WO2018126774A1 - 自动分析装置及样本分析方法 - Google Patents

自动分析装置及样本分析方法 Download PDF

Info

Publication number
WO2018126774A1
WO2018126774A1 PCT/CN2017/108328 CN2017108328W WO2018126774A1 WO 2018126774 A1 WO2018126774 A1 WO 2018126774A1 CN 2017108328 W CN2017108328 W CN 2017108328W WO 2018126774 A1 WO2018126774 A1 WO 2018126774A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction vessel
reaction
unit
measuring
reagent
Prior art date
Application number
PCT/CN2017/108328
Other languages
English (en)
French (fr)
Inventor
张震
Original Assignee
深圳迎凯生物科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳迎凯生物科技有限公司 filed Critical 深圳迎凯生物科技有限公司
Priority to US16/475,788 priority Critical patent/US11162962B2/en
Priority to EP17889890.4A priority patent/EP3572815B1/en
Publication of WO2018126774A1 publication Critical patent/WO2018126774A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/025Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations having a carousel or turntable for reaction cells or cuvettes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/508Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/508Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above
    • B01L3/5085Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above for multiple samples, e.g. microtitration plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L9/00Supporting devices; Holding devices
    • B01L9/06Test-tube stands; Test-tube holders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/5302Apparatus specially adapted for immunological test procedures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/5302Apparatus specially adapted for immunological test procedures
    • G01N33/5304Reaction vessels, e.g. agglutination plates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/0098Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor involving analyte bound to insoluble magnetic carrier, e.g. using magnetic separation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/10Integrating sample preparation and analysis in single entity, e.g. lab-on-a-chip concept
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0609Holders integrated in container to position an object
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • B01L2300/0636Integrated biosensor, microarrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0803Disc shape
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N2035/00346Heating or cooling arrangements
    • G01N2035/00356Holding samples at elevated temperature (incubation)

Definitions

  • the present invention is described in the context of a fully automated immunoassay instrument in In-Vitro Diagnostics (IVD), in particular, a luminescent immunoassay analyzer, which should be understood by those skilled in the art.
  • IVD In-Vitro Diagnostics
  • the protocols and methods of the present invention are also applicable to other clinical test automation devices, such as fluorescent immuno devices, electrochemical immunization, and the like.
  • the luminescence immunoassay can be generally divided into a one-step method, a one-step one-step method, a two-step method, etc. according to the test principle and mode.
  • the main test steps generally include adding a sample and a reagent, mixing the reactants, and incubating. Cleaning separation (Bound-Free, referred to as B/F), adding signal reagents, measuring, etc.
  • B/F Cleaning separation
  • the present invention distinguishes between reagents and signal reagents, incubation and signal incubation for ease of presentation.
  • the reagents and analysis items have a “one-to-one correspondence” relationship, that is, the specific reagents corresponding to different analysis items generally differ in formula, reagent amount, and component quantity.
  • the reagent typically includes multiple components, such as the usual 2-5 components, including reagent components such as magnetic particle reagents, enzyme labeling reagents, diluents, and the like.
  • reagent components such as magnetic particle reagents, enzyme labeling reagents, diluents, and the like.
  • multiple reagent components of an analysis item can be filled in one time or in multiple steps. When the step is added, the first reagent, the second reagent, and the third reagent are defined according to the order of filling. Wait.
  • the signal incubation refers to a process in which the reaction vessel after the separation and separation is added to the signal reagent and reacted in a constant temperature environment for a period of time to enhance the signal.
  • the reaction vessel after the separation and separation is added to the signal reagent and reacted in a constant temperature environment for a period of time to enhance the signal.
  • tests that require signal incubation are typically enzymatic chemiluminescence immunoassays.
  • the test steps corresponding to different test modes are detailed as follows:
  • One-step method Refer to Figure 1, add sample (S) and reagent (R), mix (some test methods can also do not need to mix, the same below, no longer repeat), incubate (generally 5-60 Minutes), after the completion of the incubation, wash and separate, add Note the signal reagent, signal incubation (usually 1-6 minutes), and finally measure. It should be pointed out that due to the specific composition of the signal reagents, some luminescence systems do not require signal incubation, and can be directly measured during the process of filling the signal reagent or after filling the signal reagent.
  • the signal reagent may be one or more. Referring to Figure 2, the signal reagent includes a first signal reagent and a second signal reagent.
  • the first prior art solution separates the incubation, wash separation, and measurement into separate layouts, each of which is accomplished by three rotating disks, and the reaction vessel is transferred between the different units by a mechanical gripper.
  • the technical solution has many components and units, and the reaction container needs to be transferred between the units, resulting in problems such as large volume, high cost, and complicated control process.
  • a second prior art solution arranges the incubation and measurement together to form an incubation measurement unit, which is performed by another separate unit, although the technical solution reduces one measurement disc compared to the first prior scheme. To a certain extent, it is advantageous to control the size and cost of the whole machine, but there are also the same problems as the first technical solution.
  • the incubation measurement unit In order to achieve flexible incubation time, the incubation measurement unit is complicated to control, and the incubation and measurement are also controlled by each other. There are not only shortcomings such as high-speed automated testing, but also flexible signal incubation.
  • a third prior art solution achieves incubation, wash separation and measurement on a single-turn disc or a trajectory track.
  • the disc In order to support longer incubation times, the disc needs to be set in addition to cleaning separation and measurement positions. A lot of incubation positions, so in order to achieve high-speed testing, the size of the disc or the trajectory track needs to be designed to be large, difficult to manufacture, and costly.
  • at least two A loading mechanism and at least two cleaning separation devices increase material, processing, production costs and overall machine size.
  • this technical solution also limits the incubation time, resulting in problems such as a fixed incubation time and an excessively long time.
  • this technical solution is not only difficult to achieve the darkroom environment required for measurement, it requires an additional shutter mechanism, and flexible signal incubation is not possible.
  • the present invention provides an automatic analysis device with low manufacturing cost, simple and compact structure, flexible and efficient test procedure or method, and a sample analysis method thereof.
  • an automatic analyzer comprising: a filling unit, filling a sample or/and a reagent into a reaction vessel, a reaction unit, incubating and washing the reactants in the separation reaction vessel, measuring the unit, measuring the reaction a reaction signal in the container, a transfer unit, transferring the reaction vessel between different positions, the reaction unit comprising a rotating device, the rotating device is provided with a reaction vessel position for carrying the reaction vessel; the measuring unit comprises a measuring disc, The measuring vessel is provided with a reaction vessel position for carrying the reaction vessel; at least one reaction vessel location on the rotating device and at least one reaction vessel on the measuring disk are within a horizontal range of motion of the transfer unit.
  • a sample analysis method comprising: a filling step of filling a sample and a reagent into a reaction vessel, and an incubation step of incubating a reaction vessel at a reaction vessel position of the reaction unit, washing and separating a step of washing and separating the reaction vessel at the reaction vessel position of the reaction unit, measuring step, measuring a reaction signal in the reaction vessel at the reaction vessel position of the measuring unit, and transferring the step, the horizontal movement by the transfer unit A reaction vessel is transferred between the reaction unit and the measurement unit.
  • the invention improves the working efficiency of the analysis device and solves the current automatic instrument
  • the technical problems of large volume, slow detection speed, high cost and poor performance not only save lab space, improve test efficiency, but also help reduce expenses, reduce the burden on the testee, and ultimately save a lot of natural resources and society. Resources.
  • Figure 3 is a schematic diagram of a one-step and two-step reaction mode
  • Figure 4 is a schematic view showing a first embodiment of the automatic analyzer of the present invention.
  • Figure 6 is a flow chart of a one-step delay test
  • Figure 7 is a two-step test flow chart
  • Figure 8 is a schematic view showing a second embodiment of the automatic analyzing device of the present invention.
  • Figure 9 is a schematic view showing a third embodiment of the reaction unit of the present invention.
  • Figure 11 is a schematic view showing a fifth embodiment of the reaction unit of the present invention.
  • Figure 12 is a schematic view showing another embodiment of the measuring unit of the present invention.
  • Figure 13 is a schematic illustration of still another embodiment of the measuring unit of the present invention.
  • the reaction vessel provides a reaction site for the reaction of the sample and the reagent, and may be a reaction tube of various shapes and configurations, a reaction cup, a reaction cup of a plurality of chambers, a reaction chip, etc., and is generally used at one time.
  • the material of the reaction vessel is usually a plastic such as polystyrene.
  • the reaction container may be coated with an antigen or an antibody in advance on the inner wall, or may be pre-stored with a magnetic bead or a plastic ball. The storage and supply of the reaction vessel is completed by the reaction vessel supply unit.
  • the transfer of the reaction vessel between different locations in the apparatus of the invention can be accomplished by the transfer unit.
  • the transfer unit can be any suitable mechanism for transferring or moving the reaction vessel.
  • the preferred transfer unit of the present invention primarily comprises a drive mechanism, a horizontal motion robot arm, a pick and place mechanism, and the like.
  • the pick and place mechanism is usually a mechanical finger, which can hold the reaction container.
  • the horizontal motion mechanical arm can be driven along the X direction, the Y direction, the X direction and the Y direction, the radial direction, the circumferential direction, the radial direction and the circumferential direction by the driving mechanism.
  • the transfer unit can also move up and down, placing the reaction vessels in different positions or taking them out from different locations.
  • one or more transfer units can be set.
  • the filling unit completes the filling of the sample and the reagent.
  • the filling unit is generally composed of a steel needle or a disposable nozzle (Tip), a motion driving mechanism, a syringe or a liquid injection pump, a valve, a fluid line, and a cleaning tank (or a cleaning pool when a Tip is used).
  • the filling unit can move up and down in addition to It can move horizontally. There are usually several forms of motion, such as rotation, X-direction and Y-direction, and their combinations.
  • the filling unit can be one, adding both the sample and the reagent, which makes the structure of the whole machine more compact and lower cost.
  • the filling unit may further comprise one or several sample filling units, one or several reagent filling units, the sample filling unit only fills the sample or fills the sample and a part of the reagent, and the reagent filling unit Fill the reagents.
  • the reaction unit is incubated and washed to separate the reactants in the reaction vessel.
  • the reaction unit mainly includes a heat preservation device, a rotation device, and a cleaning separation device.
  • the periphery of the heat preservation device usually has insulation materials such as heat insulating cotton, and usually wraps or surrounds the bottom, the periphery and the upper portion of the rotating device, and the heating device and the sensor may be disposed on the inner side of the side or the bottom, and the upper portion is generally a structure such as a cover plate to provide a constant temperature for the reaction unit. Incubate the environment and prevent or reduce the loss of heat in the reaction unit. Of course, for higher heat transfer efficiency, the heating device can also be mounted on the rotating device.
  • the holding device can also support and secure the magnetic field generating device of the cleaning separation device to provide a magnetic field environment for cleaning separation.
  • the rotating device is provided with a plurality of holes, slots, brackets, bases or other structures suitable for carrying the reaction vessel, defined as the reaction vessel locations.
  • the rotating device comprises a driving device, a transmission mechanism and an associated control circuit, etc., and controls and drives the rotating device to rotate at a fixed angle every fixed time (such as a cycle or a cycle), and forwards the reaction vessel to a certain position. (such as advancing a reaction container bit).
  • At least one reaction vessel on the rotating device is located within the horizontal range of motion of the transfer unit such that the transfer unit can move the reaction vessel into the rotating device that is removed from the reaction unit.
  • the anti-container position of the reaction unit can be divided into two or two types depending on the focus and necessity of the main function of its realization: the first reaction vessel position and the second reaction vessel position.
  • the first reaction vessel position is defined as a reaction vessel position on the rotating device of the reaction unit that can transfer the reaction vessel to the washing and separating device for washing and separating.
  • the first reaction vessel site mainly accommodates the reaction vessel that is about to be or is being cleaned and separated.
  • the second reaction vessel position is defined as a reaction vessel position other than the first reaction vessel on the rotating device of the reaction unit, and the second reaction vessel site is a main place for the reaction mixture in the reaction vessel to be incubated, so that the sample in the reaction vessel is analyzed.
  • incubation and signal incubation functions may not be achieved.
  • the signal incubation for example, enzymatic chemiluminescence signal incubation, if the signal incubation takes 6 minutes, the first reaction vessel can achieve a full 6-minute signal incubation or only 3 minutes of signal Incubation, the remaining signal incubation can be done in the measurement unit, of course, without signal incubation, the signal incubation function is completely done by the measurement unit.
  • the incubation may also be completely achieved by the first reaction vessel, and the second reaction vessel site may not be present on the reaction unit.
  • the reaction unit may further clean and separate the reaction vessel at the first reaction vessel to remove unbound components from the reactants.
  • the cleaning and separating device of the reaction unit of the invention comprises magnetic Field generating device and flushing mechanism.
  • the magnetic field generating device provides a magnetic field environment for adsorbing paramagnetic particles in the reaction vessel to the inner wall of the reaction vessel. Due to factors such as response time, moving distance and resistance in the magnetic field, it takes a certain time for the paramagnetic particles to adsorb to the inner wall of the reaction vessel, usually ranging from several seconds to several tens of seconds, so that each time the waste liquid is taken (including unbound Before the component), the reaction vessel needs to pass through the magnetic field for a period of time.
  • the liquid absorption device comprises a liquid absorption part suitable for pumping liquid, such as a liquid suction needle, a liquid suction tube or a liquid suction nozzle, and the liquid absorption part is arranged above the reaction unit, and the reaction container can be driven into and out of the reaction container through the driving mechanism.
  • the unbound components in the reaction vessel are aspirated.
  • the liquid injection device includes a liquid injection portion suitable for discharging liquid, such as a liquid injection needle, a tube, a mouth, and the like, and the liquid injection portion is also disposed above the reaction container position of the reaction unit, and the cleaning buffer is injected into the reaction container after the suction.
  • Each flush includes one aspirate and one injection buffer and process, usually three or four times, ie three or four rinses, although the number of flushes can be varied.
  • the mixer In order to make the cleaning more thorough and less residue, it is also possible to set the mixer to mix the reaction vessel in the filling position or to use the impact force when injecting the liquid, and to make the paramagnetic particles heavy after the injection buffer or the cleaning buffer. Suspended and uniformly dispersed in the wash buffer.
  • the reaction unit rotating device transfers the reaction vessel to the washing and separating device, the washing and separating device starts cleaning and separating the reaction vessel.
  • the cleaning and separating device is arranged around the rotating device of the reaction unit or above the rotating device, and the reaction container on the rotating device of the reaction unit can be directly cleaned and separated, thereby avoiding the installation of independent cleaning and separating rotating device, such as independent Cleaning the separation disc or cleaning the separation rails, not only streamlining the components and the whole mechanism, making the whole mechanism more compact and lower in cost, but also avoiding the transfer of the reaction vessel between the independent cleaning and separating device and the reaction unit, so that the whole The machine control process is simpler and more efficient, which increases processing efficiency and reliability.
  • the reaction vessel position on the measurement pan can also achieve full or partial signal incubation.
  • the reaction vessel on any of the reaction vessel positions can be rotated to the measuring device for measurement, thereby achieving flexible signal incubation and improving test flexibility and efficiency.
  • the signal to be measured is usually a weak optical signal, the measurement is easily affected by ambient light and the measurement is inaccurate, so the measurement unit needs to provide a closed darkroom environment.
  • the containment unit of the measuring unit is usually wrapped or enclosed around the periphery of the measuring disc, providing the measuring unit with a closed darkroom environment required for the measurement.
  • the heating device and the sensor may be disposed at the side or the bottom of the sealing device to provide a constant temperature incubation environment for the measuring unit and prevent or reduce the loss of heat of the reaction unit.
  • the heating device can also be mounted on the measuring plate.
  • the measuring device includes a weak photodetector photomultiplier tube (PMT) or other sensitive photoelectric sensing device that converts the measured optical signal into an electrical signal for transmission to the control center.
  • the measuring device may further include optical devices such as optical signal collection and calibration.
  • the measuring device can be connected or mounted to the sealing device in a general manner, such as directly mounted on the sealing device or mounted to the sealing device through a fiber optic connection, so that the measuring disk reaction container can be directly
  • the signal in the reaction vessel on the position is measured, avoiding the need to set separate measurement positions and eliminating the transfer of the reaction vessel between the measuring disc and the measuring position, so that the whole mechanism can be More compact, lower cost, simpler and more efficient control process, higher processing efficiency and reliability.
  • the measuring unit of the present invention may further comprise a signal reagent filling mechanism for filling all or part of the signal reagent into the reaction vessel on the measuring vessel reaction vessel.
  • the measuring unit of the invention is independent of the reaction unit, not only easy to realize the darkroom environment, but also realizes flexible signal incubation, and solves the defects of the complicated structure of the dark chamber in the prior art and the fixed signal incubation time.
  • the automatic analyzer of the present invention may further be provided with a unit such as a sample delivery unit, a reagent storage unit, and the like.
  • the automatic analysis device 100 includes a sample delivery unit 30, a reagent storage unit 40, a filling unit 20, a reaction container supply unit 70, a transfer unit 50, a reaction unit 10, a measurement unit 80, and the like. The functions and functions of each part are described below.
  • the reagent tray can be driven by the driving mechanism to transfer the target reagent bottle to the suction reagent position under the control of the control center.
  • the suction reagent position is located at the intersection of the horizontal movement track of the filling unit and the center circle of the reagent chamber.
  • the corresponding 4 Corresponding to the reagent components, there are 4 aspirating reagent sites (not shown).
  • the reaction vessel supply unit 70 stores and supplies a reaction vessel.
  • the reaction container supply unit adopts a pre-arranged type.
  • the reaction vessel supply unit 70 includes two reaction vessel trays on which a number of reaction vessel positions are disposed to store unused reaction vessels.
  • the reaction vessel supply unit 70 is within the horizontal range of motion of the transfer unit 50 such that the transfer unit 50 can traverse each reaction volume on the tray An unused reaction vessel on the station provides an unused reaction vessel for the newly started test.
  • the transfer unit 50 can be moved horizontally to transfer the reaction vessel between different positions of the automated analysis device 100.
  • the transfer unit 50 is set to one, and the three-dimensional movement can be performed, which makes the whole machine more compact and lower in cost.
  • the transfer unit 50 includes an X-direction moving robot arm 50b, a Y-direction guide rail 50a, a Y-direction moving robot arm 50c, and a vertical motion mechanism and a mechanical finger (not shown).
  • the transfer unit 50 can simultaneously move the mechanical finger along the X direction and the Y direction horizontally, and the horizontal movement range covers the range within the boundary rectangle 56, and the reaction container can be in the reaction container supply unit 70, the first reaction container position on the reaction unit 10, The second reaction vessel position on the reaction unit 10, the reaction vessel position on the measurement unit 80, and the lost reaction vessel orifice 60 are transferred. Furthermore, since the movement path of the transfer unit 50 covers at least one first reaction vessel position on the reaction unit 10, the transfer unit can be transferred from the different first reaction vessel positions or from the different first reaction vessel sites by moving the reaction vessel to a different first reaction vessel position. A flexible incubation time should be achieved with the container.
  • the reaction unit 10 is incubated and washed to separate the reactants in the reaction vessel.
  • the heat retaining device of the reaction unit 10 is a pot body 12 and an upper cover (not shown), and the rotating device is a reaction disk 11 and the cleaning and separating device is 16.
  • a heater and a sensor are arranged on the side or the bottom of the pot body 12, surrounding the bottom and the periphery of the reaction disk 11, providing a constant temperature incubation environment for the reaction unit 10 to prevent or reduce the loss of heat of the reaction unit 10.
  • the pot 12 also supports and secures the magnetic field generating means of the cleaning separation device 16 to provide a magnetic field environment for cleaning separation.
  • the magnet generating device of the cleaning and separating device 16 is a permanent magnet device, which can provide a stronger and more stable magnetic field environment.
  • the rinsing mechanism of the cleaning separation device 16 includes a liquid absorbing device and a liquid injection device, and a mixing mechanism.
  • the cleaning and separating device 16 can also be coupled with a signal reagent filling mechanism, and after the cleaning container is separated from the reaction vessel at the reaction vessel position of the reaction unit 10, all or part of the signal reagent is filled therein.
  • the reaction disk 11 is rotatable about a central axis, and four reaction vessel positions centered on the center of rotation are disposed thereon. Of course, the number of turns can be changed, for example, one turn, two turns, three turns, five turns or more.
  • the measuring unit 80 of the present invention may further be provided with a signal reagent filling mechanism (not shown) to fill all or part of the signal reagent into the reaction container on the measuring tray reaction vessel. .
  • Step 200 loads the reaction vessel:
  • the transfer unit 50 transfers an unused reaction vessel from the reaction vessel supply unit 70 to the reaction vessel location of the measurement unit 80, the measurement disk of the measurement unit 80 is rotated, and the reaction vessel is transferred to the filling position.
  • Step 201 Filling the sample and the reagent: the filling unit 20 respectively sucks the sample and the reagent from the suction sample position and the suction reagent position into the reaction container on the filling position of the measuring unit 80.
  • Step 202 Mixing: If mixing is required, the mixing mechanism integrated in the measuring unit 80 pairs the sample in the reaction vessel After mixing with the reagent or filling the sample and the reagent, the reaction container is transferred from the transfer unit 50 and placed in a mixing mechanism independent of the measuring unit 80, and mixed by the mixing mechanism. If no mixing is required, this step is omitted.
  • Step 204 Washing and separating: After the reaction vessel is incubated or incubated for a certain period of time, the transfer unit 50 transfers it from the second reaction vessel position of the reaction unit 10 to the first reaction vessel position, and the reaction disk 11 is rotated by one position at a fixed time. Transferring the reaction vessel at the first reaction vessel to the cleaning and separating device 2, passing the magnetic field of the cleaning and separating device 16, the rinsing mechanism of the cleaning and separating device 16, and the mixing mechanism to complete the liquid absorption, the cleaning buffer, and the cleaning of the reaction vessel. Mix until the wash separation is completed.
  • Step 205 is filled with a signal reagent: after the cleaning separation is completed, the reaction tray 11 is transferred to the reaction vessel at the first reaction vessel position to leave the magnetic field region, and the signal reagent injection mechanism coupled to the cleaning separation device 16 injects all or part of the reaction vessel into the reaction vessel. After the signal reagent is transferred from the transfer unit 50 to the measurement unit 80, all or part of the signal incubation is completed at the reaction vessel level of the measurement unit 80.
  • Step 206 signal incubation: If signal incubation is required, the reaction vessel completes all or part of the signal incubation in the first reaction vessel position of reaction unit 10 or is transferred to measurement unit 80 by transfer unit 50, and completes the reaction vessel position in measurement unit 80. Or a partial signal incubation. This step is omitted if no signal incubation is required.
  • Step 207 After the reaction vessel to be measured is transferred from the transfer unit 50 to the measuring unit 80, the measuring tray 81 of the measuring unit 80 transfers the reaction vessel at the reaction vessel level to the measuring device 86, and the measuring device 86 pairs the reaction vessel. The reaction signal is measured, and the measurement result is processed and transmitted to the control center of the automatic analysis device.
  • Step 208 discards the reaction vessel: transfer unit 50 transfers the measured reaction vessel from measurement unit 80 to discard reaction vessel well 60 for disposal.
  • the one-step one-step test procedure and procedure differs from the one-step test in steps 301-305, in which the reagent is dispensed twice and an incubation is added, and the other steps are similar to the one-step method. No longer.
  • Step 301 fills the sample and the first reagent: the filling unit 20 respectively sucks the sample and the first reagent from the suction sample position and the suction reagent position into the reaction container on the filling position of the measuring unit 80.
  • Step 303 The transfer unit 50 transfers the reaction container filled with the sample and the reagent to the second reaction container position of the reaction unit 10 from the reaction container position or the mixing mechanism of the measuring unit 80, and the reaction container starts the first time in the reaction unit. Incubate. While the reaction vessel was incubated for the first time, it was rotated by one position with the reaction disk 11 every fixed time. The first incubation time varies depending on the specific test item, typically 5 to 60 minutes.
  • Step 304 is followed by the second reagent: after the first incubation is completed, the transfer unit 50 transfers the reaction vessel from the second reaction vessel position of the reaction unit 10 to the measuring unit 80, and the measuring tray 81 of the measuring unit 80 transfers the reaction vessel to the addition. Note.
  • the filling unit 20 draws the second reagent from the suction reagent position into the reaction vessel on the filling position of the measuring unit 80.
  • Step 305 If necessary, the mixing mechanism integrated in the measuring unit 80 mixes the reactants in the reaction vessel or the reaction vessel after the second reagent is filled is transferred from the transfer unit 50 to be independent. The mixing mechanism of the measuring unit 80 is mixed by the mixing mechanism. If no mixing is required, this step is omitted.
  • step 404 is added to add a wash separation.
  • Step 404 Washing separation: After the first incubation is completed or after a certain period of incubation, the transfer unit 50 transfers the reaction vessel from the second reaction vessel position of the reaction unit 10 to the first reaction vessel position, and the reaction unit 10 is rotated every fixed time. Into a position, the reaction vessel in the first reaction vessel position is transferred to the cleaning and separating device 16, and the magnetic field of the cleaning and separating device 16 is passed through, and the washing mechanism and the mixing mechanism of the cleaning and separating device 16 complete the liquid absorption and injection of the reaction vessel. Wash the buffer and mix thoroughly until the first wash separation is completed.
  • the transfer unit 50 transfers the reaction vessel from the first reaction vessel position of the reaction unit 10 to the reaction vessel position of the measuring unit 80, and the measuring tray 81 of the measuring unit 80 transfers the reaction vessel to the filling position.
  • the filling unit 20 draws the second reagent from the aspirating reagent position into the reaction vessel on the filling position of the measuring unit 80.
  • the sample holder 32 and the sample tube 31 thereon can be conveyed to the motion track of the first filling unit 21.
  • the reagent storage unit 40 increases the reagent storage position and allows more reagent containers to be placed.
  • the filling unit 20 includes a first filling unit 21 and a second filling unit 22, the first filling unit 21 only adds a sample or a sample and a partial reagent, and the second filling unit 22 adds a reagent, of course, Add more filling units, which increases the speed of adding samples and reagents.
  • the reaction vessel supply unit 70 adopts a silo type, and the reaction vessel can be poured into a silo of the reaction vessel supply unit 70 in a scattered manner, which makes the supply of the reaction vessel more, faster, and more convenient.
  • the transfer unit 50 includes a first transfer unit 51 and a second transfer unit 52 that can perform three-dimensional movement independently.
  • the first reaction vessel unit 51 is mainly at the first reaction vessel position and the second reaction vessel position of the reaction unit 10, and the measurement unit 80 and
  • the reaction vessel is transferred between the reaction vessel discarding holes 60b and the like, and the second transfer unit 52 transfers the reaction vessel mainly between the reaction vessel supply unit 70, the filling station 90, the reaction unit 10, and the reaction vessel discarding hole 60a.
  • the sample or sample and a portion of the reagent are received by the second filling unit 22.
  • the mixing mechanism can be integrated on the filling station 90 or the filling unit 20 to mix the reaction container after the sample or/and the reagent is added. After the mixing is completed, the reaction vessel on the filling station 90 is transferred from the transfer unit 50 to the reaction unit 10.
  • the reaction disk 11 of the reaction unit 10 includes a first reaction vessel bit zone 11d and a second reaction vessel site zone 11a.
  • the first reaction vessel bit zone 11d is located at the outer edge of the reaction disk, and is at least one reaction vessel position centered on the center of rotation of the reaction disk 11.
  • the second reaction vessel position on the second reaction vessel bit zone 11a is concentrated in the region of the reaction disk 11 other than the first reaction vessel position.
  • the reaction unit 11 is located on the inner side of the reaction disk 11 and is distributed in a honeycomb shape, so that it can be fully utilized.
  • the space on the reaction unit 10 sets more of the second reaction vessel position, thereby accommodating more reaction vessels and increasing the test throughput.
  • Measuring unit 80 Independently from the reaction unit, including the measuring disk 81, the sealing device 82, the measuring device 86, etc., the first embodiment can be completely reused, but in order to improve the testing efficiency, the filling position is no longer set.
  • At least one reaction vessel location on the reaction disk 11 and at least one reaction vessel on the measurement disk 81 are within the horizontal range of motion of the transfer unit 50 such that the transfer unit 50 can transfer the reaction vessel between the reaction unit and the measurement unit.
  • test procedure and steps of the present embodiment are mainly different from the first embodiment in that the filling sample and the reagent are completed by the first and second filling units, and the reaction container is transferred by the first sum.
  • the second transfer unit is coordinated and completed, and the filling operation of the filling unit is completed in an independent filling station.
  • Other actions and processes are the same as or similar to those in the first embodiment. Referring to FIG. 5 to FIG. 7 , details are not described herein again.
  • this embodiment avoids the extra large size of the cleaning separation disc, and the independent measuring unit makes it easier to realize the darkroom environment and flexible measurement, and the division or classification of the reaction container positions by different functions is also reduced.
  • the size of the reaction unit itself makes the machine more compact, less costly, more efficient and more reliable.
  • the reaction unit in the apparatus of the present invention has various embodiments in addition to the implementations in the first embodiment and the second embodiment of the automatic analyzer of the present invention.
  • Figures 9, 10, and 11, respectively schematic views of the third, fourth, and fifth embodiments of the reaction unit of the apparatus of the present invention are shown.
  • the third embodiment of the reaction unit referring to Fig. 9, the first reaction vessel of the reaction unit 10 is positioned on the outer two rings 11c, 11d centered on the center of rotation of the reaction disk 11, and the second reaction vessel is positioned to The center of rotation of the reaction disk 11 is on the inner two turns 11a, 11b of the center of the circle.
  • the magnetic field generating device of the cleaning and separating device 16 may be disposed on the pot body or other positions below the outer two rings 11c, 11d, and may be added to the 11c, 11d by appropriately increasing the number of the liquid filling portion and the liquid suction portion of the cleaning and separating device 16.
  • the reaction vessel is cleaned and separated.
  • the cleaning and separating device 16 can simultaneously clean and separate the first reaction container positions on the outer two rings 11c, 11d, thereby improving the efficiency of cleaning and separating, and solving the low cleaning efficiency or two-step method in the prior art.
  • the problem of slow test speed also avoids the disadvantages of large volume and high cost caused by the need of two or more separate cleaning and separating devices in the prior art.
  • the number of reaction vessel spaces on the reaction unit 10 is variable, and more or fewer cycles of the reaction vessel can be set, and the first reaction vessel position and the second reaction vessel position are located in the circle.
  • the number can be flexibly combined in any combination, and is not limited to the solution of the embodiment.
  • the fourth embodiment of the reaction unit referring to Fig. 10, there is no second reaction vessel position on the reaction unit 10, and only the first reaction vessel position is set.
  • the first reaction vessel is located on the inner and outer circumferences centered on the center of rotation of the reaction disk 11, and the first reaction vessel position can be incubated before entering the cleaning separation device 16, and after entering the cleaning separation device 16, the cleaning separation is separated and the cleaning separation is separated.
  • reaction unit 10 may also have one or more turns of the first reaction vessel position without the second reaction vessel position. This embodiment is suitable for tests with short incubation times or low test speed requirements.
  • the reaction unit is not limited to the shape of the disk, but may be other shapes or configurations such as a rail or a rectangle. In a fifth embodiment of the reaction unit, referring to Figure 11, the reaction unit has a rectangular shape.
  • the reaction unit comprises a rotatable device 11 and a heat retention device 12, the rotation device 11 includes a second reaction vessel bit zone 11a and 11b, a first reaction vessel bit zone 11d, and the second reaction vessel site mainly achieves incubation, the first reaction vessel The transfer of the reaction vessel to the cleaning separation unit 16 and the measuring unit 80 is carried out.
  • the position of the measuring device 86 in the automatic analyzing device 100 can be flexibly adjusted and arranged without being limited by the size of the measuring disk 81, the size of the sealing device 82, and the arrangement position.
  • the measuring device 86 is vertically connected or mounted on the upper portion of the reaction vessel position of the measuring disk 81, so that the entire machine space can be more fully utilized and the overall size can be reduced.
  • the embodiment of the invention further provides a sample analysis method, which specifically includes:
  • Filling step filling the reaction vessel with samples and reagents
  • Incubating step incubating the reaction vessel at the reaction vessel position of the reaction unit
  • a measuring step of measuring a reaction signal in a reaction vessel at a reaction vessel position of the measuring unit a measuring step of measuring a reaction signal in a reaction vessel at a reaction vessel position of the measuring unit
  • the incubating step is performed at a first reaction vessel position or/and a second reaction vessel position of the reaction unit; further comprising a transfer step by which the reaction vessel is positioned in the first reaction vessel position Transfer between the second reaction vessel and the second reaction vessel.
  • the invention improves the working efficiency of the analysis device, and solves the technical problems of large volume, low detection speed, high cost and poor performance of the current automatic instrument, which not only saves the laboratory space, improves the test efficiency, but also helps reduce the cost. Expenditure, reducing the burden on the subjects, ultimately saving a lot of natural and social resources.
  • Various embodiments may be included in various embodiments of the invention, which may be embodied as machine-executable instructions that are executable by a general purpose or special purpose computer (or other electronic device). Alternatively, these steps may be performed by hardware elements comprising specific logic circuitry to perform the steps or jointly by hardware, software and/or firmware.

Abstract

一种自动分析装置及样本分析方法,该自动分析装置(100)包括:加注单元(20),加注样本或/和试剂到反应容器;反应单元(10),孵育并清洗分离反应容器内的反应物;测量单元(80),测量反应容器内的反应信号;转移单元(50),在不同位置之间转移反应容器。该装置(100)以反应单元(10)为中心实现反应容器内反应物的孵育、清洗分离,独立于反应单元(10)的测量单元(80)对反应容器内的信号进行测量。不仅省去了单独清洗分离盘,精简了系统结构和控制流程,还可以显著缩减反应单元(10)尺寸,并实现灵活的孵育时间。此外,独立的测量单元(80)更容易实现暗室环境,并可实现灵活的信号孵育时间。

Description

自动分析装置及样本分析方法 技术领域
本发明涉及体外诊断设备领域,具体涉及一种自动分析装置及样本分析方法。
背景技术
近年来,临床检验和自动化技术的发展和进步,不仅提升了临床实验室自动化水平,提高了医学检验的效率,也改善了检验结果的质量和可靠性。然而,随着检测标本量的增多,临床实验室需要不断增添大型自动化检测系统以满足其检测需求,从而导致实验室日益拥挤和检测成本不断攀升。因而,如何在面临医保控费的压力和挑战下,提升检验效率、保证结果并充分利用现有实验室资源和减少检测成本支出,是临床检验要解决的一个迫切问题。
为了表述方便,本文以体外诊断(In-Vitro Diagnostics,简称IVD)中的全自动免疫分析仪,特别地,以发光免疫分析仪为列,阐述本技术方案和方法,本领域内技术人员应该理解,本发明方案和方法也可用于其它临床检验自动化装置,比如荧光免疫装置、电化学免疫等。全自动免疫分析通过以抗原抗体相互结合的免疫学反应为基础,使用酶标记、镧系元素标记或化学发光剂标记抗原抗体,通过一系列级联放大反应,将光信号或电信号与分析物浓度等相联系,分析人体样本中的待测的抗原或抗体,主要应用于医院的检验科、第三方独立实验室、血检中心等机构,对人类体液中的各分析物进行定量、半定量或定性检测,进行传染病、肿瘤、内分泌功能、心血管疾病和优生优育以及自身免疫类疾病等的诊断。全自动免疫分析仪通常由取样单元、反应单元、供应和废物废液单元、系统控制单元等组成。发光免疫由于具有定量检测、灵敏度高、特异性好、线性范围宽、自动化程度高等优势正成为目前自动化免疫的主流技术。全自动发光免疫分析根据标记方法和发光体系不同,又包括酶促化学发光、直接化学发光、电化学发光等。
参考附图1-3,发光免疫分析按测试原理和模式一般可分为一步法、延时一步法、两步法等,主要测试步骤一般包括加注样本和试剂、反应物混匀、孵育、清洗分离(Bound-Free,简称B/F)、加信号试剂、测量等。需要指出的是,为了表述方便,本发明区分了试剂和信号试剂、孵育和信号孵育。试剂与分析项目为“一一对应”关系,即不同分析项目对应的具体试剂在配方、试剂量、组分数量等方面一般不同。根据具体分析项目的不同,试剂通常包括多个组分,如常见的2-5个组分,包括磁微粒试剂、酶标试剂、稀释液等试剂组分。根据反应模式不同,一个分析项目的多个试剂组分可以一次性加注也可以分多个步骤加注,分步骤加注时按照加注次序定义为第一试剂、第二试剂、第三试剂等。信号试剂用于测量信号的产生,通常为通用试剂的一种,与分析项目为“一对多”的对应关系,即不同的分析项目共用信号试剂。本发明的孵育特指反应容器开始清洗分离前,其内的反应物在反应单元的恒温环境下发生的抗原抗体结合反应或生物素亲和素结合反应的过程,具体地,一步法孵育一次,为进入清洗分离前的一次孵育,延时一步法孵育两次,包括加注第二试剂前的第一次孵育和进入清洗分离前的第二次孵育,两步法孵育两次,包括第一次清洗分离前的第一次孵育和第二次清洗分离前的第二次孵育。而信号孵育指清洗分离后的反应容器在加入信号试剂后,在恒温环境下反应一段时间,使信号增强的过程。根据反应体系和发光原理的不同,并不是所有测试都需要信号孵育,需要信号孵育的测试一般为酶促类化学发光免疫分析。不同测试模式对应的测试步骤详述如下:
1)一步法:参考附图1,加注样本(S)和试剂(R),混匀(有些测试方法也可以不需要混匀,下同,不再赘述),孵育(一般为5-60分钟),孵育完成后进行清洗分离,加 注信号试剂,信号孵育(一般为1-6分钟),最后测量。需要指出的是,由于信号试剂具体成分的不同,有些发光体系不需要信号孵育,在加注信号试剂过程中或加注完信号试剂后可以直接测量。信号试剂可以是一种或多种,参考附图2,信号试剂包括第一信号试剂、第二信号试剂。
2)延时一步法:与一步法不同之处在于试剂分两次加注,加第一试剂混匀后进行第一次孵育,第一次孵育完成后加第二试剂并混匀。与一步法相比多了一次孵育、加注试剂和混匀动作,其余流程与一步法一样。
3)两步法:与延时一步法不同在于多了一次清洗分离步骤,其它步骤相同。
为了实现上述流程自动化测试,现有的具体实现技术方案如下:
第一种现有技术方案将孵育、清洗分离和测量分开独立布局,分别由三个旋转圆盘完成相应功能,反应容器在不同单元之间由机械抓臂完成转移。该技术方案组件和单元多,反应容器需要在各单元之间转移,造成体积大、成本高、控制流程复杂等问题。
第二种现有技术方案将孵育和测量布置在一起构成孵育测量单元,清洗分离由另一个独立单元完成,虽然与第一种现有方案相比,该技术方案减少了一个测量圆盘,在一定程度上有利于控制整机尺寸和成本,但同样存在与第一种技术方案相同的问题。该技术方案为了实现灵活的孵育时间,孵育测量单元控制复杂,孵育和测量在控制上也会相互制约,不仅存在无法实现高速自动化测试等缺点,也无法实现灵活的信号孵育。
第三种现有技术方案将孵育、清洗分离和测量在一个单圈圆盘或歧形轨道上实现,该方案为了支持较长的孵育时间,圆盘除了清洗分离和测量位置外,还需要设置很多的孵育位置,这样为了实现高速测试,圆盘或歧形轨道尺寸需要设计得很大,生产制造难度大、成本高,此外,为了实现延时一步法和两步法测试,还需要至少两个加样机构和至少两个清洗分离装置,从而增加了物料、加工、生产成本和整机尺寸。另一方面,该技术方案还限制了孵育时间,导致了孵育时间固定、出结果时间过长等问题。此外,该技术方案不仅很难实现测量所需的暗室环境,需要增加额外的快门机构,还无法实现灵活的信号孵育。
发明内容
为解决现有技术普遍存在的缺点和问题,本发明提供一种生产制造成本低、结构简单紧凑、测试流程或方法灵活高效的自动分析装置及其样本分析方法。
根据本发明的一方面,提供一种自动分析装置,包括:加注单元,加注样本或/和试剂到反应容器,反应单元,孵育并清洗分离反应容器内的反应物,测量单元,测量反应容器内的反应信号,转移单元,在不同位置之间转移反应容器,所述反应单元包括旋转装置,所述旋转装置上设置反应容器位,用于承载反应容器;所述测量单元包括测量盘,所述测量盘上设置反应容器位,用于承载反应容器;所述旋转装置上的至少一个反应容器位和所述测量盘上至少一个反应容器位在转移单元的水平运动范围内。
根据本发明的再一方面,提供一种样本分析方法,包括:加注步骤,向反应容器内加注样本和试剂,孵育步骤,对反应单元的反应容器位上的反应容器进行孵育,清洗分离步骤,对反应单元的反应容器位上的反应容器进行清洗分离,测量步骤,对测量单元的反应容器位上的反应容器内的反应信号进行测量,转移步骤,通过转移单元的水平运动将所述反应容器在所述反应单元和所述测量单元之间转移。
本发明以反应单元为中心实现反应容器内反应物的孵育、清洗分离,独立于反应单元的测量单元对反应容器内的信号进行测量,反应容器在反应单元和测量单元之间的转移通过转移单元的水平运动实现。本发明不仅提高了反应容器转移的可靠性,省去了单独清洗分离盘,精简了系统结构和控制流程,还可以显著缩减反应单元尺寸,并实现灵活的孵育时间。此外,独立的测量单元更容易实现暗室环境,提高分析装置的性能和可靠性并可实现灵活的信号孵育时间。本发明提高了分析装置的工作效率,很好解决了目前自动化仪器 体积大、检测速度慢、成本高、性能差等技术难题,不但节约了实验室空间,提高了测试效率,而且有利于减少费用开支,减轻受测者负担,最终节约了大量的自然资源和社会资源。
附图说明
图1是一步法反应模式示意图;
图2是一步法反应模式(另一种信号测量方式)示意图;
图3是延时一步法和两步法反应模式示意图;
图4是本发明自动分析装置的第一种实施方式示意图;
图5是一步法测试流程图;
图6是延时一步法测试流程图;
图7是两步法测试流程图;
图8是本发明自动分析装置的第二种实施方式示意图;
图9是本发明反应单元的第三种实施方式示意图;
图10是本发明反应单元的第四种实施方式示意图;
图11是本发明反应单元的第五种实施方式示意图;
图12是本发明测量单元的另一种实施方式示意图;
图13是本发明测量单元的再一种实施方式示意图。
具体实施方式
下面通过具体实施方式结合附图对本发明作进一步详细说明。
本发明的一种自动分析装置,包括:加注单元,加注样本或/和试剂到反应容器,反应单元,孵育并清洗分离反应容器内的反应物,测量单元,测量反应容器内的反应信号,转移单元,在不同位置之间转移反应容器,所述反应单元包括旋转装置,所述旋转装置上设置反应容器位,用于承载反应容器;所述测量单元包括测量盘,所述测量盘上设置反应容器位,用于承载反应容器;所述旋转装置上的至少一个反应容器位和所述测量盘上至少一个反应容器位在转移单元的水平运动范围内。
反应容器为样本和试剂的反应提供反应场所,可以是各种形状和构造的反应管、反应杯、多个腔的反应杯条、反应芯片等,一般为一次性使用。反应容器的材料通常为塑料,如聚苯乙烯等。反应容器可以在内壁预先包被抗原或抗体,也可不包被,也可在其内预先存放包被好的磁珠或塑料球。反应容器的存储和供给由反应容器供给单元完成。反应容器供给单元主要采用两种主要方式存放和提供反应容器,一种是料仓式,反应容器可以成包散乱倒入反应容器供给单元的料仓中,然后反应容器供给单元自动将反应容器逐次单个排序,供给反应容器到转移单元;另一种方式是预排列式,反应容器预先排列在反应容器托盘、盒或反应容器架、槽道上,反应容器供给单元每次可将整盘、整盒反应容器或一排、一列反应容器输送至目标位置。
反应容器在本发明装置中不同位置之间的转移可由转移单元完成。转移单元可以是任何合适的可以转移或移动反应容器的机构,本发明优选的转移单元主要包括驱动机构、水平运动机械臂、抓放机构等结构。抓放机构通常为机械手指,可以抓放反应容器,水平运动机械臂在驱动机构驱动下可沿着X向、Y向、X向和Y向、径向、周向、径向和周向等方向移动抓放机构,将抓放机构抓取的反应容器移动到不同位置。除了水平运动外,转移单元还可做上下运动,将反应容器放入不同的位置或从不同的位置取出。根据测试速度和整机布局不同,可设置一个或多个转移单元。
加注单元完成样本、试剂的加注。加注单元一般由钢针或一次性吸嘴(Tip)、加注运动驱动机构、注射器或注液泵、阀、流体管路以及清洗池(当采用Tip时也可没有清洗池)等组件构成。为了完成吸取样本、试剂及其加注动作,加注单元除了可以上下运动外,还 可以水平运动,水平运动通常有旋转、X向、Y向等几种运动形式及其组合。加注单元可以是一个,既加样本又加试剂,这样可使整机结构更紧凑和成本更低。为了提高测试速度,加注单元还可进一步包括一个或几个样本加注单元、一个或几个试剂加注单元,样本加注单元只加注样本或加注样本和部分试剂,试剂加注单元加注试剂。
为了方便加注单元的加注,本发明还可包括加注站。加注站位于转移单元和加注单元的运动范围内或可通过水平运动运动到转移单元和加注单元的运动范围内。加注站接收和承载转移单元转移过来的反应容器、接受加注单元向反应容器内加注样本和试剂。加注站上设置反应容器位,用于放置需要加注样本和试剂的反应容器。为了使样本和试剂混合更均匀、反应更充分,同时为了精简整机结构和缩小体积,可在加注站集成混匀机构,对每次加注后的反应容器进行超声混匀、偏向旋转或震荡混匀,也可以将混匀机构,比如超声波发生器集成于加注单元,在加注样本和试剂的同时或加注动作完成后由加注单元产生的超声波实现混匀。本领域内技术人员可以理解,加注站也可不集成混匀机构,混匀还可由加注单元的吸排动作或冲击力完成。为了使整机更紧凑,加注站也可整体集成于反应单元上,这样加注站可以不位于转移单元的轨迹下。
反应单元孵育并进行清洗分离反应容器内的反应物。反应单元主要包括保温装置、旋转装置和清洗分离装置。保温装置外围通常具有保温棉等隔热材料,通常包裹或包围旋转装置的底部、周边和上部,侧面或底部内侧可设有加热装置和传感器,上部一般为盖板等结构,为反应单元提供恒温孵育环境并防止或减少反应单元热量的散失。当然,为了传热效率更高,加热装置也可以安装在旋转装置上。除了提供孵育环境外,保温装置还可支撑和固定清洗分离装置的磁场产生装置,为清洗分离提供磁场环境。旋转装置上设置若干个孔、槽、托架、底座或其他适合承载反应容器的结构,定义为反应容器位。旋转装置最好为一个,包括驱动、传动机构及相关的控制电路等,控制和带动旋转装置每隔固定时间(比如一个循环或周期)旋转固定的角度,转送所述反应容器位前进一定的位置(比如前进一个反应容器位)。旋转装置上的至少一个反应容器位在转移单元的水平运动范围内,这样转移单元可以将反应容器移入移出反应单元的旋转装置。
反应单元的反容器位根据其实现的主要功能的侧重点和必要性不同可分为两种或两类:第一反应容器位和第二反应容器位。第一反应容器位定义为反应单元的旋转装置上的可以转送反应容器到清洗分离装置进行清洗分离的反应容器位,第一反应容器位主要容纳即将或正在清洗分离的反应容器。第二反应容器位定义为反应单元的旋转装置上的除了第一反应容器以外的反应容器位,第二反应容器位是反应容器内的反应混合物反应孵育的主要场所,使反应容器内的样本分析物和相应的试剂以及试剂和试剂之间相互反应。通常来说,第二反应容器位越多,可支持的孵育时间就越长,测试速度也越快。若反应容器在第二反应容器位孵育完成或孵育一定时间后将要进行清洗分离,则由转移单元转移到第一反应容器位。需要说明的是,虽然第一反应容器位的主要功能为在旋转装置的旋转下将其上的反应容器转送到清洗分离装置进行清洗分离,但其转送反应容器到清洗分离装置的过程中还可以实现孵育、转送反应容器离开清洗分离装置后还可实现全部的或部分的信号孵育,当然当第一反应容器位数量有限时,也可不实现孵育和信号孵育功能。对于全部的或部分的信号孵育的情形,以酶促化学发光的信号孵育为例,若其信号孵育需要6分钟,第一反应容器位可实现全部6分钟的信号孵育或只实现3分钟的信号孵育,余下的信号孵育可在测量单元完成,当然也可不实现信号孵育,信号孵育功能完全由测量单元完成。此外,根据设计的需要和具体布局的考虑,当第一反应容器位数量较多和足够时,孵育也可以完全由第一反应容器实现,反应单元上也可以没有第二反应容器位。
反应单元除了上述的功能外,其上的清洗分离装置还可对第一反应容器位上的反应容器进行清洗分离,以去除反应物中未结合的成分。本发明反应单元的清洗分离装置包括磁 场产生装置和冲洗机构。磁场产生装置提供磁场环境,使反应容器内的顺磁颗粒吸附到反应容器内壁。由于在磁场中的响应时间、移动距离和阻力等因素,顺磁性颗粒吸附到反应容器内壁需要一定的时间,通常为几秒到几十秒不等,这样在每次吸取废液(包括未结合成分)前,反应容器需要经过磁场一段时间。本发明的一种优选实施例中,磁场产生装置可直接安装或固定在反应单元的保温装置,这样不仅可以节省额外的固定机构,降低成本,还可使磁铁产生装置更靠近反应容器位,从而减少顺磁颗粒的吸附时间,提高清洗分离效率。冲洗机构包括吸液和注液装置,抽吸反应容器内的未结合成分和向抽吸后的反应中注入清洗缓冲液。吸液装置包括吸液针、吸液管或吸液嘴等适合抽吸液体的吸液部,吸液部布置在反应单元的上方,可以通过驱动机构的带动进出反应容器位上的反应容器,抽吸反应容器内的未结合成分。注液装置包括注液针、管、嘴等适合排注液体的注液部,注液部同样布置在反应单元的反应容器位的上方,向抽吸后的反应容器内注入清洗缓冲液。每次冲洗包括一次吸液和一次注入清洗缓冲液和过程,一般冲洗三次或四次,即进行三次或四次冲洗,当然冲洗次数也可灵活多变。为了使清洗更彻底,残留更少,还可在注液位设置混匀器混匀反应容器或利用注液时的冲击力,在注清洗缓冲液同时或注清洗缓冲液后使顺磁性颗粒重悬浮和均匀分散在清洗缓冲液中。反应单元旋转装置转送反应容器到清洗分离装置时,清洗分离装置开始对反应容器进行清洗分离。此外,为了精简机构,清洗分离装置还可进一步耦合信号试剂加注机构,在反应容器完成清洗分离后,向其内加注全部或部分信号试剂,比如加注全部的第一、第二信号试剂等或只加注第一信号试剂等,余下的信号试剂可在测量时加注。这样可以充分利用清洗分离装置的功能,缩减了机构体积和节省了成本。
由以上描述可知,清洗分离装置布置在反应单元的旋转装置周边或旋转装置上方,可以直接对反应单元旋转装置上的反应容器进行清洗分离,这样可以避免设置独立的清洗分离旋转装置,如独立的清洗分离盘或清洗分离轨道等,不仅精简了组件和整机机构,使整机机构更紧凑和成本更低,还避免了反应容器在独立的清洗分离装置和反应单元之间的转移,使整机控制流程更简单高效,从而提高处理效率和可靠性。
测量单元对反应容器内的信号进行测量。信号为反应容器内加入信号试剂后产生的电信号、荧光信号或微弱化学发光信号等。本发明的测量单元独立于反应单元,主要包括测量盘、密闭装置和测量装置等。测量盘包括以所述测量盘旋转中心为圆心的至少一圈反应容器位,用于承载反应容器。为了方便加注单元的加注和尽量减少加注站等装置,还可在测量盘上的反应容器位设置加注样本和/或试剂位,实现样本和/或试剂的加注。对于需要信号孵育的测试来说,测量盘上的反应容器位还可实现全部的或部分的信号孵育功能。通过测量盘的旋转,可把其上任一反应容器位上的反应容器旋转到测量装置进行测量,从而实现灵活的信号孵育,提高测试的灵活性和效率。由于需要测量的信号通常为微弱光信号,测试时容易受到环境光的干扰和影响而使测量不准确,所以测量单元需要提供一个密闭的暗室环境。测量单元的密闭装置通常包裹或包围在测量盘的外围,为测量单元提供了测量时所需的密闭的暗室环境。进一步地,为了实现有些测试的信号孵育功能,密闭装置的侧面或底部还可设置加热装置和传感器,为测量单元提供恒温孵育环境并防止或减少反应单元热量的散失。当然,为了传热效率更高,加热装置也可以安装在测量盘上。测量装置包括微弱光探测器光电倍增管(PMT)或其他灵敏的光电感应器件,可把测量的光信号转换为电信号,传送至控制中心。此外,为了提高测量效率和保证测量一致性,测量装置还可进一步包括光信号收集和校准等光学装置。本发明的一种优选实施例中,测量装置可以通过通用方式连接或安装到密闭装置上,比如直接安装固定在密闭装置上或通过光纤连接安装到密闭装置上,这样可以直接对测量盘反应容器位上的反应容器内的信号进行测量,避免设置独立的测量位置以及省去反应容器在测量盘和测量位置之间的转移,可使整机机构 更紧凑、成本更低、控制流程更简单高效、处理效率和可靠性更高。此外,为了方便信号试剂的加注,本发明的测量单元还可包括信号试剂加注机构,向测量盘反应容器位上的反应容器内加注全部或部分信号试剂。本发明的测量单元独立于反应单元,不仅容易实现暗室环境,还可实现灵活的信号孵育,解决了现有技术暗室结构复杂、信号孵育时间固定等缺点。
此外,为了输送样本和存储试剂,本发明的自动分析装置还可设置样本输送单元、试剂存储单元等单元。
样本输送单元用于放置待检样本管并将目标样本管输送至吸样本位。样本输送单元有轨道进样、样本盘进样和固定区域进样三种主要方式,样本管通常放置在样本架上,每个样本架一般放置5个或10个样本管,样本架放置于传输轨道上、样本盘上或分析装置的固定区域。
试剂存储单元冷藏试剂并将目标试剂转送至吸试剂位。试剂存储单元通常采用试剂盘和固定试剂存储区两种方式,为了保证试剂的稳定性,试剂盘一般具有制冷功能,如4-10℃。试剂盘上一般设置若干个试剂容器位,用于放置试剂容器。每个试剂容器设置若干个独立的腔体,用于存放不同的试剂组分,如磁微粒试剂、酶标试剂、稀释液等试剂组分。
本发明自动分析装置的第一种实施方式,参考图4。自动分析装置100包括样本输送单元30、试剂存储单元40、加注单元20、反应容器供给单元70、转移单元50、反应单元10以及测量单元80等。下面分别叙述各部分的功能和作用。
样本输送单元30用于放置待检样本管31并将目标样本管输送至吸样本位。本实施例中,样本输送单元30为样本盘,样本盘上放置弧形样本架(图中未标出)上,每个弧形样本架放置10个样本管31。样本盘可在控制中心的控制下由驱动机构带动将目标样本转送至吸样本位,吸样本位位于加注单元20的水平运动轨迹与样本管中心圆的交点处。
试剂存储单元40冷藏试剂容器41并将目标试剂转送至吸试剂位。本实施例中,试剂存储单元40为试剂盘,设置25个试剂位,可容纳25个试剂容器41(或试剂盒、试剂瓶,为表述方便,以下简称试剂瓶)。本实施例中,每个试剂瓶41设置4个腔体41a、41b、41c、41d,可用于存放磁微粒试剂、酶标试剂、稀释液等试剂组分。试剂盘可在控制中心的控制下由驱动机构带动将目标试剂瓶转送至吸试剂位,吸试剂位位于加注单元水平运动轨迹与试剂腔中心圆的交点处,本实施例中,与对应4个试剂组分对应,有4个吸试剂位(图中未标出)。
加注单元20完成样本、试剂的加注。加注单元20的水平运动轨迹与样本盘30上的样本位、试剂盘40上的试剂位、测量单元80的测量盘81上的反应容器位分别相交,交点处分别为吸样本位、吸试剂位和加注位。本实施例中,加注单元为单一加样机构,可做上下和水平旋转运动,既加注样本又加注试剂,这样可使整机结构更紧凑和成本更低。加注单元20上还可集成超声波发生器等混匀机构,对每次加注后的反应容器进行超声混匀。其它实施方式中,混匀机构可设置在测量单元80上,用于对加注后的反应容器进行超声混匀或震荡混匀。当然也可设置独立于测量单元80的混匀机构(图中未标出),在加注位完成加注后的反应容器由测量单元80转送到转移单元50的运动轨迹下,由转移单元50转移到混匀机构进行混匀。加注位设置在测量单元80上,可以充分利用测量单元80的反应容器位以及其旋转定位功能,这样可以省去设置独立的加注站,节省了机构,可以使整机成本更低,结构更为紧凑。
反应容器供给单元70存放和提供反应容器。本实施例中,为了使整机更为紧凑和成本更低,反应容器供给单元采用预先排列式。反应容器供给单元70包括两个反应容器托盘,反应容器托盘上设置若干数量的反应容器位,存放未使用的反应容器。反应容器供给单元70在转移单元50的水平运动范围内,这样转移单元50可以遍历托盘上每个反应容 器位上的未使用的反应容器,为新开始的测试提供未使用的反应容器。
转移单元50可以水平运动,在自动分析装置100的不同位置之间转移反应容器。本实施中,转移单元50设置为1个,可做三维运动,这样可使整机更为紧凑和成本更低。转移单元50包括X向运动机械臂50b、Y向导轨50a、Y向运动机械臂50c以及垂直运动机构和机械手指(图中未标出)等机构。转移单元50可同时沿着X向、Y向水平移动机械手指,水平运动范围覆盖边界矩形56内的范围,可将反应容器在反应容器供给单元70、反应单元10上的第一反应容器位、反应单元10上的第二反应容器位、测量单元80上的反应容器位、丢反应容器孔60之间转移。此外,由于转移单元50运动轨迹覆盖反应单元10上的至少一个第一反应容器位,转移单元可以通过将反应容器放入不同的第一反应容器位或从不同的第一反应容器位上转移出应容器来实现灵活的孵育时间。
反应单元10孵育并进行清洗分离反应容器内的反应物。本实施例中,反应单元10的保温装置为锅体12和上盖(图中未标出),旋转装置为反应盘11、清洗分离装置为16。锅体12侧面或底部内侧有加热器和传感器,包围反应盘11的底部和周边,为反应单元10提供恒温孵育环境,防止或减少反应单元10热量的散失。除了提供孵育环境外,锅体12还支撑和固定清洗分离装置16的磁场产生装置,为清洗分离提供磁场环境。本实施例中,清洗分离装置16的磁铁产生装置为永磁体装置,这样可以提供更强和更稳定的磁场环境。清洗分离装置16的冲洗机构包括吸液装置和注液装置以及混匀机构。清洗分离装置16还可耦合信号试剂加注机构,在反应单元10反应容器位上的反应容器完成清洗分离后,向其内加注全部或部分信号试剂。反应盘11可绕中心轴旋转,其上设置了以旋转中心为圆心的四圈反应容器位,当然圈数是可以改变的,比如可以是1圈、2圈、3圈、5圈或更多等。其中外圈11d上的反应容器位为第一反应容器位,内三圈11a、11b、11c上的反应容器位为第二反应容器位。第一反应容器位转送反应容器到清洗分离装置16,经过清洗分离装置16的过程中,由清洗分离装置16对其进行清洗分离。对于需要信号孵育的测试来说,第一反应容器位还可继续转送清洗分离后的反应容器,完成全部的或部分的信号孵育功能。
测量单元80独立于反应单元,对反应容器内的信号进行测量。本实施例中,测量单元80主要包括测量盘81、密闭装置82和测量装置86等。测量盘81上设置以测量盘旋转中心为圆心的一圈反应容器位81a,用于承载反应容器。反应容器位81a与加注单元20运动轨迹的交点为加注位。本实施例设置多个反应容器位,可以实现全部或部分信号孵育。测量盘81每次旋转,可把任一反应容器位上的反应容器旋转到测量装置进行测量,当测试需要信号孵育时,可实现灵活的信号孵育,提高测试的灵活性和效率。密闭装置82包裹或包围在测量盘外围,侧面或底部设置加热装置和传感器,为测量装置86提供暗室环境和测量盘反应容器位81a提供恒温孵育环境。测量装置86包括微弱光探测器光电倍增管(PMT),直接安装在密闭装置82上,对反应容器内加入信号试剂后产生的微弱化学发光信号进行测量。此外,为了方便信号试剂的加注,本发明的测量单元80还可设置信号试剂加注机构(图中未标出),向测量盘反应容器位上的反应容器内加注全部或部分信号试剂。
下面以一个一步法测试为例,结合附图4和5,简述自动分析装置100的测量流程和步骤。测试开始后,
步骤200加载反应容器:转移单元50从反应容器供给单元70转移一个未使用的反应容器到测量单元80的反应容器位上,测量单元80的测量盘旋转,将该反应容器转送到加注位。
步骤201加注样本和试剂:加注单元20分别从吸样本位和吸试剂位吸取样本和试剂加注到测量单元80加注位上的反应容器内。
步骤202混匀:若需要混匀,则集成于测量单元80的混匀机构对反应容器内的样本 和试剂进行混匀或者加注完样本、试剂后的反应容器由转移单元50转移出来放到独立于测量单元80的混匀机构,由混匀机构混匀。若不需要混匀,则省略该步骤。
步骤203孵育:转移单元50从测量单元80的反应容器位或混匀机构将加注完样本和试剂的反应容器转移到反应单元10的第二反应容器位,反应容器开始在反应单元孵育。反应容器孵育的同时,每隔固定时间随反应盘11旋转前进1个位置。孵育时间因具体测试项目而异,一般为5-60分钟。
步骤204清洗分离:反应容器孵育完成或孵育一定时间后,转移单元50将其从反应单元10的第二反应容器位转移至第一反应容器位,反应盘11每隔固定时间旋转前进1个位置,转送第一反应容器位上的反应容器到清洗分离装置2,经过清洗分离装置16的磁场、由清洗分离装置16的冲洗机构和混匀机构对反应容器完成吸液、注清洗缓冲液、清洗混匀直至完成清洗分离。
步骤205加注信号试剂:清洗分离完成后,反应盘11转送第一反应容器位上的反应容器离开磁场区域,由清洗分离装置16上耦合的信号试剂注液机构向反应容器内注入全部或部分信号试剂或者由转移单元50转移到测量单元80后,在测量单元80的反应容器位完成全部或部分信号孵育。
步骤206信号孵育:若需要信号孵育,则反应容器在反应单元10第一反应容器位完成全部或部分信号孵育或者由转移单元50转移到测量单元80后,在测量单元80的反应容器位完成全部或部分信号孵育。若不需要信号孵育,则该步骤省略。
步骤207测量:需要测量的反应容器由转移单元50转移到测量单元80后,测量单元80的测量盘81将反应容器位上的反应容器转送至测量装置86,由测量装置86对反应容器内的反应信号进行测量,测量结果经处理后传送至自动分析装置的控制中心。
步骤208丢弃反应容器:转移单元50将测量后的反应容器从测量单元80转移至丢弃反应容器孔60丢弃。
参考附图4和附图6,延时一步法测试流程和步骤与一步法试不同之处在于步骤301-305,将试剂分二次分注和增加了一次孵育,其他步骤与一步法类似,不再赘述。
步骤301加注样本和第一试剂:加注单元20分别从吸样本位和吸试剂位吸取样本和第一试剂加注到测量单元80加注位上的反应容器内。
步骤302混匀:若需要混匀,则集成于测量单元80的混匀机构对反应容器内的样本和试剂进行混匀或者加注完样本、试剂后的反应容器由转移单元50转移出来放到独立于测量单元80的混匀机构,由混匀机构混匀。若不需要混匀,则省略该步骤。
步骤303孵育:转移单元50从测量单元80的反应容器位或混匀机构将加注完样本和试剂的反应容器转移到反应单元10的第二反应容器位,反应容器开始在反应单元第一次孵育。反应容器第一次孵育的同时,每隔固定时间随反应盘11旋转前进1个位置。第一次孵育时间因具体测试项目而异,一般为5-60分钟。
步骤304加注第二试剂:第一次孵育结束后,转移单元50从反应单元10的第二反应容器位将反应容器转移至测量单元80,测量单元80的测量盘81将反应容器转送到加注位。加注单元20从吸试剂位吸取第二试剂加注到测量单元80的加注位上的反应容器内。
步骤305混匀:若需要混匀,则集成于测量单元80的混匀机构对反应容器内的反应物进行混匀或者加注完第二试剂后的反应容器由转移单元50转移出来放到独立于测量单元80的混匀机构,由混匀机构混匀。若不需要混匀,则省略该步骤。
参考附图4和附图7,两步法测试流程和步骤与延时一步法试不同之处在于增加了步骤404,增加了一次清洗分离。
步骤404清洗分离:第一次孵育完成或孵育一定时间后,转移单元50将反应容器从反应单元10的第二反应容器位转移至第一反应容器位,反应单元10每隔固定时间旋转前 进1个位置,转送第一反应容器位上的反应容器到清洗分离装置16,经过清洗分离装置16的磁场、由清洗分离装置16的冲洗机构和混匀机构对反应容器次完成吸液、注清洗缓冲液和清洗混匀直至完成第一次清洗分离。第一次清洗分离完成后,转移单元50将反应容器从反应单元10的第一反应容器位转移至测量单元80的反应容器位,测量单元80的测量盘81将反应容器转送到加注位。加注单元20从吸试剂位吸取第二试剂加注到测量单元80加注位上的反应容器内。
两步法其他步骤与延时一步法类似,不再赘述。
由以上描述可见,自动分析装置100不仅省去了现有技术采用的清洗分离盘,缩减了整机尺寸和降低了成本,还精简了测试步骤和降低了控制的复杂度和难度,避免了反应容器在多个盘之间的转移。此外,反应单元通过设置不同的反应容器位,在反应单元上或周边布置清洗分离装置,将孵育主要在第二容器位实现,清洗分离在第一反应容器位实现,通过平衡第一、第二反应容器位数量,可以进一步缩减反应单元的尺寸,使整机结构更加紧凑,成本更低,测试效率更高。测量单元独立于反应单元布置,可以更容易实现暗室环境,使整机机构更简单紧凑。另外,转移单元运动轨迹覆盖反应单元多个第二个反应容器位和测量单元包括多个可实现信号孵育的反应容器位,还可以实现灵活的孵育和信号孵育时间。
除了以上提到的独特优势之外,本发明的自动分析装置还可以灵活拓展和最大限度地复用,实现产品的系列化。在实施例1的基础上,为了进一步提升整机规格参数和测试通量,满足标本量更大的终端客户需求,可以通过增加转移单元和加注单元数量、适当增大反应单元尺寸或增加反应单元数量等方式来实现。参考图8为本发明自动分析装置的第二种实施方式示意图。样本输送单元30采取轨道和样本架的进样方式,这样可以容纳更多样本,可以实时追加样本,操作也更为方便。样本架32和其上的样本管31可被输送到第一加注单元21的运动轨迹下。试剂存储单元40增加了试剂存放位置,可以放置更多试剂容器。加注单元20包括第一加注单元21和第二加注单元22,第一加注单元21只加注样本或加注样本和部分试剂,第二加注单元22加注试剂,当然也可增加更多的加注单元,这样提高了加样本和试剂的速度。反应容器供给单元70采用料仓式,反应容器可以成包散乱倒入反应容器供给单元70的料仓中,这种方式可使反应容器的供给更多、更快、更方便。转移单元50包括可独立做三维运动的第一转移单元51和第二转移单元52,第一反应容器单元51主要在反应单元10的第一反应容器位和第二反应容器位以及测量单元80和反应容器丢弃孔60b等位置之间转移反应容器,第二转移单元52主要在反应容器供给单元70、加注站90和反应单元10以及反应容器丢弃孔60a之间转移反应容器。本领域普通技术人员可以理解,通过合理的布局和分配,任意两个位置之间反应容器的转移都可通过第一或第二转移单元或两者同时完成。当然,转移单元可以不止2个,可以根据需要设置更多的转移单元以提高反应容器转移的效率和速度。为了整机布局紧凑和提高测试速度,本实施例采用独立加注站90的方式加注样本和试剂。加注站90可在反应容器供给单元70、第一加注单元21、第二加注单元22之间来回移动,接收反应容器供给单元70供给的反应容器、接受第一加注单元21加注样本或样本和部分试剂、接受第二加注单元22加注试剂。可以在加注站90上或加注单元20上集成混匀机构,对加注样本或/和试剂后的反应容器进行混匀。混匀完成后,加注站90上的反应容器由转移单元50转移到反应单元10。反应单元10的反应盘11包括第一反应容器位区11d和第二反应容器位区11a。第一反应容器位区11d位于反应盘外缘,是以反应盘11旋转中心为圆心的至少一圈反应容器位。第二反应容器位区11a上的第二反应容器位集中分布在反应盘11上第一反应容器位以外的区域,本实施例中位于反应盘11里侧,成蜂窝状分布,这样可以充分利用反应单元10上的空间设置更多的第二反应容器位,从而容纳更多的反应容器,提升测试通量。测量单元80 独立于反应单元,包括测量盘81、密闭装置82和测量装置86等,可以完全复用实施例一,但为了提高测试效率,不再设置加注位外。反应盘11上的至少一个反应容器位和测量盘81上的至少一个反应容器位在转移单元50的水平运动范围内,这样转移单元50可以在反应单元和测量单元之间转移反应容器。
本领域内普通技术人员应该可以理解,本实施例的测试流程和步骤与实施例一主要不同在于加注样本和试剂由第一和第二加注单元协调配合完成,反应容器转移由第一和第二转移单元协调配合完成,加注单元的加注动作在独立的加注站完成,其它动作和流程与实施例一相同或相似,参考图5-图7,不再赘述。该实施例与现有技术相比,避免了额外的大尺寸的清洗分离盘,独立的测量单元更容易实现暗室环境和灵活的测量,同时通过功能不同的反应容器位的分区或分类也减少了反应单元自身的尺寸,从而使整机更为紧凑、成本更低、效率更高和可靠性更好。
本发明装置中的反应单元除了本发明自动分析装置实施例一、实施例二叙述中的实现方式外,还有多种实施方式。参考图9、图10、图11分别为本发明装置反应单元的第三种、第四种和第五种实施方式示意图。反应单元的第三种实施例中,参考图9,反应单元10的第一反应容器位在以以反应盘11旋转中心为圆心的外两圈11c、11d上,第二反应容器位在以以反应盘11旋转中心为圆心的内两圈11a、11b上。清洗分离装置16的磁场产生装置可设置在外两圈11c、11d之间下方的锅体上或其他位置,可通过适当增加清洗分离装置16的注液部和吸液部数量同时对11c、11d上的反应容器进行清洗分离。该实施例中,清洗分离装置16可同时对外两圈11c、11d上的第一反应容器位进行清洗分离,从而提高了清洗分离的效率,解决了现有技术中清洗分离效率低下或两步法测试速度慢的问题,也避免了现有技术中需要两个或多个分立的清洗分离装置造成的体积大、成本高等缺点。本领域普通技术人员可以理解,反应单元10上的反应容器位圈数是可变的,可以设置更多圈或更少圈反应容器位,第一反应容器位和第二反应容器位所在的圈数可以灵活得任意组合,不限于本实施例的方案。反应单元的第四种实施例中,参考图10,反应单元10上没有第二反应容器位,只设置了第一反应容器位。第一反应容器位在以以反应盘11旋转中心为圆心的内外两圈上,第一反应容器位可在进入清洗分离装置16前实现孵育、进入清洗分离装置16后实现清洗分离、离开清洗分离装置16后实现全部或部分信号孵育。当然,根据设计需要,反应单元10还可以有一圈或更多圈第一反应容器位而没有第二反应容器位,该实施方式适合孵育时间较短或测试速度要求不高的测试。反应单元不只局限于圆盘形状,还可以是其它形状或构造,如轨道式或矩形等。反应单元的第五种实施例中,参考图11,反应单元为矩形形状。同样地,反应单元包括可旋转装置11和保温装置12,旋转装置11包括第二反应容器位区11a和11b、第一反应容器位区11d,第二反应容器位主要实现孵育,第一反应容器位转送反应容器到清洗分离装置16和测量单元80。
依据整机结构、布局或具体组件结构以及生产、组装工艺等因素的不同,本发明中测量单元也有多种灵活的实现方式。参考图12和图13为本发明测量单元的另两种实施方式示意图。一种实施例中,参考图12,测量单元主要包括测量盘81、密闭装置82和测量装置86以及测量装置86和密闭装置82之间的连接部分83等,连接部分83可以是光纤等信号传送装置,其一端连接或安装到密闭装置82上,另一端连接或安装到测量装置86。通过这种方式,可以灵活调整和布置测量装置86在自动分析装置100中的位置而不必受限于测量盘81、密闭装置82的尺寸和布置位置影响。再一种实施例中,参考图13,测量装置86竖直连接或安装在测量盘81反应容器位的上部,这样可以更充分利用整机空间,减少整机尺寸。
本发明实施例还提供了一种样本分析方法,具体包括:
加注步骤,向反应容器内加注样本和试剂;
孵育步骤,对反应单元的反应容器位上的反应容器进行孵育;
清洗分离步骤,对反应单元的反应容器位上的反应容器进行清洗分离;
测量步骤,对测量单元的反应容器位上的反应容器内的反应信号进行测量;
转移步骤,通过转移单元的水平运动将所述反应容器在所述反应单元和所述测量单元之间转移。
进一步地,所述孵育步骤在反应单元的第一反应容器位或/和第二反应容器位上完成;还包括转移步骤,通过所述转移单元将所述反应容器在所述第一反应容器位和第二反应容器位之间转移。
本发明以反应单元为中心实现反应容器内反应物的孵育、清洗分离,独立于反应单元的测量单元对反应容器内的信号进行测量,反应容器在反应单元和测量单元之间的转移通过转移单元的水平运动实现。本发明不仅提高了反应容器转移的可靠性,省去了单独清洗分离盘,精简了系统结构和控制流程,还可以显著缩减反应单元尺寸,并实现灵活的孵育时间。此外,独立的测量单元更容易实现暗室环境,提高分析装置的性能和可靠性并可实现灵活的信号孵育时间。本发明提高了分析装置的工作效率,很好解决了目前自动化仪器体积大、检测速度慢、成本高、性能差等技术难题,不但节约了实验室空间,提高了测试效率,而且有利于减少费用开支,减轻受测者负担,最终节约了大量的自然资源和社会资源。
本发明实施例中描述的技术特征或操作步骤可以按照任何合适的方式进行组合。本领域内普通技术人员容易理解,本发明实施例描述的方法中的步骤或动作的顺序是可以改变的。因此,除非另有说明要求一定的顺序,在附图或者详细描述中的任何顺序只是为了用作说明的目的,而不是必须的顺序。
本发明的各实施例中可以包括各种步骤,这些步骤可以体现为可由通用或专用计算机(或其它电子设备)执行的机器可执行的指令。可选地,这些步骤可以由包括了用以执行这些步骤的特定逻辑电路的硬件元件执行或者由硬件、软件和/或固件联合执行。
以上通过具体的实施例对本发明进行了说明,但本发明并不限于这些具体的实施例。本领域技术人员应该明白,还可以对本发明做各种修改、等同替换、变化等等,这些变换只要未背离本发明的精神,都应在本发明的保护范围之内。此外,以上多处所述的“一个实施例”“本实施例”等表示不同的实施例,当然也可以将其全部或部分结合在一个实施例中。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (15)

  1. 一种自动分析装置,其特征在于:包括:
    加注单元,加注样本或/和试剂到反应容器;
    反应单元,孵育并清洗分离反应容器内的反应物;
    测量单元,测量反应容器内的反应信号;
    转移单元,在不同位置之间转移反应容器;
    所述反应单元包括旋转装置,所述旋转装置上设置反应容器位,用于承载反应容器;所述测量单元包括测量盘,所述测量盘上设置反应容器位,用于承载反应容器;所述旋转装置上的至少一个反应容器位和所述测量盘上至少一个反应容器位在转移单元的水平运动范围内。
  2. 根据权利要求1所述的自动分析装置,其特征在于,所述转移单元将所述反应容器在所述反应单元和所述测量单元之间转移。
  3. 根据权利要求1所述的自动分析装置,其特征在于,所述旋转装置为反应盘,所述反应盘每隔固定时间旋转固定的角度,转送其上的反应容器位前进。
  4. 根据权利要求3所述的自动分析装置,其特征在于,所述反应盘上的反应容器位包括第一反应容器位,所述第一反应容器位转送反应容器进行清洗分离。
  5. 根据权利要求1或4所述的自动分析装置,其特征在于,所述反应单元包括清洗分离装置,对所述第一反应容器位上的反应容器进行清洗分离,以去除反应物中未结合的成分。
  6. 根据权利要求4所述的自动分析装置,其特征在于,所述反应盘上的反应容器位还包括第二反应容器位,所述第二反应容器位孵育反应容器内的反应物。
  7. 根据权利要求1或6所述的自动分析装置,其特征在于,所述转移单元还将所述反应容器在所述第一反应容器位和所述第二反应容器位之间转移。
  8. 根据权利要求6所述的自动分析装置,其特征在于,所述第一反应容器位分布在以所述反应盘旋转中心为圆心的至少一圈上,所述第二反应容器位分布在以所述反应盘旋转中心为圆心的至少另外一圈上。
  9. 根据权利要求6所述的自动分析装置,其特征在于,所述第一反应容器位分布在以所述反应盘旋转中心为圆心的至少一圈上,所述第二反应容器位集中分布在所述反应盘上第一反应容器位以外的区域。
  10. 根据权利要求1所述的自动分析装置,其特征在于,所述测量盘包括以所述测量盘旋转中心为圆心的至少一圈反应容器位。
  11. 根据权利要求10所述的自动分析装置,其特征在于:所述测量盘上的反应容器位还具有信号孵育功能。
  12. 一种样本分析方法,其特征在于:包括
    加注步骤,向反应容器内加注样本和试剂;
    孵育步骤,对反应单元的反应容器位上的反应容器进行孵育;
    清洗分离步骤,对反应单元的反应容器位上的反应容器进行清洗分离;
    测量步骤,对测量单元的反应容器位上的反应容器内的反应信号进行测量;
    转移步骤,通过转移单元的水平运动将所述反应容器在所述反应单元和所述测量单元之间转移。
  13. 根据权利要求12所述的样本分析方法,其特征在于:所述清洗分离步骤在所述反应单元的第一反应容器位上进行。
  14. 根据权利要求12所述的样本分析方法,其特征在于:所述孵育步骤在反应单元的第一反应容器位或/和第二反应容器位上完成。
  15. 根据权利要求13或14所述的样本分析方法,其特征在于:还包括转移步骤,通过所述转移单元将所述反应容器在所述第一反应容器位和第二反应容器位之间转移。
PCT/CN2017/108328 2017-01-06 2017-10-30 自动分析装置及样本分析方法 WO2018126774A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/475,788 US11162962B2 (en) 2017-01-06 2017-10-30 Automatic analysis device and sample analysis method
EP17889890.4A EP3572815B1 (en) 2017-01-06 2017-10-30 Automatic analysis device and sample analysis method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710010294.XA CN106841644B (zh) 2017-01-06 2017-01-06 自动分析装置及样本分析方法
CN201710010294.X 2017-01-06

Publications (1)

Publication Number Publication Date
WO2018126774A1 true WO2018126774A1 (zh) 2018-07-12

Family

ID=59118189

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/108328 WO2018126774A1 (zh) 2017-01-06 2017-10-30 自动分析装置及样本分析方法

Country Status (4)

Country Link
US (1) US11162962B2 (zh)
EP (1) EP3572815B1 (zh)
CN (1) CN106841644B (zh)
WO (1) WO2018126774A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11268970B2 (en) 2017-01-06 2022-03-08 Shenzhen Increcare Biotech Co., Ltd Automatic analysis device and sample analysis method
US11619642B2 (en) 2017-01-06 2023-04-04 Shenzhen Increcare Biotech Co., Ltd. Reaction incubation device, immunity analyzer and reaction incubation method

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106841644B (zh) * 2017-01-06 2019-05-31 深圳迎凯生物科技有限公司 自动分析装置及样本分析方法
CN106645765B (zh) * 2017-01-06 2019-08-27 深圳迎凯生物科技有限公司 自动分析装置及样本分析方法
CN107238715B (zh) * 2017-06-28 2019-01-18 苏州长光华医生物医学工程有限公司 一种血型仪温育加样机构
CN109580595A (zh) * 2017-09-29 2019-04-05 深圳市新产业生物医学工程股份有限公司 化学发光检测仪、温育装置及反应盘机构
CN109580596B (zh) * 2017-09-29 2024-04-16 深圳市新产业生物医学工程股份有限公司 化学发光检测仪、温育装置及其温育方法
CN111551758A (zh) * 2017-10-19 2020-08-18 深圳迎凯生物科技有限公司 自动分析装置
WO2019127016A1 (zh) 2017-12-26 2019-07-04 深圳迎凯生物科技有限公司 自动清洗分离装置
CN107884591A (zh) * 2017-12-26 2018-04-06 深圳迎凯生物科技有限公司 自动清洗分离装置
CN109975277A (zh) * 2017-12-28 2019-07-05 深圳市新产业生物医学工程股份有限公司 化学发光检测仪及其检测方法
CN110261591A (zh) * 2019-07-05 2019-09-20 杭州布封科技有限公司 一种通用全自动分析系统
CN110261592B (zh) * 2019-07-05 2023-06-02 杭州布封科技有限公司 一种被分析物定性定量测定方法
CN113219194B (zh) * 2020-01-21 2023-10-20 深圳迎凯生物科技有限公司 分析装置
CN113219192B (zh) * 2020-01-21 2023-10-20 深圳迎凯生物科技有限公司 反应器转移方法
CN113567690A (zh) * 2020-04-28 2021-10-29 深圳迎凯生物科技有限公司 孵育组件、孵育装置和自动分析装置
US20230236180A1 (en) * 2020-04-28 2023-07-27 Shenzhen Increcare Biotech Co.Ltd. Incubation Device and Automatic Analysis Device
CN113567691A (zh) * 2020-04-28 2021-10-29 深圳迎凯生物科技有限公司 孵育装置和自动分析装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012130107A1 (zh) * 2011-03-25 2012-10-04 深圳迈瑞生物医疗电子股份有限公司 自动分析装置及其样本分析方法
CN102998473A (zh) * 2012-12-19 2013-03-27 北京利德曼生化股份有限公司 全自动化学发光免疫分析仪
CN104345158A (zh) * 2013-07-30 2015-02-11 苏州浩欧博生物医药有限公司 自动分析装置及自动分析方法
CN104714042A (zh) * 2013-12-16 2015-06-17 深圳市亚辉龙生物科技有限公司 一种全自动化学发光免疫分析仪及其使用方法
CN106645765A (zh) * 2017-01-06 2017-05-10 刘丹 自动分析装置及样本分析方法
CN106841644A (zh) * 2017-01-06 2017-06-13 刘丹 自动分析装置及样本分析方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1656543B1 (en) * 2003-07-18 2012-02-01 Bio-Rad Laboratories, Inc. System and method for multi-analyte detection
CN103599898B (zh) * 2013-10-29 2015-11-25 北京利德曼生化股份有限公司 全自动化学发光免疫分析仪磁珠清洗装置
CN106199026B (zh) * 2016-03-09 2019-05-28 深圳雷杜生命科学股份有限公司 全自动化学发光免疫分析仪
CN106226541B (zh) * 2016-08-17 2018-07-13 江苏英诺华医疗技术有限公司 一种新型低交叉污染的全自动生化分析仪
CN106841645B (zh) 2017-01-06 2018-09-21 深圳迎凯生物科技有限公司 一种反应孵育装置、免疫分析仪及反应孵育方法
CN106706942B (zh) 2017-01-06 2019-05-03 深圳迎凯生物科技有限公司 自动分析装置及样本分析方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012130107A1 (zh) * 2011-03-25 2012-10-04 深圳迈瑞生物医疗电子股份有限公司 自动分析装置及其样本分析方法
CN102998473A (zh) * 2012-12-19 2013-03-27 北京利德曼生化股份有限公司 全自动化学发光免疫分析仪
CN104345158A (zh) * 2013-07-30 2015-02-11 苏州浩欧博生物医药有限公司 自动分析装置及自动分析方法
CN104714042A (zh) * 2013-12-16 2015-06-17 深圳市亚辉龙生物科技有限公司 一种全自动化学发光免疫分析仪及其使用方法
CN106645765A (zh) * 2017-01-06 2017-05-10 刘丹 自动分析装置及样本分析方法
CN106841644A (zh) * 2017-01-06 2017-06-13 刘丹 自动分析装置及样本分析方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3572815A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11268970B2 (en) 2017-01-06 2022-03-08 Shenzhen Increcare Biotech Co., Ltd Automatic analysis device and sample analysis method
US11619642B2 (en) 2017-01-06 2023-04-04 Shenzhen Increcare Biotech Co., Ltd. Reaction incubation device, immunity analyzer and reaction incubation method

Also Published As

Publication number Publication date
US20190346469A1 (en) 2019-11-14
CN106841644B (zh) 2019-05-31
EP3572815B1 (en) 2024-04-03
EP3572815A4 (en) 2020-08-19
US11162962B2 (en) 2021-11-02
EP3572815A1 (en) 2019-11-27
CN106841644A (zh) 2017-06-13

Similar Documents

Publication Publication Date Title
WO2018126774A1 (zh) 自动分析装置及样本分析方法
WO2018126773A1 (zh) 自动分析装置及样本分析方法
WO2018126775A1 (zh) 自动分析装置及样本分析方法
CN116840499A (zh) 自动分析装置及其样本分析方法
US11619642B2 (en) Reaction incubation device, immunity analyzer and reaction incubation method
CN102998473B (zh) 全自动化学发光免疫分析仪
CN104297498A (zh) 一种全自动生化及发光免疫分析系统
CN106018784A (zh) 小型电化学发光免疫分析仪及其分析方法
WO2016000216A1 (zh) 一种全血样本检测方法及血液检测仪
CN208721691U (zh) 一种发光化学免疫分析仪
CN114019178A (zh) 一种全自动免疫生化一体分析仪及使用方法
WO2022179350A1 (zh) 样本联检分析系统
JP2001165936A (ja) 分析装置
CN215115900U (zh) 样本联检分析系统
WO2019075695A1 (zh) 自动分析装置及其样本分析方法
CN217688992U (zh) 样本分析装置
CN217688991U (zh) 一种样本分析装置
CN218675016U (zh) 自动分析装置
CN218546775U (zh) 自动分析装置
CN218727363U (zh) 自动分析装置
CN115684618A (zh) 自动分析装置及自动分析方法
CN115684619A (zh) 自动分析装置及自动分析方法
CN115541539A (zh) 生物样本联检设备和联检方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17889890

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017889890

Country of ref document: EP

Effective date: 20190723