WO2014065258A1 - セパレータ及び二次電池 - Google Patents
セパレータ及び二次電池 Download PDFInfo
- Publication number
- WO2014065258A1 WO2014065258A1 PCT/JP2013/078529 JP2013078529W WO2014065258A1 WO 2014065258 A1 WO2014065258 A1 WO 2014065258A1 JP 2013078529 W JP2013078529 W JP 2013078529W WO 2014065258 A1 WO2014065258 A1 WO 2014065258A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- separator
- fluoropolymer
- mol
- vdf
- polymerization
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F214/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
- C08F214/18—Monomers containing fluorine
- C08F214/22—Vinylidene fluoride
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/411—Organic material
- H01M50/414—Synthetic resins, e.g. thermoplastics or thermosetting resins
- H01M50/426—Fluorocarbon polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F214/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
- C08F214/18—Monomers containing fluorine
- C08F214/26—Tetrafluoroethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L27/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
- C08L27/02—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L27/12—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/058—Construction or manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/411—Organic material
- H01M50/414—Synthetic resins, e.g. thermoplastics or thermosetting resins
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/44—Fibrous material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/449—Separators, membranes or diaphragms characterised by the material having a layered structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/489—Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
- H01M50/491—Porosity
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/443—Particulate material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/449—Separators, membranes or diaphragms characterised by the material having a layered structure
- H01M50/451—Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/489—Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/489—Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
- H01M50/497—Ionic conductivity
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a separator and a secondary battery. More specifically, the present invention relates to a separator suitable for a secondary battery such as a lithium secondary battery and a secondary battery using the separator.
- Non-aqueous secondary batteries represented by lithium secondary batteries have high energy density and are widely used as main power sources for portable electronic devices such as mobile phones and laptop computers. In addition, it is expected as one of the decisive factors for global warming countermeasures including electric vehicles (EV). Lithium secondary batteries are required to have higher energy density, and further improvements in battery characteristics are required. At the same time, ensuring safety is also a technical issue.
- EV electric vehicles
- a lithium secondary battery has a basic structure in which a non-aqueous electrolyte is disposed between a positive electrode and a negative electrode via a separator if necessary.
- the separator is interposed between the positive electrode and the negative electrode to prevent contact between the bipolar active materials, and forms an ion conduction path between the electrodes by allowing the electrolyte to flow through the pores.
- a microporous polyolefin film made of polyethylene, polypropylene or the like has been generally used as a separator.
- it has been studied to improve battery characteristics and safety by improving the performance of the separator.
- Patent Document 1 discloses a separator for a non-aqueous secondary battery, which is intended to improve the cycle characteristics of the battery by suitably preventing the oxidative deterioration of the separator and to sufficiently prevent the battery from expanding.
- a separator is described in which a fluorine compound layer having a thickness of 1 nm to 500 nm is provided on the surface of a separator made of a polyolefin microporous film or the like.
- Patent Document 2 in a separator for a non-aqueous electrolyte secondary battery having a shutdown layer and a heat-resistant porous layer, a dot on the surface of the heat-resistant porous layer on which the shutdown layer is not disposed.
- a configuration in which a spacer in the form of a wire, a wire, a mesh, or a porous film is provided (claim 1). Specific examples of the spacer are shown by applying a suspension of polypropylene, polyethylene, tetrafluoroethylene-hexafluoropropylene copolymer or the like to the surface of the heat-resistant porous layer and drying (Examples 1 to 3). .
- the conventional separator which consists of polyolefin films has ignitability.
- the battery when the battery is operated at a high voltage or high temperature, a phenomenon occurs in which the positive electrode side is denatured and colored.
- Patent Document 3 was obtained by applying a vinylidene fluoride / tetrafluoroethylene / hexafluoropropylene copolymer or a blend thereof dissolved in THF to a polyethylene separator and drying it. A separator coated with an electrolyte holding film layer is described (Examples 1 to 6).
- JP 2011-108515 A JP 2002-151044 A WO 2011/096564 pamphlet
- the present invention has been made in view of the above situation, and an object of the present invention is to provide a separator and a secondary battery having high ionic conductivity and excellent durability.
- the separator comprising a fluoropolymer layer composed of a polymer unit based on vinylidene fluoride and a polymer unit based on tetrafluoroethylene, and a porous film
- the present inventors used vinylidene fluoride in the fluoropolymer. It was found that a separator capable of achieving both high ionic conductivity and low electrolyte swellability can be obtained when the content of the polymer units based on the weight average molecular weight of the fluoropolymer is within a specific range. did.
- the present invention relates to a separator comprising a fluoropolymer layer comprising a polymer unit based on vinylidene fluoride and a polymer unit based on tetrafluoroethylene, and a porous membrane.
- the fluoropolymer comprises a vinylidene fluoride.
- a separator comprising 80.0 to 89.0 mol% of polymerized units based on a ride and having a weight average molecular weight of 50,000 to 2,000,000 based on all polymerized units.
- the porous film is preferably made of at least one resin selected from the group consisting of polyethylene, polypropylene and polyimide.
- the layer made of the fluoropolymer preferably further contains polyvinylidene fluoride.
- This invention is also a secondary battery provided with the said separator, a positive electrode, a negative electrode, and a non-aqueous electrolyte.
- the separator of the present invention can achieve both high ionic conductivity and low electrolyte swellability. Moreover, a secondary battery provided with the separator of this invention has the outstanding characteristic that cycle life is long and durability is high.
- the separator of the present invention is a fluorine-containing heavy comprising polymerized units based on vinylidene fluoride [VdF] (also referred to as “VdF units”) and polymerized units based on tetrafluoroethylene [TFE] (also referred to as “TFE units”). It consists of a layer made of a coalescence (hereinafter also referred to as a fluoropolymer layer) and a porous membrane.
- VdF vinylidene fluoride
- TFE tetrafluoroethylene
- the fluorine-containing polymer is composed of VdF units and TFE units, and contains 80.0 to 89.0 mol% of VdF units with respect to all polymerized units. If the VdF unit is less than 80.0 mol%, the swellability with respect to the electrolytic solution tends to be too high and the long-term durability tends to be poor, and if it exceeds 89.0 mol%, the ionic conductivity of the fluoropolymer tends to be poor. There is.
- the fluoropolymer preferably contains 80.5 mol% or more, more preferably 82.0 mol% or more, of VdF units with respect to the total polymerization units.
- the fluoropolymer contains 82.5 mol% or more of VdF units with respect to all polymerized units. Moreover, it is preferable to contain 88.9 mol% or less, and it is more preferable to contain 88.8 mol% or less.
- the composition of the fluoropolymer can be measured using an NMR analyzer.
- the fluoropolymer may contain a polymer unit based on a monomer that can be copolymerized with VdF and TFE in addition to a polymer unit based on VdF unit and TFE.
- a copolymer of VdF and TFE is sufficient, but a copolymer that can be copolymerized with them to such an extent that the excellent nonaqueous electrolyte swelling property of the copolymer is not impaired.
- the adhesiveness can be further improved by copolymerizing the monomer.
- the content of polymerized units based on monomers that can be copolymerized with VdF and TFE is preferably less than 3.0 mol% based on the total polymerized units of the fluoropolymer. When it is 3.0 mol% or more, generally the crystallinity of the copolymer of VdF and TFE is remarkably lowered, and as a result, the non-aqueous electrolyte swell resistance tends to be lowered.
