WO2014065258A1 - セパレータ及び二次電池 - Google Patents

セパレータ及び二次電池 Download PDF

Info

Publication number
WO2014065258A1
WO2014065258A1 PCT/JP2013/078529 JP2013078529W WO2014065258A1 WO 2014065258 A1 WO2014065258 A1 WO 2014065258A1 JP 2013078529 W JP2013078529 W JP 2013078529W WO 2014065258 A1 WO2014065258 A1 WO 2014065258A1
Authority
WO
WIPO (PCT)
Prior art keywords
separator
fluoropolymer
mol
vdf
polymerization
Prior art date
Application number
PCT/JP2013/078529
Other languages
English (en)
French (fr)
Inventor
俊樹 一坂
隆宏 北原
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to CN201380054872.XA priority Critical patent/CN104737326A/zh
Priority to KR1020157006033A priority patent/KR20150043383A/ko
Priority to JP2014543296A priority patent/JPWO2014065258A1/ja
Priority to US14/428,513 priority patent/US20150280196A1/en
Publication of WO2014065258A1 publication Critical patent/WO2014065258A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/22Vinylidene fluoride
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/426Fluorocarbon polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/26Tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/497Ionic conductivity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a separator and a secondary battery. More specifically, the present invention relates to a separator suitable for a secondary battery such as a lithium secondary battery and a secondary battery using the separator.
  • Non-aqueous secondary batteries represented by lithium secondary batteries have high energy density and are widely used as main power sources for portable electronic devices such as mobile phones and laptop computers. In addition, it is expected as one of the decisive factors for global warming countermeasures including electric vehicles (EV). Lithium secondary batteries are required to have higher energy density, and further improvements in battery characteristics are required. At the same time, ensuring safety is also a technical issue.
  • EV electric vehicles
  • a lithium secondary battery has a basic structure in which a non-aqueous electrolyte is disposed between a positive electrode and a negative electrode via a separator if necessary.
  • the separator is interposed between the positive electrode and the negative electrode to prevent contact between the bipolar active materials, and forms an ion conduction path between the electrodes by allowing the electrolyte to flow through the pores.
  • a microporous polyolefin film made of polyethylene, polypropylene or the like has been generally used as a separator.
  • it has been studied to improve battery characteristics and safety by improving the performance of the separator.
  • Patent Document 1 discloses a separator for a non-aqueous secondary battery, which is intended to improve the cycle characteristics of the battery by suitably preventing the oxidative deterioration of the separator and to sufficiently prevent the battery from expanding.
  • a separator is described in which a fluorine compound layer having a thickness of 1 nm to 500 nm is provided on the surface of a separator made of a polyolefin microporous film or the like.
  • Patent Document 2 in a separator for a non-aqueous electrolyte secondary battery having a shutdown layer and a heat-resistant porous layer, a dot on the surface of the heat-resistant porous layer on which the shutdown layer is not disposed.
  • a configuration in which a spacer in the form of a wire, a wire, a mesh, or a porous film is provided (claim 1). Specific examples of the spacer are shown by applying a suspension of polypropylene, polyethylene, tetrafluoroethylene-hexafluoropropylene copolymer or the like to the surface of the heat-resistant porous layer and drying (Examples 1 to 3). .
  • the conventional separator which consists of polyolefin films has ignitability.
  • the battery when the battery is operated at a high voltage or high temperature, a phenomenon occurs in which the positive electrode side is denatured and colored.
  • Patent Document 3 was obtained by applying a vinylidene fluoride / tetrafluoroethylene / hexafluoropropylene copolymer or a blend thereof dissolved in THF to a polyethylene separator and drying it. A separator coated with an electrolyte holding film layer is described (Examples 1 to 6).
  • JP 2011-108515 A JP 2002-151044 A WO 2011/096564 pamphlet
  • the present invention has been made in view of the above situation, and an object of the present invention is to provide a separator and a secondary battery having high ionic conductivity and excellent durability.
  • the separator comprising a fluoropolymer layer composed of a polymer unit based on vinylidene fluoride and a polymer unit based on tetrafluoroethylene, and a porous film
  • the present inventors used vinylidene fluoride in the fluoropolymer. It was found that a separator capable of achieving both high ionic conductivity and low electrolyte swellability can be obtained when the content of the polymer units based on the weight average molecular weight of the fluoropolymer is within a specific range. did.
  • the present invention relates to a separator comprising a fluoropolymer layer comprising a polymer unit based on vinylidene fluoride and a polymer unit based on tetrafluoroethylene, and a porous membrane.
  • the fluoropolymer comprises a vinylidene fluoride.
  • a separator comprising 80.0 to 89.0 mol% of polymerized units based on a ride and having a weight average molecular weight of 50,000 to 2,000,000 based on all polymerized units.
  • the porous film is preferably made of at least one resin selected from the group consisting of polyethylene, polypropylene and polyimide.
  • the layer made of the fluoropolymer preferably further contains polyvinylidene fluoride.
  • This invention is also a secondary battery provided with the said separator, a positive electrode, a negative electrode, and a non-aqueous electrolyte.
  • the separator of the present invention can achieve both high ionic conductivity and low electrolyte swellability. Moreover, a secondary battery provided with the separator of this invention has the outstanding characteristic that cycle life is long and durability is high.
  • the separator of the present invention is a fluorine-containing heavy comprising polymerized units based on vinylidene fluoride [VdF] (also referred to as “VdF units”) and polymerized units based on tetrafluoroethylene [TFE] (also referred to as “TFE units”). It consists of a layer made of a coalescence (hereinafter also referred to as a fluoropolymer layer) and a porous membrane.
  • VdF vinylidene fluoride
  • TFE tetrafluoroethylene
  • the fluorine-containing polymer is composed of VdF units and TFE units, and contains 80.0 to 89.0 mol% of VdF units with respect to all polymerized units. If the VdF unit is less than 80.0 mol%, the swellability with respect to the electrolytic solution tends to be too high and the long-term durability tends to be poor, and if it exceeds 89.0 mol%, the ionic conductivity of the fluoropolymer tends to be poor. There is.
  • the fluoropolymer preferably contains 80.5 mol% or more, more preferably 82.0 mol% or more, of VdF units with respect to the total polymerization units.
  • the fluoropolymer contains 82.5 mol% or more of VdF units with respect to all polymerized units. Moreover, it is preferable to contain 88.9 mol% or less, and it is more preferable to contain 88.8 mol% or less.
  • the composition of the fluoropolymer can be measured using an NMR analyzer.
  • the fluoropolymer may contain a polymer unit based on a monomer that can be copolymerized with VdF and TFE in addition to a polymer unit based on VdF unit and TFE.
  • a copolymer of VdF and TFE is sufficient, but a copolymer that can be copolymerized with them to such an extent that the excellent nonaqueous electrolyte swelling property of the copolymer is not impaired.
  • the adhesiveness can be further improved by copolymerizing the monomer.
  • the content of polymerized units based on monomers that can be copolymerized with VdF and TFE is preferably less than 3.0 mol% based on the total polymerized units of the fluoropolymer. When it is 3.0 mol% or more, generally the crystallinity of the copolymer of VdF and TFE is remarkably lowered, and as a result, the non-aqueous electrolyte swell resistance tends to be lowered.
  • Examples of monomers that can be copolymerized with VdF and TFE include unsaturated dibasic acid monoesters such as maleic acid monomethyl ester, citraconic acid monomethyl ester, and citraconic acid as described in JP-A-6-172245.
  • An amide bond (—CO—NR ′′ — (R ′′ represents hydrogen A compound having a hydrophilic polar group such as an atom, an alkyl group which may have a substituent, or a phenyl group which may have a substituent.
  • the amide group is a group represented by —CO—NRR ′.
  • R and R ′ are the same or different and each represents a hydrogen atom or an alkyl group which may have a substituent. When R and R 'are alkyl groups, they may be chain-like, cyclic or branched.
  • the alkyl group preferably has 1 to 30 carbon atoms. More preferably, it is 1-20.
  • the substituent include a halogen atom, an alkoxy group having 1 to 30 carbon atoms, and an aryl group having 6 to 30 carbon atoms.
  • the compound having an amide group is not particularly limited as long as it has one or more polymerizable carbon-carbon double bonds and one or more amide groups in the molecule, but the following general formula (1):
  • X 1 is the same or different and each represents a hydrogen atom or an alkyl group which may have a substituent.
  • X 2 represents a hydrogen atom or an alkyl which may have a substituent.
  • Y represents a single bond or an alkylene group which may have a substituent, and R 1 and R 2 may be the same or different and each may have a hydrogen atom or a substituent.
  • X 1 in the general formula (1) is a hydrogen atom or an alkyl group. Two X 1 in the general formula (1) may be the same or different from each other.
  • the alkyl group may or may not have a substituent.
  • the alkyl group may be linear, cyclic or branched. Examples of the alkyl group include the same as those described for R and R ′.
  • X 1 is preferably a hydrogen atom or a halogen atom, particularly preferably a hydrogen atom.
  • X 2 in the general formula (1) is a hydrogen atom or an alkyl group.
  • the alkyl group may or may not have a substituent.
  • the alkyl group may be linear, cyclic or branched. Examples of the alkyl group include the same as those described for X 1 above.
  • X 2 among them, a hydrogen atom and a methyl group are preferable.
  • Y in the general formula (1) is a single bond or an alkylene group.
  • the alkylene group may or may not have a substituent.
  • the alkylene group may be chain-like, cyclic or branched.
  • the alkylene group preferably has 1 to 30 carbon atoms. More preferably, it is 1-25.
  • R 1 and R 2 in the general formula (1) are a hydrogen atom or an alkyl group.
  • R 1 and R 2 may be the same or different from each other.
  • the alkyl group may or may not have a substituent.
  • the alkyl group may be linear, cyclic or branched. Examples of the alkyl group include the same as those described for X 1 above.
  • a hydrogen atom and a halogen atom are preferable, and a hydrogen atom is particularly preferable.
  • X 3 represents a hydrogen atom or a methyl group.
  • R 3 and R 4 are the same or different and each represents a hydrogen atom or an alkyl group which may have a substituent).
  • Preferred are (meth) acrylamides.
  • Specific examples of R 3 and R 4 in the general formula (2) are the same as those described for R 1 and R 2 in the general formula (1).
  • Examples of the (meth) acrylamides include (meth) acrylamide and derivatives thereof. Specifically, (meth) acrylamide, N-methyl (meth) acrylamide, N-isopropyl (meth) acrylamide, N-tert-butyl (meth) acrylamide, N-phenyl (meth) acrylamide, N-methoxymethyl (meta) ) Acrylamide, N-butoxymethyl (meth) acrylamide, 4-acroylmorpholine, diacetone (meth) acrylamide, N, N-dimethyl (meth) acrylamide, N, N-diethyl (meth) acrylamide, 2- (meth) acrylamide Examples include -2-methylpropanesulfonic acid. Among these, N-tert-butylacrylamide is particularly preferable.
  • the amide bond is a bond represented by —CO—NR ′′ —, and may be a bond represented by —CO—NR ′′ —CO—.
  • R ′′ represents a hydrogen atom, an alkyl group which may have a substituent or a phenyl group which may have a substituent.
  • Examples of the compound having an amide bond include N-vinylacetamide derivatives such as N-vinylacetamide, N-methyl-N-vinylacetamide, maleimide, N-butylmaleimide, and N-phenyl. Examples thereof include maleimide derivatives such as maleimide, and among these, N-vinylacetamide is preferable.
  • CF 2 CF—O—C n F 2n + 1 (n is an integer of 1 or more)
  • CH 2 CF—C n F 2n + 1 ( n is an integer of 1 or more)
