WO2012137374A1 - 非水系二次電池用セパレータおよび非水系二次電池 - Google Patents

非水系二次電池用セパレータおよび非水系二次電池 Download PDF

Info

Publication number
WO2012137374A1
WO2012137374A1 PCT/JP2011/074257 JP2011074257W WO2012137374A1 WO 2012137374 A1 WO2012137374 A1 WO 2012137374A1 JP 2011074257 W JP2011074257 W JP 2011074257W WO 2012137374 A1 WO2012137374 A1 WO 2012137374A1
Authority
WO
WIPO (PCT)
Prior art keywords
separator
secondary battery
porous layer
aqueous secondary
weight
Prior art date
Application number
PCT/JP2011/074257
Other languages
English (en)
French (fr)
Inventor
西川 聡
Original Assignee
帝人株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=46968798&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2012137374(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 帝人株式会社 filed Critical 帝人株式会社
Priority to KR1020137000122A priority Critical patent/KR101297768B1/ko
Priority to CN201180049838.4A priority patent/CN103155220B/zh
Priority to EP11863050.8A priority patent/EP2696392B1/en
Priority to JP2012507203A priority patent/JP4988972B1/ja
Priority to US13/704,152 priority patent/US9281508B2/en
Publication of WO2012137374A1 publication Critical patent/WO2012137374A1/ja
Priority to US14/880,104 priority patent/US10193117B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • H01M50/461Separators, membranes or diaphragms characterised by their combination with electrodes with adhesive layers between electrodes and separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/426Fluorocarbon polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a separator for a non-aqueous secondary battery and a non-aqueous secondary battery.
  • Non-aqueous secondary batteries such as lithium ion secondary batteries are widely used as power sources for portable electronic devices such as notebook computers, mobile phones, digital cameras, and camcorders. Further, in recent years, these batteries have been studied for application to automobiles and the like because of their high energy density.
  • a technique is known that uses a separator in which a porous layer made of a polyvinylidene fluoride resin (hereinafter also referred to as an adhesive porous layer) is formed on a polyolefin microporous film, which is a conventional separator (for example, see Patent Document 1).
  • an adhesive porous layer made of a polyvinylidene fluoride resin (hereinafter also referred to as an adhesive porous layer) is formed on a polyolefin microporous film, which is a conventional separator (for example, see Patent Document 1).
  • the adhesive porous layer is hot-pressed over the electrode in a state containing the electrolytic solution, the electrode and the separator can be satisfactorily bonded and can function as an adhesive. Therefore, the cycle life of the soft pack battery can be improved.
  • a battery element is manufactured by winding the electrode and the separator in an overlapped state, and the element is enclosed in the metal can exterior together with an electrolytic solution. Is made.
  • a battery element is produced in the same manner as the battery with the above metal can, and this is put together with the electrolyte in the soft pack exterior.
  • a battery is produced by encapsulating and finally adding a hot press process. Therefore, in the case of using the separator having the adhesive porous layer as described above, a battery element can be produced in the same manner as the battery with the above metal can outer case. There is also an advantage that no change is required.
  • a positive electrode or a negative electrode of a general non-aqueous secondary battery includes a current collector, and an active material layer including an electrode active material and a binder resin formed on the current collector.
  • the adhesive porous layer mentioned above adhere attaches with respect to the binder resin in an electrode, when making it join with an electrode by hot press. Therefore, in order to ensure better adhesiveness, it is preferable that the amount of the binder resin in the electrode is large.
  • the binder resin used for the electrode is generally a polyvinylidene fluoride resin, but in recent years, the use of styrene-butadiene rubber is increasing. For an electrode using such a styrene-butadiene rubber, it has been difficult to obtain sufficient battery characteristics while achieving both ion permeability and adhesiveness in a separator having a conventional adhesive porous layer.
  • the present invention provides a separator for a non-aqueous secondary battery that is superior in adhesion to an electrode compared to the prior art and that can ensure sufficient ion permeability even after bonding to the electrode. Objective.
  • a separator for a non-aqueous secondary battery comprising a porous substrate and an adhesive porous layer containing a polyvinylidene fluoride-based resin formed on at least one surface of the porous substrate, the adhesive A separator for a non-aqueous secondary battery, wherein the crystalline size of the porous porous layer is 1 nm or more and 13 nm or less.
  • the weight of the adhesive porous layer formed on one surface of the porous substrate is 0.5 g / m 2 or more and 1.5 g / m 2 or less.
  • Separator for non-aqueous secondary battery 3. 3.
  • the total weight of both surfaces of the adhesive porous layer formed on both surfaces of the porous substrate is 1.0 g / m 2 or more and 3.0 g / m 2 or less, and one surface side of the adhesive porous layer 4.
  • a value obtained by subtracting the Gurley value of the porous base material from the Gurley value of the separator for a nonaqueous secondary battery in a state where the adhesive porous layer is formed is 300 seconds / 100 cc or less. 5.
  • the non-aqueous secondary battery separator as described in any one of 1 to 4 above. 6).
  • the present invention it is possible to provide a separator for a non-aqueous secondary battery that is superior in adhesion to an electrode as compared with the prior art and can ensure sufficient ion permeability even after being bonded to the electrode.
  • a separator of the present invention it is possible to provide a non-aqueous secondary battery having a high energy density and a high performance aluminum laminate pack exterior.
  • a separator for a non-aqueous secondary battery according to the present invention includes a porous substrate and an adhesive porous layer containing a polyvinylidene fluoride-based resin formed on at least one surface of the porous substrate.
  • the numerical value range indicated by “ ⁇ ” means a numerical range including an upper limit value and a lower limit value.
  • the porous substrate means a substrate having pores or voids therein.
  • a substrate include a microporous film, a porous sheet made of a fibrous material such as a nonwoven fabric and a paper sheet, or one or more other porous layers laminated on the microporous film or the porous sheet.
  • the composite porous sheet etc. which were made to be mentioned can be mentioned.
  • a microporous membrane is a membrane that has a large number of micropores inside and a structure in which these micropores are connected, and allows gas or liquid to pass from one surface to the other. Means.
  • the material constituting the porous substrate can be either an organic material or an inorganic material having electrical insulation.
  • a thermoplastic resin as a constituent material of the base material.
  • the shutdown function is a function to prevent the thermal runaway of the battery by blocking the movement of ions by melting the thermoplastic resin and closing the pores of the porous substrate when the battery temperature rises.
  • the thermoplastic resin a thermoplastic resin having a melting point of less than 200 ° C. is suitable, and polyolefin is particularly preferable.
  • a polyolefin microporous membrane is suitable as a porous substrate using polyolefin.
  • a polyolefin microporous membrane having sufficient mechanical properties and ion permeability and applied to a conventional separator for a non-aqueous secondary battery can be used.
  • the polyolefin microporous membrane preferably contains polyethylene from the viewpoint of having the shutdown function described above, and the polyethylene content is preferably 95% by weight or more.
  • a polyolefin microporous film containing polyethylene and polypropylene is preferable from the viewpoint of imparting heat resistance that does not easily break when exposed to high temperatures.
  • a polyolefin microporous membrane include a microporous membrane in which polyethylene and polypropylene are mixed in one sheet.
  • Such a microporous membrane preferably contains 95% by weight or more of polyethylene and 5% by weight or less of polypropylene from the viewpoint of achieving both a shutdown function and heat resistance.
  • the polyolefin microporous membrane has a structure of at least two layers, and one of the two layers includes polyethylene and the other layer includes polypropylene.
  • a polyolefin microporous membrane having a structure is also preferred.
  • the weight average molecular weight of polyolefin is preferably 100,000 to 5,000,000. If the weight average molecular weight is less than 100,000, it may be difficult to ensure sufficient mechanical properties. On the other hand, if it exceeds 5 million, the shutdown characteristics may be deteriorated or molding may be difficult.
  • Such a polyolefin microporous membrane can be produced, for example, by the following method. That is, (i) a step of extruding a molten polyolefin resin from a T-die to form a sheet, (ii) a step of subjecting the sheet to crystallization treatment, (iii) a step of stretching the sheet, and (iv) heat treatment of the sheet A method of forming the microporous film by sequentially performing the steps is performed.
  • a step of melting a polyolefin resin together with a plasticizer such as liquid paraffin, extruding it from a T-die and cooling it to form a sheet (ii) a step of stretching the sheet, (iii) Examples include a method of forming a microporous film by sequentially performing a step of extracting a plasticizer from the sheet, and (iv) a step of heat-treating the sheet.
  • a plasticizer such as liquid paraffin
  • porous sheets made of fibrous materials include polyesters such as polyethylene terephthalate, polyolefins such as polyethylene and polypropylene, heat-resistant polymers such as aromatic polyamides and polyimides, polyethersulfone, polysulfone, polyetherketone, and polyetherimide. Or a porous sheet made of a mixture of these fibrous materials.
  • the composite porous sheet a structure in which a functional layer is laminated on a porous sheet made of a microporous film or a fibrous material can be adopted. Such a composite porous sheet is preferable in that a further function can be added by the functional layer.
  • a porous layer made of a heat resistant resin or a porous layer made of a heat resistant resin and an inorganic filler can be used.
  • the heat resistant resin include one or more heat resistant polymers selected from aromatic polyamide, polyimide, polyethersulfone, polysulfone, polyetherketone, and polyetherimide.
  • a metal oxide such as alumina or a metal hydroxide such as magnesium hydroxide can be suitably used.
  • the composite method include a method of coating a functional sheet on a porous sheet, a method of bonding with an adhesive, and a method of thermocompression bonding.
  • the film thickness of the porous substrate is preferably in the range of 5 to 25 ⁇ m from the viewpoint of obtaining good mechanical properties and internal resistance.
  • the Gurley value (JIS P8117) of the porous substrate is preferably in the range of 50 to 800 seconds / 100 cc from the viewpoint of preventing short circuit of the battery and obtaining sufficient ion permeability.
  • the puncture strength of the porous substrate is preferably 300 g or more from the viewpoint of improving the production yield.
  • Polyvinylidene fluoride resin For the separator for a non-aqueous secondary battery of the present invention, a polyvinylidene fluoride resin having a weight average molecular weight of 100,000 to 3,000,000 is suitably used.
  • a polyvinylidene fluoride resin having a weight average molecular weight of less than 100,000 is applied, the adhesive strength with the electrode tends to be weak, which is not preferable.
  • the weight average molecular weight is more preferably 500,000 or more from the viewpoint of adhesive strength. Further, when the weight average molecular weight is larger than 3 million, the viscosity of the slurry containing the resin is increased, so that it is difficult to form the adhesive porous layer, or good crystals are formed in the adhesive porous layer.
  • the weight average molecular weight is more preferably 2 million or less, and further preferably 1.2 million or less.
  • the weight average molecular weight of the polyvinylidene fluoride resin can be determined by gel permeation chromatography (GPC method).
  • the polyvinylidene fluoride-based resin a homopolymer of vinylidene fluoride (that is, polyvinylidene fluoride), a copolymer of vinylidene fluoride and another copolymerizable monomer, or a mixture thereof is used.
  • the monomer copolymerizable with vinylidene fluoride for example, one kind or two or more kinds such as tetrafluoroethylene, hexafluoropropylene, trifluoroethylene, trichloroethylene, or vinyl fluoride can be used.
  • the polyvinylidene fluoride resin preferably contains 70 mol% or more of vinylidene fluoride as a structural unit.
  • a polyvinylidene fluoride resin containing 98 mol% or more of vinylidene fluoride is preferable from the viewpoint of securing sufficient mechanical properties in the bonding step with the electrode.
  • the above-mentioned polyvinylidene fluoride resin having a relatively high molecular weight can be obtained by emulsion polymerization or suspension polymerization, particularly preferably suspension polymerization.
  • the crystal structure of the adhesive porous layer is an important technical element.
  • the crystal structure has a crystal size in the range of 1 to 13 nm.
  • the adhesive porous layer is composed of a polyvinylidene fluoride-based resin, has a number of micropores inside, and has a structure in which these micropores are connected. It means a porous layer in which gas or liquid can pass from one side to the other side.
  • the amorphous part is responsible for adhesion, and the ionic permeability is mainly borne by pores, and the amorphous part also contributes to the ion permeability.
  • the crystal part has a function of maintaining its structure in a process such as hot pressing, but is an inhibitory factor for adhesion and ion permeability.
  • a structure in which crystals are finely and uniformly distributed is preferable because it can be bonded uniformly, and defects can be reduced and good adhesiveness can be secured.
  • the crystal size of the adhesive porous layer is preferably 1 to 13 nm, and more preferably 3 to 10 nm. Further, by having such a crystal size, the porous structure of the adhesive porous layer can be favorably maintained even after being adhered to the electrode, and the deterioration of the battery characteristics can be prevented also from such a side.
  • the crystal size of the adhesive porous layer in the range of 1 to 13 nm, a great advantage can be obtained in that good adhesiveness is exhibited regardless of the type of binder resin or electrolyte of the electrode. There is. According to such a separator, choices and combinations of constituent materials of the battery are widened, and various nonaqueous secondary batteries can be manufactured.
  • the crystal size is preferably as small as possible from the viewpoint of uniformity, but it is practically difficult to form a porous structure smaller than 1 nm, and is preferably 3 nm or more from the viewpoint of ease of formation. On the other hand, if the crystal size is larger than 13 nm, the ion permeability after bonding becomes insufficient, and it becomes difficult to obtain a uniform bonded state, which is not preferable in terms of battery characteristics. From such a viewpoint, the crystal size is more preferably 10 nm or less.
  • the temperature of the solidification step when forming the adhesive porous layer is one factor, and the crystal size tends to decrease as the temperature is lowered.
  • the selection of a polyvinylidene fluoride resin is also an important factor. When the molecular weight of the polyvinylidene fluoride resin is higher, the crystal size tends to be smaller. When a polyvinylidene fluoride resin having a weight average molecular weight of 500,000 or more is used, it is relatively easy to obtain an appropriate crystal size in the present invention. Can be realized. In addition, the crystal size decreases as the copolymerization component is added to the polyvinylidene fluoride.
  • the polyvinylidene fluoride resin in which CF 2 and CH 2 are randomly arranged has a smaller crystal size, and such a polymer is easier to obtain by emulsion polymerization than suspension polymerization.
  • the polyvinylidene fluoride resin having a branched structure tends to have a smaller crystal size, and the crystal size tends to decrease as the molecular weight distribution is wider.
  • the composition of the coating liquid is one factor for controlling one crystal size, and the crystal size tends to decrease as the addition of the phase separation agent to the coating liquid is decreased.
  • the above crystal size control method is a method of suppressing crystal size growth by suppressing crystallization. Apart from such a method, there is also a method of suppressing the growth of crystal size by adding an appropriate nucleating agent to the coating solution and greatly accelerating the crystallization rate.
  • an inorganic filler such as a metal oxide such as alumina or silica or a metal hydroxide such as magnesium hydroxide can be suitably used.
  • the nucleating agent preferably has a particle size of 10 nm or less, more preferably 5 nm or less.
  • a slurry in which the inorganic filler is dispersed in the coating liquid may be used when the above-described adhesive porous layer is formed.
  • an inorganic filler is mixed in the adhesive porous layer, the adhesiveness to the electrode may be lowered. Therefore, a configuration in which the inorganic filler is not contained in the adhesive porous layer is preferable.
  • control factors described above are factors that affect the formation of a porous structure, and it is not preferable to control only from the viewpoint of controlling the crystal size. That is, it is preferable to determine the conditions from the viewpoints of both the crystal size and the porous structure.
  • the preferred range of each condition such as the composition of the coating liquid and the solidification temperature varies depending on the resin to be selected, and therefore the preferred range of each condition cannot be said unconditionally.
  • the adhesive porous layer can be mixed with fillers or other additives made of inorganic or organic substances for the purpose of improving the slipperiness and heat resistance of the separator. In that case, it is preferable to make it content and particle size of the grade which does not inhibit the effect of this invention.
  • the inorganic filler the above-described metal oxide, metal hydroxide, or the like can be used.
  • organic filler for example, an acrylic resin or the like can be used.
  • the separator for a non-aqueous secondary battery of the present invention comprises a porous substrate and an adhesive porous layer containing a polyvinylidene fluoride resin formed on at least one surface of the porous substrate.
  • the adhesive porous layer is an adhesive layer that adheres to the electrode by hot pressing in a state containing the electrolytic solution, it needs to exist as the outermost layer of the separator.
  • it is preferable to adhere both the positive electrode and the negative electrode to the separator from the viewpoint of cycle life it is preferable to form an adhesive porous layer on the front and back of the porous substrate.
  • the adhesive porous layer preferably has a sufficiently porous structure from the viewpoint of ion permeability.
  • the value obtained by subtracting the Gurley value of the porous base material from the Gurley value of the non-aqueous secondary battery separator in a state where the adhesive porous layer is formed is 300 seconds / 100 cc or less, more preferably 150. Second / 100 cc or less, more preferably 100 sec / 100 cc or less. When this difference is higher than 300 seconds / 100 cc, the adhesive porous layer is too dense to inhibit ion permeation, and sufficient battery characteristics may not be obtained.
  • the Gurley value of the separator for a non-aqueous secondary battery of the present invention is preferably in the range of 50 seconds / 100 cc to 800 seconds / 100 cc from the viewpoint of obtaining sufficient battery performance.
  • the porosity of the non-aqueous secondary battery separator is suitably in the range of 30% or more and 60% or less from the viewpoint of obtaining the effects of the present invention and good mechanical properties of the separator.
  • the weight of the polyvinylidene fluoride resin is preferably in the range of 0.5 to 1.5 g / m 2 on one side. If it is less than 0.5 g / m 2 , the adhesion to the electrode may be insufficient. On the other hand, if it is more than 1.5 g / m 2 , the ion permeability is inhibited and the load characteristics of the battery tend to be lowered, which is not preferable.
  • the weight of the polyvinylidene fluoride resin is preferably 1.0 to 3.0 g / m 2 when the porous layer made of the polyvinylidene fluoride resin is formed on both the front and back surfaces.
  • the weight difference between the front and back surfaces is also important.
  • the total weight of both surfaces of the adhesive porous layer formed on the front and back of the porous substrate is 1.0 to 3.0 g / m 2
  • the weight of one surface side of the adhesive porous layer is The weight difference on the other side is preferably 20% or less with respect to the total weight of both sides. If this exceeds 20%, curling may become prominent, which may hinder handling and may reduce cycle characteristics.
  • the separator for a non-aqueous secondary battery of the present invention described above is an adhesive porous material in which a solution containing a polyvinylidene fluoride resin is directly applied onto a porous substrate to solidify the polyvinylidene fluoride resin. It can be manufactured by a method in which the layer is formed integrally on the porous substrate.
  • a polyvinylidene fluoride resin is dissolved in a solvent to prepare a coating solution.
  • This coating solution is applied onto the porous substrate and immersed in an appropriate coagulation solution.
  • the layer made of polyvinylidene fluoride resin has a porous structure.
  • the coagulating liquid is removed by washing with water, and the adhesive porous layer can be integrally formed on the porous substrate by drying.
  • a good solvent that dissolves the polyvinylidene fluoride resin can be used.
  • a good solvent for example, a polar amide solvent such as N-methylpyrrolidone, dimethylacetamide, dimethylformamide, dimethylformamide and the like can be suitably used.
  • a phase separation agent that induces phase separation in addition to the good solvent.
  • phase separation agent include water, methanol, ethanol, propyl alcohol, butyl alcohol, butanediol, ethylene glycol, propylene glycol, and tripropylene glycol.
  • Such a phase separation agent is preferably added in a range that can ensure a viscosity suitable for coating.
  • what is necessary is just to mix or melt
  • the composition of the coating solution preferably includes a polyvinylidene fluoride resin at a concentration of 3 to 10% by weight.
  • a solvent it is preferable to use a mixed solvent containing 60% by weight or more of a good solvent and 40% by weight or less of a phase separation agent from the viewpoint of forming an appropriate porous structure.
  • the coagulation liquid water, a mixed solvent of water and the good solvent, or a mixed solvent of water, the good solvent, and the phase separation agent can be used.
  • a mixed solvent of water, a good solvent, and a phase separation agent is preferable.
  • the mixing ratio of the good solvent and the phase separation agent should be adjusted to the mixing ratio of the mixed solvent used for dissolving the polyvinylidene fluoride resin.
  • the concentration of water is preferably 40 to 90% by weight from the viewpoint of forming a good porous structure and improving productivity.
  • the solidification temperature is preferably about ⁇ 20 to 60 ° C. from the viewpoint of controlling the crystallinity.
  • the conventional coating methods such as Meyer bar, die coater, reverse roll coater, and gravure coater can be applied to the porous substrate.
  • the adhesive porous layer is formed on both sides of the porous substrate, it is possible to solidify, wash and dry after coating the coating solution one side at a time. From the viewpoint of productivity, it is preferable to solidify, wash and dry after coating.
  • the separator of this invention can be manufactured also with the dry-type coating method besides the wet coating method mentioned above.
  • the dry coating method is a method in which a coating liquid containing a polyvinylidene fluoride resin and a solvent is applied onto a porous substrate, and the solvent is removed by volatilization by drying the coating liquid. How to get.
  • the coating film tends to be a dense film compared to the wet coating method, and it is almost impossible to obtain a porous layer unless a filler or the like is added to the coating liquid.
  • a filler or the like is added to the coating liquid.
  • the separator of the present invention can also be produced by a method in which an adhesive porous layer and a porous substrate are prepared separately, and these sheets are superposed and combined by thermocompression bonding or an adhesive.
  • a method of obtaining the adhesive porous layer as an independent sheet the coating liquid is applied onto the release sheet, and the adhesive porous layer is formed by using the wet coating method or the dry coating method described above. Examples include a method of peeling only the porous layer.
  • Non-aqueous secondary battery of the present invention is characterized by using the separator of the present invention described above.
  • the non-aqueous secondary battery has a configuration in which a separator is disposed between a positive electrode and a negative electrode, and these battery elements are enclosed in an exterior together with an electrolytic solution.
  • a lithium ion secondary battery is suitable as the non-aqueous secondary battery.
  • the structure which formed the electrode layer which consists of a positive electrode active material, binder resin, and a conductive support agent on a positive electrode collector can be employ
  • the positive electrode active material include lithium cobaltate, lithium nickelate, spinel structure lithium manganate, and olivine structure lithium iron phosphate.
  • the adhesive porous layer of the separator is disposed on the positive electrode side, since the polyvinylidene fluoride resin has excellent oxidation resistance, LiMn 1/2 Ni 1 1 that can operate at a high voltage of 4.2 V or higher.
  • a positive electrode active material such as 2 O 2 or LiCo 1/3 Mn 1/3 Ni 1/3 O 2 can be easily applied.
  • binder resin examples include polyvinylidene fluoride resin.
  • conductive assistant examples include acetylene black, ketjen black, and graphite powder.
  • current collector examples include aluminum foil having a thickness of 5 to 20 ⁇ m.
  • the negative electrode a structure in which an electrode layer made of a negative electrode active material and a binder resin is formed on the negative electrode current collector can be adopted, and a conductive additive may be added to the electrode layer as necessary.
  • a negative electrode active material for example, a carbon material that can occlude lithium electrochemically, a material that forms an alloy with lithium such as silicon or tin, and the like can be used.
  • the binder resin include polyvinylidene fluoride resin and butylene-stadiene rubber.
  • the separator for a non-aqueous secondary battery since the adhesiveness is good, sufficient adhesiveness can be ensured even when not only polyvinylidene fluoride resin but also a butylene-stadiene rubber is used as the negative electrode binder.
  • the conductive assistant include acetylene black, ketjen black, and graphite powder.
  • the current collector include copper foil having a thickness of 5 to 20 ⁇ m. Moreover, it can replace with said negative electrode and can also use metal lithium foil as a negative electrode.
  • the electrolytic solution has a structure in which a lithium salt is dissolved in an appropriate solvent.
  • the lithium salt include LiPF 6 , LiBF 4 , LiClO 4, and the like.
  • the solvent include cyclic carbonates such as ethylene carbonate, propylene carbonate, fluoroethylene carbonate, and difluoroethylene carbonate, chain carbonates such as dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, and fluorine-substituted products thereof, ⁇ -butyrolactone, ⁇ -Cyclic esters such as valerolactone or a mixed solvent thereof can be suitably used.
  • the separator provided with the conventional adhesive porous layer it may be difficult to exhibit the adhesion to the electrode depending on the type of the electrolytic solution used, but according to the separator of the present invention, the type of the electrolytic solution However, there is a great advantage in that good adhesiveness can be exhibited.
  • the separator for a non-aqueous secondary battery of the present invention can be applied to a battery with a metal can exterior, but it is suitably used for a soft pack battery with an aluminum laminate film exterior because of its good adhesiveness to the electrode.
  • the positive electrode and the negative electrode are joined via a separator, impregnated with an electrolytic solution, and enclosed in an aluminum laminate film.
  • a non-aqueous secondary battery can be obtained by hot-pressing it.
  • an electrode and a separator can be bonded well, and a non-aqueous secondary battery excellent in cycle life can be obtained.
  • the adhesion between the electrode and the separator is good, the battery is excellent in safety.
  • [Measuring method] Measurement method of crystal size of adhesive porous layer
  • the polyvinylidene fluoride resin peeled off from the separator was used as a sample, and the crystal size was determined by the X-ray diffraction method.
  • “NANO-Viewer” manufactured by Rigaku Corporation
  • the detection was performed using a transmission method at 25 ° C. and using an imaging plate.
  • measuring method of film thickness It measured using the contact-type thickness meter (made by LITEMATIC Mitutoyo).
  • the measurement terminal was a cylindrical one having a diameter of 5 mm, and was adjusted so that a load of 7 g was applied during the measurement.
  • Weight A sample was cut into 10 cm ⁇ 10 cm and its weight was measured. The basis weight was determined by dividing the weight by the area.
  • Weight of polyvinylidene fluoride resin The weight of the polyvinylidene fluoride resin was measured from the spectrum intensity of FK ⁇ using an energy dispersive X-ray fluorescence analyzer (EDX-800HS Shimadzu Corporation). In this measurement, the weight of the polyvinylidene fluoride resin on the surface irradiated with X-rays is measured. Therefore, when a porous layer made of polyvinylidene fluoride resin is formed on both the front and back surfaces, the weight of each polyvinylidene fluoride resin on the front and back surfaces is measured by measuring the front and back surfaces. The weight can be measured.
  • the porosity ⁇ (%) of the composite separator was calculated from Equation 3 below.
  • ⁇ 1 ⁇ (Wa / 0.95 + Wb / 1.78) / t ⁇ ⁇ 100 (3)
  • Wa is weight per unit area of the base material (g / m 2)
  • Wb is weight of polyvinylidene fluoride resin (g / m 2)
  • t represents the thickness ([mu] m).
  • the crystal size of the adhesive porous layer (crystal size of the PVdF resin), the film thickness of the separator, the basis weight and the porosity, the weight of the adhesive porous layer (the total weight of both surfaces, the weight of the surface, the back surface)
  • Table 1 shows the measurement results of the weight, the ratio of the difference between the weight on the front side and the weight on the back side to the total weight on both sides), and the Gurley value.
  • the separators of the following examples and comparative examples are also collectively shown in Table 1.
  • Example 2 The non-aqueous secondary resin of the present invention was used in the same manner as in Example 1 except that KF polymer W # 1700 manufactured by Kureha Chemical Co., which is polyvinylidene fluoride, was used as the polyvinylidene fluoride resin, and the temperature of the coagulation liquid was set to 0 ° C. A battery separator was obtained.
  • Examples 3 to 6 Using the same coating liquid as in Example 1 and a polyethylene microporous membrane, by the same method, only the coating amount was changed as shown in Table 1 to obtain the non-aqueous secondary battery separator of the present invention. It was.
  • Example 7 and 8 Using the same coating liquid as in Example 1 and a polyethylene microporous membrane, the coating amount on the front and back sides was changed as shown in Table 1 by the same method, and the nonaqueous secondary battery separator of the present invention was used. Obtained.
  • Example 9 Except that a polyolefin microporous membrane (M824 Celgard) having a film thickness of 12 ⁇ m, a Gurley value of 425 seconds / 100 cc, and a porosity of 38% consisting of a three-layer structure of polypropylene / polyethylene / polypropylene was used as the polyolefin microporous membrane.
  • the separator for non-aqueous secondary batteries of this invention was obtained like 1.
  • a separator for a non-aqueous secondary battery of the present invention was obtained in the same manner as in Example 1 except that it was solidified by dipping in a 30/13 weight ratio coagulation liquid (10 ° C.).
  • Example 1 A separator for a non-aqueous secondary battery was obtained in the same manner as in Example 1 except that the temperature of the coagulation liquid was 60 ° C.
  • An adhesive porous layer made of polyvinylidene fluoride resin is formed on the polyolefin microporous film by solidifying by immersing in a 30/20 weight ratio coagulation liquid (40 ° C.), washing with water and drying. A non-aqueous secondary battery separator was obtained.
  • a lead tab was welded to the positive electrode and the negative electrode, the positive and negative electrodes were joined via a separator, an electrolyte solution was impregnated, and sealed in an aluminum pack using a vacuum sealer.
  • the electrolyte used here was 1M LiPF 6 ethylene carbonate / ethyl methyl carbonate (3/7 weight ratio).
  • a test battery was produced by applying a load of 20 kg per 1 cm 2 of electrode with a hot press machine and performing hot pressing at 90 ° C. for 2 minutes.
  • Load characteristic test The load characteristic test was performed using the produced non-aqueous secondary battery. The load characteristics of the battery were determined by measuring a relative discharge capacity of 2C with reference to a discharge capacity of 0.2C at 25 ° C., and using this as an index. This test was performed on the batteries using the separators of Examples 1 to 8, Example 10, and Comparative Examples 1 and 2. The results are shown in Table 2.
  • porous layer Most of the porous layer is attached to the electrode surface, but the one that is partially damaged is judged to have a medium uniformity ( ⁇ ), and most of the adhesive porous layer is attached to the electrode surface. Those that were severely damaged were judged to have poor uniformity (x).
  • thermomechanical property measurement TMA
  • each separator was cut out to a width of 4 mm, and both ends thereof were pressed with a chuck, and set so that the distance between chucks was 10 mm.
  • the temperature at which the separator was broken was measured by increasing the temperature at an applied load of 10 mN and a temperature increase rate of 10 ° C./min.
  • the separator of Example 1 was confirmed to break at 155 ° C., whereas the separator of Example 9 was confirmed to break at 180 ° C. It can be seen that applying polypropylene is preferable from the viewpoint of heat resistance.
  • Example 1 and Comparative Examples 1 and 2 were tested for adhesion to electrodes using various electrolytes in the same manner as described above.
  • 1M LiPF 6 ethylene carbonate / ethyl methyl carbonate (3/7 weight ratio) is used as the electrolytic solution A
  • 1M LiPF 6 ethylene carbonate / propylene carbonate / ethyl methyl carbonate (3/2/5 weight ratio) is used as the electrolytic solution B
  • 1M LiPF 6 ethylene carbonate / propylene carbonate (1/1 weight ratio) was used as the electrolytic solution C.
  • Table 3 The results are shown in Table 3.
  • Table 3 shows the relative peel strength when the peel strength obtained for each of the positive electrode and negative electrode of the separator of Example 1 is 100, and the average peel strength between the positive electrode and the negative electrode is 70 or more. Is described as ⁇ , those of 50 or more and less than 70 are described as ⁇ , and those of less than 50 are described as ⁇ .
  • the non-aqueous secondary battery separator of the present invention can be suitably used for a non-aqueous secondary battery, and is particularly suitable for a non-aqueous secondary battery having an aluminum laminate exterior, which is important for bonding with an electrode.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Abstract

 本発明は、電極との接着性に優れ、かつ、電極と接着した後にも十分なイオン透過性を確保できる非水系二次電池用セパレータを提供することを目的とする。本発明の非水系二次電池用セパレータは、多孔質基材と、多孔質基材の少なくとも一方の面に形成されたポリフッ化ビニリデン系樹脂を含む接着性多孔質層と、を備えた非水系二次電池用セパレータであって、前記接着性多孔質層の結晶サイズが1~13nmであることを特徴とする。

Description

非水系二次電池用セパレータおよび非水系二次電池
 本発明は非水系二次電池用セパレータおよび非水系二次電池に関するものである。
 リチウムイオン二次電池に代表されるような非水系二次電池は、ノートパソコン、携帯電話、デジタルカメラ、カムコーダなどの携帯用電子機器の電源として広く用いられている。更に近年においてこれらの電池は高エネルギー密度を有するという特徴から自動車などへの適用も検討されている。
 携帯用電子機器の小型化・軽量化に伴い、非水系二次電池の外装の簡素化がなされてきている。当初は外装としてステンレス製の電池缶が用いられていたが、アルミ缶製の外装が開発され、さらには現在ではアルミラミネートパック製のソフトパック外装も開発されている。アルミラミネート製のソフトパック外装の場合、外装が柔らかいため、充放電に伴って電極とセパレータとの間に隙間が形成される場合があり、サイクル寿命が悪くなるという技術的課題がある。この課題を解決するという観点から、電極とセパレータを接着する技術が重要であり、多くの技術的提案がなされている。
 その1つの提案として、従来のセパレータであるポリオレフィン微多孔膜にポリフッ化ビニリデン系樹脂からなる多孔質層(以下、接着性多孔質層ともいう)を成形したセパレータを用いる技術が知られている(例えば特許文献1参照)。接着性多孔質層は、電解液を含んだ状態で電極に重ねて熱プレスすると、電極とセパレータを良好に接合させることができ、接着剤として機能し得る。そのため、ソフトパック電池のサイクル寿命を改善することができる。
 また、従来の金属缶外装を用いて電池を作製する場合、電極とセパレータを重ね合わせた状態で捲回して電池素子を作製し、この素子を電解液と共に金属缶外装内に封入して、電池を作製する。一方、上述した特許文献1のようなセパレータを用いてソフトパック電池を作製する場合は、上記の金属缶外装の電池と同様にして電池素子を作製し、これを電解液と共にソフトパック外装内に封入して、最後に熱プレス工程を加えて、電池を作製する。よって、上記のような接着性多孔質層を有したセパレータを用いる場合、上記の金属缶外装の電池と同様にして電池素子を作製できるため、従来の金属缶外装電池の製造工程に対し大幅な変更を加える必要がない、というメリットもある。
 上述した背景から、ポリオレフィン微多孔膜に接着性多孔質層を積層したセパレータは、過去に様々な技術提案がなされてきた。例えば、特許文献1では、十分な接着性の確保とイオン透過性の両立という観点から、ポリフッ化ビニリデン系樹脂層の多孔構造と厚みに着眼して、新たな技術提案がなされている。
特許第4127989号公報
 ところで、一般的な非水系二次電池の正極あるいは負極は、集電体と、この集電体上に形成された電極活物質およびバインダー樹脂を含む活物質層から構成されている。そして、上述した接着性多孔質層は、熱プレスによって電極と接合させた場合、電極中のバインダー樹脂に対して接着する。そのため、より良好な接着性を確保するためには、電極内のバインダー樹脂の量は多い方が好ましい。
 しかしながら、電池のエネルギー密度をより高めるためには、電極中の活物質の含有量を高める必要があり、バインダー樹脂の含有量は少ない方が好ましい。そのため、従来技術において十分な接着性を確保するためには、より高い温度や高い圧力といった厳しい条件で熱プレスを行う必要があった。そして、従来技術においては、そのような厳しい条件で熱プレスした場合、ポリフッ化ビニリデン系樹脂からなる接着性多孔質層の多孔構造が潰れてしまう問題があった。そのため、熱プレス工程後のイオン透過性が十分でなくなり、良好な電池特性を得るのが困難であった。
 また、従来は電極に用いるバインダー樹脂はポリフッ化ビニリデン系樹脂が一般的だったのに対し、近年はスチレン-ブタジエンゴムを適用する場合も増えてきている。このようなスチレン-ブタジエンゴムを用いた電極に対しては、従来の接着性多孔質層を備えたセパレータでは、イオン透過性と接着性を両立して十分な電池特性を得ることが難しかった。
 このような背景から、本発明は従来技術に比べて電極との接着性に優れ、かつ、電極と接着した後にも十分なイオン透過性を確保できる非水系二次電池用セパレータを提供することを目的とする。
 本発明は、上記課題を解決するために、以下の構成を採用する。
1. 多孔質基材と、前記多孔質基材の少なくとも一方の面に形成されたポリフッ化ビニリデン系樹脂を含む接着性多孔質層と、を備えた非水系二次電池用セパレータであって、前記接着性多孔質層の結晶サイズが1nm以上13nm以下であることを特徴とする非水系二次電池用セパレータ。
2. 前記多孔質基材の一方の面に形成されている前記接着性多孔質層の重量が0.5g/m以上~1.5g/m以下であることを特徴とする上記1に記載の非水系二次電池用セパレータ。
3. 前記接着性多孔質層は前記多孔質基材の表裏両面に形成されていることを特徴とする上記1または2に記載の非水系二次電池用セパレータ。
4. 前記多孔質基材の両面に形成された前記接着性多孔質層の両面合計の重量が、1.0g/m以上3.0g/m以下であり、前記接着性多孔質層の一面側の重量と他面側の重量の差が、両面合計の重量に対して20%以下であることを特徴とする上記3に記載の非水系二次電池用セパレータ。
5. 前記接着性多孔質層を形成した状態の前記非水系二次電池用セパレータのガーレ値から、前記多孔質基材のガーレ値を減算した値が、300秒/100cc以下であることを特徴とする上記1~4のいずれかに記載の非水系二次電池用セパレータ。
6. 前記多孔質基材がポリエチレンを含むポリオレフィン微多孔膜であることを特徴とする上記1~5のいずれかに記載の非水系二次電池用セパレータ。
7. 前記多孔質基材がポリエチレンとポリプロピレンとを含むポリオレフィン微多孔膜であることを特徴とする上記1~5のいずれかに記載の非水系二次電池用セパレータ。
8. 前記ポリオレフィン微多孔膜が少なくとも2層以上の構造となっており、当該2層のうち一方の層はポリエチレンを含み、他方の層はポリプロピレンを含むことを特徴とする上記7に記載の非水系二次電池用セパレータ。
9. 上記1~8のいずれかに記載のセパレータを用いた非水系二次電池。
 本発明によれば、従来技術に比べて電極との接着性に優れ、かつ、電極と接着した後にも十分なイオン透過性を確保できる非水系二次電池用セパレータを提供することができる。このような本発明のセパレータを用いれば、エネルギー密度が高く、高性能なアルミラミネートパック外装の非水系二次電池を提供することが可能となる。
 本発明の非水系二次電池用セパレータは、多孔質基材と、前記多孔質基材の少なくとも一方の面に形成されたポリフッ化ビニリデン系樹脂を含む接着性多孔質層と、を備えた非水系二次電池用セパレータであって、前記接着性多孔質層の結晶サイズが1nm以上13nm以下であることを特徴とする。以下、本発明について詳細に説明する。なお、以下において数値範囲で「~」と示したものは、上限値および下限値を含む数値範囲であることを意味する。
[多孔質基材]
 本発明において、多孔質基材とは内部に空孔ないし空隙を有する基材を意味する。このような基材としては、微多孔膜や、不織布、紙状シート等の繊維状物からなる多孔性シート、あるいは、これら微多孔膜や多孔性シートに他の多孔性層を1層以上積層させた複合多孔質シート等を挙げることができる。なお、微多孔膜とは、内部に多数の微細孔を有し、これら微細孔が連結された構造となっており、一方の面から他方の面へと気体あるいは液体が通過可能となった膜を意味する。
 多孔質基材を構成する材料は、電気絶縁性を有する有機材料あるいは無機材料のいずれでも使用できる。特に、基材にシャットダウン機能を付与する観点からは、基材の構成材料として熱可塑性樹脂を使用することが好ましい。ここで、シャットダウン機能とは、電池温度が高まった場合に、熱可塑性樹脂が溶解して多孔質基材の孔を閉塞することによりイオンの移動を遮断し、電池の熱暴走を防止する機能をいう。熱可塑性樹脂としては、融点200℃未満の熱可塑性樹脂が適当であり、特にポリオレフィンが好ましい。
 ポリオレフィンを用いた多孔質基材としてはポリオレフィン微多孔膜が好適である。ポリオレフィン微多孔膜としては、十分な力学物性とイオン透過性を有した、従来の非水系二次電池用セパレータに適用されているポリオレフィン微多孔膜を用いることができる。そして、ポリオレフィン微多孔膜は、上述したシャットダウン機能を有するという観点から、ポリエチレンを含むことが好ましく、ポリエチレンの含有量としては95重量%以上が好ましい。
 別途、高温にさらされたときに容易に破膜しない程度の耐熱性を付与するという観点では、ポリエチレンとポリプロピレンとを含むポリオレフィン微多孔膜が好適である。このようなポリオレフィン微多孔膜としては、ポリエチレンとポリプロピレンが1つのシートにおいて混在している微多孔膜が挙げられる。このような微多孔膜においては、シャットダウン機能と耐熱性の両立という観点から、95重量%以上のポリエチレンと、5重量%以下のポリプロピレンを含むことが好ましい。また、シャットダウン機能と耐熱性の両立という観点では、ポリオレフィン微多孔膜が少なくとも2層以上の構造となっており、当該2層のうち一方の層はポリエチレンを含み、他方の層はポリプロピレンを含む積層構造のポリオレフィン微多孔膜も好ましい。
 ポリオレフィンの重量平均分子量は10万~500万のものが好適である。重量平均分子量が10万より小さいと、十分な力学物性を確保するのが困難となる場合がある。また、500万より大きくなると、シャットダウン特性が悪くなる場合や、成形が困難になる場合がある。
 このようなポリオレフィン微多孔膜は、例えば以下の方法で製造可能である。すなわち、(i)溶融したポリオレフィン樹脂をT-ダイから押し出してシート化する工程、(ii)上記シートに結晶化処理を施す工程、(iii)シートを延伸する工程、および(iv)シートを熱処理する工程を順次実施して、微多孔膜を形成する方法が挙げられる。また、(i)流動パラフィンなどの可塑剤と一緒にポリオレフィン樹脂を溶融し、これをT-ダイから押し出し、これを冷却してシート化する工程、(ii)シートを延伸する工程、(iii)シートから可塑剤を抽出する工程、および(iv)シートを熱処理する工程を順次実施して微多孔膜を形成する方法等も挙げられる。
 繊維状物からなる多孔性シートとしては、ポリエチレンテレフタレートなどのポリエステル、ポリエチレンやポリプロピレン等のポリオレフィン、芳香族ポリアミドやポリイミド、ポリエーテルスルホン、ポリスルホン、ポリエーテルケトン、ポリエーテルイミド等の耐熱性高分子等からなる繊維状物、あるいは、これらの繊維状物の混合物からなる多孔性シートを用いることができる。
 複合多孔質シートとしては、微多孔膜や繊維状物からなる多孔性シートに、機能層を積層した構成を採用できる。このような複合多孔質シートは、機能層によってさらなる機能付加が可能となる点で好ましい。機能層としては、例えば耐熱性を付与するという観点では、耐熱性樹脂からなる多孔質層や、耐熱性樹脂および無機フィラーからなる多孔質層を用いることができる。耐熱性樹脂としては、芳香族ポリアミド、ポリイミド、ポリエーテルスルホン、ポリスルホン、ポリエーテルケトン、およびポリエーテルイミドから選ばれる1種または2種以上の耐熱性高分子が挙げられる。無機フィラーとしては、アルミナ等の金属酸化物や、水酸化マグネシウム等の金属水酸化物等を好適に使用できる。なお、複合化の手法としては、多孔性シートに機能層をコーティングする方法、接着剤で接合する方法、熱圧着する方法等が挙げられる。
 本発明において、多孔質基材の膜厚は、良好な力学物性と内部抵抗を得る観点から、5~25μmの範囲が好適である。多孔質基材のガーレ値(JIS P8117)は、電池の短絡防止や十分なイオン透過性を得る観点から、50~800秒/100ccの範囲が好適である。多孔質基材の突刺強度は、製造歩留まりを向上させる観点から、300g以上が好適である。
[ポリフッ化ビニリデン系樹脂]
 本発明の非水系二次電池用セパレータには、重量平均分子量が10万~300万のポリフッ化ビニリデン系樹脂が好適に用いられる。重量平均分子量が10万より小さいポリフッ化ビニリデン樹脂を適用すると、電極との接着力が弱くなる傾向にあるため好ましくない。重量平均分子量は、接着力の観点から、50万以上であることがさらに好ましい。また、重量平均分子量が300万より大きくなると、樹脂を含むスラリーの粘度が高くなるため、接着性多孔質層の成形が困難となったり、接着性多孔質層に良好な結晶を形成することができず、好適な多孔構造を得ることが困難となる場合があるため好ましくない。このような成形性の観点から、重量平均分子量は200万以下がより好ましく、120万以下がさらに好ましい。ここでポリフッ化ビニリデン系樹脂の重量平均分子量はゲルパーミエーションクロマトグラフィー(GPC法)により求めることができる。
 本発明において、ポリフッ化ビニリデン系樹脂として、フッ化ビニリデンの単独重合体(すなわちポリフッ化ビニリデン)、フッ化ビニリデンと他の共重合可能なモノマーとの共重合体、あるいはこれらの混合物が用いられる。フッ化ビニリデンと共重合可能なモノマーとしては、例えばテトラフロロエチレン、ヘキサフロロプロピレン、トリフロロエチレン、トリクロロエチレンあるいはフッ化ビニル等の一種類又は二種類以上を用いることができる。ポリフッ化ビニリデン系樹脂は、構成単位としてフッ化ビニリデンを70mol%以上含有することが好ましい。さらに電極との接合工程において十分な力学物性を確保するという観点において、フッ化ビニリデンを98mol%以上含有したポリフッ化ビニリデン樹脂が好適である。
