WO2012141329A1 - 研磨パッド及びその製造方法 - Google Patents
研磨パッド及びその製造方法 Download PDFInfo
- Publication number
- WO2012141329A1 WO2012141329A1 PCT/JP2012/060275 JP2012060275W WO2012141329A1 WO 2012141329 A1 WO2012141329 A1 WO 2012141329A1 JP 2012060275 W JP2012060275 W JP 2012060275W WO 2012141329 A1 WO2012141329 A1 WO 2012141329A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polishing
- polishing pad
- compound
- component
- resin foam
- Prior art date
Links
- 238000005498 polishing Methods 0.000 title claims abstract description 290
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 22
- 239000006260 foam Substances 0.000 claims abstract description 85
- 229920005989 resin Polymers 0.000 claims abstract description 54
- 239000011347 resin Substances 0.000 claims abstract description 54
- 229920002396 Polyurea Polymers 0.000 claims abstract description 50
- 238000003860 storage Methods 0.000 claims abstract description 29
- 238000005259 measurement Methods 0.000 claims abstract description 18
- 239000004065 semiconductor Substances 0.000 claims abstract description 18
- 150000001875 compounds Chemical class 0.000 claims description 111
- -1 polyol compound Chemical class 0.000 claims description 101
- 229920005862 polyol Polymers 0.000 claims description 59
- 238000000034 method Methods 0.000 claims description 51
- 229920002635 polyurethane Polymers 0.000 claims description 48
- 239000004814 polyurethane Substances 0.000 claims description 48
- 229920000768 polyamine Polymers 0.000 claims description 46
- 229920001228 polyisocyanate Polymers 0.000 claims description 37
- 239000005056 polyisocyanate Substances 0.000 claims description 37
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 35
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 claims description 28
- 239000007788 liquid Substances 0.000 claims description 28
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 22
- 238000002156 mixing Methods 0.000 claims description 19
- 125000003277 amino group Chemical group 0.000 claims description 18
- 239000000203 mixture Substances 0.000 claims description 18
- 229920001451 polypropylene glycol Polymers 0.000 claims description 14
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 claims description 13
- 239000007789 gas Substances 0.000 claims description 12
- 230000006698 induction Effects 0.000 claims description 12
- 238000010097 foam moulding Methods 0.000 claims description 11
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 11
- 239000007809 chemical reaction catalyst Substances 0.000 claims description 9
- 238000002360 preparation method Methods 0.000 claims description 9
- 239000003381 stabilizer Substances 0.000 claims description 9
- 238000000465 moulding Methods 0.000 claims description 5
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 4
- 239000000178 monomer Substances 0.000 claims description 3
- 238000006748 scratching Methods 0.000 abstract description 2
- 230000002393 scratching effect Effects 0.000 abstract description 2
- 239000010410 layer Substances 0.000 description 54
- 230000000052 comparative effect Effects 0.000 description 33
- 239000007787 solid Substances 0.000 description 23
- 239000006185 dispersion Substances 0.000 description 20
- 238000005481 NMR spectroscopy Methods 0.000 description 17
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 13
- 239000003054 catalyst Substances 0.000 description 12
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 9
- 230000000694 effects Effects 0.000 description 9
- 239000000758 substrate Substances 0.000 description 9
- 239000004970 Chain extender Substances 0.000 description 8
- 229920005749 polyurethane resin Polymers 0.000 description 8
- 238000012545 processing Methods 0.000 description 8
- 238000003756 stirring Methods 0.000 description 8
- 239000004094 surface-active agent Substances 0.000 description 8
- 238000012360 testing method Methods 0.000 description 8
- DVKJHBMWWAPEIU-UHFFFAOYSA-N toluene 2,4-diisocyanate Chemical compound CC1=CC=C(N=C=O)C=C1N=C=O DVKJHBMWWAPEIU-UHFFFAOYSA-N 0.000 description 8
- 239000013078 crystal Substances 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- GTEXIOINCJRBIO-UHFFFAOYSA-N 2-[2-(dimethylamino)ethoxy]-n,n-dimethylethanamine Chemical compound CN(C)CCOCCN(C)C GTEXIOINCJRBIO-UHFFFAOYSA-N 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 6
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 6
- 239000004202 carbamide Substances 0.000 description 5
- 239000011521 glass Substances 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 239000012948 isocyanate Substances 0.000 description 5
- 150000002513 isocyanates Chemical class 0.000 description 5
- 229920001296 polysiloxane Polymers 0.000 description 5
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 4
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical class OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 4
- KORSJDCBLAPZEQ-UHFFFAOYSA-N dicyclohexylmethane-4,4'-diisocyanate Chemical compound C1CC(N=C=O)CCC1CC1CCC(N=C=O)CC1 KORSJDCBLAPZEQ-UHFFFAOYSA-N 0.000 description 4
- 125000000524 functional group Chemical group 0.000 description 4
- 238000000227 grinding Methods 0.000 description 4
- 239000011259 mixed solution Substances 0.000 description 4
- 238000005191 phase separation Methods 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- UPMLOUAZCHDJJD-UHFFFAOYSA-N 4,4'-Diphenylmethane Diisocyanate Chemical compound C1=CC(N=C=O)=CC=C1CC1=CC=C(N=C=O)C=C1 UPMLOUAZCHDJJD-UHFFFAOYSA-N 0.000 description 3
- 239000004743 Polypropylene Substances 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 239000006061 abrasive grain Substances 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 239000004744 fabric Substances 0.000 description 3
- 239000010408 film Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000000704 physical effect Effects 0.000 description 3
- 238000006116 polymerization reaction Methods 0.000 description 3
- 238000003825 pressing Methods 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 239000002002 slurry Substances 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- IBOFVQJTBBUKMU-UHFFFAOYSA-N 4,4'-methylene-bis-(2-chloroaniline) Chemical compound C1=C(Cl)C(N)=CC=C1CC1=CC=C(N)C(Cl)=C1 IBOFVQJTBBUKMU-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 2
- 239000001361 adipic acid Chemical class 0.000 description 2
- 235000011037 adipic acid Nutrition 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000003111 delayed effect Effects 0.000 description 2
- 238000004049 embossing Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000005187 foaming Methods 0.000 description 2
- 239000004088 foaming agent Substances 0.000 description 2
- NAQMVNRVTILPCV-UHFFFAOYSA-N hexane-1,6-diamine Chemical compound NCCCCCCN NAQMVNRVTILPCV-UHFFFAOYSA-N 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 230000005415 magnetization Effects 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- RUELTTOHQODFPA-UHFFFAOYSA-N toluene 2,6-diisocyanate Chemical compound CC1=C(N=C=O)C=CC=C1N=C=O RUELTTOHQODFPA-UHFFFAOYSA-N 0.000 description 2
- DNIAPMSPPWPWGF-VKHMYHEASA-N (+)-propylene glycol Chemical compound C[C@H](O)CO DNIAPMSPPWPWGF-VKHMYHEASA-N 0.000 description 1
- DNIAPMSPPWPWGF-GSVOUGTGSA-N (R)-(-)-Propylene glycol Chemical compound C[C@@H](O)CO DNIAPMSPPWPWGF-GSVOUGTGSA-N 0.000 description 1
- VGHSXKTVMPXHNG-UHFFFAOYSA-N 1,3-diisocyanatobenzene Chemical compound O=C=NC1=CC=CC(N=C=O)=C1 VGHSXKTVMPXHNG-UHFFFAOYSA-N 0.000 description 1
- IKYNWXNXXHWHLL-UHFFFAOYSA-N 1,3-diisocyanatopropane Chemical compound O=C=NCCCN=C=O IKYNWXNXXHWHLL-UHFFFAOYSA-N 0.000 description 1
- YPFDHNVEDLHUCE-UHFFFAOYSA-N 1,3-propanediol Substances OCCCO YPFDHNVEDLHUCE-UHFFFAOYSA-N 0.000 description 1
- ALQLPWJFHRMHIU-UHFFFAOYSA-N 1,4-diisocyanatobenzene Chemical compound O=C=NC1=CC=C(N=C=O)C=C1 ALQLPWJFHRMHIU-UHFFFAOYSA-N 0.000 description 1
- SIZPGZFVROGOIR-UHFFFAOYSA-N 1,4-diisocyanatonaphthalene Chemical compound C1=CC=C2C(N=C=O)=CC=C(N=C=O)C2=C1 SIZPGZFVROGOIR-UHFFFAOYSA-N 0.000 description 1
- UNVGBIALRHLALK-UHFFFAOYSA-N 1,5-Hexanediol Chemical compound CC(O)CCCCO UNVGBIALRHLALK-UHFFFAOYSA-N 0.000 description 1
- CWKVFRNCODQPDB-UHFFFAOYSA-N 1-(2-aminoethylamino)propan-2-ol Chemical compound CC(O)CNCCN CWKVFRNCODQPDB-UHFFFAOYSA-N 0.000 description 1
- DTZHXCBUWSTOPO-UHFFFAOYSA-N 1-isocyanato-4-[(4-isocyanato-3-methylphenyl)methyl]-2-methylbenzene Chemical compound C1=C(N=C=O)C(C)=CC(CC=2C=C(C)C(N=C=O)=CC=2)=C1 DTZHXCBUWSTOPO-UHFFFAOYSA-N 0.000 description 1
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 1
- QLSQYTKEUVPIJA-UHFFFAOYSA-N 2-(1-aminopropan-2-ylamino)ethanol Chemical compound NCC(C)NCCO QLSQYTKEUVPIJA-UHFFFAOYSA-N 0.000 description 1
- BNKSAALXGVBEIG-UHFFFAOYSA-N 2-n-ethylpropane-1,2-diamine Chemical compound CCNC(C)CN BNKSAALXGVBEIG-UHFFFAOYSA-N 0.000 description 1
- RNLHGQLZWXBQNY-UHFFFAOYSA-N 3-(aminomethyl)-3,5,5-trimethylcyclohexan-1-amine Chemical compound CC1(C)CC(N)CC(C)(CN)C1 RNLHGQLZWXBQNY-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 241001391944 Commicarpus scandens Species 0.000 description 1
- MQJKPEGWNLWLTK-UHFFFAOYSA-N Dapsone Chemical compound C1=CC(N)=CC=C1S(=O)(=O)C1=CC=C(N)C=C1 MQJKPEGWNLWLTK-UHFFFAOYSA-N 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- 239000005057 Hexamethylene diisocyanate Substances 0.000 description 1
- 102000005717 Myeloma Proteins Human genes 0.000 description 1
- 108010045503 Myeloma Proteins Proteins 0.000 description 1
- SPTUBPSDCZNVSI-UHFFFAOYSA-N N=C=O.N=C=O.COC1=CC=CC=C1C1=CC=CC=C1OC Chemical compound N=C=O.N=C=O.COC1=CC=CC=C1C1=CC=CC=C1OC SPTUBPSDCZNVSI-UHFFFAOYSA-N 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 229920005830 Polyurethane Foam Polymers 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 229920001807 Urea-formaldehyde Polymers 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 239000003082 abrasive agent Substances 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000012644 addition polymerization Methods 0.000 description 1
- 239000012790 adhesive layer Substances 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- 230000001476 alcoholic effect Effects 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- LHIJANUOQQMGNT-UHFFFAOYSA-N aminoethylethanolamine Chemical compound NCCNCCO LHIJANUOQQMGNT-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000001588 bifunctional effect Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- OMWQUXGVXQELIX-UHFFFAOYSA-N bitoscanate Chemical compound S=C=NC1=CC=C(N=C=S)C=C1 OMWQUXGVXQELIX-UHFFFAOYSA-N 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- UBAZGMLMVVQSCD-UHFFFAOYSA-N carbon dioxide;molecular oxygen Chemical compound O=O.O=C=O UBAZGMLMVVQSCD-UHFFFAOYSA-N 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000001112 coagulating effect Effects 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 125000005442 diisocyanate group Chemical group 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- 150000002009 diols Chemical class 0.000 description 1
- ZZTCPWRAHWXWCH-UHFFFAOYSA-N diphenylmethanediamine Chemical compound C=1C=CC=CC=1C(N)(N)C1=CC=CC=C1 ZZTCPWRAHWXWCH-UHFFFAOYSA-N 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 238000002592 echocardiography Methods 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 1
- OYQYHJRSHHYEIG-UHFFFAOYSA-N ethyl carbamate;urea Chemical compound NC(N)=O.CCOC(N)=O OYQYHJRSHHYEIG-UHFFFAOYSA-N 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- RRAMGCGOFNQTLD-UHFFFAOYSA-N hexamethylene diisocyanate Chemical compound O=C=NCCCCCCN=C=O RRAMGCGOFNQTLD-UHFFFAOYSA-N 0.000 description 1
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 230000016507 interphase Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 125000000325 methylidene group Chemical group [H]C([H])=* 0.000 description 1
- DNIAPMSPPWPWGF-UHFFFAOYSA-N monopropylene glycol Natural products CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 1
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 238000001225 nuclear magnetic resonance method Methods 0.000 description 1
- 239000012788 optical film Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 125000002524 organometallic group Chemical group 0.000 description 1
- UWJJYHHHVWZFEP-UHFFFAOYSA-N pentane-1,1-diol Chemical compound CCCCC(O)O UWJJYHHHVWZFEP-UHFFFAOYSA-N 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 238000007517 polishing process Methods 0.000 description 1
- 229920001610 polycaprolactone Polymers 0.000 description 1
- 239000004632 polycaprolactone Substances 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920005906 polyester polyol Chemical class 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920000166 polytrimethylene carbonate Polymers 0.000 description 1
- 239000011496 polyurethane foam Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 235000013772 propylene glycol Nutrition 0.000 description 1
- AOHJOMMDDJHIJH-UHFFFAOYSA-N propylenediamine Chemical compound CC(N)CN AOHJOMMDDJHIJH-UHFFFAOYSA-N 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000000371 solid-state nuclear magnetic resonance spectroscopy Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000011550 stock solution Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 150000003512 tertiary amines Chemical class 0.000 description 1
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 1
- 239000013638 trimer Substances 0.000 description 1
- 150000004072 triols Chemical class 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B37/00—Lapping machines or devices; Accessories
- B24B37/11—Lapping tools
- B24B37/20—Lapping pads for working plane surfaces
- B24B37/24—Lapping pads for working plane surfaces characterised by the composition or properties of the pad materials
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/08—Processes
- C08G18/10—Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/48—Polyethers
- C08G18/4854—Polyethers containing oxyalkylene groups having four carbon atoms in the alkylene group
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/70—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
- C08G18/72—Polyisocyanates or polyisothiocyanates
- C08G18/74—Polyisocyanates or polyisothiocyanates cyclic
- C08G18/76—Polyisocyanates or polyisothiocyanates cyclic aromatic
- C08G18/7614—Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring
- C08G18/7621—Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring being toluene diisocyanate including isomer mixtures
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/04—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
- C08J9/12—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B37/00—Lapping machines or devices; Accessories
- B24B37/11—Lapping tools
- B24B37/20—Lapping pads for working plane surfaces
- B24B37/22—Lapping pads for working plane surfaces characterised by a multi-layered structure
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2110/00—Foam properties
- C08G2110/0008—Foam properties flexible
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2110/00—Foam properties
- C08G2110/0041—Foam properties having specified density
- C08G2110/0066—≥ 150kg/m3
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2110/00—Foam properties
- C08G2110/0083—Foam properties prepared using water as the sole blowing agent
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2207/00—Foams characterised by their intended use
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2375/00—Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
- C08J2375/04—Polyurethanes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
- H01L21/304—Mechanical treatment, e.g. grinding, polishing, cutting
Definitions
- the present invention relates to a polishing pad.
- the present invention relates to a polishing pad for CMP of a semiconductor device.
- the free abrasive grain method is a method of polishing a processed surface of an object to be polished while supplying a slurry (polishing liquid) containing abrasive grains between a polishing pad and a non-polishing object.
- a polishing pad for a semiconductor device requires an opening for holding abrasive grains on the polishing pad surface, hardness to maintain the flatness of the surface of the semiconductor device, and elasticity to prevent scratches on the surface of the semiconductor device. Is done.
- a polishing pad having a polishing layer manufactured from a urethane resin foam is used as a polishing pad that meets these requirements.
- the urethane resin foam is usually cured and molded by a reaction between a prepolymer containing an isocyanate group-containing compound and a curing agent (dry method). And a polishing pad is formed by slicing this foam in a sheet form.
- a polishing pad having a hard polishing layer formed by a dry method in this manner (hereinafter, sometimes abbreviated as a hard (dry) polishing pad) is a relatively small, substantially spherical bubble inside the foam during urethane resin curing molding. Therefore, an opening (opening) that can hold the slurry during polishing is formed on the polishing surface of the polishing pad formed by slicing.
- the urethane resin foam used as a material for polishing pads for semiconductor devices has been mainly used in the vicinity of 30 ⁇ m with a bubble diameter of 100 ⁇ m or less (Patent Document 1). Further, urethane resin foams having a hardness of 70 degrees or more and a D hardness of 45 degrees or more are mainly used (Patent Documents 2 to 3), and the density is 0.5 g / cm 3 or more (Patent Document 1). ), And those having a storage elastic modulus of several hundred MPa or more (Patent Document 4). About the longitudinal elastic modulus (Young's modulus), 500 MPa or more was the mainstream (Patent Document 5).
- a polishing pad has been reported in which the phase separation structure is clarified by optimizing the amount of the M component, and the A hardness and the compression elastic modulus are improved (Patent Document 9). Furthermore, by setting the abundance ratio of the hard segment in the polyurethane foam by pulse NMR measurement to 55 to 70%, while exhibiting the characteristics of being hard, easy to break, and having low elongation, maintaining high hardness A polishing pad with improved dressability has been reported (Patent Document 10).
- the dry polishing pad described above is still hard, and since it is easy to apply pressure locally to the object to be polished, it is satisfactory in terms of reducing scratches generated on the surface of the object to be polished. It wasn't. Moreover, it still had the problem of being easily clogged. Therefore, after polishing with a hard polishing pad formed by these dry methods, it is usually necessary to perform final polishing using a polishing pad having a soft polishing layer formed by a wet method (wet method). Is a method in which a resin solution in which a resin is dissolved in a water-miscible organic solvent is applied to a sheet-like film-forming substrate and then the resin is coagulated and regenerated in an aqueous coagulating liquid).
- a polishing pad having a soft polishing layer formed by a wet method has low hardness and large suede type openings, and its foam structure is also non-uniform. Therefore, it is superior in polishing rate and polishing uniformity (uniformity: the pad surface can follow the undulation and warpage of the object to be polished) compared to polishing with a polishing pad having a hard polishing layer formed by a dry method. Since the foam shape is anisotropic, the opening state of the surface changes due to wear, or the low density part under the polishing layer is torn off, and it is impossible to maintain a constant polishing state for a long time Had a point.
- the present invention has been made in view of the above-mentioned problems, improves the problem of scratches that occur when a conventional hard (dry) polishing pad is used, is excellent in polishing rate and polishing uniformity, and is only for primary polishing.
- An object of the present invention is to provide a polishing pad that can cope with finish polishing as well as a method for manufacturing the same.
- the present invention employs the following configuration.
- a polishing pad comprising a polishing layer having a polyurethane polyurea resin foam containing substantially spherical cells
- the polyurethane polyurea resin foam is obtained by subtracting the free induction decay signal (FID) obtained by pulse NMR in order from the component having the long spin-spin relaxation time T2 by the least square method, and separating the waveforms, thereby obtaining the spin-spin relaxation time T2 L (amorphous phase) in order from the longer of, M (interphase), when divided into three components of S (crystalline phase), spin M component - spin relaxation time T2 (hereinafter, may be expressed as T2 M Is 160 to 260 ⁇ s
- the polyurethane polyurea resin foam has an initial load of 10 g, a strain range of 0.01 to 4%, a measurement frequency of 0.2 Hz, a storage elastic modulus E ′ in a tensile mode of 1 to 30 MPa, and A polishing pad for polishing a semiconductor device, wherein the polyurethane
- polishing pad according to any one of 1 to 5, wherein a layer harder than the polishing layer is bonded to a surface opposite to the polishing surface of the polishing layer.
- Isocyanate group-containing compound (A), polyisocyanate compound (B), polyamine compound (D), mixed liquid (E) containing water, foam stabilizer and reaction catalyst, and non-reactive with respect to each component A preparation step of preparing the gas; At least the isocyanate group-containing compound (A), the polyisocyanate compound (B), the polyamine compound (D), a mixed liquid (E) containing water, a foam stabilizer and a reaction catalyst, A mixing step of mixing with a reactive gas to obtain a mixture for forming a foam; A foam molding step of molding a polyurethane polyurea resin foam from the foam molding liquid mixture; and a polishing layer for forming a polishing layer having a polishing surface for polishing an object to be polished from the polyurethane polyurea resin foam.
- the equivalent ratio of the amino group of the polyamine compound (D) to the sum of the equivalents of the amino group of the polyamine compound (D) and the hydroxyl group of the polyol compound (C-2) (equivalent of active hydrogen group) 9.
- the polyamine compound (D) is a mixture of a monomer and a multimer of methylene bis-o-chloroaniline (MOCA), and is a crude MOCA containing 15% by mass or more of the multimer.
- MOCA methylene bis-o-chloroaniline
- the polishing pad of the present invention has an M component T2 of pulse NMR in an appropriate range, and has an appropriate dressing property, so that scratches due to clogging of the opening are difficult to occur, and since the storage elastic modulus is low, the pressing force is strong. Scratch is less likely to occur and the density is in a small range, so it is softer than a conventional polishing pad for semiconductor devices, and since the porosity is high (density is low), scratches due to clogging are less likely to occur. Furthermore, since it is softer than a polishing pad having a polishing layer formed by a conventional dry method, it is excellent in polishing rate and polishing uniformity.
- the polyurethane polyurea resin foam is obtained by subtracting the free induction decay signal (FID) obtained by pulse NMR in order from the component having the long spin-spin relaxation time T2 by the least square method, and separating the waveforms, thereby obtaining the spin-spin relaxation time T2
- the three components of L (amorphous phase), M (interface phase), and S (crystalline phase) in order from the longest (if the component separation of M component and L component is difficult, the sum of M component and L component is the M component when divided into that), spin M component - spin relaxation time T2 (hereinafter, may be represented by T2 M) is 160 ⁇ 260 ⁇ s
- the polyurethane polyurea resin foam has an initial load of 10 g, a strain range of 0.01 to 4%, a measurement frequency of 0.2 Hz, a storage elastic modulus E ′ in a tensile mode of 1 to 30 MPa, and
- the polyurethane polyurea resin foam means a resin foam having at least two urethane bonds and at least two urea bonds in the molecule.
- the polyurethane polyurea resin foam of the present invention comprises an isocyanate group-containing compound formed by reacting a polyisocyanate compound and a polyol compound, a polyisocyanate compound, a polyamine compound, and a mixed liquid containing water, a foam stabilizer and a reaction catalyst ( Hereinafter, it may be abbreviated as an aqueous dispersion).
- the substantially spherical shape is a concept that means a normal bubble shape (isotropic, spherical, elliptical, or a shape close to these) present in a foam molded by a dry method (see FIG. 1) and bubbles contained in a foam molded by a wet method (which has anisotropy and has a structure in which the diameter increases from the polishing layer surface to the bottom of the polishing pad) are clearly distinguished.
- Pulse NMR Pulse NMR
- the measurement of pulsed NMR is performed using a pulsed NMR measuring device (manufactured by JEOL Ltd., JNM-MU25, 25 MHz) by the solid echo method, 90 ° pulse 2.0 ⁇ s, repetition time: 4 s, integration number: 8 times, Temperature: Measured at 40 ° C. Since the solid echo (solid echo) method is already well known, the details are omitted, but it is mainly used for measurement of a sample having a short relaxation time such as a glassy or crystalline polymer.
- a method for analyzing the relationship between physical properties, phase separation structure and composition from the analysis results of pulse NMR is already well known, and the spin-spin relaxation time is obtained from the free induction decay (FID) signal obtained by pulse NMR by the least square method.
- FID free induction decay
- the crystal phase and the intermediate component are defined as the interfacial phase (if it is difficult to separate the interfacial phase and the amorphous phase, it is analyzed as the interfacial phase), and each formula is calculated using Gaussian and Lorentzian functions.
- the amount of the component is determined (for example, “phase separation structure analysis of polyurethane resin by solid-state NMR (high resolution NMR and pulsed NMR)” (DIC Technical Review). N.12, see pp.7 ⁇ 12,2006)).
- the pulse NMR measurement will be described in detail as follows. First, a sample with 1 to 2 mm square in a glass tube with a diameter of 1 to 2 mm packed in a magnetic field is placed in a magnetic field, and the relaxation behavior of macroscopic magnetization after applying a high frequency pulsed magnetic field is observed. When measured, a free induction decay (FID) signal is obtained as shown in FIG. 2 (horizontal axis: time ( ⁇ sec), vertical axis: free induction decay signal). The initial value of the obtained FID signal is proportional to the number of protons in the measurement sample, and when the measurement sample has three components, the FID signal appears as the sum of response signals of the three components.
- FID free induction decay
- each component contained in the sample has a difference in mobility, the speed of decay of the response signal differs among the components, and the spin-spin relaxation time T2 differs. Therefore, it can be divided into three components by the least square method, and the amorphous phase (L component), the interface phase (M component), and the crystalline phase (S component) are arranged in order from the longer spin-spin relaxation time T2 ( (See FIG. 2).
- the amorphous phase is a component having a large molecular mobility
- the crystal phase is a component having a small molecular mobility
- an intermediate component is an interface phase.
- spin-spin relaxation time (T2) is used as an index of molecular mobility, and a larger value indicates higher mobility.
- T2 decreases, and conversely, the amorphous phase T2 increases.
- the spin-spin relaxation time T2 is a measure of molecular mobility can be understood from the relationship between the correlation time ⁇ c of molecular motion and T2. It is known that ⁇ c represents an average time for a molecule in a certain motion state to undergo molecular collision, and the value of T2 is shortened in inverse proportion to the increase in ⁇ c. This indicates that T2 becomes shorter as the molecular mobility decreases.
- the “component amount (phase amount)” is the ratio (mass%) of each phase, and the lower the amorphous phase T2 and the lower the amorphous phase ratio, the harder the urethane. Further, the smaller the interfacial phase, the more clearly the crystal phase and the amorphous phase are separated from each other, and the elastic property is less likely to cause strain. Conversely, the greater the interfacial phase, the less the phase separation between the crystalline phase and the amorphous phase, and the delayed elastic characteristic.
- the polyurethane polyurea resin foam of the present invention is obtained by subtracting the free induction decay signal (FID) obtained by pulsed NMR in order from a component having a long spin-spin relaxation time T2 by the least square method, and separating the waveform,
- FID free induction decay signal
- spin M component - spin relaxation time T2 (hereinafter, may be represented by T2 M) is 160 ⁇ 260 ⁇ s, preferably 160 ⁇ 250 [mu] s, and more preferably 180 to 240 ⁇ s.
- T2 M is smaller than the above range, the polishing uniformity is deteriorated.
- T2 M is larger than the above range, an appropriate dressing property cannot be obtained, and scratches are generated due to
- the storage elastic modulus E ′ is the storage at 40 ° C. at an initial load of 10 g, a strain range of 0.01 to 4%, and a measurement frequency of 0.2 Hz according to JIS K7244-4.
- the polyurethane polyurea resin foam has an initial load of 10 g, a strain range of 0.01 to 4%, a measurement frequency of 0.2 Hz, and a storage elastic modulus E ′ in a tensile mode of 1 to 30 MPa and 1 to 25 MPa. It is preferable that the pressure is 1 to 20 MPa.
- the polyurethane polyurea resin foam has a density D of 0.30 to 0.60 g / cm 3 , more preferably 0.35 to 0.55 g / cm 3 , and 0.35 to 0.50 g / cm 3. Even more preferably.
- the density D is within the above range, scratches due to clogging of the surface of the polishing layer due to abrasives or processing waste of the object to be polished are less likely to occur.
- the density D is smaller than the lower limit, the elasticity becomes extremely large, so that the pad itself is greatly deformed when it comes into contact with the object to be polished, and the planarization performance is deteriorated.
- it becomes larger than the upper limit value scratches are generated due to lack of elasticity.
- the M component T2 (T2 M ), the storage elastic modulus E ′, and the density D are all limited to the above numerical ranges, thereby suppressing the occurrence of scratches, the polishing rate, and the uniform polishing.
- a good polishing pad can be obtained in all of the properties.
- the component amount (C M ) of the M component is preferably in the range of 55 to 80% (mass%).
- M component cohesive force
- the component amount of the M component is in the above range, a region where the molecules are associated with each other with an appropriate cohesive force (M component) is contained in an appropriate amount. Scratching due to clogging is suppressed and polishing uniformity is also maintained.
- the smaller the M component the smaller the distortion and the better the rubber elasticity.
- polishing characteristics the response of the return stress to the compression by the polishing pressure is too high (too fast), and it is difficult to obtain a polishing rate.
- the M component is too large, the responsiveness of the return stress is too low (too slow), resulting in poor polishing uniformity.
- the M component is within the above range, it is possible to perform polishing excellent in both the polishing rate and the polishing uniformity due to an appropriate delayed elasticity.
- the X value is preferably in the range of 350 to 800, more preferably 380 to 600.
- the polishing pad made of a polyurethane-based resin having an appropriate urea bond is easy to satisfy the above X value and excellent polishing characteristics can be obtained, the X value is polished in a wet state by a urea bond or the like.
- the average bubble diameter is an average value of equivalent circle diameters calculated from the area and the number of each bubble portion obtained by binarizing the surface image of the polishing pad (however, (This is a numerical value when the “cut-off value” is set to 10 ⁇ m for noise cut during image processing).
- the average cell diameter d ( ⁇ m) of the polyurethane polyurea resin foam of the polishing layer is preferably 120 to 185 ⁇ m, more preferably 120 to 170 ⁇ m, and still more preferably 140 to 170 ⁇ m. If the average bubble diameter ( ⁇ m) is greater than or equal to the upper limit value, the polishing layer surface becomes rough and the polishing quality of the object to be polished deteriorates. If the average bubble diameter is less than the lower limit value, the polishing layer surface is clogged or the polishing layer surface is flexible. It loses its properties and scratches easily occur.
- the A hardness means a value measured according to JIS K7311.
- the D hardness means a value measured according to JIS K6253-1997 / ISO 7619.
- the A hardness of the polyurethane polyurea resin foam is preferably 20 to 55 degrees.
- the D hardness of the polyurethane polyurea resin foam is preferably 5 to 35 degrees. If the A hardness and / or D hardness is smaller than the above range, the elasticity becomes extremely large, so that the pad itself is greatly deformed when it comes into contact with the object to be polished, resulting in poor flattening performance. On the other hand, when it becomes larger than the above range, scratches are generated due to lack of elasticity.
- the polishing pad of the present invention can be suitably used for polishing semiconductor devices, particularly chemical mechanical polishing (CMP) of semiconductor devices.
- CMP chemical mechanical polishing
- the method for producing a polishing pad for polishing a semiconductor device of the present invention comprises an isocyanate group-containing compound (A), a polyisocyanate compound (B), a polyamine compound (D ), Aqueous dispersion (mixture containing water, foam stabilizer and reaction catalyst) (E), and a preparatory step of preparing a non-reactive gas for each component; at least the isocyanate group-containing compound (A)
- ⁇ Preparation process> In the production of the polishing pad of the present invention, at least the isocyanate group-containing compound (A), the polyisocyanate compound (B), the polyamine compound (D), the aqueous dispersion (E), and the raw material of the polyurethane polyurea resin foam, Nonreactive gases are used for these components. Furthermore, you may use a polyol compound with the said component. Moreover, you may use together components other than the above in the range which does not impair the effect of this invention. Hereinafter, each component will be described.
- the isocyanate group-containing compound as a prepolymer is obtained by reacting the following polyisocyanate compound with a polyol compound under conditions usually used. Moreover, the other component may be contained in the isocyanate group containing compound within the range which does not impair the effect of this invention.
- the isocyanate group-containing compound a commercially available one may be used, or a compound synthesized by reacting a polyisocyanate compound and a polyol compound may be used.
- a polyisocyanate compound heated to 50 ° C. is added to a polyol compound heated to 40 ° C. while stirring in a nitrogen atmosphere, and after 30 minutes, the temperature is raised to 80 ° C. and further reacted at 80 ° C. for 60 minutes. It can be manufactured by such a method.
- the polyisocyanate compound means a compound having two or more isocyanate groups in the molecule.
- the polyisocyanate compound is not particularly limited as long as it has two or more isocyanate groups in the molecule.
- diisocyanate compounds having two isocyanate groups in the molecule include m-phenylene diisocyanate, p-phenylene diisocyanate, 2,6-tolylene diisocyanate (2,6-TDI), 2,4-tolylene diisocyanate (2 , 4-TDI), naphthalene-1,4-diisocyanate, diphenylmethane-4,4′-diisocyanate (MDI), 4,4′-methylene-bis (cyclohexyl isocyanate) (hydrogenated MDI), 3,3′-dimethoxy -4,4'-biphenyl diisocyanate, 3,3'-dimethyldiphenylmethane-4,4'-diisocyanate, xylylene-1,4-diisocyanate, 4,4'-diphenylpropane diisocyanate, trimethylene diisocyanate, hexamethylene diisocyanate , Propylene-1
- polyisocyanate compound a diisocyanate compound is preferable, among which 2,4-TDI and MDI are more preferable, and 2,4-TDI is particularly preferable.
- These polyisocyanate compounds may be used alone or in combination with a plurality of polyisocyanate compounds.
- the polyol compound means a compound having two or more alcoholic hydroxyl groups (OH) in the molecule.
- (C-1) Polyol compound for prepolymer synthesis Polyol compounds used for the synthesis of isocyanate group-containing compounds as prepolymers include diol compounds such as ethylene glycol and butylene glycol, triol compounds, etc .; polyether polyol compounds such as polytetramethylene glycol (PTMG); ethylene glycol and adipic acid And polyester polyol compounds such as a reaction product of styrene and a reaction product of butylene glycol and adipic acid; a polycarbonate polyol compound and a polycaprolactone polyol compound.
- PTMG is preferred, PTMG having a number average molecular weight (Mn) of about 500 to 5000 is even more preferred, and PTMG of about 1000 is most preferred.
- the above polyol compounds may be used alone or in combination with a plurality of polyol compounds.
- Molecular weight of compound)-(number of functional groups per molecule of polyol compound (C-1) ⁇ mass (parts) of polyol compound (C-1) / molecular weight of polyol compound (C-1))] Molecular weight of compound)-(number of functional groups per molecule of polyol compound (C-1) ⁇ mass (parts) of polyol compound (C-1) / molecular weight of polyol compound (C-1))]
- the NCO equivalent is a numerical value indicating the molecular weight of PP (prepolymer) per NCO group.
- the NCO equivalent is preferably
- a polyol compound is added into the mixer together with the isocyanate group-containing compound, the polyisocyanate compound, the polyamine compound, and the like. Can be mixed.
- the polyol compound may be prepared by itself, but may be prepared as a mixed solution with a polyamine compound, or may be added when preparing an aqueous dispersion.
- the polyol compound acts as a curing agent for curing the prepolymer, and is incorporated in a competitive reaction with the polyamine compound, thereby suppressing a biased chain extension reaction in the block of the polyamine compound, and causing polymerization with less polymerization degree unevenness. It becomes easy to do.
- any compound such as a diol compound or a triol compound can be used without particular limitation. Moreover, it may be the same as or different from the polyol compound used to form the prepolymer. Specific examples include ethylene glycol, diethylene glycol, triethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, neopentyl glycol, pentanediol, 3 -Low molecular weight polydiols such as methyl-1,5-pentanediol and 1,6-hexanediol, and high molecular weight polyol compounds such as polytetramethylene glycol, polyethylene glycol and polypropylene glycol.
- bifunctional, trifunctional polypropylene glycol PPG
- trifunctional polypropylene glycol is Polytetramethylene glycol
- the number average molecular weight (Mn) is about 500 to 5000 and / or polytetramethylene glycol. More preferably, polypropylene glycol having a Mn of about 2000 to 4000 and / or polytetramethylene glycol having a Mn of about 500 to 1500, and a polypropylene glycol having a Mn of about 3000 and / or a polytetramethylene glycol having a Mn of about 1000. But most preferred.
- the polypropylene glycol is preferably trifunctional polypropylene glycol.
- the polyol compound (C-2) may be used alone, or a plurality of polyol compounds (C-2) may be used in combination.
- the amino group of the polyamine compound described later and the equivalent of the hydroxyl group of the polyol compound prepared separately from the isocyanate group-containing compound (equivalent of active hydrogen group) It is preferable to prepare such that the equivalent ratio of amino groups of the polyamine compound (hereinafter sometimes referred to as s value) is 0.70 to 0.97 (amino group / (amino group + hydroxyl group)).
- s value the equivalent ratio of amino groups of the polyamine compound
- the polyamine compound means a compound having two or more amino groups in the molecule.
- the polyamine compound acts as a chain extender, and part of the polyamine compound reacts with the polyisocyanate compound to form a hard segment, while part of the polyamine compound binds to the end of the main chain of the isocyanate group-containing compound (soft segment part).
- the polymer chain can be further extended.
- the polyurethane polyurea resin which has the block copolymer of a hard segment and a soft segment is produced
- the polyamine compound an aliphatic or aromatic polyamine compound, in particular, a diamine compound can be used.
- the polyamine compound may have a hydroxyl group. Examples of such amine compounds include 2-hydroxyethylethylenediamine, 2-hydroxyethylpropylenediamine, di-2-hydroxyethylethylenediamine, and di-2-hydroxy.
- Examples include ethylpropylenediamine, 2-hydroxypropylethylenediamine, and di-2-hydroxypropylethylenediamine.
- a diamine compound is preferable, MOCA, diaminodiphenylmethane, and diaminodiphenylsulfone are more preferable, and MOCA is particularly preferable.
- Solid MOCA means pure MOCA in solid form at room temperature.
- Crude MOCA is a mixture of MOCA monomer and MOCA multimer, preferably having a multimer ratio of 15% by mass or more. The ratio of the multimer is more preferably 10 to 50% by mass, and still more preferably 20 to 40% by mass. Examples of multimers include MOCA dimers, trimers, and tetramers.
- Crude MOCA makes it easy to control the reaction rate, and as a result, it is easy to obtain uniformity of physical properties of the entire foam (for example, density, hardness, etc.).
- the polyamine compound may be used alone or in combination with a plurality of polyamine compounds.
- solid MOCA and crude MOCA are solid at normal temperature, when used in the mixing step, it is necessary to heat them to about 120 ° C. to bring them into a molten state. Therefore, when the polyol compound (C-2) is used, if MOCA, particularly crude MOCA is dissolved in the polyol compound (C-2) in advance, it can be used in the mixing step without heating to the melting temperature. It is preferable because polymerization spots caused by increased reactivity due to heating are suppressed.
- the mass ratio of MOCA and polyol compound (C-2) is preferably 3: 1 to 1: 3, more preferably 2: 1 to 1: 2, and 1: 1 is preferable.
- the polyol compound (C-2) for dissolving MOCA is preferably polytetramethylene glycol, more preferably a polytetramethylene glycol having a number average molecular weight (Mn) of about 500 to 5000, and an Mn of about 500 to 1500. Polytetramethylene glycol is more preferred, and polytetramethylene glycol having an Mn of about 1000 is most preferred.
- the polyamine compound is preferably degassed under reduced pressure in a heated state as necessary in order to facilitate mixing with other components and / or to improve the uniformity of the bubble diameter in the subsequent foam formation step.
- a defoaming method under reduced pressure a known method may be used in the production of polyurethane polyurea. For example, defoaming can be performed at a vacuum degree of 0.1 MPa or less using a vacuum pump. When a solid compound is used as the chain extender, it can be degassed under reduced pressure while being melted by heating. On the other hand, when using a liquid polyamine compound at room temperature, degassing may be performed under reduced pressure without heating.
- the content ratio (molar ratio or equivalent ratio) of the polyamine compound to the polyol compound and / or the total polyol compound used for prepolymer formation is the content ratio used in the production of a conventional polishing pad. Is much smaller than.
- solid MOCA when solid MOCA is used as the polyamine compound, it is preferable to use 150 to 205 parts by mass of solid MOCA with respect to a total of 1000 parts by mass of the polyisocyanate compound and the polyol compound (C-1).
- liquid MOCA (described later in detail)
- the aqueous dispersion means a mixed solution containing water, a foam stabilizer and a reaction catalyst.
- the aqueous dispersion contributes to foaming agent, polyaddition catalyst, foam regulation of foam diameter and foaming uniformity.
- water, reaction catalyst, surfactant and the like are stirred using a general stirring device.
- -It can be prepared by mixing.
- the aqueous dispersion is not limited to a combination of only these three components.
- the water contained in the aqueous dispersion is preferably distilled water from the viewpoint of preventing contamination of impurities.
- Water is preferably used in a proportion of 0.1 to 6 parts by mass, more preferably in a proportion of 0.5 to 5 parts by mass, and a proportion of 1 to 3 parts by mass with respect to 1000 parts by mass of the prepolymer. Even more preferably it is used in
- a known catalyst can be used as the reaction catalyst contained in the aqueous dispersion.
- amine catalysts such as tertiary amines, alcohol amines, ether amines (for example, Toyocat ET), acetates (potassium, calcium), organometallic catalysts and the like can be mentioned.
- bis (2-dimethylaminoethyl) ether (Toyocat ET, manufactured by Tosoh Corporation) is used as a catalyst.
- the amount of the catalyst is not particularly limited, but it is preferably used in a proportion of 0.01 to 5 parts by mass, more preferably 0.5 to 3 parts by mass with respect to 1000 parts by mass of the prepolymer.
- the surfactant as the foam stabilizer contained in the aqueous dispersion known ones can be used. Examples thereof include polyether-modified silicone. In this example, SH-193 (manufactured by Dow Corning), which is a kind of silicone surfactant, was used. However, the effect of the present invention is not limited to the use of this surfactant. Absent.
- the amount of the surfactant is not particularly limited, but is preferably 0.1 to 10 parts by mass, more preferably 0.5 to 5 parts by mass with respect to 1000 parts by mass of the prepolymer.
- a known flame retardant, colorant, plasticizer, and the like may be included in the aqueous dispersion as long as the effects of the present invention are not impaired.
- the isocyanate group-containing compound (prepolymer) (A), polyisocyanate compound (B), polyamine compound (D) and aqueous dispersion (E) obtained in the preparation step and prepolymer formation step are mixed in the mixer.
- a non-reactive gas is blown into the components.
- the supplied non-reactive gas is agitated and mixed in the mixer together with the components described above, whereby a foam molding mixed liquid in which bubbles are formed is prepared.
- a mixing process is performed in the state heated to the temperature which can ensure the fluidity
- a prepolymer (isocyanate) solution heated to 30 ° C to 100 ° C. Can be put into a jacketed mixer and stirred at 80 ° C. If necessary, the mixture may be aged in a tank with a jacket with a stirrer.
- the stirring time is appropriately adjusted depending on the number of teeth, the number of rotations, the clearance, etc. of the mixer, and is, for example, 0.5 to 600 seconds.
- the gas can be used without particular limitation as long as it is non-reactive with respect to the above-mentioned components, and examples thereof include air, nitrogen, oxygen, carbon dioxide, helium, and argon.
- the gas supply rate is preferably 0.10 to 4.00 L, more preferably 0.17 to 3.33 L, with respect to 1 kg of the total amount of each component. adjust.
- the polyurethane polyurea resin foam is molded by pouring the foam molding mixture prepared in the mixing step into a mold at 50 to 100 ° C. and foaming and curing.
- the prepolymer, the polyisocyanate compound, and the polyamine compound (and the polyol compound) react to form a polyurethane polyurea resin, whereby the mixed solution is cured.
- carbon contained in the aqueous dispersion is generated by the reaction of the isocyanate groups in the prepolymer with water.
- FIG. 1 a cross-sectional view (left side) of a polishing pad showing an embodiment of the present invention and a cross-sectional view (right side) of a polishing pad (Comparative Example 1) having a polishing layer dry-formed by a conventional technique are the same enlarged.
- Photographed at a magnification ( ⁇ 100) a bar indicated by a white line in the right figure represents a length of 100 ⁇ m.
- ⁇ Polishing layer forming step> The polyurethane polyurea resin foam obtained by the foam molding step is sliced into a sheet to form a polyurethane polyurea sheet. By slicing, an opening is provided on the sheet surface. At this time, in order to form an opening on the surface of the polishing layer which is excellent in wear resistance and hardly clogs, it is preferable to age at 30 to 80 ° C. for about 1 to 2 weeks. This makes it easier to obtain desired elastic characteristics.
- the average cell diameter in the foam is within the above-mentioned range, that is, 120 to 185 ⁇ m, preferably 120 to 170 ⁇ m, more preferably 140 to 170 ⁇ m.
- the temperature (viscosity) of the prepolymer, the rotation speed of stirring, the air It can be adjusted within the above range by controlling the flow rate, the type and concentration of the foam stabilizer, and the mold temperature.
- the polishing layer having the polyurethane polyurea sheet thus obtained is then affixed with a double-sided tape on the surface opposite to the polishing surface of the polishing layer, and is cut into a predetermined shape, preferably a disc shape, The polishing pad of the present invention is completed.
- the double-sided tape is not particularly limited, and any double-sided tape known in the art can be selected and used.
- the polishing pad of the present invention may have a single layer structure consisting only of a polishing layer, and a multilayer in which another layer (lower layer, support layer) is bonded to the surface of the polishing layer opposite to the polishing surface. It may consist of Although the characteristics of the other layers are not particularly limited, it is preferable that a layer harder than the polishing layer (higher A hardness and / or D hardness) is bonded to the opposite surface side of the polishing layer. By providing a layer harder than the polishing layer, it is possible to avoid the minute unevenness of the polishing surface plate from affecting the shape of the polishing surface, and the polishing flatness is further improved. Moreover, generation
- a plurality of layers may be bonded and fixed using a double-sided tape, an adhesive or the like while applying pressure as necessary.
- a double-sided tape, an adhesive or the like there is no restriction
- the polishing pad of the present invention may be subjected to grinding treatment on the surface and / or back surface of the polishing layer or grooving or embossing on the surface as necessary, and the substrate and / or adhesive layer is polished. It may be bonded to the layer, and a light transmission part may be provided.
- limiting in particular in the method of a grinding process It can grind by a well-known method. Specific examples include grinding with sandpaper.
- the polishing pad of the present invention When the polishing pad of the present invention is used, the polishing pad is attached to the polishing surface plate of the polishing machine so that the polishing surface of the polishing layer faces the object to be polished. Then, while supplying the abrasive slurry, the polishing surface plate is rotated to polish the processed surface of the object to be polished.
- the workpiece to be processed by the polishing pad of the present invention include a glass substrate for hard disk, a mother glass for thin display, a semiconductor wafer, and a semiconductor device.
- the polishing pad of this invention is used suitably for processing a semiconductor device.
- the polishing pad for CMP of the present invention has a polishing layer containing a polyurethane polyurea resin foam, and the polyurethane polyurea resin foam uses a pulse-pulse method to obtain a free induction decay signal (FID) obtained by pulse NMR by a least square method.
- FID free induction decay signal
- the polyurethane polyurea resin foam has an initial load of 10 g, a strain range of 0.01 to 4%, a measurement frequency of 0.2 Hz, a storage elastic modulus E ′ in a tensile mode of 1 to 30 MPa, and The polyurethane polyurea resin foam has a density D set in a range of 0.30 to 0.60 g / cm 3 .
- the polishing layer made of polyurethane polyurea resin satisfying the above range has an appropriate dressing property because T2 M is in a predetermined range, can suppress the occurrence of scratches due to clogging of the opening, and at the same time, required flatness. Can also be secured. Since the storage modulus and density are small compared to the hard polyurethane polishing layer molded by the conventional dry method, a polishing pad with lower hardness than the conventional one can be obtained, and the strong pressing between the polishing layer and the object to be polished Is suppressed, and scratches hardly occur on the surface of the object to be polished.
- the polishing pad of the present invention is provided with openings having a shape obtained by slicing substantially spherical bubbles, and is uniform in the thickness direction and the planar direction of the polishing layer.
- a polishing pad (soft (wet) polishing pad) having an anisotropic foam structure formed by a conventional wet method and having a foam structure with a relatively large suede-type opening. Is different from the pore shape of the polishing layer surface.
- the soft (wet) polishing pad has a structure in which the bubble diameter gradually increases from the polishing surface toward the bottom. Accordingly, when the surface is worn by polishing, the bubble diameter (opening hole diameter) on the surface is increased, so that the surface becomes rough and the polishing quality is deteriorated.
- the bubble is enlarged as it goes toward the bottom, there is a problem that the surface is pulled and worn due to polishing resistance.
- the polishing pad of the present case is formed by a dry method, the bubbles are isotropic, and the above-described problems of the wet polishing pad are hardly generated.
- the polishing pad of the present invention has a moderate dressing property, the opening is less likely to be clogged, and is softer and less dense than the conventional hard (dry) polishing pad, thereby suppressing the occurrence of scratches. Since the polishing rate and the polishing uniformity are also excellent, it can be used not only for primary processing but also for finishing processing. Further, when the X value is limited within a certain range, since the urea bond is appropriately introduced into the molecule, the polishing surface is appropriately softened in a wet state, and thus the generation of scratches is suppressed. Since the inside of the polyurethane resin foam not in a wet state maintains hardness, polishing flatness is ensured.
- the NCO equivalent weight of PP is “(mass of polyisocyanate compound (part) + mass of polyol compound (C-1) (part)) / [(number of functional groups per molecule of polyisocyanate compound ⁇ polyisocyanate compound Mass (parts) / molecular weight of polyisocyanate compound) ⁇ (number of functional groups per molecule of polyol compound (C-1) ⁇ mass (parts) of polyol compound (C-1) / molecular weight of polyol compound (C-1)) ] ”Is a numerical value indicating the molecular weight of PP (prepolymer) per NCO group determined by As described above, the s value is the sum of the equivalents of the amino group (D) of the polyamine compound and the hydroxyl group of the polyol compound (C-2) prepared separately from the isocyanate group-containing compound (A) (active It is a numerical value showing the equivalent ratio (amino group / (amino group + hydroxy
- the crude MOCA used in the following examples and comparative examples is a liquid mixture (hereinafter referred to as liquid MOCA) in which the mass ratio of PTMG1000 and crude MOCA (multimer content 40% by mass) is 1: 1. .
- Comparative Example 1 In Comparative Example 1, a conventionally known hard (dry) polishing pad was manufactured. As the first component prepolymer, 316 parts of 2,4-TDI, 88 parts of hydrogenated MDI, and 539 parts of PTMG having a number average molecular weight of about 1000 were reacted, and then 57 parts of diethylene glycol was added to further react. This was heated to 55 ° C. and degassed under reduced pressure using an isocyanate group-containing urethane prepolymer having a content of 9.0% and an NCO equivalent of 466. Solid MOCA as the second chain extender was melted at 120 ° C. and degassed under reduced pressure.
- a foaming agent (Expancel 551DE) was mixed with the first component so as to be 2% by weight, and the first component: second component was supplied to the mixer at a ratio of 1000 parts: 256 parts by weight.
- the obtained mixed liquid was poured into a mold of 890 ⁇ 890 mm heated to 50 ° C., cured by heating at 100 ° C. for 5 hours, and then the formed polyurethane resin foam was extracted from the mold. Furthermore, this foam was sliced to a thickness of 1.25 mm to produce a urethane sheet, and a polishing pad was obtained.
- Example 1 an isocyanate content obtained by reacting 2,4-TDI (286 parts) as a prepolymer of the first component, PTMG (714 parts) having a number average molecular weight of about 1000 was 7.8%, and an NCO equivalent was 540. This was heated to 55 ° C. using an isocyanate group-containing urethane prepolymer and defoamed under reduced pressure. Solid MOCA was used as the second component chain extender, which was melted at 120 ° C. and degassed under reduced pressure.
- the aqueous dispersion of the third component has a number average molecular weight of 3000, trifunctional PPG (42 parts), water (3 parts), catalyst (Toyocat ET, manufactured by Tosoh Corporation) (1 part), silicone surfactant. (SH-193, manufactured by Dow Corning Co., Ltd.) (1 part) was added, and the mixture was stirred and mixed at 35 ° C. for 1 hour, and then degassed under reduced pressure.
- Example 2 to 4 and Comparative Examples 2 to 5 A polishing pad having a thickness of 1.32 to 1.35 mm was obtained in the same manner as in Example 1 except that the ratio of each component supplied into the mixer was changed as shown in Table 1.
- Example 5 isocyanate having a content of isocyanate of 7.8% and an NCO equivalent of 540 obtained by reacting 2,4-TDI (286 parts) as a prepolymer of the first component and PTMG (714 parts) having a number average molecular weight of about 1000 was used. This was heated to 55 ° C. using a group-containing urethane prepolymer and degassed under reduced pressure. As a second component chain extender, liquid MOCA (234 parts) was degassed under reduced pressure.
- the aqueous dispersion of the third component has a number average molecular weight of 3000, trifunctional PPG (41 parts), water (3 parts), catalyst (Toyocat ET, manufactured by Tosoh Corp.) (1 part), silicone surfactant (SH-193, manufactured by Dow Corning) (4 parts) was added, mixed with stirring, and degassed under reduced pressure.
- the first component: second component: third component was supplied at a flow rate of 80 kg / min to the mixer at a weight ratio of 1000 parts: 234 parts: 49 parts. At this time, air was supplied at a flow rate of 19.1 L / min from the nozzle provided in the stirring rotor in the mixer (that is, 19.1 L of air was supplied for a total of 80 kg of the first to third components). .
- the obtained mixed liquid was poured into a mold and cured at 100 ° C. for 5 hours, and then the formed polyurethane resin foam was extracted from the mold. This foam was sliced to a thickness of 1.28 mm to produce a urethane sheet, and a polishing pad was obtained.
- Example 6 to 9 A polishing pad having a thickness of 1.28 to 1.30 mm was obtained in the same manner as in Example 5 except that the ratio of each component supplied into the mixer was changed as shown in Table 2.
- Example 10 an isocyanate content of 10.0% and an NCO equivalent of 420 were obtained by reacting 2,4-TDI (325 parts) as a first component prepolymer with PTMG (675 parts) having a number average molecular weight of about 1000. This was heated to 55 ° C. using a group-containing urethane prepolymer and degassed under reduced pressure. As a second component chain extender, liquid MOCA (397 parts) was degassed under reduced pressure. The aqueous dispersion of the third component has a number average molecular weight of 3000, trifunctional PPG (43 parts), water (1 part), catalyst (Toyocat ET, manufactured by Tosoh Corporation) (1 part), silicone surfactant.
- the first component: second component: third component were supplied to the mixer at a flow rate of 80 kg / min at a ratio of 1000 parts: 397 parts: 49 parts by weight. At this time, air was supplied into the mixer at a flow rate of 19.1 L / min.
- the obtained mixed liquid was poured into a mold and cured, and then the formed polyurethane resin foam was extracted from the mold. This foam was sliced to a thickness of 1.27 mm to produce a urethane sheet, and a polishing pad was obtained.
- Example 11 to 15 and Comparative Examples 9 to 13 For Examples 11 to 15 and Comparative Examples 9 to 13, polishing with a thickness of 1.27 to 1.30 mm was performed in the same manner as in Example 10 except that the ratio of each component was changed as shown in Tables 3 to 4. A pad was manufactured.
- the diameter ( ⁇ m), the number of bubbles per 1 mm 2 , the storage elastic modulus E ′ 40 (Mpa), and the thickness (mm) were calculated or measured.
- the results are shown in Tables 1 to 4.
- the measuring method of each item is as follows.
- a sample cut to about 1 to 2 mm square is packed in a glass tube having a diameter of 1 cm to a height of 1 to 2 cm, and a pulse NMR measurement device (JEOL Ltd., JNM-MU25, 25 MHz) is used.
- the relaxation behavior was measured by the solid echo method at 90 ° pulse 2.0 ⁇ s, repetition time: 4 s, integration number: 8 times, temperature: 40 ° C.
- the obtained attenuation curve was separated into an amorphous phase, an interface phase, and a crystalline phase from a component having a short T2 (spin-spin relaxation time) by the least square method, and T2 M and C M values were obtained.
- the storage elastic modulus (E ′ 40 (MPa)) at 40 ° C. is 10 g of initial load according to JIS K7244-4, strain range 0.01 to 4%, measurement frequency 0 according to TS Instrument Japan RSAIII.
- the storage elastic modulus at 40 ° C. at 2 Hz was measured.
- a hardness was measured using a Shore A durometer in accordance with Japanese Industrial Standard (JIS K 7311).
- JIS K 7311 Japanese Industrial Standard
- the sample was set so that the urethane sheet (thickness of about 1.3 mm) described in the comparative example and the example was overlapped, and the total thickness was at least 4.5 mm.
- the D hardness was measured with a D-type hardness meter manufactured by Teclock Corporation according to JIS K 6253-1997 / ISO 7619.
- the sample was set so that the urethane sheet (thickness of about 1.3 mm) described in the comparative example and the example was overlapped, and the total thickness was at least 4.5 mm.
- Average bubble diameter ( ⁇ m) The number of bubbles per 1 mm 2 was observed by magnifying the range of about 1.3 mm square on the pad surface with a microscope (VH-6300, manufactured by KEYENCE) by 175 times. Is binarized by image processing software (Image Analyzer V20LAB Ver. 1.3, manufactured by Nikon) to check the number of bubbles, and from the area of each bubble, the equivalent circle diameter and the average value (average bubble diameter) was calculated. Note that the cutoff value (lower limit) of the bubble diameter was 10 ⁇ m, and noise components were excluded.
- the density (g / cm 3 ) was calculated by measuring the weight (g) of a sample cut into a predetermined size and determining the volume (cm 3 ) from the size.
- ⁇ Polishing test> About the polishing pad of each Example and the comparative example, it grind
- a substrate uniformity (CV%) of 13%) in which tetraethoxysilane was formed on a 12-inch silicon wafer by CVD so that the insulating film had a thickness of 1 ⁇ m was used.
- the polishing rate is the amount of polishing per minute expressed in thickness (nm), and the average value was obtained from the thickness measurement results at 17 locations for the insulating film of the substrate before and after polishing.
- the thickness was measured in the DBS mode of an optical film thickness measuring device (ASET-F5x, manufactured by KLA Tencor).
- Polishing uniformity was determined from the variation (standard deviation ⁇ average value) of the 17 thickness measurement results.
- Tables 1 to 4 show the results of the polishing test conducted for each of the examples and comparative examples using the above method.
- the result of the polishing test is as follows in terms of commercial value. Evaluated. The polishing rate was evaluated as ⁇ when 200 or more (nm / min), ⁇ when 190 or more and less than 200 (nm / min), and x when less than 190 (nm / min). Polishing uniformity was evaluated by giving 7.0 or less (CV%) as ⁇ , exceeding 7.0 to 8.0 or less (CV%) as ⁇ , and exceeding 8.0 (CV%) as ⁇ .
- the presence / absence of scratches was evaluated as 0 (no sheet) and x (existing 1 or more). Further, with respect to the three types of polishing rate, polishing uniformity, and presence / absence of scratches, preferred examples are those in which ⁇ is 0 to 1 (all three are ⁇ , two are ⁇ , and one is ⁇ ). Example), samples having two or more ⁇ s and samples having even one ⁇ were evaluated as unfavorable examples (comparative examples) in the present invention.
- a polishing pad manufactured by adjusting the amount of solid MOCA and water added so that T2 M , density and storage elastic modulus are within the range of the present invention does not generate scratches, and has a polishing rate and polishing uniformity. In any case, good results were obtained (Examples 1 to 4).
- a polishing pad manufactured by adjusting the amount of liquid MOCA and water added so that T2 M , density, and storage elastic modulus are within the range of the present invention does not generate scratches, and has a polishing rate and polishing uniformity. In any case, good results were obtained (Examples 5 to 9).
- T2 M is 160 to 260 ⁇ s
- initial load is 10 g
- strain range is 0.01 to 4%
- measurement frequency is 0.2 Hz
- storage elastic modulus E ′ in the tensile mode is 1 to 30 MPa.
- the polishing pads of Examples 1 to 15 in which the density D is in the range of 0.30 to 0.60 g / cm 3 are free of scratches on the polishing surface of the non-polished material, Good results were also obtained in terms of polishing uniformity. Therefore, as compared with Comparative Examples 1 to 13, it has been clarified that the suppression of the occurrence of scratches, the polishing rate, and the polishing uniformity all have a balanced effect.
- the polishing pad of the present invention has a T2 M in an appropriate range and good dressability, and since the density is small, the opening is not easily clogged, so that it is difficult to generate scratches, while T2 M is in an appropriate range. Therefore, polishing uniformity can be secured.
- the storage elastic modulus and the body density are small, it is difficult to apply a local load to the object to be polished, so that the scratch can be suppressed.
- it is softer than a polishing pad having a polishing layer formed by a conventional dry method, it is excellent in polishing rate and polishing uniformity.
- the polishing pad and the manufacturing method thereof of the present invention have industrial applicability.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
- Mechanical Treatment Of Semiconductor (AREA)
- Polyurethanes Or Polyureas (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
Abstract
Description
そして、パルスNMRにおける自由誘導減衰信号(FID)から、結晶相(L)と界面相(M)、非晶質相(S)の成分量、スピン-スピン緩和時間(T2)を求め、T2とM成分量を最適化することにより相分離構造を明確化させ、A硬度、圧縮弾性率の向上させた研磨パッドが報告されている(特許文献9)。更に、パルスNMR測定による発泡ポリウレタン中のハードセグメントの存在比を、55~70%とすることで、硬く、しかも、引張破断しやすく、伸びが小さいという特性を発現させ、高硬度を維持しながら、ドレス性を高めた研磨パッドが報告されている(特許文献10)。
前記ポリウレタンポリウレア樹脂発泡体は、パルスNMRで得られる自由誘導減衰信号(FID)を最小二乗法によってスピン-スピン緩和時間T2の長い成分から順に差し引き、波形分離することにより、スピン-スピン緩和時間T2の長い方から順にL(非晶相)、M(界面相)、S(結晶相)の3成分に分けた場合において、M成分のスピン-スピン緩和時間T2(以下、T2Mと表すことがある)が160~260μsであり、
前記ポリウレタンポリウレア樹脂発泡体の40℃、初期荷重10g、歪範囲0.01~4%、測定周波数0.2Hz、引っ張りモードにおける貯蔵弾性率E’が1~30MPaであり、且つ、
前記ポリウレタンポリウレア樹脂発泡体の密度Dが0.30~0.60g/cm3の範囲内であることを特徴とする、半導体デバイス研磨用の研磨パッド。
少なくとも、前記イソシアネート基含有化合物(A)と、ポリイソシアネート化合物(B)と、ポリアミン化合物(D)と、水、整泡剤及び反応触媒を含む混合液(E)と、各成分に対して非反応性の気体とを混合して発泡体成形用混合液を得る混合工程;
前記発泡体成形用混合液からポリウレタンポリウレア樹脂発泡体を成形する発泡体成形工程;及び
前記ポリウレタンポリウレア樹脂発泡体から、被研磨物を研磨加工するための研磨面を有する研磨層を形成する研磨層形成工程、を有することを特徴とする、上記1~6のいずれか一項に記載の研磨パッドの製造方法。
<<研磨パッド>>
前記ポリウレタンポリウレア樹脂発泡体は、パルスNMRで得られる自由誘導減衰信号(FID)を最小二乗法によってスピン-スピン緩和時間T2の長い成分から順に差し引き、波形分離することにより、スピン-スピン緩和時間T2の長い方から順にL(非晶相)、M(界面相)、S(結晶相)の3成分(M成分とL成分の成分分けが困難な場合はM成分とL成分の和をM成分とする)に分けた場合において、M成分のスピン-スピン緩和時間T2(以下、T2Mと表すことがある)が160~260μsであり、
前記ポリウレタンポリウレア樹脂発泡体の40℃、初期荷重10g、歪範囲0.01~4%、測定周波数0.2Hz、引っ張りモードにおける貯蔵弾性率E’が1~30MPaであり、且つ、
前記ポリウレタンポリウレア樹脂発泡体の密度Dが0.30~0.60g/cm3の範囲内であることを特徴とする。
また、略球状とは、乾式法で成形される発泡体に存在する通常の気泡形状(等方性があり、球状、楕円状、あるいはこれらに近い形状である)を意味する概念であり(図1参照)、湿式法で成形される発泡体に含まれる気泡(異方性があり、研磨パッドの研磨層表面から底部に向けて径が大きい構造を有する)とは明確に区別される。
パルスNMRの測定は、パルスNMR測定装置(日本電子株式会社製、JNM-MU25、25MHz)を用い、solid echo法にて、90°pulse 2.0μs、繰り返し時間:4s、積算回数:8回、温度:40℃にて測定する。
solid echo(ソリッドエコー)法については、既によく知られているため詳細は省略するが、主にガラス状および結晶性高分子などの緩和時間の短い試料の測定に用いられるものである。デッドタイムを見かけ上除く方法で、2つの90°パルスを、位相を90°変えて印加する90°x-τ-90°yパルス法で、X軸方向に90°パルスを加えると、デッドタイム後に自由誘導減衰(FID)信号が観測される。FID信号が減衰しない時間τに、第2の90°パルスをy軸方向に加えると,t=2τの時点で磁化の向きがそろってエコーが現れる。得られたエコーは90°パルス後のFID信号に近似することが出来る。
パルスNMRの解析結果から物性と相分離構造と組成との関連を解析する方法は既によく知られており、パルスNMRで得られる自由誘導減衰(FID)信号を最小二乗法によってスピン-スピン緩和時間T2の長い成分から順に差し引いて、波形分離することにより、3成分に分けることができ、緩和時間の長い成分が運動性の大きな成分であり非晶相、短い成分が運動性の小さな成分であり結晶相、中間の成分は界面相であると定義し(界面相と非晶相の成分分けが困難な場合は界面相として解析)、ガウス型関数及びローレンツ型関数による計算式を用いて、各成分の成分量が求められる(例えば、「固体NMR(高分解能NMRとパルスNMR)によるポリウレタン樹脂の相分離構造解析」(DIC Technical Review N.12,pp.7~12,2006)を参照)。
上記パルスNMR、ソリッドエコー法、スピン-スピン緩和時間T2については、特開2007-238783号(特には段落[0028]~[0033])を参照することができる。
スピンースピン緩和時間T2が分子運動性の尺度となる理由は、分子運動の相関時間τcとT2の関係から理解される。τcは、ある運動状態にある分子が分子衝突を起こす平均的な時間を表し、T2の値はτcの増加と逆比例して短くなることが知られている。これは分子運動性が低下するにつれてT2が短くなることを示す。
本発明の前記ポリウレタンポリウレア樹脂発泡体は、パルスNMRで得られる自由誘導減衰信号(FID)を最小二乗法によってスピン-スピン緩和時間T2の長い成分から順に差し引き、波形分離することにより、スピン-スピン緩和時間T2の長い方から順にL(非晶相)、M(界面相)、S(結晶相)の3成分に分けた場合(M成分とL成分の成分分けが困難な場合はM成分とL成分の和をM成分とする)において、M成分のスピン-スピン緩和時間T2(以下、T2Mと表すことがある)が160~260μsであり、好ましくは160~250μsであり、より好ましくは180~240μsである。T2Mが上記範囲より小さくなると研磨均一性が悪化する。一方で、T2Mが上記範囲より大きくなると、適度なドレス性が得られず、開口部の目詰まりによりスクラッチが発生するようになる。
本明細書及び特許請求の範囲において、貯蔵弾性率E’は、JIS K7244-4で準じ初期荷重10g、歪範囲0.01~4%、測定周波数0.2Hz、にて40℃のときの貯蔵弾性率E’である。
前記ポリウレタンポリウレア樹脂発泡体の40℃、初期荷重10g、歪範囲0.01~4%、測定周波数0.2Hz、引っ張りモードにおける貯蔵弾性率E’は1~30MPaであり、1~25MPaであることが好ましく、1~20MPaであることが最も好ましい。貯蔵弾性率E’が上記の範囲より小さくなると、研磨中に一時的に加わる偏荷重などによりパッド自体が変形しやすくなり、研磨均一性が悪くなる。一方で上記の範囲より大きくなると、弾性が欠如することによりスクラッチが発生するようになる。
前記ポリウレタンポリウレア樹脂発泡体の密度Dは0.30~0.60g/cm3であり、0.35~0.55g/cm3であることがより好ましく、0.35~0.50g/cm3であることがさらにより好ましい。密度Dが上記範囲内であると、研磨剤や被研磨物の加工くずなどで研磨層表面が目詰まりすることによる傷も生じにくくなる。逆に、密度Dが下限値より小さくなると、弾性が極度に大きくなるため被研磨物と接触した際にパッド自体が大きく変形し、平坦化性能が悪くなる。一方で上限値より大きくなると、弾性が欠如することによりスクラッチが発生するようになる。
上記に加え、M成分の成分量(CM)が55~80%(質量%)の範囲である事が好ましい。
M成分の成分量が上記の範囲であると、適度な凝集力で分子同士が会合している領域(M成分)が、適度な量含まれることから、適度なドレス性を生み、開口部の目詰まりによるスクラッチが抑制されると同時に研磨均一性も維持される。M成分が少ない程、歪が少なく、ゴム弾性としては優れるものの、研磨特性の面では、研磨圧による圧縮に対する戻り応力の応答性が高すぎる(速すぎる)ため、研磨レートが得られにくい。逆にM成分が多すぎると、戻り応力の応答性が低すぎる(遅すぎる)ため、研磨均一性が劣る。これに対し、M成分が上記範囲内にあると、適度な遅延弾性により、研磨レートと研磨均一性の両方に優れた研磨が可能となる。
上記に加え、鋭意研究の結果、X=T2M/Dで求められるX値が、350~800の範囲であると、一定の研磨平坦性を維持しつつ、スクラッチの発生抑制、研磨レート及び研磨均一性を確保できることを突き止めた。
X値は350~800の範囲であることが好ましく、380~600にあることがより好ましい。
ここで、適度なウレア結合を有するポリウレタン系樹脂によって構成された研磨パッドが、上記のX値を満たしやすく、優れた研磨特性が得られることから、X値は、ウレア結合等によってwet状態で研磨面が適度に軟化する尺度(この範囲ではウレア結合が適度に入るウレタンウレア樹脂処方になるので、wet状態で適度に軟化する)を意味すると考えられる。従って、半導体ウェハに対して局所的な負荷がかかりにくくなり、望ましい作用効果が発現する。
本明細書及び特許請求の範囲において、平均気泡径とは、研磨パッドの表面画像を二値化処理し、各々の気泡部分の面積と個数から算出した円相当径の平均値である(但し、画像処理時のノイズカットのために「カットオフ値」を10μmに設定したときの数値である)。
前記研磨層のポリウレタンポリウレア樹脂発泡体の平均気泡径d(μm)は、120~185μmであることが好ましく、120~170μmであることがより好ましく、140~170μmであることがさらにより好ましい。平均気泡径(μm)が上限値以上であると、研磨層表面が粗くなって被研磨物の研磨品質が悪化し、下限値以下であると研磨層表面の目詰まりや、研磨層表面が柔軟性を失い、スクラッチが発生しやすくなる。
本明細書及び特許請求の範囲において、A硬度とは、JIS K7311に準じて測定した値を意味する。
また、D硬度とは、JIS K6253-1997/ISO 7619に準じて測定した値を意味する。
また、前記ポリウレタンポリウレア樹脂発泡体のA硬度は、20~55度であることが好ましい。
同様に、前記ポリウレタンポリウレア樹脂発泡体のD硬度は、5~35度であることが好ましい。
A硬度及び/又はD硬度が上記の範囲より小さくなると、弾性が極度に大きくなるため被研磨物と接触した際にパッド自体が大きく変形し、平坦化性能が悪くなる。一方で上記の範囲より大きくなると、弾性が欠如することによりスクラッチが発生するようになる。
上記本発明の半導体デバイス研磨用研磨パッドを製造することの出来る、本発明の半導体デバイス研磨用研磨パッドの製造方法は、イソシアネート基含有化合物(A)、ポリイソシアネート化合物(B)、ポリアミン化合物(D)、水分散液(水、整泡剤及び反応触媒を含む混合液)(E)、及び各成分に対して非反応性の気体を準備する準備工程;少なくとも、前記イソシアネート基含有化合物(A)、ポリイソシアネート化合物(B)、ポリアミン化合物(D)、水分散液(E)、及び各成分に対して非反応性の気体を混合して発泡体成形用の混合液を得る混合工程;前記発泡体成形用混合液からポリウレタンポリウレア樹脂発泡体を成形する発泡体成形工程;及び前記ポリウレタンポリウレア樹脂発泡体から、被研磨物を研磨加工するための研磨面を有する研磨層を形成する研磨層形成工程、を有することを特徴とする。
本発明の研磨パッドの製造には、ポリウレタンポリウレア樹脂発泡体の原料として、少なくとも、イソシアネート基含有化合物(A)、ポリイソシアネート化合物(B)、ポリアミン化合物(D)、水分散液(E)、及びこれらの成分に非反応性の気体が用いられる。更にポリオール化合物を上記成分とともに用いてもよい。
また、本発明の効果を損なわない範囲で、上記以外の成分を併せて用いてもよい。
以下、各成分について説明する。
プレポリマとしてのイソシアネート基含有化合物は、下記ポリイソシアネート化合物とポリオール化合物とを、通常用いられる条件で反応させることにより得られるものである。また、本発明の効果を損なわない範囲内で、他の成分がイソシアネート基含有化合物に含まれていてもよい。
本明細書及び特許請求の範囲において、ポリイソシアネート化合物とは、分子内に2つ以上のイソシアネート基を有する化合物を意味する。
ポリイソシアネート化合物としては、分子内に2つ以上のイソシアネート基を有していれば特に制限されるものではない。例えば、分子内に2つのイソシアネート基を有するジイソシアネート化合物としては、m-フェニレンジイソシアネート、p-フェニレンジイソシアネート、2,6-トリレンジイソシアネート(2,6-TDI)、2,4-トリレンジイソシアネート(2,4-TDI)、ナフタレン-1,4-ジイソシアネート、ジフェニルメタン-4,4’-ジイソシアネート(MDI)、4,4’-メチレン-ビス(シクロヘキシルイソシアネート)(水添MDI)、3,3’-ジメトキシ-4,4’-ビフェニルジイソシアネート、3,3’-ジメチルジフェニルメタン-4,4’-ジイソシアネート、キシリレン-1,4-ジイソシアネート、4,4’-ジフェニルプロパンジイソシアネート、トリメチレンジイソシアネート、ヘキサメチレンジイソシアネート、プロピレン-1,2-ジイソシアネート、ブチレン-1,2-ジイソシアネート、シクロヘキシレン-1,2-ジイソシアネート、シクロヘキシレン-1,4-ジイソシアネート、p-フェニレンジイソチオシアネート、キシリレン-1,4-ジイソチオシアネート、エチリジンジイソチオシアネート等を挙げることができる。
ポリイソシアネート化合物としては、ジイソシアネート化合物が好ましく、中でも2,4-TDI、MDIがより好ましく、2,4-TDIが特に好ましい。
これらのポリイソシアネート化合物は、単独で用いてもよく、複数のポリイソシアネート化合物を組み合わせて用いてもよい。
本明細書及び特許請求の範囲において、ポリオール化合物とは、分子内に2つ以上のアルコール性水酸基(OH)を有する化合物を意味する。
((C-1)プレポリマ合成用のポリオール化合物)
プレポリマとしてのイソシアネート基含有化合物の合成に用いられるポリオール化合物としては、エチレングリコール、ブチレングリコール等のジオール化合物、トリオール化合物等;ポリテトラメチレングリコール(PTMG)等のポリエーテルポリオール化合物;エチレングリコールとアジピン酸との反応物やブチレングリコールとアジピン酸との反応物等のポリエステルポリオール化合物;ポリカーボネートポリオール化合物、ポリカプロラクトンポリオール化合物等を挙げることができる。これらの中でもPTMGが好ましく、数平均分子量(Mn)が約500~5000のPTMGがさらにより好ましく、約1000のPTMGが最も好ましい。
また、“(ポリイソシアネート化合物の質量(部)+ポリオール化合物(C-1)の質量(部))/[(ポリイソシアネート化合物1分子当たりの官能基数×ポリイソシアネート化合物の質量(部)/ポリイソシアネート化合物の分子量)-(ポリオール化合物(C-1)1分子当たりの官能基数×ポリオール化合物(C-1)の質量(部)/ポリオール化合物(C-1)の分子量)]”で求められるプレポリマのNCO当量は、NCO基1個当たりのPP(プレポリマ)の分子量を示す数値である。該NCO当量は、400~650であることが好ましい。
また、本発明においては、前記プレポリマとしてのイソシアネート基含有化合物を形成するために用いられるポリオール化合物とは別に、イソシアネート基含有化合物、ポリイソシアネート化合物及びポリアミン化合物などとともにポリオール化合物を混合機内に添加して混合することが出来る。前記ポリオール化合物は、それ自体単独で調製されてもよいが、ポリアミン化合物との混合液として調製されてもよく、水分散液を調製する際に添加されてもよい。該ポリオール化合物は、プレポリマを硬化させる硬化剤として作用し、ポリアミン化合物と競争反応的に組み込まれることによって、ポリアミン化合物のブロック内での偏った鎖伸長反応を抑制し、重合度斑の少ない重合がしやすくなる。
具体例としては、エチレングリコール、ジエチレングリコール、トリエチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール、ネオペンチルグリコール、ペンタンジオール、3-メチル-1,5-ペンタンジオール、1,6-ヘキサンジオールなどの低分子量ポリジオール、ポリテトラメチレングリコール、ポリエチレングリコール、ポリプロピレングリコールなどの高分子量のポリオール化合物などが挙げられる。これらの中でも、混合工程における他成分との相溶性及び得られる気泡の均一性の観点から、2官能性、3官能性のポリプロピレングリコール(PPG)(ここで、3官能性のポリプロピレングリコールとは、多官能基のグリセリンを重合開始剤に用いた分岐を有するポリプロピレングリコールを意味する)、ポリテトラメチレングリコールが好ましく、数平均分子量(Mn)が約500~5000のポリプロピレングリコール及び/又はポリテトラメチレングリコールがより好ましく、Mnが約2000~4000のポリプロピレングリコール及び/又はMnが約500~1500のポリテトラメチレングリコールがさらに好ましく、Mn約3000のポリプロピレングリコール及び/又はMnが約1000のポリテトラメチレングリコールが最も好ましい。また、上記ポリプロピレングリコールとしては、3官能性のポリプロピレングリコールが好ましい。
上記ポリオール化合物(C-2)は単独で用いてもよく、複数のポリオール化合物(C-2)を組み合わせて用いてもよい。
該ポリオール化合物は単独で用いてもよく、複数のポリオール化合物を組み合わせて用いてもよい。
本明細書及び特許請求の範囲において、ポリアミン化合物とは、分子内に2つ以上のアミノ基を有する化合物を意味する。
ポリアミン化合物は、鎖伸長剤として作用し、一部は前記ポリイソシアネート化合物と反応してハードセグメントを形成しつつ、一部は前記イソシアネート基含有化合物(ソフトセグメント部)の主鎖末端側と結合して、ポリマー鎖を更に伸長させることが出来る。これにより、ハードセグメントとソフトセグメントのブロックコポリマーを有するポリウレタンポリウレア樹脂が生成される。
ポリアミン化合物としては、脂肪族や芳香族のポリアミン化合物、特にはジアミン化合物を使用することができ、例えば、エチレンジアミン、プロピレンジアミン、ヘキサメチレンジアミン、イソホロンジアミン、ジシクロヘキシルメタン-4,4’-ジアミン、3,3’-ジクロロ-4,4’-ジアミノジフェニルメタン(メチレンビス-o-クロロアニリン)(以下、MOCAと略記する。)、MOCAと同様の構造を有するポリアミン化合物等を挙げることができる。また、ポリアミン化合物が水酸基を有していてもよく、このようなアミン系化合物として、例えば、2-ヒドロキシエチルエチレンジアミン、2-ヒドロキシエチルプロピレンジアミン、ジ-2-ヒドロキシエチルエチレンジアミン、ジ-2-ヒドロキシエチルプロピレンジアミン、2-ヒドロキシプロピルエチレンジアミン、ジ-2-ヒドロキシプロピルエチレンジアミン等を挙げることができる。
ポリアミン化合物としては、ジアミン化合物が好ましく、MOCA、ジアミノジフェニルメタン、ジアミノジフェニルスルホンがより好ましく、MOCAが特に好ましい。
本明細書及び特許請求の範囲において、「固形MOCA」及び「粗製MOCA」を用いた場合には、上記の固形MOCA及び粗製MOCAをそれぞれ意味するものする。
鎖伸長剤として固体の化合物を用いる場合は、加熱により溶融させつつ、減圧下脱泡することができる。
一方、室温で液状のポリアミン化合物を用いる場合は、加熱せずに減圧下脱泡を行ってもよい。
具体的には、ポリアミン化合物として固形MOCAを用いる場合には、ポリイソシアネート化合物とポリオール化合物(C-1)の合計1000質量部に対して、固形MOCAを150~205質量部用いることが好ましい。ポリアミン化合物として液状MOCA(詳細は後記する)を用いる場合には、ポリイソシアネート化合物とポリオール化合物(C-1)の合計1000質量部に対して、液状MOCAを200~400質量部用いることが好ましい。
本明細書及び特許請求の範囲において、水分散液とは、水、整泡剤及び反応触媒を含む混合液を意味する。
水分散液は、発泡剤、重付加の触媒、発泡径や発泡均一性の整泡に寄与するものであり、例えば、水、反応触媒、界面活性剤等を一般的な攪拌装置を用いて攪拌・混合することにより調製することが出来る。もちろん、水分散液は、これら3成分の組み合わせのみからなるものに限定されない。
混合工程では、前記準備工程及びプレポリマ形成工程で得られた、イソシアネート基含有化合物(プレポリマ)(A)、ポリイソシアネート化合物(B)、ポリアミン化合物(D)及び水分散液(E)を、混合機内に供給する。このとき、前記各成分に対して非反応性の気体が吹き込まれる。供給された非反応性気体が前記各成分とともに混合機内で攪拌・混合されることにより、内部に気泡が形成された発泡体成形用の混合液が調製される。混合工程は、上記各成分の流動性を確保できる温度に加温した状態で行われる。
例えば、30℃~100℃に加温したプレポリマ(イソシアネート)溶液に固形MOCA(120℃)またはポリオール化合物(C-2)に溶解したMOCA(80℃)、触媒等を含む分散液を温調可能なジャケット付き混合機に投入し、80℃で攪拌することが出来る。必要に応じ攪拌機付きジャケット付きのタンクに混合液を受けて熟成させても良い。攪拌時間は混合機の歯数や回転数、クリアランス等によって適宜調整するが、例えば0.5~600秒である。
前記気体の供給量は、前記各成分の合計量1kgに対して、好ましくは0.10~4.00L、より好ましくは0.17~3.33Lの範囲内になるように供給速度及び時間を調整する。
発泡体成形工程では、前記混合工程で調製された発泡体成形用混合液を50~100℃の型枠内に流し込み、発泡・硬化させることによりポリウレタンポリウレア樹脂発泡体を成形する。このとき、プレポリマ、ポリイソシアネート化合物、ポリアミン化合物(及びポリオール化合物)が反応してポリウレタンポリウレア樹脂が形成することにより、該混合液は硬化する。このとき、水分散液に含まれる水がプレポリマ中のイソシアネート基と反応することで二酸化炭素が発生する。この発生した二酸化炭素及び前記吹き込んだ気体がポリウレタンポリウレア樹脂中に留まることで、図1に示すような略球状の微細な気泡を多数有するポリウレタンポリウレア樹脂発泡体が形成される。
なお、図1において、本発明の実施形態を示す研磨パッドの断面図(左側)、従来技術で乾式成形された研磨層を有する研磨パッド(比較例1)の断面図(右側)は同一の拡大倍率(×100倍)で撮影されており、右図中の白線で示すバーが100μmの長さを表す。
前記発泡体成形工程により得られたポリウレタンポリウレア樹脂発泡体は、シート状にスライスされてポリウレタンポリウレアシートを形成する。スライスされることにより、シート表面に開孔が設けられることになる。このとき、耐摩耗性に優れ目詰まりしにくい研磨層表面の開孔を形成するには、30~80℃にて1時間~2週間程度エイジングすることが好ましい。これにより、所望の弾性特性が得られやすくなる。ここで発泡体中の平均気泡径を前記範囲内、すなわち、120~185μm、好ましくは120~170μm、さらには140~170μmとすることが好ましく、プレポリマの温度(粘度)、攪拌の回転数、エアー流量、整泡剤の種類や濃度、金型温度のコントロールによって上記範囲内に調整することができる。
研削処理の方法に特に制限はなく、公知の方法により研削することができる。具体的には、サンドペーパーによる研削が挙げられる。
溝加工及びエンボス加工の形状に特に制限はなく、例えば、格子型、同心円型、放射型などの形状が挙げられる。
本発明の研磨パッドにより加工される被研磨物としては、ハードディスク用ガラス基板、薄型ディスプレイ用マザーガラス、半導体ウェハ、半導体デバイスなどが挙げられる。中でも、本発明の研磨パッドは、半導体デバイスを加工するのに好適に用いられる。
本発明のCMP用研磨パッドは、ポリウレタンポリウレア樹脂発泡体を含む研磨層を有し、前記ポリウレタンポリウレア樹脂発泡体は、パルスNMRで得られる自由誘導減衰信号(FID)を最小二乗法によってパルス-パルス緩和時間T2の長い成分から順に差し引き、波形分離することにより、パルス-パルス緩和時間T2の長い方からL(非晶相)、M(界面相)、S(結晶相)の3成分(M成分とL成分の成分分けが困難な場合はM成分とL成分の和をM成分とする)に分けた場合において、M成分のスピン-スピン緩和時間T2(以下、T2Mと表すことがある)が160~260μsであり、;
前記ポリウレタンポリウレア樹脂発泡体の40℃、初期荷重10g、歪範囲0.01~4%、測定周波数0.2Hz、引っ張りモードにおける貯蔵弾性率E’が1~30MPaであり、且つ、
前記ポリウレタンポリウレア樹脂発泡体の密度Dが0.30~0.60g/cm3の範囲内に設定されている。
また、表1~4の各略号は以下のものを意味する。
・2,4-TDI: 2,4-トリレンジイソシアネート
・水添MDI: 4,4’-メチレン-ビス(シクロヘキシルイソシアネート)
・PTMG1000: 数平均分子量約1000のポリテトラメチレングリコール
・DEG: ジエチレングリコール
・MOCA: 3,3’-ジクロロ-4,4’-ジアミノジフェニルメタン
・3官能PPG3000: 数平均分子量3000で3官能のポリプロピレングリコール
s値とは、上述したように、ポリアミン化合物のアミノ基(D)と、前記イソシアネート基含有化合物(A)とは別に用意した前記ポリオール化合物(C-2)の水酸基との当量の和(活性水素基の当量)に対する前記ポリアミン化合物(D)のアミノ基の当量比(アミノ基/(アミノ基+水酸基))を示す数値である。
比較例1において、従来知られている硬質(乾式)研磨パッドを製造した。第1成分のプレポリマとして2,4-TDIの316部、水添MDIの88部、数平均分子量約1000のPTMGの539部を反応させた後、ジエチレングリコールの57部を加えて更に反応させたイソシアネート含有量が9.0%、NCO当量466のイソシアネート基含有ウレタンプレポリマを用いこれを55℃に加熱し減圧下で脱泡した。第2成分の鎖伸長剤としての固形MOCAを120℃で溶融し、減圧下で脱泡した。第3成分として発泡剤(Expancel551DE)を2重量%となるように第1成分に混合し、第1成分:第2成分を重量比で1000部:256部の割合で混合機に供給した。
得られた混合液を50℃に加熱した890×890mmの型枠に注型し、100℃で5時間加熱して硬化させた後、形成されたポリウレタン樹脂発泡体を型枠から抜き出した。更にこの発泡体を厚さ1.25mmにスライスしてウレタンシートを作製し、研磨パッドを得た。
次に、固形MOCAを用い、各成分の割合を表1に示すように変動させて、密度の大きさが異なる種々の研磨パッドを製造した。
実施例1では、第1成分のプレポリマとして2,4-TDI(286部)、数平均分子量約1000のPTMG(714部)を反応させたイソシアネート含有量が7.8%、NCO当量が540のイソシアネート基含有ウレタンプレポリマを用いこれを55℃に加熱し減圧下で脱泡した。第2成分の鎖伸長剤として固形MOCAを用いこれを120℃で溶融し、減圧下で脱泡した。第3成分の水分散液は、数平均分子量3000で3官能のPPG(42部)、水(3部)、触媒(トヨキャットET、東ソー株式会社製)(1部)、シリコーン系界面活性剤(SH-193、ダウコーニング社製)(1部)をそれぞれ添加し35℃で1時間攪拌混合した後、減圧下で脱泡した。第1成分:第2成分:第3成分を重量比で1000部:168部:47部の割合で混合機に80kg/minの流量で供給した。このとき、混合機の攪拌ローターに設けられたノズルより、空気を18.2L/minの流量で供給した(すなわち、前記第1~第3成分の合計80kgあたり18.2Lの空気を供給した)。得られた混合液を型枠(890×890mm)に注型し、100℃で5時間かけて硬化させた後、形成されたポリウレタン樹脂発泡体を型枠から抜き出した。この発泡体を厚さ1.35mmにスライスしてウレタンシートを作製し、研磨パッドを得た。
混合機内に供給する各成分の割合を表1のように変更した以外は実施例1と同様の方法により、厚さ1.32~1.35mmの研磨パッドを得た。
次に、液状MOCAを用い、各成分の割合を表2に示すように変動させて、密度の大きさが異なる種々の研磨層を製造した。
実施例5では、第1成分のプレポリマとして2,4-TDI(286部)、数平均分子量約1000のPTMG(714部)を反応させたイソシアネート含有量が7.8%、NCO当量540のイソシアネート基含有ウレタンプレポリマを用いこれを55℃に加熱し減圧下で脱泡した。第2成分の鎖伸長剤として、液状MOCA(234部)を減圧下で脱泡した。第3成分の水分散液は、数平均分子量3000で3官能のPPG(41部)、水(3部)、触媒(トヨキャットET、東ソー株式会社製)(1部)、シリコーン系界面活性剤(SH-193、ダウコーニング社製)(4部)をそれぞれ添加し攪拌混合した後、減圧下で脱泡した。第1成分:第2成分:第3成分を重量比で1000部:234部:49部の割合で混合機に80kg/minの流量で供給した。このとき、混合機内に攪拌ローターに設けられたノズルより、空気を19.1L/minの流量で供給した(すなわち、前記第1~第3成分の合計80kgあたり19.1Lの空気を供給した)。得られた混合液を型枠に注型し、100℃で5時間かけて硬化させた後、形成されたポリウレタン樹脂発泡体を型枠から抜き出した。この発泡体を厚さ1.28mmにスライスしてウレタンシートを作製し、研磨パッドを得た。
混合機内に供給する各成分の割合を表2のように変更したこと以外は実施例5と同様の方法により、厚さ1.28~1.30mmの研磨パッドを得た。
最後に、ポリイソシアネート化合物、ポリオール化合物及びポリアミン化合物の量を増減させて研磨層を製造した。
実施例10では、第1成分のプレポリマとして2,4-TDI(325部)、数平均分子量約1000のPTMG(675部)を反応させたイソシアネート含有量が10.0%、NCO当量420のイソシアネート基含有ウレタンプレポリマを用いこれを55℃に加熱し減圧下で脱泡した。第2成分の鎖伸長剤として、液状MOCA(397部)を減圧下で脱泡した。第3成分の水分散液は、数平均分子量3000で3官能のPPG(43部)、水(1部)、触媒(トヨキャットET、東ソー株式会社製)(1部)、シリコーン系界面活性剤(SH-193、ダウコーニング社製)(4部)をそれぞれ添加し攪拌混合した後、減圧下で脱泡した。第1成分:第2成分:第3成分を重量比で1000部:397部:49部の割合で80kg/minの流量で混合機に供給した。このとき、混合機内に空気を19.1L/minの流量で供給した。得られた混合液を型枠に注型し硬化させた後、形成されたポリウレタン樹脂発泡体を型枠から抜き出した。この発泡体を厚さ1.27mmにスライスしてウレタンシートを作製し、研磨パッドを得た。
実施例11~15及び比較例9~13について、各成分の割合を表3~4に示すとおりに変更した以外は実施例10と同様の方法により、厚さ1.27~1.30mmの研磨パッドを製造した。
上記の各実施例及び比較例について、ウレタンシートのT2M(μs)、CM(%)、密度(g/cm3)、X値、A硬度(°)、D硬度(°)、平均気泡径(μm)、1mm2当たりの気泡個数、貯蔵弾性率E’40(Mpa)、及び厚み(mm)を算出又は測定した。その結果を表1~4に示す。
なお、各項目の測定方法は以下の通りである。
各実施例及び比較例の研磨パッドについて、以下の研磨条件で研磨加工を行い、研磨レート、研磨均一性及びスクラッチの有無を測定した。被研磨物としては、12インチのシリコンウェハ上にテトラエトキシシランをCVDで絶縁膜を1μmの厚さになるように形成した基板(均一性(CV%)が13%)を用いた。
研磨レートは、1分間あたりの研磨量を厚さ(nm)で表したものであり、研磨加工前後の基板の絶縁膜について各々17箇所の厚み測定結果から平均値を求めた。なお、厚み測定は、光学式膜厚膜質測定器(KLAテンコール社製、ASET-F5x)のDBSモードにて測定した。
研磨均一性は、前記の17箇所の厚み測定結果のバラツキ(標準偏差÷平均値)から求めた。
スクラッチの評価では、25枚の基板を繰り返し3回順次研磨し、研磨加工後の21~25枚目の基板5枚について、パターンなしウェハ表面検査装置(KLAテンコール社製、Surfscan SP1DLS)の高感度測定モードにて測定し、基板表面におけるスクラッチの有無を評価した。
・使用研磨機:荏原製作所社製、F-REX300。
・回転数:(定盤)70rpm、(トップリング)71rpm。
・研磨圧力:220hPa。
・研磨剤:キャボット社製、品番:SS25(SS25原液:純水=1:1の混合液を使用)。
・研磨剤温度:30℃。
・研磨剤吐出量:200ml/min。
・使用ワーク(被研磨物):12インチφシリコンウェハ上にテトラエトキシシランをCVDで絶縁膜1μmの厚さになるように形成した基板。
・研磨時間:60秒間/各回。
・ドレッシング:(研磨布貼付後)10min。
ここで、本発明の研磨パッドは、研磨レート、研磨均一性及びスクラッチ抑制が、バランスよく効果として発揮されていることを要するものであるため、商品価値上、以下のようにして研磨試験の結果を評価した。
研磨レートは200以上(nm/min)を○、190以上~200未満(nm/min)を△、190未満(nm/min)を×として評価した。
研磨均一性は、7.0以下(CV%)を○、7.0超過~8.0以下(CV%)を△、8.0超過(CV%)を×として評価した。
スクラッチの有無は、無(0枚)を○、有(1枚以上)を×として評価した。
そして、研磨レート、研磨均一性及びスクラッチの有無の3種について、△が0~1つのもの(3種全てが○のもの及び2種が○で1種が△のもの)を好ましい例(実施例)とし、△を2つ以上有するサンプル及び×を1つでも有するサンプルを、本発明において好ましくない例(比較例)として評価した。
空気を吹き込まず、水分散液も用いない比較例1により製造された従来の研磨パッドは、T2Mが小さく、貯蔵弾性率、密度がともに高かった。また、1mm2当たりの気泡の個数が多く、平均気泡径が小さい構造、すなわち、非常に小さな気泡が無数に存在する構造を有していた(図1の右図参照)。その結果、スクラッチが発生し、研磨均一性の点でも満足のいく数値は得られなかった。
鎖伸長剤として固形MOCAを用いた実施例1~4及び比較例2~5において、水の添加量が多く固形MOCAの量が少ない場合には密度が小さくなりすぎ、研磨レート及び研磨均一性の点で劣る結果となった(比較例2)。逆に、水の添加量が少なく固形MOCAの量が多い場合には、密度が大きくなり、貯蔵弾性率も高くなるために、スクラッチが発生し、研磨均一性の点でも十分な結果は得られなかった(比較例3~5)。
一方、T2M、密度及び貯蔵弾性率が本発明の範囲内となるように固形MOCA及び水添加量を調整して製造された研磨パッドでは、スクラッチが発生せず、研磨レート、研磨均一性のいずれにおいても良好な結果が得られた(実施例1~4)。
鎖伸長剤として液体MOCAを用いた実施例5~9及び比較例6~8において、水の添加量が多く液状MOCAの量が少ない場合には密度が小さくなりすぎ、貯蔵弾性率も低くなってしまうために、特に研磨レート、研磨均一性の点で十分な結果は得られなかった(比較例6)。逆に、水の添加量が少なく液状MOCAの量が多い場合には、密度が大きくなり、貯蔵弾性率も高くなるため、スクラッチが発生し、研磨均一性の点でも劣る結果となった(比較例7~8)。
一方、T2M、密度及び貯蔵弾性率が本発明の範囲内となるように液状MOCA及び水添加量を調整して製造された研磨パッドでは、スクラッチが発生せず、研磨レート、研磨均一性のいずれにおいても良好な結果が得られた(実施例5~9)。
ポリイソシアネート化合物、ポリオール化合物及びポリアミン化合物の含有比率を変動させた実施例10~15及び比較例9~13において、ポリアミン化合物の量がポリオール化合物の量に対して多すぎる場合(当量比)には、T2Mが小さく、貯蔵弾性率が高くなりすぎてしまい、スクラッチの発生、低研磨レート及び低研磨均一性を2種以上生ずる結果となった(比較例9~10)。
逆に、ポリアミン化合物の量がポリオール化合物の量に対して少なすぎる場合(当量比)には、T2Mが大きく、貯蔵弾性率が低くなりすぎてしまうため、特に研磨レートや研磨均一性の点で大きく劣る結果となった(比較例11~13)。
一方、ポリアミン化合物のアミノ基とプレポリマ形成用のポリオール化合物の水酸基との当量比を、T2M、密度及び貯蔵弾性率が本発明の範囲内になるように調整して製造された研磨パッドでは、スクラッチが発生せず、研磨レート、研磨均一性のいずれも十分良好な結果が得られた(実施例10~15)。
さらに、従来の乾式法で成形された研磨層を有する研磨パッドに比べて軟質であるため、研磨レート及び研磨均一性にも優れる。一方で、乾式成形されているため、湿式成形された研磨パッドに比べて研磨表面の磨耗速度が遅く、長期間一定の研磨状態を維持することが出来る。従って、乾式成形された研磨パッドであっても、一次加工にも仕上げ加工にも有利に用いることが出来る。よって、本発明の研磨パッド及びその製造方法は、産業上の利用可能性を有する。
Claims (11)
- 略球状の気泡を含むポリウレタンポリウレア樹脂発泡体を有する研磨層を備える研磨パッドであって、
前記ポリウレタンポリウレア樹脂発泡体は、パルスNMRで得られる自由誘導減衰信号(FID)を最小二乗法によってスピン-スピン緩和時間T2の長い成分から順に差し引き、波形分離することにより、スピン-スピン緩和時間T2の長い方から順にL(非晶相)、M(界面相)、S(結晶相)の3成分に分けた場合において、M成分のスピン-スピン緩和時間T2Mが160~260μsであり、
前記ポリウレタンポリウレア樹脂発泡体の40℃、初期荷重10g、歪範囲0.01~4%、測定周波数0.2Hz、引っ張りモードにおける貯蔵弾性率E’が1~30MPaであり、且つ、
前記ポリウレタンポリウレア樹脂発泡体の密度Dが0.30~0.60g/cm3の範囲内であることを特徴とする、半導体デバイス研磨用の研磨パッド。 - 前記樹脂発泡体のM成分の成分存在比(CM)が55~80質量%の範囲であり、X=T2M/Dで求められるX値が、350~800の範囲である、請求項1に記載の研磨パッド。
- 前記ポリウレタンポリウレア樹脂発泡体の平均気泡径が120~185μmである、請求項1又は2に記載の研磨パッド。
- 前記ポリウレタンポリウレア樹脂発泡体のA硬度が20~55度である、請求項1~3のいずれか一項に記載の研磨パッド。
- 前記ポリウレタンポリウレア樹脂発泡体のD硬度が5~35度である、請求項1~4のいずれか一項に記載の研磨パッド。
- 前記研磨層の研磨面と反対の面側に前記研磨層よりも硬い層が張り合わされていることを特徴とする、請求項1~5のいずれか一項に記載の研磨パッド。
- イソシアネート基含有化合物(A)と、ポリイソシアネート化合物(B)と、ポリアミン化合物(D)と、水、整泡剤及び反応触媒を含む混合液(E)と、各成分に対して非反応性の気体とを準備する準備工程;
少なくとも、前記イソシアネート基含有化合物(A)と、ポリイソシアネート化合物(B)と、ポリアミン化合物(D)と、水、整泡剤及び反応触媒を含む混合液(E)と、各成分に対して非反応性の気体とを混合して発泡体成形用混合液を得る混合工程;
前記発泡体成形用混合液からポリウレタンポリウレア樹脂発泡体を成形する発泡体成形工程;及び
前記ポリウレタンポリウレア樹脂発泡体から、被研磨物を研磨加工するための研磨面を有する研磨層を形成する研磨層形成工程、を有することを特徴とする、請求項1~6のいずれか一項に記載の研磨パッドの製造方法。 - 前記準備工程において、更にポリオール化合物(C-2)を準備し、前記混合工程で混合することを特徴とする、請求項7に記載の研磨パッドの製造方法。
- 前記準備工程において、前記ポリアミン化合物(D)のアミノ基と前記ポリオール化合物(C-2)の水酸基との当量の和(活性水素基の当量)に対する前記ポリアミン化合物(D)のアミノ基の当量比が、0.70~0.97(アミノ基/(アミノ基+水酸基))となるように準備されることを特徴とする、請求項8に記載の研磨パッドの製造方法。
- 前記ポリアミン化合物(D)が、メチレンビス-o-クロロアニリン(MOCA)の単量体と多量体の混合物であって該多量体を15質量%以上含有する粗製MOCAであることを特徴とする、請求項7~9のいずれか1項に記載の研磨パッドの製造方法。
- 前記ポリオール化合物(C-2)が、数平均分子量500~5000のポリテトラメチレングリコールもしくはポリプロピレングリコール又はこれらの混合物であることを特徴とする、請求項8又は9に記載の研磨パッドの製造方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SG2013076724A SG194493A1 (en) | 2011-04-15 | 2012-04-16 | Polishing pad and manufacturing method therefor |
EP12770798.2A EP2698809B1 (en) | 2011-04-15 | 2012-04-16 | Polishing pad and manufacturing method therefor |
CN201280025414.9A CN103563056B (zh) | 2011-04-15 | 2012-04-16 | 研磨垫及其制造方法 |
US14/111,888 US10065286B2 (en) | 2011-04-15 | 2012-04-16 | Polishing pad and manufacturing method therefor |
KR1020137029912A KR101913885B1 (ko) | 2011-04-15 | 2012-04-16 | 연마 패드 및 그의 제조 방법 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011091285A JP5710353B2 (ja) | 2011-04-15 | 2011-04-15 | 研磨パッド及びその製造方法 |
JP2011-091285 | 2011-04-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012141329A1 true WO2012141329A1 (ja) | 2012-10-18 |
Family
ID=47009486
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/060275 WO2012141329A1 (ja) | 2011-04-15 | 2012-04-16 | 研磨パッド及びその製造方法 |
Country Status (8)
Country | Link |
---|---|
US (1) | US10065286B2 (ja) |
EP (1) | EP2698809B1 (ja) |
JP (1) | JP5710353B2 (ja) |
KR (1) | KR101913885B1 (ja) |
CN (1) | CN103563056B (ja) |
SG (1) | SG194493A1 (ja) |
TW (1) | TWI543846B (ja) |
WO (1) | WO2012141329A1 (ja) |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012115765A2 (en) * | 2011-02-24 | 2012-08-30 | 3M Innovative Properties Company | Coated abrasive article with foam backing and method of making |
JP6108096B2 (ja) * | 2013-04-18 | 2017-04-05 | 大日本印刷株式会社 | 凹凸構造体の製造方法 |
US9102034B2 (en) * | 2013-08-30 | 2015-08-11 | Rohm And Haas Electronic Materials Cmp Holdings, Inc. | Method of chemical mechanical polishing a substrate |
JP2015059199A (ja) * | 2013-09-20 | 2015-03-30 | Dic株式会社 | ウレタン組成物及び研磨材 |
JP6330628B2 (ja) * | 2013-11-11 | 2018-05-30 | 旭硝子株式会社 | ガラス基板の製造方法 |
JP6818489B2 (ja) * | 2016-09-30 | 2021-01-20 | 富士紡ホールディングス株式会社 | 研磨パッド及びその製造方法 |
US11524390B2 (en) * | 2017-05-01 | 2022-12-13 | Rohm And Haas Electronic Materials Cmp Holdings, Inc. | Methods of making chemical mechanical polishing layers having improved uniformity |
JP7292215B2 (ja) * | 2017-12-27 | 2023-06-16 | ニッタ・デュポン株式会社 | 研磨パッド |
JP6971839B2 (ja) * | 2017-12-27 | 2021-11-24 | ニッタ・デュポン株式会社 | 研磨パッド |
JP7099827B2 (ja) * | 2018-01-26 | 2022-07-12 | ニッタ・デュポン株式会社 | 研磨パッド |
JP7302168B2 (ja) * | 2018-12-20 | 2023-07-04 | Dic株式会社 | ウレタン樹脂組成物、及び、研磨パッド |
WO2021005914A1 (ja) * | 2019-07-08 | 2021-01-14 | 日本ポリテック株式会社 | 硬化物、オーバーコート膜、及びフレキシブル配線板 |
CN112649459A (zh) * | 2019-10-12 | 2021-04-13 | 中国石油化工股份有限公司 | 基于时域核磁共振的复合材料组分含量测定方法及系统 |
KR102298114B1 (ko) * | 2019-11-05 | 2021-09-03 | 에스케이씨솔믹스 주식회사 | 연마패드, 이의 제조방법 및 이를 이용한 반도체 소자의 제조방법 |
TWI761921B (zh) | 2019-10-30 | 2022-04-21 | 南韓商Skc索密思股份有限公司 | 研磨墊、製造該研磨墊之方法及使用該研磨墊以製造半導體裝置之方法 |
KR102293781B1 (ko) * | 2019-11-11 | 2021-08-25 | 에스케이씨솔믹스 주식회사 | 연마패드, 이의 제조방법 및 이를 이용한 반도체 소자의 제조방법 |
JP6941712B1 (ja) * | 2020-05-29 | 2021-09-29 | ニッタ・デュポン株式会社 | 研磨パッド |
EP3978190A1 (en) * | 2020-09-29 | 2022-04-06 | SKC Solmics Co., Ltd. | Polishing pad and method of fabricating semiconductor device using the same |
US12064845B2 (en) * | 2021-01-21 | 2024-08-20 | Rohm And Haas Electronic Materials Cmp Holdings, Inc. | Formulations for chemical mechanical polishing pads with high planarization efficiency and CMP pads made therewith |
US12064846B2 (en) | 2021-01-21 | 2024-08-20 | Rohm And Haas Electronic Materials Cmp Holdings, Inc. | Formulations for high porosity chemical mechanical polishing pads with high hardness and CMP pads made therewith |
US20230390970A1 (en) * | 2022-06-02 | 2023-12-07 | Rohm And Haas Electronic Materials Cmp Holdings, Inc. | Method of making low specific gravity polishing pads |
Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH106211A (ja) | 1996-06-26 | 1998-01-13 | Asahi Glass Co Ltd | 研磨パッドおよび板状材の研磨方法 |
JP2006114885A (ja) | 2004-09-17 | 2006-04-27 | Jsr Corp | 化学機械研磨パッド及び化学機械研磨方法 |
JP3788729B2 (ja) | 2000-08-23 | 2006-06-21 | 東洋ゴム工業株式会社 | 研磨パッド |
JP3924952B2 (ja) | 1998-10-13 | 2007-06-06 | 東レ株式会社 | 研磨装置および研磨パッド |
JP2007238783A (ja) | 2006-03-09 | 2007-09-20 | Mitsui Chemicals Inc | 発泡体 |
JP3983610B2 (ja) | 2002-07-02 | 2007-09-26 | 株式会社クラレ | 熱可塑性ポリウレタン発泡体およびそれからなる研磨パッド |
JP2009214275A (ja) * | 2008-03-12 | 2009-09-24 | Toyo Tire & Rubber Co Ltd | 研磨パッド |
JP4338150B2 (ja) | 2003-10-17 | 2009-10-07 | 東レ株式会社 | 発泡ポリウレタンおよびその製造方法 |
JP2009241224A (ja) * | 2008-03-31 | 2009-10-22 | Toyo Tire & Rubber Co Ltd | 研磨パッド作製用積層シート |
JP2009256473A (ja) | 2008-04-17 | 2009-11-05 | Nitta Haas Inc | 発泡ポリウレタンの製造方法および研磨パッド |
JP2010058194A (ja) | 2008-09-02 | 2010-03-18 | Fujibo Holdings Inc | 研磨パッドの製造方法 |
JP2010082708A (ja) * | 2008-09-29 | 2010-04-15 | Fujibo Holdings Inc | 研磨パッド |
JP2010082721A (ja) * | 2008-09-30 | 2010-04-15 | Fujibo Holdings Inc | 研磨パッド |
JP2010082719A (ja) | 2008-09-30 | 2010-04-15 | Fujibo Holdings Inc | 研磨パッドおよびその製造方法 |
JP2010240777A (ja) | 2009-04-06 | 2010-10-28 | Nitta Haas Inc | 研磨パッド |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003017359A1 (en) * | 2001-08-13 | 2003-02-27 | Ebara Corporation | Semiconductor device and production method therefor, and plating solution |
JP2003062748A (ja) | 2001-08-24 | 2003-03-05 | Inoac Corp | 研磨用パッド |
KR100877383B1 (ko) * | 2001-11-13 | 2009-01-07 | 도요 고무 고교 가부시키가이샤 | 연마 패드 및 그 제조 방법 |
TW592894B (en) * | 2002-11-19 | 2004-06-21 | Iv Technologies Co Ltd | Method of fabricating a polishing pad |
US7255810B2 (en) * | 2004-01-09 | 2007-08-14 | Cabot Microelectronics Corporation | Polishing system comprising a highly branched polymer |
US20090017729A1 (en) * | 2004-08-25 | 2009-01-15 | Jh Rhodes Company, Inc. | Polishing pad and methods of improving pad removal rates and planarization |
DE602005007125D1 (de) * | 2004-09-17 | 2008-07-10 | Jsr Corp | Chemisch-mechanisches Polierkissen und chemisch-mechanisches Polierverfahren |
JP4887023B2 (ja) * | 2004-10-20 | 2012-02-29 | ニッタ・ハース株式会社 | 研磨パッドの製造方法および研磨パッド |
US20060286906A1 (en) * | 2005-06-21 | 2006-12-21 | Cabot Microelectronics Corporation | Polishing pad comprising magnetically sensitive particles and method for the use thereof |
US20070141312A1 (en) * | 2005-12-21 | 2007-06-21 | James David B | Multilayered polishing pads having improved defectivity and methods of manufacture |
US7445847B2 (en) * | 2006-05-25 | 2008-11-04 | Rohm And Haas Electronic Materials Cmp Holdings, Inc. | Chemical mechanical polishing pad |
TWI432285B (zh) * | 2007-02-01 | 2014-04-01 | Kuraray Co | 研磨墊及研磨墊之製法 |
JP5166189B2 (ja) | 2008-09-29 | 2013-03-21 | 富士紡ホールディングス株式会社 | 研磨加工用の研磨パッドに用いられる研磨シートおよび研磨パッド |
US8162728B2 (en) * | 2009-09-28 | 2012-04-24 | Rohm And Haas Electronic Materials Cmp Holdings, Inc. | Dual-pore structure polishing pad |
-
2011
- 2011-04-15 JP JP2011091285A patent/JP5710353B2/ja active Active
-
2012
- 2012-04-13 TW TW101113248A patent/TWI543846B/zh active
- 2012-04-16 WO PCT/JP2012/060275 patent/WO2012141329A1/ja active Application Filing
- 2012-04-16 EP EP12770798.2A patent/EP2698809B1/en active Active
- 2012-04-16 CN CN201280025414.9A patent/CN103563056B/zh active Active
- 2012-04-16 US US14/111,888 patent/US10065286B2/en active Active
- 2012-04-16 SG SG2013076724A patent/SG194493A1/en unknown
- 2012-04-16 KR KR1020137029912A patent/KR101913885B1/ko active IP Right Grant
Patent Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH106211A (ja) | 1996-06-26 | 1998-01-13 | Asahi Glass Co Ltd | 研磨パッドおよび板状材の研磨方法 |
JP3924952B2 (ja) | 1998-10-13 | 2007-06-06 | 東レ株式会社 | 研磨装置および研磨パッド |
JP3788729B2 (ja) | 2000-08-23 | 2006-06-21 | 東洋ゴム工業株式会社 | 研磨パッド |
JP3983610B2 (ja) | 2002-07-02 | 2007-09-26 | 株式会社クラレ | 熱可塑性ポリウレタン発泡体およびそれからなる研磨パッド |
JP4338150B2 (ja) | 2003-10-17 | 2009-10-07 | 東レ株式会社 | 発泡ポリウレタンおよびその製造方法 |
JP2006114885A (ja) | 2004-09-17 | 2006-04-27 | Jsr Corp | 化学機械研磨パッド及び化学機械研磨方法 |
JP2007238783A (ja) | 2006-03-09 | 2007-09-20 | Mitsui Chemicals Inc | 発泡体 |
JP2009214275A (ja) * | 2008-03-12 | 2009-09-24 | Toyo Tire & Rubber Co Ltd | 研磨パッド |
JP2009241224A (ja) * | 2008-03-31 | 2009-10-22 | Toyo Tire & Rubber Co Ltd | 研磨パッド作製用積層シート |
JP2009256473A (ja) | 2008-04-17 | 2009-11-05 | Nitta Haas Inc | 発泡ポリウレタンの製造方法および研磨パッド |
JP2010058194A (ja) | 2008-09-02 | 2010-03-18 | Fujibo Holdings Inc | 研磨パッドの製造方法 |
JP2010082708A (ja) * | 2008-09-29 | 2010-04-15 | Fujibo Holdings Inc | 研磨パッド |
JP2010082721A (ja) * | 2008-09-30 | 2010-04-15 | Fujibo Holdings Inc | 研磨パッド |
JP2010082719A (ja) | 2008-09-30 | 2010-04-15 | Fujibo Holdings Inc | 研磨パッドおよびその製造方法 |
JP2010240777A (ja) | 2009-04-06 | 2010-10-28 | Nitta Haas Inc | 研磨パッド |
Non-Patent Citations (1)
Title |
---|
"Characterization of Polyurethane Resin using Pulse NMR and High Resolution Solid-State NMR", DIC TECHNICAL REVIEW, 2006, pages 7 - 12 |
Also Published As
Publication number | Publication date |
---|---|
US20140038503A1 (en) | 2014-02-06 |
CN103563056A (zh) | 2014-02-05 |
TWI543846B (zh) | 2016-08-01 |
EP2698809B1 (en) | 2019-02-13 |
EP2698809A4 (en) | 2015-03-04 |
KR101913885B1 (ko) | 2018-10-31 |
SG194493A1 (en) | 2013-12-30 |
EP2698809A1 (en) | 2014-02-19 |
US10065286B2 (en) | 2018-09-04 |
JP2012223835A (ja) | 2012-11-15 |
JP5710353B2 (ja) | 2015-04-30 |
KR20140025453A (ko) | 2014-03-04 |
CN103563056B (zh) | 2016-05-25 |
TW201242711A (en) | 2012-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5710353B2 (ja) | 研磨パッド及びその製造方法 | |
JP5687118B2 (ja) | 研磨パッド及びその製造方法 | |
JP5945874B2 (ja) | 研磨パッド及びその製造方法 | |
JP5687119B2 (ja) | 研磨パッド及びその製造方法 | |
TWI767882B (zh) | 研磨墊及其製造方法 | |
KR102587715B1 (ko) | 연마 패드 및 그 제조 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12770798 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14111888 Country of ref document: US Ref document number: 2012770798 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20137029912 Country of ref document: KR Kind code of ref document: A |