  • CF 2 ⁇ CF—O— (CF 2 CF (CF 3 ) O) m ⁇ C n F 2n + 1 (m and n are integers of 1 or more) can also be used.
  • Y is —CH 2 OH, —COOH, carboxylate, carboxyester group or epoxy group
  • X and X 1 are the same or different, and both are hydrogen atoms or fluorine atoms
  • R f is 1 to 40 carbon atoms.
  • a fluorine-containing ethylenic monomer having at least one functional group Is possible.
  • the fluoropolymer may contain other polymerized units in addition to the VdF unit and the TFE unit, but more preferably comprises only the VdF unit and the TFE unit.
  • the fluorine-containing polymer has a weight average molecular weight (polystyrene conversion) of 50,000 to 2,000,000. It is preferably 80000 to 1700000, more preferably 100000 to 1500,000, still more preferably 200000 to 1400000, and still more preferably 300000 to 1300000.
  • the lower limit of the weight average molecular weight of the fluoropolymer is particularly preferably more than 500,000, and most preferably 600,000.
  • the weight average molecular weight can be measured at 50 ° C. using N, N-dimethylformamide as a solvent by gel permeation chromatography (GPC).
  • the fluoropolymer preferably has a number average molecular weight (in terms of polystyrene) of 10,000 to 1400000.
  • the range is preferably 16000 to 1200000, more preferably 20000 to 1000000, still more preferably 40000 to 800000, and particularly preferably 80000 to 700000.
  • the number average molecular weight can be measured by gel permeation chromatography (GPC) at 50 ° C. using N, N-dimethylformamide as a solvent.
  • Examples of the method for producing the fluoropolymer include suspension polymerization, emulsion polymerization, solution polymerization, and the like by suitably mixing monomers such as VdF and TFE as polymerization units and additives such as a polymerization initiator.
  • aqueous suspension polymerization and emulsion polymerization are preferable from the viewpoint of ease of post-treatment.
  • a polymerization initiator, a surfactant, a chain transfer agent, and a solvent can be used, and conventionally known ones can be used.
  • an oil-soluble radical polymerization initiator or a water-soluble radical polymerization initiator can be used as said polymerization initiator.
  • the oil-soluble radical polymerization initiator may be a known oil-soluble peroxide, for example, dialkyl such as diisopropyl peroxydicarbonate, di-n-propyl peroxydicarbonate, disec-butylperoxydicarbonate, etc.
  • Peroxycarbonates, peroxyesters such as t-butylperoxyisobutyrate and t-butylperoxypivalate, dialkylperoxides such as dit-butylperoxide, and the like are also used as di ( ⁇ -hydro -Dodecafluoroheptanoyl) peroxide, di ( ⁇ -hydro-tetradecafluoroheptanoyl) peroxide, di ( ⁇ -hydro-hexadecafluorononanoyl) peroxide, di (perfluorobutyryl) peroxide, di (Perful paleryl) peroxide Di (perfluorohexanoyl) peroxide, di (perfluoroheptanoyl) peroxide, di (perfluorooctanoyl) peroxide, di (perfluorononanoyl) peroxide, di ( ⁇ -chloro-hexafluorobutyryl) ) Peroxide,
  • the water-soluble radical polymerization initiator may be a known water-soluble peroxide, for example, ammonium salts such as persulfuric acid, perboric acid, perchloric acid, perphosphoric acid, percarbonate, potassium salts, sodium salts , T-butyl permaleate, t-butyl hydroperoxide and the like.
  • a reducing agent such as sulfites and sulfites may be used in combination with the peroxide, and the amount used may be 0.1 to 20 times that of the peroxide.
  • a known surfactant can be used.
  • a nonionic surfactant, an anionic surfactant, a cationic surfactant, or the like can be used.
  • fluorine-containing anionic surfactants are preferable, and may include an ether bond (that is, an oxygen atom may be inserted between carbon atoms), or a linear or branched fluorine-containing group having 4 to 20 carbon atoms.
  • Anionic surfactants are more preferred.
  • the addition amount (with respect to polymerization water) is preferably 50 to 5000 ppm.
  • Examples of the chain transfer agent include hydrocarbons such as ethane, isopentane, n-hexane, and cyclohexane; aromatics such as toluene and xylene; ketones such as acetone; acetates such as ethyl acetate and butyl acetate; Examples include alcohols such as methanol and ethanol; mercaptans such as methyl mercaptan; halogenated hydrocarbons such as carbon tetrachloride, chloroform, methylene chloride, and methyl chloride.
  • the addition amount may vary depending on the size of the chain transfer constant of the compound used, but is usually used in the range of 0.01 to 20% by mass with respect to the polymerization solvent.
  • Examples of the solvent include water, a mixed solvent of water and alcohol, and the like.
  • a fluorine-based solvent may be used in addition to water.
  • the fluorine-based solvent include hydrochlorofluoroalkanes such as CH 3 CClF 2 , CH 3 CCl 2 F, CF 3 CF 2 CCl 2 H, CF 2 ClCF 2 CFHCl; CF 2 ClCFClCF 2 CF 3 , CF 3 CFClCFClCF 3, etc.
  • Perfluoroalkanes such as perfluorocyclobutane, CF 3 CF 2 CF 2 CF 3 , CF 3 CF 2 CF 2 CF 2 CF 3 , CF 3 CF 2 CF 2 CF 2 CF 3 , etc. Among them, perfluoroalkanes are preferable.
  • the amount of the fluorine-based solvent used is preferably 10 to 100% by mass with respect to the aqueous medium from the viewpoint of suspendability and economy.
  • the polymerization temperature is not particularly limited, and may be 0 to 100 ° C.
  • the polymerization pressure is appropriately determined according to other polymerization conditions such as the type, amount and vapor pressure of the solvent to be used, and the polymerization temperature, but it may usually be 0 to 9.8 MPaG.
  • a suspension agent such as methyl cellulose, methoxylated methyl cellulose, propoxylated methyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, polyvinyl alcohol, polyethylene oxide, gelatin, It is used by adding in the range of 0.005 to 1.0 mass%, preferably 0.01 to 0.4 mass% with respect to water.
  • polymerization initiators include diisopropyl peroxydicarbonate, dinormalpropyl peroxydicarbonate, dinormalheptafluoropropyl peroxydicarbonate, isobutyryl peroxide, di (chlorofluoroacyl) peroxide, di (peroxide). Fluoroacyl) peroxide and the like can be used.
  • the amount used is the total amount of monomers (total amount of vinylidene fluoride, the above-mentioned monomer having an amide group, and other monomers copolymerizable with those monomers if necessary).
  • the content is preferably 0.1 to 5% by mass.
  • a chain transfer agent such as ethyl acetate, methyl acetate, acetone, ethanol, n-propanol, acetaldehyde, propyl aldehyde, ethyl propionate or carbon tetrachloride may be added to adjust the degree of polymerization of the resulting polymer.
  • the amount used is usually from 0.1 to 5% by mass, preferably from 0.5 to 3% by mass, based on the total amount of monomers.
  • the total amount of monomers charged is 1: 1 to 1:10, preferably 1: 2 to 1: 5 in a weight ratio of the total amount of monomer to water, and the polymerization is carried out at a temperature of 10 to 50 ° C. 100 hours.
  • the above fluoropolymer can be easily obtained by the above suspension polymerization.
  • the fluoropolymer layer may further contain other components in addition to the fluoropolymer, as long as the effects of the present invention are not impaired.
  • the fluoropolymer layer may further contain polyvinylidene fluoride [PVdF].
  • PVdF polyvinylidene fluoride
  • the PVdF blended with the fluoropolymer may be a homopolymer consisting only of polymerized units based on VdF, or a monomer copolymerizable with polymerized units based on VdF and polymerized units based on VdF. It may consist of polymerized units based on ( ⁇ ).
  • Examples of the monomer ( ⁇ ) include vinyl fluoride, trifluoroethylene, trifluorochloroethylene, fluoroalkyl vinyl ether, hexafluoropropylene, 2,3,3,3-tetrafluoropropene, and propylene.
  • unsaturated dibasic acid monoesters such as those described in JP-A-6-172452, such as maleic acid monomethyl ester, citraconic acid monomethyl ester, citraconic acid monoethyl ester, vinylene carbonate, etc.
  • the adhesiveness can be improved by slightly reducing the crystallinity of the copolymer of vinylidene fluoride and tetrafluoroethylene and giving flexibility to the material other than the compound containing the polar group as described above.
  • fluoromonomers such as ethylene trifluoride and hexafluoropropylene.
  • Y is —CH 2 OH, —COOH, carboxylate, carboxyester group or epoxy group
  • X and X 1 are the same or different, and both are hydrogen atoms or fluorine atoms
  • Rf has 1 to 40 carbon atoms.
  • Fluorine-containing ethylenic monomer having at least one functional group represented by a divalent fluorine-containing alkylene group or a divalent fluorine-containing alkylene group containing an ether bond having 1 to 40 carbon atoms can also be used. It is. By copolymerizing one or more of these monomers, the adhesion is further improved, and good charge / discharge cycle characteristics can be obtained even when charge / discharge is repeated.
  • the polymerization unit based on the monomer ( ⁇ ) is preferably 5 mol% or less, more preferably 4.5 mol% or less of the total polymerization units.
  • the PVdF preferably has a weight average molecular weight (in terms of polystyrene) of 50,000 to 2,000,000. More preferably, it is 80000 to 1700000, and still more preferably 100000 to 1500,000.
  • the weight average molecular weight can be measured at 50 ° C. using N, N-dimethylformamide as a solvent by gel permeation chromatography (GPC).
  • the PVdF preferably has a number average molecular weight (in terms of polystyrene) of 10,000 to 1400000. More preferably, it is 16000 to 1200,000, and still more preferably 20000 to 1000000.
  • the number average molecular weight can be measured by gel permeation chromatography (GPC) at 50 ° C. using N, N-dimethylformamide as a solvent.
  • the PVdF is produced by a conventionally known method such as solution polymerization or suspension polymerization by appropriately mixing, for example, VdF which is a polymerization unit, the monomer ( ⁇ ), and an additive such as a polymerization initiator. can do.
  • the mass ratio (fluoropolymer) / (PVdF) is preferably 90/10 to 10/90, / 20 to 15/85 is more preferable.
  • the fluoropolymer layer may include metal oxide particles.
  • the metal oxide is not particularly limited, but is preferably an oxide other than alkali metal or alkaline earth metal from the viewpoint of improving ion conductivity and shutdown effect, and particularly aluminum oxide, silicon oxide, titanium oxide, vanadium oxide, copper oxide, etc. Is preferred.
  • As the particle diameter fine particles having an average particle diameter of 20 ⁇ m or less, further 10 ⁇ m or less, and particularly 5 ⁇ m or less are preferable.
  • Particularly preferred metal oxide particles are aluminum oxide particles or silicon oxide particles having an average particle diameter of 5 ⁇ m or less from the viewpoint of excellent ion conductivity.
  • the fluoropolymer layer may further contain components other than those described above.
  • the component include polymethacrylate, polymethyl methacrylate, polyacrylonitrile, polyimide, polyamide, polyamideimide, polycarbonate, styrene rubber, and butadiene rubber.
  • the fluoropolymer layer is preferably provided on the porous membrane.
  • the said fluoropolymer layer may be provided only in the one side of the said porous membrane, and may be provided in both sides. Moreover, the fluoropolymer layer may be provided so as to cover the entire surface on which the fluoropolymer layer is provided, or may be provided so as to cover only a part.
  • the weight of the fluoropolymer layer is preferably in the range of 0.2 to 3.0 g / m 2 when the fluoropolymer layer is formed only on one side of the porous membrane. If it is less than 0.2 g / m 2 , the adhesion to the electrode may be insufficient. On the other hand, if it is more than 3.0 g / m 2 , ion conduction is hindered and the load characteristics of the battery tend to deteriorate, which is not preferable.
  • the weight of the fluoropolymer is preferably 0.2 to 6.0 g / m 2 .
  • the above porous membrane means a substrate having pores or voids inside.
  • a substrate include a microporous film, a porous sheet made of a fibrous material such as a nonwoven fabric and a paper sheet, or one or more other porous layers laminated on the microporous film or the porous sheet.
  • a composite porous membrane is a membrane that has a large number of micropores inside and a structure in which these micropores are connected, and allows gas or liquid to pass from one surface to the other. Means.
  • the material constituting the porous film either an organic material or an inorganic material having electrical insulation can be used.
  • a thermoplastic resin as a constituent material of the base material.
  • the shutdown function is a function to prevent the thermal runaway of the battery by blocking the movement of ions by melting the thermoplastic resin and closing the pores of the porous substrate when the battery temperature rises.
  • the thermoplastic resin a thermoplastic resin having a melting point of less than 200 ° C. is suitable, and polyolefin is particularly preferable.
  • a polyolefin microporous membrane is suitable as the porous membrane using polyolefin.
  • a polyolefin microporous membrane having sufficient mechanical properties and ion permeability and applied to a conventional separator for a non-aqueous secondary battery can be used.
  • a polyolefin microporous film contains polyethylene from a viewpoint that it has the shutdown function mentioned above.
  • a polyolefin microporous membrane containing polyethylene and polypropylene is preferable from the viewpoint of imparting heat resistance to such an extent that it does not easily break when exposed to high temperatures.
  • a polyolefin microporous membrane include a microporous membrane in which polyethylene and polypropylene are mixed in one sheet.
  • Such a microporous membrane preferably contains 95% by weight or more of polyethylene and 5% by weight or less of polypropylene from the viewpoint of achieving both a shutdown function and heat resistance.
  • the polyolefin microporous membrane has a structure of at least two layers, and one of the two layers includes polyethylene and the other layer includes polypropylene.
  • a polyolefin microporous membrane having a structure is also preferred.
  • the polyolefin preferably has a weight average molecular weight of 100,000 to 5,000,000. If the weight average molecular weight is less than 100,000, it may be difficult to ensure sufficient mechanical properties. On the other hand, if it exceeds 5 million, the shutdown characteristics may be deteriorated or molding may be difficult.
  • Such a polyolefin microporous film can be produced, for example, by the following method.
  • (iv) a heat treatment of the sheet A method of forming the microporous film by sequentially performing the steps is performed.
  • a step of melting a polyolefin resin together with a plasticizer such as liquid paraffin, extruding it from a T-die and cooling it into a sheet (ii) a step of stretching the sheet, (iii) Examples include a method of forming a microporous film by sequentially performing a step of extracting a plasticizer from the sheet and (iv) a step of heat-treating the sheet.
  • a plasticizer such as liquid paraffin
  • porous sheets made of fibrous materials include polyesters such as polyethylene terephthalate, polyolefins such as polyethylene and polypropylene, heat-resistant polymers such as aromatic polyamides and polyimides, polyethersulfone, polysulfone, polyetherketone, and polyetherimide. Or a porous sheet made of a mixture of these fibrous materials.
  • a composite porous membrane As a composite porous membrane, the structure which laminated
  • the functional layer for example, from the viewpoint of imparting heat resistance, a porous layer made of a heat resistant resin or a porous layer made of a heat resistant resin and an inorganic filler can be used.
  • the heat resistant resin include one or more heat resistant polymers selected from aromatic polyamide, polyimide, polyethersulfone, polysulfone, polyetherketone, and polyetherimide.
  • a metal oxide such as alumina or a metal hydroxide such as magnesium hydroxide can be suitably used.
  • the composite method include a method of coating a functional sheet on a porous sheet, a method of bonding with an adhesive, and a method of thermocompression bonding.
  • the porous membrane in the present invention is preferably made of at least one resin selected from the group consisting of polyethylene, polypropylene, and polyimide among the above.
  • the thickness of the porous membrane is preferably in the range of 5 to 25 ⁇ m from the viewpoint of obtaining good mechanical properties and internal resistance.
  • the separator of the present invention can be produced by laminating the fluoropolymer layer on the porous membrane.
  • the lamination method is not particularly limited, and a conventionally known method may be adopted. Specifically, a method of roll coating a porous film with a solution or dispersion obtained by dissolving or dispersing the above-mentioned fluoropolymer and other components in a solvent as required, porous to the above solution or dispersion A method of dipping the membrane, a method of applying the above solution or dispersion to a porous membrane and immersing it in an appropriate coagulation solution, and dispersing the above-mentioned fluoropolymer and other components as necessary in water A method of roll coating on the membrane is preferred.
  • a film composed of a fluoropolymer layer may be prepared in advance, and the film and the porous film may be laminated by a method such as laminating.
  • a method for producing a film comprising a fluoropolymer layer a smooth surface such as a polyester film or an aluminum film is prepared by dissolving or dispersing the above fluoropolymer and, if necessary, other components in a solvent.
  • An example is a method of peeling after casting on a film having a film.
  • amide solvents such as N-methyl-2-pyrrolidone
  • ketone solvents such as acetone
  • cyclic ether solvents such as tetrahydrofuran
  • the separator of this invention can comprise a secondary battery with a positive electrode, a negative electrode, and a non-aqueous electrolyte.
  • This invention is also a secondary battery provided with the said separator, a positive electrode, a negative electrode, and a non-aqueous electrolyte.
  • a positive electrode, a negative electrode, and a nonaqueous electrolyte you may use the well-known thing which can be used for a secondary battery.
  • a lithium secondary battery is particularly preferable.
  • the typical structure in case the secondary battery of this invention is a lithium secondary battery is demonstrated, However, The secondary battery of this invention is not limited to these structures.
  • a positive electrode is comprised from the positive electrode mixture containing the positive electrode active material which is a material of a positive electrode, and a collector.
  • the positive electrode active material is not particularly limited as long as it can electrochemically occlude and release lithium ions.
  • a substance containing lithium and at least one transition metal is preferable.
  • lithium-transition metal composite oxides such as lithium-cobalt composite oxide, lithium-nickel composite oxide, and lithium-manganese composite oxide; lithium-containing transition metal A phosphoric acid compound etc. are mentioned.
  • the positive electrode mixture preferably further contains a binder, a thickener, and a conductive material.
  • a binder any material can be used as long as it is a material that is safe with respect to the solvent and electrolyte used in the production of the electrode.
  • the binder any material can be used as long as it is a material that is safe with respect to the solvent and electrolyte used in the production of the electrode.
  • -Tetrafluoroethylene copolymer polyvinylidene fluoride-hexafluoropropylene copolymer, polyvinylidene fluoride-tetrafluoroethylene-hexafluoropropylene copolymer, polyethylene, polypropylene, styrene-butadiene rubber, isoprene rubber, butadiene rubber, ethylene -Acrylic acid copolymer, ethylene-methacrylic acid copolymer and the like.
  • thickener examples include carboxymethylcellulose, methylcellulose, hydroxymethylcellulose, ethylcellulose, polyvinyl alcohol, oxidized starch, phosphorylated starch, and casein.
  • Examples of the conductive material include carbon materials such as graphite and carbon black.
  • Examples of the material for the positive electrode current collector include metals such as aluminum, titanium, and tantalum, and alloys thereof. Of these, aluminum or an alloy thereof is preferable.
  • the positive electrode may be manufactured by a conventional method.
  • the above-mentioned positive electrode active material is added with the above-mentioned binder, thickener, conductive material, solvent, etc. to form a slurry-like positive electrode mixture, which is applied to a current collector, dried and then pressed.
  • a method of densification is mentioned.
  • the negative electrode is composed of a negative electrode mixture containing a negative electrode material and a current collector.
  • the negative electrode material carbonaceous materials capable of occluding and releasing lithium such as organic pyrolysates and artificial graphite and natural graphite under various pyrolysis conditions; lithium such as tin oxide and silicon oxide can be occluded and released Metal oxide materials; lithium metal; various lithium alloys and the like. These negative electrode materials may be used in combination of two or more.
  • the negative electrode mixture preferably further contains a binder, a thickener, and a conductive material.
  • a binder the thing similar to the binder which can be used for a positive electrode mentioned above is mentioned.
  • a thickener the thing similar to the thickener which can be used for a positive electrode mentioned above is mentioned.
  • Examples of the conductive material for the negative electrode include metal materials such as copper and nickel; carbon materials such as graphite and carbon black.
  • Examples of the material of the negative electrode current collector include copper, nickel, and stainless steel. Of these, copper foil is preferable from the viewpoint of easy processing into a thin film and cost.
  • the negative electrode may be manufactured by a conventional method.
  • the above-described negative electrode material is added with the above-mentioned binder, thickener, conductive material, solvent, etc. to form a slurry, which is applied to a current collector, dried, pressed and densified. .
  • nonaqueous electrolytic solution a known electrolyte salt dissolved in a known electrolyte salt dissolving organic solvent may be used.
  • the organic solvent for dissolving the electrolyte salt is not particularly limited, but propylene carbonate, ethylene carbonate, butylene carbonate, ⁇ -butyrolactone, 1,2-dimethoxyethane, 1,2-diethoxyethane, dimethyl carbonate, diethyl Hydrocarbon solvents such as carbonate and ethyl methyl carbonate; one or more fluorine solvents such as fluoroethylene carbonate, fluoroether and fluorinated carbonate can be used.
  • electrolyte salt examples include LiClO 4 , LiAsF 6 , LiBF 4 , LiPF 6 , LiCl, LiBr, CH 3 SO 3 Li, CF 3 SO 3 Li, LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 , cesium carbonate, and the like, and LiPF 6 , LiBF 4 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 or a combination thereof is particularly preferable from the viewpoint of good cycle characteristics.
  • the concentration of the electrolyte salt is preferably 0.8 mol / liter or more, and more preferably 1.0 mol / liter or more. Although the upper limit depends on the organic solvent for dissolving the electrolyte salt, it is usually 1.5 mol / liter.
  • the shape of the lithium secondary battery is arbitrary, and examples thereof include a cylindrical shape, a square shape, a laminate shape, a coin shape, and a large shape.
  • the shape and structure of a positive electrode, a negative electrode, and a separator can be changed and used according to the shape of each battery in the range which does not impair the effect of this invention.
  • composition and molecular weight of the fluoropolymer were measured by the following methods.
  • ⁇ Polymer composition> Using an NMR analyzer (manufactured by Agilent Technologies, VNS 400 MHz), the polymer was measured in a DMSO solution state by 19 F-NMR measurement. The following peak areas (A, B, C, D) were determined by 19 F-NMR measurement, and the ratio of VdF to TFE was calculated.
  • GPC gel permeation chromatography
  • NMP solution of a fluoropolymer having a concentration of 5% by mass was prepared, and this solution was cast coated on an aluminum foil.
  • NMP was completely volatilized while drying at 120 ° C. using an air constant temperature thermostat (manufactured by Yamato Kagaku Co., Ltd.) to prepare a belt-like cast film having a thickness of 10 ⁇ m.
  • the obtained cast film was immersed in an electrolytic solution (a solution of LiPF 6 dissolved in 3/7 (volume ratio) of ethylene carbonate and ethyl methyl carbonate at a concentration of 1 M) for 10 minutes, and then sandwiched between SUS electrodes.
  • Ion conductivity (frequency: 10 ⁇ 3 to 10 6 Hz, AC voltage: 10 mV) connected to a potentiostat (frequency analyzer: Model 1260 manufactured by Solartron, potentiostat: Model 1287 manufactured by Solartron) S / cm) was measured.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Cell Separators (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

本発明は、イオン伝導度が高くまた耐久性に優れるセパレータ及び二次電池を提供することを目的とする。 本発明は、ビニリデンフルオライドに基づく重合単位及びテトラフルオロエチレンに基づく重合単位からなる含フッ素重合体からなる層と、多孔質膜とからなるセパレータであって、含フッ素重合体は、ビニリデンフルオライドに基づく重合単位を全重合単位に対して80.0~89.0モル%含み、かつ、重量平均分子量が50000~2000000であることを特徴とするセパレータである。 

Description

セパレータ及び二次電池
本発明は、セパレータ及び二次電池に関する。より詳しくは、リチウム二次電池等の二次電池に好適なセパレータ及びそれを用いた二次電池に関する。
リチウム二次電池に代表される非水系二次電池は、高エネルギー密度であり、携帯電話・ノートパソコンといった携帯用電子機器の主電源として広範に普及している。また、電気自動車(EV)をはじめ、地球温暖化対策の決め手の1つとして期待されている。リチウム二次電池には、更なる高エネルギー密度化が求められており、電池特性の更なる改善が求められている。また同時に、安全性の確保も技術的な課題となっている。
リチウム二次電池は、正極と負極との間に非水電解液を、要すればセパレータを介して配置するものが基本構造である。セパレータは、正極と負極の間に介在して両極活物質の接触を防止するとともに、その空孔内に電解液を流通させることにより電極間のイオン伝導の通路を形成する。
従来、セパレータとしては、ポリエチレン、ポリプロピレン等で作製される微多孔性ポリオレフィンフィルムが一般的に使用されてきた。近年、このセパレータの性能を改善することにより、電池特性や安全性を向上させることが検討されている。
特許文献1には、セパレータの酸化劣化を好適に防止して電池のサイクル特性を向上させ、かつ、電池のガス膨れも十分に防止できるセパレータを提供することを目的として、非水系二次電池用セパレータであって、ポリオレフィン微多孔膜等からなるセパレータの表面に、厚みが1nm~500nmのフッ素系化合物層を設けたものが記載されている。
特許文献2には、シャットダウン層と耐熱多孔質層とを有した非水電解液二次電池用セパレータにおいて、耐熱多孔質層の表面であってシャットダウン層の配置されていない側の表面に、点状、線状、網目状、又は多孔質フィルム状のスペーサーを設けた構成が示されている(請求項1)。スペーサーの具体例としては、ポリプロピレンやポリエチレン、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体等のサスペンジョンを耐熱多孔質層の表面に塗布し、乾燥したものが示されている(実施例1~3)。
また、ポリオレフィンフィルムからなる従来のセパレータには、着火性がある。また、高電圧又は高温で電池動作した場合に正極側が変質し着色するという現象も起こる。
そこで、特許文献3には、フッ化ビニリデン/テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体又はそのブレンド物をTHFに溶解させたものをポリエチレン製のセパレータに塗布し、乾燥させることによって得られた、電解液保持フィルム層で被覆されたセパレータが記載されている(実施例1~6)。
特開2011-108515号公報 特開2002-151044号公報 国際公開第2011/096564号パンフレット
しかしながら、更に性能の改善されたセパレータが求められている。
本発明は、上記現状に鑑みてなされたものであり、イオン伝導度が高くまた耐久性に優れるセパレータ及び二次電池を提供することを目的とするものである。
本発明者らは、ビニリデンフルオライドに基づく重合単位及びテトラフルオロエチレンに基づく重合単位からなる含フッ素重合体からなる層と、多孔質膜とからなるセパレータにおいて、含フッ素重合体におけるビニリデンフルオライドに基づく重合単位の含有量、及び、含フッ素重合体の重量平均分子量を特定の範囲内とすると、高いイオン伝導度と低い電解液膨潤性が両立できるセパレータが得られることを見いだし、本発明に到達した。
すなわち本発明は、ビニリデンフルオライドに基づく重合単位及びテトラフルオロエチレンに基づく重合単位からなる含フッ素重合体からなる層と、多孔質膜とからなるセパレータであって、含フッ素重合体は、ビニリデンフルオライドに基づく重合単位を全重合単位に対して80.0~89.0モル%含み、かつ、重量平均分子量が50000~2000000であることを特徴とするセパレータである。
多孔質膜は、ポリエチレン、ポリプロピレン及びポリイミドからなる群より選択される少なくとも1種の樹脂からなることが好ましい。
含フッ素重合体からなる層は、更にポリビニリデンフルオライドを含むことが好ましい。
本発明は、上記セパレータ、正極、負極及び非水電解液を備える二次電池でもある。
本発明のセパレータは、高いイオン伝導度と低い電解液膨潤性とを両立できる。また、本発明のセパレータを備える二次電池は、サイクル寿命が長く耐久性が高いという優れた特性を有する。
以下、本発明を具体的に説明する。
本発明のセパレータは、ビニリデンフルオライド〔VdF〕に基づく重合単位(「VdF単位」ともいう。)及びテトラフルオロエチレン〔TFE〕に基づく重合単位(「TFE単位」ともいう。)からなる含フッ素重合体からなる層(以下、含フッ素重合体層ともいう。)と、多孔質膜とからなる。
上記含フッ素重合体は、VdF単位及びTFE単位からなり、VdF単位を、全重合単位に対して80.0~89.0モル%含む。
VdF単位が80.0モル%未満であると電解液に対する膨潤性が高くなりすぎて長期耐久性に劣る傾向があり、89.0モル%より多いとフッ素重合体のイオン伝導度が悪くなる傾向がある。
上記含フッ素重合体は、VdF単位を全重合単位に対して80.5モル%以上含むことが好ましく、82.0モル%以上含むことがより好ましい。82.0モル%以上であると、電解液に対する膨潤性を一層低く抑えることができ、長期耐久性を向上させることができる。
上記含フッ素重合体は、VdF単位を全重合単位に対して82.5モル%以上含むことが更に好ましい。また、88.9モル%以下含むことが好ましく、88.8モル%以下含むことがより好ましい。
上記含フッ素重合体の組成は、NMR分析装置を用いて測定することができる。
上記含フッ素重合体は、VdF単位及びTFEに基づく重合単位の他に、VdF及びTFEと共重合し得る単量体に基づく重合単位を含むものであってもよい。本発明の効果を達成するためには、VdFとTFEとの共重合体で充分であるが、更に共重合体の優れた非水電解液膨潤性を損なわない程度にそれらと共重合しうる単量体を共重合させて接着性を更に向上させることができる。
上記VdF及びTFEと共重合し得る単量体に基づく重合単位の含有量は、上記含フッ素重合体の全重合単位に対して3.0モル%未満が好ましい。3.0モル%以上であると、一般的にVdFとTFEの共重合体の結晶性が著しく低下し、その結果耐非水電解液膨潤性が低下する傾向がある。
上記VdF及びTFEと共重合し得る単量体としては、特開平6-172452号公報に記載されているような不飽和二塩基酸モノエステル、例えばマレイン酸モノメチルエステル、シトラコン酸モノメチルエステル、シトラコン酸モノエチルエステル、マレイン酸、無水マレイン酸やビニレンカーボネート等、また特開平7-201316号公報に記載されているような、-SOM、-OSOM、-COOM、-OPOM(Mはアルカリ金属を表す)やアミン系極性基である-NHR、-NR(R、R、Rはアルキル基を表す)、アミド基(-CO-NRR’(R及びR’は同一又は異なって、夫々水素原子又は置換基を有してもよいアルキル基を表す。))、アミド結合(-CO-NR”-(R”は、水素原子、置換基を有してもよいアルキル基又は置換基を有してもよいフェニル基を表す。))等の親水性極性基を有する化合物が挙げられる。
アミド基を有する化合物において、該アミド基は、-CO-NRR’で表される基である。R及びR’は同一又は異なって、夫々水素原子又は置換基を有してもよいアルキル基である。R及びR’がアルキル基である場合、鎖状でも、環状でも、分岐していてもよい。上記アルキル基の炭素数は1~30であることが好ましい。より好ましくは1~20である。上記置換基としては、ハロゲン原子、炭素数1~30のアルコキシ基、炭素数6~30のアリール基等が挙げられる。
上記アミド基を有する化合物は、分子内に1個以上の重合性炭素-炭素二重結合と、1個以上のアミド基とを有するものであれば特に限定されないが、下記一般式(1):
Figure JPOXMLDOC01-appb-C000001
(式中、Xは、同一又は異なって、夫々水素原子、又は、置換基を有してもよいアルキル基を表す。Xは、水素原子、又は、置換基を有してもよいアルキル基を表す。Yは、単結合、又は、置換基を有してもよいアルキレン基を表す。R及びRは、同一又は異なって、夫々水素原子、又は、置換基を有してもよいアルキル基を表す。)で表される、分子内に重合性炭素-炭素二重結合とアミド基とを1個ずつ有する単量体であることが好ましい。上記一般式(1)中のXは、水素原子又はアルキル基である。上記一般式(1)中の2つのXは、同じであってもよく、互いに異なっていてもよい。上記アルキル基は、置換基を有していてもよく、有していなくてもよい。また、上記アルキル基は鎖状でも、環状でも、分岐していてもよい。上記アルキル基としては、上記R及びR’について述べたものと同様のものを挙げることができる。
上記Xとしては、水素原子、ハロゲン原子が好ましく、水素原子が特に好ましい。
上記一般式(1)中のXは、水素原子又はアルキル基である。上記アルキル基は、置換基を有していてもよく、有していなくてもよい。また、上記アルキル基は鎖状でも、環状でも、分岐していてもよい。上記アルキル基としては、上記Xについて述べたものと同様のものを挙げることができる。上記Xとしては、中でも、水素原子、メチル基が好ましい。
上記一般式(1)中のYは、単結合又はアルキレン基である。上記アルキレン基は、置換基を有していてもよく、有していなくてもよい。また、上記アルキレン基は鎖状でも、環状でも、分岐していてもよい。上記アルキレン基の炭素数は1~30であることが好ましい。より好ましくは1~25である。
上記置換基としては、上記Xについて述べたものと同様のものを挙げることができる。
上記一般式(1)中のR及びRは、水素原子又はアルキル基である。R及びRは、同じであってもよく、互いに異なっていてもよい。上記アルキル基は、置換基を有していてもよく、有していなくてもよい。また、上記アルキル基は鎖状でも、環状でも、分岐していてもよい。上記アルキル基としては、上記Xについて述べたものと同様のものを挙げることができる。上記R及びRとしては、中でも、水素原子、ハロゲン原子が好ましく、水素原子が特に好ましい。
上記アミド基を有する化合物としては、中でも、下記一般式(2):
Figure JPOXMLDOC01-appb-C000002
(式中、Xは、水素原子又はメチル基を表す。R及びRは、同一又は異なって、夫々水素原子、又は、置換基を有してもよいアルキル基を表す。)で表される(メタ)アクリルアミド類が好ましい。上記一般式(2)におけるR及びRの具体例は、上記一般式(1)におけるR及びRについて述べたものと同様である。
上記(メタ)アクリルアミド類としては、(メタ)アクリルアミド及びその誘導体を挙げることができる。具体的には、(メタ)アクリルアミド、N-メチル(メタ)アクリルアミド、N-イソプロピル(メタ)アクリルアミド、N-tert-ブチル(メタ)アクリルアミド、N-フェニル(メタ)アクリルアミド、N-メトキシメチル(メタ)アクリルアミド、N-ブトキシメチル(メタ)アクリルアミド、4-アクロイルモルホリン、ジアセトン(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N,N-ジエチル(メタ)アクリルアミド、2-(メタ)アクリルアミド-2-メチルプロパンスルホン酸等を挙げることができる。この中でも、特にN-tert-ブチルアクリルアミドが好ましい。
アミド結合を有する化合物において、該アミド結合は-CO-NR”-で表される結合であり、-CO-NR”-CO-で表される結合であってもよい。R”は、水素原子、置換基を有してもよいアルキル基又は置換基を有してもよいフェニル基を表す。アルキル基及び置換基としてはアミド基を有する化合物におけるRとして挙げたアルキル基及び置換基と同じであってよい。上記アミド結合を有する化合物としては、N-ビニルアセトアミド、N-メチル-N-ビニルアセトアミド等のN-ビニルアセトアミド誘導体;マレイミド、N-ブチルマレイミド、N-フェニルマレイミド等のマレイミド誘導体が挙げられる。これらのなかでも、N-ビニルアセトアミドが好ましい。
上記VdF及びTFEと共重合し得る単量体としては、また、CH=CH-CH-Y、CH=C(CH)-CH-Y、CH=CH-CH-O-CO-CH(CHCOOR)-Y、CH=CH-CH-O-CH-CH(OH)-CH-Y、CH=C(CH)-CO-O-CH-CH-CH-Y、CH=CH-CO-O-CH-CH-Y、CH=CHCO-NH-C(CH-CH-Y(Yは親水性極性基、またRはアルキル基を表す)等も挙げることができる。更に、CH=CH-CH-O-(CH-OH(3≦n≦8)、
Figure JPOXMLDOC01-appb-C000003
CH=CH-CH-O-(CH-CH-O)-H(1≦n≦14)、CH=CH-CH-O-(CH-CH(CH)-O)-H(1≦n≦14)等の水酸化アリルエーテルモノマーや、カルボキシル化及び/又は(CF-CF(3≦n≦8)で置換されるアリルエーテル及びエステルモノマー、例えばCH=CH-CH-O-CO-C-COOH、CH=CH-CH-O-CO-C10-COOH、CH=CH-CH-O-C-(CFCF、CH=CH-CH-CO-O-C-(CFCF、CH=C(CH)-CO-O-CH-CF等も同様に共重合可能な単量体として使用できる。
ところで、以上のような極性基等を含む化合物以外でもフッ化ビニリデンとテトラフルオロエチレンとの共重合体の結晶性を少し低下させ材料に柔軟性を与えることにより接着性が向上しうることがこれまでの研究より類推できるようになった。これより、例えばエチレン、プロピレン等の不飽和炭化水素系モノマー(CH=CHR、Rは水素原子、アルキル基又はCl等のハロゲン)や、フッ素系モノマーである3フッ化塩化エチレン、ヘキサフルオロプロピレン(HFP)、ヘキサフルオロイソブテン、2,3,3,3-テトラフルオロプロペン、CF=CF-O-C2n+1(nは1以上の整数)、CH=CF-C2n+1(nは1以上の整数)、CH=CF-(CFCFH(nは1以上の整数)、更にCF=CF-O-(CFCF(CF)O)-C2n+1(m、nは1以上の整数)も使用可能である。
そのほか式:
Figure JPOXMLDOC01-appb-C000004
(式中、Yは-CHOH、-COOH、カルボン酸塩、カルボキシエステル基又はエポキシ基、X及びXは同じか又は異なりいずれも水素原子又はフッ素原子、Rは炭素数1~40の2価の含フッ素アルキレン基又は炭素数1~40のエーテル結合を含有する2価の含フッ素アルキレン基を表す)で示される少なくとも1種の官能基を有する含フッ素エチレン性単量体も使用可能である。これらの単量体を1種又は2種以上共重合することにより、更に接着性が向上し、充放電を繰り返し行っても良好な充放電サイクル特性が得られる。
これら単量体の中でも、柔軟性と耐薬品性の観点から、ヘキサフルオロプロピレン、2,3,3,3-テトラフルオロプロペンが特に好ましい。
このように上記含フッ素重合体は、VdF単位及びTFE単位の他に、他の重合単位を含むものであってもよいが、VdF単位及びTFE単位のみからなることがより好ましい。
上記含フッ素重合体は、重量平均分子量(ポリスチレン換算)が50000~2000000である。好ましくは80000~1700000であり、より好ましくは100000~1500000であり、更に好ましくは200000~1400000であり、更により好ましくは300000~1300000である。上記含フッ素重合体の重量平均分子量の下限は、500000超であることが特に好ましく、600000であることが最も好ましい。
上記重量平均分子量は、ゲルパーミエーションクロマトグラフィ(GPC)により溶媒としてN,N-ジメチルホルムアミドを用い50℃で測定することができる。
上記含フッ素重合体は、数平均分子量(ポリスチレン換算)が10000~1400000であることが好ましい。好ましくは16000~1200000であり、より好ましくは20000~1000000であり、更に好ましくは40000~800000であり、特に好ましくは80000~700000である。
上記数平均分子量は、ゲルパーミエーションクロマトグラフィ(GPC)により溶媒としてN,N-ジメチルホルムアミドを用い50℃で測定することができる。
上記含フッ素重合体を製造する方法としては、例えば、重合単位であるVdF及びTFEの単量体や、重合開始剤等の添加剤を適宜混合して、懸濁重合、乳化重合、溶液重合等を行う方法が採用できるが、後処理の容易さ等の点から水系の懸濁重合、乳化重合が好ましい。
上記重合においては、重合開始剤、界面活性剤、連鎖移動剤、及び、溶媒を使用することができ、それぞれ従来公知のものを使用することができる。
上記重合開始剤としては、油溶性ラジカル重合開始剤又は水溶性ラジカル重合開始剤を使用できる。
油溶性ラジカル重合開始剤としては、公知の油溶性の過酸化物であってよく、例えばジイソプロピルパーオキシジカーボネート、ジ-n-プロピルパーオキシジカーボネート、ジsec-ブチルパーオキシジカーボネート等のジアルキルパーオキシカーボネート類、t-ブチルパーオキシイソブチレート、t-ブチルパーオキシピバレート等のパーオキシエステル類、ジt-ブチルパーオキサイド等のジアルキルパーオキサイド類等が、また、ジ(ω-ハイドロ-ドデカフルオロヘプタノイル)パーオキサイド、ジ(ω-ハイドロ-テトラデカフルオロヘプタノイル)パーオキサイド、ジ(ω-ハイドロ-ヘキサデカフルオロノナノイル)パーオキサイド、ジ(パーフルオロブチリル)パーオキサイド、ジ(パーフルパレリル)パーオキサイド、ジ(パーフルオロヘキサノイル)パーオキサイド、ジ(パーフルオロヘプタノイル)パーオキサイド、ジ(パーフルオロオクタノイル)パーオキサイド、ジ(パーフルオロノナノイル)パーオキサイド、ジ(ω-クロロ-ヘキサフルオロブチリル)パーオキサイド、ジ(ω-クロロ-デカフルオロヘキサノイル)パーオキサイド、ジ(ω-クロロ-テトラデカフルオロオクタノイル)パーオキサイド、ω-ハイドロ-ドデカフルオロヘプタノイル-ω-ハイドロヘキサデカフルオロノナノイル-パーオキサイド、ω-クロロ-ヘキサフルオロブチリル-ω-クロ-デカフルオロヘキサノイル-パーオキサイド、ω-ハイドロドデカフルオロヘプタノイル-パーフルオロブチリル-パーオキサイド、ジ(ジクロロペンタフルオロブタノイル)パーオキサイド、ジ(トリクロロオクタフルオロヘキサノイル)パーオキサイド、ジ(テトラクロロウンデカフルオロオクタノイル)パーオキサイド、ジ(ペンタクロロテトラデカフルオロデカノイル)パーオキサイド、ジ(ウンデカクロロドトリアコンタフルオロドコサノイル)パーオキサイドのジ[パーフロロ(又はフルオロクロロ)アシル]パーオキサイド類等が代表的なものとして挙げられる。
水溶性ラジカル重合開始剤としては、公知の水溶性過酸化物であってよく、例えば、過硫酸、過ホウ酸、過塩素酸、過リン酸、過炭酸等のアンモニウム塩、カリウム塩、ナトウム塩、t-ブチルパーマレエート、t-ブチルハイドロパーオキサイド等が挙げられる。サルファイト類、亜硫酸塩類のような還元剤を過酸化物に組み合わせて使用してもよく、その使用量は過酸化物に対して0.1~20倍であってよい。
上記界面活性剤としては、公知の界面活性剤が使用でき、例えば、非イオン性界面活性剤、アニオン性界面活性剤、カチオン性界面活性剤等が使用できる。なかでも、含フッ素アニオン性界面活性剤が好ましく、エーテル結合を含んでもよい(すなわち、炭素原子間に酸素原子が挿入されていてもよい)、炭素数4~20の直鎖又は分岐した含フッ素アニオン性界面活性剤がより好ましい。添加量(対重合水)は、好ましくは50~5000ppmである。
上記連鎖移動剤としては、例えば、エタン、イソペンタン、n-ヘキサン、シクロヘキサン等の炭化水素類;トルエン、キシレン等の芳香族類;アセトン等のケトン類;酢酸エチル、酢酸ブチル等の酢酸エステル類;メタノール、エタノール等のアルコール類;メチルメルカプタン等のメルカプタン類;四塩化炭素、クロロホルム、塩化メチレン、塩化メチル等のハロゲン化炭化水素等が挙げられる。添加量は用いる化合物の連鎖移動定数の大きさにより変わりうるが、通常重合溶媒に対して0.01~20質量%の範囲で使用される。
上記溶媒としては、水、水とアルコールとの混合溶媒等が挙げられる。
上記懸濁重合では、水に加えて、フッ素系溶媒を使用してもよい。フッ素系溶媒としては、CHCClF、CHCClF、CFCFCClH、CFClCFCFHCl等のハイドロクロロフルオロアルカン類;CFClCFClCFCF、CFCFClCFClCF等のクロロフルオロアルカン類;パーフルオロシクロブタン、CFCFCFCF、CFCFCFCFCF、CFCFCFCFCFCF等のパーフルオロアルカン類等が挙げられ、なかでも、パーフルオロアルカン類が好ましい。フッ素系溶媒の使用量は、懸濁性及び経済性の面から、水性媒体に対して10~100質量%が好ましい。
重合温度としては特に限定されず、0~100℃であってよい。重合圧力は、用いる溶媒の種類、量及び蒸気圧、重合温度等の他の重合条件に応じて適宜定められるが、通常、0~9.8MPaGであってよい。
フッ素系溶媒を用いないで水を分散媒とした懸濁重合においては、メチルセルロース、メトキシ化メチルセルロース、プロポキシ化メチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、ポリビニルアルコール、ポリエチレンオキシド、ゼラチン等の懸濁剤を、水に対して0.005~1.0質量%、好ましくは0.01~0.4質量%の範囲で添加して使用する。
この場合の重合開始剤としては、ジイソプロピルパーオキシジカーボネート、ジノルマルプロピルパーオキシジカーボネート、ジノルマルヘプタフルオロプロピルパーオキシジカーボネート、イソブチリルパーオキサイド、ジ(クロロフルオロアシル)パーオキサイド、ジ(パーフルオロアシル)パーオキサイド等が使用できる。その使用量は、単量体合計量(ビニリデンフルオライド、上記アミド基を有する単量体、及び、必要に応じてそれらの単量体と共重合可能なその他の単量体の合計量)に対して0.1~5質量%であることが好ましい。
また、酢酸エチル、酢酸メチル、アセトン、エタノール、n-プロパノール、アセトアルデヒド、プロピルアルデヒド、プロピオン酸エチル、四塩化炭素等の連鎖移動剤を添加して、得られる重合体の重合度を調節することも可能である。その使用量は、通常は、単量体合計量に対して0.1~5質量%、好ましくは0.5~3質量%である。
単量体の合計仕込量は、単量体合計量:水の重量比で1:1~1:10、好ましくは1:2~1:5であり、重合は温度10~50℃で10~100時間行う。
上記の懸濁重合により、容易に上記含フッ素重合体を得ることができる。
上記含フッ素重合体層は、上記含フッ素重合体に加え、本発明の効果を損なわない範囲でその他の成分を更に含んでもよい。例えば、上記含フッ素重合体層は、更にポリビニリデンフルオライド〔PVdF〕を含んでもよい。含フッ素重合体層が上記含フッ素重合体に加えてPVdFを含むことにより、電解液に対する膨潤性を低下させるという効果が得られる。
上記含フッ素重合体とブレンドする上記PVdFは、VdFに基づく重合単位のみからなるホモポリマーであってもよいし、VdFに基づく重合単位と、上記VdFに基づく重合単位と共重合可能な単量体(α)に基づく重合単位とからなるものであってもよい。
上記単量体(α)としては、例えば、フッ化ビニル、トリフルオロエチレン、トリフルオロクロロエチレン、フルオロアルキルビニルエーテル、ヘキサフルオロプロピレン、2,3,3,3-テトラフルオロプロペン、プロピレン等が挙げられる。また、特開平6-172452号公報に記載されているような不飽和二塩基酸モノエステル、例えばマレイン酸モノメチルエステル、シトラコン酸モノメチルエステル、シトラコン酸モノエチルエステルやビニレンカーボネート等、また特開平7-201316号公報に記載されているような、-SOM、-OSOM、-COOM、-OPOM(Mはアルカリ金属を表す)やアミン系極性基である-NHR、-NR(R、R、Rはアルキル基を表す)等の親水性極性基を有する化合物、例えばCH=CH-CH-Y、CH=C(CH)-CH-Y、CH=CH-CH-O-CO-CH(CHCOOR)-Y、CH=CH-CH-O-CH-CH(OH)-CH-Y、CH=C(CH)-CO-O-CH-CH-CH-Y、CH=CH-CO-O-CH-CH-Y、CH=CHCO-NH-C(CH-CH-Y(Yは親水性極性基、またRはアルキル基を表す)やその他、マレイン酸や無水マレイン酸等が挙げられる。更に、CH=CH-CH-O-(CH-OH(3≦n≦8)、
Figure JPOXMLDOC01-appb-C000005
CH=CH-CH-O-(CH-CH-O)-H(1≦n≦14)、CH=CH-CH-O-(CH-CH(CH)-O)-H(1≦n≦14)の等の水酸化アリルエーテルモノマーや、カルボキシル化及び/又は(CF-CF(3≦n≦8)で置換されるアリルエーテル及びエステルモノマー、例えばCH=CH-CH-O-CO-C-COOH、CH=CH-CH-O-CO-C10-COOH、CH=CH-CH-O-C-(CFCF、CH=CH-CH-CO-O-C-(CFCF、CH=C(CH)-CO-O-CH-CF等も同様に共重合可能な単量体として使用できる。ところで、以上のような極性基等を含む化合物以外でもフッ化ビニリデンとテトラフルオロエチレンとの共重合体の結晶性を少し低下させ、材料に柔軟性を与えることにより、接着性を向上させられることが、これまでの研究より類推できるようになった。これより、例えばエチレン、プロピレン等の不飽和炭化水素系モノマー(CH=CHR、Rは水素原子、アルキル基又はCl等のハロゲン)や、フッ素系モノマーである3フッ化塩化エチレン、ヘキサフルオロプロピレン、ヘキサフルオロイソブテンやCF=CF-O-C2n+1(nは1以上の整数)、CH=CF-CnF2n+1(nは1以上の整数)、CH=CF-(CFCFH(nは1以上の整数)、更にCF=CF-O-(CFCF(CF)O)-C2n+1(m、nは1以上の整数)も使用可能である。
そのほか式:
Figure JPOXMLDOC01-appb-C000006
(式中、Yは-CHOH、-COOH、カルボン酸塩、カルボキシエステル基又はエポキシ基、X及びXは同じか又は異なりいずれも水素原子又はフッ素原子、Rfは炭素数1~40の2価の含フッ素アルキレン基又は炭素数1~40のエーテル結合を含有する2価の含フッ素アルキレン基を表す)で示される少なくとも1種の官能基を有する含フッ素エチレン性単量体も使用可能である。これらの単量体を1種又は2種以上共重合することにより、更に接着性が向上し、充放電を繰り返し行っても良好な充放電サイクル特性が得られる。
上記PVdFは、単量体(α)に基づく重合単位が全重合単位の5モル%以下であることが好ましく、4.5モル%以下であることがより好ましい。
上記PVdFは、重量平均分子量(ポリスチレン換算)が50000~2000000であることが好ましい。より好ましくは80000~1700000であり、更に好ましくは100000~1500000である。
上記重量平均分子量は、ゲルパーミエーションクロマトグラフィ(GPC)により溶媒としてN,N-ジメチルホルムアミドを用い50℃で測定することができる。
上記PVdFは、数平均分子量(ポリスチレン換算)が10000~1400000であることが好ましい。より好ましくは16000~1200000であり、更に好ましくは20000~1000000である。
上記数平均分子量は、ゲルパーミエーションクロマトグラフィ(GPC)により溶媒としてN,N-ジメチルホルムアミドを用い50℃で測定することができる。
上記PVdFは、例えば、重合単位であるVdF及び上記単量体(α)や、重合開始剤等の添加剤を適宜混合して、溶液重合や懸濁重合を行う等の従来公知の方法により製造することができる。
上記含フッ素重合体層が、上記含フッ素重合体と上記PVdFとからなる場合、その質量比(含フッ素重合体)/(PVdF)は、90/10~10/90であることが好ましく、80/20~15/85がより好ましい。
上記含フッ素重合体層は、金属酸化物粒子を含んでもよい。金属酸化物は特に限定されないが、イオン伝導性、シャットダウン効果を向上させる観点からアルカリ金属又はアルカリ土類金属以外の酸化物が好ましく、特に酸化アルミニウム、酸化ケイ素、酸化チタン、酸化バナジウム、酸化銅等が好ましい。粒子径としては、平均粒子径が20μm以下、更には10μm以下、特に5μm以下の微粒子が好ましい。
特に好ましい金属酸化物粒子は、イオン伝導性に優れる点から、平均粒子径が5μm以下の酸化アルミニウム粒子又は酸化ケイ素粒子である。
上記含フッ素重合体層は、更に、上述した以外の成分を含んでもよい。当該成分としては、ポリメタクリレート、ポリメチルメタクリレート、ポリアクリロニトリル、ポリイミド、ポリアミド、ポリアミドイミド、ポリカーボネート、スチレンゴム、ブタジエンゴム等が挙げられる。
上記含フッ素重合体層は、上記多孔質膜の上に設けられていることが好ましい。
また、上記含フッ素重合体層は、上記多孔質膜の片側のみに設けられてもよく、両側に設けられてもよい。また、含フッ素重合体層は、該含フッ素重合体層が設けられる面の全部を覆うように設けられてもよく、一部のみを覆うように設けられてもよい。
上記含フッ素重合体層の重量は、該含フッ素重合体層を多孔質膜の片側のみに形成する場合には、0.2~3.0g/mの範囲が好ましい。0.2g/mより少ないと電極との接着性が十分でなくなることがある。また、3.0g/mより多いと、イオン伝導を阻害し電池の負荷特性が低下する傾向にあるので好ましくない。多孔質膜の表裏両面に上記含フッ素重合体層を形成する場合の上記含フッ素重合体の重量は0.2~6.0g/mが好ましい。
上記の多孔質膜とは内部に空孔ないし空隙を有する基材を意味する。このような基材としては、微多孔膜や、不織布、紙状シート等の繊維状物からなる多孔性シート、あるいは、これら微多孔膜や多孔性シートに他の多孔性層を1層以上積層させた複合多孔質膜等を挙げることができる。なお、微多孔膜とは、内部に多数の微細孔を有し、これら微細孔が連結された構造となっており、一方の面から他方の面へと気体あるいは液体が通過可能となった膜を意味する。
多孔質膜を構成する材料は、電気絶縁性を有する有機材料あるいは無機材料のいずれでも使用できる。特に、基材にシャットダウン機能を付与する観点からは、基材の構成材料として熱可塑性樹脂を使用することが好ましい。ここで、シャットダウン機能とは、電池温度が高まった場合に、熱可塑性樹脂が溶解して多孔質基材の孔を閉塞することによりイオンの移動を遮断し、電池の熱暴走を防止する機能をいう。熱可塑性樹脂としては、融点200℃未満の熱可塑性樹脂が適当であり、特にポリオレフィンが好ましい。
ポリオレフィンを用いた多孔質膜としてはポリオレフィン微多孔膜が好適である。ポリオレフィン微多孔膜としては、十分な力学物性とイオン透過性を有した、従来の非水系二次電池用セパレータに適用されているポリオレフィン微多孔膜を用いることができる。そして、ポリオレフィン微多孔膜は、上述したシャットダウン機能を有するという観点から、ポリエチレンを含むことが好ましい。
別途、高温にさらされたときに容易に破膜しない程度の耐熱性を付与するという観点では、ポリエチレンとポリプロピレンとを含むポリオレフィン微多孔膜が好ましい。このようなポリオレフィン微多孔膜としては、ポリエチレンとポリプロピレンが1つのシートにおいて混在している微多孔膜が挙げられる。このような微多孔膜においては、シャットダウン機能と耐熱性の両立という観点から、95重量%以上のポリエチレンと、5重量%以下のポリプロピレンを含むことが好ましい。また、シャットダウン機能と耐熱性の両立という観点では、ポリオレフィン微多孔膜が少なくとも2層以上の構造となっており、当該2層のうち一方の層はポリエチレンを含み、他方の層はポリプロピレンを含む積層構造のポリオレフィン微多孔膜も好ましい。
ポリオレフィンの重量平均分子量は10万~500万のものが好適である。重量平均分子量が10万より小さいと、十分な力学物性を確保するのが困難となる場合がある。また、500万より大きくなると、シャットダウン特性が悪くなる場合や、成形が困難になる場合がある。
このようなポリオレフィン微多孔膜は、例えば以下の方法で製造可能である。すなわち、(i)溶融したポリオレフィン樹脂をT-ダイから押し出してシート化する工程、(ii)上記シートに結晶化処理を施す工程、(iii)シートを延伸する工程、及び(iv)シートを熱処理する工程を順次実施して、微多孔膜を形成する方法が挙げられる。また、(i)流動パラフィン等の可塑剤と一緒にポリオレフィン樹脂を溶融し、これをT-ダイから押し出し、これを冷却してシート化する工程、(ii)シートを延伸する工程、(iii)シートから可塑剤を抽出する工程、及び(iv)シートを熱処理する工程を順次実施して微多孔膜を形成する方法等も挙げられる。
繊維状物からなる多孔性シートとしては、ポリエチレンテレフタレート等のポリエステル、ポリエチレンやポリプロピレン等のポリオレフィン、芳香族ポリアミドやポリイミド、ポリエーテルスルホン、ポリスルホン、ポリエーテルケトン、ポリエーテルイミド等の耐熱性高分子等からなる繊維状物、あるいは、これらの繊維状物の混合物からなる多孔性シートを用いることができる。
複合多孔質膜としては、微多孔膜や繊維状物からなる多孔質膜に、機能層を積層した構成を採用できる。このような複合多孔質シートは、機能層によってさらなる機能付加が可能となる点で好ましい。機能層としては、例えば耐熱性を付与するという観点では、耐熱性樹脂からなる多孔質層や、耐熱性樹脂及び無機フィラーからなる多孔質層を用いることができる。耐熱性樹脂としては、芳香族ポリアミド、ポリイミド、ポリエーテルスルホン、ポリスルホン、ポリエーテルケトン、及びポリエーテルイミドから選ばれる1種又は2種以上の耐熱性高分子が挙げられる。無機フィラーとしては、アルミナ等の金属酸化物や、水酸化マグネシウム等の金属水酸化物等を好適に使用できる。なお、複合化の手法としては、多孔性シートに機能層をコーティングする方法、接着剤で接合する方法、熱圧着する方法等が挙げられる。
本発明における多孔質膜としては、上述したなかでも、ポリエチレン、ポリプロピレン及びポリイミドからなる群より選択される少なくとも1種の樹脂からなることが好ましい。
本発明において、多孔質膜の膜厚は、良好な力学物性と内部抵抗を得る観点から、5~25μmの範囲が好ましい。
本発明のセパレータは、上記多孔質膜の上に上記含フッ素重合体層を積層することにより製造することができる。積層方法としては、特に限定されず、従来公知の方法を採用してよい。具体的には、上記含フッ素重合体及び必要に応じてその他の成分を溶剤に溶解又は分散させ得られた溶液又は分散液を多孔質膜にロールコーティングする方法、上記溶液又は分散液に多孔質膜をディッピングする方法、上記溶液又は分散液を多孔質膜に塗工し更に適切な凝固液に浸漬し作製する方法、上記含フッ素重合体及び必要に応じてその他の成分を水に分散し多孔質膜にロールコーティングする方法が好ましい。また、予め含フッ素重合体層からなるフィルムを作製し、当該フィルムと多孔質膜とをラミネート等の方法により、積層してもよい。含フッ素重合体層からなるフィルムを作製する方法としては、上記含フッ素重合体及び必要に応じてその他の成分を溶剤に溶解又は分散した溶液又は分散液をポリエステルフィルムやアルミフィルム等の平滑な表面を有するフィルム上にキャストしたのち剥離するという手法が例示できる。
上記溶剤としては、N-メチル-2-ピロリドン等のアミド系溶剤;アセトン等のケトン系溶剤;テトラヒドロフラン等の環状エーテル系溶剤等が使用できる。また、上記含フッ素重合体及び必要に応じて配合するその他の成分を水に分散して用いてもよい。
本発明のセパレータは、正極、負極及び非水電解液とともに、二次電池を構成することができる。本発明は、上記セパレータ、正極、負極及び非水電解液を備える二次電池でもある。正極、負極及び非水電解液としては、二次電池に使用可能な公知のものを使用してよい。
二次電池としては、なかでもリチウム二次電池が特に好ましい。以下に、本発明の二次電池がリチウム二次電池である場合の代表的な構成について説明するが、本発明の二次電池はこれらの構成に限定されるものではない。
正極は、正極の材料である正極活物質を含む正極合剤と、集電体とから構成される。
上記正極活物質としては、電気化学的にリチウムイオンを吸蔵・放出可能なものであれば特に制限はない。リチウムと少なくとも1種の遷移金属を含有する物質が好ましく、例えば、リチウム・コバルト複合酸化物、リチウム・ニッケル複合酸化物、リチウム・マンガン複合酸化物等のリチウム遷移金属複合酸化物;リチウム含有遷移金属リン酸化合物等が挙げられる。
上記正極合剤は、更に、結着剤、増粘剤、導電材を含むことが好ましい。
上記結着剤としては、電極製造時に使用する溶媒や電解液に対して安全な材料であれば、任意のものを使用することができ、例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリフッ化ビニリデン-テトラフルオロエチレン共重合体、ポリフッ化ビニリデン-ヘキサフルオロプロピレン共重合体、ポリフッ化ビニリデン-テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体、ポリエチレン、ポリプロピレン、スチレン・ブタジエンゴム、イソプレンゴム、ブタジエンゴム、エチレン-アクリル酸共重合体、エチレン-メタクリル酸共重合体等が挙げられる。
上記増粘剤としては、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、酸化スターチ、リン酸化スターチ、カゼイン等が挙げられる。
上記導電材としては、グラファイト、カーボンブラック等の炭素材料等が挙げられる。
正極用集電体の材質としては、アルミニウム、チタンもしくはタンタル等の金属、又は、その合金が挙げられる。なかでも、アルミニウム又はその合金が好ましい。
正極の製造は、常法によればよい。例えば、上記正極活物質に、上述した結着剤、増粘剤、導電材、溶媒等を加えてスラリー状の正極合剤とし、これを集電体に塗布し、乾燥した後にプレスして高密度化する方法が挙げられる。
負極は、負極材料を含む負極合剤と、集電体とから構成される。
上記負極材料としては、様々な熱分解条件での有機物の熱分解物や人造黒鉛、天然黒鉛等のリチウムを吸蔵・放出可能な炭素質材料;酸化錫、酸化ケイ素等のリチウムを吸蔵・放出可能な金属酸化物材料;リチウム金属;種々のリチウム合金等を挙げることができる。これらの負極材料は、2種以上を混合して用いてもよい。
リチウムを吸蔵・放出可能な炭素質材料としては、種々の原料から得た易黒鉛性ピッチの高温処理によって製造された人造黒鉛もしくは精製天然黒鉛、又は、これらの黒鉛にピッチその他の有機物で表面処理を施した後炭化して得られるものが好ましい。
上記負極合剤は、更に、結着剤、増粘剤、導電材を含むことが好ましい。
上記結着剤としては、上述した、正極に用いることができる結着剤と同様のものが挙げられる。
上記増粘剤としては、上述した、正極に用いることができる増粘剤と同様のものが挙げられる。
負極の導電材としては、銅やニッケル等の金属材料;グラファイト、カーボンブラック等の炭素材料等が挙げられる。
負極用集電体の材質としては、銅、ニッケル又はステンレス等が挙げられる。なかでも、薄膜に加工しやすいという点、及び、コストの点から銅箔が好ましい。
負極の製造は、常法によればよい。例えば、上記負極材料に、上述した結着剤、増粘剤、導電材、溶媒等を加えてスラリー状とし、集電体に塗布し、乾燥した後にプレスして高密度化する方法が挙げられる。
非水電解液としては、公知の電解質塩を公知の電解質塩溶解用有機溶媒に溶解したものを使用してよい。
電解質塩溶解用有機溶媒としては、特に限定されるものではないが、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、γ-ブチロラクトン、1,2-ジメトキシエタン、1,2-ジエトキシエタン、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート等の炭化水素系溶媒;フルオロエチレンカーボネート、フルオロエーテル、フッ素化カーボネート等のフッ素系溶媒の1種又は2種以上が使用できる。
電解質塩としては、LiClO、LiAsF、LiBF、LiPF、LiCl、LiBr、CHSOLi、CFSOLi、LiN(SOCF、LiN(SO、炭酸セシウム等が挙げられ、サイクル特性が良好な点から特にLiPF、LiBF、LiN(SOCF、LiN(SO又はこれらの組合せが好ましい。
電解質塩の濃度は、0.8モル/リットル以上が好ましく、1.0モル/リットル以上がより好ましい。上限は電解質塩溶解用有機溶媒にもよるが、通常1.5モル/リットルである。
リチウム二次電池の形状は任意であり、例えば、円筒型、角型、ラミネート型、コイン型、大型等の形状が挙げられる。なお、正極、負極、セパレータの形状及び構成は、本発明の効果を損なわない範囲で、それぞれの電池の形状に応じて変更して使用することができる。
次に本発明を実施例を挙げて説明するが、本発明はかかる実施例のみに限定されるものではない。
調製例1(含フッ素重合体Aの製造)
内容積6Lのオートクレーブに純水1.9kgを投入し、充分に窒素置換を行った後、オクタフルオロシクロブタン1.8gを仕込み、系内を37℃、攪拌速度580rpmに保った。その後、TFE/VdF=5/95モル%の混合ガス260g、酢酸エチル0.6gを仕込み、その後にジ-n-プロピルパーオキシジカーボネートの50質量%メタノール溶液を2.8g添加して重合を開始した。重合の進行と共に系内圧力が低下するので、TFE/VdF=5/85モル%の混合ガスを連続して供給し、系内圧力を1.3MPaGに保った。32時間、攪拌を継続した。そして、放圧して大気圧に戻した後、反応生成物を水洗、乾燥して、含フッ素重合体Aの白色粉末900gを得た。
得られた含フッ素重合体Aは以下の組成及び物性を有していた。
VdF/TFE=83.0/17.0(モル%)
数平均分子量 :270000
重量平均分子量:870000
調製例2(含フッ素重合体Bの製造)
内容積6Lのオートクレーブに純水1.9kgを投入し、充分に窒素置換を行った後、オクタフルオロシクロブタン1.8gを仕込み、系内を37℃、攪拌速度580rpmに保った。その後、TFE/VdF=6/94モル%の混合ガス260g、酢酸エチル0.6gを仕込み、その後にジ-n-プロピルパーオキシジカーボネートの50質量%メタノール溶液を5.8g添加して重合を開始した。重合の進行と共に系内圧力が低下するので、TFE/VdF=5/85モル%の混合ガスを連続して供給し、系内圧力を1.3MPaGに保った。32時間、攪拌を継続した。そして、放圧して大気圧に戻した後、反応生成物を水洗、乾燥して、含フッ素重合体Bの白色粉末900gを得た。
得られた含フッ素重合体Bは以下の組成及び物性を有していた。
VdF/TFE=80.0/20.0(モル%)
数平均分子量 :130000
重量平均分子量:290000
調製例3(含フッ素重合体Cの製造)
内容積4Lのオートクレーブに純水1.3kgを投入し、充分に窒素置換を行った後、オクタフルオロシクロブタン1.3kgを仕込み、系内を37℃、攪拌速度580rpmに保った。その後、TFE/VdF=4/96モル%の混合ガス200g、酢酸エチル0.4gを仕込み、その後にジ-n-プロピルパーオキシジカーボネートの50質量%メタノール溶液を1g添加して重合を開始した。重合の進行と共に系内圧力が低下するので、TFE/VdF=13/87モル%の混合ガスを連続して供給し、系内圧力を1.3MPaGに保った。17時間、攪拌を継続した。そして、放圧して大気圧に戻した後、反応生成物を水洗、乾燥して、含フッ素重合体Cの白色粉末190gを得た。
得られた含フッ素重合体Cは、以下の組成及び物性を有していた。
VdF/TFE=86.6/13.4(モル%)
数平均分子量:274000
重量平均分子量:768000
含フッ素重合体の組成、分子量については、以下の方法にて測定した。
<ポリマー組成>
NMR分析装置(アジレント・テクノロジー株式会社製、VNS400MHz)を用いて、19F-NMR測定でポリマーのDMSO溶液状態にて測定した。
19F-NMR測定にて、下記のピークの面積(A、B、C、D)を求め、VdFとTFEの比率を計算した。
A:-86ppm~-98ppmのピークの面積
B:-105ppm~-118ppmのピークの面積
C:-119ppm~-122ppmのピークの面積
D:-122ppm~-126ppmのピークの面積
VdFの割合:(4A+2B)/(4A+3B+2C+2D)×100[mol%]
TFEの割合:(B+2C+2D)/(4A+3B+2C+2D)×100[mol%]
<数平均分子量及び重量平均分子量>
ゲルパーミエーションクロマトグラフィ(GPC)により測定した。東ソー株式会社製のHLC-8320GPC、カラム(SuperAWM-Hを3本直列に接続)を用い、溶媒としてジメチルホルムアミド(DMF)を用いて測定したデータ(リファレンス:ポリスチレン)より算出した。
調製例1~3で得られた含フッ素重合体A~Cを用いて、以下の測定及び評価を行った。結果を表1に示す。
<電解液膨潤性>
濃度5質量%の含フッ素重合体のNMP溶液を調製し、この溶液をアルミ箔上にキャストコーティングした。塗布後、送風定温恒温器(ヤマト科学(株)製)を用いて120℃で乾燥しながらNMPを完全に揮発させ、帯状の厚み10μmのキャストフィルムを作製した。
得られたキャストフィルムを5×20mmの大きさに切り取り、電解液(エチレンカーボネートとエチルメチルカーボネートの3/7(体積比)の溶媒にLiPFを1M濃度で溶解した溶液)が入ったサンプル瓶に入れ、25℃で24時間静置、あるいは、60℃で24時間静置し、投入前からの質量増加(%)を算出した。
<イオン伝導度>
濃度5質量%の含フッ素重合体のNMP溶液を調製し、この溶液をアルミ箔上にキャストコーティングした。塗布後、送風定温恒温器(ヤマト科学(株)製)を用いて120℃で乾燥しながらNMPを完全に揮発させ、帯状の厚み10μmのキャストフィルムを作製した。
得られたキャストフィルムを電解液(エチレンカーボネートとエチルメチルカーボネートの3/7(体積比)の溶媒にLiPFを1M濃度で溶解した溶液)に10分間浸漬したのち、SUS電極で挟み、ガルバノ・ポテンシオスタット(周波数アナライザー:ソーラトロン社製1260型、ポテンシオスタット:ソーラトロン社製1287型)に接続し交流インピーダンス法(周波数:10-3~10Hz、交流電圧:10mV)よりイオン伝導度(S/cm)を測定した。
<電解液親和性>
濃度5質量%の含フッ素重合体のNMP溶液を調製し、この溶液をアルミ箔上にキャストコーティングした。塗布後、送風定温恒温器(ヤマト科学(株)製)を用いて120℃で乾燥しながらNMPを完全に揮発させ、帯状の厚み10μmのキャストフィルムを作製した。
得られたキャストフィルムを自動接触角計Drop Master 701を用いて電解液(エチレンカーボネートとエチルメチルカーボネートの3/7(体積比)の溶媒にLiPFを1M濃度で溶解した溶液)を2μL滴下し、61秒後の静的接触角を測定した。接触角が小さいほど電解液との親和性が高いと評価した。
Figure JPOXMLDOC01-appb-T000007

Claims (4)

  1. ビニリデンフルオライドに基づく重合単位及びテトラフルオロエチレンに基づく重合単位からなる含フッ素重合体からなる層と、多孔質膜とからなるセパレータであって、
    含フッ素重合体は、ビニリデンフルオライドに基づく重合単位を全重合単位に対して80.0~89.0モル%含み、かつ、重量平均分子量が50000~2000000であることを特徴とするセパレータ。
  2. 多孔質膜は、ポリエチレン、ポリプロピレン及びポリイミドからなる群より選択される少なくとも1種の樹脂からなる請求項1記載のセパレータ。
  3. 含フッ素重合体からなる層は、更にポリビニリデンフルオライドを含む請求項1又は2記載のセパレータ。
  4. 請求項1、2又は3記載のセパレータ、正極、負極及び非水電解液を備える二次電池。
PCT/JP2013/078529 2012-10-22 2013-10-22 セパレータ及び二次電池 WO2014065258A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201380054872.XA CN104737326A (zh) 2012-10-22 2013-10-22 隔膜和二次电池
KR1020157006033A KR20150043383A (ko) 2012-10-22 2013-10-22 세퍼레이터 및 이차 전지
JP2014543296A JPWO2014065258A1 (ja) 2012-10-22 2013-10-22 セパレータ及び二次電池
US14/428,513 US20150280196A1 (en) 2012-10-22 2013-10-22 Separator, and secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-233073 2012-10-22
JP2012233073 2012-10-22

Publications (1)

Publication Number Publication Date
WO2014065258A1 true WO2014065258A1 (ja) 2014-05-01

Family

ID=50544637

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/078529 WO2014065258A1 (ja) 2012-10-22 2013-10-22 セパレータ及び二次電池

Country Status (5)

Country Link
US (1) US20150280196A1 (ja)
JP (1) JPWO2014065258A1 (ja)
KR (1) KR20150043383A (ja)
CN (1) CN104737326A (ja)
WO (1) WO2014065258A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3070764A1 (en) * 2013-12-06 2016-09-21 Daikin Industries, Ltd. Separator for secondary battery, and second battery
WO2018173373A1 (ja) * 2017-03-21 2018-09-27 株式会社クレハ 樹脂組成物、二次電池のセパレータ、および二次電池
WO2018216348A1 (ja) * 2017-05-26 2018-11-29 ダイキン工業株式会社 二次電池用セパレータ及び二次電池
WO2019150720A1 (ja) * 2018-01-31 2019-08-08 ダイキン工業株式会社 空気調和装置の室外機
JP2021520607A (ja) * 2018-04-03 2021-08-19 シャンハイ、エナジー、ニュー、マテリアルズ、テクノロジー、カンパニー、リミテッドShanghai Energy New Materials Technology Co., Ltd. セパレータを製造するためのコーティングスラリー、電気化学デバイスのためのセパレータ及びその製造方法
US11542382B2 (en) 2017-03-21 2023-01-03 Kureha Corporation Gel-like electrolyte having vinylidene fluoride copolymer

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018055882A1 (ja) * 2016-09-21 2018-03-29 帝人株式会社 非水系二次電池用セパレータ及び非水系二次電池
KR102407048B1 (ko) * 2019-07-04 2022-06-08 삼성에스디아이 주식회사 이차 전지용 분리막 및 이를 포함하는 리튬 이차 전지
CN115461413B (zh) * 2020-05-01 2023-08-11 大金工业株式会社 复合体、聚合物电解质、电化学器件、聚合物系固态电池和致动器

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09293518A (ja) * 1996-04-26 1997-11-11 Asahi Chem Ind Co Ltd 薄膜状電解質および該電解質を用いた電池
JP2003086162A (ja) * 2001-09-12 2003-03-20 Teijin Ltd 非水系二次電池用セパレータ及び非水系二次電池
JP2004079363A (ja) * 2002-08-20 2004-03-11 Nippon Oil Corp イオン伝導性フィルムの製造方法
JP2006120462A (ja) * 2004-10-21 2006-05-11 Sanyo Electric Co Ltd 非水電解質電池
JP2007317675A (ja) * 2000-03-07 2007-12-06 Teijin Ltd リチウムイオン二次電池用セパレータ
WO2011096564A1 (ja) * 2010-02-05 2011-08-11 ダイキン工業株式会社 二次電池用ゲル電解質複合フィルム、及び、二次電池
WO2012137374A1 (ja) * 2011-04-08 2012-10-11 帝人株式会社 非水系二次電池用セパレータおよび非水系二次電池
WO2012137377A1 (ja) * 2011-04-08 2012-10-11 帝人株式会社 非水系二次電池用セパレータおよび非水系二次電池
WO2012137376A1 (ja) * 2011-04-08 2012-10-11 帝人株式会社 非水系二次電池用セパレータおよび非水系二次電池

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09293518A (ja) * 1996-04-26 1997-11-11 Asahi Chem Ind Co Ltd 薄膜状電解質および該電解質を用いた電池
JP2007317675A (ja) * 2000-03-07 2007-12-06 Teijin Ltd リチウムイオン二次電池用セパレータ
JP2003086162A (ja) * 2001-09-12 2003-03-20 Teijin Ltd 非水系二次電池用セパレータ及び非水系二次電池
JP2004079363A (ja) * 2002-08-20 2004-03-11 Nippon Oil Corp イオン伝導性フィルムの製造方法
JP2006120462A (ja) * 2004-10-21 2006-05-11 Sanyo Electric Co Ltd 非水電解質電池
WO2011096564A1 (ja) * 2010-02-05 2011-08-11 ダイキン工業株式会社 二次電池用ゲル電解質複合フィルム、及び、二次電池
WO2012137374A1 (ja) * 2011-04-08 2012-10-11 帝人株式会社 非水系二次電池用セパレータおよび非水系二次電池
WO2012137377A1 (ja) * 2011-04-08 2012-10-11 帝人株式会社 非水系二次電池用セパレータおよび非水系二次電池
WO2012137376A1 (ja) * 2011-04-08 2012-10-11 帝人株式会社 非水系二次電池用セパレータおよび非水系二次電池

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3070764A1 (en) * 2013-12-06 2016-09-21 Daikin Industries, Ltd. Separator for secondary battery, and second battery
EP3070764A4 (en) * 2013-12-06 2017-05-10 Daikin Industries, Ltd. Separator for secondary battery, and second battery
WO2018173373A1 (ja) * 2017-03-21 2018-09-27 株式会社クレハ 樹脂組成物、二次電池のセパレータ、および二次電池
US11542382B2 (en) 2017-03-21 2023-01-03 Kureha Corporation Gel-like electrolyte having vinylidene fluoride copolymer
WO2018216348A1 (ja) * 2017-05-26 2018-11-29 ダイキン工業株式会社 二次電池用セパレータ及び二次電池
JPWO2018216348A1 (ja) * 2017-05-26 2019-11-21 ダイキン工業株式会社 二次電池用セパレータ及び二次電池
US11394083B2 (en) 2017-05-26 2022-07-19 Daikin Industries, Ltd. Secondary battery separator including porous film having fluorine-containing polymer of vinylidene fluoride, tetrafluoroethylene, and vinyl carboxylic acid or salt and secondary battery including the same
WO2019150720A1 (ja) * 2018-01-31 2019-08-08 ダイキン工業株式会社 空気調和装置の室外機
JP2021520607A (ja) * 2018-04-03 2021-08-19 シャンハイ、エナジー、ニュー、マテリアルズ、テクノロジー、カンパニー、リミテッドShanghai Energy New Materials Technology Co., Ltd. セパレータを製造するためのコーティングスラリー、電気化学デバイスのためのセパレータ及びその製造方法
JP7443241B2 (ja) 2018-04-03 2024-03-05 上海恩捷新材料科技有限公司 セパレータを製造するためのコーティングスラリー、電気化学デバイスのためのセパレータ及びその製造方法

Also Published As

Publication number Publication date
JPWO2014065258A1 (ja) 2016-09-08
US20150280196A1 (en) 2015-10-01
KR20150043383A (ko) 2015-04-22
CN104737326A (zh) 2015-06-24

Similar Documents

Publication Publication Date Title
JP5757363B1 (ja) 二次電池用セパレータ及び二次電池
WO2014065258A1 (ja) セパレータ及び二次電池
KR101599658B1 (ko) 결착제, 정극합제 및 부극합제
JPWO2019087652A1 (ja) 二次電池用結着剤、二次電池用電極合剤、二次電池用電極及び二次電池
JP5949915B2 (ja) 電極合剤
EP3407410B1 (en) Binder composition, binder dispersion liquid, electrode mixture, electrode, nonaqueous electrolyte secondary battery, and method for producing binder composition
JP5949914B2 (ja) 電極合剤
JP6955355B2 (ja) コアシェル型粒子ならびにその用途および製造方法
JP6864523B2 (ja) コアシェル型粒子ならびにその用途および製造方法
WO2019230219A1 (ja) 接着性組成物、セパレータ構造体、電極構造体、非水電解質二次電池およびその製造方法
JP6222098B2 (ja) 蓄電デバイス用バインダー組成物の製造方法
JP6874836B2 (ja) 二次電池用セパレータ及び二次電池
JP2018005971A (ja) 蓄電デバイス用バインダー組成物の製造方法
JP2018063932A (ja) 二次電池用結着剤及び二次電池用電極合剤
WO2015111724A1 (ja) 蓄電デバイス用バインダー、バインダー組成物、電極合剤、電極および二次電池
WO2023145169A1 (ja) 組成物、ポリマーおよび積層体
WO2023223607A1 (ja) 組成物、電気化学デバイス用セパレータ、電気化学デバイスおよび二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13849957

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014543296

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157006033

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14428513

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13849957

Country of ref document: EP

Kind code of ref document: A1