 上記のような比較的分子量の高いポリフッ化ビニリデン系樹脂は、好ましくは乳化重合あるいは懸濁重合、特に好ましくは懸濁重合により得ることができる。
[接着性多孔質層]
 本発明において、接着性多孔質層の結晶構造は重要な技術要素である。その結晶構造は、結晶サイズが1~13nmの範囲である。ここで、接着性多孔質層とは、ポリフッ化ビニリデン系樹脂を含んで構成されており、内部に多数の微細孔を有し、これら微細孔が連結された構造となっており、一方の面から他方の面へと気体あるいは液体が通過可能となった多孔質層を意味する。また、結晶サイズはX線回折法で得られた2θ=20°のピークのブラック角、半値幅を用いて下記式(1)に示すScherrerの式から算出することができる。
 D=K×λ/βcosθ … (1)
  D:結晶サイズ
  K:Scherrer定数
  λ:X線波長
  β:半値幅
  θ:回折線のブラック角
 接着性多孔質層において、接着性を担うのは非晶部であり、イオン透過性は主に空孔が担い、加えて非晶部もイオン透過性に寄与する。結晶部は、熱プレスなどの工程でその構造を維持する機能をもつが、接着性及びイオン透過性については阻害因子である。このようなことを踏まえると、結晶が細かく均一に分布している構造の方が、均一に接着できるため、欠陥が少なくなり良好な接着性を確保できるため好ましい。さらにイオン移動の阻害因子である結晶が細かく均一に分布した構成の方が、充放電の際のイオン移動も均一になり、サイクル特性や負荷特性も良好となる。このような理由から接着性多孔質層の結晶サイズは1~13nmであることが好ましく、さらには3~10nmであることが好適である。また、このような結晶サイズを有することで、電極と接着した後でも接着性多孔質層の多孔構造を良好に維持することができ、そのような側面からも電池特性の低下を防止できる。また、本発明では、接着性多孔質層の結晶サイズを1~13nmの範囲とすることで、電極のバインダー樹脂や電解液の種類に関係なく良好な接着性を発現する点にも、大きな利点がある。このようなセパレータによれば、電池の構成材料の選択肢や組合せが広がり、多様な非水系二次電池を製造することが可能となる。
 なお、結晶サイズは均一性という観点では出来るだけ小さいことが好ましいが、1nmより小さい多孔構造を形成することは現実的に困難であり、形成の容易さからは3nm以上であることが好ましい。また、結晶サイズが13nmより大きくなると、接着後のイオン透過性が不十分となり、均一な接着状態も得られ難くなるので、電池特性が低下してしまう点で好ましくない。そのような観点からは、結晶サイズは10nm以下がより好ましい。
 接着性多孔質層の結晶サイズを制御する方法は、いくつかの手法が挙げられる。例えば、接着性多孔質層を形成する際の凝固工程の温度は1つの因子であり、この温度を低くするほど結晶サイズは低下する傾向にある。また、ポリフッ化ビニリデン系樹脂の選定も1つの重要な因子である。該ポリフッ化ビニリデン系樹脂の分子量が高いものの方が結晶サイズは小さくなる傾向にあり、重量平均分子量が50万以上のポリフッ化ビニリデン系樹脂を用いると比較的容易に本発明における適切な結晶サイズを実現することができる。また、ポリフッ化ビニリデンに対し共重合成分を加えるほど結晶サイズは低下する。ポリマーの構造という観点においては、CFとCHがランダムに配列されたポリフッ化ビニリデン系樹脂の方が結晶サイズは小さく、このようなポリマーは懸濁重合より乳化重合で製造した方が得やすい。また、分岐構造が成長しているポリフッ化ビニリデン系樹脂は結晶サイズが小さくなる傾向にあり、分子量分布が広いものの方が結晶サイズは低下する傾向にある。さらに塗工液組成も1つの結晶サイズを制御する1つの因子であり、塗工液への相分離剤の添加を少なくするほど結晶サイズが低下する傾向にある。
 上記の結晶サイズの制御方法は、結晶化を抑制することで、結晶サイズの成長を抑制する方法である。このような方法とは別に、適切な核形成剤を塗工液に添加し、結晶化速度を大幅に促進することで、結晶サイズの成長を抑制するという手法もある。核形成剤はアルミナやシリカ等の金属酸化物や、水酸化マグネシウム等の金属水酸化物等の無機フィラーを好適に用いることが可能である。目的とする結晶サイズを考えると核形成剤はその粒子径が10nm以下、さらに好ましくは5nm以下であることが好適である。このように無機フィラーを添加する構成の場合、上述した接着性多孔質層の形成の際に、塗工液に無機フィラーを分散したスラリーを用いればよい。ただし、接着性多孔質層に無機フィラーを混入させると、電極に対する接着性が低下するおそれもあるため、接着性多孔質層中に無機フィラーが含まれない構成の方が好ましい。
 上述した制御因子は多孔構造形成にも影響する因子であり、結晶サイズの制御という観点からのみコントロールすることは好ましくない。すなわち、結晶サイズおよび多孔構造の両方の観点から、条件を決めることが好ましい。当然、選択する樹脂によって塗工液組成や凝固温度等の各条件の好適範囲は変わるため、各条件の好ましい範囲は一概には言えない。
 なお、本発明においては、接着性多孔質層には、セパレータの滑り性や耐熱性を改善させる目的で、無機物あるいは有機物からなるフィラーやその他添加物を混入することも可能である。その場合、本発明の効果を阻害しない程度の含有量や粒子サイズとすることが好ましい。無機フィラーとしては、上述した金属酸化物や金属水酸化物等を用いることができる。有機フィラーとしては例えばアクリル樹脂等を用いることができる。
[非水系二次電池用セパレータ]
 本発明の非水系二次電池用セパレータは、上述したように、多孔質基材と、多孔質基材の少なくとも一方の面に形成されたポリフッ化ビニリデン系樹脂を含む接着性多孔質層とを備えている。ここで、接着性多孔質層は、電解液を含んだ状態で熱プレスによって電極と接着する接着層であるため、セパレータの最外層として存在する必要がある。当然、正極および負極の両方とセパレータを接着させた方がサイクル寿命の観点から好ましいので、多孔質基材の表裏に接着性多孔質層を形成させた方が好ましい。
 本発明において、接着性多孔質層は、イオン透過性という観点から十分に多孔化された構造であることが好ましい。具体的には、接着性多孔質層を形成した状態の非水系二次電池用セパレータのガーレ値から、多孔質基材のガーレ値を減算した値が、300秒/100cc以下、さらに好ましくは150秒/100cc以下、さらに好ましくは100秒/100cc以下であることが好ましい。この差が300秒/100ccより高い場合、接着性多孔質層が緻密すぎてイオン透過を阻害し、十分な電池の特性が得られない場合がある。
 本発明の非水系二次電池用セパレータのガーレ値は、十分な電池性能を得る観点から、50秒/100cc以上800秒/100cc以下の範囲が好適である。
 非水系二次電池用セパレータの空孔率は、本発明の効果とセパレータの力学物性を良好に得る観点から、30%以上60%以下の範囲が適当である。
 該ポリフッ化ビニリデン系樹脂の重量は一方の面で0.5~1.5g/mの範囲が好適である。0.5g/mより少ないと電極との接着性が十分でなくなることがある。また、1.5g/mより多いと、イオン透過性を阻害し電池の負荷特性が低下する傾向にあるので好ましくない。表裏両面に該ポリフッ化ビニリデン系樹脂からなる多孔質層を形成する場合のポリフッ化ビニリデン系樹脂の重量は1.0~3.0g/mが好適である。
 本発明においては、接着性多孔質層を多孔質基材の両面に形成する場合、その表裏の重量差も重要である。具体的には、多孔質基材の表裏に形成された接着性多孔質層の両面合計の重量が1.0~3.0g/mであり、接着性多孔質層の一面側の重量と他面側の重量差が、両面合計の重量に対して20%以下であることが好ましい。これが20%を超えるとカールが顕著となることがあり、ハンドリング上支障となったり、サイクル特性が低下したりする場合もある。
[非水系二次電池用セパレータの製造方法]
 上述した本発明の非水系二次電池用セパレータは、ポリフッ化ビニリデン系樹脂を含む溶液を多孔質基材上に直接塗工して、ポリフッ化ビニリデン系樹脂を固化させることで、接着性多孔質層を多孔質基材上に一体的に形成する方法で製造できる。
 具体的に、まずポリフッ化ビニリデン系樹脂を溶媒に溶解して、塗工液を作製する。この塗工液を多孔質基材上へ塗工し、適切な凝固液に浸漬する。これにより、相分離現象を誘発しながら、ポリフッ化ビニリデン系樹脂を固化させる。この工程でポリフッ化ビニリデン系樹脂からなる層は多孔構造となっている。その後、水洗することで凝固液を除去し、乾燥することで接着性多孔質層を多孔質基材上に一体的に形成することができる。
 上記の塗工液としては、ポリフッ化ビニリデン系樹脂を溶解する良溶媒を用いることができる。このような良溶媒としては、例えば、N-メチルピロリドン、ジメチルアセトアミド、ジメチルホルムアミド、ジメチルホルムアミドなどの極性アミド溶媒を好適に用いることができる。良好な多孔構造を形成するという観点においては、上記の良溶媒に加えて、相分離を誘発させる相分離剤を混合させる方が好ましい。このような相分離剤としては、水、メタノール、エタノール、プロピルアルコール、ブチルアルコール、ブタンジオール、エチレングリコール、プロピレングリコール、あるいはトリプロピレングリコールなどが挙げられる。このような相分離剤は、塗工に適切な粘度が確保できる範囲で添加することが好ましい。また、接着性多孔質層にフィラーやその他添加物を混入させる場合は、上記塗工液中に混合あるいは溶解させればよい。
 塗工液の組成は、ポリフッ化ビニリデン系樹脂が3~10重量%の濃度で含まれていることが好ましい。溶媒としては、適切な多孔構造を形成する観点から、良溶媒を60重量%以上、相分離剤を40重量%以下含む混合溶媒を用いることが好ましい。
 凝固液としては、水、水と前記良溶媒の混合溶媒、あるいは、水と前記良溶媒と前記相分離剤の混合溶媒を用いることができる。特に水と良溶媒と相分離剤の混合溶媒が好ましく、その場合、良溶媒と相分離剤の混合比はポリフッ化ビニリデン系樹脂の溶解に用いた混合溶媒の混合比に合わせた方が生産性の観点から好適である。水の濃度は、良好な多孔構造を形成し、生産性を向上させる観点から、40~90重量%であることが好ましい。凝固温度は、結晶化度の制御という観点では、おおむね-20~60℃が好ましい。
 多孔質基材への塗工液の塗工は、マイヤーバー、ダイコーター、リバースロールコーター、グラビアコーターなどの従来の塗工方式を適用可能である。接着性多孔質層を多孔質基材の両面に形成する場合、塗工液を片面づつ塗工してから凝固、水洗および乾燥することも可能だが、塗工液を両面同時に多孔質基材上に塗工してから凝固、水洗および乾燥する方が、生産性の観点から好適である。
 なお、本発明のセパレータは、上述した湿式塗工法以外に、乾式塗工法でも製造することができる。ここで、乾式塗工法とは、ポリフッ化ビニリデン系樹脂と溶媒を含んだ塗工液を多孔質基材上に塗工し、これを乾燥することで溶媒を揮発除去することにより、多孔膜を得る方法をいう。ただし、乾式塗工法の場合、湿式塗工法と比べて塗工膜が緻密膜になり易く、塗工液にフィラー等を添加しなければ多孔質層を得ることは殆ど不可能である。また、このようなフィラー等を添加したとしても、良好な多孔質構造は得られ難い。よって、このような観点からすれば、本発明では湿式塗工法を用いることが好ましい。
 また、本発明のセパレータは、接着性多孔質層と多孔質基材を別個に作製しておき、これらのシートを重ね合わせて、熱圧着や接着剤により複合化する方法等によっても製造できる。接着性多孔質層を独立したシートとして得る方法としては、塗工液を剥離シート上に塗工し、上述した湿式塗工法あるいは乾式塗工法を用いて接着性多孔質層を形成し、接着性多孔質層のみを剥離する方法等が挙げられる。
[非水系二次電池]
 本発明の非水系二次電池は、上述した本発明のセパレータを用いたことを特徴とする。
 本発明において、非水系二次電池は、正極および負極の間にセパレータが配置され、これらの電池素子が電解液と共に外装内に封入された構成となっている。非水系二次電池としてはリチウムイオン二次電池が好適である。
 正極としては、正極活物質、バインダー樹脂および導電助剤からなる電極層を、正極集電体上に形成した構成を採用できる。正極活物質としては、例えばコバルト酸リチウム、ニッケル酸リチウム、スピネル構造のマンガン酸リチウム、あるいはオリビン構造のリン酸鉄リチウムなどが挙げられる。本発明では、セパレータの接着性多孔質層を正極側に配置した場合、ポリフッ化ビニリデン系樹脂が耐酸化性に優れるため、4.2V以上の高電圧で作動可能なLiMn1/2Ni1/2、LiCo1/3Mn1/3Ni1/3といった正極活物質を適用しやすくなるという利点もある。バインダー樹脂としては例えばポリフッ化ビニリデン系樹脂などが挙げられる。導電助剤としては例えばアセチレンブラック、ケッチェンブラック、黒鉛粉末などが挙げられる。集電体としては例えば厚さ5~20μmのアルミ箔などが挙げられる。
 負極としては、負極活物質、およびバインダー樹脂からなる電極層を、負極集電体上に形成した構成を採用でき、必要に応じて電極層中に導電助剤を添加してもよい。負極活物質としては、例えばリチウムを電気化学的に吸蔵することができる炭素材料や、シリコンあるいは錫などのリチウムと合金化する材料などを用いることができる。バインダー樹脂としては、例えばポリフッ化ビニリデン系樹脂やブチレン-スタジエンゴムなどが挙げられる。本発明の非水系二次電池用セパレータの場合、接着性が良好であるため、負極バインダーとしてポリフッ化ビニリデン系樹脂だけでなくブチレン-スタジエンゴムを用いた場合でも十分な接着性を確保できる。また、導電助剤としては例えばアセチレンブラック、ケッチェンブラック、黒鉛粉末などが挙げられる。集電体としては例えば厚さ5~20μmの銅箔などが挙げられる。また、上記の負極に代えて、金属リチウム箔を負極として用いることも可能である。
 電解液は、リチウム塩を適切な溶媒に溶かした構成となっている。リチウム塩としては、例えばLiPF、LiBF、LiClOなどが挙げられる。溶媒としては、例えばエチレンカーボネート、プロピレンカーボネート、フロロエチレンカーボネート、ジフロロエチレンカーボネート等の環状カーボネートや、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネートおよびそのフッ素置換体等の鎖状カーボネート、γ-ブチロラクトン、γ-バレロラクトン等の環状エステル、あるいは、これらの混合溶媒を好適に用いることができる。特に、環状カーボネート/鎖状カーボネート=20~40/80~60重量比の溶媒に、リチウム塩を0.5~1.5M溶解したものが好適である。なお、従来の接着性多孔質層を備えたセパレータにおいては、使用する電解液の種類によって電極に対する接着性を発揮し難い場合もあったが、本発明のセパレータによれば、電解液の種類によらず良好な接着性を発揮し得る点にも大きな利点がある。
 本発明の非水系二次電池用セパレータは金属缶外装の電池にも適用可能であるが、電極との接着性が良好であるためアルミラミネートフィルム外装のソフトパック電池に好適に用いられる。このような電池を作製する方法は、前記正極および負極をセパレータを介して接合させ、これに電解液を含浸させアルミラミネートフィルム内に封入する。それを熱プレスすることで、非水系二次電池を得ることができる。このような本発明の構成であれば、電極とセパレータを良好に接着でき、サイクル寿命に優れた非水系二次電池を得ることができる。また、電極とセパレータの接着性が良好なため、安全性にも優れた電池となる。電極とセパレータの接合方法は電極とセパレータを積層させていくスタック方式、電極とセパレータを一緒に捲回する方式などがあり、本発明はいずれにも適用可能である。
 以下、本発明を実施例により説明する。ただし、本発明は以下の実施例に限定されるものではない。
[測定方法]
(接着性多孔質層の結晶サイズの測定方法)
 セパレータから剥ぎ取ったポリフッ化ビニリデン系樹脂を試料とし、これをX線回折法により結晶サイズを求めた。測定には「NANO-Viewer」(リガク社製)を用い、25℃で透過法にて行い、イメージングプレートを用いて検出した。イメージングプレートで得られた2次元データを2θプロファイルに変換し概ね2θ=8~30°の範囲をカーブフィッティング(ガウス関数/ローレンツ関数=50/50)した。カーブフィッティングで分離した概ね2θ=20°のピークについてブラック角と半値幅を求め、下記式(2)に示すScherrerの式から結晶サイズを算出した。
D=K×λ/βcosθ … (2)
  D:結晶サイズ
  K:Scherrer定数
  λ:X線波長(ターゲットにCuKαを用いているのでλ=0.1542nm)
  β:半値幅
  θ:回折線のブラック角
(膜厚の測定方法)
 接触式の厚み計(LITEMATIC ミツトヨ社製)を用いて測定した。測定端子は直径5mmの円柱状のものを用い、測定中には7gの荷重が印加されるように調整して行った。
(目付)
 サンプルを10cm×10cmに切り出し、その重量を測定した。重量を面積で割ることで目付を求めた。
(ポリフッ化ビニリデン系樹脂の重量)
 エネルギー分散型蛍光X線分析装置(EDX-800HS 島津製作所)を用いてFKαのスペクトル強度からポリフッ化ビニリデン系樹脂の重量を測定した。この測定ではX線を照射した面のポリフッ化ビニリデン系樹脂の重量が測定される。よって表裏両面にポリフッ化ビニリデン系樹脂からなる多孔質層を形成した場合、表裏各々の測定を行うことで表裏各々のポリフッ化ビニリデン系樹脂の重量が測定され、それを合計することで表裏合計の重量が測定できる。
(空孔率)
 複合セパレータの空孔率ε(%)は以下の式3から算出した。
 ε={1―(Wa/0.95+Wb/1.78)/t}×100 … (3)
 ここで、Waは基材の目付(g/m)、Wbはポリフッ化ビニリデン系樹脂の重量(g/m)、tは膜厚(μm)である。
(ガーレ値)
 JIS P8117に従い、ガーレ式デンソメータ(G-B2C 東洋精機社製)にて測定した。
[実施例1]
 ポリフッ化ビニリデン系樹脂としてポリフッ化ビニリデンであるARKEM社のKYNAR761を用いた。該ポリフッ化ビニリデン系樹脂を6重量%の濃度でジメチルアセトアミド/トリプロピレングリコール=7/3重量比である混合溶媒に溶解し、塗工液を作製した。これを膜厚9μm、ガーレ値160秒/100cc、空孔率43%のポリエチレン微多孔膜(TN0901:SK社製)の両面に等量塗工し、水/ジメチルアセトアミド/トリプロピレングリコール=57/30/13重量比の凝固液(20℃)に浸漬することで固化させた。これを水洗、乾燥することでポリオレフィン系微多孔膜の表裏両面にポリフッ化ビニリデン系樹脂からなる接着性多孔質層が形成された本発明の非水系二次電池用セパレータを得た。このセパレータについて、接着性多孔質層の結晶サイズ(PVdF系樹脂の結晶サイズ)、セパレータの膜厚、目付けおよび空孔率、接着性多孔質層の重量(両面の合計重量、表面の重量、裏面の重量、表面側の重量と裏面側の重量差の両面合計重量に対する割合)、ガーレ値の測定結果を表1に示す。なお、以下の実施例および比較例のセパレータについても同様に表1にまとめて示す。
[実施例2]
 ポリフッ化ビニリデン系樹脂としてポリフッ化ビニリデンであるクレハ化学社製のKFポリマー W#1700を用い、凝固液の温度を0℃とした以外は、実施例1と同様にして本発明の非水系二次電池用セパレータを得た。
[実施例3~6]
 実施例1と同様の塗工液、およびポリエチレン微多孔膜を用い、同様の方法で、表1に示したように塗工量のみ変化させて、本発明の非水系二次電池用セパレータを得た。
[実施例7、8]
 実施例1と同様の塗工液、およびポリエチレン微多孔膜を用い、同様の方法で、表1に示したように表裏の塗工量のみ変化させて本発明の非水系二次電池用セパレータを得た。
[実施例9]
 ポリプロピレン/ポリエチレン/ポリプロピレンの3層構造からなる膜厚12μm、ガーレ値425秒/100cc、空孔率38%のポリオレフィン微多孔膜(M824 セルガード社)をポリオレフィン微多孔膜として用いた以外は、実施例1と同様にして本発明の非水系二次電池用セパレータを得た。
[実施例10]
 ポリフッ化ビニリデン系樹脂としてポリフッ化ビニリデンであるARKEM社のKYNAR761を用いた。該ポリフッ化ビニリデン系樹脂を3.5重量%の濃度でジメチルアセトアミド/トリプロピレングリコール=8/2重量比である混合溶媒に溶解し、塗工液を作製した。これを膜厚9μm、ガーレ値160秒/100cc、空孔率43%のポリエチレン微多孔膜(TN0901:SK社製)の両面に等量塗工し、水/ジメチルアセトアミド/トリプロピレングリコール=57/30/13重量比の凝固液(10℃)に浸漬することで固化させた以外は、実施例1と同様にして本発明の非水系二次電池用セパレータを得た。
[比較例1]
 凝固液の温度を60℃とした以外は、実施例1と同様にして非水系二次電池用セパレータを得た。
[比較例2]
 共重合組成がフッ化ビニリデン/ヘキサフロロプロピレン/クロロトリフロロエチレン=92.0/4.5/3.5重量比となるポリフッ化ビニリデン系樹脂を乳化重合にて作製した。このポリフッ化ビニリデン系樹脂の重量平均分子量は41万であった。該ポリフッ化ビニリデンを12重量%の濃度でジメチルアセトアミド/トリプロピレングリコール=60/40重量比である混合溶媒に溶解し、塗工液を作製した。これを膜厚9μm、ガーレ値160秒/100cc、空孔率43%のポリエチレン微多孔膜(TN0901:SK社製)の両面に等量塗工し、水/ジメチルアセトアミド/トリプロピレングリコール=50/30/20重量比の凝固液(40℃)に浸漬することで固化させ、これを水洗、乾燥することで、ポリオレフィン系微多孔膜にポリフッ化ビニリデン系樹脂からなる接着性多孔質層が形成された非水系二次電池用セパレータを得た。
[比較例3]
 フッ化ビニリデン/ヘキサフロロプロピレン共重合体(クレハ化学社製#8500)の3質量%ジメチルカーボネート溶液を、膜厚9μm、ガーレ値160秒/100cc、空孔率43%のポリエチレン微多孔膜(TN0901:SK社製)の両面に等量塗工し、これを乾燥した。しかし、得られた塗工膜は緻密膜であり、接着性多孔質層を備えた非水系二次電池用セパレータは得られなかった。なお、当該複合膜のガーレ値を測定したところ、2000秒/100cc以上であり、透過性が著しく悪いものであった。
[非水系二次電池の作製]
 (負極の作製)
 負極活物質である人造黒鉛(MCMB25-28 大阪ガス化学社製)300g、バインダーである日本ゼオン製の「BM-400B」(スチレン-ブタジエン共重合体の変性体を40重量%含む水溶性分散液)7.5g、増粘剤であるカルボキシメチルセルロース3g、適量の水を双腕式混合機にて攪拌し、負極用スラリーを作製した。この負極用スラリーを負極集電体である厚さ10μmの銅箔に塗布し、得られた塗膜を乾燥し、プレスして負極活物質層を有する負極を作製した。
 (正極の作製)
 正極活物質であるコバルト酸リチウム(セルシードC 日本化学工業社製)粉末を89.5g、導電助剤のアセチレンブラック(デンカブラック 電気化学工業社製)4.5g、バインダーであるポリフッ化ビニリデン(KFポリマー W#1100 クレハ化学社製)を6重量%となるようにNMPに溶解した溶液をポリフッ化ビニリデンの重量が6重量%となるように双腕式混合機にて攪拌し、正極用スラリーを作製した。この正極用スラリーを正極集電体である厚さ20μmのアルミ箔に塗布し、得られた塗膜を乾燥し、プレスして正極活物質層を有する正極を作製した。
 (電池の作製)
 前記の正極と負極にリードタブを溶接し、セパレータを介してこれら正負極を接合させ、電解液をしみ込ませてアルミパック中に真空シーラーを用いて封入した。ここで電解液は1M LiPF エチレンカーボネート/エチルメチルカーボネート(3/7重量比)を用いた。これを熱プレス機により電極1cm当たり20kgの荷重をかけ、90℃、2分の熱プレスを行うことで試験電池を作製した。
[負荷特性試験]
 負荷特性試験は前記作製した非水系二次電池を用いて実施した。電池の負荷特性は25℃にて0.2Cの放電容量を基準にした2Cの相対放電容量を測定し、これを指標とした。この試験を実施例1~8、実施例10、比較例1~2のセパレータを用いた電池について実施した。その結果を表2に示す。
[充放電サイクル試験]
 充放電サイクル試験は前記作製した非水系二次電池を用いて実施した。充電条件は1C、4.2Vの定電流定電圧充電、放電条件は1C、2.75Vカットオフの定電流放電としサイクル特性試験を実施した。ここでサイクル特性の指標は100サイクル後の容量維持率とした。この試験を実施例1~8、実施例10、比較例1~2のセパレータを用いた電池について実施した。その結果を表2に示す。
[電極との接着性の確認]
 充放電サイクル試験後の電池を解体し、セパレータと電極との接着性を確認した。接着性は接着力と均一性の観点から確認し、その結果を表2に示す。なお、接着力に関しては、正極側および負極側のそれぞれについて、実施例1のセパレータを用いた場合の剥離強度を100としたときの相対値で表2に示す。均一性に関しては、正極側および負極側のそれぞれについて剥離テストを行なった後に、接着性多孔質層がほぼ全て電極表面に付着していたものを均一性が良好(〇)と判断し、接着性多孔質層の大部分が電極表面に付着しているが一部破損しているものは均一性が中程度(△)と判断し、接着性多孔質層の大部分が電極表面に付着しておらず著しく破損していたものは均一性が不良(×)と判断した。
[耐熱性評価]
 実施例1のセパレータと実施例9のセパレータ耐熱性を熱機械物性測定(TMA)により比較した。具体的には、それぞれのセパレータを幅4mmに切り出し、その両端をチャックで押さえ、チャック間距離が10mmとなるようにセットした。印加荷重10mNとし昇温速度10℃/minで昇温させていきセパレータが破断する温度を測定した。実施例1のセパレータは155℃で破断が確認されたの対し、実施例9のセパレータは180℃で破断が確認された。ポリプロピレンを適用することは耐熱性の観点からは好ましいことが分かる。
[電解液の種類と接着性]
 実施例1と比較例1~2のセパレータについて、各種電解液を用いて、上記と同様にして電極との接着性テストを実施した。なお、電解液Aとして1M LiPF エチレンカーボネート/エチルメチルカーボネート(3/7重量比)を用い、電解液Bとして1M LiPF エチレンカーボネート/プロピレンカーボネート/エチルメチルカーボネート(3/2/5重量比)を用い、電解液Cとして1M LiPF エチレンカーボネート/プロピレンカーボネート(1/1重量比)を用いた。結果を表3に示す。なお、表3には、実施例1のセパレータの正極、負極おのおので得られた剥離強度を100としたときの剥離強度の相対値で、正極と負極の剥離強度の平均値が70以上のものについては〇と記載し、50以上70未満のものについては△と記載し、50未満のものについては×と記載した。
 
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000003
 
 本発明の非水系二次電池セパレータは非水系二次電池に好適に用いることができ、特に電極との接合が重要なアルミラミネート外装の非水系二次電池に好適である。
 

Claims (9)

  1.  多孔質基材と、前記多孔質基材の少なくとも一方の面に形成されたポリフッ化ビニリデン系樹脂を含む接着性多孔質層と、を備えた非水系二次電池用セパレータであって、
     前記接着性多孔質層の結晶サイズが1nm以上13nm以下であることを特徴とする非水系二次電池用セパレータ。
  2.  前記多孔質基材の一方の面に形成されている前記接着性多孔質層の重量が0.5g/m以上~1.5g/m以下であることを特徴とする請求項1に記載の非水系二次電池用セパレータ。
  3.  前記接着性多孔質層は前記多孔質基材の表裏両面に形成されていることを特徴とする請求項1または2に記載の非水系二次電池用セパレータ。
  4.  前記多孔質基材の両面に形成された前記接着性多孔質層の両面合計の重量が、1.0g/m以上3.0g/m以下であり、
     前記接着性多孔質層の一面側の重量と他面側の重量の差が、両面合計の重量に対して20%以下であることを特徴とする請求項3に記載の非水系二次電池用セパレータ。
  5.  前記接着性多孔質層を形成した状態の前記非水系二次電池用セパレータのガーレ値から、前記多孔質基材のガーレ値を減算した値が、300秒/100cc以下であることを特徴とする請求項1~4のいずれかに記載の非水系二次電池用セパレータ。
  6.  前記多孔質基材がポリエチレンを含むポリオレフィン微多孔膜であることを特徴とする請求項1~5のいずれかに記載の非水系二次電池用セパレータ。
  7.  前記多孔質基材がポリエチレンとポリプロピレンとを含むポリオレフィン微多孔膜であることを特徴とする請求項1~5のいずれかに記載の非水系二次電池用セパレータ。
  8.  前記ポリオレフィン微多孔膜が少なくとも2層以上の構造となっており、当該2層のうち一方の層はポリエチレンを含み、他方の層はポリプロピレンを含むことを特徴とする請求項7に記載の非水系二次電池用セパレータ。
  9.  請求項1~8のいずれかに記載のセパレータを用いた非水系二次電池。
PCT/JP2011/074257 2011-04-08 2011-10-21 非水系二次電池用セパレータおよび非水系二次電池 WO2012137374A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020137000122A KR101297768B1 (ko) 2011-04-08 2011-10-21 비수계 이차 전지용 세퍼레이터 및 비수계 이차 전지
CN201180049838.4A CN103155220B (zh) 2011-04-08 2011-10-21 非水系二次电池用隔膜及非水系二次电池
EP11863050.8A EP2696392B1 (en) 2011-04-08 2011-10-21 Nonaqueous secondary battery separator and nonaqueous secondary battery
JP2012507203A JP4988972B1 (ja) 2011-04-08 2011-10-21 非水系二次電池用セパレータおよび非水系二次電池
US13/704,152 US9281508B2 (en) 2011-04-08 2011-10-21 Separator for nonaqueous secondary battery, and nonaqueous secondary battery
US14/880,104 US10193117B2 (en) 2011-04-08 2015-10-09 Separator for nonaqueous secondary battery, and nonaqueous secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-086387 2011-04-08
JP2011086387 2011-04-08

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/704,152 A-371-Of-International US9281508B2 (en) 2011-04-08 2011-10-21 Separator for nonaqueous secondary battery, and nonaqueous secondary battery
US14/880,104 Continuation US10193117B2 (en) 2011-04-08 2015-10-09 Separator for nonaqueous secondary battery, and nonaqueous secondary battery

Publications (1)

Publication Number Publication Date
WO2012137374A1 true WO2012137374A1 (ja) 2012-10-11

Family

ID=46968798

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/074257 WO2012137374A1 (ja) 2011-04-08 2011-10-21 非水系二次電池用セパレータおよび非水系二次電池

Country Status (6)

Country Link
US (2) US9281508B2 (ja)
EP (1) EP2696392B1 (ja)
KR (1) KR101297768B1 (ja)
CN (1) CN103155220B (ja)
TW (1) TWI501451B (ja)
WO (1) WO2012137374A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014065258A1 (ja) * 2012-10-22 2014-05-01 ダイキン工業株式会社 セパレータ及び二次電池
JP2014149936A (ja) * 2013-01-31 2014-08-21 Nippon Zeon Co Ltd 二次電池用セパレータ、二次電池用セパレータの製造方法及び二次電池
WO2017047576A1 (ja) * 2015-09-16 2017-03-23 日立マクセル株式会社 電気化学素子用セパレータ、その製造方法および電気化学素子の製造方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2696392B1 (en) * 2011-04-08 2015-08-26 Teijin Limited Nonaqueous secondary battery separator and nonaqueous secondary battery
US10047208B2 (en) 2014-11-27 2018-08-14 Sumitomo Chemical Company, Limited Method for producing porous film
KR102604599B1 (ko) * 2015-04-02 2023-11-22 에스케이이노베이션 주식회사 리튬 이차전지용 복합 분리막 및 이의 제조방법
KR101851450B1 (ko) * 2015-10-29 2018-04-23 스미또모 가가꾸 가부시키가이샤 비수 전해액 이차 전지용 적층 세퍼레이터, 비수 전해액 이차 전지용 부재 및 비수 전해액 이차 전지
JP6025956B1 (ja) * 2015-11-30 2016-11-16 住友化学株式会社 非水電解液二次電池用セパレータ、非水電解液二次電池用積層セパレータ、非水電解液二次電池用部材および非水電解液二次電池
JP7074419B2 (ja) * 2016-06-21 2022-05-24 住友化学株式会社 積層体
US11094997B2 (en) 2017-05-29 2021-08-17 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
JP6430623B1 (ja) 2017-12-19 2018-11-28 住友化学株式会社 非水電解液二次電池
US11205799B2 (en) 2017-12-19 2021-12-21 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
JP6430618B1 (ja) 2017-12-19 2018-11-28 住友化学株式会社 非水電解液二次電池
US11158907B2 (en) 2017-12-19 2021-10-26 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
KR101996642B1 (ko) * 2018-07-13 2019-07-04 주식회사 엘지화학 저저항 코팅층을 포함하는 전기화학소자용 분리막 및 이를 제조하는 방법
CN109786622A (zh) * 2018-12-25 2019-05-21 武汉中兴创新材料技术有限公司 一种用于制备涂层隔膜的涂覆浆料及其制备方法和应用
KR102249890B1 (ko) * 2019-07-03 2021-05-07 삼성에스디아이 주식회사 이차 전지용 분리막, 이차 전지용 분리막의 제조 방법 및 이를 포함하는 리튬 이차 전지
WO2023060428A1 (zh) 2021-10-12 2023-04-20 宁德时代新能源科技股份有限公司 隔离膜、二次电池、电池模块、电池包及用电装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08509100A (ja) * 1993-08-23 1996-09-24 ベル コミュニケーションズ リサーチ,インコーポレイテッド ポリマー製電解セルセパレータ膜およびその製造方法
JP2001266942A (ja) * 2000-03-15 2001-09-28 Teijin Ltd 電解質担持ポリマー膜及びそれを用いた二次電池
JP2003171495A (ja) * 2001-09-28 2003-06-20 Teijin Ltd 複合多孔膜の製造法
JP2005072009A (ja) * 2003-08-27 2005-03-17 Samsung Sdi Co Ltd リチウム電池用の結合剤と電極及びそれを採用したリチウム電池
JP2006120462A (ja) * 2004-10-21 2006-05-11 Sanyo Electric Co Ltd 非水電解質電池
JP2007317675A (ja) * 2000-03-07 2007-12-06 Teijin Ltd リチウムイオン二次電池用セパレータ
JP4127989B2 (ja) 2001-09-12 2008-07-30 帝人株式会社 非水系二次電池用セパレータ及び非水系二次電池
WO2010098497A1 (ja) * 2009-02-24 2010-09-02 帝人株式会社 非水系二次電池用多孔膜、非水系二次電池用セパレータ、非水系二次電池用吸着剤および非水系二次電池

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW393797B (en) * 1996-09-26 2000-06-11 Toray Industries An electrode for a battery and a battery using it
JP3598186B2 (ja) 1996-12-16 2004-12-08 リチャージャブル バッテリー インダストリーズ コーポレーション セパレータ、これを採用する2次電池及びその製造方法
KR100615157B1 (ko) 1999-10-25 2006-08-25 삼성에스디아이 주식회사 리튬 이온 폴리머 전지용 세퍼레이타
AU2001236687A1 (en) * 2000-02-04 2001-08-14 Amtek Research International Llc Freestanding microporous separator including a gel-forming polymer
DE60143873D1 (de) * 2000-03-07 2011-03-03 Teijin Ltd Lithiumionen-sekundärzelle, separator, zellenpack und ladeverfahren
US6881438B2 (en) 2000-03-07 2005-04-19 Teijin Limited Process for production of composite porous film
KR100362280B1 (ko) 2000-04-11 2002-11-23 삼성에스디아이 주식회사 리튬 2차 전지의 세퍼레이타 및 그 제조방법
KR100362283B1 (ko) 2000-05-12 2002-11-23 삼성에스디아이 주식회사 리튬 2차 전지의 제조방법
US20020110732A1 (en) 2000-12-20 2002-08-15 Polystor Corporation Battery cell fabrication process
JP5226744B2 (ja) 2001-09-28 2013-07-03 帝人株式会社 複合多孔膜の製造法
JP4187434B2 (ja) 2001-11-06 2008-11-26 帝人株式会社 リチウムイオン二次電池用セパレータ及びリチウムイオン二次電池
KR100440930B1 (ko) 2001-11-24 2004-07-21 삼성에스디아이 주식회사 세퍼레이터의 제조방법 및 이를 채용한 리튬2차 전지의제조방법
KR20030065074A (ko) 2002-01-29 2003-08-06 주식회사 뉴턴에너지 전기화학셀 및 이의 제조방법
JP4163894B2 (ja) 2002-04-24 2008-10-08 帝人株式会社 リチウムイオン二次電池用セパレータ
JP4002133B2 (ja) 2002-04-24 2007-10-31 帝人株式会社 リチウムイオン二次電池
CN100336244C (zh) 2002-08-22 2007-09-05 帝人株式会社 非水系二次电池及该电池中使用的隔板
KR100573358B1 (ko) * 2002-09-17 2006-04-24 가부시키가이샤 도모에가와 세이시쇼 리튬이온2차전지용 세퍼레이터 및 이를 포함한리튬이온2차전지
JP4831937B2 (ja) 2003-01-31 2011-12-07 帝人株式会社 リチウムイオン二次電池用セパレータ及びリチウムイオン二次電池
JP4606705B2 (ja) 2003-06-18 2011-01-05 帝人株式会社 非水系二次電池用セパレータ及び非水系二次電池
JP2006073221A (ja) 2004-08-31 2006-03-16 Teijin Ltd リチウムイオン二次電池用セパレータ及びリチウムイオン二次電池
KR100646508B1 (ko) 2005-01-28 2006-11-14 삼성에스디아이 주식회사 세퍼레이터 및 이를 구비하는 이차 전지
KR100943234B1 (ko) * 2005-05-16 2010-02-18 에스케이에너지 주식회사 액-액 상분리에 의하여 제조된 폴리에틸렌 미세다공막 및그 제조방법
JP4832430B2 (ja) 2005-05-17 2011-12-07 帝人株式会社 リチウムイオン二次電池用セパレータ及びリチウムイオン二次電池
JP2007188777A (ja) * 2006-01-13 2007-07-26 Sony Corp セパレータおよび非水電解質電池
DE102006021273A1 (de) 2006-05-05 2007-11-08 Carl Freudenberg Kg Separator zur Anordnung in Batterien und Batterie
CN101779311B (zh) 2007-06-06 2013-11-20 帝人株式会社 非水系二次电池隔膜用聚烯烃微多孔膜基材、其制备方法、非水系二次电池隔膜和非水系二次电池
KR20090050686A (ko) * 2007-11-16 2009-05-20 에스케이에너지 주식회사 물성이 뛰어나고 투과도 및 표면에너지가 높은 폴리에틸렌미세다공막
JP2010212046A (ja) 2009-03-10 2010-09-24 Teijin Ltd 非水系二次電池および非水系二次電池用吸着剤
KR101394622B1 (ko) 2009-04-06 2014-05-20 에스케이이노베이션 주식회사 물성과 고온 안정성이 우수한 폴리올레핀계 다층 미세다공막
KR101093699B1 (ko) 2009-12-11 2011-12-19 삼성에스디아이 주식회사 리튬 이차 전지용 바인더, 양극 활물질 조성물 및 이를 포함하는 리튬 이차 전지
EP2696392B1 (en) * 2011-04-08 2015-08-26 Teijin Limited Nonaqueous secondary battery separator and nonaqueous secondary battery

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08509100A (ja) * 1993-08-23 1996-09-24 ベル コミュニケーションズ リサーチ,インコーポレイテッド ポリマー製電解セルセパレータ膜およびその製造方法
JP2007317675A (ja) * 2000-03-07 2007-12-06 Teijin Ltd リチウムイオン二次電池用セパレータ
JP2001266942A (ja) * 2000-03-15 2001-09-28 Teijin Ltd 電解質担持ポリマー膜及びそれを用いた二次電池
JP4127989B2 (ja) 2001-09-12 2008-07-30 帝人株式会社 非水系二次電池用セパレータ及び非水系二次電池
JP2003171495A (ja) * 2001-09-28 2003-06-20 Teijin Ltd 複合多孔膜の製造法
JP2005072009A (ja) * 2003-08-27 2005-03-17 Samsung Sdi Co Ltd リチウム電池用の結合剤と電極及びそれを採用したリチウム電池
JP2006120462A (ja) * 2004-10-21 2006-05-11 Sanyo Electric Co Ltd 非水電解質電池
WO2010098497A1 (ja) * 2009-02-24 2010-09-02 帝人株式会社 非水系二次電池用多孔膜、非水系二次電池用セパレータ、非水系二次電池用吸着剤および非水系二次電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2696392A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014065258A1 (ja) * 2012-10-22 2014-05-01 ダイキン工業株式会社 セパレータ及び二次電池
JPWO2014065258A1 (ja) * 2012-10-22 2016-09-08 ダイキン工業株式会社 セパレータ及び二次電池
JP2014149936A (ja) * 2013-01-31 2014-08-21 Nippon Zeon Co Ltd 二次電池用セパレータ、二次電池用セパレータの製造方法及び二次電池
WO2017047576A1 (ja) * 2015-09-16 2017-03-23 日立マクセル株式会社 電気化学素子用セパレータ、その製造方法および電気化学素子の製造方法
JPWO2017047576A1 (ja) * 2015-09-16 2018-07-05 マクセルホールディングス株式会社 電気化学素子用セパレータ、その製造方法および電気化学素子の製造方法

Also Published As

Publication number Publication date
TW201242142A (en) 2012-10-16
EP2696392A1 (en) 2014-02-12
KR20130031318A (ko) 2013-03-28
EP2696392A4 (en) 2014-08-27
US10193117B2 (en) 2019-01-29
CN103155220A (zh) 2013-06-12
KR101297768B1 (ko) 2013-08-20
US20130089772A1 (en) 2013-04-11
US9281508B2 (en) 2016-03-08
CN103155220B (zh) 2016-01-20
US20160036027A1 (en) 2016-02-04
EP2696392B1 (en) 2015-08-26
TWI501451B (zh) 2015-09-21

Similar Documents

Publication Publication Date Title
US10193117B2 (en) Separator for nonaqueous secondary battery, and nonaqueous secondary battery
EP2696394B1 (en) Nonaqueous secondary battery separator and nonaqueous secondary battery
JP5432417B2 (ja) 非水系二次電池用セパレータおよび非水系二次電池
JP5129895B2 (ja) 非水系二次電池用セパレータおよび非水系二次電池
JP4988972B1 (ja) 非水系二次電池用セパレータおよび非水系二次電池
JP5670811B2 (ja) 非水系二次電池用セパレータおよび非水系二次電池
JP4988973B1 (ja) 非水系二次電池用セパレータおよび非水系二次電池
JP5603522B2 (ja) 非水電解質電池用セパレータおよび非水電解質電池
JP2014026947A (ja) 非水電解質電池用セパレータ及び非水電解質電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180049838.4

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2012507203

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11863050

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13704152

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011863050

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137000122

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE