WO2012128445A1 - 배터리 팩 연결 제어 장치 및 방법 - Google Patents

배터리 팩 연결 제어 장치 및 방법 Download PDF

Info

Publication number
WO2012128445A1
WO2012128445A1 PCT/KR2011/009531 KR2011009531W WO2012128445A1 WO 2012128445 A1 WO2012128445 A1 WO 2012128445A1 KR 2011009531 W KR2011009531 W KR 2011009531W WO 2012128445 A1 WO2012128445 A1 WO 2012128445A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery pack
battery
parallel
soc
battery packs
Prior art date
Application number
PCT/KR2011/009531
Other languages
English (en)
French (fr)
Inventor
박정민
김우중
김응룡
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2014500978A priority Critical patent/JP5858306B2/ja
Priority to EP11861678.8A priority patent/EP2675001B1/en
Priority to CN201180069442.6A priority patent/CN103430353B/zh
Priority to US13/533,481 priority patent/US8933667B2/en
Publication of WO2012128445A1 publication Critical patent/WO2012128445A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/46Accumulators structurally combined with charging apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0019Circuits for equalisation of charge between batteries using switched or multiplexed charge circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0024Parallel/serial switching of connection of batteries to charge or load circuit
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a technique for managing battery packs, and more particularly, to an apparatus and method for controlling a connection between battery packs when a plurality of battery packs are connected in parallel.
  • втори ⁇ ески ⁇ в ⁇ ол ⁇ е ⁇ е ⁇ е ⁇ е ⁇ е ⁇ е ⁇ ество ⁇ оло ⁇ е ⁇ е ⁇ е ⁇ е ⁇ е ⁇ е ⁇ е ⁇ е ⁇ е ⁇ е ⁇ е ⁇ е ⁇ е ⁇ е ⁇ е ⁇ е ⁇ е ⁇ е ⁇ е ⁇ е ⁇ е ⁇ е ⁇ е ⁇ е ⁇ е ⁇ е ⁇ е ⁇ е ⁇ е ⁇ е ⁇ е ⁇ е ⁇ е ⁇ е ⁇ е ⁇ е ⁇ е ⁇ е ⁇ е ⁇ е ⁇ елов batteries lithium secondary batteries have almost no memory effect compared to nickel-based secondary batteries, and thus are free of charge and discharge. It is attracting much attention because of its low self discharge rate and high energy density.
  • nickel cadmium batteries nickel hydride batteries
  • nickel zinc batteries nickel zinc batteries
  • lithium secondary batteries have almost no memory effect compared to nickel-based secondary batteries, and thus are free of charge and discharge. It is attracting much attention because of its low self discharge rate and high energy density.
  • Smart grid system is an intelligent power grid system that integrates information and communication technology into the production, transportation, and consumption of electric power to improve the efficiency of electric power utilization through the interaction of electric power supply and consumption.
  • One of the important components for building such a smart grid system is a battery pack that stores power.
  • the battery is used in various fields.
  • the battery is widely used, such as an electric vehicle, a hybrid vehicle, and a smart grid system, and often requires a large capacity.
  • the capacity increase effect is not large, and there are physical limitations on the size expansion of the battery pack and inconvenience of management. Accordingly, a method of building a high capacity battery system by connecting a plurality of battery packs in parallel is commonly used.
  • the present invention has been made to solve the above problems, when the plurality of battery packs are connected in parallel to each other, or when the battery pack is further connected in parallel in a state in which the plurality of battery packs are connected in parallel, It is an object of the present invention to provide a battery pack connection control device and method that can be stably connected without damage or a user safety accident.
  • a plurality of battery pack connection control apparatus for achieving the above object is provided on the charge and discharge path of each of the battery pack switching unit for selectively opening and closing the charge and discharge path;
  • a first controller provided in each of the battery packs to measure SOC of each battery pack and to control opening and closing of the switching unit; And receiving the SOC measurement values for each battery pack from the first controller, grouping battery packs having SOC values within a predetermined error range, and selecting a group including the largest number of battery packs.
  • the first control unit is implemented by the BMS of each battery pack.
  • the battery pack connection control apparatus for achieving the above object, as a device for controlling the additional connection of the battery pack to two or more battery packs connected in parallel, provided on the charge and discharge path of each of the battery pack Switching unit for selectively opening and closing the charge and discharge path; A first controller provided in each of the battery packs to measure SOC of each battery pack and to control opening and closing of the switching unit; And receiving an SOC measurement value for each battery pack from the first control unit, and when the SOC difference between the existing connected battery pack and the battery pack to be additionally connected is out of a predetermined range, the existing connected battery pack is charged or discharged. And a second control unit for allowing the SOC difference between the connected battery pack and the battery pack to be further connected to fall within a predetermined range, and then allowing the battery packs to be further connected in parallel.
  • the first control unit is implemented by the BMS of each battery pack.
  • the battery pack according to the present invention for achieving the above object includes the above-described battery pack connection control device.
  • a plurality of battery pack connection control method for achieving the above object, measuring the SOC of each of the battery pack; Comparing the measured SOC values and grouping battery packs having SOC values within a predetermined error range; Selecting a group including the largest number of battery packs and connecting the battery packs in the selected group in parallel; Charging or discharging the parallel-connected battery packs such that the SOC difference between the parallel-connected battery packs and the non-parallel-connected battery packs is within a predetermined range; And further parallel connecting the battery packs which are not connected in parallel.
  • the SOC measurement of each battery pack is implemented by a BMS provided in each battery pack.
  • the battery pack connection control method for achieving the above object, as a method for controlling the additional connection of the battery pack to the two or more battery packs connected in parallel, each of the battery pack to be additionally connected to the existing battery pack Measuring the SOC; Comparing an SOC of an existing connected battery pack with a battery pack to be further connected; Charging or discharging the previously connected battery pack so that an SOC difference between an existing connected battery pack and a battery pack to be additionally connected is out of a predetermined range; And connecting the battery pack further.
  • the SOC measurement of each battery pack is implemented by a BMS provided in each battery pack.
  • the present invention when a plurality of battery packs are connected in parallel to achieve high capacity characteristics, even if the SOCs are different between the battery packs, the safety of the user connecting the battery packs or the battery cells included in the battery pack Or there is no fear of damaging or damaging the circuit.
  • a plurality of battery packs may be connected in parallel to stably build a high capacity battery system.
  • FIG. 1 is a block diagram schematically illustrating a functional configuration of a plurality of battery pack connection control apparatuses according to an exemplary embodiment of the present invention.
  • FIG. 2 is a diagram schematically illustrating a configuration in which each component of a battery pack connection control device according to an exemplary embodiment of the present invention is connected in three battery packs.
  • FIG. 3 is a diagram schematically illustrating a process in which a plurality of battery packs having different SOCs are connected in parallel by a battery pack connection control device according to an embodiment of the present invention.
  • FIG. 4 is a diagram schematically illustrating a process of connecting a battery pack in a state in which two or more battery packs are connected in parallel by a battery pack connection control device according to another embodiment of the present invention.
  • FIG. 5 is a flowchart schematically illustrating a method for controlling a plurality of battery pack connections according to an embodiment of the present invention.
  • FIG. 6 is a flowchart schematically illustrating a method of controlling a battery pack additional connection according to another exemplary embodiment of the present invention.
  • FIG. 1 is a block diagram schematically illustrating a functional configuration of a plurality of battery pack connection control apparatuses according to an exemplary embodiment of the present invention.
  • 2 is a diagram schematically illustrating a configuration in which each component of the battery pack connection control device according to an exemplary embodiment of the present invention is connected in three battery packs.
  • the battery pack connection control apparatus includes a switching unit 130, a first control unit 110, and a second control unit 120.
  • the switching unit 130 is a component provided on the charge / discharge path for each battery pack, and selectively opens and closes the charge / discharge path. That is, when the switching unit 130 is turned on in each battery pack, the input and output of the current to the battery pack is allowed, but when the switching unit 130 is turned off, the input and output of the current to the battery pack This is not allowed.
  • the switching unit 130 is included in all of the first to third battery packs 100, 200, and 300 to selectively open and close the charge / discharge path of each battery pack.
  • the switching unit 130 may be a component that is typically included in the battery pack protection device.
  • the switching unit 130 may be a charge / discharge switch provided on the charge / discharge path of the battery pack.
  • the switching unit 130 may be implemented as a Field Effect Transistor (FET), a Relay, or an Insulated Gate Bipolar Transistor (IGBT).
  • FET Field Effect Transistor
  • IGBT Insulated Gate Bipolar Transistor
  • the present invention is not necessarily limited to the specific type of the switching unit 130, and various current path opening and closing configurations known at the time of filing the present invention may be employed as the switching unit 130 of the present invention.
  • the first control unit 110 is provided in each of the battery packs to measure SOC for each battery pack. As shown in FIG. 2, the battery pack includes one or more battery cells 10, and the first controller 110 measures the SOC of the battery cells 10 included in each battery pack. .
  • Various methods may be used by the first controller 110 to measure the SOC of each battery pack, and a representative method may include a current integration method.
  • the current integration method is a method of calculating the SOC of a battery by accumulating the input / output current of the battery and adding or subtracting it from the initial capacity.
  • the present invention is not limited by the specific SOC measurement method of the first control unit 110, and the first control unit 110 may measure the SOC in various ways. Since the SOC measurement technique of the first control unit 110 is widely known to those skilled in the art, the detailed description thereof will be omitted.
  • the first controller 110 may control the opening and closing of the switching unit 130. That is, the first controller 110 may be connected to the switching unit 130 provided on the charge / discharge path of the battery pack to transmit and receive an electrical signal, thereby controlling the on / off of the switching unit 130. Can be.
  • the first control unit 110 included in each of the first to third battery packs 100, 200, and 300 may be each of the first to third battery packs 100, 200, and 300. It measures the SOC of the battery cell 10 included in, and is connected to the switching unit 130 included in each of the first to third battery packs (100, 200, 300) to control the opening and closing.
  • the first control unit 110 may be implemented as a battery management system (BMS).
  • BMS battery management system
  • the BMS refers to a battery management device that generally controls the charge / discharge operation of the battery pack.
  • Such a BMS is a component that is typically included in the battery pack protection device.
  • the present invention is not necessarily limited to the specific embodiment of the first control unit 110, and the first control unit 110 may be implemented as a separate component from the BMS.
  • the first control unit 110 may be implemented as a separate device that is not provided in the conventional battery pack.
  • the second control unit 120 may be electrically connected to the first control unit 110 to transmit and receive an electrical signal.
  • the second controller 120 receives the SOC measurement value for each battery pack from each of the battery packs for which parallel connection is requested from the first controller 110 provided therein.
  • the second control unit 120 compares the SOC value for each battery pack to be connected in parallel.
  • the second controller 120 when there are no battery packs previously connected in parallel, that is, when a plurality of battery packs are initially connected in parallel, the second controller 120 has a battery pack having an SOC value within a predetermined error range. Group them together.
  • the predetermined error range refers to an SOC error range between battery packs such that even if the battery packs are connected in parallel to each other, electrical sparks or damage of the battery packs do not occur. It may be determined differently depending on the type, dose, and various other characteristics.
  • the second control unit 120 may group battery packs having an error between SOCs within a predetermined range, for example, within 3% of SOC difference. In this case, the second control unit 120 may have a 2% error between SOCs.
  • the first battery pack 100 and the second battery pack 200 may be classified into a first group, and the third battery pack 300 may be classified into a second group.
  • the present invention is not limited by this specific grouping method.
  • the first battery pack 100 having the SOC of 61 to 70% as a group, the second battery pack 200 and the third battery pack having the SOC of 71 to 80% ( 300 may be classified into another group.
  • the second controller 120 may group battery packs having the same SOC value. However, since SOC may not be exactly the same, it is preferable to group battery packs having SOC differences within a predetermined range as described above.
  • the second controller 120 selects a group including the largest number of battery packs and connects the battery packs in the selected group in parallel with each other.
  • the second The controller 120 selects a first group including the largest number of battery packs among the first group and the second group, and includes the battery pack included in the first group and the second battery pack (ie, the first battery pack 100 and the second battery pack). 200) are connected in parallel.
  • Parallel connection of the battery packs may be achieved by opening and closing the switching unit 130.
  • the second controller 120 may turn on the switching unit 130 to the first controller 110 of the first battery pack 100 and the first controller 110 of the second battery pack 200.
  • a signal indicating turn on may be transmitted.
  • the first control unit 110 of the first battery pack 100 turns on the switching unit 130 of the first battery pack 100, and the first control unit 110 of the second battery pack 200 makes a first operation. 2
  • Turn on the switching unit 130 of the battery pack 200 Through this, the first battery pack 100 and the second battery pack 200 may be connected in parallel with each other.
  • the SOC difference between the first battery pack 100 and the second battery pack 200 has a value within a predetermined range, even if the two battery packs are connected in parallel to each other, there is an electrical spark or damage to the battery pack. There is no risk of this and stable parallel connection is possible.
  • the second control unit 120 controls the first control unit 110 of each battery pack to open and close the switching unit 130 of each battery pack, but the second control unit 120 is described. ) Is directly connected to the switching unit 130 of each battery pack, it is also possible to directly control each switching unit 130.
  • the second controller 120 When the battery packs in the group selected as the initial parallel connection group are connected in parallel with each other, the second controller 120 is connected in parallel so that the SOC difference between the remaining battery packs not already connected and the battery packs already connected is within a predetermined range. Charge or discharge the battery pack.
  • the predetermined range is the difference between SOCs between battery packs such that even if the battery packs are additionally connected in parallel, there is no problem such as an electrical spark or damage of the battery pack between the battery packs that are connected and the additionally connected battery packs. It's a range.
  • the predetermined range may have the same value as the predetermined error range used by the second controller 120 to group the battery packs or may have a different value.
  • the first battery pack 100 and the second battery pack 200 among the first to third battery packs 100, 200, and 300 are already connected in parallel, and the third When the battery pack 300 is to be additionally connected, the second controller 120 charges or discharges the first battery pack 100 and the second battery pack 200 so that the SOC is the third battery pack.
  • the SOC level of 300 That is, in the above embodiment, since the SOC of the third battery pack 300 is 78%, and the SOCs of the first battery pack 100 and the second battery pack 200 are 69% and 71%, the first battery pack ( 100 and the second battery pack 200 are charged such that the SOC is about 78% of the SOC of the third battery pack 300.
  • the second control unit 120 is a difference between the SOC of the first battery pack 100 and the second battery pack 200 and the SOC of the third battery pack 300 is within a predetermined range, for example, within 3%.
  • the charging of the first battery pack 100 and the second battery pack 200 may be terminated.
  • the battery pack being charged or discharged is simply charged or discharged by simply connecting a charger or a load to a common input / output terminal of the battery packs connected in parallel. This can be done.
  • the charger is connected to the input / output terminal. If so, the first battery pack 100 and the second battery pack 200 may be charged.
  • the second controller 120 allows the battery packs not connected in parallel to be further connected in parallel.
  • the first battery pack 100 and the second battery pack 200 are charged with the first battery pack 100 and the second battery pack 200 connected in parallel.
  • the second controller 120 instructs the first controller 110 of the third battery pack 300 to turn on the switching unit 130.
  • the first controller 110 of the third battery pack 300 causes the switching unit 130 connected thereto to be turned on, so that the third battery pack 300, the first battery pack 100, and the second battery pack ( A parallel connection is made between the 200).
  • the third battery pack 300 that is additionally connected may be similar to the first battery pack 100 and the second battery pack 200 by charging the first battery pack 100 and the second battery pack 200. Because of the level of SOC, problems such as electrical sparks and damage to the battery pack can be avoided when connected in parallel.
  • the second control unit 120 after the parallel connection to the plurality of battery packs to be connected in parallel is completed, it is possible to charge the entire battery pack connected in parallel.
  • the second control unit 120 may include the first to third battery packs 100. , 200, 300) can be connected to the charger to be charged.
  • a battery system in which a plurality of battery packs are connected in parallel may be in an optimal state immediately usable.
  • FIG. 3 is a diagram schematically illustrating a process in which a plurality of battery packs having different SOCs are connected in parallel by a battery pack connection control device according to an embodiment of the present invention.
  • the SOC of each battery pack is indicated by the height of the dotted line.
  • the closer the dotted line on the battery pack is to the upper side of the battery pack, the higher the SOC of the battery pack. Means that.
  • the SOC degrees of the two battery packs are similar.
  • the SOC measurement of the battery pack may be implemented by the first controller 110 provided in the battery packs of A, B, C, D, and E, respectively.
  • the second control unit 120 compares the SOCs of the battery packs received from the first control unit 110, and groups the battery packs having a difference between SOCs within a predetermined error range, that is, battery packs having similar SOCs.
  • the second controller 120 may group them into one group.
  • battery packs C and D having SOC values significantly different from these can be grouped into different groups, respectively.
  • the groups to which A, B, and E belong include three battery packs, and thus, the group includes the largest number of battery packs, so that the second controller 120 connects the battery packs A, B, and E with initial parallel connection. Select as a group.
  • the second controller 120 includes three battery packs each other through the switching unit 130 provided in each of the battery packs A, B, and E selected as the initial parallel group. Make sure that they are connected in parallel. Then, the second control unit 120, as shown by the arrows in Figure 3b, so that the SOC of the battery packs A, B and E connected in parallel is similar to the SOC of the battery pack C, and the battery packs A, B and Discharge E.
  • the second control unit 120 switches the battery pack C, as shown in FIG. 3C.
  • the unit 130 is turned on so that the battery pack C and the battery packs A, B, and E are connected in parallel with each other.
  • the second control unit 120 is as shown by the arrows in FIG. 3C such that the difference between the SOCs of the battery packs A, B, C and E that are already connected and the SOC of the battery pack D that is not yet connected is within a predetermined range.
  • battery packs A, B, C and E are charged.
  • the second control unit 120 displays the battery pack D as shown in FIG. 3D.
  • the second controller 120 allows the entire battery pack to be charged as shown in FIG. 3D so that the plurality of battery packs are parallel. This allows the connected battery system to be in an optimal state for use.
  • the battery packs A, B, and E are initially connected in parallel, and then, C has been described as being connected to D first, but this is only one embodiment. And D is connected before C after E is connected.
  • the battery pack connection control apparatus may include a battery in an initial stage of battery system construction for newly connecting all of the plurality of battery packs in parallel, or reconnecting the entire battery pack included in the battery system after the battery system is constructed. Even if the SOCs are not identical between the packs, the plurality of battery packs may be stably connected to each other without electrical spark generation or damage to the cells 10 or circuits included in the battery packs.
  • the battery pack connection control apparatus when the two or more battery packs are already connected in parallel with another battery pack in parallel, this parallel connection expansion can be stably performed.
  • the battery pack connection control device is a device for controlling the additional connection of the battery pack to two or more battery packs connected in parallel, the switching unit 130, the first control unit 110 and the second control unit ( 120).
  • the switching unit 130 is provided on the charge and discharge path of each battery pack to selectively open and close the charge and discharge path
  • the first control unit 110 is provided in each of the battery pack to measure the SOC of the battery pack And it controls the opening and closing of the switching unit 130.
  • the second control unit 120 receives the SOC measurement value for each battery pack from the first control unit 110, and the SOC difference between the battery pack connected to the existing battery pack and the battery pack to be additionally connected is out of a predetermined range, The existing connected battery pack is charged or discharged so that the SOC difference of the battery pack to be additionally connected with the existing connected battery pack falls within a predetermined range. Then, the second control unit 120 further allows the battery packs to be connected in parallel.
  • FIG. 4 is a diagram schematically illustrating a process of connecting a battery pack in a state in which two or more battery packs are connected in parallel by a battery pack connection control device according to another embodiment of the present invention.
  • the SOC state of each battery pack is indicated by the height of a dotted line.
  • the battery pack R is further connected in parallel while the battery packs P and Q are connected in parallel.
  • the second controller 120 receives the SOC of the battery pack R, which is further connected, and the SOCs of the battery packs P and Q, which are previously connected, from the first controller 110 of each battery pack, and compares the received SOCs. .
  • the second controller 120 charges the battery packs P and Q connected to each other, as shown by the arrows in FIG. 4B. Alternatively, discharge the SOC level so that the SOC level is within a certain error range and the SOC level of the battery pack R to which it is further connected.
  • the second controller 120 causes the switching unit 130 of the battery pack R to be turned on so that the battery pack R is connected to the battery packs P and Q in parallel.
  • the battery pack when the battery pack is further connected to expand the parallel connection of the battery pack, even if the SOC difference between the battery packs that are connected and the battery pack that is additionally connected exceeds a predetermined range stably By making it possible to connect, it is possible to prevent damage to the user or safety of the battery pack.
  • the second controller 120 supplies charging power to the common input / output terminals of the battery packs P, Q, and R, so that the battery packs P, Q, and R are both Can be charged.
  • one battery pack is additionally connected to two battery packs, but the present invention is not limited by the number of such battery packs. For example, three or more battery packs may be connected, or two or more battery packs may be additionally connected.
  • the above description may be applied when one battery pack is not added to two battery packs, but one battery pack of two battery packs is replaced.
  • the battery pack connection control device may perform the above operation. That is, after the connection of Q is first removed from P, the SOC of P is adjusted to the SOC level of R, and then P and R are connected in parallel. In this case, when Q is removed, the second control unit 120 may turn off the switching unit 130 of Q first, and then allow Q to be separated from P so that user safety may be guaranteed.
  • the battery pack connection control apparatus may be implemented in a form included in the battery pack. Therefore, the battery pack according to the present invention may include all the embodiments of the battery pack connection control device described above.
  • the first control unit 110 and / or the second control unit 120 may be implemented by the BMS of the battery pack.
  • FIG. 5 is a flowchart schematically illustrating a method for controlling a plurality of battery pack connections according to an embodiment of the present invention.
  • the SOC of each battery pack to be connected in parallel is first measured by the first controller 110 (S110).
  • the SOC measurement of the battery pack may be implemented by the BMS provided in each battery pack.
  • the second control unit 120 compares the SOC values measured in this way, and groups the battery packs having SOC values within a predetermined range, for example, within a predetermined error range (S120).
  • the second controller 120 selects a group including the largest number of battery packs as a battery pack initial parallel connection group, so that the battery packs in the selected group are connected in parallel to each other (S130).
  • the second controller 120 charges or discharges the battery packs connected in parallel so that the SOC difference between the battery packs connected in parallel and the battery packs not yet connected in parallel falls within a predetermined range (S140). Then, the second control unit 120 allows the battery packs that are not connected in parallel to be further connected in parallel (S150).
  • the second controller 120 may allow the entire battery pack connected in parallel to be charged (S160).
  • connection opening and closing of the battery pack of the step S130 and step S150 may be implemented by FET, Relay or IGBT provided in each battery pack.
  • FIG. 6 is a flowchart schematically illustrating a method of controlling a battery pack additional connection according to another embodiment of the present invention.
  • the first controller 110 measures the SOC of the battery pack to be additionally connected with the existing battery pack (see FIG. 6). S210).
  • the SOC measurement of the battery pack may be implemented by the BMS provided in each battery pack.
  • the second controller 120 compares the SOC of the battery pack to be additionally connected with the existing connected battery pack (S220), and when the SOC difference between the battery pack and the battery pack to be additionally connected is out of a predetermined range, The connected battery pack is charged or discharged so that the SOC difference of the battery pack to be additionally connected with the battery pack falls within a predetermined range (S230).
  • the second controller 120 allows the battery pack to be additionally connected (S240).
  • the second control unit 120 may allow all battery packs connected in parallel to be charged (S250).
  • connection opening and closing of the battery pack in step S240 may be implemented by FET, Relay or IGBT provided in each battery pack.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

본 발명에 따른 복수의 배터리 팩 연결 제어 장치는, 상기 배터리 팩 각각의 충방전 경로 상에 구비되어 상기 충방전 경로를 선택적으로 개폐하는 스위칭부; 상기 배터리 팩 각각에 구비되어 각 배터리 팩의 SOC를 측정하고, 상기 스위칭부의 개폐를 제어하는 제1 제어부; 및 상기 제1 제어부로부터 각각의 배터리 팩에 대한 SOC 측정값을 수신하여, 소정 오차 범위 이내의 SOC값을 갖는 배터리 팩끼리 그룹화하고, 가장 많은 수의 배터리 팩이 포함된 그룹을 선정하여 선정된 그룹 내의 배터리 팩을 서로 병렬로 연결하며, 상기 병렬 연결된 배터리 팩이 충전 또는 방전되도록 하여 상기 병렬 연결된 배터리 팩과 병렬 연결되지 않은 배터리 팩 사이의 SOC 차가 소정 범위 이내로 들어오도록 한 후, 상기 병렬 연결되지 않은 배터리 팩이 추가로 병렬 연결되도록 하는 제2 제어부를 포함한다.

Description

배터리 팩 연결 제어 장치 및 방법
본 출원은 2011년 3월 21일자로 출원된 한국 특허출원 번호 제10-2011-0024925호에 대한 우선권주장출원으로서, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 인용에 의해 본 출원에 원용된다.
본 발명은 배터리 팩을 관리하는 기술에 관한 것으로, 더욱 상세하게는 복수의 배터리 팩을 병렬 연결시 배터리 팩 사이의 연결을 제어하는 장치 및 방법에 관한 것이다.
근래에 들어서, 노트북, 비디오 카메라, 휴대용 전화기 등과 같은 휴대용 전자 제품의 수요가 급격하게 증대되고, 에너지 저장용 축전지, 로봇, 위성 등의 개발이 본격화됨에 따라, 반복적인 충방전이 가능한 고성능 이차 전지에 대한 연구가 활발히 진행되고 있다.
현재 상용화된 이차 전지로는 니켈 카드뮴 전지, 니켈 수소 전지, 니켈 아연 전지, 리튬 이차 전지 등이 있는데, 이 중에서 리튬 이차 전지는 니켈 계열의 이차 전지에 비해 메모리 효과가 거의 일어나지 않아 충 방전이 자유롭고, 자가 방전율이 매우 낮으며 에너지 밀도가 높다는 등의 장점으로 인해 많은 각광을 받고 있다.
한편, 탄소 에너지가 점차 고갈되고 환경에 대한 관심이 높아지면서, 미국, 유럽, 일본, 한국을 비롯하여 전 세계적으로 하이브리드 자동차와 전기 자동차에 대한 수요가 점차 증가하고 있다. 이러한 하이브리드 자동차나 전기 자동차는 배터리 팩의 충방전 에너지를 이용하여 차량 구동력을 얻기 때문에, 엔진만을 이용하는 자동차에 비해 연비가 뛰어나고 공해 물질을 배출하지 않거나 감소시킬 수 있다는 점에서 많은 소비자들에게 좋은 반응을 얻고 있다. 따라서, 하이브리드 자동차나 전기 자동차의 핵심적 부품인 차량용 배터리에 보다 많은 관심과 연구가 집중되고 있다.
또한, 최근에는 스마트 그리드 시스템과 같이 에너지를 저장하는 기술 또한 가장 각광받는 기술 중 하나이다. 스마트 그리드 시스템이란 전력의 생산, 운반, 소비 과정에 정보통신 기술을 접목함으로써 전력 공급과 소비의 상호작용을 통해 전력 이용의 효율성을 높이고자 하는 지능형 전력망 시스템이다. 이러한 스마트 그리드 시스템을 구축하기 위해 중요한 구성요소 중 하나가 바로 전력을 저장하는 배터리 팩이다.
이와 같이, 배터리는 다양한 분야에서 이용되는데, 전기 자동차나 하이브리드 자동차, 스마트 그리드 시스템과 같이 최근에 배터리가 많이 활용되는 분야는 큰 용량을 필요로 하는 경우가 많다. 배터리 팩의 용량을 증가하기 위해서는 단일 배터리 팩 자체의 용량을 증가시키는 방법이 있을 수 있겠지만, 이 경우 용량 증대 효과가 크지 않고, 배터리 팩의 크기 확장에 물리적 제한이 있으며 관리가 불편하다는 단점을 갖는다. 따라서, 통상적으로는 다수의 배터리 팩을 병렬로 연결하여 고용량 배터리 시스템을 구축하는 방식이 많이 이용된다.
그런데, 이와 같이 배터리 팩을 병렬로 연결하는 경우, 배터리 팩 사이의 SOC(State Of Charge), 즉 충전 상태가 서로 다르면, 전기적인 스파크 등이 발생할 우려가 있다. 특히, 최근에 많이 활용되는 리튬 이차 전지의 경우, 다른 전지에 비해 방전 전류가 매우 높기 때문에, SOC가 다른 배터리 팩을 병렬로 연결하는 경우, 배터리 팩에 포함되어 있는 배터리 셀이나 각종 회로 등을 파손시킬 수 있음은 물론, 스파크 등의 발생으로 배터리 팩을 연결하는 사용자(설치자)의 안전을 해할 우려가 있다.
또한, 다수의 배터리 팩이 병렬로 연결된 이후에도, 배터리 팩의 저장 용량을 늘리거나, 일부 배터리 팩이 파손되어 교체가 필요한 경우가 있을 수 있는데, 이때 기존에 병렬로 연결되어 있는 다수의 배터리 팩에 하나 이상의 배터리 팩을 추가로 연결해야 한다. 이러한 상황에서, 추가로 연결되는 배터리 팩이 기존에 병렬로 연결되어 있는 배터리 팩과 SOC가 다를 수 있는데, 이때에도 전기적 스파크가 발생하여 사용자의 안전에 문제를 일으킬 수 있음은 물론 배터리 팩의 셀이나 각종 회로 부품 등을 손상시키는 문제점이 발생할 수 있다.
따라서, 본 발명은 상기와 같은 문제점을 해결하기 위해 창안된 것으로서, 다수의 배터리 팩을 서로 병렬로 연결하거나 다수의 배터리 팩이 병렬로 연결된 상태에서 배터리 팩을 추가로 병렬 연결하는 경우, 배터리 팩의 파손이나 사용자의 안전 사고 우려 없이 안정적으로 연결될 수 있도록 하는 배터리 팩 연결 제어 장치 및 방법을 제공하는 것을 목적으로 한다.
본 발명의 다른 목적 및 장점들은 하기의 설명에 의해서 이해될 수 있으며, 본 발명의 실시예에 의해 보다 분명하게 알게 될 것이다. 또한, 본 발명의 목적 및 장점들은 특허 청구 범위에 나타낸 수단 및 그 조합에 의해 실현될 수 있음을 쉽게 알 수 있을 것이다.
상기와 같은 목적을 달성하기 위한 본 발명에 따른 복수의 배터리 팩 연결 제어 장치는, 상기 배터리 팩 각각의 충방전 경로 상에 구비되어 상기 충방전 경로를 선택적으로 개폐하는 스위칭부; 상기 배터리 팩 각각에 구비되어 각 배터리 팩의 SOC를 측정하고, 상기 스위칭부의 개폐를 제어하는 제1 제어부; 및 상기 제1 제어부로부터 각각의 배터리 팩에 대한 SOC 측정값을 수신하여, 소정 오차 범위 이내의 SOC값을 갖는 배터리 팩끼리 그룹화하고, 가장 많은 수의 배터리 팩이 포함된 그룹을 선정하여 선정된 그룹 내의 배터리 팩을 서로 병렬로 연결하며, 상기 병렬 연결된 배터리 팩이 충전 또는 방전되도록 하여 상기 병렬 연결된 배터리 팩과 병렬 연결되지 않은 배터리 팩 사이의 SOC 차가 소정 범위 이내로 들어오도록 한 후, 상기 병렬 연결되지 않은 배터리 팩이 추가로 병렬 연결되도록 하는 제2 제어부를 포함한다.
바람직하게는, 상기 제1 제어부는 각 배터리 팩의 BMS에 의해 구현된다.
또한 상기와 같은 목적을 달성하기 위한 본 발명에 따른 배터리 팩 연결 제어 장치는, 병렬 연결된 둘 이상의 배터리 팩에 대한 배터리 팩의 추가 연결을 제어하는 장치로서, 상기 배터리 팩 각각의 충방전 경로 상에 구비되어 상기 충방전 경로를 선택적으로 개폐하는 스위칭부; 상기 배터리 팩 각각에 구비되어 각 배터리 팩의 SOC를 측정하고, 상기 스위칭부의 개폐를 제어하는 제1 제어부; 및 상기 제1 제어부로부터 각각의 배터리 팩에 대한 SOC 측정값을 수신하여, 기존 연결된 배터리 팩과 추가로 연결될 배터리 팩의 SOC 차가 소정 범위를 벗어나는 경우, 상기 기존 연결된 배터리 팩이 충전 또는 방전되도록 하여 기존 연결된 배터리 팩과 추가로 연결될 배터리 팩의 SOC차가 소정 범위 이내로 들어오도록 한 후, 상기 배터리 팩이 추가로 병렬 연결되도록 하는 제2 제어부를 포함한다.
바람직하게는, 상기 제1 제어부는 각 배터리 팩의 BMS에 의해 구현된다.
또한, 상기와 같은 목적을 달성하기 위한 본 발명에 따른 배터리 팩은 상술한 배터리 팩 연결 제어 장치를 포함한다.
또한 상기와 같은 목적을 달성하기 위한 본 발명에 따른 복수의 배터리 팩 연결 제어 방법은, 상기 배터리 팩 각각의 SOC를 측정하는 단계; 상기 측정된 SOC값을 비교하여, 소정 오차 범위 이내의 SOC값을 갖는 배터리 팩끼리 그룹화하는 단계; 가장 많은 수의 배터리 팩이 포함된 그룹을 선정하여 선정된 그룹 내의 배터리 팩을 병렬로 연결하는 단계; 상기 병렬 연결된 배터리 팩과 병렬 연결되지 않은 배터리 팩 사이의 SOC 차가 소정 범위 이내로 들어오도록 상기 병렬 연결된 배터리 팩을 충전 또는 방전하는 단계; 및 상기 병렬 연결되지 않은 배터리 팩을 추가로 병렬 연결하는 단계를 포함한다.
바람직하게는, 상기 배터리 팩 각각의 SOC 측정은 각 배터리 팩에 구비된 BMS에 의해 구현된다.
또한 상기와 같은 목적을 달성하기 위한 본 발명에 따른 배터리 팩 연결 제어 방법은, 병렬 연결된 둘 이상의 배터리 팩에 대한 배터리 팩의 추가 연결을 제어하는 방법으로서, 기존 연결된 배터리 팩과 추가로 연결될 배터리 팩 각각의 SOC를 측정하는 단계; 기존 연결된 배터리 팩과 추가로 연결될 배터리 팩의 SOC를 비교하는 단계; 기존 연결된 배터리 팩과 추가로 연결될 배터리 팩의 SOC 차가 소정 범위를 벗어나는 경우, 기존 연결된 배터리 팩과 추가로 연결될 배터리 팩의 SOC 차가 소정 범위 이내로 들어오도록 기존 연결된 배터리 팩을 충전 또는 방전하는 단계; 및 상기 배터리 팩을 추가로 연결하는 단계를 포함한다.
바람직하게는, 상기 배터리 팩 각각의 SOC 측정은 각 배터리 팩에 구비된 BMS에 의해 구현된다.
본 발명에 의하면, 고용량 특성을 달성하기 위해 복수의 배터리 팩을 서로 병렬로 연결하는 경우, 배터리 팩 사이에 SOC가 서로 다르다 하더라도 배터리 팩을 연결하는 사용자의 안전을 해하거나 배터리 팩에 포함된 배터리 셀 또는 회로 등을 파손 및 손상시킬 우려가 없다.
따라서, 복수의 배터리 팩을 병렬로 연결하여 고용량 배터리 시스템이 안정적으로 구축되도록 할 수 있다.
뿐만 아니라, 다수의 배터리 팩이 서로 병렬로 연결되어 있는 상태에서 배터리 시스템의 관리 및 유지, 용량 변경 등을 위해 배터리 팩을 추가로 병렬 연결하는 경우, 배터리 팩의 손상이나 파손, 안전 사고 등의 발생 우려가 크게 감소할 수 있다.
특히, 리튬 이차전지와 같이 고성능 및 고효율 배터리를 사용하는 경우에도, 본 발명에 의할 경우 안정적으로 고용량 배터리 시스템을 구축할 수 있고 배터리 시스템의 용량 증대 및 감소, 유지 보수 등이 용이하게 이루어질 수 있다. 따라서, 기존 납축전지 등으로 구성된 에너지 저장 시스템의 배터리 팩을 리튬 이차전지로 대체하는 것도 용이하게 달성될 수 있다.
또한, 배터리 시스템 설계자와 배터리 팩 공급자 사이의 표준화된 인터페이스를 통해 병렬 구성용 배터리 팩의 양산화가 용이하게 이루어질 수 있다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 후술하는 발명의 상세한 설명과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.
도 1은, 본 발명의 바람직한 일 실시예에 따른 복수의 배터리 팩 연결 제어 장치의 기능적 구성을 개략적으로 도시한 블록도이다.
도 2는, 본 발명의 바람직한 일 실시예에 따른 배터리 팩 연결 제어 장치의 각 구성 요소가 3개의 배터리 팩에서 연결된 구성을 개략적으로 도시하는 도면이다.
도 3은, 본 발명의 일 실시예에 따른 배터리 팩 연결 제어 장치에 의해 SOC가 동일하지 않은 복수의 배터리 팩이 병렬로 연결되는 과정을 도식화하여 나타내는 도면이다.
도 4는, 본 발명의 다른 실시예에 따른 배터리 팩 연결 제어 장치에 의해, 둘 이상의 배터리 팩이 병렬 연결된 상태에서 추가로 배터리 팩이 연결되는 과정을 도식화하여 나타내는 도면이다.
도 5는, 본 발명의 일 실시예에 따른 복수의 배터리 팩 연결 제어 방법을 개략적으로 나타내는 흐름도이다.
도 6은, 본 발명의 다른 실시예에 따른 배터리 팩 추가 연결 제어 방법을 개략적으로 나타내는 흐름도이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상에 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
도 1은, 본 발명의 바람직한 일 실시예에 따른 복수의 배터리 팩 연결 제어 장치의 기능적 구성을 개략적으로 도시한 블록도이다. 또한 도 2는, 본 발명의 바람직한 일 실시예에 따른 배터리 팩 연결 제어 장치의 각 구성 요소가 3개의 배터리 팩에서 연결된 구성을 개략적으로 도시하는 도면이다.
도 1 및 도 2를 참조하면, 본 발명에 따른 배터리 팩 연결 제어 장치는, 스위칭부(130), 제1 제어부(110) 및 제2 제어부(120)를 포함한다.
상기 스위칭부(130)는, 배터리 팩 각각에 대하여 충방전 경로 상에 구비된 구성요소로서, 충방전 경로를 선택적으로 개폐한다. 즉, 각각의 배터리 팩에서 스위칭부(130)가 턴온되어 있는 경우, 해당 배터리 팩에 대한 전류의 입출력이 허용되지만, 스위칭부(130)가 턴오프되어 있는 경우, 해당 배터리 팩에 대한 전류의 입출력이 허용되지 않는다.
도 2의 실시예를 참조하면, 스위칭부(130)는 제1 내지 제3 배터리 팩(100, 200, 300) 모두에 포함되어, 각 배터리 팩의 충방전 경로를 선택적으로 개폐한다.
이러한 스위칭부(130)는 통상적으로 배터리 팩 보호 장치에 포함되는 구성요소일 수 있다. 예를 들어, 상기 스위칭부(130)는 배터리 팩의 충방전 경로 상에 구비되어 있는 충방전 스위치일 수 있다.
바람직하게는, 상기 스위칭부(130)는 전계효과 트랜지스터(Field Effect Transistor; FET)나 릴레이(Relay), 또는 IGBT(Insulated Gate Bipolar Transistor)로 구현될 수 있다. 다만, 본 발명이 반드시 이러한 스위칭부(130)의 특정 종류에 의해 제한되는 것은 아니며, 본 발명의 출원 시점에 공지된 다양한 전류 경로 개폐 구성이 본 발명의 스위칭부(130)로 채용될 수 있다.
상기 제1 제어부(110)는, 배터리 팩 각각에 구비되어 각 배터리 팩에 대한 SOC를 측정한다. 도 2에 도시된 바와 같이, 배터리 팩에는 하나 이상의 배터리 셀(10)이 포함되어 있는데, 상기 제1 제어부(110)는 이와 같이 각 배터리 팩에 포함되어 있는 배터리 셀(10)의 SOC를 측정한다. 제1 제어부(110)가 각 배터리 팩의 SOC를 측정하는 방법에는 다양한 방식이 이용될 수 있으며, 대표적인 방식으로는 전류 적산법을 들 수 있다. 전류 적산법은, 배터리의 입출력 전류를 적산하고 초기 용량에서 가감함으로써 배터리의 SOC를 구하는 방식이다. 본 발명은 제1 제어부(110)의 구체적인 SOC 측정 방식에 의해 제한되지 않으며, 제1 제어부(110)는 다양한 방식으로 SOC를 측정할 수 있다. 이와 같은 제1 제어부(110)의 SOC 측정 기술은, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 널리 알려져 있으므로, 이에 대한 상세한 설명을 생략한다.
또한, 상기 제1 제어부(110)는, 상기 스위칭부(130)의 개폐를 제어할 수 있다. 즉, 제1 제어부(110)는 해당 배터리 팩의 충방전 경로상에 구비된 스위칭부(130)와 접속되어 전기적인 신호를 송수신할 수 있으며, 이를 통해 스위칭부(130)의 온오프를 제어할 수 있다.
도 2의 실시예를 참조하면, 제1 내지 제3 배터리 팩(100, 200, 300) 각각에 포함된 제1 제어부(110)는, 제1 내지 제3 배터리 팩(100, 200, 300) 각각에 포함된 배터리 셀(10)의 SOC를 측정하고, 제1 내지 제3 배터리 팩(100, 200, 300) 각각에 포함된 스위칭부(130)와 연결되어 그 개폐를 제어한다.
바람직하게는, 상기 제1 제어부(110)는 BMS(Battery Management System)로 구현될 수 있다. 여기서, BMS란 배터리 팩의 충방전 동작을 전반적으로 제어하는 배터리 관리 장치를 의미하며, 이러한 BMS는 배터리 팩 보호 장치에 통상적으로 포함되는 구성요소이다. 그러나, 본 발명이 반드시 이러한 제1 제어부(110)의 구체적인 실시 형태로 한정되는 것은 아니며, 제1 제어부(110)는 BMS와 별도의 구성요소로 구현될 수 있다. 또한, 제1 제어부(110)는 종래 배터리 팩에 구비되어 있지 않은 별도의 소자로 구현될 수도 있다.
상기 제2 제어부(120)는, 제1 제어부(110)와 전기적으로 접속되어, 전기적 신호를 송수신할 수 있다. 특히, 상기 제2 제어부(120)는 병렬 연결이 요청된 각각의 배터리 팩에 대하여 그에 구비되어 있는 제1 제어부(110)로부터 각 배터리 팩에 대한 SOC 측정값을 수신한다. 그리고, 이와 같이 각 배터리 팩에 대한 SOC 측정값이 수신되면, 상기 제2 제어부(120)는 병렬로 연결될 각 배터리 팩에 대한 SOC값을 비교한다.
여기서, 기존에 병렬로 연결되어 있는 배터리 팩이 존재하지 않는 경우, 즉 복수의 배터리 팩을 초기에 병렬로 연결하는 경우, 상기 제2 제어부(120)는 소정 오차 범위 이내의 SOC 값을 갖는 배터리 팩끼리 그룹화한다. 여기서, 소정 오차 범위란, 배터리 팩이 서로 병렬로 연결되더라도 전기적인 스파크나 배터리 팩의 파손 등의 문제가 발생하지 않을 정도의 배터리 팩 간 SOC 오차 범위를 말하는 것으로, 상황에 따라, 이를테면 배터리 팩의 종류나 용량, 기타 여러 특성 등에 따라 다르게 정해질 수 있다.
예를 들어, 도 2의 실시예와 같이 병렬로 연결될 배터리 팩이 제1 내지 제3 배터리 팩(100, 200, 300)으로 3개 존재하고, 제1 내지 제3 배터리 팩(100, 200, 300)에 대한 SOC가 69%, 71%, 78%라고 가정한다. 이때, 상기 제2 제어부(120)는 SOC간 오차가 소정 범위 이내, 이를테면 SOC 차이가 3% 이내인 배터리 팩끼리 그룹화할 수 있으며, 이 경우 제2 제어부(120)는 SOC간 오차가 2%인 제1 배터리 팩(100) 및 제2 배터리 팩(200)을 제1 그룹으로, 제3 배터리 팩(300)을 제2 그룹으로 분류할 수 있다. 다만, 다수의 배터리 팩을 그룹화하는 기준은 다양하게 존재할 수 있으며, 본 발명이 이러한 특정 그룹화 방식에 의해 제한되는 것은 아니다. 예를 들어, 상기 실시예에서 61~70%의 SOC를 갖는 제1 배터리 팩(100)을 하나의 그룹으로, 71~80%의 SOC를 갖는 제2 배터리 팩(200) 및 제3 배터리 팩(300)을 다른 하나의 그룹으로 분류할 수도 있다.
한편, 상기 제2 제어부(120)는 SOC 값이 동일한 배터리 팩끼리 그룹화할 수도 있다. 다만, SOC가 정확하게 동일한 경우는 많지 않을 것이므로, 상술한 바와 같이 일정 범위 이내의 SOC 차이를 갖는 배터리 팩끼리 그룹화하는 것이 좋다.
이와 같이 복수의 배터리 팩에 대한 그룹화가 완료되면, 상기 제2 제어부(120)는 가장 많은 수의 배터리 팩이 포함된 그룹을 선정하여 선정된 그룹 내의 배터리 팩을 서로 병렬로 연결한다.
예를 들어, 상기 실시예와 같이, 제1 배터리 팩(100) 및 제2 배터리 팩(200)을 제1 그룹으로, 제3 배터리 팩(300)을 제2 그룹으로 분류한 경우, 상기 제2 제어부(120)는 제1 그룹 및 제2 그룹 중 가장 많은 수의 배터리 팩이 포함되어 있는 제1 그룹을 선정하여, 그에 포함된 배터리 팩, 즉 제1 배터리 팩(100) 및 제2 배터리 팩(200)이 병렬로 연결되도록 한다.
이와 같은 배터리 팩의 병렬 연결은 스위칭부(130)의 개폐에 의해 달성될 수 있다. 예를 들어, 제2 제어부(120)는 제1 배터리 팩(100)의 제1 제어부(110) 및 제2 배터리 팩(200)의 제1 제어부(110)로 각 스위칭부(130)의 턴온(turn on)을 지시하는 신호를 전송할 수 있다. 그러면, 제1 배터리 팩(100)의 제1 제어부(110)는 제1 배터리 팩(100)의 스위칭부(130)를 턴온시키고, 제2 배터리 팩(200)의 제1 제어부(110)는 제2 배터리 팩(200)의 스위칭부(130)를 턴온시킨다. 이를 통해, 제1 배터리 팩(100)과 제2 배터리 팩(200)이 서로 병렬로 연결될 수 있다. 여기서, 제1 배터리 팩(100)과 제2 배터리 팩(200) 사이의 SOC 차이는 일정 범위 이내의 값을 가지므로, 두 배터리 팩이 서로 병렬로 연결되더라도 전기적인 스파크 발생이나 배터리 팩의 손상 등이 발생할 우려가 없으며 안정적인 병렬 연결이 가능해진다.
한편, 상기 실시예에서는 제2 제어부(120)가 각 배터리 팩의 제1 제어부(110)를 제어하여 각 배터리 팩의 스위칭부(130) 개폐가 이루어지도록 하는 구성으로 설명되었으나, 제2 제어부(120)가 각 배터리 팩의 스위칭부(130)와 직접 연결되어, 각각의 스위칭부(130)를 직접 제어하는 구성도 가능하다.
이와 같이 초기 병렬 연결 그룹으로 선정된 그룹 내의 배터리 팩이 서로 병렬로 연결되면, 제2 제어부(120)는 아직 연결되지 않은 나머지 배터리 팩과 이미 연결된 배터리 팩 사이의 SOC 차가 소정 범위 이내가 되도록 병렬 연결된 배터리 팩을 충전 또는 방전시킨다. 여기서, 소정 범위란 배터리 팩이 추가로 병렬 연결되더라도 기존 연결되어 있는 배터리 팩과 추가로 연결되는 배터리 팩 사이에 전기적 스파크나 배터리 팩의 파손 등과 같은 문제가 발생하지 않을 정도의 배터리 팩 간 SOC 차의 범위를 말하는 것이다. 이러한 소정 범위는 앞서 설명한 제2 제어부(120)가 배터리 팩을 그룹화하는데 이용된 소정 오차 범위와 동일한 값을 가질 수도 있고, 다른 값을 가질 수도 있다.
예를 들어, 상기 실시예와 같이, 제1 내지 제3 배터리 팩(100, 200, 300) 중 제1 배터리 팩(100)과 제2 배터리 팩(200)이 이미 병렬로 연결되어 있고, 제3 배터리 팩(300)이 추가로 연결되어야 하는 경우, 상기 제2 제어부(120)는, 제1 배터리 팩(100) 및 제2 배터리 팩(200)을 충전 또는 방전시켜 그 SOC가 제3 배터리 팩(300)의 SOC 수준이 되도록 한다. 즉, 상기 실시예에서 제3 배터리 팩(300)의 SOC는 78%이고, 제1 배터리 팩(100) 및 제2 배터리 팩(200)의 SOC는 69% 및 71%이므로, 제1 배터리 팩(100) 및 제2 배터리 팩(200)을 충전시켜 그 SOC가 제3 배터리 팩(300)의 SOC인 78% 정도가 되도록 한다. 이때, 제2 제어부(120)는 제1 배터리 팩(100) 및 제2 배터리 팩(200)의 SOC와 제3 배터리 팩(300)의 SOC 사이의 차가 소정 범위 이내, 이를테면 3% 이내가 되는 경우, 제1 배터리 팩(100) 및 제2 배터리 팩(200)에 대한 충전이 종료되도록 할 수 있다.
여기서, 충전 또는 방전되는 배터리 팩은 스위칭부(130)가 턴온되어 이미 충방전 경로가 형성되어 있기 때문에, 병렬 연결되어 있는 배터리 팩의 공통 입출력단에 충전기 또는 부하를 연결하기만 하면, 충전 또는 방전이 이루어질 수 있다. 예를 들어, 상기 실시예의 경우, 제1 배터리 팩(100) 및 제2 배터리 팩(200)은 이미 스위칭부(130)가 턴온된 상태로 병렬 연결되어 있기 때문에, 그 입출력단에 충전기를 연결하기만 하면, 제1 배터리 팩(100) 및 제2 배터리 팩(200)의 충전이 수행될 수 있다.
이와 같이 병렬 연결된 배터리 팩의 충전 또는 방전으로 병렬 연결되지 않은 배터리 팩과의 SOC차가 소정 범위 이내가 되면, 상기 제2 제어부(120)는 병렬 연결되지 않은 배터리 팩이 추가로 병렬 연결되도록 한다.
예를 들어, 상기 도 2의 실시예에서, 제1 배터리 팩(100)과 제2 배터리 팩(200)이 병렬 연결된 상태에서 제1 배터리 팩(100)과 제2 배터리 팩(200)의 충전으로 그 SOC가 제3 배터리 팩(300)의 SOC 수준이 되면, 상기 제2 제어부(120)는 제3 배터리 팩(300)의 제1 제어부(110)로 스위칭부(130)의 턴온을 지시한다. 그러면, 제3 배터리 팩(300)의 제1 제어부(110)는 그에 연결된 스위칭부(130)가 턴온되도록 하여, 제3 배터리 팩(300)과 제1 배터리 팩(100) 및 제2 배터리 팩(200) 사이에 병렬 연결이 이루어지게 된다.
이때, 추가로 연결되는 제3 배터리 팩(300)은, 제1 배터리 팩(100) 및 제2 배터리 팩(200)의 충전으로 제1 배터리 팩(100) 및 제2 배터리 팩(200)과 비슷한 수준의 SOC 값을 갖고 있기 때문에, 병렬 연결될 때 전기적 스파크나 배터리 팩의 손상 등과 같은 문제점이 발생하지 않을 수 있다.
바람직하게는, 상기 제2 제어부(120)는, 병렬 연결하고자 하는 복수의 배터리 팩에 대한 병렬 연결이 완료된 후, 병렬 연결된 전체 배터리 팩에 대하여 충전이 이루어지도록 할 수 있다.
예를 들어, 상기 도 2의 실시예에서, 제1 내지 제3 배터리 팩(100, 200, 300) 모두가 병렬로 연결되면, 상기 제2 제어부(120)는 제1 내지 제3 배터리 팩(100, 200, 300) 모두를 충전기에 연결시켜 충전되도록 할 수 있다.
이를 통해, 복수의 배터리 팩이 병렬 연결된 배터리 시스템이 곧바로 사용 가능한 최적의 상태가 되도록 할 수 있다.
도 3은, 본 발명의 일 실시예에 따른 배터리 팩 연결 제어 장치에 의해 SOC가 동일하지 않은 복수의 배터리 팩이 병렬로 연결되는 과정을 도식화하여 나타내는 도면이다.
도 3 a를 참조하면, 병렬로 연결되기 위한 배터리 팩, 즉 병렬 연결이 요청된 배터리 팩이 A, B, C, D 및 E로 5개 존재한다. 그리고, 각 배터리 팩의 SOC는 점선의 높이로서 표시된다. 예를 들어, 배터리 팩에 표시된 점선이 배터리 팩의 하부 측에 가까울수록 해당 배터리 팩의 SOC가 낮은 것을 의미하고, 배터리 팩에 표시된 점선이 배터리 팩의 상부 측에 가까울수록 해당 배터리 팩의 SOC가 높은 것을 의미한다. 그리고, 2개의 배터리 팩에 대한 점선의 위치가 비슷할 경우 2개의 배터리 팩에 대한 SOC 정도가 비슷한 것을 의미한다. 이러한 배터리 팩의 SOC 측정이 A, B, C, D 및 E의 배터리 팩에 각각 구비된 제1 제어부(110)에 의해 구현될 수 있음은 상술한 바와 같다.
상기 제2 제어부(120)는 제1 제어부(110)로부터 수신한 각 배터리 팩에 대한 SOC를 비교하여, SOC 간 격차가 소정 오차 범위 이내인 배터리 팩, 즉 SOC가 서로 유사한 배터리 팩끼리 그룹화한다. 도 3에서, 제2 제어부(120)는 배터리 팩 A, B 및 E가 서로 유사한 SOC값을 가지므로, 이들을 하나의 그룹으로 그룹화할 수 있다. 그리고, 이들과 현저하게 다른 SOC 값을 갖는 배터리 팩 C 및 D를 각각 다른 그룹으로 그룹화할 수 있다. 이때, A, B 및 E가 속한 그룹은 3개의 배터리 팩이 포함되어 있으므로, 가장 많은 수의 배터리 팩이 포함된 그룹이어서, 제2 제어부(120)는 배터리 팩 A, B 및 E를 초기 병렬 연결 그룹으로 선정한다.
그리고, 제2 제어부(120)는 도 3 b에 도시된 바와 같이, 초기 병렬 그룹으로 선정된 배터리 팩 A, B 및 E에 대하여 각각에 구비된 스위칭부(130)를 통해 3개의 배터리 팩이 서로 병렬로 연결되도록 한다. 그리고나서, 제2 제어부(120)는, 도 3 b에서 화살표로 도시된 바와 같이, 병렬로 연결된 배터리 팩 A, B 및 E의 SOC가 배터리 팩 C의 SOC와 유사해지도록 배터리 팩 A, B 및 E를 방전시킨다.
이와 같은 방전을 통해 배터리 팩 A, B 및 E의 SOC와 배터리 팩 C의 SOC 사이의 차가 소정 범위 이내가 되면, 제2 제어부(120)는, 도 3c에 도시된 바와 같이, 배터리 팩 C의 스위칭부(130)가 턴온되도록 하여 배터리 팩 C와 배터리 팩 A, B 및 E가 서로 병렬로 연결되도록 한다. 그리고 나서, 제2 제어부(120)는 이미 연결된 배터리 팩 A, B, C 및 E의 SOC와 아직 연결되지 않은 배터리 팩 D의 SOC 사이의 차가 소정 범위 이내가 되도록, 도 3c에서 화살표로 도시된 바와 같이, 배터리 팩 A, B, C 및 E를 충전시킨다.
이와 같은 충전을 통해 배터리 팩 A, B, C 및 E의 SOC와 배터리 팩 D의 SOC 사이의 차가 소정 범위 이내가 되면, 제2 제어부(120)는, 도 3d에 도시된 바와 같이, 배터리 팩 D의 스위칭부(130)가 턴온되도록 하여 배터리 팩 D와 배터리 팩 A, B, C 및 E가 서로 병렬로 연결되도록 한다.
이로써 병렬 연결이 요청된 복수의 배터리 팩 A, B, C, D 및 E의 병렬 연결은 완료된다.
바람직하게는, 병렬 연결이 요청된 복수의 배터리 팩에 대하여 병렬 연결이 완료되면, 제2 제어부(120)는, 도 3d에 도시된 바와 같이, 전체 배터리 팩이 충전되도록 하여 복수의 배터리 팩이 병렬로 연결된 배터리 시스템이 사용되기 좋은 최적의 상태가 되도록 할 수 있다.
한편, 상기 도 3의 실시예에서는, 배터리 팩 A, B 및 E가 초기에 병렬로 연결된 후, 여기에 C가 D보다 먼저 연결되는 형태로 설명되었으나, 이는 일 실시예에 불과하며, A, B 및 E가 연결된 후 C보다 D가 먼저 연결되는 형태도 가능하다.
또한, 상기 도 3의 실시예에서는, 5개의 배터리 팩이 병렬로 연결되는 경우를 설명하였으나, 이는 일 실시예에 불과할 뿐, 본 발명이 이러한 배터리 팩의 병렬 연결 개수에 의해 제한되는 것이 아니라는 점은 본 발명의 당업자에게 자명하다.
이와 같이, 본 발명에 따른 배터리 팩 연결 제어 장치는, 복수의 배터리 팩 전체를 새로이 병렬로 연결하는 배터리 시스템 구축 초기 단계나, 배터리 시스템 구축 후 그에 포함된 배터리 팩 전체를 다시 연결하는 단계 등에서, 배터리 팩 사이의 SOC가 동일하지 않다 하더라도 전기적 스파크 발생이나 배터리 팩에 포함된 셀(10) 또는 회로의 파손 없이 복수의 배터리 팩이 서로 안정적으로 연결되도록 할 수 있다.
또한, 본 발명에 따른 배터리 팩 연결 제어 장치는 둘 이상의 배터리 팩이 이미 병렬로 연결되어 있는 상태에서 또 다른 배터리 팩을 추가로 병렬 연결할 때, 이러한 병렬 연결 확장이 안정적으로 수행될 수 있도록 한다.
이 경우, 본 발명에 따른 배터리 팩 연결 제어 장치는, 병렬 연결된 둘 이상의 배터리 팩에 대한 배터리 팩의 추가 연결을 제어하는 장치로서, 스위칭부(130), 제1 제어부(110) 및 제2 제어부(120)를 포함할 수 있다.
상술한 바와 같이, 스위칭부(130)는 배터리 팩 각각의 충방전 경로 상에 구비되어 충방전 경로를 선택적으로 개폐하고, 제1 제어부(110)는 배터리 팩 각각에 구비되어 배터리 팩의 SOC를 측정하고 스위칭부(130)의 개폐를 제어한다.
특히, 제2 제어부(120)는, 제1 제어부(110)로부터 각각의 배터리 팩에 대한 SOC 측정값을 수신하여, 기존에 연결된 배터리 팩과 추가로 연결될 배터리 팩의 SOC 차가 소정 범위를 벗어나는 경우, 기존 연결된 배터리 팩이 충전 또는 방전되도록 하여 기존 연결된 배터리 팩과 추가로 연결될 배터리 팩의 SOC차가 소정 범위 이내로 들어오도록 한다. 그리고 나서, 상기 제2 제어부(120)는 배터리 팩이 추가로 병렬 연결되도록 한다.
도 4는, 본 발명의 다른 실시예에 따른 배터리 팩 연결 제어 장치에 의해, 둘 이상의 배터리 팩이 병렬 연결된 상태에서 추가로 배터리 팩이 연결되는 과정을 도식화하여 나타내는 도면이다. 도 4에서는 도 3과 마찬가지로, 점선의 높이로써 각 배터리 팩의 SOC 상태가 표시된다.
도 4a를 참조하면, 배터리 팩 P와 Q가 병렬로 연결된 상태에서 배터리 팩 R이 추가로 병렬 연결되고자 한다. 이때, 제2 제어부(120)는 추가로 연결되는 배터리 팩 R의 SOC와 기존에 연결된 배터리 팩 P 및 Q의 SOC를 각 배터리 팩의 제1 제어부(110)로부터 수신하여, 수신된 SOC를 비교한다.
도 4a에서는 배터리 팩 P 및 Q의 SOC와 배터리 팩 R의 SOC가 현저하게 다르므로, 제2 제어부(120)는, 도 4b에서 화살표로 도시된 바와 같이, 기존에 연결된 배터리 팩 P와 Q를 충전 또는 방전시켜 그 SOC 수준이 추가로 연결되는 배터리 팩 R의 SOC 수준과 일정 오차 범위 이내가 되도록 한다.
그리고 나서, 제2 제어부(120)는, 도 4c에 도시된 바와 같이, 배터리 팩 R의 스위칭부(130)가 턴온되도록 함으로써 배터리 팩 R이 배터리 팩 P 및 Q에 병렬 연결되도록 한다.
이러한 실시예에 의하면, 배터리 팩을 추가로 연결하여 배터리 팩의 병렬 연결을 확장하는 경우, 기존에 연결되어 있는 배터리 팩들과 추가로 연결되는 배터리 팩 사이의 SOC 차가 소정 범위를 넘어서는 경우라 하더라도 안정적으로 연결될 수 있도록 하여, 사용자의 안전을 해하거나 배터리 팩에 손상을 일으키는 것을 방지할 수 있다.
한편, 도 4c에 도시되지 않았지만, 배터리 팩 R이 추가로 연결된 후, 제2 제어부(120)는 배터리 팩 P, Q 및 R의 공통 입출력단에 충전 전원을 공급하여 배터리 팩 P, Q 및 R 모두가 충전되도록 할 수 있다.
또한, 상기 도 4의 실시예에서는 2개의 배터리 팩에 1개의 배터리 팩이 추가로 연결되는 경우가 도시되었으나, 본 발명이 이러한 배터리 팩의 개수에 의해 제한되는 것은 아니다. 예를 들어, 기존에 연결되어 있는 배터리 팩이 3개 이상이거나, 추가로 연결되는 배터리 팩이 2개 이상인 경우도 가능함은 물론이다.
뿐만 아니라, 도 4의 실시예에서 2개의 배터리 팩에 1개의 배터리 팩이 추가되는 것이 아니라, 2개의 배터리 팩 중 1개의 배터리 팩이 교체되는 경우에도 상기와 같은 설명이 적용될 수 있다. 예를 들어, 기존에 연결되어 있는 배터리 팩 P 및 Q에 대하여, Q를 R로 교체하고자 하는 경우, 본 발명에 따른 배터리 팩 연결 제어 장치가 상술한 바와 같은 동작을 수행할 수 있다. 즉, P로부터 Q의 연결을 먼저 제거한 후, P의 SOC를 R의 SOC 수준으로 조절한 후, P와 R이 병렬 연결되도록 할 수 있다. 이 경우, Q 제거시, 제2 제어부(120)는 Q의 스위칭부(130)가 먼저 턴오프되도록 한 후, Q가 P와 분리되도록 함으로써 사용자의 안전이 보장되도록 할 수 있다.
한편, 본 발명에 따른 배터리 팩 연결 제어 장치는, 배터리 팩에 포함된 형태로 구현될 수 있다. 따라서, 본 발명에 따른 배터리 팩은, 상술한 배터리 팩 연결 제어 장치의 실시예들을 모두 포함할 수 있다. 특히, 이 경우 제1 제어부(110) 및/또는 제2 제어부(120)는 배터리 팩의 BMS에 의해 구현될 수 있다.
도 5는, 본 발명의 일 실시예에 따른 복수의 배터리 팩 연결 제어 방법을 개략적으로 나타내는 흐름도이다.
도 5를 참조하면, 본 발명에 따라 복수의 배터리 팩 연결을 제어하기 위해, 먼저 병렬로 연결되고자 하는 배터리 팩 각각의 SOC가 제1 제어부(110)에 의해 측정된다(S110). 여기서, 배터리 팩의 SOC 측정은 각 배터리 팩에 구비된 BMS에 의해 구현될 수 있다. 다음으로, 제2 제어부(120)는 이와 같이 측정된 SOC값을 비교하여, 일정 범위 이내, 이를테면 소정 오차 범위 이내의 SOC값을 갖는 배터리 팩끼리 그룹화한다(S120). 다음으로, 제2 제어부(120)는 가장 많은 수의 배터리 팩이 포함된 그룹을 배터리 팩 초기 병렬 연결 그룹으로 선정하여, 선정된 그룹 내의 배터리 팩이 서로 병렬로 연결되도록 한다(S130). 다음으로, 제2 제어부(120)는 이와 같이 병렬 연결된 배터리 팩과 아직 병렬 연결되지 않은 배터리 팩 사이의 SOC 차가 소정 범위 이내로 들어오도록 병렬 연결된 배터리 팩을 충전 또는 방전시킨다(S140). 그리고 나서, 상기 제2 제어부(120)는 병렬 연결되지 않은 배터리 팩이 추가로 병렬 연결되도록 한다(S150).
바람직하게는, 도 5에 도시된 바와 같이, 제2 제어부(120)는 상기 S150 단계 이후에, 병렬로 연결된 전체 배터리 팩이 충전되도록 할 수 있다(S160).
한편, 상기 S130 단계 및 상기 S150 단계의 배터리 팩에 대한 연결 개폐는, 각 배터리 팩에 구비된 FET, Relay 또는 IGBT로 구현될 수 있다.
도 6은, 본 발명의 다른 실시예에 따른 배터리 팩 추가 연결 제어 방법을 개략적으로 나타내는 흐름도이다.
도 6을 참조하면, 병렬 연결된 둘 이상의 배터리 팩에 대하여 다른 배터리 팩을 추가로 병렬 연결하는 경우, 기존에 연결된 배터리 팩과 추가로 연결될 배터리 팩의 SOC를 제1 제어부(110)에 의해 측정한다(S210). 여기서, 배터리 팩의 SOC 측정은 각 배터리 팩에 구비된 BMS에 의해 구현될 수 있다. 다음으로, 제2 제어부(120)는 기존 연결된 배터리 팩과 추가로 연결될 배터리 팩의 SOC를 비교하여(S220), 기존 연결된 배터리 팩과 추가로 연결될 배터리 팩의 SOC 차가 소정 범위를 벗어나는 경우, 기존 연결된 배터리 팩과 추가로 연결될 배터리 팩의 SOC 차가 소정 범위 이내로 들어오도록 기존 연결된 배터리 팩이 충전 또는 방전되도록 한다(S230). 이를 통해 기존에 연결된 배터리 팩과 추가로 연결될 배터리 팩 사이의 SOC 차가 소정 범위 이내가 되면, 제2 제어부(120)는 배터리 팩이 추가 연결되도록 한다(S240).
바람직하게는, 도 6에 도시된 바와 같이, 제2 제어부(120)는 상기 S240 단계 이후에, 병렬로 연결된 전체 배터리 팩이 충전되도록 할 수 있다(S250).
한편, 상기 S240 단계에서 배터리 팩의 연결 개폐는, 각 배터리 팩에 구비된 FET, Relay 또는 IGBT로 구현될 수 있다.
이상과 같이, 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.
한편, 본 명세서에서 '부'라는 용어를 사용하였으나, 이는 논리적인 구성 단위를 나타내는 것으로서, 반드시 물리적으로 분리될 수 있는 구성요소를 나타내는 것이 아니라는 점은 본 발명이 속하는 기술 분야의 당업자에게 자명하다.

Claims (18)

  1. 복수의 배터리 팩의 연결을 제어하는 장치에 있어서,
    상기 배터리 팩 각각의 충방전 경로 상에 구비되어 상기 충방전 경로를 선택적으로 개폐하는 스위칭부;
    상기 배터리 팩 각각에 구비되어 각 배터리 팩의 SOC를 측정하고, 상기 스위칭부의 개폐를 제어하는 제1 제어부; 및
    상기 제1 제어부로부터 각각의 배터리 팩에 대한 SOC 측정값을 수신하여, 소정 오차 범위 이내의 SOC값을 갖는 배터리 팩끼리 그룹화하고, 가장 많은 수의 배터리 팩이 포함된 그룹을 선정하여 선정된 그룹 내의 배터리 팩을 서로 병렬로 연결하며, 상기 병렬 연결된 배터리 팩이 충전 또는 방전되도록 하여 상기 병렬 연결된 배터리 팩과 병렬 연결되지 않은 배터리 팩 사이의 SOC 차가 소정 범위 이내로 들어오도록 한 후, 상기 병렬 연결되지 않은 배터리 팩이 추가로 병렬 연결되도록 하는 제2 제어부
    를 포함하는 것을 특징으로 하는 배터리 팩 연결 제어 장치.
  2. 제1항에 있어서,
    상기 제2 제어부는, 상기 복수의 배터리 팩의 연결이 완료된 후, 상기 병렬 연결된 전체 배터리 팩이 충전되도록 하는 것을 특징으로 하는 배터리 팩 연결 제어 장치.
  3. 제1항에 있어서,
    상기 제1 제어부는, 각 배터리 팩의 BMS에 의해 구현되는 것을 특징으로 하는 배터리 팩 연결 제어 장치.
  4. 제1항에 있어서,
    상기 스위칭부는, FET, Relay 또는 IGBT로 구현되는 것을 특징으로 하는 배터리 팩 연결 제어 장치.
  5. 제1항에 따른 배터리 팩 연결 제어 장치를 포함하는 배터리 팩.
  6. 병렬 연결된 둘 이상의 배터리 팩에 대한 배터리 팩의 추가 연결을 제어하는 장치에 있어서,
    상기 배터리 팩 각각의 충방전 경로 상에 구비되어 상기 충방전 경로를 선택적으로 개폐하는 스위칭부;
    상기 배터리 팩 각각에 구비되어 각 배터리 팩의 SOC를 측정하고, 상기 스위칭부의 개폐를 제어하는 제1 제어부; 및
    상기 제1 제어부로부터 각각의 배터리 팩에 대한 SOC 측정값을 수신하여, 기존 연결된 배터리 팩과 추가로 연결될 배터리 팩의 SOC 차가 소정 범위를 벗어나는 경우, 상기 기존 연결된 배터리 팩이 충전 또는 방전되도록 하여 기존 연결된 배터리 팩과 추가로 연결될 배터리 팩의 SOC차가 소정 범위 이내로 들어오도록 한 후, 상기 배터리 팩이 추가로 병렬 연결되도록 하는 제2 제어부
    를 포함하는 것을 특징으로 하는 배터리 팩 연결 제어 장치.
  7. 제6항에 있어서,
    상기 제2 제어부는, 상기 배터리 팩의 추가 병렬 연결이 완료된 후, 상기 병렬 연결된 전체 배터리 팩이 충전되도록 하는 것을 특징으로 하는 배터리 팩 연결 제어 장치.
  8. 제6항에 있어서,
    상기 제1 제어부는, 각 배터리 팩의 BMS에 의해 구현되는 것을 특징으로 하는 배터리 팩 연결 제어 장치.
  9. 제6항에 있어서,
    상기 스위칭부는, FET, Relay 또는 IGBT로 구현되는 것을 특징으로 하는 배터리 팩 연결 제어 장치.
  10. 제6항에 따른 배터리 팩 연결 제어 장치를 포함하는 배터리 팩.
  11. 복수의 배터리 팩의 연결을 제어하는 방법에 있어서,
    상기 배터리 팩 각각의 SOC를 측정하는 단계;
    상기 측정된 SOC값을 비교하여, 소정 오차 범위 이내의 SOC값을 갖는 배터리 팩끼리 그룹화하는 단계;
    가장 많은 수의 배터리 팩이 포함된 그룹을 선정하여 선정된 그룹 내의 배터리 팩을 병렬로 연결하는 단계;
    상기 병렬 연결된 배터리 팩과 병렬 연결되지 않은 배터리 팩 사이의 SOC 차가 소정 범위 이내로 들어오도록 상기 병렬 연결된 배터리 팩을 충전 또는 방전하는 단계; 및
    상기 병렬 연결되지 않은 배터리 팩을 추가로 병렬 연결하는 단계
    를 포함하는 것을 특징으로 하는 배터리 팩 연결 제어 방법.
  12. 제11항에 있어서,
    상기 배터리 팩의 추가적 병렬 연결 단계 이후, 상기 병렬 연결된 전체 배터리 팩을 충전하는 단계를 더 포함하는 것을 특징으로 하는 배터리 팩 연결 제어 방법.
  13. 제11항에 있어서,
    상기 배터리 팩 각각의 SOC 측정은, 각 배터리 팩에 구비된 BMS에 의해 구현되는 것을 특징으로 하는 배터리 팩 연결 제어 방법.
  14. 제11항에 있어서,
    상기 배터리 팩의 연결 개폐는, 각 배터리 팩에 구비된 FET, Relay 또는 IGBT로 구현되는 것을 특징으로 하는 배터리 팩 연결 제어 방법.
  15. 병렬 연결된 둘 이상의 배터리 팩에 대한 배터리 팩의 추가 연결을 제어하는 방법에 있어서,
    기존 연결된 배터리 팩과 추가로 연결될 배터리 팩 각각의 SOC를 측정하는 단계;
    기존 연결된 배터리 팩과 추가로 연결될 배터리 팩의 SOC를 비교하는 단계;
    기존 연결된 배터리 팩과 추가로 연결될 배터리 팩의 SOC 차가 소정 범위를 벗어나는 경우, 기존 연결된 배터리 팩과 추가로 연결될 배터리 팩의 SOC 차가 소정 범위 이내로 들어오도록 기존 연결된 배터리 팩을 충전 또는 방전하는 단계; 및
    상기 배터리 팩을 추가로 연결하는 단계
    를 포함하는 것을 특징으로 하는 배터리 팩 연결 제어 방법.
  16. 제15항에 있어서,
    상기 배터리 팩의 추가적 병렬 연결 단계 이후, 상기 병렬 연결된 전체 배터리 팩을 충전하는 단계를 더 포함하는 것을 특징으로 하는 배터리 팩 연결 제어 방법.
  17. 제15항에 있어서,
    상기 배터리 팩 각각의 SOC 측정은, 각 배터리 팩에 구비된 BMS에 의해 구현되는 것을 특징으로 하는 배터리 팩 연결 제어 방법.
  18. 제15항에 있어서,
    상기 배터리 팩의 연결 개폐는, 각 배터리 팩에 구비된 FET, Relay 또는 IGBT로 구현되는 것을 특징으로 하는 배터리 팩 연결 제어 방법.
PCT/KR2011/009531 2011-03-21 2011-12-12 배터리 팩 연결 제어 장치 및 방법 WO2012128445A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014500978A JP5858306B2 (ja) 2011-03-21 2011-12-12 バッテリーパック連結制御装置及び方法
EP11861678.8A EP2675001B1 (en) 2011-03-21 2011-12-12 Apparatus and method for controlling connection of battery packs
CN201180069442.6A CN103430353B (zh) 2011-03-21 2011-12-12 用于控制电池组的连接的设备和方法
US13/533,481 US8933667B2 (en) 2011-03-21 2012-06-26 Apparatus and method for controlling connection of battery packs

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020110024925A KR101367875B1 (ko) 2011-03-21 2011-03-21 배터리 팩 연결 제어 장치 및 방법
KR10-2011-0024925 2011-03-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/533,481 Continuation US8933667B2 (en) 2011-03-21 2012-06-26 Apparatus and method for controlling connection of battery packs

Publications (1)

Publication Number Publication Date
WO2012128445A1 true WO2012128445A1 (ko) 2012-09-27

Family

ID=46879557

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/009531 WO2012128445A1 (ko) 2011-03-21 2011-12-12 배터리 팩 연결 제어 장치 및 방법

Country Status (6)

Country Link
US (1) US8933667B2 (ko)
EP (1) EP2675001B1 (ko)
JP (1) JP5858306B2 (ko)
KR (1) KR101367875B1 (ko)
CN (1) CN103430353B (ko)
WO (1) WO2012128445A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015226431A (ja) * 2014-05-29 2015-12-14 株式会社キャプテックス 蓄電池制御システム
JP2016513352A (ja) * 2013-04-10 2016-05-12 エルジー・ケム・リミテッド バッテリーパック及びその充電制御方法
CN116961177A (zh) * 2023-07-20 2023-10-27 安徽大学 一种基于调度场算法的电池组最大可用容量利用方法

Families Citing this family (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202178590U (zh) * 2011-07-29 2012-03-28 惠州比亚迪电池有限公司 一种电源系统
JP5929526B2 (ja) * 2012-06-01 2016-06-08 ソニー株式会社 電源供給装置および電源切り換え方法
KR101648239B1 (ko) * 2012-06-29 2016-08-12 삼성에스디아이 주식회사 돌입 전류를 저감하는 에너지 저장 장치 및 그 방법
JP5621818B2 (ja) * 2012-08-08 2014-11-12 トヨタ自動車株式会社 蓄電システムおよび均等化方法
US9472959B2 (en) * 2012-11-30 2016-10-18 GM Global Technology Operations LLC Systems and methods for balancing a vehicle battery system
DE102012222746A1 (de) * 2012-12-11 2014-06-12 Robert Bosch Gmbh Verfahren zur Batteriemodulausbalancierung und Batteriemanagementsystem
JP6201763B2 (ja) * 2013-01-22 2017-09-27 株式会社Gsユアサ 蓄電ユニットの接続情報取得装置
DE102013005974B8 (de) * 2013-04-09 2015-03-12 Florian Ilmberger Batteriespeicheranlage und Verfahren zum Betrieb einer Batteriespeicheranlage
JP6113066B2 (ja) * 2013-12-20 2017-04-12 富士通株式会社 制御方法、制御サーバ及び制御プログラム
CN105993094B (zh) * 2014-06-18 2017-10-24 皇家飞利浦有限公司 用于控制电池组的多个电池的设备和方法
CN104103865B (zh) * 2014-07-22 2016-05-18 合肥国轩高科动力能源有限公司 纯电动汽车的增程电池组系统
US9853473B2 (en) * 2014-10-13 2017-12-26 Lenovo (Singapore) Pte. Ltd. Battery pack assembly and method
DE112014007057T5 (de) * 2014-11-14 2017-08-17 Robert Bosch Gmbh Energiespeichersystem basiert auf Batteriepacks
KR101729820B1 (ko) * 2014-12-08 2017-04-24 주식회사 엘지화학 배터리 랙 릴레이 컨트롤 장치 및 방법
DE102015002072A1 (de) 2015-02-18 2016-08-18 Audi Ag Einstellen von Ladungszuständen von Batteriezellen
WO2016134487A1 (de) * 2015-02-23 2016-09-01 Wetrok Ag Verfahren und vorrichtung zur steuerung und überwachung von batterien
JP2016170938A (ja) * 2015-03-12 2016-09-23 プライムアースEvエナジー株式会社 電池システムの電池パック交換方法及び電池パック
KR102377394B1 (ko) 2015-05-14 2022-03-22 삼성에스디아이 주식회사 에너지 저장 시스템 및 그 구동 방법
KR102066912B1 (ko) * 2015-11-11 2020-01-16 주식회사 엘지화학 충전 기능이 향상된 배터리 시스템 및 이를 포함하는 모바일 디바이스
WO2017086349A1 (ja) * 2015-11-18 2017-05-26 Evtd株式会社 制御装置、蓄電装置及び蓄電システム
ITUB20155921A1 (it) * 2015-11-26 2017-05-26 Ideabagno S N C Di Boscolo Daniele Sale Sistema di gestione dell?energia elettrica a bordo di un veicolo, procedimento di ricarica e di utilizzo
KR102636361B1 (ko) * 2016-01-05 2024-02-14 삼성전자주식회사 배터리 제어 장치 및 배터리 제어 시스템
JPWO2017154115A1 (ja) * 2016-03-08 2018-09-27 株式会社東芝 蓄電池装置、蓄電池システム、方法及び制御プログラム
KR102179679B1 (ko) * 2016-03-29 2020-11-17 주식회사 엘지화학 배터리 모듈의 연결 상태에 따른 최대 입/출력 전력 제한 방법 및 장치
DE102016107448A1 (de) 2016-04-21 2017-10-26 enfas GmbH Energiespeichersystem
JP6756219B2 (ja) * 2016-09-30 2020-09-16 ダイムラー・アクチェンゲゼルシャフトDaimler AG 車両用バッテリの制御装置
FR3059845B1 (fr) * 2016-12-01 2019-01-25 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procede d'equilibrage d'etats de charge d'une pluralite de dispositifs de stockage d'energie electrique
JP6775431B2 (ja) 2017-01-23 2020-10-28 株式会社デンソーテン 蓄電装置および蓄電制御方法
JP6775435B2 (ja) 2017-01-31 2020-10-28 株式会社デンソーテン 蓄電装置および蓄電制御方法
DE102017216486A1 (de) * 2017-09-18 2019-03-21 Robert Bosch Gmbh Elektrisches Parallelschalten einer Mehrzahl von elektrischen Energiespeichern
KR102459982B1 (ko) * 2017-09-26 2022-10-27 삼성전자주식회사 배터리들의 충전 상태에 기초하여 배터리들을 전자 장치들로 연결하는 배터리 관리 장치 및 방법
KR102361334B1 (ko) * 2018-05-09 2022-02-09 주식회사 엘지에너지솔루션 배터리 제어 장치 및 이를 포함하는 에너지 저장 시스템
GB2574196B (en) 2018-05-21 2022-08-24 Bae Systems Plc Supercapacitor arrangement for enhancing electronic power performance of waterborne vehicles
DE102018213180A1 (de) * 2018-08-07 2020-02-13 Thyssenkrupp Ag Verfahren zur Regelung des Netzes eines Unterwasserfahrzeugs und Unterwasserfahrzeug, welches zu einer derartigen Regelung ausgestaltet ist
US11025072B2 (en) * 2018-10-17 2021-06-01 Ess Tech, Inc. System and method for operating an electrical energy storage system
CN112533788B (zh) 2018-10-26 2023-12-01 康明斯公司 处于不同荷电状态(soc)的多个电池组的电池充电和放电
WO2020192861A1 (en) * 2019-03-22 2020-10-01 Abb Schweiz Ag Method for controlling battery energy storage system and battery energy storage system
JP7299095B2 (ja) * 2019-07-30 2023-06-27 東芝三菱電機産業システム株式会社 無停電電源装置
USD929338S1 (en) 2019-09-05 2021-08-31 Techtronic Cordless Gp Electrical interface
USD929334S1 (en) 2019-09-05 2021-08-31 Techtronic Cordless Gp Electrical interface
USD1013634S1 (en) 2019-09-05 2024-02-06 Techtronic Cordless Gp Battery pack
USD929337S1 (en) 2019-09-05 2021-08-31 Techtronic Cordless Gp Electrical interface
USD929339S1 (en) 2019-09-05 2021-08-31 Techtronic Cordless Gp Electrical interface
USD953268S1 (en) 2019-09-05 2022-05-31 Techtronic Cordless Gp Electrical interface
USD929335S1 (en) 2019-09-05 2021-08-31 Techtronic Cordless Gp Electrical interface
USD929336S1 (en) 2019-09-05 2021-08-31 Techtronic Cordless Gp Electrical interface
CN110797590B (zh) * 2019-09-16 2022-08-23 安徽绿沃循环能源科技有限公司 基于电池包二次利用的储能电站效率提升方法及系统
KR20210080070A (ko) 2019-12-20 2021-06-30 주식회사 엘지에너지솔루션 병렬 배터리 릴레이 진단 장치 및 방법
JP7287908B2 (ja) * 2020-01-30 2023-06-06 プライムアースEvエナジー株式会社 制御装置
DE102020207185A1 (de) 2020-06-09 2021-12-09 Siemens Mobility GmbH Anordnung mit einer Speichereinrichtung und Verfahren zu deren Betrieb
EP4175011A4 (en) * 2020-06-26 2024-05-15 Panasonic Intellectual Property Management Co., Ltd. MANAGEMENT DEVICE AND POWER SUPPLY SYSTEM
CN111585356A (zh) * 2020-07-02 2020-08-25 阳光电源股份有限公司 一种储能系统的扩容方法和储能系统
US20220089054A1 (en) * 2020-09-18 2022-03-24 Cummins Inc. Estimation of charging duration for electric vehicles
FR3114541B1 (fr) * 2020-09-30 2022-09-23 Renault Sas procédé de gestion d’un réseau de batteries d’accumulateurs et unité d’alimentation électrique d’un moteur
CN112319306B (zh) * 2020-10-09 2022-04-22 恒大新能源汽车投资控股集团有限公司 电动汽车控制电路及其控制方法
KR20220101322A (ko) * 2021-01-11 2022-07-19 주식회사 엘지에너지솔루션 배터리 제어 장치, 배터리 시스템, 전원 공급 시스템 및 배터리 제어 방법
KR102536488B1 (ko) * 2021-01-27 2023-05-26 (주)휴컨 다수의 배터리 모듈을 병렬로 적층한 에너지 저장장치의 밸런싱 및 충전 방법
EP4160855A1 (en) * 2021-09-29 2023-04-05 Volvo Truck Corporation A method for operating a switching arrangement
CN114069766A (zh) * 2021-10-13 2022-02-18 安克创新科技股份有限公司 一种电池管理方法、系统及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR960019895A (ko) * 1994-11-12 1996-06-17 김광호 재충전 배터리의 충전장치 및 충전제어방법
KR970004218A (ko) * 1995-06-30 1997-01-29 김광호 재충전용 밧데리의 메모리 이펙트 제거를 위한 충방전 제어방법 및 그 회로
KR19990083526A (ko) * 1998-04-29 1999-11-25 록키드 마틴 코포레이션 변동하는시스템부하존재시,특별한배터리충전상태유지용발전기전류발생을위한제어시스템
KR20050098235A (ko) * 2002-12-30 2005-10-11 모토로라 인코포레이티드 배터리를 충전하기 위한 방법

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10216831A1 (de) * 2002-04-16 2003-10-30 Sanyo Energy Europ Corporate G Ladekontrollschaltung für ein Batteriepack aus wiederaufladbaren Batterieelementen
JP4374351B2 (ja) * 2006-04-12 2009-12-02 矢崎総業株式会社 充電状態調整装置
JP4560501B2 (ja) * 2006-08-11 2010-10-13 矢崎総業株式会社 充電状態調整装置
JP4542536B2 (ja) * 2006-11-06 2010-09-15 株式会社日立製作所 電源制御装置
KR100860712B1 (ko) * 2006-12-12 2008-09-29 넥스콘 테크놀러지 주식회사 하이브리드 전기자동차의 배터리 팩 전압 측정회로 및측정방법
KR100882913B1 (ko) * 2007-03-19 2009-02-10 삼성에스디아이 주식회사 배터리 팩
US8143854B2 (en) * 2007-05-11 2012-03-27 Panasonic Ev Energy Co., Ltd. Adjusting method of battery pack and adjusting method of battery pack with controller
JP5027005B2 (ja) * 2007-05-11 2012-09-19 プライムアースEvエナジー株式会社 組電池の調整方法、及びコントローラ付き組電池の調整方法
JP5017009B2 (ja) * 2007-07-30 2012-09-05 株式会社東芝 並列接続蓄電システム
JP2009081981A (ja) * 2007-09-27 2009-04-16 Sanyo Electric Co Ltd 充電状態最適化装置及びこれを具えた組電池システム
JP5529402B2 (ja) * 2008-08-13 2014-06-25 三菱重工業株式会社 蓄電システム
JP5601770B2 (ja) * 2008-12-09 2014-10-08 三菱重工業株式会社 電圧均等化装置、方法、プログラム、及び電力貯蔵システム
JP5635608B2 (ja) * 2009-07-29 2014-12-03 ザ・リージェンツ・オブ・ザ・ユニバーシティ・オブ・ミシガンThe Regents Of The University Of Michigan バッテリ充電及び放電のスケジューリングシステム
JP2011072153A (ja) * 2009-09-28 2011-04-07 Sanyo Electric Co Ltd 車両用電源装置及びこれを備える車両並びに車両用電源装置の容量均等化方法
JP2012113856A (ja) * 2010-11-22 2012-06-14 Toyota Motor Corp 電源スタック交換方法、制御装置及び制御プログラム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR960019895A (ko) * 1994-11-12 1996-06-17 김광호 재충전 배터리의 충전장치 및 충전제어방법
KR970004218A (ko) * 1995-06-30 1997-01-29 김광호 재충전용 밧데리의 메모리 이펙트 제거를 위한 충방전 제어방법 및 그 회로
KR19990083526A (ko) * 1998-04-29 1999-11-25 록키드 마틴 코포레이션 변동하는시스템부하존재시,특별한배터리충전상태유지용발전기전류발생을위한제어시스템
KR20050098235A (ko) * 2002-12-30 2005-10-11 모토로라 인코포레이티드 배터리를 충전하기 위한 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2675001A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016513352A (ja) * 2013-04-10 2016-05-12 エルジー・ケム・リミテッド バッテリーパック及びその充電制御方法
JP2015226431A (ja) * 2014-05-29 2015-12-14 株式会社キャプテックス 蓄電池制御システム
CN116961177A (zh) * 2023-07-20 2023-10-27 安徽大学 一种基于调度场算法的电池组最大可用容量利用方法
CN116961177B (zh) * 2023-07-20 2024-03-08 安徽大学 一种基于调度场算法的电池组最大可用容量利用方法

Also Published As

Publication number Publication date
EP2675001A1 (en) 2013-12-18
EP2675001B1 (en) 2016-08-10
JP5858306B2 (ja) 2016-02-10
KR101367875B1 (ko) 2014-02-26
CN103430353A (zh) 2013-12-04
US20120268070A1 (en) 2012-10-25
US8933667B2 (en) 2015-01-13
CN103430353B (zh) 2016-04-20
JP2014514692A (ja) 2014-06-19
EP2675001A4 (en) 2015-04-01
KR20120107302A (ko) 2012-10-02

Similar Documents

Publication Publication Date Title
WO2012128445A1 (ko) 배터리 팩 연결 제어 장치 및 방법
WO2012091402A2 (ko) 배터리 시스템 관리 장치 및 방법
WO2011083993A2 (ko) 배터리 제어 장치 및 방법
WO2021045387A1 (ko) 배터리 관리 장치, 배터리 관리 방법, 배터리 팩 및 전기 차량
WO2019216532A1 (ko) 배터리 제어 장치 및 이를 포함하는 에너지 저장 시스템
KR101977778B1 (ko) 배터리의 충전 및 방전 레벨을 그 배터리의 셀들의 블록들을 스위칭함으로써 균형을 잡는 방법
WO2012165858A2 (ko) 전력 저장 장치, 이를 이용한 전력 저장 시스템 및 전력 저장 시스템의 구성 방법
WO2011152639A2 (ko) 배터리 팩 그리고 배터리 팩의 충전 방법
WO2020076127A1 (ko) 배터리 관리 장치 및 방법
WO2015016600A1 (ko) 배터리 제어 장치 및 방법
WO2015060576A1 (ko) 적은 수의 절연소자를 사용하여 2차 보호 신호 및 진단 신호를 전송할 수 있는 배터리 관리 시스템
WO2018038348A1 (ko) 배터리 관리 시스템
WO2019221368A1 (ko) 메인 배터리와 서브 배터리를 제어하기 위한 장치, 배터리 시스템 및 방법
WO2017086632A1 (ko) 배터리 팩 관리 장치 및 방법
WO2013051863A2 (ko) 배터리 충전 장치 및 방법
WO2015053536A1 (ko) 오작동 방지 알고리즘을 포함하는 배터리 관리 장치 및 방법
WO2020071682A1 (ko) Bms 간 통신 시스템 및 방법
EP4068561A1 (en) Charging method and power conversion device
WO2021033956A1 (ko) 배터리 시스템 및 배터리 시스템의 운용 방법
WO2021080247A1 (ko) 병렬 멀티 배터리 팩에 포함된 스위치부의 턴온 동작 제어 장치 및 방법
CN102456914B (zh) 一种适用于动力电车用的锂离子电池组系统
WO2020055162A1 (ko) 스위치 진단 장치 및 방법
WO2021256864A1 (ko) 배터리 관리 시스템, 배터리 관리 방법, 배터리 팩 및 전기 차량
WO2022039505A1 (ko) 배터리 관리 시스템, 배터리 관리 방법, 배터리 팩 및 전기 차량
WO2022014953A1 (ko) 배터리 관리 방법 및 그 방법을 제공하는 배터리 시스템

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180069442.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11861678

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2011861678

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011861678

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014500978

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE