がある。これは、DI成形や絞りしごき成形後の鋼板表面の肌荒れを起因として起こるものであり、この肌荒れの程度は、フェライト結晶粒径の大きさに比例する。そのため、下地に用いる鋼板の圧延方向断面のフェライト平均結晶粒径は10.0μm以下、望ましくは9.0μm以下とする。一方、結晶粒径が過度に微細であると、細粒化強化により鋼板強度が大幅に増大する。このため圧延方向断面のフェライト平均結晶粒径は6.0μm以上とする。
 -0.4≦Δr≦0.4
本発明では、イヤリングの指標として、下記式にて表されるΔrを用いることにする。
Δr=(r0-2r45+r90)/2
ただし、r0、r45、r90は、それぞれ圧延方向に0、45、90°の方向のランクフォード(以下、r値と称することがある)を表す。
Δrが0.4より大きい、または-0.4より小さい鋼板では、DI成形や絞りしごき成形した際、イヤリング発生が大きいためトリム代が大きくなり歩留りが低下する。歩留りの観点からイヤリング発生量を抑制するために、Δrは-0.4~0.4の範囲にする必要がある。
なお、Δrは、冷間圧延の圧下率を調整することで、所定の範囲とすることができる。
 次に、本発明の缶用鋼板の製造方法について説明する。
本発明の缶用鋼板は、上記組成からなる鋼スラブに、再加熱温度が1150~1300℃、仕上げ温度が850~950℃の熱間圧延を施したのち、500~640℃の巻取り温度で巻取り、酸洗後、87~93%の圧下率で冷間圧延し、再結晶温度~720℃の温度で再結晶焼鈍し、伸長率0.5~5%の調質圧延を行うことで製造される。
 スラブ再加熱温度:1150~1300℃
熱間圧延前のスラブ再加熱温度は、高すぎると製品表面の欠陥やエネルギーコストが上昇するなどの問題が発生する。一方、低すぎると、最終仕上圧延温度の確保が難しくなる。よって、スラブ再加熱温度は1150~1300℃とする。
 最終仕上圧延温度:850~950℃、巻取り温度:500~640℃
熱延鋼板の結晶粒微細化や析出物分布の均一性の観点から、最終仕上圧延温度は850~950℃、巻取温度は500~640℃とする。
最終仕上圧延温度が、950℃よりも高くなると、圧延後のγ粒粒成長がより激しく起こり、それに伴う粗大γ粒により変態後のα粒の粗大化を招く。また、850℃より低い場合は、Ar3変態点以下の圧延となり、α粒の粗大化を招く。
巻取り温度が低すぎると熱延板の形状が劣化し、次工程の酸洗、冷間圧延の操業に支障をきたすため、500℃以上とする。一方、640℃よりも高くなると、鋼板のスケール厚みが顕著に増大し、次工程の酸洗時の脱スケール性が劣化する可能性がある。上記問題を一層改善するためには、620℃以下が好ましい。
 酸洗条件は表層スケールが除去できればよく、特に条件は規定しない。通常行われる方法により、酸洗することができる。
 圧下率:87~93%
冷間圧延率は集合組織制御即ちヤング率およびΔrを制御する上で重要な因子である。
一般的に、ヤング率およびr値の異方性は集合組織に依存することが知られている。焼鈍後の鋼板の集合組織は圧下率のみではなく、Mn、Bの添加量および巻取り温度にも影響を受けるので、圧下率は、上記Mn、B添加量および熱間圧延工程での巻取温度との関係で適切に設定されなければならない。その圧下率を最適化することで、EAVEの向上および|Δr|の低減に有効な(111)[1-10]~(111)[-1-12]方位に回転させることができる。具体的には、圧下率を87~93%とすることでEAVE≧215GPa、E0≧210GPa、E45≧210GPa、E90≧210GPaかつΔrを所望の-0.4~0.4の範囲内にすることができる。
 焼鈍温度:再結晶温度~720℃
焼鈍方法は、材質の均一性と高い生産性の観点から連続焼鈍法が好ましい。連続焼鈍における焼鈍温度は、再結晶温度以上であることが必須であるが、焼鈍温度が高すぎると結晶粒が粗大化し、加工後の肌荒れが大きくなるほか、缶用鋼板などの薄物材では、炉内破断やバックリングの発生の危険が大きくなる。このため、焼鈍温度の上限は720℃とする。
 伸張率:0.5~5%(好適条件)
調質圧延の伸張率は、鋼板の調質度により適宜決定されるが、ストレッチャーストレインの発生を抑えるために、0.5%以上の伸張率で圧延するのが好ましい。一方、伸張率5%以上を超える伸張率で圧延すると、鋼板が硬質化することによる加工性の低下と伸びの低下、さらにはr値の低下およびr値の面内異方性の増大を引き起こす場合がある。よって、上限は5%が好ましい。さらに好ましくは4%以下である。
 表1に示す成分組成A~Hを含有し、残部がFeおよび不可避的不純物からなる鋼を溶製し、鋼スラブを得た。得られた鋼スラブに対して1200℃で再加熱した後、仕上げ圧延温度を880~890℃、巻取温度を560~650℃の範囲で熱間圧延を行った。次いで、酸洗後、86~93.5%の圧下率で冷間圧延して、板厚:0.225~0.260mmの薄鋼板を製造した。得られた薄鋼板を、連続焼鈍炉にて焼鈍温度660~730℃、焼鈍時間30秒で焼鈍を行い、伸張率2.0%で調質圧延を行った。なお、詳細は表2に示す。
 以上より得られた鋼板に対して、以下の方法で鋼板の1/4板厚における板面の(111)[1-10]~(111)[-1-12]方位における平均の集積強度f、ヤング率、Δr、フェライト平均結晶粒径を測定した。
 鋼板の1/4板厚における板面の(111)[1-10]~(111)[-1-12]方位における平均の集積強度f
加工歪みの影響を除去するため化学研磨(シュウ酸エッチング)を行い、研磨後、1/4板厚の位置にて集積強度fを測定した。測定にはX線回折装置を使用し、Schulzの反射法により(110)、(200)、(211)、(222)極点図を作成した。これらの極点図から結晶方位分布関数(ODF:Orientation Distribution Function)を算出し、Euler空間(Bunge方式)のφ2=45°、Φ=55°において、φ1=0°、5°、10°・・・90°(φ1は0°から90°まで5°間隔の値とした)のときの集積強度の平均値を(111)[1-10]~(111)[-1-12]方位における平均の集積強度とした。
 ヤング率
圧延方向に対して0°、45°および90°方向を長手方向として10×35mmの試験片を切り出し、横振動型の共振周波数測定装置を用いて、American Society for Testing Materialsの基準(C1259)に従い、圧延方向に対して0°、45°および90°方向のヤング率E0、E45、E90(GPa)を測定し、平均ヤング率EAVE[=(E0+2E45+E90)/4]を求めた。
 Δr
r値の測定はJIS13号Bハーフサイズの引張試験片(幅12.5mm、平行部35mm、標点間距離20mm)を用いて測定を行い、JIS Z 2254の薄板金属材料の塑性ひずみ比試験方法に準拠して、r値を算出し、Δr[=(r0+r90-2r45)/2]を求めた。なお、r0は圧延方向に引張試験を行った時、r45は圧延方向に対して45°方向に引張試験を行った時、r90は圧延方向に対して90°方向に引張試験を行った時の各々のr値を示す。
 フェライト平均結晶粒径
圧延方向断面のフェライト組織を3%ナイタール溶液でエッチングして粒界を現出させ、光学顕微鏡を用いて400倍で撮影した。得られた写真を用いて、JIS G 0551の鋼-結晶粒度の顕微鏡試験方法に準拠して、切断法によりフェライト平均結晶粒径を測定した。
 さらに製缶後の缶体特性を評価するために、上記鋼板に対して、2ピース缶成形を行った。具体的には、上記鋼板に表面処理としてクロムめっき(ティンフリー)処理を施した後、有機皮膜を被覆したラミネート鋼板を作製した。次いで、円形に打抜いた後、深絞り加工、しごき加工等を施して、飲料缶で適用されている2ピース缶と同様の缶体を成形した。
以上により得られた缶体に対して、外圧強度の測定を行った。方法は以下のとおりである。
缶体を加圧チャンバーの内部に設置し、加圧チャンバー内部の加圧は、空気導入バルブを介してチャンバーに0.016MPa/sで加圧空気を導入することで行った。チャンバーの内部の圧力の確認は、圧力ゲージ、圧力センサ、その検出信号を増幅するアンプ、検出信号の
表示、データ処理などを行う信号処理装置を介して行った。限界座屈圧力、つまり外圧強度は座屈に伴う圧力変化点の圧力とした。一般的に、加熱殺菌処理による圧力変化に対して、外圧強度は0.14MPa以上を有すればよいとされている。これより、外圧強度が0.14MPaより高いのものを○、外圧強度が0.14MPa以下のものを×としてそれぞれ表示した。
 製缶後の鋼板表面の肌荒れは、缶胴部の表面粗さ測定を行い、最大高さRmaxを調査した。缶体のラミネートされたフィルムをNaOH溶液によって剥離し、最も加工度の高い缶胴部鋼板表面の粗さを測定した。鋼板表面最大高さRmax 7.4μm未満のときに鋼板がフィルムを損傷せず、耐食性が保たれることがわかった。よって、本発明では、最大高さRmax 7.4μm未満で肌荒れ少(◎)、最大高さRmax 7.4以上~9.5μm未満で肌荒れやや少(○)、9.5μm以上で肌荒れ多(×)として評価した。
結果を表3に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表3より、本発明例は、いずれも鋼板の1/4板厚における板面の(111)[1-10]~(111)[-1-12]方位における平均の集積強度が7.0以上、 EAVE≧215GPa、E0、E45、E90≧210GPa、-0.4≦Δr≦0.4およびフェライト平均結晶粒径が6.0~10.0μmであり、外圧強度が高く、成形性および表面性状に優れることがわかる。
 一方、No5の比較例は冷圧率が本発明の範囲を下回り、Δrが本発明の上限値以上である。No6の比較例は焼鈍温度が本発明の範囲を上回っており、結晶粒が粗大化し、肌荒れを発生させている。No15の比較例は冷圧率が本発明の範囲を上回り、Δrが本発明の下限値以下である。No16の比較例は再結晶温度以下での焼鈍のために、一部に未再結晶組織が観察される。No17の比較例は巻取温度が本発明の範囲を上回っており、巻取温度低温化による細粒化効果が得られず、調圧板の結晶粒径が本発明の上限値以上である。No18の比較例は本発明のB/Nを下回っており、Bの再結晶抑制効果が十分に発揮されず、調圧板の結晶粒径が本発明の上限値以上である。さらに、No19の比較例は、本発明のC量を上回っており、鋼板の1/4板厚における板面の(111)[1-10]~(111)[-1-12]方位における平均の集積強度が本発明の範囲を下回っており、鋼板の高ヤング率化が十分に得られていない。No20の比較例は本発明のB/Nを上回っており、再結晶完了温度が上昇し、本発明範囲内の焼鈍においては未再結晶組織が観察される。
 

Claims (2)

  1.  成分組成は、質量%で、C:0.0005%以上0.0035%以下、Si:0.05%以下、Mn:0.1%以上0.6%以下、P:0.02%以下、S:0.02%未満、Al:0.01%以上0.10%未満、N:0.0030%以下、B:0.0010%以上かつB/N≦3.0(B/N=(B(質量%))/10.81)/(N(質量%)/14.01))を含有し、残部はFeおよび不可避的不純物からなり、
    鋼板の1/4板厚における板面の(111)[1-10]~(111)[-1-12]方位における平均の集積強度fが7.0以上である組織を有し、
    かつ、EAVE≧215GPa、E0≧210GPa、E45≧210GPa、E90≧210GPa、-0.4≦Δr≦0.4、および圧延方向断面のフェライト平均結晶粒径が6.0~10.0μmであることを特徴とする外圧に対する缶胴部の座屈強度が高く成形性および成形後の表面性状に優れた缶用鋼板。
    ただし、
    EAVE=(E0+2E45+E90)/4
    E0、E45、E90:圧延方向に対してそれぞれ0、45、90°方向のヤング率
    Δr=(r0-2r45+r90)/2
    0、r45、r90:圧延方向に対してそれぞれ0、45、90°方向のランクフォード値
    である。
  2.  質量%で、C:0.0005%以上0.0035%、Si:0.05%以下、Mn:0.1%以上0.6%以下、P:0.02%以下、S:0.02%未満、Al:0.01%以上0.10%未満、N:0.0030%以下、B:0.0010%以上かつB/N≦3.0(B/N=(B(質量%))/10.81)/(N(質量%)/14.01))を含有し、残部は鉄および不可避的不純物からなる成分組成を有する鋼スラブに、
    再加熱温度が1150~1300℃、仕上げ温度が850~950℃の熱間圧延を施したのち、500~640℃の巻取り温度で巻取り、
    酸洗後、87~93%の圧下率で冷間圧延し、
    再結晶温度~720℃の温度で再結晶焼鈍し、
    調質圧延を行うことを特徴とする請求項1に記載の外圧に対する缶胴部の座屈強度が高く成形性および成形後の表面性状に優れた缶用鋼板の製造方法。
     
PCT/JP2012/002709 2011-04-21 2012-04-19 外圧に対する缶胴部の座屈強度が高く、成形性および成形後の表面性状に優れた缶用鋼板およびその製造方法 WO2012144213A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201280027406.8A CN103597110B (zh) 2011-04-21 2012-04-19 罐体部相对于外压的压曲强度高、且成形性及成形后的表面性状优异的罐用钢板及其制造方法
EP12774346.6A EP2700731A4 (en) 2011-04-21 2012-04-19 STEEL PLATE FOR CANS WITH HIGH RUMP NICKNESS STRENGTH UNDER EXTERNAL PRINTING AND WITH EXCELLENT FORMABILITY AND EXCELLENT SURFACE PROPERTIES AFTER FORMING, AND METHOD FOR THE PRODUCTION THEREOF
US14/112,717 US10174393B2 (en) 2011-04-21 2012-04-19 Steel sheet for can with high barrel-part buckling strength under external pressure and with excellent formability and excellent surface properties after forming, and process for producing same
CA2833452A CA2833452C (en) 2011-04-21 2012-04-19 Steel sheet with excellent formability and surface quality after forming to be used for can having can body with high resistance to buckling against external pressure and method for manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011094871 2011-04-21
JP2011-094871 2011-04-21

Publications (1)

Publication Number Publication Date
WO2012144213A1 true WO2012144213A1 (ja) 2012-10-26

Family

ID=47041345

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/002709 WO2012144213A1 (ja) 2011-04-21 2012-04-19 外圧に対する缶胴部の座屈強度が高く、成形性および成形後の表面性状に優れた缶用鋼板およびその製造方法

Country Status (7)

Country Link
US (1) US10174393B2 (ja)
EP (1) EP2700731A4 (ja)
JP (1) JP5958038B2 (ja)
CN (1) CN103597110B (ja)
CA (1) CA2833452C (ja)
TW (1) TWI450981B (ja)
WO (1) WO2012144213A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015182360A1 (ja) * 2014-05-30 2015-12-03 Jfeスチール株式会社 缶用鋼板およびその製造方法
US10392682B2 (en) 2012-11-07 2019-08-27 Jfe Steel Corporation Steel sheet for three-piece can and method for manufacturing the same

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015146137A1 (ja) * 2014-03-28 2015-10-01 Jfeスチール株式会社 缶用鋼板およびその製造方法
BR112017007273B1 (pt) * 2014-10-09 2021-03-09 Thyssenkrupp Steel Europe Ag produto de aço plano laminado a frio e recozido, recristalizado, e método para a fabricação de um produto de aço plano formado
JP6032298B2 (ja) 2015-02-03 2016-11-24 Jfeスチール株式会社 高強度冷延鋼板、高強度めっき鋼板、高強度溶融亜鉛めっき鋼板および高強度合金化溶融亜鉛めっき鋼板、並びにそれらの製造方法
CN107250413B (zh) * 2015-02-26 2019-04-05 杰富意钢铁株式会社 瓶盖用钢板、瓶盖用钢板的制造方法及瓶盖
JP6589710B2 (ja) * 2016-03-23 2019-10-16 日本製鉄株式会社 深絞り性に優れた高ヤング率極薄鋼鈑及びその製造方法
US11453923B2 (en) 2016-09-20 2022-09-27 Thyssenkrupp Steel Europe Ag Method for manufacturing flat steel products and flat steel product
JP6455639B1 (ja) * 2017-03-27 2019-01-23 Jfeスチール株式会社 2ピース缶用鋼板及びその製造方法

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05255804A (ja) 1992-03-11 1993-10-05 Nippon Steel Corp 成形性および剛性の優れた冷延鋼板およびその製造方法
JPH0641683A (ja) * 1992-04-06 1994-02-15 Kawasaki Steel Corp 缶用鋼板およびその製造方法
JPH06212353A (ja) 1993-01-11 1994-08-02 Nippon Steel Corp 高剛性容器用鋼板及びその製造方法
JPH06248332A (ja) 1993-02-26 1994-09-06 Nippon Steel Corp 容器用鋼板の製造方法
JPH06248339A (ja) 1993-02-26 1994-09-06 Nippon Steel Corp 高剛性容器用鋼板の製造方法
JPH08311541A (ja) 1995-05-18 1996-11-26 Sumitomo Metal Ind Ltd 高ヤング率鋼板の製造方法
JPH09227947A (ja) * 1996-02-26 1997-09-02 Nkk Corp 極低炭素缶用鋼板の製造方法
JPH108142A (ja) 1996-06-26 1998-01-13 Kawasaki Steel Corp 加工性が良好でかつ肌荒れのない製缶用鋼板の製造方 法
JPH1081919A (ja) 1996-09-05 1998-03-31 Kawasaki Steel Corp ノンイヤリング性および耐肌荒れ性に優れる2ピース缶用鋼板の製造方法
JPH10280094A (ja) * 1997-04-10 1998-10-20 Nippon Steel Corp イヤリングが小さく耐ネックしわ性に優れた2ピース容器用鋼板およびその製造方法
JP2005320633A (ja) * 2005-06-20 2005-11-17 Jfe Steel Kk 2ピース変形缶用鋼板およびその製造方法
JP2007239035A (ja) * 2006-03-09 2007-09-20 Jfe Steel Kk 耐ひずみ時効性および耐肌荒れ性に優れ、面内異方性の小さい冷延鋼板およびその製造方法
JP2010229486A (ja) 2009-03-27 2010-10-14 Jfe Steel Corp 絞りおよびしごき加工後の表面性状に優れた缶用鋼板およびその製造方法
WO2011021646A1 (ja) * 2009-08-19 2011-02-24 Jfeスチール株式会社 高加工性3ピース溶接缶用鋼板およびその製造方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69311826T2 (de) 1992-04-06 1997-10-16 Kawasaki Steel Co Schwarz- oder Weissblech für die Fertigung von Dosen und Herstellungsverfahren
JPH073334A (ja) * 1993-06-18 1995-01-06 Nippon Steel Corp 低イヤリング容器用鋼板の製造方法
JPH07188854A (ja) * 1993-12-28 1995-07-25 Nkk Corp 面内異方性の小さい冷延鋼板
KR100221349B1 (ko) 1994-02-17 1999-09-15 에모또 간지 가공성이 우수한 비시효성 캔용 강판의 제조방법
JPH08246060A (ja) * 1995-03-10 1996-09-24 Kawasaki Steel Corp 缶用鋼板の製造方法
JP3695048B2 (ja) 1997-03-04 2005-09-14 Jfeスチール株式会社 変形3ピース缶用鋼板およびその製造方法
JPH10330844A (ja) * 1997-05-28 1998-12-15 Nippon Steel Corp 成形性に優れた冷延鋼板の製造方法
JP3548390B2 (ja) * 1997-07-29 2004-07-28 新日本製鐵株式会社 イヤリングが著しく小さい硬質2ピース容器用鋼板およびその製造方法
CN1098366C (zh) * 1998-05-29 2003-01-08 东洋钢钣股份有限公司 运用薄壁式拉深罐用的树脂包覆钢板及其使用的钢板
JP3707260B2 (ja) * 1998-09-11 2005-10-19 Jfeスチール株式会社 面内異方性および面内異方性のコイル内均一性に優れた2ピース缶用極薄鋼板の製造方法
JP2001247917A (ja) * 2000-03-06 2001-09-14 Nkk Corp 極低炭素缶用鋼板の製造方法
JP2002212673A (ja) * 2001-01-19 2002-07-31 Toyo Kohan Co Ltd 異方性の優れた電池外筒缶用鋼板及びその製造法
JP3756779B2 (ja) * 2001-04-20 2006-03-15 Jfeスチール株式会社 加工性に優れた薄肉化深絞りしごき缶用鋼板
CN100336930C (zh) 2001-10-04 2007-09-12 新日本制铁株式会社 容器用的薄钢板及其生产方法
JP4835015B2 (ja) * 2004-03-25 2011-12-14 Jfeスチール株式会社 軟質缶用鋼板およびその製造方法
KR20070086712A (ko) * 2005-03-24 2007-08-27 제이에프이 스틸 가부시키가이샤 연질캔용 강판 및 그 제조방법
JP4604883B2 (ja) * 2005-06-30 2011-01-05 Jfeスチール株式会社 異方性の小さい鋼板およびその製造方法
JP4867256B2 (ja) * 2005-09-29 2012-02-01 Jfeスチール株式会社 剛性に優れた高強度薄鋼板およびその製造方法
WO2007111188A1 (ja) * 2006-03-16 2007-10-04 Jfe Steel Corporation 冷延鋼板およびその製造方法、電池及びその製造方法
JP5076872B2 (ja) * 2007-12-21 2012-11-21 Jfeスチール株式会社 缶用鋼板およびその製造方法
JP5272714B2 (ja) * 2008-12-24 2013-08-28 Jfeスチール株式会社 製缶用鋼板の製造方法

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05255804A (ja) 1992-03-11 1993-10-05 Nippon Steel Corp 成形性および剛性の優れた冷延鋼板およびその製造方法
JPH0641683A (ja) * 1992-04-06 1994-02-15 Kawasaki Steel Corp 缶用鋼板およびその製造方法
JPH06212353A (ja) 1993-01-11 1994-08-02 Nippon Steel Corp 高剛性容器用鋼板及びその製造方法
JPH06248332A (ja) 1993-02-26 1994-09-06 Nippon Steel Corp 容器用鋼板の製造方法
JPH06248339A (ja) 1993-02-26 1994-09-06 Nippon Steel Corp 高剛性容器用鋼板の製造方法
JPH08311541A (ja) 1995-05-18 1996-11-26 Sumitomo Metal Ind Ltd 高ヤング率鋼板の製造方法
JPH09227947A (ja) * 1996-02-26 1997-09-02 Nkk Corp 極低炭素缶用鋼板の製造方法
JPH108142A (ja) 1996-06-26 1998-01-13 Kawasaki Steel Corp 加工性が良好でかつ肌荒れのない製缶用鋼板の製造方 法
JPH1081919A (ja) 1996-09-05 1998-03-31 Kawasaki Steel Corp ノンイヤリング性および耐肌荒れ性に優れる2ピース缶用鋼板の製造方法
JPH10280094A (ja) * 1997-04-10 1998-10-20 Nippon Steel Corp イヤリングが小さく耐ネックしわ性に優れた2ピース容器用鋼板およびその製造方法
JP2005320633A (ja) * 2005-06-20 2005-11-17 Jfe Steel Kk 2ピース変形缶用鋼板およびその製造方法
JP2007239035A (ja) * 2006-03-09 2007-09-20 Jfe Steel Kk 耐ひずみ時効性および耐肌荒れ性に優れ、面内異方性の小さい冷延鋼板およびその製造方法
JP2010229486A (ja) 2009-03-27 2010-10-14 Jfe Steel Corp 絞りおよびしごき加工後の表面性状に優れた缶用鋼板およびその製造方法
WO2011021646A1 (ja) * 2009-08-19 2011-02-24 Jfeスチール株式会社 高加工性3ピース溶接缶用鋼板およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2700731A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10392682B2 (en) 2012-11-07 2019-08-27 Jfe Steel Corporation Steel sheet for three-piece can and method for manufacturing the same
WO2015182360A1 (ja) * 2014-05-30 2015-12-03 Jfeスチール株式会社 缶用鋼板およびその製造方法
JPWO2015182360A1 (ja) * 2014-05-30 2017-04-20 Jfeスチール株式会社 缶用鋼板
US10301702B2 (en) 2014-05-30 2019-05-28 Jfe Steel Corporation Steel sheet for cans and manufacturing method thereof

Also Published As

Publication number Publication date
TW201247893A (en) 2012-12-01
TWI450981B (zh) 2014-09-01
CA2833452A1 (en) 2012-10-26
CN103597110B (zh) 2015-12-23
CN103597110A (zh) 2014-02-19
JP2012233255A (ja) 2012-11-29
EP2700731A1 (en) 2014-02-26
CA2833452C (en) 2016-03-29
US10174393B2 (en) 2019-01-08
JP5958038B2 (ja) 2016-07-27
US20140034195A1 (en) 2014-02-06
EP2700731A4 (en) 2015-04-08

Similar Documents

Publication Publication Date Title
JP5958038B2 (ja) 外圧に対する缶胴部の座屈強度が高く、成形性および成形後の表面性状に優れた缶用鋼板およびその製造方法
EP2128289B2 (en) Steel sheet for cans, hot-rolled steel sheet to be used as the base metal and processes for production of both
JP5712479B2 (ja) 耐肌荒れ性に優れた缶用鋼板およびその製造方法
JP6052412B2 (ja) 缶用鋼板およびその製造方法
WO2016157878A1 (ja) 缶用鋼板及び缶用鋼板の製造方法
JP6288331B2 (ja) 缶用鋼板およびその製造方法
JP2001335888A (ja) 軽量2ピース缶用鋼板およびその製造方法
JP5713146B2 (ja) 3ピース缶用鋼板およびその製造方法
JP2017190469A (ja) 絞り缶用冷延鋼板及びその製造方法
JP5900711B2 (ja) 缶用鋼板およびその製造方法
JP3756779B2 (ja) 加工性に優れた薄肉化深絞りしごき缶用鋼板
JP6164273B2 (ja) 缶用鋼板及び缶用鋼板の製造方法
KR102587650B1 (ko) 캔용 강판 및 그의 제조 방법
JP2016160438A (ja) 缶用鋼板およびその製造方法
JP2002317247A (ja) 加工性に優れた薄肉化深絞りしごき缶用鋼板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12774346

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2833452

Country of ref document: CA

REEP Request for entry into the european phase

Ref document number: 2012774346

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012774346

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14112717

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE