WO2012130107A1 - 自动分析装置及其样本分析方法 - Google Patents

自动分析装置及其样本分析方法 Download PDF

Info

Publication number
WO2012130107A1
WO2012130107A1 PCT/CN2012/072950 CN2012072950W WO2012130107A1 WO 2012130107 A1 WO2012130107 A1 WO 2012130107A1 CN 2012072950 W CN2012072950 W CN 2012072950W WO 2012130107 A1 WO2012130107 A1 WO 2012130107A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
unit
incubation
reaction vessel
reagent
Prior art date
Application number
PCT/CN2012/072950
Other languages
English (en)
French (fr)
Inventor
张震
周鹏
王俊
解传芬
王海
Original Assignee
深圳迈瑞生物医疗电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳迈瑞生物医疗电子股份有限公司 filed Critical 深圳迈瑞生物医疗电子股份有限公司
Priority to EP12764053.0A priority Critical patent/EP2690445B1/en
Priority to CN201280016001.4A priority patent/CN103443629B/zh
Publication of WO2012130107A1 publication Critical patent/WO2012130107A1/zh
Priority to US14/036,764 priority patent/US20140093975A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/5302Apparatus specially adapted for immunological test procedures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/025Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations having a carousel or turntable for reaction cells or cuvettes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N2035/00346Heating or cooling arrangements
    • G01N2035/00356Holding samples at elevated temperature (incubation)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • G01N2035/0401Sample carriers, cuvettes or reaction vessels
    • G01N2035/0437Cleaning cuvettes or reaction vessels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • G01N2035/0439Rotary sample carriers, i.e. carousels
    • G01N2035/0453Multiple carousels working in parallel
    • G01N2035/0455Coaxial carousels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • G01N2035/0439Rotary sample carriers, i.e. carousels
    • G01N2035/0458Multiple concentric rows of wells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/0098Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor involving analyte bound to insoluble magnetic carrier, e.g. using magnetic separation

Definitions

  • the invention relates to an automatic analysis device and a sample analysis method thereof, in particular to a system structure of an automatic analysis device and a sample analysis method thereof.
  • Immunoassays are a class of highly sensitive and highly specific analytical instruments that are commonly used in clinical laboratories to detect blood, urine or other body fluids.
  • Traditional immunoassays have a variety of implementation principles, such as chemiluminescence, electrochemiluminescence, and the like.
  • chemiluminescence chemiluminescence
  • electrochemiluminescence chemiluminescence
  • the main working principle is: if a certain component in the sample is measured, the corresponding antibody can be The antigen coating forms a magnetic bead reagent on the magnetic beads, and the specific label is labeled on the antibody to form a labeling reagent.
  • the reagent for measuring an analysis item generally has various components, such as the magnetic bead reagent component and the labeling reagent herein. Components, etc., different components of the same item can be dispensed in different reagent containers or in different chambers of the same reagent container).
  • the test process firstly mixes the sample containing the analyte with the magnetic bead reagent, the labeling reagent and other reagents to form a sample reagent reaction solution (referred to as a reaction solution), and incubates the reaction under certain conditions to form a reaction complex; Separation Bound-free, generally referred to as B/F
  • B/F Separation Bound-free
  • the signal reagent may be one or more, such as a luminescent substrate solution, a pre-excitation solution and an excitation solution, and a luminescence enhancement solution.
  • a luminescent substrate solution such as a luminescent substrate solution, a pre-excitation solution and an excitation solution, and a luminescence enhancement solution.
  • a luminescent substrate solution such as a luminescent substrate solution, a pre-excitation solution and an excitation solution, and a luminescence enhancement solution.
  • a luminescence enhancement solution There are also a variety of specific coating methods. In addition to the magnetic bead cleaning method described above, there are other methods of coating the antibody on the reaction vessel wall, plastic beads, and the like.
  • the common immune analyzer needs to support the following different test procedures.
  • the one-step method refers to adding only one reagent during the test, which is the simplest one.
  • the reagent and the sample are added to the reaction vessel to form a reaction solution and mixed.
  • the mixed reaction vessel is placed under constant temperature for a certain period of time, and then washed and separated, and then the signal reagent is added to the reaction vessel which has been cleaned and separated.
  • the reaction vessel after adding the signal reagent is placed under constant temperature for a certain period of time and then metered.
  • first reagents reagents
  • second reagent possibly a plurality of components
  • the signal reagent is added to the reaction vessel which has been cleaned and separated, and the reaction vessel after the signal reagent is added is placed under constant temperature for a certain period of time and then metered.
  • some tests are performed. Direct measurement can be done without the need for incubation after adding the signal reagent.
  • reagent a part of the reagent (called the first reagent, which may be a plurality of components) to the reaction vessel, forming a reaction solution and mixing the sample, and placing the mixed reaction vessel under constant temperature for a certain period of time and then cleaning. Separation. Then, a reagent (referred to as a second reagent, possibly a plurality of components) is added to the reaction vessel and mixed, and the mixed reaction vessel is placed under constant temperature for a certain period of time. After the incubation is completed, the separation is carried out, and then the signal reagent is added to the reaction vessel which has been cleaned and separated, and the reaction vessel after the signal reagent is added is placed under constant temperature for a certain period of time and then metered. As mentioned above, some tests are performed. Direct measurement can be done without the need for incubation after adding the signal reagent.
  • the first reagent which may be a plurality of components
  • a conventional immunoassay analyzer places the incubation, detection, and cleaning separation functions on a single disk.
  • This design has the following disadvantages: (1) The cleaning separation limits the flexible rotation of the disc, resulting in a fixed incubation time that is difficult to adapt to the response characteristics of different test items; (2) The incubation, detection and cleaning separation are all set on one disk, resulting in the size of the disk being too large, the structure is complicated, and the manufacturing process is difficult; (3) In order to support the test requirements of the two-step two-cleaning process, two cleaning and separating devices need to be installed, which is costly; (4) Incubation requires control of the temperature stability within the disk, but cleaning and separation operations can cause fluctuations in the temperature inside the disk, resulting in unstable test results.
  • Another conventional immunoassay analyzer separates the incubation of the reaction solution, the separation of the washing, the incubation of the signal reagent, and the photometry function on different structural units.
  • the design has the following disadvantages: 1) high cost, complex structure, large size of the whole machine; (2 The incubation of the reaction solution, the incubation after adding the signal reagent, and the photometry are performed on different structural units, the energy utilization rate is low, and the coordinated action of each unit is required, the control is complicated, the test steps are numerous, and the system structure is complicated.
  • the present invention provides an automatic analysis device and a sample analysis method thereof which can effectively avoid mutual influence of incubation and cleaning separation, more flexible testing, and simpler structure.
  • an automatic analysis apparatus comprising: a reaction unit for carrying a reaction vessel and transporting the reaction vessel to a predetermined operation position, the operation bit including a detection operation bit; and a detection unit for The detection operation bit detects the analyte in the reaction vessel on the reaction unit; the cleaning unit is used to remove unbound components in the reaction system; the dispensing unit is used to inject reagents into the reaction vessel or And a sample; the reaction unit is provided with an incubation site for incubation of the liquid in the reaction vessel.
  • an automatic analysis apparatus comprising: a reaction unit for carrying a reaction vessel and transporting the reaction vessel to a predetermined operation position; and a detection unit for detecting the analyte in the reaction vessel a cleaning unit for removing unbound components of the reaction system; a dispensing unit for injecting reagents into the reaction vessel or And a sample; the reaction unit is provided with an incubation position for incubation of the liquid in the reaction vessel, the incubation position comprising a first incubation position and a second incubation position.
  • a sample analysis method comprising: a dispensing step of dispensing a sample and a reagent in a reaction vessel; an incubation step of incubating the reaction vessel on the reaction unit; washing the separation step, removing the reaction The unbound component in the system; the signal reagent step, the signal reagent is added to the reaction vessel; the detection step, the reaction unit transports the reaction vessel to the detection operation position, and the analyte in the reaction vessel is detected by the detection unit at the detection operation position.
  • a sample analysis method comprising: a dispensing step of dispensing a sample and a reagent in a reaction vessel; a first incubation step of performing a first incubation on the reaction vessel; and cleaning the separation a step of removing unbound components in the reaction system; adding a signal reagent step, adding a signal reagent to the reaction vessel; a second incubation step, performing a second incubation on the reaction vessel on the reaction unit; and detecting the step, analyzing the reaction vessel The object is tested.
  • the invention separates the reaction unit having the incubation function and the cleaning unit with the cleaning separation function, so that the incubation and the cleaning separation of the reaction container can be respectively performed on different units, thereby avoiding the mutual influence of the incubation and the cleaning separation, so that the automatic
  • the analytical device analysis test is more flexible, and the first incubation and detection transfer or the second incubation are all realized by the reaction unit, which simplifies the system structure and improves the working efficiency of the analysis device.
  • Figure 1 is a schematic diagram of the immunoassay
  • Figure 2 is a schematic diagram of one-step cleaning separation
  • Figure 3 is another flow chart of one-step cleaning separation
  • Figure 4 is a schematic diagram of a two-step cleaning and separation process
  • Figure 5 is a schematic diagram of two-step cleaning and separation
  • Figure 6 is a schematic view showing a first embodiment of the automatic analyzing device of the present invention.
  • Figure 7 is a flow chart of one-step analysis
  • Figure 8 is a flow chart of the two-step cleaning and separation process
  • Figure 9 is a two-step method for cleaning and separating two times
  • Figure 10 is a schematic view showing a first embodiment of the reaction disk of the present invention.
  • Figure 11 is a schematic view showing a second embodiment of the reaction disk of the present invention.
  • Figure 12 is a schematic view showing a third embodiment of the reaction disk of the present invention.
  • Figure 13 is a schematic view showing a fourth embodiment of the reaction disk of the present invention.
  • Figure 14 is a schematic view showing a fifth embodiment of the reaction disk of the present invention.
  • Figure 15 is a schematic view showing a sixth embodiment of the reaction disk of the present invention.
  • Figure 16 is a schematic view showing another embodiment of the reaction unit of the present invention.
  • Figure 17 is a schematic view showing a second embodiment of the automatic analyzing device of the present invention.
  • Figure 18 is a schematic view showing a third embodiment of the automatic analyzing device of the present invention.
  • Figure 19 is a schematic view showing a fourth embodiment of the automatic analyzing device of the present invention.
  • Figure 20 is a schematic view showing a fifth embodiment of the automatic analyzing device of the present invention.
  • Figure 21 is a schematic view showing a sixth embodiment of the automatic analyzer of the present invention.
  • the automatic analyzer of the present invention comprises: a reaction unit for carrying a reaction vessel and transporting the reaction vessel to a predetermined operation position, the operation bit including a detection operation bit; and a detection unit for detecting the operation position on the reaction unit
  • the analyte in the reaction vessel is tested;
  • the cleaning unit is for removing unbound components in the reaction system;
  • the dispensing unit is for injecting reagents into the reaction vessel or And a sample;
  • the reaction unit is provided with an incubation site for incubation of the liquid in the reaction vessel.
  • the reaction unit may be a disk type reaction disk, as shown in Fig. 6, Fig. 10-Fig. As shown, it can also be designed to be rail-shaped, as shown in Figure 16.
  • the most commonly used reaction unit is in the form of a reaction disk. Therefore, for convenience of description, the reaction unit will be described above by taking a disk type reaction disk as an example.
  • the automatic analysis device is generally provided with a temperature control device to control the temperature conditions of the incubation, and the cleaning unit has a certain influence on the temperature due to its operation flow.
  • the reaction disk of the present invention has an incubation function, and the cleaning unit is located outside the reaction disk, and the incubation unit and the cleaning unit are separately arranged to obtain a more stable incubation temperature, thereby avoiding the influence of the cleaning separation on the incubation temperature control.
  • the cleaning unit can also be located inside the reaction tray, as shown in the figure. twenty one As shown, as long as there is a spatial separation from the reaction disk, the interaction between the cleaning separation and the incubation of the reaction disk can be avoided.
  • the specific layout of the cleaning unit and the reaction tray can be provided as needed, and the transport of the reaction vessel between the two is performed by the transport unit.
  • the automatic analysis device of this layout can complete the incubation and cleaning separation of the reaction vessel on different units, avoiding the interaction between the incubation and the cleaning separation, thereby making the analysis and testing more flexible and improving the analysis device. Work efficiency.
  • the automatic analysis device includes a reaction disk 1 , a reagent disk 2 , and a detection unit 3 .
  • the reaction disk 1 is a ring structure including at least one turn, and a certain number of positions are distributed per turn, and these positions may be holes or grooves for incubating or And carrying the reaction vessel and transporting the reaction vessel to a predetermined operating position so that the other units perform corresponding operations, the operating position being a specific location to which the reaction vessel on the reaction tray can be transported, such as the detection unit 3
  • the operational bits may be more or less than the operational bits described above, and that the operational bits may also coincide or include other operational bits, such as operational bits 102 and 104.
  • the same position can be used, and the dispensing operation bit 102 can include a sample dispensing operation bit, a reagent dispensing operation bit, and the like.
  • the reagent tray 2 is used to hold a reagent container, such as a reagent bottle.
  • Detection unit 3 It is used for detecting an analyte in a reaction vessel on a reaction disk, and a detecting unit such as a photometer detects the concentration of the analyte by detecting the light intensity.
  • Reaction vessel supply unit 4 For accommodating a reaction vessel, such as a reaction vessel.
  • the transport unit includes a first transport unit 506 and a second transport unit 500.
  • the second transport unit 500 is used to place the reaction vessel on the reaction tray 1 It is transported between the reaction vessel supply unit 4.
  • the dispensing unit includes a sample dispensing unit 502 and a reagent dispensing unit 504.
  • the sample dispensing unit may be a sample needle for sucking and discharging a sample.
  • Reagent dispensing unit 504 may be a reagent needle for aspirating and discharging a reagent.
  • the movement path of the first transport unit 506 intersects the reaction disk 1 and the cleaning unit 6 and passes through the mixing unit 7 for the reaction vessel in the reaction tray 1 It is transported between the cleaning unit 6 and the reaction vessel between the reaction tray 1 and the mixing unit 7.
  • the cleaning unit 6 is used for removing unbound components in the reaction system, and the cleaning unit 6 is located on the reaction tray 1 On the outside, the cleaning unit and the reaction tray are set independently.
  • the mixing unit 7 is used to mix the reaction solution, and some sample analysis methods do not need to be mixed.
  • the reaction vessel supply unit 4 supplies a reaction vessel for the automatic analysis device, and the second transport unit 500 A new reaction vessel is shipped to the shipping operation station 104.
  • the reaction disk 1 of the present invention, the mixing unit 7 and the cleaning unit 6 are in the first transport unit 506 On the trajectory of the movement, the reaction vessel can be transported between the reaction tray 1 and the mixing unit 7, and the reaction vessel can be placed in the reaction tray 1 and the cleaning unit 6 It is simple and convenient to transport between. Of course, it is also possible to separately provide two transport units for respectively transporting the reaction vessel between the reaction tray 1 and the washing unit 6, and transporting the reaction vessel between the reaction tray 1 and the mixing unit 7.
  • the reaction disk 1 transports a vacancy to the transport operation position 104 through the second transport unit. 500
  • the reaction vessel is transported to the reaction tray 1 which transports the reaction vessel to the dispensing operation 102.
  • the dispensing operation bit is passed through the sample dispensing unit 502. 102 Add the sample to the reaction vessel.
  • a reagent is added to the reaction vessel through the reagent dispensing unit 504 at the dispensing operation position 102, and the reaction tray 1
  • the reaction vessel is transferred to the shipping operation station 103.
  • the first transport unit 506 transports the reaction container containing the reaction solution to which the sample and the reagent are added to the mixing unit 7 for mixing.
  • the reaction vessel that has completed the mixing is transferred by the first transfer unit 506 to the loop 1c and/or the inner ring 1b of the reaction tray 1 to incubate the reaction solution, if the reaction tray 1
  • the outer ring has a vacancy, and can also be placed in the outer ring of the reaction plate 1 1a Incubation is performed, and incubation of the reaction mixture consisting of the sample and the reagent is defined as a first incubation, which corresponds to the incubation position on the reaction disk as the first incubation position.
  • the reaction tray 1 transports the reaction vessel to the transport operation position 103 again, and the reaction container is transported by the first transport unit 506 to the cleaning unit 6
  • the reaction vessel is advanced by the cleaning unit 6, and the cleaning unit 6
  • the reaction vessel is cleaned and separated.
  • the coating technique used such as magnetic separation method, coating of the antibody or antigen on the surface of the magnetic beads, coating on the surface of the reaction vessel, or other solid phase. Surfaces, which correspond to different cleaning separation methods.
  • a signal reagent is added to the reaction vessel, and the signal reagent can be directly added to the reaction vessel in the cleaning unit 6, or the reaction vessel can be transported to the reaction tray first.
  • the signal reagent is added to the reaction vessel, and the reaction vessel can be transported to a certain position outside the reaction tray 1 and the cleaning unit 6, and then the signal reagent is added to the reaction vessel, and then the reaction vessel is transported to the reaction tray. 1
  • the following is only for the cleaning unit 6
  • the case where a signal reagent is added to the reaction vessel in the middle is described as an example.
  • the illuminating scheme also has different implementation forms.
  • the method for illuminating the reagent by the catalytic signal of the label is used, and the label and the signal reagent can also react to emit light, or under external conditions, such as an applied electric field, a magnetic field, an optical excitation, etc. Luminescence, whereby the analyte concentration in the corresponding sample can be detected.
  • the main operating procedures in the chemiluminescence analyzer include dispensing reagents and samples, mixing reaction solutions, incubation, washing separation, signal reagent addition and detection, and some analytical methods do not need to be mixed.
  • the reaction container after the signal reagent is added to the cleaning unit 6 is again moved to the trajectory of the first transport unit 506, and transported to the outer ring 1a of the reaction disk 1 by the first transport unit 506.
  • the incubation after the addition of the signal reagent is performed, and the incubation after the addition of the signal reagent is defined as the second incubation, and the second incubation corresponds to the reaction tray 1
  • the incubation position on is defined as the second incubation position.
  • the signal reagent is added and does not require incubation and can be transported from the reaction plate 1 to the detection station. Direct metering, such as chemiluminescence testing based on electrochemiluminescence or flash systems.
  • step S712 the reaction disk 1 transports the reaction container to the detection operation bit 101 by the detection unit 3
  • the analyte in the reaction vessel is detected, and the detection signal can be an optical signal emitted by the liquid in the reaction vessel.
  • the reaction vessel that has completed the test is then transported from the reaction tray 1 to the transport operation position 104 by the second transport unit. 500 Abandon its shipment and the test process for this one-step reaction is completed.
  • the reagent may be added first and then the sample is added.
  • the sample is taken as an example for description.
  • the dispensing unit shown in FIG. 6 includes a sample dispensing unit 502 and a reagent dispensing unit 504.
  • the transport unit includes a first transport unit 506 and a second transport unit 500
  • the number of the dispensing unit and the transport unit can be increased or decreased in consideration of the factors such as optimizing the combined test efficiency, the overall size and the cost, and the dispensing unit and the transport unit can be flexibly combined in different quantities, such as only A dispensing unit and only one transport unit, three dispensing units, and two transport units.
  • FIG. 18 In another embodiment of the present invention, there is only one dispensing unit, which may be a loading needle for sucking and discharging samples and reagents, and the suction and discharge of the sample and the reagent are all completed by the dispensing unit 510, and 6 Compared to the embodiment shown, this embodiment eliminates a dispensing unit and saves costs.
  • the sample adding step S700 and the adding reagent step S702 are all performed by the dispensing unit 510. Completed, other structures and workflows are similar to the implementations shown in Figures 6 and 7.
  • the transport unit 520 assumes Figure 6
  • the illustrated cuvette transport function of the first transport unit 506 and the second transport unit 500 saves cost, and the transport unit 520 completes the reaction vessel in the reaction vessel supply unit 4 and the reaction tray 1 in time series.
  • the transportation between the cleaning unit 6 and the mixing unit 7, therefore, the reaction container supply unit 4, the transport operation positions 103 and 104, the cleaning unit 6, and the mixing unit 7 are all in the transport unit 506.
  • the transport function of the cuvette is completed by the transport unit 520.
  • Other structures and workflows are shown in Figure 6. The embodiments shown are similar.
  • FIG. 20 in another embodiment of the present invention, there is only one dispensing unit, only one transport unit, and a dispensing unit 510. Similar to the dispensing unit shown in Fig. 18, the transport unit 520 is similar to the transport unit shown in Fig. 19, and other structures and workflows are shown in Fig. 6. The embodiment shown is similar, reducing overall size and cost.
  • the reaction tray of the present invention is provided with an incubation position, which may be a hole or a groove, etc., and the reaction tray and the cleaning unit are respectively independent structures.
  • the present invention can sterilize the reaction vessel by separately arranging the reaction tray and the cleaning unit.
  • the cleaning separation is performed on different units separately, which avoids the interaction between the incubation and the cleaning separation, thereby making the analysis device more flexible in analysis and testing, and avoiding the influence of the cleaning separation on the incubation process, facilitating the control of the incubation temperature conditions, and improving the temperature. Work efficiency.
  • the reaction disk of the invention can not only detect the analyte in the reaction vessel by using the photometric unit in the detection operation position, but also perform the second incubation on the liquid after adding the signal reagent, and integrate multiple functions into one structure, simplifying
  • the system structure also enables the reaction vessel to which the signal reagent is added to be directly transported to the detection operation site for analyte detection after the completion of the second incubation, eliminating the need for the second incubation and then transporting it to a position other than the reaction tray before detecting.
  • the test time is saved and the test steps are simplified, making the automatic analysis device more efficient.
  • the detection operation position and the second incubation position are in the same circle, and after the second incubation is completed, it can be directly transported to the detection operation position for detection.
  • the step of the second incubated reaction vessel being transported to a location outside the reaction tray for testing simplifies the testing procedure and simplifies the system configuration.
  • the incubation conditions required for the first incubation of the reaction solution and the second incubation after the addition of the signal reagent are the same, and thus are performed in the same tray, simplifying the system structure and reusing the energy source, There is no need to incubate separately in the two plates, saving energy consumption.
  • the signal reagent can be added without the incubation, and can be directly detected by the reaction disk transport to the detection operation position.
  • step S800 a sample is added to the reaction vessel through the dispensing unit and the first reagent is added.
  • the reaction vessel is transported to the mixing unit 7 for mixing.
  • the mixing unit can be independent of the reaction tray 1 It is also possible to set the mixing position directly on the reaction tray 1, and there are various ways of mixing, such as ultrasonic waves.
  • step S806 the reaction solution consisting of the sample and the reagent is subjected to the first incubation.
  • step S808 In the process, the first incubation reaction vessel is transferred to the dispensing operation position 102 to fill the second step reagent.
  • step S810 the reaction solution immediately after the addition of the second reagent is mixed.
  • step S812 The first incubation is performed on the reaction vessel to which the second reagent is added.
  • step S814 the reaction vessel is cleaned and separated by the cleaning unit 6.
  • step S815 a signal reagent is added.
  • step S816 In the middle, a second incubation is performed.
  • the automatic analyzing device can be detected not only by the detecting unit 3 but also by the detecting unit 3 on the reaction disk 1.
  • the reaction vessel is subjected to signal detection, and the second incubation of the reaction vessel after the addition of the signal reagent is performed, which simplifies the system structure, and also causes the reaction vessel to which the signal reagent is added to be transported to the detection operation position after the second incubation.
  • Signal detection eliminating the need for a second incubation before transporting to the reaction tray 1
  • the step of detecting the position outside saves the test time, making the automatic analysis device more efficient.
  • the first incubation of the incubation solution and the second incubation after the addition of the signal reagent are performed in the same tray, the energy is reused, and the incubation is not performed in the two trays, saving energy consumption and simplifying the system. structure.
  • the reaction disk 1 There are multiple laps the first incubation position can be set in any one or several laps in the reaction tray 1, and the second incubation position can also be set in any one or several laps in the reaction tray 1, preferably in the second incubation position.
  • Proximity detection unit In a circle of 3 the reaction vessel in which the second incubation is completed can be transported directly from the reaction disk to the detection operation site. For testing, the process is simpler. As mentioned earlier, some tests do not require incubation after the addition of the signal reagent, and can be transported directly from the reaction disk 1 to the detection station 101 for detection.
  • steps S900 and S902 The sample is added to the reaction vessel through the dispensing unit and the first reagent is added; in step S904, the reaction vessel is transported to the mixing unit 7 for mixing; in step S906 In the first incubation, the sample and the reagent are carried out; in step S908, the reaction container is transported to the washing unit 6 for washing separation; in step S912, the second reagent is added; in step S914 The reaction solution after the second reagent is newly added is mixed; in step S916, the first incubation is performed on the mixed liquid; in step S918, the cleaning separation is performed; in step S919 In the middle, the signal reagent is added; in step S920, the second incubation is performed; in step S922, the detection is performed. As mentioned earlier, some tests can be performed by the reaction plate 1 without the need for incubation after the addition of the signal reagent. Transfer to the test operator bit 101
  • the reaction disk 1 As shown in Figure 6, in order to provide more incubation sites to increase the test throughput, there are a total of three internal and external ring structures on the reaction disk 1, the reaction disk 1 The position where the first incubation operation was performed was set two times, and the middle and inner rings were only used for the first incubation of the reaction liquid.
  • the detection unit 3 is to be adjacent to the reaction disk 1 for easy detection. Since the detection unit 3 is located on the reaction tray 1 The outside side, so the detection operation is implemented in the outer ring.
  • the rotation of each circle can be flexibly controlled by independent driving.
  • the outer ring is independently driven, the middle ring and the inner ring.
  • the drive is independent and the test will be more flexible and convenient.
  • the present invention can also be applied to other immunoanalyzers such as fluorescence immunoassay, electrochemiluminescence immunoassay, and the like.
  • Various embodiments may be included in various embodiments of the invention, which may be embodied as machine-executable instructions that are executable by a general purpose or special purpose computer (or other electronic device). Alternatively, these steps may be performed by hardware elements including specific logic circuitry to perform these steps or by hardware, software, and / or firmware joint implementation.
  • the three methods are followed by the second incubation after the addition of the signal reagent, and then the detection is performed.
  • some tests can be directly detected after the signal reagent is added without incubation.
  • the above manner can also be extended to other methods, for example, a third reagent or the like can also be added.
  • the reaction vessel after the completion of the second incubation does not need to be transported to the reaction tray
  • the detection position other than 1 is detected, the system structure is simplified, and the test time is saved.
  • the reaction disk 1 of the present invention can transport the reaction container to the detection operation position.
  • the first incubation site including the reaction solution for incubation, and when the test requires incubation after the addition of the signal reagent may also include a second incubation site for incubating the reaction vessel after the signal reagent is added.
  • reaction disk 1 With only one revolution, a number of locations are distributed, which may be holes or slots, etc., for incubating or/and carrying the reaction vessel 42 and transporting the reaction vessel 42 to a predetermined operational position, including the detection operational position 101.
  • the detecting unit 3 is located outside the reaction tray 1, and the outside is the outside of the reaction disk 1 of the annular structure. When the reaction vessel 42 is transported to the detection operation bit 101, the detection unit 3 Signal measurement analysis was performed on the reaction vessel 42.
  • the reaction tray 1 further includes a first incubation position in which the reaction solution is incubated, and may further include a reaction vessel 42 after the addition of the signal reagent. A second incubation site for incubation.
  • the detection unit 3 can also be located inside the reaction disk 1, and likewise, when the reaction disk 1 is transported to the detection operation position 101 Signal measurement analysis is performed at the time.
  • the system structure is simplified, the time is saved, the testing process is simplified, the analysis efficiency of the automatic analysis device is improved, the incubation position and the cleaning unit are separated, the interaction between the cleaning single separation and the incubation is avoided, and the reaction disk is more easily controlled.
  • the temperature and wash separation operation increases the efficiency of incubation and wash separation.
  • the reaction disk can also be arranged two times.
  • the specific operation position to which the reaction disk is transported includes the detection operation position, and the detection unit is located outside the reaction disk, and the test needs to be added after the signal reagent is added.
  • the outer ring can also include a second incubation site, the inner ring including a first incubation site.
  • the detection unit may also be located on the inner side of the reaction disk, the outer ring includes a first incubation position, and the inner ring may further include a second incubation position.
  • the inner ring may also be subjected to the first incubation.
  • the reaction disk can also be arranged in multiple turns, such as three turns and three or more turns, so that it can be carried on the reaction disk. / Incubate more reaction vessels.
  • the reaction disk 1 is arranged in two turns, the outer ring 1a and the inner ring 1b .
  • the specific operating position to which the reaction disk is transported includes a detection operation bit 101, the detection unit 3 is located outside the reaction disk 1, and when the test needs to be incubated after the addition of the signal reagent, the outer ring may further include a second incubation position, the inner ring 1b includes the first incubation position. It is also possible to arrange the detection unit 3 on the inner side of the reaction disk, as shown in Fig. 12, the outer ring 1a Including the first incubation position, the inner circle may also include a second incubation position when the test requires incubation after the addition of the signaling agent.
  • the reaction disk 1 is set to three rings, the outer ring 1a, the inner ring 1b and the middle ring 1c. .
  • the specific operating position to which the reaction disk 1 is transported includes the detection operation position, and the detection unit 3 is located outside the reaction disk 1.
  • the outer ring may further include a second incubation position, the inner ring 1b And the middle circle 1c includes the first incubation position.
  • the detection unit 3 may also include a second incubation position when the test requires incubation after the addition of the signaling agent. It also increases the number of incubation sites, allowing more reaction vessels to be incubated at the same time, improving the efficiency of the test. Also available in the reaction tray
  • the detecting unit 3 is respectively disposed on the outer side and the inner side of 1 , as shown in Fig. 15, the specific operation bit to which the reaction disk 1 is transported includes a detecting operation bit, two detecting units, an outer detecting unit 302 and an inner detecting unit.
  • the outer detecting unit 302 is located outside the reaction disk 1, and the inner detecting unit 300 is located at the reaction disk 1
  • the outer and inner rings may also include a second incubation position, and the middle circle 1c includes a first incubation position. Further, it is also possible to increase the reaction disk 1 The number of turns can accommodate more reaction vessels for detection and incubation.
  • the invention also provides an analysis device comprising: a reaction unit for carrying a reaction container and transporting the reaction container to a predetermined operation position; a detection unit for detecting the analyte in the reaction container; and a cleaning unit for Removing unbound components of the reaction system; dispensing unit for injecting reagents into the reaction vessel or And a sample; the reaction unit is provided with an incubation position for incubation of the liquid in the reaction vessel, the incubation position comprising a first incubation position and a second incubation position.
  • the incubation unit and the cleaning unit are separated, the influence of the cleaning separation operation on the incubation temperature and the restriction of the incubation transport are avoided, the incubation efficiency is improved, and the test procedure is made more flexible, since the incubation unit includes the first incubation position and the second incubation position. Incubation of both incubations in the reaction plate increases incubation efficiency, saves energy, and simplifies system structure.
  • the automatic analysis device includes a reaction disk 1, a reagent disk 2, and a detection unit 3
  • the corresponding detecting unit 3 on the automatic analyzing device includes a corresponding detecting position 8 .
  • Reaction plate 1 a ring structure comprising at least one turn, a number of positions distributed per turn, which may be holes or slots, etc., for incubation or And carrying the reaction vessel and transporting the reaction vessel to a predetermined operating position for other units to perform corresponding operations, such as adding a sample or reagent, or shipping.
  • Reaction plate 1 An incubation site is included, the incubation site including a first incubation location and a second incubation location.
  • the reagent tray 2 is used to hold a reagent container, such as a reagent bottle.
  • Detection position 8 Independent of the reaction plate 1 , can be located in the reaction tray 1 The outer side can also be located inside the reaction disk 1.
  • Detection unit 3 is used to detect the position at the detection position 8
  • the analyte in the reaction vessel the detection unit such as a photometer, detects the analyte content by detecting the light signal.
  • the reaction vessel supply unit 4 is for accommodating a reaction vessel such as a reaction vessel.
  • Second transport unit 500 It is used to transport the reaction vessel between the reaction tray 1 and the reaction vessel supply unit 4.
  • the dispensing unit includes a sample dispensing unit 502 for dispensing the sample and reagent dispensing unit 504.
  • Sample dispensing unit 502 may be a sample needle for sucking and discharging a sample;
  • the reagent dispensing unit 504 may be a reagent needle for sucking and discharging a reagent.
  • the movement path of the first transport unit 506 passes through the reaction disk 1 and the mixing unit 7.
  • the cleaning unit 6 and the detecting unit 3 for transporting the reaction vessel between the reaction tray 1 and the cleaning unit 6, and also the reaction vessel in the reaction tray 1 and the mixing unit 7 Between the delivery, the reaction vessel is also transported between the reaction tray 1 and the detection location 8.
  • the cleaning unit 6 is used to remove unbound components of the reaction system.
  • Mixing unit 7 It is used to mix the reaction solution, and some analytical methods do not need to be mixed.
  • the reaction vessel is transported from the reaction tray 1 to the detection position 8 through the transport unit, and then the detection position is detected by the detection unit.
  • the analyte in the upper reaction vessel is tested. Since the light signal of the liquid in the reaction vessel is usually very low and is easily interfered by the external light source, the light signal detection process requires a good closed light environment, and the detection position is separately set. It is easier to form the desired closed light environment in structural design, and on the other hand, it can avoid the limitation of detecting the incubation and transport of the reaction disk.
  • the detection unit 3 Since the second incubation after the addition of the signal has been completed on the reaction disk 1, the detection unit 3 There is no need to provide a second incubation function.
  • the detection position 8 may not be separately set to detect the sample, but the sample detection is performed on the reaction disk 1, that is, the detection unit is in the detection operation bit.
  • the reaction vessel on the reaction tray 1 was tested similarly to the embodiment of Figure 6.
  • the sample and reagent are filled on the reaction disk 1, and the sample is filled through the sample dispensing unit 502 through the reagent dispensing unit.
  • the 504 filling reagent may also be followed by adding a reagent and then adding a sample, and transporting the reaction container to the mixing unit 7 through the first transport unit 506 for mixing, passing through the first transport unit 506.
  • the reaction vessel is transported to the first incubation position of the reaction tray 1 for a first incubation, and after the first incubation is completed, the reaction vessel is transported to the cleaning unit 6 by the first transport unit 506.
  • the cleaning separation is carried out, and the signal reagent is added.
  • the signal reagent can also be added at other positions, and then the reaction container is transported to the reaction tray through the first transport unit 506.
  • the second incubation position is subjected to a second incubation, and after the second incubation is completed, the reaction container is transported to the detection unit 3 by the first transport unit 506 for detection.
  • the reaction disk 1 is a ring-shaped structure including at least one turn including a first incubation position and a second incubation position.
  • the mixing unit can be set separately, or the mixing unit 7 can be placed on the reaction tray 1.
  • Detection unit 3 It may be provided separately as in the above-described embodiment, or may be disposed around the reaction disk 1, and the detection unit 3 detects the reaction container on the reaction disk 1 at the detection operation position.
  • the number of dispensing units and transport units can be increased or decreased, and the dispensing unit and the transport unit can be flexible in different quantities, taking into account factors such as optimizing combined test efficiency, overall size and cost.
  • Combination such as the case where there is only one dispensing unit and only one transport unit, three dispensing units, and two transport units.
  • the present invention also provides a sample analysis method comprising: a dispensing step of dispensing a sample and a reagent in a reaction vessel; an incubation step of incubating the reaction vessel on the reaction unit; and a washing and separating step to remove unbound in the reaction system a component; a signal reagent step, adding a signal reagent to the reaction vessel; and a detecting step, the reaction unit transports the reaction vessel to the detection operation position, and the analyte in the reaction vessel is detected by the detection unit at the detection operation position.
  • the incubation step of the present invention is carried out in a reaction tray, and the separation and separation are carried out in a cleaning unit, so that the incubation step and the cleaning separation step are respectively carried out in different structures, thereby avoiding the mutual influence of the washing separation and the incubation process, and facilitating the control of the incubation temperature condition and the improvement. Work efficiency.
  • the invention not only carries out the incubation step on the reaction tray, but also the detection step is carried out by the detection unit in the detection operation position, and the plurality of functions are concentrated together, which simplifies the system structure, so that the reaction container after the signal reagent is added does not need to be transported after the completion of the second incubation.
  • Photometric analysis is performed at the detection position outside the reaction tray, and the operation of detecting the second incubation and then transporting to a position other than the reaction tray is omitted, saving test time, simplifying the test procedure, and making the efficiency of the automatic analysis device higher.
  • Both the first incubation step and the second incubation step of the present invention are performed in one tray, which simplifies the system structure, reuses energy, and does not need to be separately incubated in the two trays, thereby saving energy consumption.
  • the incubation step can be omitted, and the detection can be directly performed on the reaction tray.
  • the present invention also provides a sample analysis method comprising: a dispensing step of dispensing a sample and a reagent in a reaction vessel; a first incubation step of performing a first incubation on the reaction vessel on the reaction unit; and a washing and separating step to remove the reaction system The unbound component; the signal reagent step, the signal reagent is added to the reaction vessel; the second incubation step, the second incubation of the reaction vessel on the reaction unit; and the detection step to detect the analyte in the reaction vessel.
  • the incubation step of the present invention is carried out in a reaction tray, and the separation and separation are carried out in a cleaning unit, so that the incubation step and the cleaning separation step are respectively carried out in different structures, thereby avoiding the mutual influence of the washing separation and the incubation process, and facilitating the control of the incubation temperature condition and the improvement. Work efficiency. Both the first incubation step and the second incubation step of the present invention are performed in one tray, which simplifies the system structure, reuses energy, and does not need to be separately incubated in the two trays, thereby saving energy consumption.
  • the invention separates the detection unit from the reaction disk, and is more convenient to form the required closed light environment from the structural design, and also avoids the limitation of detecting the incubation and transportation of the reaction plate, and after the completion of the second incubation step, the reaction is further performed.
  • the container is transported to the detecting unit for detection, and the detecting step is completed on the detecting unit outside the reaction tray.
  • the detecting unit can also be located around the reaction tray, and the reaction container that completes the second incubation step is transported to the detecting operation position, and the detecting unit is detecting The operating position completes the detection step for the reaction vessel on the reaction tray.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Pathology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biotechnology (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Description

自动分析装置及其样本分析方法
技术领域
本发明涉及一种自动分析装置及其样本分析方法,尤其是一种自动分析装置的系统结构及其样本分析方法。
背景技术
免疫分析仪是一类高灵敏度及高特异性的分析仪器,在临床实验室中常被用于检测血液、尿液或其它体液的各项分析指标。传统的免疫分析仪有多种实现原理,比如化学发光法、电化学发光法等。以非均相化学发光免疫分析仪为例,请参考图 1 ,其主要工作原理主要为:如测量样本中的某成分,可将相应的抗体 / 抗原包被在磁珠上形成磁珠试剂,将特定的标记物标记在抗体上形成标记试剂(测量某分析项目的试剂一般有多种组分,比如此处的磁珠试剂组分、标记试剂组分等,同一项目的不同组分可分装在不同的试剂容器内或同一试剂容器的不同腔内)。测试过程首先将含有待测物的样本先后和磁珠试剂、标记试剂及其他试剂混合在一起形成样本试剂反应液(简称反应液),并在一定条件下孵育反应形成反应复合物;然后通过清洗分离( Bound-free , 一般简称 B/F )技术,将反应体系中未结合的标记物及其他试剂、样本成分清除;然后向其中加入信号试剂,则反应复合物上的标记物与信号试剂反应(或催化信号试剂)发光。信号试剂可以为一种或多种,如发光底物液、预激发液和激发液以及发光增强液等。具体的包被清洗方式也有多种,除了上述的磁珠清洗方式外,还有将抗体包被在反应容器壁、塑料珠等其他方式。
针对测试项目的不同特点,常见的免疫分析仪需要支持以下几种不同的测试流程。
( 1 )一步法测试
请参考图 2 ,一步法是指测试过程中仅加入一次试剂,为最简单的一种测试模式。向反应容器中加入试剂、样本形成反应液并混匀,将混匀后的反应容器放置到恒温条件下孵育反应一定时间后,进行清洗分离,再向完成了清洗分离的反应容器中加入信号试剂,加入信号试剂后的反应容器放置到恒温条件下孵育一定时间后测光。有的测试,在加入信号试剂后不需要孵育,则可以直接测光,例如基于电化学发光或闪光体系的化学发光测试,如图 3 所示。
( 2 )两步法一次清洗分离测试
请参考图 4 ,向反应容器中加入试剂(称为第一试剂,可能为多种组分)、样本形成反应液并混匀,将混匀后的反应容器放置到恒温条件下孵育反应一定时间。然后再次向反应容器中加入试剂(称为第二试剂,可能为多种组分)并混匀,将混匀后的反应容器放置到恒温条件下孵育反应一定时间。孵育完成后进行清洗分离,其后向完成了清洗分离的反应容器中加入信号试剂,加入信号试剂后的反应容器放置到恒温条件下孵育一定时间后测光,如前所述,有的测试在加入信号试剂后不需要孵育,则可以直接测光。
( 3 )两步法两次清洗分离测试
请参考图 5 ,向反应容器中加入部分试剂(称为第一试剂,可能为多种组分)、样本形成反应液并混匀,将混匀后的反应容器放置到恒温条件下孵育反应一定时间后进行清洗分离。然后再次向反应容器中加入试剂(称为第二试剂,可能为多种组分)并混匀,将混匀后的反应容器放置到恒温条件下孵育反应一定时间。孵育完成后进行清洗分离,其后向完成了清洗分离的反应容器中加入信号试剂,加入信号试剂后的反应容器放置到恒温条件下孵育一定时间后测光,如前所述,有的测试在加入信号试剂后不需要孵育,则可以直接测光。
上述不同的测试流程中各个项目的孵育时间又各不相同。因此为了获得准确的测试结果并支持更多的测试项目,免疫分析仪需要支持非常灵活的测试模式。
一种传统的免疫分析仪是将孵育、检测和清洗分离功能设置在一个盘上,然而该设计方式有如下缺点:( 1 )清洗分离限制了盘的灵活转动,导致支持的孵育时间固定,难以适应不同测试项目的反应特点;( 2 )将孵育、检测和清洗分离均设置在一个盘上,导致该盘的尺寸过大、结构复杂,制造工艺难度大;( 3 )为了支持两步法两次清洗的测试需求,需要设置两个清洗分离装置,成本高;( 4 )孵育需要控制盘内的温度稳定,但清洗分离操作会造成盘内温度的波动,从而导致测试结果不稳定。另一种传统的免疫分析仪是将反应液的孵育、清洗分离、加入信号试剂后的孵育和测光功能分开设置在不同的结构单元上,该设计方式有如下缺点:( 1 )成本高,结构复杂,整机尺寸大;( 2 )反应液的孵育、加入信号试剂后的孵育和测光在不同结构单元上,能量利用率低,同时需要各单元协调动作,控制复杂,测试步骤繁多,系统结构复杂。
发明内容
为解决现有技术的问题,本发明提供一种可有效避免孵育和清洗分离的相互影响、测试更加灵活同时结构更简单的自动分析装置及其样本分析方法。
根据本发明的一方面,提供一种自动分析装置,包括:反应单元,用于承载反应容器并将反应容器转运到预定的操作位,所述操作位包括检测操作位;检测单元,用于在检测操作位对反应单元上的反应容器内的分析物进行检测;清洗单元,用于去除反应体系中未结合的成分;分注单元,用于向反应容器中注入试剂或 / 和样本;所述反应单元上设有用于反应容器内液体孵育的孵育位置。
根据本发明的另一方面,提供一种自动分析装置,包括:反应单元,用于承载反应容器并将反应容器转运到预定的操作位;检测单元,用于对反应容器内的分析物进行检测;清洗单元,用于去除反应体系中未结合的成分;分注单元,用于向反应容器中注入试剂或 / 和样本;所述反应单元上设有用于反应容器内液体孵育的孵育位置,所述孵育位置包括第一孵育位置和第二孵育位置。
根据本发明的再一方面,提供一种样本分析方法,包括:分注步骤,在反应容器中分注样本和试剂;孵育步骤,在反应单元上对反应容器进行孵育;清洗分离步骤,去除反应体系中未结合的成分;加信号试剂步骤,在反应容器中加入信号试剂;检测步骤,反应单元将反应容器转运到检测操作位,通过检测单元在检测操作位对反应容器内的分析物进行检测。
根据本发明的再一方面,提供一种样本分析方法,包括:分注步骤,在反应容器中分注样本和试剂;第一孵育步骤,在反应单元上对反应容器进行第一孵育;清洗分离步骤,去除反应体系中未结合的成分;加信号试剂步骤,在反应容器中加入信号试剂;第二孵育步骤,在反应单元上对反应容器进行第二孵育;检测步骤,对反应容器内的分析物进行检测。
本发明将具有孵育功能的反应单元和具有清洗分离功能的清洗单元分开布局,可以使反应容器的孵育和清洗分离分别在不同的单元上完成,避免了孵育和清洗分离的相互影响,使该自动分析装置分析测试更加灵活,同时将第一孵育和检测转运或第二孵育都由反应单元来实现,精简了系统结构,提高了分析装置的工作效率。
附图说明
图 1 为免疫分析原理图;
图 2 为一步法清洗分离示意图;
图 3 为另一种一步法清洗分离流程图;
图 4 为两步法一次清洗分离示意图;
图 5 为两步法两次清洗分离示意图;
图 6 为本发明自动分析装置的第一种实施方式示意图;
图 7 为一步法分析流程图;
图 8 为两步法一次清洗分离流程图;
图 9 为两步法两次清洗分离流程图;
图 10 为本发明反应盘的第一种实施方式示意图;
图 11 为本发明反应盘的第二种实施方式示意图;
图 12 为本发明反应盘的第三种实施方式示意图;
图 13 为本发明反应盘的第四种实施方式示意图;
图 14 为本发明反应盘的第五种实施方式示意图;
图 15 为本发明反应盘的第六种实施方式示意图;
图 16 为本发明反应单元的另一种实施方式示意图;
图 17 为本发明自动分析装置的第二种实施方式示意图;
图 18 为本发明自动分析装置的第三种实施方式示意图;
图 19 为本发明自动分析装置的第四种实施方式示意图;
图 20 为本发明自动分析装置的第五种实施方式示意图;
图 21 为本发明自动分析装置的第六种实施方式示意图。
具体实施方式
下面通过具体实施方式结合附图对本发明作进一步详细说明。
本发明的自动分析装置包括:反应单元,用于承载反应容器并将反应容器转运到预定的操作位,所述操作位包括检测操作位;检测单元,用于在检测操作位对反应单元上的反应容器内的分析物进行检测;清洗单元,用于去除反应体系中未结合的成分;分注单元,用于向反应容器中注入试剂或 / 和样本;所述反应单元上设有用于反应容器内液体孵育的孵育位置。反应单元可以是圆盘式的反应盘,如图 6 、图 10- 图 15 所示,也可以设计成轨道式的,如图 16 所示。最常用的反应单元是反应盘的形式,因此,为便于表述,上文均以圆盘式的反应盘为例对反应单元进行说明。
针对抗体包被在固相载体上的技术有所差异,清洗分离的主要目的在于保留所希望获得的反应复合物,去除反应体系中其他多余的成分。如果采用磁珠包被的技术,则需要借助磁场的作用,将反应液中的磁珠聚集在反应容器壁面,然后清洗掉其他的剩余物。如果采用反应容器表面包被抗体的技术,则直接对反应容器进行清洗即可。
为完成孵育,自动分析装置一般设有温控装置控制孵育的温度条件,而清洗单元由于其操作流程,会对温度产生一定影响。本发明的反应盘具有孵育功能,而清洗单元位于反应盘的外侧,通过将孵育单元和清洗单元分开布局,以获得更加稳定的孵育温度,避免了清洗分离对孵育温控的影响。本领域技术人员可以理解,清洗单元也可以位于反应盘的内侧,如图 21 所示,只要与反应盘具有空间上的间隔,避免清洗分离和反应盘孵育的相互影响即可。清洗单元和反应盘的具体布局可以因需要而设,反应容器在两者之间的运送由运送单元完成。另一方面,这种布局方式的自动分析装置可以使反应容器的孵育和清洗分离分别在不同的单元上完成,避免了孵育和清洗分离的相互影响,从而令分析测试更加灵活,提高了分析装置的工作效率。
请参考图 6 是一步法测试的一种具体实施方式,自动分析装置包括反应盘 1 、试剂盘 2 、检测单元 3 、反应容器供给单元 4 、第二运送单元 500 、样本分注单元 502 、试剂分注单元 504 、第一运送单元 506 、清洗单元 6 及混匀单元 7 。反应盘 1 为环形结构,包括至少一圈,每圈分布了一定数量的位置,这些位置可以是孔或槽等,用于孵育或 / 和承载反应容器并将反应容器转运到预定的操作位,以便其他单元进行相应的操作,操作位为反应盘上的反应容器所能被转运到的特定位置,如检测单元 3 检测反应容器内分析物的检测操作位 101 、分注单元加样本或 / 和试剂的分注操作位 102 、运送单元运送反应容器的运送操作位 103 、 104 等。本领域技术人员可以理解,操作位可以多于或少于上述操作位,上述操作位也有可能重合或包括其他操作位,比如操作位 102 和 104 可以是同一个位置,分注操作位 102 可以包括样本分注操作位和试剂分注操作位等。试剂盘 2 用于容纳试剂容器,比如试剂瓶。检测单元 3 用于检测反应盘上的反应容器内的分析物,检测单元比如光度计,通过探测光强来检测待测物的浓度。反应容器供给单元 4 用于容纳反应容器,反应容器比如反应杯。运送单元包括第一运送单元 506 和第二运送单元 500 。第二运送单元 500 用于将反应容器在反应盘 1 和反应容器供给单元 4 之间运送。分注单元包括样本分注单元 502 和试剂分注单元 504 。样本分注单元可以是用于吸取、排放样本的样本针。试剂分注单元 504 可以是用于吸取、排放试剂的试剂针。第一运送单元 506 的运动轨迹与反应盘 1 、清洗单元 6 相交并经过混匀单元 7 ,用于将反应容器在反应盘 1 和清洗单元 6 之间运送,还能够将反应容器在反应盘 1 和混匀单元 7 之间运送。清洗单元 6 用于去除反应体系中未结合的成分,清洗单元 6 位于反应盘 1 的外侧,即清洗单元和反应盘独立设置。混匀单元 7 用于将反应溶液进行混匀,有些样本分析方法不需要混匀。
反应容器供给单元 4 为该自动分析装置提供反应容器,由第二运送单元 500 将一个新的反应容器运送到运送操作位 104 。
本发明的反应盘 1 、混匀单元 7 和清洗单元 6 在第一运送单元 506 的运动轨迹上,既可以将反应容器在反应盘 1 和混匀单元 7 之间运送,又可以将反应容器在反应盘 1 和清洗单元 6 之间运送,简单方便。当然,也可以分别设置两个运送单元分别将反应容器在反应盘 1 和清洗单元 6 之间运送和将反应容器在反应盘 1 和混匀单元 7 之间运送。
整机工作流程请参考图 6 和图 7 ,反应盘 1 将一空位转运至运送操作位 104 ,通过第二运送单元 500 将反应容器运送到反应盘 1 上,反应盘 1 将该反应容器转运到分注操作位 102 。在步骤 S700 中,通过样本分注单元 502 在分注操作位 102 向反应容器中加入样本。在步骤 S702 中,通过试剂分注单元 504 在分注操作位 102 向反应容器中加入试剂,反应盘 1 将该反应容器转运到运送操作位 103 。在步骤 S704 ,第一运送单元 506 将装有加入了样本和试剂的反应液的反应容器运送到混匀单元 7 进行混匀。在步骤 S706 中,完成混匀的反应容器被第一转送单元 506 转移到反应盘 1 中圈 1c 和 / 或内圈 1b 进行反应液的孵育,如果反应盘 1 的外圈有空位,也可以放入反应盘 1 的外圈 1a 进行孵育,将样本和试剂组成的反应液进行的孵育定义为第一孵育,该第一孵育对应在反应盘上的孵育位置定义为第一孵育位置。在步骤 S708 中,在到达预定的第一孵育时间后,反应盘 1 将反应容器再次转运到运送操作位 103 ,由第一运送单元 506 将反应容器运送到清洗单元 6 ,此后的数个周期内,反应容器随着清洗单元 6 递进,由清洗单元 6 对反应容器进行清洗分离。其中,清洗分离的方式有多种,这取决于所采用的包被技术,比如磁分离方法,是抗体或抗原包被在磁珠的表面,还可以包被在反应容器表面,或者其他固相表面,这分别对应着不同的清洗分离方法。在步骤 S709 中,在反应容器中加入信号试剂,可以直接在清洗单元 6 中向反应容器中加入信号试剂,也可以先将反应容器运送到反应盘 1 后,再向反应容器中加入信号试剂,还可以先将反应容器运送到反应盘 1 和清洗单元 6 外的某个位置后再向反应容器中加入信号试剂,然后再将反应容器运送到反应盘 1 上,常用的是在清洗单元 6 中向反应容器中加入信号试剂,为了便于表述,下文仅以在清洗单元 6 中向反应容器中加入信号试剂的情况为例进行描述。发光方案也存在不同的实现形式,本实施方式中采用了标记物催化信号试剂发光的方法,也可以标记物和信号试剂反应发光,或者在外加条件,如外加电场、磁场、光学激发等作用下发光,由此可以检测相应的样本中分析物浓度。化学发光分析仪中主要的操作流程包括分注试剂和样本、混匀反应液、孵育、清洗分离、信号试剂加入以及检测等,有些分析方法也不需要混匀。在步骤 S710 中,在清洗单元 6 中加入了信号试剂后的反应容器再次运动到第一运送单元 506 的轨迹上,通过第一运送单元 506 运送到反应盘 1 的外圈 1a 进行加入信号试剂后的孵育,将加入信号试剂后进行的孵育定义为第二孵育,该第二孵育对应在反应盘 1 上的孵育位置定义为第二孵育位置。此外,在其他测试过程中,加入信号试剂后不需要孵育,可以由反应盘 1 转运至检测操作位 101 直接测光,例如基于电化学发光或闪光体系的化学发光测试等。在步骤 S712 中,反应盘 1 转运反应容器到达检测操作位 101 ,由检测单元 3 对反应容器内的分析物进行检测,检测信号可以是反应容器内液体发出的光信号。其后完成了测试的反应容器由反应盘 1 转运到运送操作位 104 ,由第二运送单元 500 将其运送抛弃,至此一步法反应的测试流程完成。
本领域技术人员可以理解,在具体实施过程中,也可以先加试剂再加样本,本文为了叙述方便,以先加样本为例进行说明。
本领域技术人员可以理解,图 6 所示的分注单元包括样本分注单元 502 和试剂分注单元 504 ,运送单元包括第一运送单元 506 和第二运送单元 500 ,具体实施过程中,考虑到优化组合测试效率、整机尺寸和成本等要素,分注单元和运送单元的数量可以增加或减少,分注单元和运送单元可以以不同的数量灵活组合,如只有一个分注单元和只有一个运送单元、有三个分注单元和两个运送单元的情况等。
参考图 18 ,在本发明的另一个具体实施方式中,分注单元只有一个,可以是用于吸取、排放样本和试剂的加样针,样本和试剂的吸取、排放都由分注单元 510 完成,与图 6 所示的实施方式比较,该实施方式省去了一个分注单元,节约了成本。参考图 7 ,加样本步骤 S700 和加试剂步骤 S702 都由分注单元 510 完成,其他结构和工作流程与图 6 和图 7 所示的实施方式相似。
参考图 19 ,在本发明的另一个具体实施方式中,运送单元只有一个,运送单元 520 承担了图 6 所示的第一运送单元 506 和第二运送单元 500 所有的反应杯运送功能,节约了成本,运送单元 520 按时序完成反应容器在反应容器供给单元 4 、反应盘 1 、清洗单元 6 、混匀单元 7 之间的运送,因此,反应容器供给单元 4 、运送操作位 103 和 104 、清洗单元 6 、混匀单元 7 都在运送单元 506 的运动轨迹下或与其运动轨迹有相交,图 7 所示的工作流程中,反应杯的运送功能都由运送单元 520 完成,其他结构和工作流程与图 6 所示的实施方式相似。
参考图 20 ,在本发明的另一个具体实施方式中,分注单元只有一个,运送单元只有一个,分注单元 510 与图 18 所示的分注单元类似,运送单元 520 与图 19 所示的运送单元类似,其他结构和工作流程与图 6 所示的实施方式相似,减少了整机尺寸和成本。
本发明的反应盘上设有孵育位置,这些位置可以是孔或槽等,反应盘和清洗单元是分别独立的结构,本发明通过将反应盘和清洗单元分开布局,可以使反应容器的孵育和清洗分离分别在不同的单元上完成,避免了孵育和清洗分离的相互影响,从而令该分析装置分析测试更加灵活,同时避免了清洗分离对孵育过程的影响,便于控制孵育的温度条件,提高了工作效率。
本发明的反应盘不但可以在检测操作位利用光测单元对反应容器内的分析物进行检测,还可以对加入信号试剂后的液体进行第二孵育,将多个功能集成在一个结构上,简化了系统结构,还使得加入信号试剂的反应容器在完成第二孵育后直接转运到检测操作位进行分析物检测,省去了第二孵育后再运送到反应盘之外的位置再进行检测的步骤,节省了测试时间,简化了测试步骤,使得该自动分析装置的效率更高。在优选的实施方式中,如果反应盘有多圈,检测操作位和第二孵育位置在同一圈,完成第二孵育后可以直接转运到检测操作位进行检测。当然,也可以将检测操作位和第二孵育位置不设置在反应盘的同一圈,只需要将完成第二孵育的反应容器运送到具有检测操作位的一圈进行检测,同样也省去了完成第二孵育的反应容器再运送到反应盘之外的位置进行检测的步骤,简化了测试步骤,简化了系统结构。
通常而言,对反应液的第一孵育和对加入信号试剂后的第二孵育所需要的孵育温度条件是相同的,因此在在同一个盘内进行,简化了系统结构,重复利用了能源,不用在两个盘内分别进行孵育,节省了能源消耗。当然,对于有些发光方案,加入信号试剂之后可以不用孵育,可以由反应盘转运到检测操作位直接进行检测。
为了实现两步法一次清洗分离测试流程,在一种具体的实施方式中,请参考图 8 ,在步骤 S800 和步骤 S802 中,通过分注单元在反应容器内加样本和加第一试剂。在步骤 S804 中,将反应容器运送到混匀单元 7 进行混匀。混匀单元可以独立于反应盘 1 ,也可以直接在反应盘 1 上设置混匀位置,且混匀的方式有多种,比如超声波等。在步骤 S806 ,将样本和试剂组成的反应液进行第一孵育。在步骤 S808 中,完成了第一孵育的反应容器转运到分注操作位 102 加注第二步试剂。在步骤 S810 ,将刚加入第二试剂后的反应液混匀。在步骤 S812 中,对加入第二试剂的反应容器进行第一孵育。在 S814 步骤中,由清洗单元 6 对反应容器进行清洗分离。在步骤 S815 中,加入信号试剂。在步骤 816 中,进行第二孵育。在步骤 S818 中,完成第二孵育后,直接进行检测。有些分析方法也不需要混匀操作。
从上述描述可以看出,该自动分析装置不但可以在反应盘 1 上由检测单元 3 在检测操作位 101 对反应容器进行信号检测,还可以对加入信号试剂后的反应容器进行第二孵育,简化了系统结构,还使得加入信号试剂的反应容器第二孵育后转运到检测操作位 101 进行信号检测,省去了第二孵育后再运送到反应盘 1 之外的检测位置的步骤,节省了测试时间,从而使得该自动分析装置的效率更高。此外,对反应液孵育的第一孵育和对加入信号试剂后的第二孵育在同一个盘内进行,重复利用了能源,不用在两个盘内分别进行孵育,节省了能源消耗,简化了系统结构。如果反应盘 1 有多圈,第一孵育位置则可以设置在反应盘 1 中的任意一圈或者几圈,第二孵育位置也可以设置在反应盘 1 中的任意一圈或者几圈,优选第二孵育位置在邻近检测单元 3 的一圈,这样完成第二孵育的反应容器可以直接由反应盘转运到检测操作位 101 进行检测,流程更简单。如前所述,有的测试在加入信号试剂后不需要孵育,则可以由反应盘 1 转运到检测操作位 101 直接进行检测。
为了实现两步法二次清洗分离操作,在一种具体的实施方式中,请参考图 9 。在步骤 S900 和 S902 中,通过分注单元在反应容器内加样本和加第一试剂;在步骤 S904 中,将反应容器运送到混匀单元 7 进行混匀;在步骤 S906 中,将样本和试剂进行第一孵育;在步骤 S908 中,将反应容器运送到清洗单元 6 进行清洗分离;在步骤 S912 中,加入第二试剂;在步骤 S914 中,将新加入第二试剂后的反应液混匀;在步骤 S916 中,对混匀后的液体进行第一孵育;在步骤 S918 中,进行清洗分离;在步骤 S919 中,加入信号试剂;在步骤 S920 中,进行第二孵育;在步骤 S922 中,进行检测。如前所述,有的测试在加入信号试剂后不需要孵育,则可以由反应盘 1 转运到检测操作位 101 直接进行检测。有些分析方法也不需要混匀操作。
如图 6 所示,为了提供更多的孵育位置从而提高测试通量,反应盘 1 上共有内外中三圈结构,反应盘 1 上执行第一孵育操作的位置设置了两圈,中圈和内圈仅用于进行反应液的第一孵育。检测单元 3 要和反应盘 1 上邻接,以方便检测。由于检测单元 3 位于反应盘 1 的外侧,所以其中检测操作在外圈实现。
在本发明的基础上,为了进一步提高测试通量,同时让测试更加灵活,还可以通过独立的驱动,灵活控制各圈的转动,比如在上述实施方式中,外圈独立驱动,中圈和内圈独立驱动,测试会更加灵活方便。
除上述实施方式中描述的化学发光法,本发明还可以应用于荧光免疫分析、电化学发光免疫分析等其他的免疫分析仪。
本发明实施例中描述的技术特征或操作步骤可以按照任何合适的方式进行组合。本领域内普通技术人员容易理解,本发明实施例描述的方法中的步骤或动作的顺序是可以改变的。因此,除非另有说明要求一定的顺序,在附图或者详细描述中的任何顺序只是为了用作说明的目的,而不是必须的顺序。
本发明的各实施例中可以包括各种步骤,这些步骤可以体现为可由通用或专用计算机(或其它电子设备)执行的机器可执行的指令。可选地,这些步骤可以由包括了用以执行这些步骤的特定逻辑电路的硬件元件执行或者由硬件、软件和 / 或固件联合执行。
在上述分析中可以看出,三种方式均在加入信号试剂后进行第二孵育,然后进行检测,当然,有的测试在加入信号试剂后不需要孵育,则可以直接进行检测。此外,上述方式也可以扩展到其他方式,比如还可以加入第三试剂等。完成第二孵育后的反应容器不需要运送到反应盘 1 之外的检测位置进行检测,简化系统结构,节省测试时间,本发明的反应盘 1 可以将反应容器转运到检测操作位 101 ,包括反应液进行孵育的第一孵育位置,当测试在加入信号试剂后需要孵育时,还可以包括对加入信号试剂后的反应容器进行孵育的第二孵育位置。
在一种具体的实施方式中,请参考图 10 ,反应盘 1 只有一圈,分布了一定数量的位置,这些位置可以是孔或槽等,用于孵育或 / 和承载反应容器 42 并将反应容器 42 转运到预定的操作位,所述操作位包括检测操作位 101 。检测单元 3 位于反应盘 1 的外侧,外侧是指环形结构反应盘 1 的外侧。当反应容器 42 转运到检测操作位 101 的时候,由检测单元 3 对反应容器 42 进行信号测量分析。反应盘 1 还包括反应液孵育的第一孵育位置,还可以包括对加入信号试剂后的反应容器 42 进行孵育的第二孵育位置。当然,检测单元 3 还可以位于反应盘 1 的内侧,同样,当反应盘 1 转运到检测操作位 101 的时候进行信号测量分析。在本发明中,可以转运到检测操作位 101 对反应容器 42 进行信号测量分析,将多种功能集成到一个反应盘 1 上,简化了系统结构,节省了时间,简化了测试流程,提高了自动分析装置的分析效率,孵育位置和清洗单元分开,避免了清洗单分离和孵育的相互影响,更容易控制反应盘 1 的温度和清洗分离操作,提高了孵育和清洗分离的效率。在本发明的基础上,在其他实施方式中,反应盘也可以设置两圈,反应盘转运到的特定操作位包括检测操作位,检测单元位于反应盘的外侧,当测试在加入信号试剂后需要孵育时,外圈还可以包括第二孵育位置,内圈包括第一孵育位置。当然,如果外圈有空位置进行第一孵育,外圈也可以进行第一孵育。检测单元也可以位于反应盘的内侧,设置外圈包括第一孵育位置,内圈还可以包括第二孵育位置,当然,如果内圈有空位置进行第一孵育,内圈也可以进行第一孵育。在上述实施方式的基础上,反应盘也可以设置多圈,比如三圈和三圈以上,这样可以在反应盘上承载 / 孵育更多的反应容器。
在一种具体的实施方式中,请参考图 11 ,反应盘 1 设置两圈,外圈 1a 和内圈 1b 。反应盘转运到的特定操作位包括检测操作位 101 ,检测单元 3 位于反应盘 1 的外侧,当测试在加入信号试剂后需要孵育时,外圈还可以包括第二孵育位置,内圈 1b 包括第一孵育位置。也可以将检测单元 3 设置在反应盘的内侧,如图 12 所示,外圈 1a 包括第一孵育位置,当测试在加入信号试剂后需要孵育时,内圈还可以包括第二孵育位置。
在上述实施方式的基础上,请参考图 13 ,反应盘 1 设置三圈,外圈 1a ,内圈 1b 和中圈 1c 。反应盘 1 转运到的特定操作位包括检测操作位,检测单元 3 位于反应盘 1 的外侧,当测试在加入信号试剂后需要孵育时,外圈还可以包括第二孵育位置,内圈 1b 和中圈 1c 包括第一孵育位置。从而增加了孵育位置的数量,可以同时容纳更多的反应容器进行孵育,提高了测试的效率。也可以将检测单元 3 置于反应盘 1 的内侧,如图 14 所示,外圈 1a 和中圈 1c 包括第一孵育位置,当测试在加入信号试剂后需要孵育时,内圈还可以包括第二孵育位置。也同样增加了孵育位置的数量,可以同时容纳更多的反应容器进行孵育,提高了测试的效率。还可以在反应盘 1 的外侧和内侧分别设置检测单元 3 ,如图 15 所示,反应盘 1 转运到的特定操作位包括检测操作位,设置两个检测单元,外侧检测单元 302 和内侧检测单元 300 ,外侧检测单元 302 位于反应盘 1 的外侧,内侧检测单元 300 位于反应盘 1 的内侧,当测试在加入信号试剂后需要孵育时,外圈和内圈还可以包括第二孵育位置,中圈 1c 包括第一孵育位置。进一步的,还可以通过增加反应盘 1 的圈数,可以容纳更多的反应容器进行检测和孵育。
本发明还提供一种分析装置,包括:反应单元,用于承载反应容器并将反应容器转运到预定的操作位;检测单元,用于对反应容器内的分析物进行检测;清洗单元,用于去除反应体系中未结合的成分;分注单元,用于向反应容器中注入试剂或 / 和样本;所述反应单元上设有用于反应容器内液体孵育的孵育位置,所述孵育位置包括第一孵育位置和第二孵育位置。
由于将孵育单元和清洗单元分开,避免了清洗分离操作对孵育温度的影响和孵育转运的限制,提高了孵育效率,同时使得测试流程更加灵活,由于孵育单元包括第一孵育位置和第二孵育位置,将两种孵育都在反应盘内进行孵育,提高了孵育效率,节省了能源,简化了系统结构。
在一种具体的实施方式中,请参考图 17 ,自动分析装置包括反应盘 1 ,试剂盘 2 、检测单元 3 、反应容器供给单元 4 、第二运送单元 500 、样本分注单元 502 、试剂分注单元 504 、第一运送单元 506 、清洗单元 6 及混匀单元 7 。且自动分析装置上对应检测单元 3 包括相应的检测位置 8 。反应盘 1 为环形结构,包括至少一圈,每圈分布了一定数量的位置,这些位置可以是孔或槽等,用于孵育或 / 和承载反应容器并将反应容器转运到预定的操作位,以便其他单元进行相应的操作,如添加样本或试剂,或运送。反应盘 1 包括孵育位置,孵育位置包括第一孵育位置和第二孵育位置。试剂盘 2 用于容纳试剂容器,比如试剂瓶。检测位置 8 独立于反应盘 1 ,可以位于反应盘 1 外侧,也可以位于反应盘 1 内侧。检测单元 3 用于检测位于检测位置 8 处的反应容器内的分析物,检测单元比如光度计,通过探测光信号来检测分析物含量。反应容器供给单元 4 用于容纳反应容器,反应容器比如反应杯。第二运送单元 500 用于将反应容器在反应盘 1 和反应容器供给单元 4 之间运送。分注单元包括样本分注单元 502 用于分注样本和试剂分注单元 504 。其中,样本分注单元 502 可以是用于吸取、排放样本的样本针;试剂分注单元 504 可以是用于吸取、排放试剂的试剂针。第一运送单元 506 的运动轨迹经过反应盘 1 、混匀单元 7 、清洗单元 6 和检测单元 3 ,用于将反应容器在反应盘 1 和清洗单元 6 之间运送,还将反应容器在反应盘 1 和混匀单元 7 之间运送,还将反应容器在反应盘 1 和检测位置 8 之间运送。清洗单元 6 用于去除反应体系中未结合的成分。混匀单元 7 用于将反应溶液进行混匀,有些分析方法也不需要混匀。在分析的过程中,将反应容器从反应盘 1 通过运送单元运送到检测位置 8 ,再通过检测单元对检测位置 8 上的反应容器内分析物进行检测。由于反应容器中液体的光信号通常很低,容易受外界光源干扰,因此光信号检测过程需要良好的闭光环境,单独设置检测位置 8 ,在结构设计上更容易形成所需要的闭光环境,另一方面,还可以避免检测对反应盘孵育转运的限制。由于加入信号后的第二孵育已经在反应盘 1 上完成,因此检测单元 3 上不需要提供第二孵育功能。在另一种实施方式中,也可以不单独设置检测位置 8 对样本进行检测,而是在反应盘 1 上进行样本检测,即由检测单元在检测操作位 101 对反应盘 1 上的反应容器进行检测,同图 6 实施方式中类似。
在具体测试的时候,在反应盘 1 上加注样本和试剂,通过样本分注单元 502 加注样本,通过试剂分注单元 504 加注试剂,如前所述,也可以先加试剂后加样本,通过第一运送单元 506 将反应容器运送到混匀单元 7 进行混匀,通过第一运送单元 506 将反应容器运送到反应盘 1 的第一孵育位置进行第一孵育,第一孵育结束后,通过第一运送单元 506 将反应容器运送到清洗单元 6 进行清洗分离,并加入信号试剂,如前所述,也可以在其它位置加入信号试剂,之后通过第一运送单元 506 将反应容器运送到反应盘 1 的第二孵育位置进行第二孵育,第二孵育结束后,通过第一运送单元 506 将反应容器运送到检测单元 3 进行检测。
反应盘 1 为环形结构,包括至少一圈,包括第一孵育位置和第二孵育位置。当然,也可以设置两个检测单元 3 ,可以同时对相应的反应容器进行光测,增加了检测的数目,提高了分析装置的分析效率。可以单独设置混匀单元,也可以将混匀单元 7 设置在反应盘 1 上。检测单元 3 可以像上述的实施方式单独设置,也可以设置在反应盘 1 周围,由检测单元 3 在检测操作位对反应盘 1 上的反应容器进行检测。
如前所述,具体实施过程中,考虑到优化组合测试效率、整机尺寸和成本等要素,分注单元和运送单元的数量可以增加或减少,分注单元和运送单元可以以不同的数量灵活组合,如只有一个分注单元和只有一个运送单元、有三个分注单元和两个运送单元的情况等。
本发明还提供一种样本分析方法,包括:分注步骤,在反应容器中分注样本和试剂;孵育步骤,在反应单元上对反应容器进行孵育;清洗分离步骤,去除反应体系中未结合的成分;加信号试剂步骤,在反应容器中加入信号试剂;检测步骤,反应单元将反应容器转运到检测操作位,通过检测单元在检测操作位对反应容器内的分析物进行检测。
本发明的孵育步骤在反应盘进行,清洗分离在清洗单元进行,使孵育步骤和清洗分离步骤分别在不同的结构进行,避免了清洗分离和孵育过程的相互影响,便于控制孵育的温度条件,提高了工作效率。本发明不但孵育步骤在反应盘进行,检测步骤也由检测单元在检测操作位进行,多个功能集中在一起,简化了系统结构,使得加入信号试剂后的反应容器在完成第二孵育后不用运送到反应盘外的检测位置进行光测分析,省去了第二孵育后再运送到反应盘之外的位置进行检测的操作,节省了测试时间,简化了测试步骤,使得该自动分析装置的效率更高。本发明的第一孵育步骤和第二孵育步骤均在一个盘内进行,简化了系统结构,重复利用了能源,不用在两个盘内分别进行孵育,节省了能源消耗。当然,对于有些发光方案,加入信号试剂之后可以不用孵育步骤,则可以在反应盘上直接进行检测。
本发明还提供一种样本分析方法,包括:分注步骤,在反应容器中分注样本和试剂;第一孵育步骤,在反应单元上对反应容器进行第一孵育;清洗分离步骤,去除反应体系中未结合的成分;加信号试剂步骤,在反应容器中加入信号试剂;第二孵育步骤,在反应单元上对反应容器进行第二孵育;检测步骤,对反应容器内的分析物进行检测。
本发明的孵育步骤在反应盘进行,清洗分离在清洗单元进行,使孵育步骤和清洗分离步骤分别在不同的结构进行,避免了清洗分离和孵育过程的相互影响,便于控制孵育的温度条件,提高了工作效率。本发明的第一孵育步骤和第二孵育步骤均在一个盘内进行,简化了系统结构,重复利用了能源,不用在两个盘内分别进行孵育,节省了能源消耗。本发明将检测单元从反应盘上独立出来,从结构设计上更容易形成所需要的闭光环境,同时也避免了检测对反应盘孵育转运的限制,当完成第二孵育步骤后,再将反应容器运送到检测单元进行检测,检测步骤在反应盘外的检测单元上完成,当然,检测单元也可以位于反应盘周围,完成第二孵育步骤的反应容器转运到检测操作位,由检测单元在检测操作位对反应盘上的反应容器完成检测步骤。
以上通过具体的实施例对本发明进行了说明,但本发明并不限于这些具体的实施例。本领域技术人员应该明白,还可以对本发明做各种修改、等同替换、变化等等,这些变换只要未背离本发明的精神,都应在本发明的保护范围之内。此外,以上多处所述的 ' 一个实施例 ' 或 ' 另一实施例 ' 等表示不同的实施例,当然也可以将其全部或部分结合在一个实施例中。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (28)

  1. 一种自动分析装置,其特征在于:包括:
    反应单元,用于承载反应容器并将反应容器转运到预定的操作位,所述操作位包括检测操作位;
    检测单元,用于在检测操作位对反应单元上的反应容器内的分析物进行检测;
    清洗单元,用于去除反应体系中未结合的成分;
    分注单元,用于向反应容器中注入试剂或 / 和样本;
    所述反应单元 上设有 用于反应容器内液体孵育的孵育位置。
  2. 根据权利要求 1 所述的自动分析装置,其特征在于:还包括运送单元,将所述反应容器在所述反应单元和所述清洗单元之间运送。
  3. 根据权利要求 1 所述的自动分析装置,其特征在于:所述孵育位置包括第一孵育位置和第二孵育位置。
  4. 根据权利要求 3 所述的自动分析装置,其特征在于:所述反应单元为反应盘,所述反应盘包括至少两圈,所述检测单元位于反应盘的外侧和 / 或内侧,所述反应盘的外圈和 / 或内圈包括所述第二孵育位置。
  5. 根据权利要求 3 所述的自动分析装置,其特征在于:所述反应单元为反应盘,所述反应盘至少包括三圈,其中,位于外侧的为外圈,位于中间的为中圈,位于内侧的为内圈,所述外圈包括所述第二孵育位置,所述内圈和所述中圈包括所述第一孵育位置,所述检测单元位于反应盘的外侧。
  6. 根据权利要求 1-5 任一项所述的自动分析装置,其特征在于:还包括混匀单元,用于对反应容器内的液体进行混匀。
  7. 根据权利要求 1 所述的自动分析装置,其特征在于:还包括反应容器供给单元,用于容纳待用的反应容器。
  8. 根据权利要求 7 所述的自动分析装置,其特征在于:还包括运送单元,所述运送单元将反应容器在所述反应单元、所述清洗单元和所述反应容器供给单元之间运送。
  9. 根据权利要求 8 所述的自动分析装置,其特征在于:所述运送单元包括第一运送单元和第二运送单元,所述第一运送单元将反应容器在所述反应单元和所述清洗单元之间运送,所述第二运送单元将反应容器在所述反应单元和所述反应容器供给单元之间运送。
  10. 根据权利要求 1 所述的自动分析装置,其特征在于:所述分注单元包括样本分注单元和试剂分注单元,所述样本分注单元向所述反应容器内加注样本,所述试剂分注单元向反应容器内加注试剂。
  11. 根据权利要求 1 所述的自动分析装置,其特征在于:所述分注单元为单一的加样机构,向所述反应容器内加注样本和试剂。
  12. 一种自动分析装置,其特征在于:包括:
    反应单元,用于承载反应容器并将反应容器转运到预定的操作位;
    检测单元,用于对反应容器内的分析物进行检测;
    清洗单元,用于去除反应体系中未结合的成分;
    分注单元,用于向反应容器中注入试剂或 / 和样本;
    所述反应单元 上设有 用于反应容器内液体孵育的孵育位置,所述孵育位置包括第一孵育位置和第二孵育位置。
  13. 根据权利要求 12 所述的自动分析装置,其特征在于:还包括运送单元,将所述反应容器在所述反应单元和所述清洗单元之间运送。
  14. 根据权利要求 12 所述的自动分析装置,其特征在于:所述反应单元为反应盘,包括至少两圈,至少一圈包括第一孵育位置,至少一圈包括第二孵育位置。
  15. 根据权利要求 12-14 任一项所述的自动分析装置,其特征在于:还包括混匀单元,用于对反应容器内的液体进行混匀。
  16. 根据权利要求 12 所述的自动分析装置,其特征在于:还包括反应容器供给单元,用于容纳待用的反应容器。
  17. 根据权利要求 16 所述的自动分析装置,其特征在于:还包括运送单元,所述运送单元将反应容器在所述反应单元、所述清洗单元和所述反应容器供给单元之间运送。
  18. 根据权利要求 17 所述的自动分析装置,其特征在于:所述运送单元包括第一运送单元和第二运送单元,所述第一运送单元将反应容器在所述反应单元和所述清洗单元之间运送,所述第二运送单元将反应容器在所述反应单元和所述反应容器供给单元之间运送。
  19. 根据权利要求 12 所述的自动分析装置,其特征在于:所述分注单元包括样本分注单元和试剂分注单元,所述样本分注单元向所述反应容器内加注样本,所述试剂分注单元向反应容器内加注试剂。
  20. 根据权利要求 12 所述的自动分析装置,其特征在于:还包括独立于反应单元的检测位置,所述检测单元对位于所述检测位置的所述反应容器内分析物进行检测。
  21. 一种样本分析方法,其特征在于:包括:
    分注步骤,在反应容器中分注样本和试剂;
    孵育步骤,在反应单元上对反应容器进行孵育;
    清洗分离步骤,去除反应体系中未结合的成分;
    加信号试剂步骤,在反应容器中加入信号试剂;
    检测步骤,反应单元将反应容器转运到检测操作位,检测单元在检测操作位对所述反应容器内的分析物进行检测。
  22. 根据权利要求 21 所述的样本分析方法,其特征在于:还包括运送步骤,将所述反应容器在所述反应单元和所述清洗单元之间运送。
  23. 根据权利要求 21 所述的样本分析方法,其特征在于:还包括混匀步骤,对反应容器内的液体进行混匀。
  24. 根据权利要求 22 所述的样本分析方法,其特征在于:还包括反应容器供给步骤,通过所述运送单元将所述反应容器运送到反应单元。
  25. 根据权利要求 21-24 任一项所述的样本分析方法,其特征在于:在加信号试剂步骤中,在所述清洗单元向所述反应容器中加入信号试剂。
  26. 一种样本分析方法,其特征在于:包括:
    分注步骤,在反应容器中分注样本和试剂;
    第一孵育步骤,在反应单元上对反应容器进行第一孵育;
    清洗分离步骤,去除反应体系中未结合的成分;
    加信号试剂步骤,在反应容器中加入信号试剂;
    第二孵育步骤,在反应单元上对反应容器进行第二孵育;
    检测步骤,对反应容器内的分析物进行检测。
  27. 根据权利要求 26 所述的样本分析方法,其特征在于:还包括运送步骤,将所述反应容器在所述反应单元和所述清洗单元之间运送。
  28. 根据权利要求 26 所述的样本分析方法,其特征在于:还包括运送步骤,将所述反应容器在所述反应单元和独立于反应单元的检测位置之间运送。
PCT/CN2012/072950 2011-03-25 2012-03-23 自动分析装置及其样本分析方法 WO2012130107A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP12764053.0A EP2690445B1 (en) 2011-03-25 2012-03-23 Apparatus for automatic analysis and sample analysis method thereof
CN201280016001.4A CN103443629B (zh) 2011-03-25 2012-03-23 自动分析装置及其样本分析方法
US14/036,764 US20140093975A1 (en) 2011-03-25 2013-09-25 Automatic analyzer and sample analysis method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110074104 2011-03-25
CN201110074104.3 2011-03-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/036,764 Continuation US20140093975A1 (en) 2011-03-25 2013-09-25 Automatic analyzer and sample analysis method

Publications (1)

Publication Number Publication Date
WO2012130107A1 true WO2012130107A1 (zh) 2012-10-04

Family

ID=46929455

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/072950 WO2012130107A1 (zh) 2011-03-25 2012-03-23 自动分析装置及其样本分析方法

Country Status (4)

Country Link
US (1) US20140093975A1 (zh)
EP (1) EP2690445B1 (zh)
CN (1) CN103443629B (zh)
WO (1) WO2012130107A1 (zh)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104111341A (zh) * 2013-04-16 2014-10-22 深圳迈瑞生物医疗电子股份有限公司 自动分析装置及其分析方法和分析系统
CN104111250A (zh) * 2013-04-16 2014-10-22 深圳迈瑞生物医疗电子股份有限公司 微弱光检测装置及其方法
CN104111343A (zh) * 2013-04-16 2014-10-22 深圳迈瑞生物医疗电子股份有限公司 一种样本试剂分注装置、免疫分析仪及其方法
CN104677828A (zh) * 2015-02-15 2015-06-03 石家庄禾柏生物技术股份有限公司 一种用于一体式定量采样加试剂装置的自动检测仪
WO2015192328A1 (zh) * 2014-06-17 2015-12-23 深圳迈瑞生物医疗电子股份有限公司 提取物分离装置及其工作方法
CN106645765A (zh) * 2017-01-06 2017-05-10 刘丹 自动分析装置及样本分析方法
CN106706942A (zh) * 2017-01-06 2017-05-24 刘丹 自动分析装置及样本分析方法
CN106841645A (zh) * 2017-01-06 2017-06-13 刘丹 一种反应孵育装置、免疫分析仪及反应孵育方法
CN106841644A (zh) * 2017-01-06 2017-06-13 刘丹 自动分析装置及样本分析方法
CN109580596A (zh) * 2017-09-29 2019-04-05 深圳市新产业生物医学工程股份有限公司 化学发光检测仪、温育装置及其温育方法
CN109975569A (zh) * 2017-12-28 2019-07-05 深圳市新产业生物医学工程股份有限公司 化学发光检测仪的控制方法、系统及化学发光检测仪
CN110133314A (zh) * 2018-02-08 2019-08-16 成都深迈瑞医疗电子技术研究院有限公司 全自动化学发光免疫分析仪
CN110161258A (zh) * 2018-02-11 2019-08-23 博阳生物科技(上海)有限公司 一种全自动光激化学发光检测仪
WO2020087252A1 (zh) * 2018-10-30 2020-05-07 深圳迎凯生物科技有限公司 反应装置和免疫分析仪

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2972404B1 (en) 2013-03-15 2021-11-24 Abbott Laboratories Automated diagnostic analyzers having rear accessible track systems and related methods
EP4109106A1 (en) 2013-03-15 2022-12-28 Abbott Laboratories Automated diagnostic analyzers having vertically arranged carousels and related methods
CN104914209A (zh) * 2015-06-25 2015-09-16 无锡点创科技有限公司 实验室cod自动分析机器人
JP6442378B2 (ja) * 2015-07-23 2018-12-19 株式会社日立ハイテクノロジーズ 自動分析装置
CN106980024A (zh) * 2017-03-28 2017-07-25 杭州凯坤科技有限公司 一种全自动光激化学发光检测仪
WO2018208840A1 (en) 2017-05-08 2018-11-15 Dweik Majed Apparatus and method for detecting microbial contamination
CN111033265B (zh) * 2017-09-20 2024-05-17 深圳迈瑞生物医疗电子股份有限公司 一种自动分析装置及其工作方法
WO2019056235A1 (zh) * 2017-09-20 2019-03-28 深圳迈瑞生物医疗电子股份有限公司 一种自动分析装置及其工作方法
CN110133248B (zh) * 2018-02-08 2022-10-11 成都深迈瑞医疗电子技术研究院有限公司 孵育检测装置、样本分析仪及其控制方法
WO2019154334A1 (zh) * 2018-02-08 2019-08-15 成都深迈瑞医疗电子技术研究院有限公司 全自动化学发光免疫分析仪
CN109298196A (zh) * 2018-09-12 2019-02-01 迪瑞医疗科技股份有限公司 一种全自动化学发光免疫分析仪及自动分析方法
CN110967503B (zh) * 2018-09-30 2024-08-13 深圳迈瑞生物医疗电子股份有限公司 一种进样调度方法、装置、分析检测系统和存储介质
WO2020087251A1 (zh) * 2018-10-30 2020-05-07 深圳迎凯生物科技有限公司 免疫分析仪
CN111122887B (zh) * 2018-10-30 2023-08-08 深圳迎凯生物科技有限公司 混匀方法、混匀装置及免疫分析仪
CN111122883B (zh) * 2018-10-30 2023-08-08 深圳迎凯生物科技有限公司 反应装置和免疫分析仪
CN116735901A (zh) * 2018-10-30 2023-09-12 深圳迎凯生物科技有限公司 混匀装置及免疫分析仪
WO2020087245A1 (zh) * 2018-10-30 2020-05-07 深圳迎凯生物科技有限公司 免疫分析方法
CN111122885B (zh) * 2018-10-30 2023-08-08 深圳迎凯生物科技有限公司 免疫分析仪
CN111122889B (zh) * 2018-10-30 2023-08-08 深圳迎凯生物科技有限公司 免疫分析方法
CN110261592B (zh) * 2019-07-05 2023-06-02 杭州布封科技有限公司 一种被分析物定性定量测定方法
CN113219191B (zh) * 2020-01-21 2023-11-17 深圳迎凯生物科技有限公司 分析装置
CN117250364A (zh) * 2020-01-21 2023-12-19 深圳迎凯生物科技有限公司 分析装置
CN113219192B (zh) * 2020-01-21 2023-10-20 深圳迎凯生物科技有限公司 反应器转移方法
CN113567691A (zh) * 2020-04-28 2021-10-29 深圳迎凯生物科技有限公司 孵育装置和自动分析装置
CN113567690B (zh) * 2020-04-28 2024-10-01 深圳迎凯生物科技有限公司 孵育组件、孵育装置和自动分析装置
CN115656531B (zh) * 2022-12-08 2023-03-31 深圳市赛特罗生物医疗技术有限公司 一种一体化农药残留标准化快速检测的检测盒和检测方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4857471A (en) * 1987-07-20 1989-08-15 Eastman Kodak Company Analyzer with wash station separate from incubator
CN1053682A (zh) * 1989-11-17 1991-08-07 比奥特罗尔实验室 连续多步免疫测定若干生物样品中至少一种生物物质的自动测定仪器方法及使用所述仪器的试剂
US5212094A (en) * 1986-09-16 1993-05-18 Kabushiki Kaisha Toshiba Automatic chemical analyzer
US5985672A (en) * 1996-04-26 1999-11-16 Dade Behring Inc. Method and apparatus for pre-treating samples in an automatic chemical analyzer
CN101393225A (zh) * 2007-09-20 2009-03-25 希森美康株式会社 标本分析仪及标本分析方法
US20090150081A1 (en) * 2005-08-05 2009-06-11 Giuseppe Marcellino Automatic analyzer for enzyme immunoassays
CN101566624A (zh) * 2008-11-14 2009-10-28 北京量质科技有限公司 全自动医学检验检测系统
CN101726616A (zh) * 2008-10-31 2010-06-09 深圳迈瑞生物医疗电子股份有限公司 自动分析装置及其工作方法
CN101965518A (zh) * 2008-01-21 2011-02-02 奥林巴斯株式会社 清洗装置和分析装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5380487A (en) * 1992-05-05 1995-01-10 Pasteur Sanofi Diagnostics Device for automatic chemical analysis
EP0833278A3 (en) * 1996-09-19 1998-07-29 Abbott Laboratories Data carrier
ATE426456T1 (de) * 1998-05-01 2009-04-15 Gen Probe Inc Automatische diagnostische analysevorrichtung
EP2413136B1 (en) * 2003-07-18 2013-07-03 Bio-Rad Laboratories, Inc. System and method for multi-analyte detection
US20070172390A1 (en) * 2006-01-23 2007-07-26 Sysmex Corporation Analyzing apparatus, solid-liquid separation device and solid-liquid separation method
JP5305794B2 (ja) * 2008-09-05 2013-10-02 株式会社東芝 自動分析装置
WO2010059569A2 (en) * 2008-11-21 2010-05-27 Monsanto Technology Llc Analyzers and methods related thereto
JP5706185B2 (ja) * 2011-02-22 2015-04-22 富士レビオ株式会社 測定装置及び測定方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5212094A (en) * 1986-09-16 1993-05-18 Kabushiki Kaisha Toshiba Automatic chemical analyzer
US4857471A (en) * 1987-07-20 1989-08-15 Eastman Kodak Company Analyzer with wash station separate from incubator
CN1053682A (zh) * 1989-11-17 1991-08-07 比奥特罗尔实验室 连续多步免疫测定若干生物样品中至少一种生物物质的自动测定仪器方法及使用所述仪器的试剂
US5985672A (en) * 1996-04-26 1999-11-16 Dade Behring Inc. Method and apparatus for pre-treating samples in an automatic chemical analyzer
US20090150081A1 (en) * 2005-08-05 2009-06-11 Giuseppe Marcellino Automatic analyzer for enzyme immunoassays
CN101393225A (zh) * 2007-09-20 2009-03-25 希森美康株式会社 标本分析仪及标本分析方法
CN101965518A (zh) * 2008-01-21 2011-02-02 奥林巴斯株式会社 清洗装置和分析装置
CN101726616A (zh) * 2008-10-31 2010-06-09 深圳迈瑞生物医疗电子股份有限公司 自动分析装置及其工作方法
CN101566624A (zh) * 2008-11-14 2009-10-28 北京量质科技有限公司 全自动医学检验检测系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2690445A4 *

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104111341B (zh) * 2013-04-16 2017-10-17 深圳迈瑞生物医疗电子股份有限公司 自动分析装置及其分析方法和分析系统
CN104111250A (zh) * 2013-04-16 2014-10-22 深圳迈瑞生物医疗电子股份有限公司 微弱光检测装置及其方法
CN104111343A (zh) * 2013-04-16 2014-10-22 深圳迈瑞生物医疗电子股份有限公司 一种样本试剂分注装置、免疫分析仪及其方法
WO2014169574A1 (zh) * 2013-04-16 2014-10-23 深圳迈瑞生物医疗电子股份有限公司 一种样本试剂分注装置、免疫分析仪及其方法
CN104111341A (zh) * 2013-04-16 2014-10-22 深圳迈瑞生物医疗电子股份有限公司 自动分析装置及其分析方法和分析系统
CN104111250B (zh) * 2013-04-16 2018-05-15 深圳迈瑞生物医疗电子股份有限公司 微弱光检测装置及其方法
WO2015192328A1 (zh) * 2014-06-17 2015-12-23 深圳迈瑞生物医疗电子股份有限公司 提取物分离装置及其工作方法
CN104677828A (zh) * 2015-02-15 2015-06-03 石家庄禾柏生物技术股份有限公司 一种用于一体式定量采样加试剂装置的自动检测仪
CN104677828B (zh) * 2015-02-15 2019-01-08 石家庄禾柏生物技术股份有限公司 一种用于一体式定量采样加试剂装置的自动检测仪
WO2018126773A1 (zh) * 2017-01-06 2018-07-12 深圳迎凯生物科技有限公司 自动分析装置及样本分析方法
US11162962B2 (en) 2017-01-06 2021-11-02 Shenzhen Increcare Biotech Co., Ltd Automatic analysis device and sample analysis method
CN106841645A (zh) * 2017-01-06 2017-06-13 刘丹 一种反应孵育装置、免疫分析仪及反应孵育方法
WO2018126774A1 (zh) * 2017-01-06 2018-07-12 深圳迎凯生物科技有限公司 自动分析装置及样本分析方法
WO2018126772A1 (zh) * 2017-01-06 2018-07-12 深圳迎凯生物科技有限公司 一种反应孵育装置、免疫分析仪及反应孵育方法
CN106706942A (zh) * 2017-01-06 2017-05-24 刘丹 自动分析装置及样本分析方法
CN109142768A (zh) * 2017-01-06 2019-01-04 深圳迎凯生物科技有限公司 自动分析装置及样本分析方法
CN106645765A (zh) * 2017-01-06 2017-05-10 刘丹 自动分析装置及样本分析方法
US11619642B2 (en) 2017-01-06 2023-04-04 Shenzhen Increcare Biotech Co., Ltd. Reaction incubation device, immunity analyzer and reaction incubation method
US11268970B2 (en) 2017-01-06 2022-03-08 Shenzhen Increcare Biotech Co., Ltd Automatic analysis device and sample analysis method
CN110007099A (zh) * 2017-01-06 2019-07-12 深圳迎凯生物科技有限公司 自动分析装置及样本分析方法
CN106841644A (zh) * 2017-01-06 2017-06-13 刘丹 自动分析装置及样本分析方法
CN110007099B (zh) * 2017-01-06 2020-06-19 深圳迎凯生物科技有限公司 自动分析装置及样本分析方法
CN109580596A (zh) * 2017-09-29 2019-04-05 深圳市新产业生物医学工程股份有限公司 化学发光检测仪、温育装置及其温育方法
CN109580596B (zh) * 2017-09-29 2024-04-16 深圳市新产业生物医学工程股份有限公司 化学发光检测仪、温育装置及其温育方法
CN109975569A (zh) * 2017-12-28 2019-07-05 深圳市新产业生物医学工程股份有限公司 化学发光检测仪的控制方法、系统及化学发光检测仪
CN110133314A (zh) * 2018-02-08 2019-08-16 成都深迈瑞医疗电子技术研究院有限公司 全自动化学发光免疫分析仪
CN110133314B (zh) * 2018-02-08 2021-12-24 成都深迈瑞医疗电子技术研究院有限公司 全自动化学发光免疫分析仪
CN110161258A (zh) * 2018-02-11 2019-08-23 博阳生物科技(上海)有限公司 一种全自动光激化学发光检测仪
CN110161258B (zh) * 2018-02-11 2021-01-01 博阳生物科技(上海)有限公司 一种全自动光激化学发光检测仪
WO2020087252A1 (zh) * 2018-10-30 2020-05-07 深圳迎凯生物科技有限公司 反应装置和免疫分析仪

Also Published As

Publication number Publication date
CN103443629B (zh) 2016-05-11
US20140093975A1 (en) 2014-04-03
EP2690445A4 (en) 2014-10-08
EP2690445A1 (en) 2014-01-29
CN103443629A (zh) 2013-12-11
EP2690445B1 (en) 2023-05-03

Similar Documents

Publication Publication Date Title
WO2012130107A1 (zh) 自动分析装置及其样本分析方法
WO2014169574A1 (zh) 一种样本试剂分注装置、免疫分析仪及其方法
US11268970B2 (en) Automatic analysis device and sample analysis method
US10732191B2 (en) Automatic analysis device, analysis method, and analysis system therefor
JP4012558B2 (ja) 自動連続ランダムアクセス分析システムおよびその構成要素
JP3521144B2 (ja) 自動連続ランダム・アクセス分析システムおよびその構成要素
JP5706185B2 (ja) 測定装置及び測定方法
US5610069A (en) Apparatus and method for washing clinical apparatus
EP3561516A1 (en) Reaction incubation device, immunity analyzer and reaction incubation method
JP3003118B2 (ja) ホモジニアス試薬を提供する方法
JP2020060587A (ja) 免疫測定装置
JP2010032215A (ja) 自動分析装置
JPWO2008044311A1 (ja) 異常特定方法、分析装置および試薬
CN104111250A (zh) 微弱光检测装置及其方法
JP4896147B2 (ja) 異常特定方法および分析装置
JP2001021566A (ja) 血液の検査装置
JPH0664069B2 (ja) 免疫学的自動分析方法
HOWES et al. Equipment and automation; Appendix on dose-response curve fitting

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280016001.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12764053

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012764053

Country of ref document: EP