WO2012133795A1 - 環境保全溶鋼脱硫フラックス - Google Patents

環境保全溶鋼脱硫フラックス Download PDF

Info

Publication number
WO2012133795A1
WO2012133795A1 PCT/JP2012/058619 JP2012058619W WO2012133795A1 WO 2012133795 A1 WO2012133795 A1 WO 2012133795A1 JP 2012058619 W JP2012058619 W JP 2012058619W WO 2012133795 A1 WO2012133795 A1 WO 2012133795A1
Authority
WO
WIPO (PCT)
Prior art keywords
desulfurization
mass
sio
flux
molten steel
Prior art date
Application number
PCT/JP2012/058619
Other languages
English (en)
French (fr)
Inventor
昌光 若生
玲洋 松澤
勝弘 淵上
康介 久米
小川 雄司
Original Assignee
新日本製鐵株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日本製鐵株式会社 filed Critical 新日本製鐵株式会社
Priority to US14/002,170 priority Critical patent/US9127327B2/en
Priority to CA2842768A priority patent/CA2842768C/en
Priority to BR112013023995A priority patent/BR112013023995A2/pt
Priority to EP12765532.2A priority patent/EP2692874B1/en
Priority to CN201280014167.2A priority patent/CN103443298B/zh
Priority to KR1020137024349A priority patent/KR101358563B1/ko
Priority to JP2012538521A priority patent/JP5152442B2/ja
Publication of WO2012133795A1 publication Critical patent/WO2012133795A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/064Dephosphorising; Desulfurising
    • C21C7/0645Agents used for dephosphorising or desulfurising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/064Dephosphorising; Desulfurising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/52Manufacture of steel in electric furnaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/076Use of slags or fluxes as treating agents
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C1/00Refining of pig-iron; Cast iron
    • C21C1/02Dephosphorising or desulfurising
    • C21C1/025Agents used for dephosphorising or desulfurising
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a flux used when melting high-clean steel.
  • the present invention relates to a flux used for desulfurization in a secondary refining step after a converter step during steel production, or in a refining step inside or outside an electric furnace.
  • the flux is a general term for a compound aggregate having a function of removing impurities by reacting with molten iron.
  • the desulfurization flux containing CaF 2 has high reactivity and easily melts the refractory in the smelting vessel, there is a problem that the life of the refractory is shortened. Further, slag discharged after refining is typically have been used in the roadbed material, etc., when the CaF 2 is higher abundance in the slag after desulfurization with a flux containing CaF 2, eluted from CaF 2 F May adversely affect the environment. Therefore, in this case, it is necessary to manage the slag component more strictly or to limit the use of the slag.
  • Patent Document 1 discloses a desulfurization flux containing Na 2 O as a molten steel desulfurization flux having a high desulfurization capability without containing CaF 2 . However, Patent Document 1 does not disclose the concentration (mass%) of Na 2 O in the desulfurization flux.
  • Patent Document 2 discloses a desulfurization flux containing K 2 O.
  • Patent Document 3 discloses a desulfurization flux containing Na 2 O or K 2 O.
  • these desulfurization fluxes are hot metal desulfurization fluxes.
  • the concentration of Na 2 O and K 2 O in the desulfurization flux is at least 15 mass%, the Na 2 O and K 2 O is present in a large amount in the desulfurization flux, Na 2 O and K 2 during the desulfurization process The problem that O evaporates occurs. Further, a large amount of Na 2 O and K 2 O may remain in the slag after the desulfurization treatment.
  • Patent Document 4 discloses a method using a desulfurization agent containing Na 2 CO 3 .
  • this desulfurizing agent is a hot metal desulfurization flux.
  • Patent Document 4 since the concentration of Na 2 CO 3 is high, there arises a problem that Na 2 O evaporates or remains in the slag.
  • Patent Documents 5 to 8 disclose methods using Na 2 O, but all methods are directed to hot metal desulfurization. In this hot metal desulfurization, the treatment temperature, the C concentration in the molten iron, and the O concentration are greatly different from those in the molten steel desulfurization. Therefore, if these methods of Patent Documents 5 to 8 are applied to molten steel desulfurization as they are, the problem of evaporation of Na 2 O may become obvious, or a large amount of Na 2 O may remain in the slag after the desulfurization treatment. .
  • the desulfurization flux containing CaF 2 has high reactivity, there is a problem that the refractory in the smelting vessel is easily melted and the life of the refractory is shortened. Also, slag after refining will generally be used in the roadbed material, etc., the slag after desulfurization in the desulfurization flux including CaF 2 contain a CaF 2, there is a problem of F elution, Slag applications are severely limited.
  • Na 2 O concentration (% by mass) or K 2 O concentration (% by mass) is high, there is a problem that Na 2 O or K 2 O that is easily evaporated adheres to the exhaust duct of the secondary refining equipment, or desulfurization.
  • the Na 2 O concentration or K 2 O concentration of the later slag becomes high, and there is a possibility that the reused slag may adversely affect the environment.
  • Japanese Laid-Open Patent Publication No. 03-264624 Japanese Unexamined Patent Publication No. 2000-226284 Japanese Laid-Open Patent Publication No. 06-2335011 Japanese Unexamined Patent Publication No. 2002-241823 Japanese Unexamined Patent Publication No. 08-209212 Japanese Unexamined Patent Publication No. 2001-335819 Japanese Unexamined Patent Publication No. 2001-335820 Japanese Unexamined Patent Publication No. 2003-253315
  • the present invention has been made in view of the above problems, be free of CaF 2, high desulfurization ability, and contributes to environmental protection, and to provide a desulfurizing flux for molten steel desulfurization.
  • the present invention has been made to solve the above problems, and the gist thereof is as follows.
  • the environmental protection molten steel desulfurization flux according to an aspect of the present invention includes [CaO], [Al 2 O 3 ], [SiO 2 ], and [R 2 O], respectively, by mass% of CaO, Al 2 Ca 3 mass%, SiO 2 mass%, and Na 2 O mass%, K 2 O mass%, and Li 2 O mass%, the total amount of [CaO] / [Al 2 O 3 ] contains CaO and Al 2 O 3 so that the range is 1.6 to 3.0, and [SiO 2 ] / [R 2 O] ranges from 0.1 to 3, R 2 O] is in the range of 0.5 to 5% by mass, and the [SiO 2 ] is in the range of 0.05 to 15% by mass, the Na 2 O, the K 2 O, and the Li 2 comprising one or more alkali metal oxides O, and the SiO 2.
  • the environment-preserving molten steel desulfurization flux described in (1) above may further contain 1 to 10% by mass of MgO.
  • the [SiO 2 ] may be 0.05 to 9.3 mass%.
  • the [SiO 2 ] may be 0.05 to 8.0 mass%.
  • the [SiO 2 ] / [R 2 O] may be 0.1 to 2.
  • a part or all of the alkali metal oxide may have a chemical bond with the SiO 2. Good.
  • the alkali metal oxide may be Na 2 O.
  • the environment-preserving molten steel desulfurization flux according to any one of (1) to (9) is supplied toward the molten steel.
  • R 2 O (Na 2 O , K 2 O, or, one or more Li 2 O) is a diagram showing the relationship between the concentration (mass%).
  • a desulfurization rate constant is a diagram showing the relationship between [CaO] / [Al 2 O 3]. If [CaO] / [Al 2 O 3] is 2, is a diagram showing a [SiO 2] / [Na 2 O], the relationship between the desulfurization rate constant.
  • [CaO], [Al 2 O 3 ], [SiO 2 ], [MgO], and [R 2 O] are respectively CaO mass%, Al 2 O 3 mass%, and SiO 2 mass%, mass% of MgO, and the mass% of R 2 O.
  • concentration (mass%) of each component may be described as [component symbol].
  • the mass percentage of the metal oxide in the compound using the mass of the compound after thermal decomposition is not included in the mass percentage in the flux.
  • the R 2 O corresponds to Na 2 O, K 2 O, and Li 2 O
  • [R 2 O] is the total amount of these Na 2 O, K 2 O, and Li 2 O.
  • the amount of a component not included in the flux is evaluated as 0.
  • the present inventors first examined the use of an alkali metal oxide such as Na 2 O, K 2 O, or Li 2 O instead of CaF 2 .
  • an alkali metal oxide such as Na 2 O, K 2 O, or Li 2 O instead of CaF 2 .
  • the flux containing Na 2 O or K 2 O has a high desulfurization ability.
  • Li 2 O is also an oxide of an alkali metal, so that it is expected to have a high desulfurization ability as in the case of Na 2 O or K 2 O.
  • alkali metal oxides such as Na 2 O, K 2 O, and Li 2 O have the property of being easily evaporated at high temperatures. Since the easiness of evaporation depends on [R 2 O], it is better that the amount of R 2 O in the flux is as small as possible. However, the desulfurization ability of the flux increases as [R 2 O] increases.
  • the amount of [R 2 O] in the desulfurization flux should be reduced to what level while ensuring the desulfurization capacity required by the desulfurization flux. Can be done is the key to solving the problem.
  • the composition of the main component constituting the flux is important.
  • the present inventors use a CaO—Al 2 O 3 -based desulfurization flux generally used as a desulfurization flux as a base component, and [Na 2 O], [K 2 O], and [ Li 2 O] was varied and its desulfurization ability was investigated in laboratory scale experiments.
  • Table 1 shows the composition of the molten steel used in the experiment.
  • the desulfurization efficiency index (Desulfurization rate constant) / (R 2 O evaporation)
  • the desulfurization rate constant in the experiment was a value up to 15 minutes after the start of desulfurization. From FIG. 1, it can be seen that in the case of Na 2 O, the desulfurization efficiency index becomes maximum at the initial concentration of “2 mass%”. Similarly, in the case of K 2 O or Li 2 O, the desulfurization efficiency index is the maximum at the initial concentration “2% by mass”.
  • the high desulfurization efficiency index means that “the amount of evaporation of R 2 O is small and the desulfurization rate constant is large”, that is, the desulfurization reaction proceeds well. From this, it can be said that it is not necessary to add a large amount of R 2 O (Na 2 O, K 2 O, and / or Li 2 O) in order to impart high desulfurization ability to the desulfurization flux. That is, even if [R 2 O] is simply increased, the amount of evaporation increases, and much of R 2 O is only consumed wastefully.
  • FIG. 2 The vertical axis in FIG. 2 is a desulfurization efficiency index similarly to the vertical axis in FIG. From FIG. 2, it is understood that [Na 2 O] at which the desulfurization efficiency index becomes maximum increases as [SiO 2 ] / [Na 2 O], which is a mass% ratio, increases.
  • the inventors further investigated [CaO] / [Al 2 O 3 ] related to CaO and Al 2 O 3 which are the main components of the desulfurization flux.
  • As other components 2.5% by mass of Na 2 O, 5% by mass of SiO 2 were contained in the desulfurization flux, and [CaO] / [Al 2 O 3 ] were changed to perform a desulfurization experiment.
  • the composition of the molten steel used in the experiment is as shown in Table 1, and the experimental conditions are as follows.
  • the experimental results are shown in FIG.
  • a CaO-based flux is used for desulfurization of molten steel, and a CaO—Al 2 O 3 -based flux is frequently used.
  • this CaO—Al 2 O 3 type flux is used, the composition region suitable for desulfurization is usually [CaO] / [Al 2 O 3 ] 1.0 to 1.0 in the CaO—Al 2 O 3 binary phase diagram. This area is 2.33.
  • This region is a region where a liquid phase is present in the flux at the molten steel desulfurization temperature (about 1600 ° C.) and a part of solid phase CaO is generated. If the flux is in the liquid phase, desulfurization proceeds rapidly, and if even a small amount of solid phase CaO is present in the liquid phase, the activity of CaO in the liquid phase becomes 1, and the desulfurization reaction easily proceeds.
  • the desulfurization ability may vary depending on the composition conditions. Therefore, the present inventors have found that the optimum [CaO] / [Al 2 O 3 ] for desulfurization is 1.6 to 3.0 based on the results shown in FIG. 3 obtained by the molten steel desulfurization experiment. I found it.
  • Al 2 O 3 is an oxide that affects the reactivity of R 2 O as well as SiO 2, and if there is too much Al 2 O 3 in the desulfurization flux, the reactivity of R 2 O is lowered. This point is also reflected in the desulfurization experiment results shown in FIG.
  • the molten steel desulfurization flux which concerns on one Embodiment of this invention is demonstrated. Except for the case where CaF 2 is unavoidably included in the raw material of the flux, the molten steel desulfurization flux according to this embodiment basically does not contain CaF 2 . Even if CaF 2 is inevitably included, the CaF 2 may be limited to 1% by mass or less, preferably 0.1% by mass or less, as a percentage of the outer layer.
  • the environmental protection molten steel desulfurization flux (hereinafter sometimes referred to as “the present flux”) according to the present embodiment does not substantially contain CaF 2 .
  • [CaO] / [Al 2 O 3 ] is defined as 1.6 to 3.0 in the present flux is to ensure a sufficient desulfurization rate as described above. In order to obtain a higher desulfurization rate, it is preferable that [CaO] / [Al 2 O 3 ] is 1.6 to 2.8.
  • the minimum concentration (mass%) of Na 2 O at which the effect of addition of Na 2 O is sufficiently manifested is 0.5 mass% with a desulfurization efficiency index exceeding 0.60. did.
  • the maximum 5% by mass is a limit value for preventing [Na 2 O] of the slag after desulfurization from exceeding 2% by mass in consideration of the decrease amount of Na 2 O during the desulfurization treatment.
  • the amount of R 2 O in the slag after desulfurization is preferably as small as possible from the viewpoint of slag reuse.
  • the R 2 O concentration ([R 2 O]) of the desulfurization flux is preferably as small as possible.
  • the upper limit of [R 2 O] is preferably 3% by mass or less.
  • [R 2 O] is preferably 1% by mass or more.
  • the upper limit 3 of [SiO 2 ] / [Na 2 O] is a condition that the maximum value of the desulfurization efficiency index shown in FIG. 2 is obtained at 5% by mass of the maximum allowable value of [Na 2 O]. In this case, the desulfurization efficiency index exceeds 0.6 over the entire range where [Na 2 O] is 0.5 to 5 mass%.
  • FIG. 2 even if [SiO 2 ] / [Na 2 O] is 4 or more, there is a range of [Na 2 O] where the desulfurization efficiency index exceeds 0.6, but the range is narrow. Further, in this range, the evaporation of Na 2 O can be sufficiently suppressed, but the desulfurization capacity per unit amount of Na 2 O is greatly reduced, which is not preferable from the viewpoint of ensuring the operational effect of Na 2 O.
  • [SiO 2 ] / [K 2 O] is 0.1 to 3
  • [SiO 2 ] / [Li 2 O] is 0.1 to 3, respectively. It was.
  • the case where two or more of Na 2 O, K 2 O and Li 2 O are used in combination is the same as the above case. That is, in this flux, [SiO 2 ] / [R 2 O] is defined as 0.1 to 3.
  • [SiO 2 ] / [R 2 O] is preferably 0.1 to 2, more preferably 0.5 to 2, and still more preferably 1 to 2.
  • FIG. 4 shows the relationship between [SiO 2 ] / [Na 2 O] and the desulfurization rate constant when [CaO] / [Al 2 O 3 ] is 2.
  • FIG. 4 shows that the desulfurization rate constant becomes maximum when [SiO 2 ] / [Na 2 O] is 1.5. If [SiO 2 ] / [Na 2 O] is 2 or less, the desulfurization rate constant is the same as when [SiO 2 ] / [Na 2 O] is sufficiently small (for example, 0.1). can get. Therefore, when reducing the process time while ensuring a sufficient desulfurization efficiency index, [SiO 2 ] / [R 2 O] is preferably 0.1 or more and 2 or less. In this case, can better control the strength of the bond between the SiO 2 and R 2 O, it is possible to increase the desulfurizing effect of R 2 O while suppressing the evaporation of R 2 O.
  • R 2 O may be Na 2 O. That is, when the R 2 O is used in conjunction with a deoxidizer such as Al and when used at high temperatures and low oxygen partial pressure, since the boiling point of K is relatively small, compared to the K 2 O Na 2 O Further, the loss of R 2 O due to evaporation can be suppressed by using Li 2 O. In addition, since Li 2 O is a rare oxide, Na 2 O is useful for resource saving and cost reduction compared to Li 2 O.
  • the network of SiO 2 by introducing R 2 O further suppress evaporation of R 2 O
  • a part or all of R 2 O may have a chemical bond with SiO 2 .
  • the flux may include soda lime glass, glass cullet, waste materials such as slag containing R 2 O and SiO 2 . In this case, environmental conservation and cost reduction by recycling and stabilization can be achieved at the same time.
  • the flux may include a hybrid oxide in which part or all of such R 2 O has a chemical bond with SiO 2, and [SiO 2 ] / [R 2 O] of such an oxide. Is not particularly limited, and [SiO 2 ] / [R 2 O] may be 0.01 or more.
  • this [SiO 2 ] is 0.05 to 9.
  • the content is preferably 3% by mass, more preferably 0.05 to 8.0% by mass.
  • SiO 2 is contained in the flux.
  • the basicity of the slag is adjusted more flexibly, for example, 0.6% by mass
  • [SiO 2 ] may be limited to 0.45 mass% or less.
  • MgO is a component that generally constitutes a refractory, and is added to the desulfurization flux for the purpose of suppressing the refractory from being melted by the desulfurization flux. In order to sufficiently secure the effect of suppressing the refractory melting loss, it is preferable to add 1% by mass or more of MgO. However, when the amount of MgO ([MgO]) exceeds 10% by mass, the melting point of the desulfurization flux increases, and the desulfurization effect due to the flux does not appear. Therefore, the amount of MgO is limited to 10% by mass or less.
  • the composition of this flux is determined as follows, for example. First, the type (at least one) of R 2 O in the flux is determined, and [Na 2 O] corresponding to the type of R 2 O so that [R 2 O] is 0.5 to 5% by mass, [ K 2 O] and [Li 2 O] are determined. Next, [SiO 2 ] is determined so that the ratio of [SiO 2 ] to [R 2 O] falls within a predetermined range. Then, if necessary, [MgO] is determined, and the sum of these [R 2 O], [SiO 2 ], and [MgO] is subtracted from 100 to obtain [CaO] + [Al 2 O 3 ].
  • [CaO] + [Al 2 O 3 ] [CaO] and [Al 2 O 3 ] are determined so that [CaO] / [Al 2 O 3 ] falls within a predetermined range. This determines the concentration (mass%) of all components in the flux.
  • impurities are inevitably mixed in the raw material (flux raw material) used to manufacture the flux, and these impurities are inevitably mixed in the desulfurization flux.
  • the concentration of the component (inevitable impurities) is excluded from the above concentration calculation.
  • the desulfurization flux is usually a mixture of oxide powders.
  • the desulfurization flux can be used with the powder mixed as this mixture. However, if all or part of the oxide powder is mixed, melted or sintered in advance, cooled and pulverized, and then used, The effect can be obtained more reliably.
  • a production method including a process of melting or sintering a mixture containing R 2 O in which [SiO 2 ] or [Al 2 O 3 ] is adjusted is a preferable production method.
  • the desulfurization effect can be improved by simply melting or sintering the mixed powder of R 2 O and SiO 2 in advance and then mixing with other raw materials (for example, raw materials containing other components).
  • wastes containing mainly Na 2 O or SiO 2 since it includes a Na 2 O and SiO 2, Na 2 O is stable and the Preferred as a flux material.
  • Na 2 O or SiO 2 is added to the waste material and other raw materials, and [SiO 2 ] / [Na 2 O] falls within the range of 0.1 to 3. So as to adjust the composition.
  • CaO, Na 2 O, K 2 O, and Li 2 O often exist in the form of carbonate, and therefore correspond to CaO, Na 2 O, K 2 O, and Li 2 O in the flux.
  • Carbonate powder may be blended. In this case, it is necessary to preliminarily estimate the mass of CO 2 generated by the decomposition reaction at a high temperature and mix each carbonate.
  • this flux includes 43 to 75% by mass of CaO, 17.5 to 38.5% by mass of Al 2 O 3 , 0.05 to 15% by mass of SiO 2 , and 0.5 to 5% by mass of R 2 O. % May be included. Moreover, this flux may contain 10% or less of MgO as needed. Further, for example, when this flux does not contain MgO, Al 2 O 3 is 20 to 38.5% by mass, SiO 2 is 0.05 to 15% by mass, and R 2 O is 0.5 to 5% by mass. %, And the balance may consist of CaO and inevitable impurities (percentage of outer parts).
  • this flux contains MgO
  • Al 2 O 3 is 17.5 to 38.5% by mass
  • SiO 2 is 0.05 to 15% by mass
  • R 2 O is 0.5 to 5%. It may contain 10% by mass or less (preferably 1 to 10% by mass) of MgO, with the balance being CaO and inevitable impurities (percentage of outer parts).
  • [CaO] / [Al 2 O 3 ] is in the range of 1.6 to 3.0
  • [SiO 2 ] / [R 2 O] is in the range of 0.1 to 3.0. 3 range.
  • This flux is obtained after molten steel desulfurization in the secondary refining process after the converter process, ladle refining using an electrode heating method such as LF (Laddle Furnace), molten steel desulfurization in the electric furnace reduction phase, and after It can be used for out-of-furnace refining.
  • LF Laser Furnace
  • the environmental protection molten steel desulfurization flux according to the above-described embodiment is supplied toward the molten steel (in the molten steel or on the molten steel surface).
  • the addition method (supply method) of desulfurization flux to the molten steel is not particularly limited.
  • this addition method an injection method in which a flux is blown into molten steel from a nozzle immersed in the molten steel, a method of adding a massive flux to the molten steel surface from above, a method of spraying flux powder together with gas, or the like can be used.
  • the desulfurization treatment time is preferably 30 to 40 minutes.
  • the flux basic unit is preferably 3 to 4 kg / t (per 1 ton of molten steel). Moreover, you may supply other raw materials, such as quick lime, toward molten steel separately.
  • a plurality of types of oxidation are performed so as to form slag (including a solid-liquid mixture of slag and flux) having the same composition as the environmentally-friendly molten steel desulfurization flux according to the above embodiment.
  • the environment-preserving molten steel desulfurization flux according to the above embodiment is supplied from the outside of the reaction vessel (various furnaces, etc.) and is, for example, a powder or a lump, but in the molten steel desulfurization method according to this embodiment, the same composition as this flux is used. You may form slag in the molten steel surface so that it may become a composition. There may be some slag (residual slag) generated in the previous step on the surface of the molten steel before the start of desulfurization.
  • the desulfurization reaction proceeds in a state where the desulfurization flux supplied from the outside of the reaction vessel and the residual slag are mixed, the composition of the slag on molten steel (slag at the time of desulfurization) is supplied from the outside of the reaction vessel.
  • the desulfurization flux and the existing slag may be mixed.
  • composition of the slag at the time of desulfurization does not mean only the composition of slag on the molten steel immediately after the start of desulfurization.
  • the composition of slag on the molten steel immediately after the start of desulfurization may not satisfy the composition of the environmental conservation molten steel desulfurization flux of the above embodiment. That is, in addition to the composition of the residual slag being fundamentally different from the composition of the environment-preserving molten steel desulfurization flux of the above embodiment, in the process of desulfurization reaction, R 2 O (Na 2 O, K 2 O, Li 2 O ) Evaporates, and the composition of the desulfurized slag existing on the surface of the molten steel may reach the composition of the environmentally-preserved molten steel desulfurized flux of the above embodiment.
  • the composition of the slag existing on the surface of the molten steel at least by the first half of the desulfurization treatment time is the composition of the environmental protection molten steel desulfurization flux of the above embodiment. It is good to meet.
  • the desulfurization time in the latter half can be effectively used for the desulfurization reaction, and a higher desulfurization effect can be obtained as compared with the case where the slag on the molten steel surface is adjusted in the latter half of the desulfurization treatment time.
  • the desulfurization flux when the desulfurization flux comes into contact with the molten steel, it may be adjusted so as to have the composition of the environment-preserving molten steel desulfurization flux of the above embodiment.
  • this part of the components and the other components are added (supplied). May be. That is, it is only necessary to adjust the composition of the environment-preserving molten steel desulfurization flux of the above embodiment on the molten steel, and the addition method (supply method) is not limited to a specific method.
  • [CaO] / [Al 2 O 3 ] is in the range of 1.6 to 3.0
  • [SiO 2 ] / [R 2 O] is in the range of 0.1 to 3.0
  • Na 2 O, K 2 O, and Li so that [R 2 O] is in the range of 0.5 to 5% by mass and [SiO 2 ] is in the range of 0.05 to 15% by mass.
  • a part or all of R 2 O may be used desulfurizing flux having a chemical bond with the SiO 2.
  • the molten steel desulfurization method according to the first embodiment can further suppress the evaporation of R 2 O than the molten steel desulfurization method according to the second embodiment.
  • the conditions in the examples are one example of conditions used for confirming the feasibility and effects of the present invention, and the present invention is based on this one example of conditions. It is not limited.
  • the present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.
  • Example 2 The molten steel melted using a 400 t capacity converter was desulfurized with an RH vacuum degasser. After desulfurization, a sample was taken from the molten steel, and the S concentration in the sample (molten steel) was analyzed. Table 2 shows the composition of the molten steel used in the actual machine test. The conditions of the actual machine test are as follows. Desulfurization process: RH vacuum degasser, ladle capacity: 400 t, molten steel temperature: 1620 ° C. Desulfurization method: Injection of powder into molten steel with injection lance or spraying of powder onto molten steel surface with lance Desulfurization time: 35 minutes Flux unit (per 1 ton of molten steel): 3.5 kg / t
  • Table 3 shows the actual machine test levels.
  • Mixed powder A flux in which each oxide powder is mixed.
  • Partially melted product a flux obtained by previously melting a mixed powder of R 2 O and SiO 2 , cooling and pulverizing, and then mixing the obtained premelt powder with powders of other components.
  • Partially sintered product A flux obtained by previously sintering a mixed powder of R 2 O and SiO 2 , cooling and pulverizing, and then mixing the obtained sintered powder with powders of other components.
  • soda lime glass A flux obtained by mixing each oxide powder with glass powder obtained by pulverizing soda lime glass.
  • Use of glass cullet A flux obtained by mixing each oxide powder with glass powder obtained by pulverizing glass cullet.
  • Table 4 shows the results of actual machine tests.
  • the definition of the desulfurization rate is ((S concentration before desulfurization ⁇ S concentration after desulfurization) / S concentration before desulfurization) ⁇ 100.
  • Levels 1 to 10 are examples that satisfy the conditions of the present invention.
  • the S concentration is sufficiently lowered, and a high desulfurization rate of 82% or more is obtained.
  • the Na-based compound, the K-based compound, and the Li-based compound are not attached in the exhaust duct, and [Na 2 O], [K 2 O], and [Li 2 O in the slag after desulfurization ] was 2 mass% or less. Therefore, under the conditions of levels 1 to 10, Na 2 O, K 2 O, and Li 2 O (R 2 O) can be efficiently used, and the slag after desulfurization can be sufficiently used for various applications.
  • the composition of the desulfurization flux is a composition after the slag is mixed.
  • Level 10 is the progress of the desulfurization reaction, and the composition of the slag at the time of desulfurization reaches the composition shown in Table 3, and this slag composition is the latter half of the desulfurization (desulfurization treatment time 20 minutes / 35 minutes). Composition.
  • the same desulfurization rate (84%) was obtained when the flux having the composition shown in Table 3 was used.
  • the composition of the soda-lime glass used in levels 4 and 14, the slag (converter slag) used in levels 6, 8 and 10, and the composition of the glass cullet used in levels 10 and 17 are shown in Table 5.
  • Levels 11 to 22 are comparative examples that do not satisfy the conditions of the present invention.
  • the maximum desulfurization rate was 80% obtained at the level 22 using CaF 2 , and the other desulfurization rates were as low as 68 to 78%.
  • the amount of Na 2 O was too large, at level 12, the amount of K 2 O was too large, and at level 13, the amount of Li 2 O was too large. Therefore, at these levels 11 to 13, the desulfurization rate was low, and the amount of R 2 O attached to the equipment by evaporation was large. In addition, the slag after desulfurization contained a lot of Na 2 O, K 2 O, and Li 2 O, and the slag could not be reused.
  • the concentration ratio [CaO] / [Al 2 O 3 ] is too low, and at level 15, the concentration ratio [SiO 2 ] / [K 2 O] is too high. Was low.
  • the total amount of Na 2 O and K 2 O was small, and at level 17, the total amount of Na 2 O, K 2 O, and Li 2 O was too large, so these levels 16 and 17 However, the target desulfurization rate of 82% or more was not achieved.
  • the target desulfurization rate of 82% or more was not achieved.
  • the target desulfurization rate of 82% or more was not achieved.
  • the flux contains a CaF 2, in the comparative example, a relatively high desulfurization rate had been obtained, the desulfurization rate does not exceed 82%. Furthermore, at this level 22, the slag after desulfurization had a high F concentration and could not be reused.
  • the present invention As described above, according to the present invention, F elution from slag after desulfurization, adhesion to equipment due to evaporation of Na 2 O and K 2 O, productivity inhibition due to desulfurization efficiency decrease, increase in desulfurization cost, Na It is possible to produce high-grade steel with an extremely small amount of S without causing a problem that the slag after desulfurization containing a large amount of 2 O or K 2 O has an adverse effect on the environment. Therefore, the present invention has high applicability in steelmaking technology in the steel industry.

Abstract

 [CaO]、[Al]、[SiO]、及び、[RO]を、それぞれ、CaOの質量%、Alの質量%、SiOの質量%、及び、NaOの質量%とKOの質量%とLiOの質量%との合計量とした場合に、この環境保全溶鋼脱硫フラックスは、[CaO]/[Al]が1.6~3.0の範囲になるように前記CaO及び前記Alを含み、[SiO]/[RO]が0.1~3の範囲、前記[RO]が0.5~5質量%の範囲、前記[SiO]が0.05~15質量%の範囲になるように、前記NaO、前記KO、及び、前記LiOの1種以上のアルカリ金属酸化物と、SiOとを含む。

Description

環境保全溶鋼脱硫フラックス
 本発明は、高清浄鋼の溶製時に用いるフラックスに関する。特に、本発明は、鋼製造時の転炉工程後の二次精錬工程、又は、電気炉内又は電気炉外の精錬工程で脱硫を行なうために使用するフラックスに関する。ここで、フラックスとは、溶鉄と反応して不純物を除く機能を持つ化合物集合体の総称である。
 本願は、2011年3月31日に、日本に出願された特願2011-79113号に基づき優先権を主張し、その内容をここに援用する。
 加工性の良好な高張力鋼、高強度ラインパイプ、高強度厚鋼板等においては、鋼の不純物としてのSの濃度を極力低減することが望まれている。このため、鋼製造時の転炉工程後の二次精錬工程、又は、電気炉還元期に、溶鋼の脱硫を行っている。溶鋼の脱硫には、主として、CaO系の脱硫フラックスを使用するが、短時間でS濃度を低減するため、脱硫能力の高いCaFを含むフラックスを用いる場合が多い。
 しかし、CaFを含む脱硫フラックスは、反応性が高く、精錬容器の耐火物を溶損させ易いので、耐火物の寿命が短くなるという問題がある。また、精錬後に排出されるスラグは、一般に、道路路盤材等に使用されているが、CaFを含むフラックスで脱硫した後のスラグ中にCaFが多量に存在すると、CaFから溶出したFが環境へ悪影響を及ぼす恐れがある。そのため、この場合には、スラグ成分の管理をより厳格に行ったり、スラグの用途をより制限したりする必要がある。
 CaFを含まなくても、脱硫能力の高い溶鋼脱硫フラックスとして、例えば、特許文献1には、NaOを含む脱硫フラックスが開示されている。しかし、特許文献1には、脱硫フラックス中のNaOの濃度(質量%)が開示されていない。
 特許文献2には、KOを含む脱硫フラックスが開示されている。特許文献3には、NaO又はKOを含む脱硫フラックスが開示されている。しかし、これらの脱硫フラックスは溶銑脱硫用のフラックスである。また、脱硫フラックス中のNaO及びKOの濃度は15質量%以上であり、脱硫フラックス中にNaO及びKOが多量に存在すると、脱硫処理中にNaO及びKOが蒸発するという問題が発生する。また、脱硫処理後のスラグ中に、NaO及びKOが多量に残存する恐れがある。
 特許文献4には、NaCOを含有する脱硫剤を用いる方法が開示されている。しかしながら、この脱硫剤は、溶銑脱硫用のフラックスであり、特許文献4では、NaCOの濃度が高いため、NaOが、蒸発したりスラグ中に残存したりするという問題が生じる。
 特許文献5~8には、NaOを用いる方法が開示されているが、いずれの方法も、溶銑脱硫を対象としている。この溶銑脱硫では、処理温度や、溶鉄中のC濃度、O濃度が溶鋼脱硫とは大きく異なっている。そのため、これら特許文献5~8の方法をそのまま溶鋼脱硫に適用すると、NaOの蒸発の問題が顕在化したり、脱硫処理後のスラグ中にNaOが多量に残存したりする恐れがある。
 前述したように、加工性が良好な高張力鋼、高強度ラインパイプ、高強度厚鋼板等においては、鋼の不純物としてのSを極力低減することが望まれており、鋼製造時の二次精錬工程(転炉工程や電気炉工程の後の精錬工程)で、溶鋼の脱硫が行なわれている。その際、短時間でSを低減するために、脱硫能力の高いCaFを含むフラックスを用いる場合が多い。
 しかし、前述したように、CaFを含む脱硫フラックスは、反応性が高いため、精錬容器の耐火物を溶損させ易く、耐火物の寿命が短くなるという問題がある。また、精錬後のスラグは、一般に、道路路盤材等に使用されるが、CaFを含む脱硫フラックスで脱硫した後のスラグにはCaFが含まれていて、F溶出の問題があるので、スラグの用途が著しく制限される。
 そこで、CaFの代わりに、NaOやKOを含む脱硫フラックスを用いる技術が、溶銑脱硫について多数提案されている。しかしながら、前述したように、溶銑脱硫の条件は、溶鋼脱硫の条件と大きく異なるので、そのまま、溶銑脱硫の技術を溶鋼脱硫に適用することはできない。
 NaO濃度(質量%)やKO濃度(質量%)が高い場合には、二次精錬設備の排気ダクトに、蒸発し易いNaOやKOが付着するという問題や、脱硫後のスラグのNaO濃度やKO濃度が高くなり、再利用したスラグが環境に対して悪影響を与えうるという問題が生じる恐れがある。
日本国特開平03-264624号公報 日本国特開2000-226284号公報 日本国特開平06-235011号公報 日本国特開2002-241823号公報 日本国特開平08-209212号公報 日本国特開2001-335819号公報 日本国特開2001-335820号公報 日本国特開2003-253315号公報
 そこで、本発明は、上記問題点に鑑み、CaFを含まなくても、脱硫能が高く、かつ、環境保全に貢献する、溶鋼脱硫用の脱硫フラックスを提供することを課題とする。
 本発明は、上記課題を解決するためになされたものであり、その要旨は、以下の通りである。
 (1)本発明の一態様に係る環境保全溶鋼脱硫フラックスは、[CaO]、[Al]、[SiO]、及び、[RO]を、それぞれ、CaOの質量%、Alの質量%、SiOの質量%、及び、NaOの質量%とKOの質量%とLiOの質量%との合計量とした場合に、[CaO]/[Al]が1.6~3.0の範囲になるように前記CaO及び前記Alを含み、[SiO]/[RO]が0.1~3の範囲、前記[RO]が0.5~5質量%の範囲、前記[SiO]が0.05~15質量%の範囲になるように、前記NaO、前記KO、及び、前記LiOの1種以上のアルカリ金属酸化物と、SiOとを含む。
 (2)上記(1)に記載の環境保全溶鋼脱硫フラックスは、さらに、MgOを1~10質量%含んでもよい。
 (3)上記(1)または(2)に記載の環境保全溶鋼脱硫フラックスでは、前記[SiO]が0.05~9.3質量%であってもよい。
 (4)上記(1)~(3)のいずれか一項に記載の環境保全溶鋼脱硫フラックスでは、前記[SiO]が0.05~8.0質量%であってもよい。
 (5)上記(1)~(4)のいずれか一項に記載の環境保全溶鋼脱硫フラックスでは、前記[SiO]/[RO]が0.1~2であってもよい。
 (6)上記(1)~(5)のいずれか一項に記載の環境保全溶鋼脱硫フラックスでは、前記アルカリ金属酸化物の一部または全部が前記SiOとの化学的結合を有してもよい。
 (7)上記(1)~(6)のいずれか一項に記載の環境保全溶鋼脱硫フラックスでは、前記アルカリ金属酸化物がNaOであってもよい。
 (8)本発明の一態様に係る溶鋼脱硫方法では、上記(1)~(9)のいずれか一項に記載の環境保全溶鋼脱硫フラックスを溶鋼に向けて供給する。
 (9)本発明の一態様に係る溶鋼脱硫方法では、[CaO]、[Al]、[SiO]、及び、[RO]を、それぞれ、CaOの質量%、Alの質量%、SiOの質量%、及び、NaOの質量%とKOの質量%とLiOの質量%との合計量とした場合に、[CaO]/[Al]が1.6~3.0の範囲、[SiO]/[RO]が0.1~3の範囲、前記[RO]が0.5~5質量%の範囲、前記[SiO]が0.05~15質量%の範囲になるように、前記NaO、前記KO、及び、前記LiOの1種以上と、前記CaOと、前記Alと、前記SiOとを含むスラグを溶鋼表面上に形成する。
 本発明の上記態様によれば、脱硫後のスラグからのF溶出、NaOやKOの蒸発による設備への付着、脱硫効率低下による生産性阻害、脱硫のコストアップや、NaOやKOを多く含む脱硫後のスラグが環境に与える悪影響といった問題が生じることなく、S量が極めて低い高級鋼を製造することが可能である。
脱硫効率指標と、RO(NaO、KO、又は、LiOの1種以上)濃度(質量%)との関係を示す図である。 種々の[SiO]/[NaO]に対する、脱硫効率指標と、NaO濃度(質量%)との関係を示す図である。 脱硫速度定数と、[CaO]/[Al]との関係を示す図である。 [CaO]/[Al]が2である場合の、[SiO]/[NaO]と、脱硫速度定数との関係を示す図である。
 以下では、[CaO]、[Al]、[SiO]、[MgO]、及び、[RO]は、それぞれ、CaOの質量%、Alの質量%、SiOの質量%、MgOの質量%、及び、ROの質量%である。なお、以下、各成分の濃度(質量%)を、[成分記号]で記載する場合がある。また、熱分解によりCaO等の金属酸化物(これらの複合酸化物を含む)が得られる化合物を含む場合には、熱分解後の化合物の質量を用いてその化合物中の金属酸化物の質量百分率を評価し、熱分解によって発生するCOやHO等の副生物をフラックス中の質量百分率に含めない。ここで、上記ROは、NaO、KO、LiOに対応し、[RO]は、これらNaO、KO、LiOの合計量である。NaO、KO、LiOのうち、フラックスに含まれない成分の量は、0として評価する。
 本発明者らは、まず、CaFの代わりに、NaO、KO、LiOといったアルカリ金属の酸化物を用いることを検討した。前述のように、NaOやKOを含むフラックスは、高い脱硫能を有している。また、LiOも、アルカリ金属の酸化物であるので、NaOやKOの場合と同様に、高い脱硫能を持つことが予想される。
 しかし、前述した通り、NaO、KO、LiOといったアルカリ金属の酸化物(RO)は、高温で蒸発し易いという特性を備えている。蒸発のし易さは、[RO]に依存するので、フラックス中のROは極力少ない方がよいが、フラックスの脱硫能は、[RO]が高いほど大きくなる。
 したがって、脱硫能を高めるためにROを脱硫フラックスに添加する場合、脱硫フラックスが必要とする脱硫能を確保しつつ、どの程度の量まで、脱硫フラックス中の[RO]を下げることができるかが、課題解決の鍵となる。脱硫能を確保しつつ、[RO]を低く抑えるには、フラックスを構成する主成分の組成が重要である。
 本発明者らは、脱硫フラックスとして一般に用いられているCaO-Al系脱硫フラックスをベース成分として使用し、この脱硫フラックス中の[NaO]、[KO]、及び、[LiO]を変化させて、その脱硫能を、実験室規模の実験で調査した。
 実験に用いた溶鋼の成分組成を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 実験条件は、以下の通りである。
 溶解炉:抵抗溶解炉、溶鋼量:10kg、溶鋼温度:1600℃
 実験手順:溶解-成分調整-Al脱酸-脱硫-冷却
 脱硫方法:脱硫フラックスを、耐火物製のパイプで溶鋼中にインジェクション
 脱硫フラックス組成:
  CaO-Al-R
  [CaO]/[Al]=2.0
  NaO、KO、又はLiO:0~10質量%
 実験結果を図1に示す。脱硫効率指標(図1及び図2の縦軸)及び脱硫速度定数(図3の縦軸)は、以下のように定義した。
  脱硫効率指標=(脱硫速度定数)/(ROの蒸発量)
  脱硫速度定数=-ln(終点[S]/初期[S])/時間、時間=15分
  蒸発量:(初期[RO]-終点[RO])/(初期[RO])
 実機プロセスでは、生産性向上の観点から、できるだけ短時間で脱硫を行ないたいので、実験での脱硫速度定数は、脱硫開始後15分までの値を使用した。図1から、NaOの場合、初期濃度“2質量%”で、脱硫効率指標が最大となることが解る。同様に、KOやLiOの場合も、初期濃度“2質量%”で、脱硫効率指標が最大となっている。
 このように、高い脱硫効率指標は、「ROの蒸発量が少なく、かつ、脱硫速度定数が大きい」こと、即ち、脱硫反応が良好に進行することを意味している。このことから、脱硫フラックスに、高い脱硫能を付与するため、RO(NaO、KO、及び/又は、LiO)を多量に添加する必要はないと言える。即ち、[RO]を単に高くしても、蒸発量が多くなって、ROの多くが無駄に消費されるだけである。
 実際に、脱硫フラックスを大量生産しようとする場合、濃度のばらつきを考慮すると、2質量%にROの濃度を制御するのは困難である。しかしながら、脱硫反応や、蒸発に大きく影響する因子は、成分濃度ではなく、成分活量、即ち、共存する成分の影響を考慮した反応活性度である。このことから、本発明者らは、脱硫フラックスを構成する成分の活量を制御することを発想した。
 NaO、KO、及び、LiOの活量に大きく影響する成分として、まず、SiOが考えられるので、本発明者らは、[SiO]がNaOの活量に及ぼす影響を、同様の実験室規模の脱硫実験で調査した。実験に用いた溶鋼の成分組成は、表1の通りであり、実験条件は、以下の通りである。
 溶解炉:抵抗溶解炉、溶鋼量:10kg、溶鋼温度:1600℃
 実験手順:溶解-成分調整-Al脱酸-脱硫-冷却
 脱硫方法:脱硫フラックスを、耐火物製のパイプで溶鋼中にインジェクション
 脱硫フラックス組成:
  CaO-Al-SiO-Na
  [CaO]/[Al]=2.0
  [SiO]/[NaO]=0~5
  NaO:0~10質量%
 実験結果を図2に示す。図2の縦軸は、図1の縦軸と同様に脱硫効率指標である。図2より、質量%比である[SiO]/[NaO]が大きくなるに従い、脱硫効率指標が最大となる[NaO]が高くなることが解る。
 [SiO]/[NaO]=3で、脱硫効率指標が最大となる[NaO]は、5質量%である。この[SiO]/[NaO]を基準として[SiO]を高くすれば、脱硫効率指標が最大となる[NaO]も高くなる。しかしながら、この基準よりも[NaO]を高くすると、脱硫フラックスの製造コストが高くなり、さらに、脱硫処理後のスラグの[NaO]も高くなる。
 一般に、脱硫処理後のスラグ中の[NaO]が2質量%を超えると、脱硫処理後のスラグが土木骨材やセメント骨材として不適当になる。そのため、本発明者らは、脱硫処理後のスラグの[NaO]と、脱硫フラックスの[NaO]との関係を別途解析し、脱硫フラックスの[NaO]の最大許容量を求めた。解析の結果、[NaO]の最大許容量は、5質量%程度であることが分かった。それ故、脱硫フラックスの[NaO]は5質量%以下が好ましい。同様に、脱硫フラックスの[KO]及び[LiO]も5質量%以下が好ましい。これら[NaO]、[KO]、[LiO]は、極力、小さいほうが好ましい。
 本発明者らは、さらに、脱硫フラックスの主成分であるCaO及びAlに係る[CaO]/[Al]について調査した。他の成分として、NaOを2.5質量%、SiOを5質量%、脱硫フラックスに含有させ、[CaO]/[Al]を変化させて、脱硫実験を行った。実験に用いた溶鋼の成分組成は、表1の通りであり、実験条件は、以下の通りである。
 溶解炉:抵抗溶解炉、溶鋼量:10kg、溶鋼温度:1600℃
 実験手順:溶解-成分調整-Al脱酸-脱硫-冷却
 脱硫方法:脱硫フラックスを、耐火物製のパイプで溶鋼中にインジェクション
 脱硫フラックス組成:
  CaO-Al-SiO-Na
  [CaO]/[Al]=1.0~4.0
  SiO:5質量%、NaO:2.5質量%
 実験結果を、図3に示す。図3の縦軸は、脱硫速度定数である。図3より、[CaO]/[Al]=1.6~3.0の範囲で、脱硫速度定数が0.10以上の高い値となっていることが解る。
 溶鋼の脱硫には、通常、CaO系フラックスを用いるが、なかでも、CaO-Al系フラックスが多用される。このCaO-Al系フラックスを用いる場合、脱硫に適する組成領域は、通常、CaO-Al二元系状態図において、[CaO]/[Al]が1.0~2.33の領域である。
 この領域は、溶鋼の脱硫温度(約1600℃)でフラックス中に液相が存在し、かつ、固相のCaOが一部生成している領域である。フラックスが液相であれば、脱硫が速く進行し、また、液相中に固相のCaOが少量でも存在すると、液相中のCaOの活量が1となり、脱硫反応が進行し易くなる。
 しかし、脱硫フラックス中にNaOとSiOとが存在する場合、組成条件で脱硫能が変わる可能性がある。そこで、本発明者らは、上記の溶鋼脱硫実験によって得られた図3に示す結果から、脱硫に最適な[CaO]/[Al]が1.6~3.0であることを見いだした。
 Alも、SiOと同様に、ROの反応性に影響を与える酸化物であり、脱硫フラックス中のAlが多すぎると、ROの反応性が低下する。この点も、図3に示す脱硫実験結果に反映されている。
 以下、本発明の一実施形態に係る溶鋼脱硫フラックスについて説明する。フラックスの原料にCaFが不可避的に含まれる場合を除いて、本実施形態に係る溶鋼脱硫フラックスは、基本的にCaFを含まない。不可避的にCaFが含まれる場合であっても、CaFを外掛け百分率で1質量%以下、好ましくは0.1質量%以下に制限するとよい。
 本実施形態に係る環境保全溶鋼脱硫フラックス(以下「本フラックス」ということがある。)は、実質的にCaFを含まず、
(i)[CaO]/[Al]が1.6~3.0の範囲になるようにCaO及びAlを主成分として含み、かつ、
(ii)[SiO]/[RO]が0.1~3の範囲になるように、NaO、KO、及び、LiOの1種以上(RO)を0.5~5質量%及びSiOを0.05~15質量%含み、さらに、必要に応じ、MgOを10質量%以下含む。
 本フラックスにおいて、[CaO]/[Al]を1.6~3.0と規定する理由は、上記のように、脱硫速度を十分に確保するためである。より高い脱硫速度を得るためには、[CaO]/[Al]が1.6~2.8であることが好ましい。
 本フラックスにおいて、[RO]を0.5~5質量%と規定する理由は、以下の通りである。
 図1及び図2に示す実験結果に基づき、NaO添加の効果が十分に発現するNaOの最低濃度(質量%)を、脱硫効率指標が0.60を超える0.5質量%とした。最大の5質量%は、脱硫処理中のNaOの減少量を考慮して、脱硫後のスラグの[NaO]が2質量%を超えないための限界値である。
 KO及びLiOの作用効果は、NaOの作用効果と同様であるので、NaOと同様に、[KO]を0.5~5質量%、[LiO]を0.5~5質量%とした。
 KO、LiO、及び、NaOの作用効果は同様であるので、NaO、KO、及び、LiOの2種以上を加算的に使用してもよい。これらの組合せは、NaO+KO、NaO+LiO、KO+LiO、及び、NaO+KO+LiOである。結局、NaO、KO、及び、LiOの1種以上の量の合計、すなわち、[RO]を、0.5~5質量%とする。
 NaO、KO、及び、LiOは、高価であり、蒸発により設備に付着して堆積したり、精錬容器の耐火物を溶損したりすることがある。特に、脱硫処理後のスラグのROの量は極力少ないほうが、スラグ再利用の観点から好ましい。そのため、脱硫フラックスのRO濃度([RO])は、極力少ない方が好ましい。このような観点から、[RO]の上限は、好ましくは、3質量%以下である。また、ROの効果をより十分に得る場合には、[RO]が1質量%以上であるとよい。
 本フラックスにおいて、[SiO]/[RO]を0.1~3と規定する理由は、以下の通りである。
 図2に示すように、[SiO](すなわち、ここでは、[SiO]/[NaO])がゼロの場合、脱硫効率指標が最大となるNaO濃度は2質量%である。それ故、[SiO]がゼロでも、NaOの作用効果(脱硫能の向上)は発現する。しかしながら、NaOを安定化し、蒸発を少しでも抑制するためには、少量でも、フラックス中にSiOが存在するほうが好ましい。それ故、[SiO]/[NaO]の下限を0.1とした。
 [SiO]/[NaO]の上限3は、図2に示す脱硫効率指標の最大値が、[NaO]の最大許容値の5質量%で得られる条件である。この場合には、[NaO]が0.5~5質量%である全範囲で、脱硫効率指標が0.6を超えている。もちろん、図2において、[SiO]/[NaO]が4以上でも、脱硫効率指標が0.6を超える[NaO]の範囲が存在するが、その範囲は狭い。また、この範囲では、NaOの蒸発を十分に抑制できるが、NaOの単位量当りの脱硫能が大きく低下しており、NaOの作用効果を確保する観点から好ましくない。
 KO及びLiOについても、同様の理由で、それぞれ、[SiO]/[KO]を0.1~3、[SiO]/[LiO]を0.1~3とした。NaO、KO、及び、LiOの2種以上を加算的に併用する場合についても上記の場合と同様である。即ち、本フラックスにおいて、[SiO]/[RO]を0.1~3と規定する。[SiO]/[RO]は、好ましくは、0.1~2、より好ましくは、0.5~2、さらに好ましくは1~2である。
 図4は、[CaO]/[Al]が2である場合の、[SiO]/[NaO]と、脱硫速度定数との関係を示す。この図4から、[SiO]/[NaO]が1.5で脱硫速度定数が最大になることが分かる。また、[SiO]/[NaO]が2以下であれば、[SiO]/[NaO]が十分に小さい場合(例えば、0.1の場合)と同等の脱硫速度定数が得られる。そのため、十分な脱硫効率指標を確保しつつ、プロセスタイムを低減する場合には、[SiO]/[RO]が0.1以上かつ2以下であるとよい。この場合には、SiOとROとの間の結合の強さをより適切に制御でき、ROの蒸発を抑えつつROの脱硫効果をより高めることができる。
 脱硫効率(ROの単位量当り)、省資源による環境保全、コスト削減の観点から、RO(アルカリ金属酸化物)のうち、NaOがより高い性能を有する。そのため、ROが、NaOであってもよい。すなわち、ROが高温かつ低酸素分圧で使用される場合やAl等の脱酸材とともに使用される場合には、Kの沸点が比較的小さいため、KOに比べてNaOやLiOの使用により蒸発によるROの損失を抑えることができる。また、LiOは、希少な酸化物であるため、LiOに比べてNaOが省資源及びコスト削減に役立つ。
 さらに、SiOのネットワークにROを導入してROの蒸発をさらに抑制する場合には、ROの一部または全部がSiOとの化学的結合を有していてもよい。この場合、例えば、ROの全量に対して10%以上のROがSiOと結合していると好ましい。特に、このような化学結合によるROの蒸発抑制効果を確保する場合に、本フラックスが、ソーダ石灰ガラス、ガラスカレット、ROやSiOを含むスラグ等の廃材を含むとよい。この場合には、リサイクル及び安定化による環境保全やコスト削減を同時に達成することができる。例えば、本フラックスがこのようなROの一部または全部がSiOとの化学的結合を有するハイブリッド酸化物を含んでも良く、このような酸化物の[SiO]/[RO]は、特に制限されず、[SiO]/[RO]が0.01以上であってもよい。
 本フラックスの[SiO]は、[RO](0.5~5質量%)、及び、[SiO]/[RO](=0.1~3)から、おのずと決定され、0.05~15質量%である。脱硫反応中のROの蒸発により[SiO]/[RO]が増加して脱硫効率が低下することを抑制する場合には、この[SiO]は、0.05~9.3質量%であることが好ましく、0.05~8.0質量%であることがより好ましい。ここで、ROの蒸発を抑制するためにはフラックス中にSiOが含まれることが重要であるが、スラグの塩基度をより柔軟に調整する場合には、例えば、0.6質量%、または、0.45質量%以下に[SiO]を制限してもよい。
 本フラックスにおいては、フラックスにMgOを10質量%以下添加することが望ましい。選択成分としてのMgOを10質量%以下に規定する理由は、以下の通りである。
 MgOは、一般に、耐火物を構成する成分であり、脱硫フラックスによる耐火物の溶損を抑制する目的で、脱硫フラックスに添加される。耐火物の溶損を抑制する効果を十分に確保する場合には、MgOを1質量%以上添加することが好ましい。しかしながら、MgOの量([MgO])が10質量%を超えると、脱硫フラックスの融点が高くなり、フラックスによる脱硫効果が発現しない。そのため、MgOの量を10質量%以下に制限する。
 本フラックスの組成は、例えば、以下のようにして決定する。まず、フラックス中のROの種類(少なくとも1種)を決め、[RO]が0.5~5質量%になるようにROの種類に対応する[NaO]、[KO]、[LiO]を決める。次に、[RO]に対する[SiO]の比が、所定の範囲に入るように、[SiO]を決める。その後、必要に応じて、[MgO]を決め、これら[RO]、[SiO]、[MgO]の総和を100から引き、[CaO]+[Al]を求める。
 [CaO]+[Al]を求めた後、[CaO]及び[Al]を、[CaO]/[Al]が所定の範囲に入るように決める。これで、フラックス中の全部の構成成分の濃度(質量%)が決まる。なお、フラックスを製造するために使用する原料(フラックス原料)には不可避的に不純物が混入していて、この不純物が脱硫フラックス中に不可避的に混入することになるが、このような不可避的混入成分(不可避的不純物)の濃度を上記の濃度計算から除外する。
 次に、本フラックスの製造方法について説明する。脱硫フラックスは、通常、酸化物粉体の混合物である。この混合物として粉体を混合したままで脱硫フラックスを用いることができるが、酸化物粉体の全部または一部を混合し、予め、溶融又は焼結し、冷却、粉砕してから使用すると、脱硫効果をより確実に得ることができる。
 ROの蒸発を抑制してROを安定化する場合には、上記溶融又は焼結は、ROと、SiO及びAlとの結合を促進して、ROの安定化に寄与するので、[SiO]や[Al]が調整されたROを含む混合物を溶融または焼結するプロセスを含む製造方法は、好ましい製造方法である。特に、ROとSiOとの混合粉を予め溶融又は焼結し、その後、他の原料(例えば、他の成分を含む原料)と混合するだけでも、脱硫効果は向上する。
 ソーダ石灰ガラス、ガラスカレット、精錬使用後のスラグ等で、NaOやSiOを主として含む廃材は、NaOとSiOとを含んでいるので、NaOが安定していて、本フラックスの素材として好ましい。この廃材を用いる場合には、必要に応じて、NaO又はSiOを廃材及びその他の原料に添加し、[SiO]/[NaO]が、0.1~3の範囲に入るように、組成を調整する。
 CaO、NaO、KO、及び、LiOは、炭酸塩の形態で存在する場合が多いので、CaO、NaO、KO、及び、LiOとしてフラックス中に対応する炭酸塩の粉末を配合してもよい。この場合、高温での分解反応で発生するCOの質量を予め見込んで各炭酸塩を配合する必要がある。
 例えば、本フラックスは、CaOを43~75質量%、Alを17.5~38.5質量%、SiOを0.05~15質量%、ROを0.5~5質量%含んでもよい。また、本フラックスは、必要に応じて、MgOを10%以下含んでもよい。また、例えば、本フラックスは、MgOを含まない場合には、Alを20~38.5質量%、SiOを0.05~15質量%、ROを0.5~5質量%含み、残部がCaO及び不可避的不純物(外掛け百分率)からなってもよい。また、例えば、本フラックスは、MgOを含む場合には、Alを17.5~38.5質量%、SiOを0.05~15質量%、ROを0.5~5質量%、MgOを10質量%以下(好ましくは、1~10質量%)含み、残部がCaO及び不可避的不純物(外掛け百分率)からなってもよい。加えて、本フラックスでは、上述のように、[CaO]/[Al]が1.6~3.0の範囲であり、[SiO]/[RO]が0.1~3の範囲である。
 本フラックスを用いて溶鋼脱硫を行なえば、脱硫後のスラグからのF溶出によって環境問題が生じたり、蒸発したNaO、KO、及び、LiOが設備へ多く付着したり、脱硫効率が低下して生産性が阻害されたり、脱硫コストが増加したりすることなく、S濃度が極めて低い高級鋼を製造することが可能となる。
 本フラックスは、転炉工程後の二次精錬工程における溶鋼脱硫、LF(Ladle Furnace)等の電極加熱方式を用いた取鍋精錬、電気炉還元期における溶鋼脱硫、及び、電気炉出鋼後の炉外精錬等に用いることが可能である。
 以下、本発明の第一及び第二の実施形態に係る溶鋼脱硫方法について説明する。第一の実施形態に係る溶鋼脱硫方法では、上記実施形態に係る環境保全溶鋼脱硫フラックスを溶鋼(溶鋼中または溶鋼表面上)に向けて供給する。
 脱硫フラックスの溶鋼への添加方法(供給方法)は、特に制限されない。例えば、この添加方法として、溶鋼に浸漬したノズルから溶鋼中にフラックスを吹き込むインジェクション法や、溶鋼表面に上方から塊状のフラックスを添加する方法、ガスとともにフラックスの粉体を吹き付ける方法等が使用できる。なお、脱硫処理時間は30~40分が好ましい。フラックス原単位は、3~4kg/t(溶鋼1t当り)が好ましい。また、生石灰等の他の原料を別途溶鋼に向けて供給してもよい。この場合であっても、局所反応(フラックス中のROの蒸発速度低下、フラックスと溶鋼表面のスラグとの間のスラグ化反応促進、フラックスと溶鋼との間の脱硫反応促進)が重要であるため、上記実施形態の環境保全溶鋼フラックスの効果を十分に得ることができる。
 第二の実施形態に係る溶鋼脱硫方法では、上記実施形態に係る環境保全溶鋼脱硫フラックスと同じ組成を有するスラグ(スラグとフラックスとの固液混合物を含む)を形成するように、複数種の酸化物を溶鋼表面に向けて供給する。
 上記実施形態に係る環境保全溶鋼脱硫フラックスは、反応容器(各種炉等)の外部から供給され、例えば粉体又は塊状であるが、本実施形態に係る溶鋼脱硫方法では、このフラックスの組成と同じ組成になるように、溶鋼表面にスラグを形成しても良い。
 脱硫開始前の溶鋼の表面には、前工程で生じたスラグ(残留スラグ)が多少なりとも存在している場合がある。この場合、反応容器の外部から供給される脱硫フラックスと残留スラグとが混合した状態で脱硫反応が進行するので、溶鋼上のスラグ(脱硫時スラグ)の組成は、反応容器の外部から供給される脱硫フラックスと既存のスラグとが混合した状態であってもよい。
 さらに、上記脱硫時スラグの組成は、脱硫開始直後の溶鋼上のスラグの組成のみを意味しない。
 NaO、KO、及び、LiOは蒸発し易いので、脱硫開始直後の溶鋼上のスラグの組成が、上記実施形態の環境保全溶鋼脱硫フラックスの組成を満たしていなくてもよい。すなわち、残存スラグの組成が上記実施形態の環境保全溶鋼脱硫フラックスの組成と基本的に異なることに加え、脱硫反応が進行する過程で、RO(NaO、KO、LiO)が蒸発し、溶鋼表面に存在する脱硫スラグの組成が、上記実施形態の環境保全溶鋼脱硫フラックスの組成に達してもよい。
 脱硫反応の速度を考慮すると、少なくとも、脱硫処理時間の前半(脱硫処理時間の1/2の時点)までに、溶鋼表面に存在するスラグの組成が、上記実施形態の環境保全溶鋼脱硫フラックスの組成を満たしているとよい。この場合には、後半の脱硫時間を有効に脱硫反応に利用することができ、脱硫処理時間の後半で溶鋼表面上のスラグを調整した場合に比べてより高い脱硫効果を得ることができる。
 第二の実施形態に係る溶鋼脱硫方法では、脱硫フラックスが溶鋼に接した時に、上記実施形態の環境保全溶鋼脱硫フラックスの組成になるように調整されていればよい。例えば、脱硫フラックスの構成成分の一部を他の構成成分と混合することなく、例えば異なる供給機構や供給装置を用いて、この一部の構成成分と他の構成成分とを別に添加(供給)してもよい。即ち、溶鋼上で、上記実施形態の環境保全溶鋼脱硫フラックスの組成に調整されればよく、添加方法(供給方法)は、特定の方法に限られない。
 したがって、第二の実施形態に係る溶鋼脱硫方法では、[CaO]/[Al]が1.6~3.0の範囲、[SiO]/[RO]が0.1~3の範囲、[RO]が0.5~5質量%の範囲、[SiO]が0.05~15質量%の範囲になるように、NaO、KO、及び、LiOの1種以上のアルカリ金属酸化物と、CaOと、Alと、SiOとを含むスラグを溶鋼表面上に形成する。なお、ROの一部または全部がSiOとの化学的結合を有する脱硫フラックスを使用してもよい。ここで、溶鋼表面上に形成するスラグの組成は、上記実施形態の環境保全溶鋼脱硫フラックスの組成と重複するため、重複部分については記載を省略する。
 なお、第二の実施形態に係る溶鋼脱硫方法よりも第一の実施形態に係る溶鋼脱硫方法がROの蒸発をより抑制することができる。
 次に、本発明の実施例について説明するが、実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得る。
 (実施例)
 400t容量の転炉を用いて溶製した溶鋼を、RH真空脱ガス装置で脱硫した。脱硫後、溶鋼から試料を採取し、この試料(溶鋼)中のS濃度を分析した。実機試験に用いた溶鋼の成分組成を表2に示す。実機試験の条件は、次の通りである。
 脱硫工程:RH真空脱ガス装置、取鍋容量:400t、溶鋼温度:1620℃
 脱硫方法:インジェクション・ランスによる粉体の溶鋼中への吹込み、又は、ランスによる粉体の溶鋼表面への吹付け
 脱硫時間:35分
 フラックス原単位(溶鋼1t当り):3.5kg/t
Figure JPOXMLDOC01-appb-T000002
 実機試験の水準を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3の備考欄を説明すると、以下の通りである。
 混合粉:各酸化物粉体を混合したフラックス。
 一部溶融品:ROとSiOとの混合粉を予め溶融し、冷却、粉砕した後、得られたこのプリメルト粉を他の成分の粉体と混合したフラックス。
 一部焼結品:ROとSiOとの混合粉を予め焼結し、冷却、粉砕した後、得られたこの焼結粉を他の成分の粉体と混合したフラックス。
 ソーダ石灰ガラス使用:ソーダ石灰ガラスを粉砕して得られたガラス粉に各酸化物粉体を混合したフラックス。
 ガラスカレット使用:ガラスカレットを粉砕して得られたガラス粉に各酸化物粉体を混合したフラックス。
 実機試験の結果を表4に示す。脱硫率の定義は、((脱硫前のS濃度-脱硫後のS濃度)/脱硫前のS濃度)×100である。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 水準1~10は、本発明の条件を満たす実施例である。これら実施例では、S濃度が十分に下がり、82%以上の高い脱硫率が得られている。また、排気ダクト内にNa系化合物、K系化合物、及び、Li系化合物が付着しておらず、脱硫後のスラグ中の[NaO]、[KO]、及び、[LiO]が2質量%以下であった。そのため、水準1~10の条件では、NaO、KO、及び、LiO(RO)を効率よく使用することができ、脱硫後のスラグを種々の用途に十分使用できる。
 なお、水準6、8、及び、10では、脱硫フラックス中に既存のスラグを混合しているため、脱硫フラックスの組成は、スラグを混合した後の組成である。また、水準10は、脱硫反応の進行過程で、脱硫時のスラグの組成が表3に示される組成に至っており、このスラグの組成は、脱硫後半(脱硫処理時間の20分/35分)の組成である。加えて、この水準10では、表3に示される組成を有するフラックスを使用した場合も、同様の脱硫率(84%)が得られた。
 ここで、水準4及び14で使用したソーダ石灰ガラス、水準6、8及び10で使用したスラグ(転炉スラグ)、水準10及び17で使用したガラスカレットの成分組成を表5に示している。
 水準11~22は、本発明の条件を満足しない比較例である。これら比較例のうち、最大の脱硫率は、CaFを使用した水準22で得られた80%であり、他の水準は、68~78%と低い脱硫率であった。
 水準11では、NaOの量が多すぎ、水準12では、KOの量が多すぎ、水準13では、LiOの量が多すぎた。そのため、これら水準11~13では、脱硫率が低く、かつ、蒸発による設備へのROの付着量も多かった。また、脱硫後のスラグ中にNaO、KO、及び、LiOが多く含まれ、スラグの再利用ができなかった。
 水準14では、濃度比[CaO]/[Al]が低すぎ、水準15では、濃度比[SiO]/[KO]が高すぎたため、これら水準14及び15では、脱硫率が低かった。水準16では、NaOとKOとの合計量が少なく、また、水準17では、NaO、KO、及び、LiOの合計量が多すぎたため、これら水準16及び17では、目標の脱硫率82%以上を達成していなかった。
 水準18では、MgOの量が多いことに加えSiOの量が少なく、水準19では、SiOの量が多く、水準20では、濃度比[CaO]/[Al]が高すぎた。そのため、これら水準18~20では、目標の脱硫率82%以上を達成していなかった。また、水準21では、フラックスがNaO、KO、及び、LiOのいずれをも含んでいないため、目標の脱硫率82%以上を達成していなかった。
 水準22では、フラックスがCaFを含有しているので、比較例の中では、比較的高い脱硫率が得られていたが、脱硫率が82%を超えていなかった。さらに、この水準22では、脱硫後のスラグは、F濃度が高く、再利用できなかった。
 前述したように、本発明によれば、脱硫後のスラグからのF溶出、NaOやKOの蒸発による設備への付着、脱硫効率低下による生産性阻害、脱硫のコストアップや、NaOやKOを多く含む脱硫後のスラグが環境に与える悪影響といった問題が生じることなく、S量が極めて少量の高級鋼を製造することが可能である。よって、本発明は、鉄鋼産業の製鋼技術において利用可能性が高い。
 

Claims (9)

  1.  [CaO]、[Al]、[SiO]、及び、[RO]を、それぞれ、CaOの質量%、Alの質量%、SiOの質量%、及び、NaOの質量%とKOの質量%とLiOの質量%との合計量とした場合に、
     [CaO]/[Al]が1.6~3.0の範囲になるように前記CaO及び前記Alを含み、
     [SiO]/[RO]が0.1~3の範囲、前記[RO]が0.5~5質量%の範囲、前記[SiO]が0.05~15質量%の範囲になるように、前記NaO、前記KO、及び、前記LiOの1種以上のアルカリ金属酸化物と、前記SiOとを含む
    ことを特徴とする環境保全溶鋼脱硫フラックス。
  2.  さらに、MgOを1~10質量%含むことを特徴とする請求項1に記載の環境保全溶鋼脱硫フラックス。
  3.  前記[SiO]が0.05~9.3質量%であることを特徴とする請求項1または2に記載の環境保全溶鋼脱硫フラックス。
  4.  前記[SiO]が0.05~8.0質量%であることを特徴とする請求項1または2に記載の環境保全溶鋼脱硫フラックス。
  5.  前記[SiO]/[RO]が0.1~2であることを特徴とする請求項1または2に記載の環境保全溶鋼脱硫フラックス。
  6.  前記アルカリ金属酸化物の一部または全部が前記SiOとの化学的結合を有することを特徴とする請求項1または2に記載の環境保全溶鋼脱硫フラックス。
  7.  前記アルカリ金属酸化物がNaOであることを特徴とする請求項1または2に記載の環境保全溶鋼脱硫フラックス。
  8.  請求項1または2に記載の環境保全溶鋼脱硫フラックスを溶鋼に向けて供給することを特徴とする溶鋼脱硫方法。
  9.  [CaO]、[Al]、[SiO]、及び、[RO]を、それぞれ、CaOの質量%、Alの質量%、SiOの質量%、及び、NaOの質量%とKOの質量%とLiOの質量%との合計量とした場合に、
     [CaO]/[Al]が1.6~3.0の範囲、[SiO]/[RO]が0.1~3の範囲、前記[RO]が0.5~5質量%の範囲、前記[SiO]が0.05~15質量%の範囲になるように、前記NaO、前記KO、及び、前記LiOの1種以上と、前記CaOと、前記Alと、前記SiOとを含むスラグを溶鋼表面上に形成することを特徴とする溶鋼脱硫方法。
PCT/JP2012/058619 2011-03-31 2012-03-30 環境保全溶鋼脱硫フラックス WO2012133795A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US14/002,170 US9127327B2 (en) 2011-03-31 2012-03-30 Environmentally friendly flux for molten steel desulfurization
CA2842768A CA2842768C (en) 2011-03-31 2012-03-30 Environmentally friendly flux for molten steel desulfurization
BR112013023995A BR112013023995A2 (pt) 2011-03-31 2012-03-30 fundente ambientalmente favorável para dessulfuração de aço fundido
EP12765532.2A EP2692874B1 (en) 2011-03-31 2012-03-30 Environmentally friendly flux for desulfurization of molten steel
CN201280014167.2A CN103443298B (zh) 2011-03-31 2012-03-30 环保钢水脱硫熔剂
KR1020137024349A KR101358563B1 (ko) 2011-03-31 2012-03-30 환경 보전 용강 탈황 플럭스
JP2012538521A JP5152442B2 (ja) 2011-03-31 2012-03-30 環境保全溶鋼脱硫フラックス

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011079113 2011-03-31
JP2011-079113 2011-03-31

Publications (1)

Publication Number Publication Date
WO2012133795A1 true WO2012133795A1 (ja) 2012-10-04

Family

ID=46931490

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/058619 WO2012133795A1 (ja) 2011-03-31 2012-03-30 環境保全溶鋼脱硫フラックス

Country Status (8)

Country Link
US (1) US9127327B2 (ja)
EP (1) EP2692874B1 (ja)
JP (1) JP5152442B2 (ja)
KR (1) KR101358563B1 (ja)
CN (1) CN103443298B (ja)
BR (1) BR112013023995A2 (ja)
CA (1) CA2842768C (ja)
WO (1) WO2012133795A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014108843A1 (de) * 2014-06-24 2015-12-24 Thyssenkrupp Ag Gießpulver, Gießschlacke und Verfahren zum Gießen von Stahl
JP6641593B2 (ja) * 2016-01-12 2020-02-05 三菱マテリアル株式会社 希土類元素と鉄の分離方法
CN108396092A (zh) * 2018-03-26 2018-08-14 首臣(上海)新能源科技有限公司 一种无氟kr脱硫剂,其制造方法及脱硫的方法
CN113388740B (zh) * 2021-06-11 2023-03-14 东北大学 一种提高加压电渣重熔高氮马氏体不锈钢洁净度的方法
CN115341056A (zh) * 2022-08-22 2022-11-15 河北濡春新能源集团有限公司 稀土纳米冶金熔炼剂

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03264624A (ja) 1990-03-14 1991-11-25 Nippon Steel Corp 溶融金属の処理装置及び処理方法
JPH06235011A (ja) 1992-12-15 1994-08-23 Alfred Freissmuth 銑鉄、鋳鉄又はCr若しくはMnを含有する融体から脱硫、脱燐、脱ケイ素又は脱窒化用剤、及びそれを用いた処理方法
JPH08209212A (ja) 1995-02-03 1996-08-13 Kobe Steel Ltd 溶銑用脱硫剤および脱硫方法
JP2000226284A (ja) 1999-02-05 2000-08-15 Nkk Corp ク溶性カリ肥料の製造方法
JP2001335819A (ja) 2000-05-23 2001-12-04 Nippon Steel Corp 溶銑の脱硫剤
JP2001335820A (ja) 2000-05-25 2001-12-04 Nippon Steel Corp 溶銑の脱硫剤及び脱硫方法
JP2002060832A (ja) * 2000-08-08 2002-02-28 Nippon Magnetic Dressing Co Ltd カルシウムアルミネート系脱硫剤
JP2002241823A (ja) 2001-02-21 2002-08-28 Kawasaki Steel Corp 溶銑の脱硫方法
JP2002285217A (ja) * 2001-03-23 2002-10-03 Kobe Steel Ltd 溶銑・溶鋼の脱りん処理剤及び脱硫処理剤
JP2003253315A (ja) 2002-03-05 2003-09-10 Nippon Steel Corp 溶銑の機械攪拌による脱硫方法
WO2008081763A1 (ja) * 2006-12-22 2008-07-10 Yoshizawa Lime Industry Co., Ltd. 低窒素、低酸素および低イオウの鋼を製錬するためのフラックス
JP2011236456A (ja) * 2010-05-07 2011-11-24 Nippon Steel Corp 鉱物含有溶鋼脱硫フラックス

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1959173A1 (de) 1969-11-25 1971-06-09 Eitel Hans Joachim Verfahren zur Herstellung von Stahlschmelzen
JPS4834973B1 (ja) 1969-12-25 1973-10-25
US3915696A (en) * 1970-01-08 1975-10-28 Ferdinand Fink Sintered preformed slag for the steel industry
JPS5365212A (en) 1976-11-24 1978-06-10 Nippon Kokan Kk <Nkk> Ingot case additive for continuous casting of steel
GB2118209B (en) * 1982-02-12 1986-06-04 Showa Denko Kk Refining agent of molten metal and methods for producing the same
BE1010725A3 (nl) * 1996-10-30 1998-12-01 Calumite Company Europ Naamloz Werkwijze voor het valoriseren en het eventueel daartoe bewerken van potslakken.
US6179895B1 (en) * 1996-12-11 2001-01-30 Performix Technologies, Ltd. Basic tundish flux composition for steelmaking processes
TW424017B (en) 1998-12-08 2001-03-01 Shinagawa Refractories Co Molding powder for continuous casting of steel and method for continuous casting of steel
US20050066772A1 (en) 2003-09-26 2005-03-31 Flores-Morales Jose Ignacio Desulphurization of ferrous materials using glass cullet
US20110005705A1 (en) 2009-07-07 2011-01-13 Masahito Hanao Mold flux for continuously casting steel and method of continuously casting steel using the same
CN101775465A (zh) 2009-12-31 2010-07-14 辽宁天和矿产有限公司 一种转炉炼钢脱磷剂及其制备方法
CN101760585B (zh) * 2010-02-03 2012-11-21 衡阳华菱连轧管有限公司 一种含BaO、Li2O的深脱硫渣系及采用该渣系生产超低硫钢的方法
JP5546965B2 (ja) 2010-06-18 2014-07-09 山陽特殊製鋼株式会社 鋼の脱硫方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03264624A (ja) 1990-03-14 1991-11-25 Nippon Steel Corp 溶融金属の処理装置及び処理方法
JPH06235011A (ja) 1992-12-15 1994-08-23 Alfred Freissmuth 銑鉄、鋳鉄又はCr若しくはMnを含有する融体から脱硫、脱燐、脱ケイ素又は脱窒化用剤、及びそれを用いた処理方法
JPH08209212A (ja) 1995-02-03 1996-08-13 Kobe Steel Ltd 溶銑用脱硫剤および脱硫方法
JP2000226284A (ja) 1999-02-05 2000-08-15 Nkk Corp ク溶性カリ肥料の製造方法
JP2001335819A (ja) 2000-05-23 2001-12-04 Nippon Steel Corp 溶銑の脱硫剤
JP2001335820A (ja) 2000-05-25 2001-12-04 Nippon Steel Corp 溶銑の脱硫剤及び脱硫方法
JP2002060832A (ja) * 2000-08-08 2002-02-28 Nippon Magnetic Dressing Co Ltd カルシウムアルミネート系脱硫剤
JP2002241823A (ja) 2001-02-21 2002-08-28 Kawasaki Steel Corp 溶銑の脱硫方法
JP2002285217A (ja) * 2001-03-23 2002-10-03 Kobe Steel Ltd 溶銑・溶鋼の脱りん処理剤及び脱硫処理剤
JP2003253315A (ja) 2002-03-05 2003-09-10 Nippon Steel Corp 溶銑の機械攪拌による脱硫方法
WO2008081763A1 (ja) * 2006-12-22 2008-07-10 Yoshizawa Lime Industry Co., Ltd. 低窒素、低酸素および低イオウの鋼を製錬するためのフラックス
JP2011236456A (ja) * 2010-05-07 2011-11-24 Nippon Steel Corp 鉱物含有溶鋼脱硫フラックス

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2692874A4

Also Published As

Publication number Publication date
US9127327B2 (en) 2015-09-08
BR112013023995A2 (pt) 2016-12-13
JP5152442B2 (ja) 2013-02-27
CA2842768C (en) 2014-09-16
CN103443298B (zh) 2015-09-09
EP2692874B1 (en) 2016-05-04
US20130333518A1 (en) 2013-12-19
JPWO2012133795A1 (ja) 2014-07-28
EP2692874A4 (en) 2014-10-15
KR20130112068A (ko) 2013-10-11
CA2842768A1 (en) 2012-10-04
KR101358563B1 (ko) 2014-02-06
CN103443298A (zh) 2013-12-11
EP2692874A1 (en) 2014-02-05

Similar Documents

Publication Publication Date Title
CN102586543B (zh) 一种高氧化钙含量的钢包渣还原剂及其制备方法
CN102002556A (zh) 一种含稀土氧化物的炼钢精炼渣及制备和使用方法
JP5152442B2 (ja) 環境保全溶鋼脱硫フラックス
JP2012012648A (ja) 溶鋼の脱硫処理方法
RU2608865C2 (ru) Способ десульфурации стали
JP5338056B2 (ja) ステンレス鋼の精錬方法
JP5251360B2 (ja) 取鍋精錬法による清浄鋼の製造方法
JP6481774B2 (ja) 溶鉄の脱りん剤、精錬剤および脱りん方法
CN103555886B (zh) 一种含钒铁水冶炼超低硫钢的方法
JP6222490B2 (ja) 溶銑の脱燐方法
JP5553167B2 (ja) 溶銑の脱りん方法
JP2000319047A (ja) ステンレス鋼精錬スラグの改質処理方法
JP5634966B2 (ja) スラグにおける六価クロムの抑制方法
JP5341849B2 (ja) リサイクルスラグの製造方法
JP2008063646A (ja) 溶銑の脱燐処理方法
CN102649987A (zh) 转炉sgrp工艺冶炼改进脱磷阶段化渣效果的方法
KR101084579B1 (ko) 페로-바나듐 슬래그를 이용한 제강용 플럭스
JP2011246765A (ja) 溶鋼の還元精錬方法
KR100554139B1 (ko) 저망간 용선의 전로 조업을 위한 저융점 매용제 조성물과그 조업방법
JP2011058046A (ja) 溶銑の脱燐処理方法
JP5803866B2 (ja) 溶鋼の脱硫剤及びそれを使用した脱硫方法
JP5413300B2 (ja) 鉱物含有溶鋼脱硫フラックス
JP2021176980A (ja) 電気炉製鋼法
CN116356102A (zh) 转炉吹炼用造渣材料、制备方法及转炉吹炼方法
JP2012001779A (ja) 鋼の脱硫方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012538521

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12765532

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2842768

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 14002170

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20137024349

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013023995

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013023995

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130919