WO2019216532A1 - 배터리 제어 장치 및 이를 포함하는 에너지 저장 시스템 - Google Patents

배터리 제어 장치 및 이를 포함하는 에너지 저장 시스템 Download PDF

Info

Publication number
WO2019216532A1
WO2019216532A1 PCT/KR2019/001776 KR2019001776W WO2019216532A1 WO 2019216532 A1 WO2019216532 A1 WO 2019216532A1 KR 2019001776 W KR2019001776 W KR 2019001776W WO 2019216532 A1 WO2019216532 A1 WO 2019216532A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery pack
terminal
voltage
switch
battery
Prior art date
Application number
PCT/KR2019/001776
Other languages
English (en)
French (fr)
Inventor
박미소
김창하
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US16/651,798 priority Critical patent/US11381094B2/en
Priority to EP19800303.0A priority patent/EP3687027A4/en
Priority to JP2020511901A priority patent/JP7045570B2/ja
Priority to CN201980004693.2A priority patent/CN111133655B/zh
Priority to AU2019265165A priority patent/AU2019265165B2/en
Publication of WO2019216532A1 publication Critical patent/WO2019216532A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0024Parallel/serial switching of connection of batteries to charge or load circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4207Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0019Circuits for equalisation of charge between batteries using switched or multiplexed charge circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00304Overcurrent protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially

Definitions

  • the present invention relates to a battery control device, a battery control method, and an energy storage system including the battery control device for safely connecting a plurality of battery packs in parallel.
  • lithium batteries have almost no memory effect compared to nickel-based batteries, and thus are free of charge and discharge, and have a very high self discharge rate. Its low and high energy density has attracted much attention.
  • the battery control device may include a single battery pack, but a new battery pack may be added for the purpose of expanding the charge / discharge capacity.
  • the battery control apparatus includes a plurality of battery packs
  • the plurality of battery packs may be installed to be connected in parallel with each other.
  • an inrush current may flow due to a voltage difference between the plurality of battery packs. Inrush currents not only degrade the life of the battery pack, but can also cause serious physical damage to the battery pack and peripheral circuits.
  • the present invention has been made to solve the above problems, a battery control device, battery control that can protect a plurality of battery packs and peripheral circuits due to inrush current from physical damage when a plurality of battery packs are connected in parallel, It is an object of the present invention to provide an energy storage system comprising the method and the battery control device.
  • the battery control device is connected to a power conversion system through a first terminal and a second terminal.
  • the battery control device may include a first battery pack; A second battery pack; A first switch connected in series with the first battery pack between the first terminal and the second terminal; A second switch connected in series with the second battery pack between the first terminal and the second terminal; And a control unit operatively coupled to the first switch and the second switch.
  • the controller may include the first battery pack when the voltage difference between the first battery pack and the second battery pack is less than a threshold voltage at a first time point when both the first switch and the second switch are turned off. It is configured to turn on both the first switch and the second switch so that the second battery pack is connected in parallel with each other.
  • the controller may be configured to turn on the first switch when the voltage of the second battery pack at the first time point is higher than or equal to the threshold voltage than the voltage of the first battery pack.
  • the controller may include a first electrostatic force between the first terminal and the second terminal when the SOC difference between the first battery pack and the second battery pack is greater than or equal to a threshold SOC at a second time point after the first time point. May be configured to send a first command to the power conversion system to be supplied.
  • the controller may be configured to control the first terminal and the second terminal when the SOC difference between the first battery pack and the second battery pack is less than the threshold SOC at the second time point or at a third time point after the second time point. And transmit a second command to the power conversion system such that a second constant power is supplied between the terminals. The second constant power is less than the first constant power.
  • the controller may further include a voltage difference between the first battery pack and the second battery pack being equal to or greater than the voltage of the second battery pack at a fourth time after the third time point. If smaller, the second switch may be configured to turn on the second switch so that the first battery pack and the second battery pack are connected to each other in parallel.
  • the controller may be configured to transmit the second command to the power conversion system when the voltage of the first battery pack at the fourth time point is lower than the voltage of the second battery pack.
  • the controller may further supply a third command to the power conversion system to stop the supply of the second constant power. It can be configured to transmit.
  • the controller may further include the first battery pack and the second battery pack at a fifth time point when a stabilization period has elapsed from when the power conversion system stops supplying the second electrostatic power in response to the third command.
  • the second switch may be configured to turn on so that the first battery pack and the second battery pack are connected in parallel with each other.
  • the controller may include a first slave controller configured to measure a voltage and a current of the first battery pack; A second slave controller configured to measure a voltage and a current of the second battery pack; And a master controller configured to control each of the first switch and the second switch based on a voltage and a current of each of the first battery pack and the second battery pack.
  • the battery control device And a power conversion system connectable to the battery control device through the first terminal and the second terminal.
  • a battery control method includes a first battery pack connected in series with a first switch between a first terminal and a second terminal of a power conversion system, and between the first terminal and the second terminal.
  • the second battery pack is connected in parallel with the switch in series.
  • the battery control method may include determining whether a voltage difference between the first battery pack and the second battery pack is less than a threshold voltage at a first time point when both the first switch and the second switch are turned off. ; When the voltage difference between the first battery pack and the second battery pack at the first time point is less than the threshold voltage, the first switch and the first battery pack are connected such that the first battery pack and the second battery pack are connected in parallel with each other.
  • the battery control method may include the first terminal and the second terminal when the SOC difference between the first battery pack and the second battery pack at the second time point or at a third time point after the second time point is less than the threshold SOC.
  • the method may further include transmitting a second command to the power conversion system to supply a second constant power between second terminals.
  • the second constant power is less than the first constant power.
  • the plurality of battery packs and peripheral circuits due to the inrush current may be protected from physical damage.
  • FIG. 1 is a view showing the configuration of an energy storage system according to an embodiment of the present invention by way of example.
  • FIG. 2 to 4 are views referred to for describing operations that may be performed to connect the first battery pack and the second battery pack of FIG. 1 in parallel.
  • 5 and 6 are flowcharts illustrating a method of connecting the first battery pack and the second battery pack in parallel according to another embodiment of the present invention.
  • control unit> means a unit for processing at least one function or operation, which may be implemented in hardware or software, or a combination of hardware and software.
  • FIG. 1 is a view showing the configuration of an energy storage system 30 according to an embodiment of the present invention by way of example.
  • the energy storage system 10 includes a battery control device 20 and a power conversion system 30.
  • the battery management apparatus 20 may be electrically connected to the power conversion system 30 through the first terminal P + and the second terminal P ⁇ .
  • the battery control device 20 includes a first battery pack 110, a second battery pack 120, a first switch SW1, a second switch SW2, and a controller 200.
  • the first battery pack 110 includes at least one battery cell.
  • the second battery pack 120 includes at least one battery cell.
  • Each battery cell included in the first battery pack 110 and the second battery pack 120 may be a rechargeable battery such as a lithium ion battery, a lithium polymer battery, a nickel cadmium battery, a nickel hydrogen battery or a nickel zinc battery. have.
  • the first battery pack 110 and the second battery pack 120 may be manufactured to have the same rated voltage, rated current, and design capacity. However, the first battery pack 110 and the second battery pack 120 may have different states of health (SOH) or the like depending on the number of charge / discharge cycles.
  • SOH states of health
  • the first switch SW1 is connected in series with the first battery pack 110 between the first terminal P + and the second terminal P ⁇ .
  • one end of the first switch SW1 is connected to the positive terminal of the first battery pack 110, and the other end of the first switch SW1 is connected to the first terminal P +.
  • the negative terminal of the first battery pack 110 is connected to the second terminal P-.
  • the first switch SW1 is turned on, the first battery pack 110 is electrically connected between the first terminal P + and the second terminal P ⁇ through the first switch SW1.
  • the first switch SW1 When the first switch SW1 is turned off, the first battery pack 110 is electrically disconnected from at least one of the first terminal P + and the second terminal P ⁇ .
  • the second switch SW2 is connected in series with the second battery pack 120 between the first terminal P + and the second terminal P ⁇ .
  • one end of the second switch SW2 is connected to the positive terminal of the second battery pack 120, and the other end of the second switch SW2 is connected to the first terminal P +.
  • the negative terminal of the second battery pack 120 is connected to the second terminal P-.
  • the second switch SW2 is turned on, the second battery pack 120 is electrically connected between the first terminal P + and the second terminal P ⁇ through the second switch SW2.
  • the second switch SW2 When the second switch SW2 is turned off, the second battery pack 120 is electrically disconnected from at least one of the first terminal P + and the second terminal P ⁇ .
  • Each of the first switch SW1 and the second switch SW2 may be implemented by combining any one or two or more of known switching elements such as, for example, a relay or a field effect transistor (FET).
  • FET field effect transistor
  • the controller 200 is configured to individually monitor the states of the first battery pack 110 and the second battery pack 120.
  • the control unit 200 is configured to individually control the first switch SW1 and the second switch SW2.
  • the controller 200 may include a first slave controller 310, a second slave controller 320, and a master controller 400.
  • the first slave controller 310 is configured to periodically monitor the operating state of the first battery pack 110, and includes a voltage sensor, a current sensor, and a processor.
  • the voltage sensor of the first slave controller 310 is configured to measure the voltage of the first battery pack 110.
  • the current sensor of the first slave controller 310 is configured to measure the current flowing through the first battery pack 110.
  • the first slave controller 310 is configured to calculate a state of charge (SOC) of the first battery pack 110 based on at least one of a voltage and a current of the first battery pack 110.
  • the first slave controller 310 is configured to periodically transmit first data indicating at least one of the voltage and the SOC of the first battery pack 110 to the master controller 400.
  • the second slave controller 320 is configured to periodically monitor the operating state of the second battery pack 120, and includes a voltage sensor, a current sensor, and a processor.
  • the voltage sensor of the second slave controller 320 is configured to measure the voltage of the second battery pack 120.
  • the current sensor of the second slave controller 320 is configured to measure the current flowing through the second battery pack 120.
  • the second slave controller 320 is configured to calculate the SOC of the second battery pack 120 based on at least one of the voltage and the current of the second battery pack 120.
  • the second slave controller 320 is configured to periodically transmit second data indicating at least one of the voltage and the SOC of the second battery pack 120 to the master controller 400.
  • the SOC may be calculated based on the voltage and current of each battery pack by using current counting, equivalent circuit model, or Kalman filter.
  • the voltage sensor and the current sensor can be implemented with known components.
  • the voltage sensor is connected to the positive and negative poles of the battery pack and outputs an electrical signal corresponding to the voltage difference to the processor.
  • the current sensor outputs an electric signal corresponding to the magnitude of the charge current or the discharge current of the battery pack to the processor.
  • the voltage sensor includes a differential amplifier circuit, and the current sensor includes a sense resistor or a hall sensor.
  • the master controller 400 is operatively coupled to the first slave controller 310, the second slave controller 320, the first switch SW1, the second switch SW2, and the power conversion system 30.
  • the master controller 400 is configured to calculate a voltage difference and an SOC difference between the first battery pack 110 and the second battery pack 120.
  • the master controller 400 executes pre-stored software for parallel connection between the first battery pack 110 and the second battery pack 120 to operate the first switch SW1 and the second switch SW2. It can be turned on or off individually.
  • the master controller 400 may include a first terminal between the first terminal P + and the second terminal P ⁇ to charge at least one of the first battery pack 110 and the second battery pack 120.
  • the power conversion system 30 may be instructed to supply or stop supplying either the constant power or the second constant power.
  • Each of the first slave controller 310, the second slave controller 320, and the master controller 400 may be configured in hardware by application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), It may be implemented to include at least one of programmable logic devices (PLDs), field programmable gate arrays (FPGAs), microprocessors, and electrical units for performing other functions.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • microprocessors microprocessors
  • At least one processor of the first slave controller 310, the second slave controller 320, and the master controller 400 may include a memory device.
  • Examples of the memory device may include a RAM, a ROM, a register, a hard disk, and an optical. Recording media or magnetic recording media can be used.
  • the memory device is generated when a program including various control logic executed by at least one of the first slave controller 310, the second slave controller 320, and the master controller 400, and / or the control logic is executed. To be stored, updated and / or erased.
  • the first slave controller 310, the second slave controller 320, and the master controller 400 have a communication interface.
  • the communication interface may be a CAN communication modem that supports CAN communication.
  • the master controller 400 exchanges data with the first slave controller 310 and the second slave controller 320 separately through a communication interface.
  • the power conversion system 30 is operatively coupled to the control unit 200.
  • the power conversion system 30 may be electrically connected to at least one of the grid and the load.
  • the power conversion system 30 may convert the power supplied from the grid or the battery control device 20 and then supply the load to the load.
  • the power conversion system 30 In response to the command from the controller 200, the power conversion system 30 generates constant power having a magnitude corresponding to the command by using the input power from the system, and converts the generated constant power into the first terminal P +. ) And the second terminal P-.
  • FIG. 2 to 4 are views referred to for describing operations that may be performed to connect the first battery pack 110 and the second battery pack 120 in FIG. 1 in parallel.
  • FIG. 2 shows a state in which both the first switch SW1 and the second switch SW2 are turned off.
  • the first switch SW1 when the first switch SW1 is turned off, the first battery pack 110 is electrically separated from at least one of the first terminal P + and the second terminal P ⁇ , and the second switch When SW2 is turned off, the second battery pack 120 is also electrically disconnected from at least one of the first terminal P + and the second terminal P ⁇ .
  • the controller 200 measures the voltage of the first battery pack 110 and the voltage of the second battery pack 120, and calculates a voltage difference between the first battery pack 110 and the second battery pack 120. do.
  • the controller 200 compares the voltage difference between the first battery pack 110 and the second battery pack 120 with the first threshold voltage.
  • the first threshold voltage may be predetermined, for example 2.5V.
  • the controller 200 may calculate the first threshold voltage based on the state of health (SOH) of the first battery pack 110 and the SOH of the second battery pack 120. That is, the first threshold voltage may be changed depending on the SOH of the first battery pack 110 and the SOH of the second battery pack 120, rather than being predetermined.
  • a look-up table capable of looking up the first threshold voltage according to at least one of the SOH of the first battery pack 110 and the SOH of the second battery pack 120 is stored in a memory device of the master controller 400 to store the master controller ( 400).
  • the SOH may be calculated by counting the number of charge / discharge cycles of the first battery pack 110 and the second battery pack 120 by the master controller 400.
  • the number of charge / discharge cycles may be calculated from voltage changes of the first battery pack 110 and the second battery pack 120. That is, if an event occurs that the voltage of the battery pack is charged or discharged in a specific voltage range, the number of charge / discharge cycles is increased by 1, and the ratio of the number of reference charge / discharge cycles corresponding to the SOH lower limit of the battery pack and the current charge / discharge cycle count
  • the SOH can be calculated by calculating.
  • FIG. 3 shows a state in which both the first switch SW1 and the second switch SW2 are turned on.
  • the controller 200 determines that the voltage difference between the first battery pack 110 and the second battery pack 120 is a first threshold when the first switch SW1 and the second switch SW2 are both turned off. If it is less than the voltage, both the first switch SW1 and the second switch SW2 are turned on. The reason is that the voltage difference between the first battery pack 110 and the second battery pack 120 that is less than the first threshold voltage does not generate an inrush current having a size that may cause physical damage to the battery control device 20. Because it does not.
  • the controller 200 may have a voltage greater than that of the first battery pack 110 when the voltage of the second battery pack 120 is turned on when both the first switch SW1 and the second switch SW2 are turned off.
  • the threshold voltage is higher than the threshold voltage
  • the first switch SW1 connected in series to the first battery pack 110 is turned on while the second switch SW2 connected in series with the second battery pack 120 is turned off. Accordingly, the first battery pack 110 is electrically connected to the first terminal P + and the second terminal P ⁇ through the turned on first switch SW1 and supplied by the power conversion system 30.
  • the controller 200 has a difference in SOC between the first battery pack 110 and the second battery pack 120 when the first switch SW1 is turned on and the second switch SW2 is turned off. If above the threshold SOC, the first command is sent to the power conversion system 30. On the other hand, the control unit 200, the SOC of the first battery pack 110 and the second battery pack 120 when the first switch (SW1) is turned on and the second switch (SW2) is turned off. If the difference is less than the threshold SOC, send a second command to the power conversion system 30. The first command is for requesting the power conversion system 30 to supply the first constant power between the first terminal P + and the second terminal P ⁇ .
  • the power conversion system 30 may supply the first constant power between the first terminal P + and the second terminal P ⁇ in response to the first command.
  • the second command is for requesting the power conversion system 30 to supply a second constant power smaller than the first constant power between the first terminal P + and the second terminal P ⁇ . That is, the power conversion system 30 may supply the second constant power between the first terminal P + and the second terminal P ⁇ in response to the second command. For example, when the SOC of the first battery pack 110 is smaller than the SOC of the second battery pack 120 by more than a threshold SOC, the first battery pack 110 is charged with the first constant power, and then the first battery pack 110.
  • the first battery pack 110 is charged with the second constant power from the time when the sum of the SOC and the threshold SOC is equal to the SOC of the second battery pack 120.
  • the critical SOC may be predetermined.
  • the controller 200 may calculate the threshold SOC based on the SOH of the first battery pack 110 and the SOH of the second battery pack 120. That is, the threshold SOC may vary depending on the SOH of the first battery pack 110 and the SOH of the second battery pack 120, rather than being predetermined.
  • the controller 200 may refer to a first battery pack by referring to a lookup table that defines a threshold SOC according to an average value, a maximum value, or a minimum value of the SOH of the first battery pack 110 and the SOH of the second battery pack 120.
  • the threshold SOC corresponding to at least one of the SOH of 110 and the SOH of the second battery pack 120 may be determined.
  • the threshold SOC may be looked up by the SOH of at least one of the first and second battery packs 110 and 120 to determine the threshold SOC from at least one of the first and second battery packs 110 and 120.
  • the lookup table may be stored in a memory device of the master controller 400 and referred to by the master controller 400.
  • the controller 200 may periodically calculate a voltage difference between the first battery pack 110 and the second battery pack 120 while the first battery pack 110 is charging with the second electrostatic power. If the voltage of the first battery pack 110 is less than the voltage of the second battery pack 120 while the first battery pack 110 is charged with the second electrostatic power, the controller 200 may switch the first switch SW1. ) May be turned on and the second switch SW2 may be turned off.
  • the controller 200 may turn on the second switch SW2 as shown in FIG. 3.
  • the voltage of the first battery pack 110 is greater than or equal to the voltage of the second battery pack 120 while the first battery pack 110 is charged with the second electrostatic power and the first battery pack 110 and the second battery pack.
  • the controller 200 may turn on the second switch SW2 as shown in FIG. 3.
  • the second threshold voltage corresponds to a voltage drop caused by the internal resistance and the charging current of each battery pack.
  • the second threshold voltage may be predetermined, equal to, higher or lower than the first threshold voltage.
  • the controller 400 may determine the second threshold voltage based on the SOH of the battery pack 110 or 120 being charged with the second electrostatic power. As the SOH of any one battery pack being charged with the second electrostatic power is lower, the second threshold voltage determined by the controller 400 may be higher. For example, when the SOH of any one battery pack being charged with the second constant power is 98%, the second threshold voltage may be determined as 3V, and when the SOH is 96%, the second threshold voltage may be determined as 3.3V.
  • a lookup table capable of looking up the second threshold voltage according to the SOH of one battery pack being charged with the second electrostatic power may be stored in the memory device of the master controller 400 and referred to by the master controller 400.
  • the controller 200 may transmit the third command to the power conversion system 30 or the transmission of the second command may be stopped. That is, the third command may include a voltage between the first battery pack 110 and the second battery pack 120 while one of the first battery pack 110 and the second battery pack 120 is charged with the second electrostatic power. If the difference is greater than or equal to the second threshold voltage, the controller 400 may output the control unit 400.
  • the power conversion system 30 may be configured to stop the supply of the second constant power when the third command is transmitted from the control unit 200 or the transmission of the second command is stopped while the second constant power is supplied. .
  • the controller 200 may determine a voltage between the first battery pack 110 and the second battery pack 120 when a predetermined stabilization period elapses from when the power conversion system 30 stops supplying the second electrostatic power. It may be determined whether the difference is less than the first threshold voltage.
  • the stabilization period is a period for removing polarization that occurs while each battery pack is charged with the second electrostatic force. If the voltage difference between the first battery pack 110 and the second battery pack 120 when the stabilization period elapses is less than the first threshold voltage, the controller 200 also turns on the second switch SW2. Let's do it. Accordingly, the first battery pack 110 and the second battery pack 120 are connected in parallel with each other between the first terminal P + and the second terminal P ⁇ .
  • the controller 200 turns off to the first switch SW1. Let's do it. Accordingly, both the first battery pack 110 and the second battery pack 120 are electrically separated from at least one of the first terminal P + and the second terminal P ⁇ .
  • FIG. 5 and 6 are flowcharts illustrating a method of connecting the first battery pack 110 and the second battery pack 120 in parallel according to another embodiment of the present invention.
  • the method shown in FIG. 5 is started when both the first switch SW1 and the second switch SW2 are turned off.
  • the voltage of the first battery pack 110 is lower than the voltage of the second battery pack 120 at the time when the method shown in FIG. 5 is started.
  • step S500 the controller 200 determines whether a voltage difference between the first battery pack 110 and the second battery pack 120 is less than a first threshold voltage. For example, when the voltage of the first battery pack 110 is 200V, the voltage of the second battery pack 120 is 202V, and the first threshold voltage is 2.5V, the value of step S500 is “Yes”. As another example, when the voltage of the first battery pack 110 is 200V, the voltage of the second battery pack 120 is 205V, and the first threshold voltage is 2.5V, the value of step S500 becomes “No”. If the value of step S500 is "Yes”, step S510 is reached. If the value of step S500 is "No", step S520 is reached.
  • step S510 the controller 200 turns on both the first switch SW1 and the second switch SW2. This is to electrically connect the first battery pack 110 and the second battery pack 120 to each other in parallel.
  • step S520 the controller 200 turns on the first switch SW1. That is, when the voltage of the second battery pack 120 is higher than the voltage of the first battery pack 110 by more than a threshold voltage, the first switch SW1 is turned on. At this time, the second switch SW2 is kept turned off. Accordingly, the first battery pack 110 is in a state capable of being charged with power supplied between the first terminal P + and the second terminal P ⁇ .
  • the controller 200 determines whether an SOC difference between the first battery pack 110 and the second battery pack 120 is less than a threshold SOC. For example, when the SOC of the first battery pack 110 is 66%, the SOC of the second battery pack 120 is 75%, and the threshold SOC is 8%, the SOC difference is 9%. Becomes "No". As another example, when the SOC of the first battery pack 110 is 70%, the SOC of the second battery pack 120 is 75%, and the threshold SOC is 8%, the SOC difference is 5%. "Yes”. If the value of step S530 is "No", step S540 proceeds. If the value of step 530 is "Yes", step S550 proceeds.
  • the controller 200 transmits a first command to the power conversion system 30.
  • the power conversion system 30 supplies the first constant power between the first terminal P + and the second terminal P ⁇ in response to the first command.
  • the first battery pack 110 may be charged with the first electrostatic power.
  • the first constant power may correspond to a first ratio of a predetermined maximum power. The first ratio may be greater than zero and less than one. For example, when the maximum power is 1000W and the first ratio is 0.5, the first constant power is 500W.
  • the voltage of the first battery pack 110 is 300V at a time point when 500W of the first constant power is supplied, the first battery pack as the charging current of 5 / 3A flows into the first battery pack 110. 110 may be charged.
  • the controller 200 transmits a second command to the power conversion system 30.
  • the power conversion system 30 supplies the second constant power between the first terminal P + and the second terminal P ⁇ in response to the second command.
  • the first battery pack 110 may be charged with the second electrostatic power.
  • the second constant power may correspond to a second ratio of the predetermined maximum power.
  • the second ratio may be greater than zero and less than one. For example, when the maximum power is 1000W and the second ratio is 0.1 smaller than the first ratio, the second constant power is 100W.
  • the voltage of the first battery pack 110 is 300V at a time when 100W of the second electrostatic power is supplied, the first battery pack as 1 / 3A of charging current flows into the first battery pack 110. 110 may be charged. Therefore, those skilled in the art can easily understand that when the second electrostatic power is supplied, the first battery pack 110 will be charged relatively slower than when the first electrostatic power is supplied, and the charge drop due to the charging current is reduced. There will be.
  • step S560 the controller 200 determines whether the voltage of the first battery pack 110 is lower than the voltage of the second battery pack 120. If the value of step S560 is "Yes”, step S550 proceeds. If the value of step S560 is "No”, step S570 proceeds.
  • step S570 the controller 200 determines whether a voltage difference between the first battery pack 110 and the second battery pack 120 is greater than the second threshold voltage. If the value of step S570 is "No", step S580 proceeds. If the value of step S570 is "Yes”, step S600 proceeds.
  • the controller 200 turns on the second switch SW2. Since the first switch SW1 is already turned on from the step S520, the first battery pack 110 and the second battery pack 120 may be the first from the time when the first switch SW1 is turned on to the second switch SW2 by the step S580. It is connected in parallel with each other between the terminal (P +) and the second terminal (P-).
  • the controller 200 transmits a third command to the power conversion system 30.
  • the power conversion system stops supplying the second constant power in response to the third command.
  • step S570 the voltage of the first battery pack 110 is excessively high compared to the period during which the second electrostatic power is supplied. This is a situation where the voltage of the first battery pack 110 is actually rapidly increased or the voltage of the first battery pack 110 is incorrectly measured. Therefore, the controller 200 may transmit a third command to temporarily stop charging of the first battery pack 110.
  • step S610 the controller 200 determines whether the stabilization period has elapsed from the time when the third command is transmitted. During the stabilization period, the voltage of the first battery pack 110 is gradually lowered toward the open voltage corresponding to the SOC of the first battery pack 110. If the value of step S610 is "Yes", step S620 is reached.
  • step S620 the controller 200 determines whether a voltage difference between the first battery pack 110 and the second battery pack 120 is less than the first threshold voltage. If the value of step S620 is "Yes”, step S580 proceeds. If the value of step S620 is "No”, step S630 proceeds.
  • step S500 may be automatically re-executed.
  • the battery control apparatus 20 described with reference to FIGS. 1 to 6 may protect the plurality of battery packs and peripheral circuits due to inrush current from physical damage when the plurality of battery packs are connected in parallel.
  • the battery control apparatus 20 charges a battery pack having a relatively high voltage by charging a battery pack having a relatively low voltage in order to reduce the voltage difference between the battery packs before connecting the battery packs in parallel. Compared with the discharge method, unnecessary energy consumption can be reduced.
  • the battery control device 20 is connected to the other battery pack in consideration of the voltage drop caused by the internal resistance (internal resistance) of the battery pack being charged, the inrush current that can flow when a plurality of battery packs in parallel connection Can reduce the size.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

배터리 제어 장치, 배터리 제어 방법 및 상기 배터리 제어 장치를 포함하는 에너지 저장 시스템이 제공된다. 본 발명의 일 실시예에 따른 배터리 제어 장치는, 제1 배터리팩; 제2 배터리팩; 상기 제1 단자와 상기 제2 단자 사이에서 상기 제1 배터리팩과 직렬 연결되는 제1 스위치; 상기 제1 단자와 상기 제2 단자 사이에서 상기 제2 배터리팩과 직렬 연결되는 제2 스위치; 및 제어부를 포함한다. 상기 제어부는, 상기 제1 스위치 및 상기 제2 스위치가 모두 턴 오프되어 있는 시점에서의 상기 제1 배터리팩과 상기 제2 배터리팩 간의 전압 차이가 임계 전압 미만이면, 상기 제1 스위치 및 상기 제2 스위치를 모두 턴 온시키도록 구성된다.