- Examples of monomers that can be copolymerized with VdF and TFE include unsaturated dibasic acid monoesters such as maleic acid monomethyl ester, citraconic acid monomethyl ester, and citraconic acid as described in JP-A-6-172245.
- An amide bond (—CO—NR ′′ — (R ′′ represents hydrogen A compound having a hydrophilic polar group such as an atom, an alkyl group which may have a substituent, or a phenyl group which may have a substituent.
- the amide group is a group represented by —CO—NRR ′.
- R and R ′ are the same or different and each represents a hydrogen atom or an alkyl group which may have a substituent. When R and R 'are alkyl groups, they may be chain-like, cyclic or branched.
- the alkyl group preferably has 1 to 30 carbon atoms. More preferably, it is 1-20.
- the substituent include a halogen atom, an alkoxy group having 1 to 30 carbon atoms, and an aryl group having 6 to 30 carbon atoms.
- the compound having an amide group is not particularly limited as long as it has one or more polymerizable carbon-carbon double bonds and one or more amide groups in the molecule, but the following general formula (1):
- X 1 is the same or different and each represents a hydrogen atom or an alkyl group which may have a substituent.
- X 2 represents a hydrogen atom or an alkyl which may have a substituent.
- Y represents a single bond or an alkylene group which may have a substituent, and R 1 and R 2 may be the same or different and each may have a hydrogen atom or a substituent.
- X 1 in the general formula (1) is a hydrogen atom or an alkyl group. Two X 1 in the general formula (1) may be the same or different from each other.
- the alkyl group may or may not have a substituent.
- the alkyl group may be linear, cyclic or branched. Examples of the alkyl group include the same as those described for R and R ′.
- X 1 is preferably a hydrogen atom or a halogen atom, particularly preferably a hydrogen atom.
- X 2 in the general formula (1) is a hydrogen atom or an alkyl group.
- the alkyl group may or may not have a substituent.
- the alkyl group may be linear, cyclic or branched. Examples of the alkyl group include the same as those described for X 1 above.
- X 2 among them, a hydrogen atom and a methyl group are preferable.
- Y in the general formula (1) is a single bond or an alkylene group.
- the alkylene group may or may not have a substituent.
- the alkylene group may be chain-like, cyclic or branched.
- the alkylene group preferably has 1 to 30 carbon atoms. More preferably, it is 1-25.
- R 1 and R 2 in the general formula (1) are a hydrogen atom or an alkyl group.
- R 1 and R 2 may be the same or different from each other.
- the alkyl group may or may not have a substituent.
- the alkyl group may be linear, cyclic or branched. Examples of the alkyl group include the same as those described for X 1 above.
- a hydrogen atom and a halogen atom are preferable, and a hydrogen atom is particularly preferable.
- X 3 represents a hydrogen atom or a methyl group.
- R 3 and R 4 are the same or different and each represents a hydrogen atom or an alkyl group which may have a substituent).
- Preferred are (meth) acrylamides.
- Specific examples of R 3 and R 4 in the general formula (2) are the same as those described for R 1 and R 2 in the general formula (1).
- Examples of the (meth) acrylamides include (meth) acrylamide and derivatives thereof. Specifically, (meth) acrylamide, N-methyl (meth) acrylamide, N-isopropyl (meth) acrylamide, N-tert-butyl (meth) acrylamide, N-phenyl (meth) acrylamide, N-methoxymethyl (meta) ) Acrylamide, N-butoxymethyl (meth) acrylamide, 4-acroylmorpholine, diacetone (meth) acrylamide, N, N-dimethyl (meth) acrylamide, N, N-diethyl (meth) acrylamide, 2- (meth) acrylamide Examples include -2-methylpropanesulfonic acid. Among these, N-tert-butylacrylamide is particularly preferable.
- the amide bond is a bond represented by —CO—NR ′′ —, and may be a bond represented by —CO—NR ′′ —CO—.
- R ′′ represents a hydrogen atom, an alkyl group which may have a substituent or a phenyl group which may have a substituent.
- Examples of the compound having an amide bond include N-vinylacetamide derivatives such as N-vinylacetamide, N-methyl-N-vinylacetamide, maleimide, N-butylmaleimide, and N-phenyl. Examples thereof include maleimide derivatives such as maleimide, and among these, N-vinylacetamide is preferable.
- CF 2 CF—O—C n F 2n + 1 (n is an integer of 1 or more)
- CH 2 CF—C n F 2n + 1 ( n is an integer of 1 or more)
- CF 2 ⁇ CF—O— (CF 2 CF (CF 3 ) O) m ⁇ C n F 2n + 1 (m and n are integers of 1 or more) can also be used.
- Y is —CH 2 OH, —COOH, carboxylate, carboxyester group or epoxy group
- X and X 1 are the same or different, and both are hydrogen atoms or fluorine atoms
- R f is 1 to 40 carbon atoms.
- a fluorine-containing ethylenic monomer having at least one functional group Is possible.
- the fluoropolymer may contain other polymerized units in addition to the VdF unit and the TFE unit, but more preferably comprises only the VdF unit and the TFE unit.
- the fluorine-containing polymer has a weight average molecular weight (polystyrene conversion) of 50,000 to 2,000,000. It is preferably 80000 to 1700000, more preferably 100000 to 1500,000, still more preferably 200000 to 1400000, and still more preferably 300000 to 1300000.
- the lower limit of the weight average molecular weight of the fluoropolymer is particularly preferably more than 500,000, and most preferably 600,000.
- the weight average molecular weight can be measured at 50 ° C. using N, N-dimethylformamide as a solvent by gel permeation chromatography (GPC).
- the fluoropolymer preferably has a number average molecular weight (in terms of polystyrene) of 10,000 to 1400000.
- the range is preferably 16000 to 1200000, more preferably 20000 to 1000000, still more preferably 40000 to 800000, and particularly preferably 80000 to 700000.
- the number average molecular weight can be measured by gel permeation chromatography (GPC) at 50 ° C. using N, N-dimethylformamide as a solvent.
- Examples of the method for producing the fluoropolymer include suspension polymerization, emulsion polymerization, solution polymerization, and the like by suitably mixing monomers such as VdF and TFE as polymerization units and additives such as a polymerization initiator.
- aqueous suspension polymerization and emulsion polymerization are preferable from the viewpoint of ease of post-treatment.
- a polymerization initiator, a surfactant, a chain transfer agent, and a solvent can be used, and conventionally known ones can be used.
- an oil-soluble radical polymerization initiator or a water-soluble radical polymerization initiator can be used as said polymerization initiator.
- the oil-soluble radical polymerization initiator may be a known oil-soluble peroxide, for example, dialkyl such as diisopropyl peroxydicarbonate, di-n-propyl peroxydicarbonate, disec-butylperoxydicarbonate, etc.
- Peroxycarbonates, peroxyesters such as t-butylperoxyisobutyrate and t-butylperoxypivalate, dialkylperoxides such as dit-butylperoxide, and the like are also used as di ( ⁇ -hydro -Dodecafluoroheptanoyl) peroxide, di ( ⁇ -hydro-tetradecafluoroheptanoyl) peroxide, di ( ⁇ -hydro-hexadecafluorononanoyl) peroxide, di (perfluorobutyryl) peroxide, di (Perful paleryl) peroxide Di (perfluorohexanoyl) peroxide, di (perfluoroheptanoyl) peroxide, di (perfluorooctanoyl) peroxide, di (perfluorononanoyl) peroxide, di ( ⁇ -chloro-hexafluorobutyryl) ) Peroxide,
- the water-soluble radical polymerization initiator may be a known water-soluble peroxide, for example, ammonium salts such as persulfuric acid, perboric acid, perchloric acid, perphosphoric acid, percarbonate, potassium salts, sodium salts , T-butyl permaleate, t-butyl hydroperoxide and the like.
- a reducing agent such as sulfites and sulfites may be used in combination with the peroxide, and the amount used may be 0.1 to 20 times that of the peroxide.
- a known surfactant can be used.
- a nonionic surfactant, an anionic surfactant, a cationic surfactant, or the like can be used.
- fluorine-containing anionic surfactants are preferable, and may include an ether bond (that is, an oxygen atom may be inserted between carbon atoms), or a linear or branched fluorine-containing group having 4 to 20 carbon atoms.
- Anionic surfactants are more preferred.
- the addition amount (with respect to polymerization water) is preferably 50 to 5000 ppm.
- Examples of the chain transfer agent include hydrocarbons such as ethane, isopentane, n-hexane, and cyclohexane; aromatics such as toluene and xylene; ketones such as acetone; acetates such as ethyl acetate and butyl acetate; Examples include alcohols such as methanol and ethanol; mercaptans such as methyl mercaptan; halogenated hydrocarbons such as carbon tetrachloride, chloroform, methylene chloride, and methyl chloride.
- the addition amount may vary depending on the size of the chain transfer constant of the compound used, but is usually used in the range of 0.01 to 20% by mass with respect to the polymerization solvent.
- Examples of the solvent include water, a mixed solvent of water and alcohol, and the like.
- a fluorine-based solvent may be used in addition to water.
- the fluorine-based solvent include hydrochlorofluoroalkanes such as CH 3 CClF 2 , CH 3 CCl 2 F, CF 3 CF 2 CCl 2 H, CF 2 ClCF 2 CFHCl; CF 2 ClCFClCF 2 CF 3 , CF 3 CFClCFClCF 3, etc.
- Perfluoroalkanes such as perfluorocyclobutane, CF 3 CF 2 CF 2 CF 3 , CF 3 CF 2 CF 2 CF 2 CF 3 , CF 3 CF 2 CF 2 CF 2 CF 3 , etc. Among them, perfluoroalkanes are preferable.
- the amount of the fluorine-based solvent used is preferably 10 to 100% by mass with respect to the aqueous medium from the viewpoint of suspendability and economy.
- the polymerization temperature is not particularly limited, and may be 0 to 100 ° C.
- the polymerization pressure is appropriately determined according to other polymerization conditions such as the type, amount and vapor pressure of the solvent to be used, and the polymerization temperature, but it may usually be 0 to 9.8 MPaG.
- a suspension agent such as methyl cellulose, methoxylated methyl cellulose, propoxylated methyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, polyvinyl alcohol, polyethylene oxide, gelatin, It is used by adding in the range of 0.005 to 1.0 mass%, preferably 0.01 to 0.4 mass% with respect to water.
- polymerization initiators include diisopropyl peroxydicarbonate, dinormalpropyl peroxydicarbonate, dinormalheptafluoropropyl peroxydicarbonate, isobutyryl peroxide, di (chlorofluoroacyl) peroxide, di (peroxide). Fluoroacyl) peroxide and the like can be used.
- the amount used is the total amount of monomers (total amount of vinylidene fluoride, the above-mentioned monomer having an amide group, and other monomers copolymerizable with those monomers if necessary).
- the content is preferably 0.1 to 5% by mass.
- a chain transfer agent such as ethyl acetate, methyl acetate, acetone, ethanol, n-propanol, acetaldehyde, propyl aldehyde, ethyl propionate or carbon tetrachloride may be added to adjust the degree of polymerization of the resulting polymer.
- the amount used is usually from 0.1 to 5% by mass, preferably from 0.5 to 3% by mass, based on the total amount of monomers.
- the total amount of monomers charged is 1: 1 to 1:10, preferably 1: 2 to 1: 5 in a weight ratio of the total amount of monomer to water, and the polymerization is carried out at a temperature of 10 to 50 ° C. 100 hours.
- the above fluoropolymer can be easily obtained by the above suspension polymerization.
- the fluoropolymer layer may further contain other components in addition to the fluoropolymer, as long as the effects of the present invention are not impaired.
- the fluoropolymer layer may further contain polyvinylidene fluoride [PVdF].
- PVdF polyvinylidene fluoride
- the PVdF blended with the fluoropolymer may be a homopolymer consisting only of polymerized units based on VdF, or a monomer copolymerizable with polymerized units based on VdF and polymerized units based on VdF. It may consist of polymerized units based on ( ⁇ ).
- Examples of the monomer ( ⁇ ) include vinyl fluoride, trifluoroethylene, trifluorochloroethylene, fluoroalkyl vinyl ether, hexafluoropropylene, 2,3,3,3-tetrafluoropropene, and propylene.
- unsaturated dibasic acid monoesters such as those described in JP-A-6-172452, such as maleic acid monomethyl ester, citraconic acid monomethyl ester, citraconic acid monoethyl ester, vinylene carbonate, etc.
- the adhesiveness can be improved by slightly reducing the crystallinity of the copolymer of vinylidene fluoride and tetrafluoroethylene and giving flexibility to the material other than the compound containing the polar group as described above.
- fluoromonomers such as ethylene trifluoride and hexafluoropropylene.
- Y is —CH 2 OH, —COOH, carboxylate, carboxyester group or epoxy group
- X and X 1 are the same or different, and both are hydrogen atoms or fluorine atoms
- Rf has 1 to 40 carbon atoms.
- Fluorine-containing ethylenic monomer having at least one functional group represented by a divalent fluorine-containing alkylene group or a divalent fluorine-containing alkylene group containing an ether bond having 1 to 40 carbon atoms can also be used. It is. By copolymerizing one or more of these monomers, the adhesion is further improved, and good charge / discharge cycle characteristics can be obtained even when charge / discharge is repeated.
- the polymerization unit based on the monomer ( ⁇ ) is preferably 5 mol% or less, more preferably 4.5 mol% or less of the total polymerization units.
- the PVdF preferably has a weight average molecular weight (in terms of polystyrene) of 50,000 to 2,000,000. More preferably, it is 80000 to 1700000, and still more preferably 100000 to 1500,000.
- the weight average molecular weight can be measured at 50 ° C. using N, N-dimethylformamide as a solvent by gel permeation chromatography (GPC).
- the PVdF preferably has a number average molecular weight (in terms of polystyrene) of 10,000 to 1400000. More preferably, it is 16000 to 1200,000, and still more preferably 20000 to 1000000.
- the number average molecular weight can be measured by gel permeation chromatography (GPC) at 50 ° C. using N, N-dimethylformamide as a solvent.
- the PVdF is produced by a conventionally known method such as solution polymerization or suspension polymerization by appropriately mixing, for example, VdF which is a polymerization unit, the monomer ( ⁇ ), and an additive such as a polymerization initiator. can do.
- the mass ratio (fluoropolymer) / (PVdF) is preferably 90/10 to 10/90, / 20 to 15/85 is more preferable.
- the fluoropolymer layer may include metal oxide particles.
- the metal oxide is not particularly limited, but is preferably an oxide other than alkali metal or alkaline earth metal from the viewpoint of improving ion conductivity and shutdown effect, and particularly aluminum oxide, silicon oxide, titanium oxide, vanadium oxide, copper oxide, etc. Is preferred.
- As the particle diameter fine particles having an average particle diameter of 20 ⁇ m or less, further 10 ⁇ m or less, and particularly 5 ⁇ m or less are preferable.
- Particularly preferred metal oxide particles are aluminum oxide particles or silicon oxide particles having an average particle diameter of 5 ⁇ m or less from the viewpoint of excellent ion conductivity.
- the fluoropolymer layer may further contain components other than those described above.
- the component include polymethacrylate, polymethyl methacrylate, polyacrylonitrile, polyimide, polyamide, polyamideimide, polycarbonate, styrene rubber, and butadiene rubber.
- the fluoropolymer layer is preferably provided on the porous membrane.
- the said fluoropolymer layer may be provided only in the one side of the said porous membrane, and may be provided in both sides. Moreover, the fluoropolymer layer may be provided so as to cover the entire surface on which the fluoropolymer layer is provided, or may be provided so as to cover only a part.
- the weight of the fluoropolymer layer is preferably in the range of 0.2 to 3.0 g / m 2 when the fluoropolymer layer is formed only on one side of the porous membrane. If it is less than 0.2 g / m 2 , the adhesion to the electrode may be insufficient. On the other hand, if it is more than 3.0 g / m 2 , ion conduction is hindered and the load characteristics of the battery tend to deteriorate, which is not preferable.
- the weight of the fluoropolymer is preferably 0.2 to 6.0 g / m 2 .
- the above porous membrane means a substrate having pores or voids inside.
- a substrate include a microporous film, a porous sheet made of a fibrous material such as a nonwoven fabric and a paper sheet, or one or more other porous layers laminated on the microporous film or the porous sheet.
- a composite porous membrane is a membrane that has a large number of micropores inside and a structure in which these micropores are connected, and allows gas or liquid to pass from one surface to the other. Means.
- the material constituting the porous film either an organic material or an inorganic material having electrical insulation can be used.
- a thermoplastic resin as a constituent material of the base material.
- the shutdown function is a function to prevent the thermal runaway of the battery by blocking the movement of ions by melting the thermoplastic resin and closing the pores of the porous substrate when the battery temperature rises.
- the thermoplastic resin a thermoplastic resin having a melting point of less than 200 ° C. is suitable, and polyolefin is particularly preferable.
- a polyolefin microporous membrane is suitable as the porous membrane using polyolefin.
- a polyolefin microporous membrane having sufficient mechanical properties and ion permeability and applied to a conventional separator for a non-aqueous secondary battery can be used.
- a polyolefin microporous film contains polyethylene from a viewpoint that it has the shutdown function mentioned above.
- a polyolefin microporous membrane containing polyethylene and polypropylene is preferable from the viewpoint of imparting heat resistance to such an extent that it does not easily break when exposed to high temperatures.
- a polyolefin microporous membrane include a microporous membrane in which polyethylene and polypropylene are mixed in one sheet.
- Such a microporous membrane preferably contains 95% by weight or more of polyethylene and 5% by weight or less of polypropylene from the viewpoint of achieving both a shutdown function and heat resistance.
- the polyolefin microporous membrane has a structure of at least two layers, and one of the two layers includes polyethylene and the other layer includes polypropylene.
- a polyolefin microporous membrane having a structure is also preferred.
- the polyolefin preferably has a weight average molecular weight of 100,000 to 5,000,000. If the weight average molecular weight is less than 100,000, it may be difficult to ensure sufficient mechanical properties. On the other hand, if it exceeds 5 million, the shutdown characteristics may be deteriorated or molding may be difficult.
- Such a polyolefin microporous film can be produced, for example, by the following method.
- (iv) a heat treatment of the sheet A method of forming the microporous film by sequentially performing the steps is performed.
- a step of melting a polyolefin resin together with a plasticizer such as liquid paraffin, extruding it from a T-die and cooling it into a sheet (ii) a step of stretching the sheet, (iii) Examples include a method of forming a microporous film by sequentially performing a step of extracting a plasticizer from the sheet and (iv) a step of heat-treating the sheet.
- a plasticizer such as liquid paraffin
- porous sheets made of fibrous materials include polyesters such as polyethylene terephthalate, polyolefins such as polyethylene and polypropylene, heat-resistant polymers such as aromatic polyamides and polyimides, polyethersulfone, polysulfone, polyetherketone, and polyetherimide. Or a porous sheet made of a mixture of these fibrous materials.
- a composite porous membrane As a composite porous membrane, the structure which laminated
- the functional layer for example, from the viewpoint of imparting heat resistance, a porous layer made of a heat resistant resin or a porous layer made of a heat resistant resin and an inorganic filler can be used.
- the heat resistant resin include one or more heat resistant polymers selected from aromatic polyamide, polyimide, polyethersulfone, polysulfone, polyetherketone, and polyetherimide.
- a metal oxide such as alumina or a metal hydroxide such as magnesium hydroxide can be suitably used.
- the composite method include a method of coating a functional sheet on a porous sheet, a method of bonding with an adhesive, and a method of thermocompression bonding.
- the porous membrane in the present invention is preferably made of at least one resin selected from the group consisting of polyethylene, polypropylene, and polyimide among the above.
- the thickness of the porous membrane is preferably in the range of 5 to 25 ⁇ m from the viewpoint of obtaining good mechanical properties and internal resistance.
- the separator of the present invention can be produced by laminating the fluoropolymer layer on the porous membrane.
- the lamination method is not particularly limited, and a conventionally known method may be adopted. Specifically, a method of roll coating a porous film with a solution or dispersion obtained by dissolving or dispersing the above-mentioned fluoropolymer and other components in a solvent as required, porous to the above solution or dispersion A method of dipping the membrane, a method of applying the above solution or dispersion to a porous membrane and immersing it in an appropriate coagulation solution, and dispersing the above-mentioned fluoropolymer and other components as necessary in water A method of roll coating on the membrane is preferred.
- a film composed of a fluoropolymer layer may be prepared in advance, and the film and the porous film may be laminated by a method such as laminating.
- a method for producing a film comprising a fluoropolymer layer a smooth surface such as a polyester film or an aluminum film is prepared by dissolving or dispersing the above fluoropolymer and, if necessary, other components in a solvent.
- An example is a method of peeling after casting on a film having a film.
- amide solvents such as N-methyl-2-pyrrolidone
- ketone solvents such as acetone
- cyclic ether solvents such as tetrahydrofuran
- the separator of this invention can comprise a secondary battery with a positive electrode, a negative electrode, and a non-aqueous electrolyte.
- This invention is also a secondary battery provided with the said separator, a positive electrode, a negative electrode, and a non-aqueous electrolyte.
- a positive electrode, a negative electrode, and a nonaqueous electrolyte you may use the well-known thing which can be used for a secondary battery.
- a lithium secondary battery is particularly preferable.
- the typical structure in case the secondary battery of this invention is a lithium secondary battery is demonstrated, However, The secondary battery of this invention is not limited to these structures.
- a positive electrode is comprised from the positive electrode mixture containing the positive electrode active material which is a material of a positive electrode, and a collector.
- the positive electrode active material is not particularly limited as long as it can electrochemically occlude and release lithium ions.
- a substance containing lithium and at least one transition metal is preferable.
- lithium-transition metal composite oxides such as lithium-cobalt composite oxide, lithium-nickel composite oxide, and lithium-manganese composite oxide; lithium-containing transition metal A phosphoric acid compound etc. are mentioned.
- the positive electrode mixture preferably further contains a binder, a thickener, and a conductive material.
- a binder any material can be used as long as it is a material that is safe with respect to the solvent and electrolyte used in the production of the electrode.
- the binder any material can be used as long as it is a material that is safe with respect to the solvent and electrolyte used in the production of the electrode.
- -Tetrafluoroethylene copolymer polyvinylidene fluoride-hexafluoropropylene copolymer, polyvinylidene fluoride-tetrafluoroethylene-hexafluoropropylene copolymer, polyethylene, polypropylene, styrene-butadiene rubber, isoprene rubber, butadiene rubber, ethylene -Acrylic acid copolymer, ethylene-methacrylic acid copolymer and the like.
- thickener examples include carboxymethylcellulose, methylcellulose, hydroxymethylcellulose, ethylcellulose, polyvinyl alcohol, oxidized starch, phosphorylated starch, and casein.
- Examples of the conductive material include carbon materials such as graphite and carbon black.
- Examples of the material for the positive electrode current collector include metals such as aluminum, titanium, and tantalum, and alloys thereof. Of these, aluminum or an alloy thereof is preferable.
- the positive electrode may be manufactured by a conventional method.
- the above-mentioned positive electrode active material is added with the above-mentioned binder, thickener, conductive material, solvent, etc. to form a slurry-like positive electrode mixture, which is applied to a current collector, dried and then pressed.
- a method of densification is mentioned.
- the negative electrode is composed of a negative electrode mixture containing a negative electrode material and a current collector.
- the negative electrode material carbonaceous materials capable of occluding and releasing lithium such as organic pyrolysates and artificial graphite and natural graphite under various pyrolysis conditions; lithium such as tin oxide and silicon oxide can be occluded and released Metal oxide materials; lithium metal; various lithium alloys and the like. These negative electrode materials may be used in combination of two or more.
- the negative electrode mixture preferably further contains a binder, a thickener, and a conductive material.
- a binder the thing similar to the binder which can be used for a positive electrode mentioned above is mentioned.
- a thickener the thing similar to the thickener which can be used for a positive electrode mentioned above is mentioned.
- Examples of the conductive material for the negative electrode include metal materials such as copper and nickel; carbon materials such as graphite and carbon black.
- Examples of the material of the negative electrode current collector include copper, nickel, and stainless steel. Of these, copper foil is preferable from the viewpoint of easy processing into a thin film and cost.
- the negative electrode may be manufactured by a conventional method.
- the above-described negative electrode material is added with the above-mentioned binder, thickener, conductive material, solvent, etc. to form a slurry, which is applied to a current collector, dried, pressed and densified. .
- nonaqueous electrolytic solution a known electrolyte salt dissolved in a known electrolyte salt dissolving organic solvent may be used.
- the organic solvent for dissolving the electrolyte salt is not particularly limited, but propylene carbonate, ethylene carbonate, butylene carbonate, ⁇ -butyrolactone, 1,2-dimethoxyethane, 1,2-diethoxyethane, dimethyl carbonate, diethyl Hydrocarbon solvents such as carbonate and ethyl methyl carbonate; one or more fluorine solvents such as fluoroethylene carbonate, fluoroether and fluorinated carbonate can be used.
- electrolyte salt examples include LiClO 4 , LiAsF 6 , LiBF 4 , LiPF 6 , LiCl, LiBr, CH 3 SO 3 Li, CF 3 SO 3 Li, LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 , cesium carbonate, and the like, and LiPF 6 , LiBF 4 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 or a combination thereof is particularly preferable from the viewpoint of good cycle characteristics.
- the concentration of the electrolyte salt is preferably 0.8 mol / liter or more, and more preferably 1.0 mol / liter or more. Although the upper limit depends on the organic solvent for dissolving the electrolyte salt, it is usually 1.5 mol / liter.
- the shape of the lithium secondary battery is arbitrary, and examples thereof include a cylindrical shape, a square shape, a laminate shape, a coin shape, and a large shape.
- the shape and structure of a positive electrode, a negative electrode, and a separator can be changed and used according to the shape of each battery in the range which does not impair the effect of this invention.
- composition and molecular weight of the fluoropolymer were measured by the following methods.
- ⁇ Polymer composition> Using an NMR analyzer (manufactured by Agilent Technologies, VNS 400 MHz), the polymer was measured in a DMSO solution state by 19 F-NMR measurement. The following peak areas (A, B, C, D) were determined by 19 F-NMR measurement, and the ratio of VdF to TFE was calculated.
- GPC gel permeation chromatography
- NMP solution of a fluoropolymer having a concentration of 5% by mass was prepared, and this solution was cast coated on an aluminum foil.
- NMP was completely volatilized while drying at 120 ° C. using an air constant temperature thermostat (manufactured by Yamato Kagaku Co., Ltd.) to prepare a belt-like cast film having a thickness of 10 ⁇ m.
- the obtained cast film was immersed in an electrolytic solution (a solution of LiPF 6 dissolved in 3/7 (volume ratio) of ethylene carbonate and ethyl methyl carbonate at a concentration of 1 M) for 10 minutes, and then sandwiched between SUS electrodes.
- Ion conductivity (frequency: 10 ⁇ 3 to 10 6 Hz, AC voltage: 10 mV) connected to a potentiostat (frequency analyzer: Model 1260 manufactured by Solartron, potentiostat: Model 1287 manufactured by Solartron) S / cm) was measured.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Organic Chemistry (AREA)
- Polymers & Plastics (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Secondary Cells (AREA)
- Cell Separators (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Abstract
Description
VdF単位が80.0モル%未満であると電解液に対する膨潤性が高くなりすぎて長期耐久性に劣る傾向があり、89.0モル%より多いとフッ素重合体のイオン伝導度が悪くなる傾向がある。
上記含フッ素重合体は、VdF単位を全重合単位に対して80.5モル%以上含むことが好ましく、82.0モル%以上含むことがより好ましい。82.0モル%以上であると、電解液に対する膨潤性を一層低く抑えることができ、長期耐久性を向上させることができる。
上記含フッ素重合体は、VdF単位を全重合単位に対して82.5モル%以上含むことが更に好ましい。また、88.9モル%以下含むことが好ましく、88.8モル%以下含むことがより好ましい。
上記含フッ素重合体の組成は、NMR分析装置を用いて測定することができる。
上記一般式(1)中のX2は、水素原子又はアルキル基である。上記アルキル基は、置換基を有していてもよく、有していなくてもよい。また、上記アルキル基は鎖状でも、環状でも、分岐していてもよい。上記アルキル基としては、上記X1について述べたものと同様のものを挙げることができる。上記X2としては、中でも、水素原子、メチル基が好ましい。
上記一般式(1)中のR1及びR2は、水素原子又はアルキル基である。R1及びR2は、同じであってもよく、互いに異なっていてもよい。上記アルキル基は、置換基を有していてもよく、有していなくてもよい。また、上記アルキル基は鎖状でも、環状でも、分岐していてもよい。上記アルキル基としては、上記X1について述べたものと同様のものを挙げることができる。上記R1及びR2としては、中でも、水素原子、ハロゲン原子が好ましく、水素原子が特に好ましい。
そのほか式:
これら単量体の中でも、柔軟性と耐薬品性の観点から、ヘキサフルオロプロピレン、2,3,3,3-テトラフルオロプロペンが特に好ましい。
上記重量平均分子量は、ゲルパーミエーションクロマトグラフィ(GPC)により溶媒としてN,N-ジメチルホルムアミドを用い50℃で測定することができる。
上記数平均分子量は、ゲルパーミエーションクロマトグラフィ(GPC)により溶媒としてN,N-ジメチルホルムアミドを用い50℃で測定することができる。
上記重合においては、重合開始剤、界面活性剤、連鎖移動剤、及び、溶媒を使用することができ、それぞれ従来公知のものを使用することができる。
油溶性ラジカル重合開始剤としては、公知の油溶性の過酸化物であってよく、例えばジイソプロピルパーオキシジカーボネート、ジ-n-プロピルパーオキシジカーボネート、ジsec-ブチルパーオキシジカーボネート等のジアルキルパーオキシカーボネート類、t-ブチルパーオキシイソブチレート、t-ブチルパーオキシピバレート等のパーオキシエステル類、ジt-ブチルパーオキサイド等のジアルキルパーオキサイド類等が、また、ジ(ω-ハイドロ-ドデカフルオロヘプタノイル)パーオキサイド、ジ(ω-ハイドロ-テトラデカフルオロヘプタノイル)パーオキサイド、ジ(ω-ハイドロ-ヘキサデカフルオロノナノイル)パーオキサイド、ジ(パーフルオロブチリル)パーオキサイド、ジ(パーフルパレリル)パーオキサイド、ジ(パーフルオロヘキサノイル)パーオキサイド、ジ(パーフルオロヘプタノイル)パーオキサイド、ジ(パーフルオロオクタノイル)パーオキサイド、ジ(パーフルオロノナノイル)パーオキサイド、ジ(ω-クロロ-ヘキサフルオロブチリル)パーオキサイド、ジ(ω-クロロ-デカフルオロヘキサノイル)パーオキサイド、ジ(ω-クロロ-テトラデカフルオロオクタノイル)パーオキサイド、ω-ハイドロ-ドデカフルオロヘプタノイル-ω-ハイドロヘキサデカフルオロノナノイル-パーオキサイド、ω-クロロ-ヘキサフルオロブチリル-ω-クロ-デカフルオロヘキサノイル-パーオキサイド、ω-ハイドロドデカフルオロヘプタノイル-パーフルオロブチリル-パーオキサイド、ジ(ジクロロペンタフルオロブタノイル)パーオキサイド、ジ(トリクロロオクタフルオロヘキサノイル)パーオキサイド、ジ(テトラクロロウンデカフルオロオクタノイル)パーオキサイド、ジ(ペンタクロロテトラデカフルオロデカノイル)パーオキサイド、ジ(ウンデカクロロドトリアコンタフルオロドコサノイル)パーオキサイドのジ[パーフロロ(又はフルオロクロロ)アシル]パーオキサイド類等が代表的なものとして挙げられる。
上記溶媒としては、水、水とアルコールとの混合溶媒等が挙げられる。
フッ素系溶媒を用いないで水を分散媒とした懸濁重合においては、メチルセルロース、メトキシ化メチルセルロース、プロポキシ化メチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、ポリビニルアルコール、ポリエチレンオキシド、ゼラチン等の懸濁剤を、水に対して0.005~1.0質量%、好ましくは0.01~0.4質量%の範囲で添加して使用する。
また、酢酸エチル、酢酸メチル、アセトン、エタノール、n-プロパノール、アセトアルデヒド、プロピルアルデヒド、プロピオン酸エチル、四塩化炭素等の連鎖移動剤を添加して、得られる重合体の重合度を調節することも可能である。その使用量は、通常は、単量体合計量に対して0.1~5質量%、好ましくは0.5~3質量%である。
単量体の合計仕込量は、単量体合計量:水の重量比で1:1~1:10、好ましくは1:2~1:5であり、重合は温度10~50℃で10~100時間行う。
上記の懸濁重合により、容易に上記含フッ素重合体を得ることができる。
そのほか式:
上記重量平均分子量は、ゲルパーミエーションクロマトグラフィ(GPC)により溶媒としてN,N-ジメチルホルムアミドを用い50℃で測定することができる。
上記数平均分子量は、ゲルパーミエーションクロマトグラフィ(GPC)により溶媒としてN,N-ジメチルホルムアミドを用い50℃で測定することができる。
上記結着剤としては、電極製造時に使用する溶媒や電解液に対して安全な材料であれば、任意のものを使用することができ、例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリフッ化ビニリデン-テトラフルオロエチレン共重合体、ポリフッ化ビニリデン-ヘキサフルオロプロピレン共重合体、ポリフッ化ビニリデン-テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体、ポリエチレン、ポリプロピレン、スチレン・ブタジエンゴム、イソプレンゴム、ブタジエンゴム、エチレン-アクリル酸共重合体、エチレン-メタクリル酸共重合体等が挙げられる。
上記結着剤としては、上述した、正極に用いることができる結着剤と同様のものが挙げられる。
上記増粘剤としては、上述した、正極に用いることができる増粘剤と同様のものが挙げられる。
内容積6Lのオートクレーブに純水1.9kgを投入し、充分に窒素置換を行った後、オクタフルオロシクロブタン1.8gを仕込み、系内を37℃、攪拌速度580rpmに保った。その後、TFE/VdF=5/95モル%の混合ガス260g、酢酸エチル0.6gを仕込み、その後にジ-n-プロピルパーオキシジカーボネートの50質量%メタノール溶液を2.8g添加して重合を開始した。重合の進行と共に系内圧力が低下するので、TFE/VdF=5/85モル%の混合ガスを連続して供給し、系内圧力を1.3MPaGに保った。32時間、攪拌を継続した。そして、放圧して大気圧に戻した後、反応生成物を水洗、乾燥して、含フッ素重合体Aの白色粉末900gを得た。
得られた含フッ素重合体Aは以下の組成及び物性を有していた。
VdF/TFE=83.0/17.0(モル%)
数平均分子量 :270000
重量平均分子量:870000
内容積6Lのオートクレーブに純水1.9kgを投入し、充分に窒素置換を行った後、オクタフルオロシクロブタン1.8gを仕込み、系内を37℃、攪拌速度580rpmに保った。その後、TFE/VdF=6/94モル%の混合ガス260g、酢酸エチル0.6gを仕込み、その後にジ-n-プロピルパーオキシジカーボネートの50質量%メタノール溶液を5.8g添加して重合を開始した。重合の進行と共に系内圧力が低下するので、TFE/VdF=5/85モル%の混合ガスを連続して供給し、系内圧力を1.3MPaGに保った。32時間、攪拌を継続した。そして、放圧して大気圧に戻した後、反応生成物を水洗、乾燥して、含フッ素重合体Bの白色粉末900gを得た。
得られた含フッ素重合体Bは以下の組成及び物性を有していた。
VdF/TFE=80.0/20.0(モル%)
数平均分子量 :130000
重量平均分子量:290000
内容積4Lのオートクレーブに純水1.3kgを投入し、充分に窒素置換を行った後、オクタフルオロシクロブタン1.3kgを仕込み、系内を37℃、攪拌速度580rpmに保った。その後、TFE/VdF=4/96モル%の混合ガス200g、酢酸エチル0.4gを仕込み、その後にジ-n-プロピルパーオキシジカーボネートの50質量%メタノール溶液を1g添加して重合を開始した。重合の進行と共に系内圧力が低下するので、TFE/VdF=13/87モル%の混合ガスを連続して供給し、系内圧力を1.3MPaGに保った。17時間、攪拌を継続した。そして、放圧して大気圧に戻した後、反応生成物を水洗、乾燥して、含フッ素重合体Cの白色粉末190gを得た。
得られた含フッ素重合体Cは、以下の組成及び物性を有していた。
VdF/TFE=86.6/13.4(モル%)
数平均分子量:274000
重量平均分子量:768000
<ポリマー組成>
NMR分析装置(アジレント・テクノロジー株式会社製、VNS400MHz)を用いて、19F-NMR測定でポリマーのDMSO溶液状態にて測定した。
19F-NMR測定にて、下記のピークの面積(A、B、C、D)を求め、VdFとTFEの比率を計算した。
A:-86ppm~-98ppmのピークの面積
B:-105ppm~-118ppmのピークの面積
C:-119ppm~-122ppmのピークの面積
D:-122ppm~-126ppmのピークの面積
VdFの割合:(4A+2B)/(4A+3B+2C+2D)×100[mol%]
TFEの割合:(B+2C+2D)/(4A+3B+2C+2D)×100[mol%]
ゲルパーミエーションクロマトグラフィ(GPC)により測定した。東ソー株式会社製のHLC-8320GPC、カラム(SuperAWM-Hを3本直列に接続)を用い、溶媒としてジメチルホルムアミド(DMF)を用いて測定したデータ(リファレンス:ポリスチレン)より算出した。
濃度5質量%の含フッ素重合体のNMP溶液を調製し、この溶液をアルミ箔上にキャストコーティングした。塗布後、送風定温恒温器(ヤマト科学(株)製)を用いて120℃で乾燥しながらNMPを完全に揮発させ、帯状の厚み10μmのキャストフィルムを作製した。
得られたキャストフィルムを5×20mmの大きさに切り取り、電解液(エチレンカーボネートとエチルメチルカーボネートの3/7(体積比)の溶媒にLiPF6を1M濃度で溶解した溶液)が入ったサンプル瓶に入れ、25℃で24時間静置、あるいは、60℃で24時間静置し、投入前からの質量増加(%)を算出した。
濃度5質量%の含フッ素重合体のNMP溶液を調製し、この溶液をアルミ箔上にキャストコーティングした。塗布後、送風定温恒温器(ヤマト科学(株)製)を用いて120℃で乾燥しながらNMPを完全に揮発させ、帯状の厚み10μmのキャストフィルムを作製した。
得られたキャストフィルムを電解液(エチレンカーボネートとエチルメチルカーボネートの3/7(体積比)の溶媒にLiPF6を1M濃度で溶解した溶液)に10分間浸漬したのち、SUS電極で挟み、ガルバノ・ポテンシオスタット(周波数アナライザー:ソーラトロン社製1260型、ポテンシオスタット:ソーラトロン社製1287型)に接続し交流インピーダンス法(周波数:10-3~106Hz、交流電圧:10mV)よりイオン伝導度(S/cm)を測定した。
濃度5質量%の含フッ素重合体のNMP溶液を調製し、この溶液をアルミ箔上にキャストコーティングした。塗布後、送風定温恒温器(ヤマト科学(株)製)を用いて120℃で乾燥しながらNMPを完全に揮発させ、帯状の厚み10μmのキャストフィルムを作製した。
得られたキャストフィルムを自動接触角計Drop Master 701を用いて電解液(エチレンカーボネートとエチルメチルカーボネートの3/7(体積比)の溶媒にLiPF6を1M濃度で溶解した溶液)を2μL滴下し、61秒後の静的接触角を測定した。接触角が小さいほど電解液との親和性が高いと評価した。
Claims (4)
- ビニリデンフルオライドに基づく重合単位及びテトラフルオロエチレンに基づく重合単位からなる含フッ素重合体からなる層と、多孔質膜とからなるセパレータであって、
含フッ素重合体は、ビニリデンフルオライドに基づく重合単位を全重合単位に対して80.0~89.0モル%含み、かつ、重量平均分子量が50000~2000000であることを特徴とするセパレータ。 - 多孔質膜は、ポリエチレン、ポリプロピレン及びポリイミドからなる群より選択される少なくとも1種の樹脂からなる請求項1記載のセパレータ。
- 含フッ素重合体からなる層は、更にポリビニリデンフルオライドを含む請求項1又は2記載のセパレータ。
- 請求項1、2又は3記載のセパレータ、正極、負極及び非水電解液を備える二次電池。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201380054872.XA CN104737326A (zh) | 2012-10-22 | 2013-10-22 | 隔膜和二次电池 |
KR1020157006033A KR20150043383A (ko) | 2012-10-22 | 2013-10-22 | 세퍼레이터 및 이차 전지 |
JP2014543296A JPWO2014065258A1 (ja) | 2012-10-22 | 2013-10-22 | セパレータ及び二次電池 |
US14/428,513 US20150280196A1 (en) | 2012-10-22 | 2013-10-22 | Separator, and secondary battery |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-233073 | 2012-10-22 | ||
JP2012233073 | 2012-10-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014065258A1 true WO2014065258A1 (ja) | 2014-05-01 |
Family
ID=50544637
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/078529 WO2014065258A1 (ja) | 2012-10-22 | 2013-10-22 | セパレータ及び二次電池 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20150280196A1 (ja) |
JP (1) | JPWO2014065258A1 (ja) |
KR (1) | KR20150043383A (ja) |
CN (1) | CN104737326A (ja) |
WO (1) | WO2014065258A1 (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3070764A1 (en) * | 2013-12-06 | 2016-09-21 | Daikin Industries, Ltd. | Separator for secondary battery, and second battery |
WO2018173373A1 (ja) * | 2017-03-21 | 2018-09-27 | 株式会社クレハ | 樹脂組成物、二次電池のセパレータ、および二次電池 |
WO2018216348A1 (ja) * | 2017-05-26 | 2018-11-29 | ダイキン工業株式会社 | 二次電池用セパレータ及び二次電池 |
WO2019150720A1 (ja) * | 2018-01-31 | 2019-08-08 | ダイキン工業株式会社 | 空気調和装置の室外機 |
JP2021520607A (ja) * | 2018-04-03 | 2021-08-19 | シャンハイ、エナジー、ニュー、マテリアルズ、テクノロジー、カンパニー、リミテッドShanghai Energy New Materials Technology Co., Ltd. | セパレータを製造するためのコーティングスラリー、電気化学デバイスのためのセパレータ及びその製造方法 |
US11542382B2 (en) | 2017-03-21 | 2023-01-03 | Kureha Corporation | Gel-like electrolyte having vinylidene fluoride copolymer |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018055882A1 (ja) * | 2016-09-21 | 2018-03-29 | 帝人株式会社 | 非水系二次電池用セパレータ及び非水系二次電池 |
KR102407048B1 (ko) * | 2019-07-04 | 2022-06-08 | 삼성에스디아이 주식회사 | 이차 전지용 분리막 및 이를 포함하는 리튬 이차 전지 |
CN115461413B (zh) * | 2020-05-01 | 2023-08-11 | 大金工业株式会社 | 复合体、聚合物电解质、电化学器件、聚合物系固态电池和致动器 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09293518A (ja) * | 1996-04-26 | 1997-11-11 | Asahi Chem Ind Co Ltd | 薄膜状電解質および該電解質を用いた電池 |
JP2003086162A (ja) * | 2001-09-12 | 2003-03-20 | Teijin Ltd | 非水系二次電池用セパレータ及び非水系二次電池 |
JP2004079363A (ja) * | 2002-08-20 | 2004-03-11 | Nippon Oil Corp | イオン伝導性フィルムの製造方法 |
JP2006120462A (ja) * | 2004-10-21 | 2006-05-11 | Sanyo Electric Co Ltd | 非水電解質電池 |
JP2007317675A (ja) * | 2000-03-07 | 2007-12-06 | Teijin Ltd | リチウムイオン二次電池用セパレータ |
WO2011096564A1 (ja) * | 2010-02-05 | 2011-08-11 | ダイキン工業株式会社 | 二次電池用ゲル電解質複合フィルム、及び、二次電池 |
WO2012137374A1 (ja) * | 2011-04-08 | 2012-10-11 | 帝人株式会社 | 非水系二次電池用セパレータおよび非水系二次電池 |
WO2012137377A1 (ja) * | 2011-04-08 | 2012-10-11 | 帝人株式会社 | 非水系二次電池用セパレータおよび非水系二次電池 |
WO2012137376A1 (ja) * | 2011-04-08 | 2012-10-11 | 帝人株式会社 | 非水系二次電池用セパレータおよび非水系二次電池 |
-
2013
- 2013-10-22 US US14/428,513 patent/US20150280196A1/en not_active Abandoned
- 2013-10-22 JP JP2014543296A patent/JPWO2014065258A1/ja active Pending
- 2013-10-22 WO PCT/JP2013/078529 patent/WO2014065258A1/ja active Application Filing
- 2013-10-22 CN CN201380054872.XA patent/CN104737326A/zh active Pending
- 2013-10-22 KR KR1020157006033A patent/KR20150043383A/ko not_active Application Discontinuation
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09293518A (ja) * | 1996-04-26 | 1997-11-11 | Asahi Chem Ind Co Ltd | 薄膜状電解質および該電解質を用いた電池 |
JP2007317675A (ja) * | 2000-03-07 | 2007-12-06 | Teijin Ltd | リチウムイオン二次電池用セパレータ |
JP2003086162A (ja) * | 2001-09-12 | 2003-03-20 | Teijin Ltd | 非水系二次電池用セパレータ及び非水系二次電池 |
JP2004079363A (ja) * | 2002-08-20 | 2004-03-11 | Nippon Oil Corp | イオン伝導性フィルムの製造方法 |
JP2006120462A (ja) * | 2004-10-21 | 2006-05-11 | Sanyo Electric Co Ltd | 非水電解質電池 |
WO2011096564A1 (ja) * | 2010-02-05 | 2011-08-11 | ダイキン工業株式会社 | 二次電池用ゲル電解質複合フィルム、及び、二次電池 |
WO2012137374A1 (ja) * | 2011-04-08 | 2012-10-11 | 帝人株式会社 | 非水系二次電池用セパレータおよび非水系二次電池 |
WO2012137377A1 (ja) * | 2011-04-08 | 2012-10-11 | 帝人株式会社 | 非水系二次電池用セパレータおよび非水系二次電池 |
WO2012137376A1 (ja) * | 2011-04-08 | 2012-10-11 | 帝人株式会社 | 非水系二次電池用セパレータおよび非水系二次電池 |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3070764A1 (en) * | 2013-12-06 | 2016-09-21 | Daikin Industries, Ltd. | Separator for secondary battery, and second battery |
EP3070764A4 (en) * | 2013-12-06 | 2017-05-10 | Daikin Industries, Ltd. | Separator for secondary battery, and second battery |
WO2018173373A1 (ja) * | 2017-03-21 | 2018-09-27 | 株式会社クレハ | 樹脂組成物、二次電池のセパレータ、および二次電池 |
US11542382B2 (en) | 2017-03-21 | 2023-01-03 | Kureha Corporation | Gel-like electrolyte having vinylidene fluoride copolymer |
WO2018216348A1 (ja) * | 2017-05-26 | 2018-11-29 | ダイキン工業株式会社 | 二次電池用セパレータ及び二次電池 |
JPWO2018216348A1 (ja) * | 2017-05-26 | 2019-11-21 | ダイキン工業株式会社 | 二次電池用セパレータ及び二次電池 |
US11394083B2 (en) | 2017-05-26 | 2022-07-19 | Daikin Industries, Ltd. | Secondary battery separator including porous film having fluorine-containing polymer of vinylidene fluoride, tetrafluoroethylene, and vinyl carboxylic acid or salt and secondary battery including the same |
WO2019150720A1 (ja) * | 2018-01-31 | 2019-08-08 | ダイキン工業株式会社 | 空気調和装置の室外機 |
JP2021520607A (ja) * | 2018-04-03 | 2021-08-19 | シャンハイ、エナジー、ニュー、マテリアルズ、テクノロジー、カンパニー、リミテッドShanghai Energy New Materials Technology Co., Ltd. | セパレータを製造するためのコーティングスラリー、電気化学デバイスのためのセパレータ及びその製造方法 |
JP7443241B2 (ja) | 2018-04-03 | 2024-03-05 | 上海恩捷新材料科技有限公司 | セパレータを製造するためのコーティングスラリー、電気化学デバイスのためのセパレータ及びその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2014065258A1 (ja) | 2016-09-08 |
US20150280196A1 (en) | 2015-10-01 |
KR20150043383A (ko) | 2015-04-22 |
CN104737326A (zh) | 2015-06-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5757363B1 (ja) | 二次電池用セパレータ及び二次電池 | |
WO2014065258A1 (ja) | セパレータ及び二次電池 | |
KR101599658B1 (ko) | 결착제, 정극합제 및 부극합제 | |
JPWO2019087652A1 (ja) | 二次電池用結着剤、二次電池用電極合剤、二次電池用電極及び二次電池 | |
JP5949915B2 (ja) | 電極合剤 | |
EP3407410B1 (en) | Binder composition, binder dispersion liquid, electrode mixture, electrode, nonaqueous electrolyte secondary battery, and method for producing binder composition | |
JP5949914B2 (ja) | 電極合剤 | |
JP6955355B2 (ja) | コアシェル型粒子ならびにその用途および製造方法 | |
JP6864523B2 (ja) | コアシェル型粒子ならびにその用途および製造方法 | |
WO2019230219A1 (ja) | 接着性組成物、セパレータ構造体、電極構造体、非水電解質二次電池およびその製造方法 | |
JP6222098B2 (ja) | 蓄電デバイス用バインダー組成物の製造方法 | |
JP6874836B2 (ja) | 二次電池用セパレータ及び二次電池 | |
JP2018005971A (ja) | 蓄電デバイス用バインダー組成物の製造方法 | |
JP2018063932A (ja) | 二次電池用結着剤及び二次電池用電極合剤 | |
WO2015111724A1 (ja) | 蓄電デバイス用バインダー、バインダー組成物、電極合剤、電極および二次電池 | |
WO2023145169A1 (ja) | 組成物、ポリマーおよび積層体 | |
WO2023223607A1 (ja) | 組成物、電気化学デバイス用セパレータ、電気化学デバイスおよび二次電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13849957 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014543296 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20157006033 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14428513 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13849957 Country of ref document: EP Kind code of ref document: A1 |