Description

배터리 제어 장치 및 이를 포함하는 에너지 저장 시스템
본 발명은 복수의 배터리팩을 안전하게 병렬로 연결하기 위한 배터리 제어 장치, 배터리 제어 방법 및 상기 배터리 제어 장치를 포함하는 에너지 저장 시스템에 관한 것이다.
본 출원은 2018년 5월 9일자로 출원된 한국 특허출원 번호 제10-2018-0053253호에 대한 우선권주장출원으로서, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 인용에 의해 본 출원에 원용된다.
최근, 노트북, 비디오 카메라, 휴대용 전화기 등과 같은 휴대용 전자 제품의 수요가 급격하게 증대되고, 전기 자동차, 에너지 저장용 축전지, 로봇, 위성 등의 개발이 본격화됨에 따라, 반복적인 충방전이 가능한 고성능 배터리에 대한 연구가 활발히 진행되고 있다.
현재 상용화된 배터리로는 니켈 카드뮴 전지, 니켈 수소 전지, 니켈 아연 전지, 리튬 배터리 등이 있는데, 이 중에서 리튬 배터리는 니켈 계열의 배터리에 비해 메모리 효과가 거의 일어나지 않아 충방전이 자유롭고, 자가 방전율이 매우 낮으며 에너지 밀도가 높은 장점으로 각광을 받고 있다.
배터리 제어 장치는, 단일의 배터리팩을 포함하기도 하지만, 충방전 용량을 확장하기 위한 목적으로 새로운 배터리팩이 추가되기도 한다. 배터리 제어 장치에 복수의 배터리팩이 포함되는 경우, 복수의 배터리팩은 서로 병렬 연결 가능하게 설치될 수 있다. 그런데, 배터리 제어 장치에 포함된 복수의 배터리팩을 병렬 연결 시, 복수의 배터리팩 간의 전압 차이로 인하여 돌입 전류가 흐를 수 있다. 돌입 전류는, 배터리팩의 수명을 저하시킬 뿐만 아니라, 배터리팩 및 주변 회로에 심각한 물리적 손상을 야기할 수 있다.
본 발명은, 상기와 같은 문제점을 해결하기 위해 안출된 것으로서, 복수의 배터리팩을 병렬 연결 시에 돌입 전류로 인한 복수의 배터리팩 및 주변 회로를 물리적 손상으로부터 보호할 수 있는 배터리 제어 장치, 배터리 제어 방법 및 상기 배터리 제어 장치를 포함하는 에너지 저장 시스템을 제공하는 것을 목적으로 한다.
본 발명의 다른 목적 및 장점들은 하기의 설명에 의해서 이해될 수 있으며, 본 발명의 실시예에 의해 보다 분명하게 알게 될 것이다. 또한, 본 발명의 목적 및 장점들은 특허청구범위에 나타난 수단 및 그 조합에 의해 실현될 수 있음을 쉽게 알 수 있을 것이다.
본 발명의 일 측면에 따른 배터리 제어 장치는, 제1 단자와 제2 단자를 통해 전력 변환 시스템에 연결된다. 상기 배터리 제어 장치는, 제1 배터리팩; 제2 배터리팩; 상기 제1 단자와 상기 제2 단자 사이에서 상기 제1 배터리팩과 직렬 연결되는 제1 스위치; 상기 제1 단자와 상기 제2 단자 사이에서 상기 제2 배터리팩과 직렬 연결되는 제2 스위치; 및 상기 제1 스위치 및 상기 제2 스위치에 동작 가능하게 결합된 제어부를 포함한다. 상기 제어부는, 상기 제1 스위치 및 상기 제2 스위치가 모두 턴 오프되어 있는 제1 시점에서의 상기 제1 배터리팩과 상기 제2 배터리팩 간의 전압 차이가 임계 전압 미만인 경우, 상기 제1 배터리팩과 상기 제2 배터리팩이 서로 병렬 연결되도록 상기 제1 스위치 및 상기 제2 스위치를 모두 턴 온시키도록 구성된다.
상기 제어부는, 상기 제1 시점에서의 상기 제2 배터리팩의 전압이 상기 제1 배터리팩의 전압보다 상기 임계 전압 이상 높으면, 상기 제1 스위치를 턴 온시키도록 구성될 수 있다.
상기 제어부는, 상기 제1 시점 이후의 제2 시점에서의 상기 제1 배터리팩과 상기 제2 배터리팩의 SOC 차이가 임계 SOC 이상이면, 상기 제1 단자 및 상기 제2 단자 사이에 제1 정전력이 공급되도록 상기 전력 변환 시스템에게 제1 명령을 전송하도록 구성될 수 있다.
상기 제어부는, 상기 제2 시점에서 또는 상기 제2 시점 이후의 제3 시점에서의 상기 제1 배터리팩과 상기 제2 배터리팩의 SOC 차이가 상기 임계 SOC 미만이면, 상기 제1 단자 및 상기 제2 단자 사이에 제2 정전력이 공급되도록 상기 전력 변환 시스템에게 제2 명령을 전송하도록 구성될 수 있다. 상기 제2 정전력은 상기 제1 정전력보다 작다.
상기 제어부는, 상기 제3 시점 이후의 제4 시점에서의 상기 제1 배터리팩의 전압이 상기 제2 배터리팩의 전압 이상이고 상기 제1 배터리팩과 상기 제2 배터리팩의 전압 차이가 상기 임계 전압보다 작으면, 상기 제1 배터리팩과 상기 제2 배터리팩이 서로 병렬 연결되도록 상기 제2 스위치를 턴 온시키도록 구성될 수 있다.
상기 제어부는, 상기 제4 시점에서의 상기 제1 배터리팩의 전압이 상기 제2 배터리팩의 전압보다 낮으면, 상기 전력 변환 시스템에게 상기 제2 명령을 전송하도록 구성될 수 있다.
상기 제어부는, 상기 제4 시점에서의 상기 제1 배터리팩의 전압이 상기 제2 배터리팩의 전압보다 상기 임계 전압 이상 높으면, 상기 제2 정전력의 공급이 중단되도록 상기 전력 변환 시스템에게 제3 명령을 전송하도록 구성될 수 있다.
상기 제어부는, 상기 전력 변환 시스템이 상기 제3 명령에 응답하여 상기 제2 정전력의 공급을 중단한 시점으로부터 안정화 기간이 경과된 제5 시점에서의 상기 제1 배터리팩과 상기 제2 배터리팩의 전압 차이가 상기 임계 전압보다 작으면, 상기 제1 배터리팩과 상기 제2 배터리팩이 서로 병렬 연결되도록 상기 제2 스위치를 턴 온시키도록 구성될 수 있다.
상기 제어부는, 상기 제1 배터리팩의 전압 및 전류를 측정하도록 구성된 제1 슬레이브 컨트롤러; 상기 제2 배터리팩의 전압 및 전류를 측정하도록 구성된 제2 슬레이브 컨트롤러; 및 상기 제1 배터리팩 및 상기 제2 배터리팩 각각의 전압 및 전류를 기초로, 상기 제1 스위치 및 상기 제2 스위치 각각을 제어하도록 구성된 마스터 컨트롤러를 포함할 수 있다.
본 발명의 다른 측면에 따른 에너지 저장 시스템은, 상기 배터리 제어 장치; 및 상기 제1 단자 및 상기 제2 단자를 통해 상기 배터리 제어 장치에 연결 가능한 전력 변환 시스템을 포함한다.
본 발명의 또 다른 측면에 따른 배터리 제어 방법은, 전력 변환 시스템의 제1 단자와 제2 단자 사이에서 제1 스위치와 직렬 연결되는 제1 배터리팩 및 상기 제1 단자와 상기 제2 단자 사이에서 제2 스위치와 직렬 연결되는 제2 배터리팩을 병렬 연결하기 위한 것이다. 상기 배터리 제어 방법은, 상기 제1 스위치 및 상기 제2 스위치가 모두 턴 오프되어 있는 제1 시점에서의 상기 제1 배터리팩과 상기 제2 배터리팩 간의 전압 차이가 임계 전압 미만인지 여부를 판정하는 단계; 상기 제1 시점에서의 상기 제1 배터리팩과 상기 제2 배터리팩 간의 전압 차이가 상기 임계 전압 미만인 경우, 상기 제1 배터리팩과 상기 제2 배터리팩이 서로 병렬 연결되도록 상기 제1 스위치 및 상기 제2 스위치를 모두 턴 온시키는 단계; 상기 제1 시점에서의 상기 제2 배터리팩의 전압이 상기 제1 배터리팩의 전압보다 상기 임계 전압 이상 높으면, 상기 제1 스위치를 턴 온시키는 단계; 및 상기 제1 시점 이후의 제2 시점에서의 상기 제1 배터리팩과 상기 제2 배터리팩의 SOC 차이가 임계 SOC 이상이면, 상기 제1 단자와 상기 제2 단자 사이에 제1 정전력이 공급되도록 제1 명령을 상기 전력 변환 시스템에게 전송하는 단계를 포함한다.
상기 배터리 제어 방법은, 상기 제2 시점에서 또는 상기 제2 시점 이후의 제3 시점에서의 상기 제1 배터리팩과 상기 제2 배터리팩의 SOC 차이가 상기 임계 SOC 미만이면, 상기 제1 단자와 상기 제2 단자 사이에 제2 정전력이 공급되도록 제2 명령을 상기 전력 변환 시스템에게 전송하는 단계를 더 포함할 수 있다. 상기 제2 정전력은 상기 제1 정전력보다 작다.
본 발명의 실시예들 중 적어도 하나에 의하면, 복수의 배터리팩을 병렬 연결 시에 돌입 전류로 인한 복수의 배터리팩 및 주변 회로를 물리적 손상으로부터 보호할 수 있다.
또한, 본 발명의 실시예들 중 적어도 하나에 의하면, 복수의 배터리팩을 병렬 연결하기 전에, 복수의 배터리팩 간의 전압 차이를 저감하기 위해 상대적으로 전압이 낮은 배터리팩을 충전함으로써, 상대적으로 전압이 높은 배터리팩을 방전시키는 방식에 비하여 불필요한 에너지 소모를 줄일 수 있다.
또한, 본 발명의 실시예들 중 적어도 하나에 의하면, 충전 중인 배터리팩의 내부 저항(internal resistance)에 의한 전압 강하를 고려하여 다른 배터리팩을 병렬 연결함으로써, 복수의 배터리팩을 병렬 연결 시에 흐를 수 있는 돌입 전류의 크기를 줄일 수 있다.
본 발명의 효과들은 이상에서 언급한 효과들로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 청구범위의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 후술되는 발명의 상세한 설명과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.
도 1은 본 발명의 일 실시예에 따른 에너지 저장 시스템의 구성을 예시적으로 나타낸 도면이다.
도 2 내지 도 4는 도 1의 제1 배터리팩과 제2 배터리팩을 병렬 연결하기 위하여 실행될 수 있는 동작들을 설명하는 데에 참조되는 도면들이다.
도 5 및 도 6은 본 발명의 다른 실시예에 따라 제1 배터리팩과 제2 배터리팩을 병렬 연결하는 방법을 보여주는 순서도이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야 한다.
따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
또한, 본 발명을 설명함에 있어 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.
제1, 제2 등과 같이 서수를 포함하는 용어들은, 다양한 구성요소들 중 어느 하나를 나머지와 구별하는 목적으로 사용되는 것이고, 그러한 용어들에 의해 구성요소들을 한정하기 위해 사용되는 것은 아니다.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라, 다른 구성요소를 더 포함할 수 있다는 것을 의미한다. 또한, 명세서에 기재된 <제어 유닛>과 같은 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어나 소프트웨어, 또는 하드웨어 및 소프트웨어의 결합으로 구현될 수 있다.
덧붙여, 명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐만 아니라, 그 중간에 다른 소자를 사이에 두고 "간접적으로 연결"되어 있는 경우도 포함한다.
도 1은 본 발명의 일 실시예에 따른 에너지 저장 시스템(30)의 구성을 예시적으로 나타낸 도면이다.
도 1을 참조하면, 에너지 저장 시스템(10)은, 배터리 제어 장치(20) 및 전력 변환 시스템(30)을 포함한다. 배터리 관리 장치(20)는, 제1 단자(P+)와 제2 단자(P-)를 통해 전력 변환 시스템(30)에 전기적으로 연결 가능하다. 배터리 제어 장치(20)는, 제1 배터리팩(110), 제2 배터리팩(120), 제1 스위치(SW1), 제2 스위치(SW2) 및 제어부(200)을 포함한다.
제1 배터리팩(110)은, 적어도 하나의 배터리 셀을 포함한다. 제2 배터리팩(120)은, 적어도 하나의 배터리 셀을 포함한다. 제1 배터리팩(110)과 제2 배터리팩(120)에 포함된 각 배터리 셀은, 예컨대 리튬 이온 전지, 리튬 폴리머 전지, 니켈 카드뮴 전지, 니켈 수소 전지 또는 니켈 아연 전지와 같이 재충전 가능한 배터리일 수 있다. 제1 배터리팩(110)과 제2 배터리팩(120)은, 서로 동일한 정격 전압, 정격 전류 및 설계 용량을 가지도록 제조된 것일 수 있다. 단, 제1 배터리팩(110)과 제2 배터리팩(120)은 각각의 충방전 횟수 등에 따라 SOH(State Of Health) 등이 서로 달라질 수 있다.
제1 스위치(SW1)는, 제1 단자(P+)와 제2 단자(P-) 사이에서 제1 배터리팩(110)과 직렬 연결된다. 예컨대, 도 1에 도시된 바와 같이, 제1 스위치(SW1)의 일단은 제1 배터리팩(110)의 양극 단자에 연결되고 제1 스위치(SW1)의 타단은 제1 단자(P+)에 연결되며, 제1 배터리팩(110)의 음극 단자는 제2 단자(P-)에 연결된다. 제1 스위치(SW1)가 턴 온되면, 제1 배터리팩(110)은 제1 스위치(SW1)를 통해 제1 단자(P+)와 제2 단자(P-) 사이에 전기적으로 연결된다. 제1 스위치(SW1)가 턴 오프되면, 제1 배터리팩(110)은 제1 단자(P+) 및 제2 단자(P-) 중 적어도 하나로부터 전기적으로 분리된다.
제2 스위치(SW2)는, 제1 단자(P+)와 제2 단자(P-) 사이에서 제2 배터리팩(120)과 직렬 연결된다. 예컨대, 도 1에 도시된 바와 같이, 제2 스위치(SW2)의 일단은 제2 배터리팩(120)의 양극 단자에 연결되고 제2 스위치(SW2)의 타단은 제1 단자(P+)에 연결되며, 제2 배터리팩(120)의 음극 단자는 제2 단자(P-)에 연결된다. 제2 스위치(SW2)가 턴 온되면, 제2 배터리팩(120)은 제2 스위치(SW2)를 통해 제1 단자(P+)와 제2 단자(P-) 사이에 전기적으로 연결된다. 제2 스위치(SW2)가 턴 오프되면, 제2 배터리팩(120)은 제1 단자(P+) 및 제2 단자(P-) 중 적어도 하나로부터 전기적으로 분리된다.
제1 스위치(SW1) 및 제2 스위치(SW2) 각각은, 예컨대 릴레이나 전계효과 트랜지스터(FET: Field Effect Transistor) 등과 같은 공지의 스위칭 소자들 중 어느 하나 또는 둘 이상을 조합함으로써 구현될 수 있다.
제어부(200)는, 제1 배터리팩(110) 및 제2 배터리팩(120)의 상태를 개별적으로 모니터링하도록 구성된다. 제어부(200)는, 제1 스위치(SW1) 및 제2 스위치(SW2)를 개별적으로 제어하도록 구성된다. 제어부(200)는, 제1 슬레이브 컨트롤러(310), 제2 슬레이브 컨트롤러(320) 및 마스터 컨트롤러(400)를 포함할 수 있다.
제1 슬레이브 컨트롤러(310)는, 제1 배터리팩(110)의 동작 상태를 주기적으로 모니러팅하도록 구성된 것으로서, 전압 센서, 전류 센서 및 프로세서를 포함한다. 제1 슬레이브 컨트롤러(310)의 전압 센서는, 제1 배터리팩(110)의 전압을 측정하도록 구성된다. 제1 슬레이브 컨트롤러(310)의 전류 센서는, 제1 배터리팩(110)을 통해 흐르는 전류를 측정하도록 구성된다. 제1 슬레이브 컨트롤러(310)는, 제1 배터리팩(110)의 전압 및 전류 중 적어도 하나를 기초로, 제1 배터리팩(110)의 충전 상태(SOC: State Of Charge)를 산출하도록 구성된다. 제1 슬레이브 컨트롤러(310)는, 제1 배터리팩(110)의 전압 및 SOC 중 적어도 하나를 나타내는 제1 데이터를 주기적으로 마스터 컨트롤러(400)에게 전송하도록 구성된다.
제2 슬레이브 컨트롤러(320)는, 제2 배터리팩(120)의 동작 상태를 주기적으로 모니러팅하도록 구성된 것으로서, 전압 센서, 전류 센서 및 프로세서를 포함한다. 제2 슬레이브 컨트롤러(320)의 전압 센서는, 제2 배터리팩(120)의 전압을 측정하도록 구성된다. 제2 슬레이브 컨트롤러(320)의 전류 센서는, 제2 배터리팩(120)을 통해 흐르는 전류를 측정하도록 구성된다. 제2 슬레이브 컨트롤러(320)는, 제2 배터리팩(120)의 전압 및 전류 중 적어도 하나를 기초로, 제2 배터리팩(120)의 SOC를 산출하도록 구성된다. 제2 슬레이브 컨트롤러(320)는, 제2 배터리팩(120)의 전압 및 SOC 중 적어도 하나를 나타내는 제2 데이터를 주기적으로 마스터 컨트롤러(400)에게 전송하도록 구성된다.
SOC를 산출하는 데에는 공지의 다양한 알고리즘이 활용될 수 있다. 예컨대, 전류 적산법(ampere counting), 등가 회로 모델(equivalent circuit model) 또는 칼만 필터 등을 활용하여, 각 배터리팩의 전압 및 전류를 기초로 SOC가 산출될 수 있다.
전압 센서와 전류 센서는 공지된 부품으로 구현될 수 있다. 전압센서는 배터리 팩의 양극과 음극에 연결되어 전압차에 해당하는 전기 신호를 프로세서로 출력한다. 전류센서는 배터리 팩의 충전 전류 또는 방전 전류의 크기에 해당하는 전기 신호를 프로세서로 출력한다. 전압센서는 차동 증폭 회로를 포함하고, 전류 센서는 센스 저항 또는 홀 센서를 포함한다.
마스터 컨트롤러(400)는, 제1 슬레이브 컨트롤러(310), 제2 슬레이브 컨트롤러(320), 제1 스위치(SW1), 제2 스위치(SW2) 및 전력 변환 시스템(30)에 동작 가능하게 결합된다. 마스터 컨트롤러(400)는, 제1 배터리팩(110)과 제2 배터리팩(120) 간의 전압 차이 및 SOC 차이를 산출하도록 구성된다. 또한, 마스터 컨트롤러(400)는, 제1 배터리팩(110) 및 제2 배터리팩(120) 간의 병렬 연결을 위하여 미리 저장된 소프트웨어를 실행하여, 제1 스위치(SW1) 및 제2 스위치(SW2)를 개별적으로 턴 온 또는 턴 오프시킬 수 있다. 또한, 마스터 컨트롤러(400)는, 제1 배터리팩(110) 및 제2 배터리팩(120) 중 적어도 하나를 충전하기 위해, 제1 단자(P+)와 제2 단자(P-) 사이에 제1 정전력 및 제2 정전력 중 어느 하나를 공급하거나 공급을 중단할 것을 전력 변환 시스템(30)에게 명령할 수 있다.
제1 슬레이브 컨트롤러(310), 제2 슬레이브 컨트롤러(320) 및 마스터 컨트롤러(400) 각각은, 하드웨어적으로 ASICs(application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 마이크로 프로세서(microprocessors), 기타 기능 수행을 위한 전기적 유닛 중 적어도 하나를 포함하도록 구현될 수 있다.
제1 슬레이브 컨트롤러(310), 제2 슬레이브 컨트롤러(320) 및 마스터 컨트롤러(400) 중 적어도 하나의 프로세서에는 메모리 디바이스가 내장될 수 있으며, 메모리 디바이스로는 예컨대 RAM, ROM, 레지스터, 하드디스크, 광기록 매체 또는 자기기록 매체가 이용될 수 있다. 메모리 디바이스는, 제1 슬레이브 컨트롤러(310), 제2 슬레이브 컨트롤러(320) 및 마스터 컨트롤러(400) 중 적어도 하나에 의해 실행되는 각종 제어 로직을 포함하는 프로그램, 및/또는 상기 제어 로직이 실행될 때 발생되는 데이터를 저장, 갱신 및/또는 소거할 수 있다.
제1 슬레이브 컨트롤러(310), 제2 슬레이브 컨트롤러(320) 및 마스터 컨트롤러(400)는 통신 인터페이스를 구비한다. 통신 인터페이스는 CAN 통신을 지원하는 CAN 통신 모뎀일 수 있다. 마스터 컨트롤러(400)는 통신 인터페이스를 통해 제1 슬레이브 컨트롤러(310) 및 제2 슬레이브 컨트롤러(320)와 개별적으로 데이터를 주고 받는다.
전력 변환 시스템(30)은, 제어부(200)에 동작 가능하게 결합된다. 전력 변환 시스템(30)은, 계통 및 부하 중 적어도 하나에 전기적으로 연결될 수 있다. 전력 변환 시스템(30)은, 계통 또는 배터리 제어 장치(20)로부터 공급되는 전력을 변환한 다음 부하에게 공급할 수 있다. 전력 변환 시스템(30)은, 제어부(200)로부터의 명령에 응답하여, 계통으로부터의 입력 전력을 이용하여 상기 명령에 대응하는 크기의 정전력을 생성하고, 생성된 정전력을 제1 단자(P+)와 제2 단자(P-) 사이에 선택적으로 공급하도록 구성된다.
도 2 내지 도 4는 도 1의 제1 배터리팩(110)과 제2 배터리팩(120)을 병렬 연결하기 위하여 실행될 수 있는 동작들을 설명하는 데에 참조되는 도면들이다.
먼저, 도 2는 제1 스위치(SW1)와 제2 스위치(SW2)가 모두 턴 오프되어 있는 시점에서의 모습을 보여준다. 도 2를 참조하면, 제1 스위치(SW1)가 턴 오프 시 제1 배터리팩(110)은 제1 단자(P+) 및 제2 단자(P-) 중 적어도 하나로부터 전기적으로 분리되고, 제2 스위치(SW2)가 턴 오프 시 제2 배터리팩(120) 역시 제1 단자(P+) 및 제2 단자(P-) 중 적어도 하나로부터 전기적으로 분리된다. 제어부(200)는, 제1 배터리팩(110)의 전압과 제2 배터리팩(120)의 전압을 각각 측정하고, 제1 배터리팩(110)과 제2 배터리팩(120) 간의 전압 차이를 산출한다. 그 다음, 제어부(200)는, 제1 배터리팩(110)과 제2 배터리팩(120) 간의 전압 차이를 제1 임계 전압과 비교한다. 제1 임계 전압은, 예컨대 2.5V와 같이 미리 정해진 것일 수 있다. 또는, 제어부(200)는, 제1 배터리팩(110)의 SOH(State Of Health) 및 제2 배터리팩(120)의 SOH를 기초로, 제1 임계 전압을 산출할 수도 있다. 즉, 제1 임계 전압은, 미리 정해진 것이라기 보다는 제1 배터리팩(110)의 SOH 및 제2 배터리팩(120)의 SOH에 의존하여 변화하는 것일 수 있다. 제1 배터리팩(110)의 SOH 및 제2 배터리팩(120)의 SOH 중 적어도 하나에 따라 제1 임계 전압을 룩업할 수 있는 룩업 테이블이 마스터 컨트롤러(400)의 메모리 디바이스에 저장되어 마스터 컨트롤러(400)에 의해 참조될 수 있다.
SOH는 마스터 컨트롤러(400)가 제1 배터리 팩(110) 및 제2 배터리 팩(120)의 충방전 사이클 횟수를 카운팅하여 산출할 수 있다. 충방전 사이클 횟수는 제1 배터리 팩(110) 및 제2 배터리 팩(120)의 전압 변화로부터 계산될 수 있다. 즉, 배터리 팩의 전압이 특정한 전압 범위에서 충전 또는 방전되는 이벤트가 생기면 충방전 사이클 횟수를 1 증가시키고, 배터리 팩의 SOH 하한에 해당하는 기준 충방전 사이클 횟수와 현재의 충방전 사이클 횟수의 비율을 계산하여 SOH를 산출할 수 있다.
도 3은 제1 스위치(SW1)와 제2 스위치(SW2)가 모두 턴 온되어 있는 시점에서의 모습을 보여준다. 제어부(200)는, 제1 스위치(SW1)와 제2 스위치(SW2)가 모두 턴 오프되어 있는 시점에서의 제1 배터리팩(110)과 제2 배터리팩(120) 간의 전압 차이가 제1 임계 전압 미만이면, 제1 스위치(SW1)와 제2 스위치(SW2)를 모두 턴 온시킨다. 그 이유는, 제1 임계 전압 미만인 제1 배터리팩(110)과 제2 배터리팩(120) 간의 전압 차이는, 배터리 제어 장치(20)에게 물리적인 손상을 끼칠만한 크기를 가지는 돌입 전류를 발생시키지 않기 때문이다.
도 4는 제1 스위치(SW1)는 턴 온되어 있고 제2 스위치(SW2)는 턴 오프되어 있는 시점에서의 모습을 보여준다. 제어부(200)는, 제1 스위치(SW1)와 제2 스위치(SW2)가 모두 턴 오프되어 있는 시점에서의 제2 배터리팩(120)의 전압이 제1 배터리팩(110)의 전압보다 제1 임계 전압 이상 높으면, 제2 배터리팩(120)에 직렬 연결되는 제2 스위치(SW2)를 턴 오프시킨 채로 제1 배터리팩(110)에 직렬 연결되는 제1 스위치(SW1)는 턴 온시킨다. 이에 따라, 제1 배터리팩(110)은 턴 온된 제1 스위치(SW1)를 통해 제1 단자(P+)와 제2 단자(P-)에 전기적으로 연결되고, 전력 변환 시스템(30)에 의해 공급되는 정전력으로 충전 가능하게 된다. 제어부(200)는, 제1 스위치(SW1)는 턴 온되어 있고 제2 스위치(SW2)는 턴 오프되어 있는 시점에서의 제1 배터리팩(110)과 제2 배터리팩(120)의 SOC 차이가 임계 SOC 이상인 경우, 제1 명령을 전력 변환 시스템(30)에게 전송한다. 반면, 제어부(200)는, 제1 스위치(SW1)는 턴 온되어 있고 제2 스위치(SW2)는 턴 오프되어 있는 시점에서의 제1 배터리팩(110)과 제2 배터리팩(120)의 SOC 차이가 임계 SOC 미만인 경우, 제2 명령을 전력 변환 시스템(30)에게 전송한다. 제1 명령은, 제1 단자(P+)와 제2 단자(P-) 사이에 제1 정전력을 공급할 것을 전력 변환 시스템(30)에게 요청하기 위한 것이다. 즉, 전력 변환 시스템(30)은, 제1 명령에 응답하여, 제1 단자(P+)와 제2 단자(P-) 사이에 제1 정전력을 공급할 수 있다. 제2 명령은, 제1 단자(P+)와 제2 단자(P-) 사이에 제1 정전력보다 작은 제2 정전력을 공급할 것을 전력 변환 시스템(30)에게 요청하기 위한 것이다. 즉, 전력 변환 시스템(30)은, 제2 명령에 응답하여, 제1 단자(P+)와 제2 단자(P-) 사이에 제2 정전력을 공급할 수 있다. 예컨대, 제1 배터리팩(110)의 SOC가 제2 배터리팩(120)의 SOC보다 임계 SOC 이상 작으면 제1 배터리팩(110)은 제1 정전력으로 충전되다가, 제1 배터리팩(110)의 SOC와 임계 SOC의 합이 제2 배터리팩(120)의 SOC와 동일해지는 시점부터 제1 배터리팩(110)은 제2 정전력으로 충전된다. 임계 SOC는, 미리 정해진 것일 수 있다. 또는, 제어부(200)는, 제1 배터리팩(110)의 SOH 및 제2 배터리팩(120)의 SOH를 기초로, 임계 SOC를 산출할 수도 있다. 즉, 임계 SOC는, 미리 정해진 것이라기 보다는 제1 배터리팩(110)의 SOH 및 제2 배터리팩(120)의 SOH에 의존하여 변화하는 것일 수 있다. 일 예로, 제어부(200)는 제1 배터리팩(110)의 SOH 및 제2 배터리팩(120)의 SOH에 대한 평균값, 최대값 또는 최소값에 따라 임계 SOC를 정의한 룩업 테이블을 참조하여 제1 배터리팩(110)의 SOH 및 제2 배터리팩(120)의 SOH 중 적어도 하나에 대응되는 임계 SOC를 결정할 수 있다. 제1 및 제2 배터리 팩(110, 120) 중 적어도 하나의 SOH로부터 임계 SOC를 결정하기 위해 제1 및 제2 배터리 팩(110, 120) 중 적어도 하나의 SOH에 의해 임계 SOC를 룩업할 수 있는 룩업 테이블이 마스터 컨트롤러(400)의 메모리 디바이스에 저장되어 마스터 컨트롤러(400)에 의해 참조될 수 있다.
제어부(200)는, 제1 배터리팩(110)이 제2 정전력으로 충전 중, 제1 배터리팩(110)과 제2 배터리팩(120)의 전압 차이를 주기적으로 산출할 수 있다. 만약, 제1 배터리팩(110)이 제2 정전력으로 충전 중에 제1 배터리팩(110)의 전압이 제2 배터리팩(120)의 전압보다 작으면, 제어부(200)는 제1 스위치(SW1)를 계속 턴 온시키고 제2 스위치(SW2)는 계속 턴 오프시킬 수 있다.
만약, 제1 배터리팩(110)이 제2 정전력으로 충전 중에 제1 배터리팩(110)의 전압이 제2 배터리팩(120)의 전압 이상이고 제1 배터리팩(110)과 제2 배터리팩(120) 간의 전압 차이가 제2 임계 전압보다 작아지면, 제어부(200)는 도 3에 도시된 것처럼 제2 스위치(SW2)를 턴 온시킬 수 있다. 또는, 제1 배터리팩(110)이 제2 정전력으로 충전 중에 제1 배터리팩(110)의 전압이 제2 배터리팩(120)의 전압 이상이고 제1 배터리팩(110)과 제2 배터리팩(120) 간의 전압 차이가 제2 임계 전압과 동일해지면, 제어부(200)는 도 3에 도시된 것처럼 제2 스위치(SW2)를 턴 온시킬 수도 있다. 제2 임계 전압은, 각 배터리팩의 내부 저항 및 충전 전류에 의한 전압 강하(voltage drop)에 대응한다. 제2 임계 전압은, 제1 임계 전압과 같거나 높게 또는 낮게 미리 정해진 것일 수 있다. 또는, 제어부(400)는, 제2 정전력으로 충전 중인 어느 한 배터리팩(110 또는 120)의 SOH를 기초로, 제2 임계 전압을 결정할 수도 있다. 제2 정전력으로 충전 중인 어느 한 배터리팩의 SOH가 낮을수록 제어부(400)에 의해 결정되는 제2 임계 전압은 높을 수 있다. 예컨대, 제2 정전력으로 충전 중인 어느 한 배터리팩의 SOH가 98%이면 제2 임계 전압은 3V로 결정되고, SOH가 96%이면 제2 임계 전압은 3.3V로 결정될 수 있다. 제2 정전력으로 충전 중인 어느 한 배터리팩의 SOH에 따라 제2 임계 전압을 룩업할 수 있는 룩업 테이블이 마스터 컨트롤러(400)의 메모리 디바이스에 저장되어 마스터 컨트롤러(400)에 의해 참조될 수 있다.
만약, 제1 배터리팩(110)이 제2 정전력으로 충전 중에 제1 배터리팩(110)의 전압이 제2 배터리팩(120)의 전압보다 제2 임계 전압 이상 높아지면, 제어부(200)는 전력 변환 시스템(30)에게 제3 명령을 전송하거나 제2 명령의 전송을 중단할 수 있다. 즉, 제3 명령은, 제1 배터리팩(110) 및 제2 배터리팩(120) 중 어느 하나가 제2 정전력으로 충전 중에 제1 배터리팩(110)과 제2 배터리팩(120) 간의 전압 차이가 제2 임계 전압과 같거나 더 커지는 경우에 제어부(400)로부터 출력될 수 있다. 전력 변환 시스템(30)은, 제2 정전력을 공급하는 중에 제어부(200)로부터 제3 명령이 전송되거나 제2 명령의 전송이 중단되는 경우, 제2 정전력의 공급을 중단하도록 구성될 수 있다.
제어부(200)는, 전력 변환 시스템(30)이 제2 정전력의 공급을 중단한 시점으로부터 미리 정해진 안정화 기간이 경과된 시점에 제1 배터리팩(110)과 제2 배터리팩(120) 간의 전압 차이가 제1 임계 전압 미만인지 여부를 판정할 수 있다. 안정화 기간은, 각 배터리팩이 제2 정전력으로 충전되는 중에 발생하게 되는 분극을 제거하기 위한 기간이다. 만약, 안정화 기간이 경과된 시점에서의 제1 배터리팩(110)과 제2 배터리팩(120) 간의 전압 차이가 제1 임계 전압 미만이면, 제어부(200)는 제2 스위치(SW2)도 턴 온시킨다. 이에 따라, 제1 배터리팩(110)과 제2 배터리팩(120)이 제1 단자(P+)와 제2 단자(P-) 사이에서 서로 병렬 연결된다. 반면, 안정화 기간이 경과된 시점에서의 제1 배터리팩(110)과 제2 배터리팩(120) 간의 전압 차이가 제1 임계 전압 이상이면, 제어부(200)는 제1 스위치(SW1)까지 턴 오프시킨다. 이에 따라, 제1 배터리팩(110)과 제2 배터리팩(120)은 모두 제1 단자(P+) 및 제2 단자(P-) 중 적어도 하나로부터 전기적으로 분리된다.
도 5 및 도 6은 본 발명의 다른 실시예에 따라 제1 배터리팩(110)과 제2 배터리팩(120)을 병렬 연결하는 방법을 보여주는 순서도이다. 도 5에 도시된 방법은, 제1 스위치(SW1) 및 제2 스위치(SW2)가 모두 턴 오프되어 있을 때에 개시된다. 설명의 편의를 위해, 도 5에 도시된 방법이 개시되는 시점에서 제1 배터리팩(110)의 전압이 제2 배터리팩(120)의 전압보다 낮은 것으로 가정한다.
도 1 내지 도 6을 참조하면, 단계 S500에서, 제어부(200)는 제1 배터리팩(110)과 제2 배터리팩(120) 간의 전압 차이가 제1 임계 전압 미만인지 여부를 판정한다. 일 예로, 제1 배터리팩(110)의 전압이 200V이고, 제2 배터리팩(120)의 전압이 202V이며, 제1 임계 전압이 2.5V인 경우, 단계 S500의 값은 "Yes"가 된다. 다른 예로, 제1 배터리팩(110)의 전압이 200V이고, 제2 배터리팩(120)의 전압이 205V이며, 제1 임계 전압이 2.5V인 경우, 단계 S500의 값은 "No"가 된다. 단계 S500의 값이 "Yes"이면 단계 S510이 진행된다. 단계 S500의 값이 "No"이면 단계 S520이 진행된다.
단계 S510에서, 제어부(200)는, 제1 스위치(SW1) 및 제2 스위치(SW2)를 모두 턴 온시킨다. 이는, 제1 배터리팩(110)과 제2 배터리팩(120)을 서로 전기적으로 병렬 연결하기 위함이다.
단계 S520에서, 제어부(200)는, 제1 스위치(SW1)를 턴 온시킨다. 즉, 제2 배터리팩(120)의 전압이 제1 배터리팩(110)의 전압보다 임계 전압 이상 높으면, 제1 스위치(SW1)가 턴 온된다. 이때, 제2 스위치(SW2)는 턴 오프된 채로 유지된다. 이에 따라, 제1 배터리팩(110)은 제1 단자(P+)와 제2 단자(P-) 사이에 공급되는 전력으로 충전 가능한 상태가 된다.
단계 S530에서, 제어부(200)는, 제1 배터리팩(110)과 제2 배터리팩(120) 간의 SOC 차이가 임계 SOC 미만인지 여부를 판정한다. 일 예로, 제1 배터리팩(110)의 SOC는 66%이고, 제2 배터리팩(120)의 SOC는 75%이며, 임계 SOC는 8%인 경우, SOC 차이는 9%이므로, 단계 S530의 값은 "No"가 된다. 다른 예로, 제1 배터리팩(110)의 SOC는 70%이고, 제2 배터리팩(120)의 SOC는 75%이며, 임계 SOC는 8%인 경우, SOC 차이는 5%이므로 단계 S530의 값은 "Yes"가 된다. 단계 S530의 값이 "No"이면 단계 S540이 진행된다. 단계 530의 값이 "Yes"이면 단계 S550이 진행된다.
단계 S540에서, 제어부(200)는, 전력 변환 시스템(30)에게 제1 명령을 전송한다. 전력 변환 시스템(30)은, 제1 명령에 응답하여, 제1 단자(P+)와 제2 단자(P-) 사이에 제1 정전력을 공급한다. 이에 따라, 제1 배터리팩(110)은 제1 정전력으로 충전될 수 있다. 제1 정전력은, 미리 정해진 최대 전력의 제1 비율에 대응할 수 있다. 제1 비율은, 0보다 크고 1보다 작을 수 있다. 예컨대, 최대 전력은 1000W이고 제1 비율이 0.5인 경우, 제1 정전력은 500W이다. 500W의 제1 정전력이 공급되는 어느 시점에서의 제1 배터리팩(110)의 전압이 300V인 경우, 5/3A의 충전 전류가 제1 배터리팩(110)으로 흘러들어감에 따라 제1 배터리팩(110)이 충전될 수 있다.
단계 S550에서, 제어부(200)는, 전력 변환 시스템(30)에게 제2 명령을 전송한다. 전력 변환 시스템(30)은, 제2 명령에 응답하여, 제1 단자(P+)와 제2 단자(P-) 사이에 제2 정전력을 공급한다. 이에 따라, 제1 배터리팩(110)은 제2 정전력으로 충전될 수 있다. 제2 정전력은, 미리 정해진 최대 전력의 제2 비율에 대응할 수 있다. 제2 비율은, 0보다 크고 1보다 작을 수 있다. 예컨대, 최대 전력은 1000W이고 제2 비율이 제1 비율보다 작은 0.1인 경우, 제2 정전력은 100W이다. 100W의 제2 정전력이 공급되는 어느 시점에서의 제1 배터리팩(110)의 전압이 300V인 경우, 1/3A의 충전 전류가 제1 배터리팩(110)으로 흘러들어감에 따라 제1 배터리팩(110)이 충전될 수 있다. 따라서, 당업자라면 제2 정전력이 공급되는 경우, 제1 정전력이 공급되는 경우보다 제1 배터리팩(110)이 상대적으로 느리게 충전될 것이며, 충전 전류에 의한 전한 강하는 줄어들게 된다는 것을 쉽게 이해할 수 있을 것이다.
단계 S560에서, 제어부(200)는 제1 배터리팩(110)의 전압이 제2 배터리팩(120)의 전압보다 낮은지 여부를 판정한다. 단계 S560의 값이 "Yes"이면 단계 S550이 진행된다. 단계 S560의 값이 "No"이면 단계 S570이 진행된다.
단계 S570에서, 제어부(200)는 제1 배터리팩(110)과 제2 배터리팩(120)의 전압 차이가 제2 임계 전압보다 큰지 여부를 판정한다. 단계 S570의 값이 "No"이면 단계 S580이 진행된다. 단계 S570의 값이 "Yes"이면 단계 S600이 진행된다.
단계 S580에서, 제어부(200)는 제2 스위치(SW2)를 턴 온시킨다. 제1 스위치(SW1)는 단계 S520에서부터 이미 턴 온되어 있으므로, 단계 S580에 의해 제2 스위치(SW2)까지 턴 온되는 시점부터 제1 배터리팩(110)과 제2 배터리팩(120)은 제1 단자(P+)와 제2 단자(P-) 사이에서 서로 병렬 연결된다.
단계 S600에서, 제어부(200)는 전력 변환 시스템(30)에게 제3 명령을 전송한다. 전력 변환 시스템은, 제3 명령에 응답하여, 제2 정전력의 공급을 중단한다. 단계 S570의 값이 "Yes"이라는 것은, 제2 정전력이 공급된 기간에 비하여 제1 배터리팩(110)의 전압이 과도하게 빠르게 높아졌음을 나타낸다. 이는, 제1 배터리팩(110)의 전압이 실제로 급격히 높아졌거나 제1 배터리팩(110)의 전압이 잘못 측정되었을 가능성이 높은 상황이다. 따라서, 제어부(200)는, 제1 배터리팩(110)의 충전을 일시적으로 중단시키기 위해 제3 명령을 전송할 수 있다.
단계 S610에서, 제어부(200)는 제3 명령이 전송된 시점으로부터 안정화 기간이 경과되었는지 여부를 판정한다. 안정화 기간 동안, 제1 배터리팩(110)의 전압은 제1 배터리팩(110)의 SOC에 대응하는 개방 전압을 향하여 점차적으로 낮아지게 된다. 단계 S610의 값이 "Yes"이면 단계 S620이 진행된다.
단계 S620에서, 제어부(200)는 제1 배터리팩(110)과 제2 배터리팩(120) 간의 전압 차이가 제1 임계 전압 미만인지 여부를 판정한다. 단계 S620의 값이 "Yes"이면 단계 S580이 진행된다. 단계 S620의 값이 "No"이면 단계 S630이 진행된다.
단계 S630에서, 제어부(200)는 제1 스위치(SW1)를 턴 오프시킨다. 이에 따라, 제1 배터리팩(110) 역시 제1 단자(P+) 및 제2 단자(P-) 중 적어도 하나로부터 전기적으로 분리된다. 단계 S630이 실행된 시점 후에 단계 S500이 자동 재실행될 수 있다.
도 1 내지 도 6을 참조하여 설명된 배터리 제어 장치(20)는, 복수의 배터리팩을 병렬 연결 시에 돌입 전류로 인한 복수의 배터리팩 및 주변 회로를 물리적 손상으로부터 보호할 수 있다. 또한, 배터리 제어 장치(20)는, 복수의 배터리팩을 병렬 연결하기 전에, 복수의 배터리팩 간의 전압 차이를 저감하기 위해 상대적으로 전압이 낮은 배터리팩을 충전함으로써, 상대적으로 전압이 높은 배터리팩을 방전시키는 방식에 비하여 불필요한 에너지 소모를 줄일 수 있다. 또한, 배터리 제어 장치(20)는, 충전 중인 배터리팩의 내부 저항(internal resistance)에 의한 전압 강하를 고려하여 다른 배터리팩을 병렬 연결함으로써, 복수의 배터리팩을 병렬 연결 시에 흐를 수 있는 돌입 전류의 크기를 줄일 수 있다.
이상에서 설명한 본 발명의 실시예는 장치 및 방법을 통해서만 구현이 되는 것은 아니며, 본 발명의 실시예의 구성에 대응하는 기능을 실현하는 프로그램 또는 그 프로그램이 기록된 기록 매체를 통해 구현될 수도 있으며, 이러한 구현은 앞서 설명한 실시예의 기재로부터 본 발명이 속하는 기술분야의 전문가라면 쉽게 구현할 수 있는 것이다.
이상에서 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.
또한, 이상에서 설명한 본 발명은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 있어 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능하므로 전술한 실시예 및 첨부된 도면에 의해 한정되는 것이 아니라, 다양한 변형이 이루어질 수 있도록 각 실시예들의 전부 또는 일부가 선택적으로 조합되어 구성될 수 있다.
<부호의 설명>
10: 에너지 저장 시스템
20: 배터리 제어 장치
30: 전력 변환 시스템
110: 제1 배터리팩
120: 제2 배터리팩
SW1: 제1 스위치
SW2: 제2 스위치
200: 제어부
310: 제1 슬레이브 컨트롤러
320: 제2 슬레이브 컨트롤러
400: 마스터 컨트롤러

Claims (12)

  1. 제1 단자와 제2 단자를 통해 전력 변환 시스템에 연결 가능한 배터리 제어 장치에 있어서,
    제1 배터리팩;
    제2 배터리팩;
    상기 제1 단자와 상기 제2 단자 사이에서 상기 제1 배터리팩과 직렬 연결되는 제1 스위치;
    상기 제1 단자와 상기 제2 단자 사이에서 상기 제2 배터리팩과 직렬 연결되는 제2 스위치; 및
    상기 제1 스위치 및 상기 제2 스위치에 동작 가능하게 결합된 제어부를 포함하되,
    상기 제어부는,
    상기 제1 스위치 및 상기 제2 스위치가 모두 턴 오프되어 있는 제1 시점에서의 상기 제1 배터리팩과 상기 제2 배터리팩 간의 전압 차이가 임계 전압 미만인 경우, 상기 제1 배터리팩과 상기 제2 배터리팩이 서로 병렬 연결되도록 상기 제1 스위치 및 상기 제2 스위치를 모두 턴 온시키도록 구성되는, 배터리 제어 장치.
  2. 제1항에 있어서,
    상기 제어부는,
    상기 제1 시점에서의 상기 제2 배터리팩의 전압이 상기 제1 배터리팩의 전압보다 상기 임계 전압 이상 높으면, 상기 제1 스위치를 턴 온시키도록 구성되는, 배터리 제어 장치.
  3. 제2항에 있어서,
    상기 제어부는,
    상기 제1 시점 이후의 제2 시점에서의 상기 제1 배터리팩과 상기 제2 배터리팩의 SOC 차이가 임계 SOC 이상이면, 상기 제1 단자 및 상기 제2 단자 사이에 제1 정전력이 공급되도록 상기 전력 변환 시스템에게 제1 명령을 전송하도록 구성되는, 배터리 제어 장치.
  4. 제3항에 있어서,
    상기 제어부는,
    상기 제2 시점에서 또는 상기 제2 시점 이후의 제3 시점에서의 상기 제1 배터리팩과 상기 제2 배터리팩의 SOC 차이가 상기 임계 SOC 미만이면, 상기 제1 단자 및 상기 제2 단자 사이에 제2 정전력이 공급되도록 상기 전력 변환 시스템에게 제2 명령을 전송하도록 구성되고,
    상기 제2 정전력은 상기 제1 정전력보다 작은, 배터리 제어 장치.
  5. 제4항에 있어서,
    상기 제어부는,
    상기 제3 시점 이후의 제4 시점에서의 상기 제1 배터리팩의 전압이 상기 제2 배터리팩의 전압 이상이고 상기 제1 배터리팩과 상기 제2 배터리팩의 전압 차이가 상기 임계 전압보다 작으면, 상기 제1 배터리팩과 상기 제2 배터리팩이 서로 병렬 연결되도록 상기 제2 스위치를 턴 온시키도록 구성되는, 배터리 제어 장치.
  6. 제5항에 있어서,
    상기 제어부는,
    상기 제4 시점에서의 상기 제1 배터리팩의 전압이 상기 제2 배터리팩의 전압보다 낮으면, 상기 전력 변환 시스템에게 상기 제2 명령을 전송하도록 구성되는, 배터리 제어 장치.
  7. 제5항에 있어서,
    상기 제어부는,
    상기 제4 시점에서의 상기 제1 배터리팩의 전압이 상기 제2 배터리팩의 전압보다 상기 임계 전압 이상 높으면, 상기 제2 정전력의 공급이 중단되도록 상기 전력 변환 시스템에게 제3 명령을 전송하도록 구성되는, 배터리 제어 장치.
  8. 제7항에 있어서,
    상기 제어부는,
    상기 전력 변환 시스템이 상기 제3 명령에 응답하여 상기 제2 정전력의 공급을 중단한 시점으로부터 안정화 기간이 경과된 제5 시점에서의 상기 제1 배터리팩과 상기 제2 배터리팩의 전압 차이가 상기 임계 전압보다 작으면, 상기 제1 배터리팩과 상기 제2 배터리팩이 서로 병렬 연결되도록 상기 제2 스위치를 턴 온시키도록 구성되는, 배터리 제어 장치.
  9. 제1항에 있어서,
    상기 제어부는,
    상기 제1 배터리팩의 전압 및 전류를 측정하도록 구성된 제1 슬레이브 컨트롤러;
    상기 제2 배터리팩의 전압 및 전류를 측정하도록 구성된 제2 슬레이브 컨트롤러; 및
    상기 제1 배터리팩 및 상기 제2 배터리팩 각각의 전압 및 전류를 기초로, 상기 제1 스위치 및 상기 제2 스위치 각각을 제어하도록 구성된 마스터 컨트롤러를 포함하는, 배터리 제어 장치.
  10. 제1항 내지 제9항 중 어느 한 항에 따른 상기 배터리 제어 장치; 및
    상기 제1 단자 및 상기 제2 단자를 통해 상기 배터리 제어 장치에 연결되는 상기 전력 변환 시스템을 포함하는, 에너지 저장 시스템.
  11. 제1 단자와 제2 단자 사이에서 제1 스위치와 직렬 연결되는 제1 배터리팩 및 상기 제1 단자와 상기 제2 단자 사이에서 제2 스위치와 직렬 연결되는 제2 배터리팩을 병렬 연결하기 위한 배터리 제어 방법에 있어서,
    상기 제1 스위치 및 상기 제2 스위치가 모두 턴 오프되어 있는 제1 시점에서의 상기 제1 배터리팩과 상기 제2 배터리팩 간의 전압 차이가 임계 전압 미만인지 여부를 판정하는 단계;
    상기 제1 시점에서의 상기 제1 배터리팩과 상기 제2 배터리팩 간의 전압 차이가 상기 임계 전압 미만인 경우, 상기 제1 배터리팩과 상기 제2 배터리팩이 서로 병렬 연결되도록 상기 제1 스위치 및 상기 제2 스위치를 모두 턴 온시키는 단계;
    상기 제1 시점에서의 상기 제2 배터리팩의 전압이 상기 제1 배터리팩의 전압보다 상기 임계 전압 이상 높으면, 상기 제1 스위치를 턴 온시키는 단계; 및
    상기 제1 시점 이후의 제2 시점에서의 상기 제1 배터리팩과 상기 제2 배터리팩의 SOC 차이가 임계 SOC 이상이면, 상기 제1 단자와 상기 제2 단자 사이에 제1 정전력이 공급되도록 제1 명령을 전력 변환 시스템에게 전송하는 단계를 포함하는, 배터리 제어 방법.
  12. 제11항에 있어서,
    상기 제2 시점에서 또는 상기 제2 시점 이후의 제3 시점에서의 상기 제1 배터리팩과 상기 제2 배터리팩의 SOC 차이가 상기 임계 SOC 미만이면, 상기 제1 단자와 상기 제2 단자 사이에 제2 정전력이 공급되도록 제2 명령을 상기 전력 변환 시스템에게 전송하는 단계를 더 포함하되,
    상기 제2 정전력은 상기 제1 정전력보다 작은, 배터리 제어 방법.
PCT/KR2019/001776 2018-05-09 2019-02-13 배터리 제어 장치 및 이를 포함하는 에너지 저장 시스템 WO2019216532A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/651,798 US11381094B2 (en) 2018-05-09 2019-02-13 Battery control apparatus and energy storage system including same
EP19800303.0A EP3687027A4 (en) 2018-05-09 2019-02-13 BATTERY CONTROL DEVICE AND ENERGY STORAGE SYSTEM INCLUDING IT
JP2020511901A JP7045570B2 (ja) 2018-05-09 2019-02-13 バッテリー制御装置及びこれを含むエネルギー貯蔵システム
CN201980004693.2A CN111133655B (zh) 2018-05-09 2019-02-13 电池控制装置和包括该电池控制装置的能量存储系统
AU2019265165A AU2019265165B2 (en) 2018-05-09 2019-02-13 Battery control apparatus and energy storage system including same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180053253A KR102361334B1 (ko) 2018-05-09 2018-05-09 배터리 제어 장치 및 이를 포함하는 에너지 저장 시스템
KR10-2018-0053253 2018-05-09

Publications (1)

Publication Number Publication Date
WO2019216532A1 true WO2019216532A1 (ko) 2019-11-14

Family

ID=68467033

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/001776 WO2019216532A1 (ko) 2018-05-09 2019-02-13 배터리 제어 장치 및 이를 포함하는 에너지 저장 시스템

Country Status (7)

Country Link
US (1) US11381094B2 (ko)
EP (1) EP3687027A4 (ko)
JP (1) JP7045570B2 (ko)
KR (1) KR102361334B1 (ko)
CN (1) CN111133655B (ko)
AU (1) AU2019265165B2 (ko)
WO (1) WO2019216532A1 (ko)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10938221B1 (en) 2020-06-02 2021-03-02 Inventus Power, Inc. Large-format battery management system with limp home mode
US11245268B1 (en) 2020-07-24 2022-02-08 Inventus Power, Inc. Mode-based disabling of communiction bus of a battery management system
US11404885B1 (en) 2021-02-24 2022-08-02 Inventus Power, Inc. Large-format battery management systems with gateway PCBA
US11411407B1 (en) 2021-02-24 2022-08-09 Inventus Power, Inc. Large-format battery management systems with gateway PCBA
US11476677B2 (en) 2020-06-02 2022-10-18 Inventus Power, Inc. Battery pack charge cell balancing
US11489343B2 (en) 2020-06-02 2022-11-01 Inventus Power, Inc. Hardware short circuit protection in a large battery pack
US11509144B2 (en) 2020-06-02 2022-11-22 Inventus Power, Inc. Large-format battery management system with in-rush current protection for master-slave battery packs
US11552479B2 (en) 2020-06-02 2023-01-10 Inventus Power, Inc. Battery charge balancing circuit for series connections
US11588334B2 (en) 2020-06-02 2023-02-21 Inventus Power, Inc. Broadcast of discharge current based on state-of-health imbalance between battery packs
US11594892B2 (en) 2020-06-02 2023-02-28 Inventus Power, Inc. Battery pack with series or parallel identification signal

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11133680B2 (en) * 2019-01-08 2021-09-28 GM Global Technology Operations LLC Balancing system for rechargeable energy storage assembly with multiple parallel units
KR20210016795A (ko) * 2019-08-05 2021-02-17 주식회사 엘지화학 에너지 허브 장치 및 에너지 관리 방법
CN110474395A (zh) * 2019-08-27 2019-11-19 常州格力博有限公司 电力系统
EP3859870A4 (en) * 2019-10-21 2022-06-15 Ningde Amperex Technology Ltd. CHARGING PROCESS, ELECTRONIC DEVICE AND STORAGE MEDIA
KR20210051538A (ko) * 2019-10-30 2021-05-10 주식회사 엘지화학 병렬 멀티 팩 시스템의 출력 제어 장치 및 방법
US11949273B2 (en) 2020-03-27 2024-04-02 Dongguan Poweramp Technology Limited Method for managing charging and discharging of parallel-connected battery pack, electronic device, and electrical system
KR102640845B1 (ko) * 2021-01-19 2024-02-28 삼성에스디아이 주식회사 배터리 팩 및 배터리 팩의 제어 방법
KR20230167043A (ko) * 2021-03-09 2023-12-07 에마트릭스 에너지 시스템즈, 아이엔씨. 병렬로 다중 고전압 배터리 팩들을 이용하기 위한 방법 및 시스템
CN114362326A (zh) * 2022-01-28 2022-04-15 北京小米移动软件有限公司 充放电系统、方法、装置、终端设备及存储介质
DE102022112664A1 (de) 2022-05-19 2023-11-23 Webasto SE Batteriesystem umfassend ein Batteriemanagementsystem sowie ein Kraftfahrzeug
KR20240077353A (ko) * 2022-11-24 2024-05-31 주식회사 씨티엔에스 돌입전류에 의한 배터티팩 파손방지 구조가 적용된 병렬연결 배터리팩 조립체
CN116365655A (zh) * 2023-03-31 2023-06-30 深圳市正浩创新科技股份有限公司 多电池包系统的控制方法、功率转换设备及储能设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140003201A (ko) * 2012-06-29 2014-01-09 삼성에스디아이 주식회사 돌입 전류를 저감하는 에너지 저장 장치 및 그 방법
KR20140016750A (ko) * 2012-07-31 2014-02-10 주식회사 엘지화학 병렬 연결된 이차 전지들의 충전 제어 장치 및 방법
KR101516027B1 (ko) * 2010-10-08 2015-05-04 주식회사 포스코아이씨티 전지 전력 저장 시스템 및 그 제어 방법
US20160372928A1 (en) * 2013-06-28 2016-12-22 Sony Corporation Power storage system, power storage module, and control method
KR20170080917A (ko) * 2015-12-31 2017-07-11 주식회사 포스코아이씨티 단일 초기 충전부를 이용한 전력 변환 유닛 충전 장치 및 이를 포함하는 에너지 저장 시스템
KR20180053253A (ko) 2016-11-11 2018-05-21 메저먼트 스페셜티스, 인크. 압력 센서의 보정을 위한 방법 및 장치

Family Cites Families (79)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10290533A (ja) * 1997-04-14 1998-10-27 Honda Motor Co Ltd バッテリ充電システム
DE10048648A1 (de) * 2000-09-26 2002-04-11 Biotronik Mess & Therapieg Elektrisch aktives medizinisches Implantat
AUPR269301A0 (en) * 2001-01-24 2001-02-22 Cochlear Limited Power supply for a cochlear implant
JP3469228B2 (ja) 2002-02-13 2003-11-25 三菱重工業株式会社 蓄電装置の充放電制御装置及び充放電制御方法並びに電力貯蔵システム
US6879134B2 (en) * 2003-02-11 2005-04-12 O2Micro International Limited Selector circuit for power management in multiple battery systems
US20060103350A1 (en) * 2004-11-12 2006-05-18 Akku Power Electronic Co., Ltd. [an equalizing-charge charger]
DE102004062939B4 (de) * 2004-12-28 2019-02-21 Volkswagen Ag Verfahren und Vorrichtung zum optimierten Starten eines Verbrennungsmotors
US7507497B2 (en) * 2005-09-06 2009-03-24 Denso Corporation Method and apparatus for judging degradation of storage battery
JP4745879B2 (ja) * 2006-04-06 2011-08-10 日立ビークルエナジー株式会社 ハイブリッド車両制御システム、ハイブリッド車両制御方法及び車両用蓄電池制御システム
EP2092627B1 (en) * 2006-11-10 2018-05-23 Lithium Balance A/S A battery management system
JP4760723B2 (ja) * 2006-11-20 2011-08-31 トヨタ自動車株式会社 電源回路の制御装置
US8159191B2 (en) * 2007-04-17 2012-04-17 Tsun-Yu Chang Advanced rechargeable battery system
WO2008153174A1 (ja) * 2007-06-11 2008-12-18 Toyota Jidosha Kabushiki Kaisha 電気システムの制御装置および制御方法
US8044637B2 (en) * 2008-09-29 2011-10-25 The United States Of America As Represented By The Secretary Of The Navy Battery charging method
WO2010061465A1 (ja) * 2008-11-28 2010-06-03 トヨタ自動車株式会社 車両の充電システム
JP2010220280A (ja) * 2009-03-13 2010-09-30 Panasonic Corp 充放電制御回路、電源装置、及び電源装置の制御方法
AU2010202975A1 (en) * 2009-07-16 2011-02-03 Demain International Pty Ltd Power supply for charging high energy capacitor
JP5455215B2 (ja) * 2009-12-17 2014-03-26 Necエナジーデバイス株式会社 電池モジュール制御システム
US8643342B2 (en) * 2009-12-31 2014-02-04 Tesla Motors, Inc. Fast charging with negative ramped current profile
JP5143185B2 (ja) * 2010-02-08 2013-02-13 三洋電機株式会社 電源装置
CN102208820B (zh) * 2010-03-29 2013-08-21 比亚迪股份有限公司 一种储能电池组并联装置及其控制方法
CN102299529B (zh) * 2010-06-25 2014-04-02 凹凸电子(武汉)有限公司 电池组管理系统、电动车及管理电池组的方法
JP5786324B2 (ja) * 2010-11-17 2015-09-30 日産自動車株式会社 組電池の制御装置
US9490700B2 (en) * 2011-02-25 2016-11-08 Vasco Data Security, Inc. Portable handheld strong authentication token having parallel-serial battery switching and voltage regulating circuit
KR101367875B1 (ko) * 2011-03-21 2014-02-26 주식회사 엘지화학 배터리 팩 연결 제어 장치 및 방법
JPWO2012133274A1 (ja) * 2011-03-30 2014-07-28 三洋電機株式会社 蓄電システム及び移動体
JP5664446B2 (ja) * 2011-04-28 2015-02-04 トヨタ自動車株式会社 電池システム
EP2760105A4 (en) 2011-09-21 2015-01-28 Toyota Motor Co Ltd VEHICLE BATTERY CONTROL DEVICE AND VEHICLE BATTERY CONTROL METHOD
JP5653542B2 (ja) * 2012-02-09 2015-01-14 三菱電機株式会社 並列蓄電システムおよびその制御方法
WO2013127099A1 (zh) * 2012-02-28 2013-09-06 智晖有限公司 一种并联电池组中荷电平衡及负载控制的方法
KR101308711B1 (ko) 2012-06-29 2013-09-25 엘에스산전 주식회사 전기자동차 배터리 충전장치
JP5811055B2 (ja) * 2012-07-11 2015-11-11 株式会社デンソー バッテリシステム制御装置
US9627896B2 (en) * 2012-08-09 2017-04-18 Sanyo Electric Co., Ltd. Battery system including a voltage detecting circuit for detecting voltages of plural battery cells through voltage detecting lines having different lengths
US10008862B2 (en) * 2013-03-28 2018-06-26 Murata Manufacturing Co., Ltd. Power storage device, power storage system, and control method of power storage device
US9891685B1 (en) * 2013-04-17 2018-02-13 Amazon Technologies, Inc. Reconfigurable backup battery unit
US9910471B1 (en) * 2013-04-17 2018-03-06 Amazon Technologies, Inc. Reconfigurable array of backup battery units
JP2015070690A (ja) 2013-09-27 2015-04-13 日立建機株式会社 作業機械駆動用蓄電装置の充電装置及び充電方法
KR20150081731A (ko) * 2014-01-06 2015-07-15 삼성에스디아이 주식회사 배터리 팩, 배터리 팩을 포함하는 에너지 저장 시스템, 배터리 팩의 작동 방법
KR20150091890A (ko) 2014-02-04 2015-08-12 삼성에스디아이 주식회사 배터리 트레이, 배터리 랙, 에너지 저장 시스템, 및 배터리 트레이의 동작 방법
WO2016063760A1 (ja) * 2014-10-23 2016-04-28 株式会社豊田自動織機 電源装置、保護装置、及び保護方法
KR102256301B1 (ko) * 2015-01-30 2021-05-26 삼성에스디아이 주식회사 배터리 충방전 제어 시스템 및 방법
KR102332337B1 (ko) * 2015-01-30 2021-11-29 삼성에스디아이 주식회사 배터리 시스템 및 이를 포함하는 에너지 저장 시스템
CN204424973U (zh) * 2015-02-12 2015-06-24 山东申普交通科技有限公司 一种电池充放电管理系统
KR20160099357A (ko) * 2015-02-12 2016-08-22 삼성에스디아이 주식회사 배터리 팩 및 이를 포함하는 배터리 시스템
KR20160132633A (ko) 2015-05-11 2016-11-21 주식회사 엘지화학 배터리 시스템 및 그 연결 제어 방법
KR102377394B1 (ko) * 2015-05-14 2022-03-22 삼성에스디아이 주식회사 에너지 저장 시스템 및 그 구동 방법
EP3113315A1 (en) * 2015-07-02 2017-01-04 Hella KGaA Hueck & Co Automotive dual voltage battery charging system
KR102415122B1 (ko) 2015-08-20 2022-06-30 삼성에스디아이 주식회사 배터리 시스템
KR101780284B1 (ko) * 2015-10-26 2017-10-10 현대자동차주식회사 전기차의 충전 모드 자동 선택 방법 및 이를 수행하기 위한 충전 시스템
KR20170071949A (ko) * 2015-12-16 2017-06-26 삼성에스디아이 주식회사 배터리 팩 및 이를 포함하는 배터리 시스템
WO2017150195A1 (ja) * 2016-03-01 2017-09-08 ソニー株式会社 電池パックおよび充放電制御方法
US10447054B2 (en) * 2016-05-20 2019-10-15 Robert Bosch Gmbh Staircase charging
US20170345101A1 (en) * 2016-05-24 2017-11-30 Powin Energy Corporation World-wide web of networked, smart, scalable, plug & play battery packs having a battery pack operating system, and applications thereof
CN107769279B (zh) 2016-08-18 2020-11-17 太普动力新能源(常熟)股份有限公司 电池并联搭接的控制方法
KR101940704B1 (ko) * 2016-09-23 2019-01-21 주식회사 엘지화학 병렬 연결된 배터리 팩의 soc 및 soh 관리 장치 및 방법
DE102016218516A1 (de) * 2016-09-27 2018-03-29 Robert Bosch Gmbh Elektrisches Energiespeichersystem mit einer über eine Diode mit einem Stromerfassungsmittel elektrisch leitend verbundenen Querverbindung mehrerer paralleler Energiespeicherstränge und Verfahren zur Detektion eines Leitungsfehlers
KR102286008B1 (ko) * 2016-10-24 2021-08-04 한화디펜스 주식회사 배터리 시스템 및 배터리 팩의 충방전 제어 방법
DE102016122453A1 (de) * 2016-11-22 2018-05-24 HELLA GmbH & Co. KGaA Betriebsverfahren für eine Zweispannungsbatterie
FR3061814B1 (fr) * 2017-01-12 2020-01-24 Commissariat A L'energie Atomique Et Aux Energies Alternatives Dispositif de stockage d'energie electrique apte a se recharger sous une premiere tension et a restituer son energie sous une deuxieme tension
US20180241236A1 (en) * 2017-02-23 2018-08-23 Goal Zero Llc Hot-swappable battery pack
US10923774B2 (en) * 2017-03-07 2021-02-16 Denso Corporation Battery state estimating device and power supply device
US10326287B2 (en) * 2017-03-27 2019-06-18 Apple Inc. Multiple battery cell monitor having shared control lines and balance switch
WO2018231573A1 (en) * 2017-06-15 2018-12-20 A123 Systems Llc System and method for operating a dual battery system
US11233419B2 (en) * 2017-08-10 2022-01-25 Zoox, Inc. Smart battery circuit
CN110301054A (zh) * 2017-08-25 2019-10-01 苏州宝时得电动工具有限公司 电动工具及电动工具供电方法
JP6759466B2 (ja) * 2017-11-29 2020-09-23 株式会社東芝 評価装置、蓄電システム、評価方法およびコンピュータプログラム
CN108081994B (zh) * 2017-12-22 2019-07-16 珠海广通汽车有限公司 供电管理方法及系统
JP6992540B2 (ja) * 2018-01-23 2022-01-13 トヨタ自動車株式会社 電池システム
JP7024448B2 (ja) * 2018-01-29 2022-02-24 トヨタ自動車株式会社 電動車両
US11056900B2 (en) * 2018-01-31 2021-07-06 Ningde Amperex Technology Limited Charging method, charging device, and computer-readable medium for charging a battery
AU2019238615A1 (en) * 2018-03-20 2020-11-12 Gs Yuasa International Ltd. Abnormality factor determination apparatus, degradation determination apparatus, computer program, degradation determining method, and abnormality factor determining method
KR102338938B1 (ko) 2018-05-03 2021-12-10 주식회사 엘지에너지솔루션 배터리 관리 장치 및 이를 포함하는 에너지 저장 시스템
JP6853805B2 (ja) * 2018-09-13 2021-03-31 株式会社Subaru 電動車両
US10978751B2 (en) * 2019-03-13 2021-04-13 Lg Chem, Ltd. Battery system
US11539233B2 (en) * 2019-05-30 2022-12-27 Splice Energy Solutions, LLC Smart battery backup system
CN110474395A (zh) * 2019-08-27 2019-11-19 常州格力博有限公司 电力系统
KR20210079020A (ko) * 2019-12-19 2021-06-29 주식회사 엘지화학 불량 배터리 셀 조기 검출 장치 및 방법
CN113075562A (zh) * 2020-01-06 2021-07-06 东莞新能德科技有限公司 电池压差更新方法、电量预估方法、电子装置及存储介质
JP7083858B2 (ja) * 2020-02-10 2022-06-13 矢崎総業株式会社 電源装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101516027B1 (ko) * 2010-10-08 2015-05-04 주식회사 포스코아이씨티 전지 전력 저장 시스템 및 그 제어 방법
KR20140003201A (ko) * 2012-06-29 2014-01-09 삼성에스디아이 주식회사 돌입 전류를 저감하는 에너지 저장 장치 및 그 방법
KR20140016750A (ko) * 2012-07-31 2014-02-10 주식회사 엘지화학 병렬 연결된 이차 전지들의 충전 제어 장치 및 방법
US20160372928A1 (en) * 2013-06-28 2016-12-22 Sony Corporation Power storage system, power storage module, and control method
KR20170080917A (ko) * 2015-12-31 2017-07-11 주식회사 포스코아이씨티 단일 초기 충전부를 이용한 전력 변환 유닛 충전 장치 및 이를 포함하는 에너지 저장 시스템
KR20180053253A (ko) 2016-11-11 2018-05-21 메저먼트 스페셜티스, 인크. 압력 센서의 보정을 위한 방법 및 장치

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11476677B2 (en) 2020-06-02 2022-10-18 Inventus Power, Inc. Battery pack charge cell balancing
US11594892B2 (en) 2020-06-02 2023-02-28 Inventus Power, Inc. Battery pack with series or parallel identification signal
US11489343B2 (en) 2020-06-02 2022-11-01 Inventus Power, Inc. Hardware short circuit protection in a large battery pack
US11509144B2 (en) 2020-06-02 2022-11-22 Inventus Power, Inc. Large-format battery management system with in-rush current protection for master-slave battery packs
US11133690B1 (en) 2020-06-02 2021-09-28 Inventus Power, Inc. Large-format battery management system
US10938221B1 (en) 2020-06-02 2021-03-02 Inventus Power, Inc. Large-format battery management system with limp home mode
US11817723B2 (en) 2020-06-02 2023-11-14 Inventus Power, Inc. Large-format battery management system with in-rush protection using multiple thermistors
US11699908B2 (en) 2020-06-02 2023-07-11 Inventus Power, Inc. Large-format battery management system identifies power degradation
US11848580B2 (en) 2020-06-02 2023-12-19 Inventus Power, Inc. Broadcast of discharge current based on state-of-health imbalance between battery packs
US10944278B1 (en) 2020-06-02 2021-03-09 Inventus Power, Inc. Large-format battery management system with configuration list for master-slave battery packs
US11095140B1 (en) 2020-06-02 2021-08-17 Inventus Power, Inc. Large-format battery managment system
US11552479B2 (en) 2020-06-02 2023-01-10 Inventus Power, Inc. Battery charge balancing circuit for series connections
US11588334B2 (en) 2020-06-02 2023-02-21 Inventus Power, Inc. Broadcast of discharge current based on state-of-health imbalance between battery packs
US10944279B1 (en) 2020-06-02 2021-03-09 Inventus Power, Inc. Large-format battery management system with in-rush current management
US11705741B2 (en) 2020-07-24 2023-07-18 Inventus Power, Inc. Mode-based disabling of communication bus of a battery management system
US11245268B1 (en) 2020-07-24 2022-02-08 Inventus Power, Inc. Mode-based disabling of communiction bus of a battery management system
US11411407B1 (en) 2021-02-24 2022-08-09 Inventus Power, Inc. Large-format battery management systems with gateway PCBA
US11404885B1 (en) 2021-02-24 2022-08-02 Inventus Power, Inc. Large-format battery management systems with gateway PCBA

Also Published As

Publication number Publication date
CN111133655B (zh) 2023-11-14
KR102361334B1 (ko) 2022-02-09
EP3687027A1 (en) 2020-07-29
US11381094B2 (en) 2022-07-05
CN111133655A (zh) 2020-05-08
US20200244075A1 (en) 2020-07-30
AU2019265165B2 (en) 2024-02-08
KR20190128913A (ko) 2019-11-19
JP2020532268A (ja) 2020-11-05
JP7045570B2 (ja) 2022-04-01
AU2019265165A1 (en) 2020-05-28
EP3687027A4 (en) 2020-11-11

Similar Documents

Publication Publication Date Title
WO2019216532A1 (ko) 배터리 제어 장치 및 이를 포함하는 에너지 저장 시스템
WO2019212128A1 (ko) 배터리 관리 장치, 배터리 관리 방법 및 상기 배터리 관리 장치를 포함하는 에너지 저장 시스템
WO2019221368A1 (ko) 메인 배터리와 서브 배터리를 제어하기 위한 장치, 배터리 시스템 및 방법
WO2011083993A2 (ko) 배터리 제어 장치 및 방법
WO2019093769A1 (ko) Bms 웨이크업 장치, 이를 포함하는 bms 및 배터리팩
WO2020076127A1 (ko) 배터리 관리 장치 및 방법
WO2012128445A1 (ko) 배터리 팩 연결 제어 장치 및 방법
WO2018143562A1 (ko) 배터리 팩 및 배터리 팩의 충전 제어 방법
WO2019088558A1 (ko) 배터리 팩
WO2018021664A1 (ko) 배터리 밸런싱 장치 및 방법
WO2019078589A1 (ko) 배터리팩 및 그것을 포함하는 전력 시스템
WO2020085819A1 (ko) 밸런싱 장치, 그것을 포함하는 배터리 관리 시스템 및 배터리팩
WO2019177303A1 (ko) 과방전 방지 장치
WO2018124514A1 (ko) 배터리 관리 장치 및 이를 이용한 리튬인산철 셀의 과전압 보호 방법
WO2022092612A1 (ko) 충전 관리 장치, 충전 관리 방법, 및 전기 차량
WO2020231086A1 (ko) 배터리의 퇴화도를 결정하기 위한 장치 및 방법과, 상기 장치를 포함하는 배터리 팩
WO2020106042A1 (ko) 배터리 관리 시스템, 배터리 팩 및 전기 차량
WO2020080802A1 (ko) 배터리 모듈 밸런싱 장치 및 방법
WO2019107976A1 (ko) 배터리 팩
WO2019107982A1 (ko) 배터리 팩
WO2022177291A1 (ko) 배터리 관리 시스템, 배터리 팩, 에너지 저장 시스템 및 배터리 관리 방법
WO2022149958A1 (ko) 배터리 제어 장치, 배터리 시스템, 전원 공급 시스템 및 배터리 제어 방법
WO2022080709A1 (ko) 릴레이 진단 장치, 릴레이 진단 방법, 배터리 시스템, 및 전기 차량
WO2020055162A1 (ko) 스위치 진단 장치 및 방법
WO2019160257A1 (ko) 배터리와 평활 커패시터 간의 에너지 전달을 위한 전원 회로, 배터리 관리 시스템 및 배터리 팩

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19800303

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020511901

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019800303

Country of ref document: EP

Effective date: 20200424

ENP Entry into the national phase

Ref document number: 2019265165

Country of ref document: AU

Date of ref document: 20190213

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE