WO2019107976A1 - 배터리 팩 - Google Patents

배터리 팩 Download PDF

Info

Publication number
WO2019107976A1
WO2019107976A1 PCT/KR2018/014977 KR2018014977W WO2019107976A1 WO 2019107976 A1 WO2019107976 A1 WO 2019107976A1 KR 2018014977 W KR2018014977 W KR 2018014977W WO 2019107976 A1 WO2019107976 A1 WO 2019107976A1
Authority
WO
WIPO (PCT)
Prior art keywords
contactor
charge
battery
voltage
measured voltage
Prior art date
Application number
PCT/KR2018/014977
Other languages
English (en)
French (fr)
Inventor
함상혁
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2019561913A priority Critical patent/JP7070973B2/ja
Priority to EP18884733.9A priority patent/EP3624250B1/en
Priority to US16/609,381 priority patent/US11150301B2/en
Priority to CN201880025905.0A priority patent/CN110537287B/zh
Priority to PL18884733T priority patent/PL3624250T3/pl
Publication of WO2019107976A1 publication Critical patent/WO2019107976A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M10/4257Smart batteries, e.g. electronic circuits inside the housing of the cells or batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00038Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange using passive battery identification means, e.g. resistors or capacitors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/327Testing of circuit interrupters, switches or circuit-breakers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/327Testing of circuit interrupters, switches or circuit-breakers
    • G01R31/3277Testing of circuit interrupters, switches or circuit-breakers of low voltage devices, e.g. domestic or industrial devices, such as motor protections, relays, rotation switches
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/364Battery terminal connectors with integrated measuring arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H47/00Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
    • H01H47/002Monitoring or fail-safe circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H47/00Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
    • H01H47/002Monitoring or fail-safe circuits
    • H01H47/004Monitoring or fail-safe circuits using plural redundant serial connected relay operated contacts in controlled circuit
    • H01H47/005Safety control circuits therefor, e.g. chain of relays mutually monitoring each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/46Accumulators structurally combined with charging apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/296Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by terminals of battery packs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/569Constructional details of current conducting connections for detecting conditions inside cells or batteries, e.g. details of voltage sensing terminals
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0036Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using connection detecting circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0042Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction
    • H02J7/0045Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction concerning the insertion or the connection of the batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present invention relates to a battery pack, and more particularly, to a battery pack that diagnoses failure of a charge contactor based on a voltage applied to a measurement resistor connected to the charge contactor.
  • the secondary rechargeable batteries are nickel-cadmium batteries, nickel-hydrogen batteries, nickel-zinc batteries, and lithium secondary batteries.
  • lithium secondary batteries have almost no memory effect compared to nickel- It is very popular because of its low self-discharge rate and high energy density.
  • the battery pack includes a battery module in which a plurality of battery cells are electrically connected, it is possible to satisfy the demanded design of high capacity and high output required for electric vehicles.
  • the battery pack borrowed from the electric vehicle can be electrically connected to the charger of the charging station to charge the electric power.
  • a battery pack borrowed from an electric vehicle includes a battery contactor connected to a positive terminal and a negative terminal of the battery module for controlling electrical connection of an output terminal of the battery module, and a charging terminal for receiving power of the charger, And a charge contactor for controlling the electrical connection.
  • the charge contactor is exposed not only to the outside but also by monitoring the electrical connection of an input terminal connected to the power supply connector of the charger to monitor whether the current charge contactor is in a turn on state or a turn off state, It is important to diagnose whether or not the charge contactor is actually controlled in response to the control to the OFF state.
  • the present invention is characterized in that when the first power connector of the battery pack and the second power connector of the charger are connected and the charging is completed or stopped and a charging end signal is received, the first charging contactor and the second charging contactor Off state of the first charging contactor and the second charging contactor after the first and second charging contactors are turned off in order.
  • a battery pack comprising: a first battery contactor and a second battery contactor, one end of each of which is electrically connected to a positive terminal and a negative terminal of the battery; A first charge contactor and a second charge contactor each having one end electrically connected to the other end of the first battery contactor and the other end of the second battery contactor; A third node located at one end of the first charge contactor and a second node located at one end of the first charge contactor, a third node located at the other end of the first charge contactor, A first measuring resistor, a second measuring resistor and a third measuring resistor electrically connected between the first node and the fourth node located at the other end of the second charge contactor, respectively; A first power connector having a first input terminal and a second input terminal electrically connected to the other end of the first charge contactor and the other end of the second charge contactor, respectively; And a second power connector of a charger having a first output terminal and a second output terminal
  • the controller controls the second charge contactor in a turn-on state to turn off, and diagnoses whether the second charge contactor is turned off based on the third measured voltage.
  • the controller may diagnose that a turn-off failure has occurred in the second charge contactor if the third measured voltage is less than the second reference voltage.
  • the controller diagnoses a failure of the second charge contactor based on a third measured voltage, and controls the first charge contactor in a turn-on state to a turn-off state, It is possible to diagnose whether or not the first charge contactor is turned off based on the measured voltage difference between the second measured voltages.
  • the controller may diagnose that a turn-off failure has occurred in the first charge contactor if the measured voltage difference between the first measured voltage and the second measured voltage is less than the first reference voltage.
  • the controller may output a failure signal if it is diagnosed that a failure has occurred in at least one of the first charging contactor and the second charging connector.
  • the automobile according to the present invention includes the battery pack.
  • the first charge contactor and the second charge contactor are each diagnosed as to whether the turn-off failure has occurred, so that the first charge contactor and the second charge contactor, It is possible to prevent an electric accident that may occur due to the contactor being kept turned on.
  • FIGS. 1 to 4 are diagrams illustrating the functional configuration of a battery pack and a charger according to an embodiment of the present invention.
  • FIG. 5 is a diagram illustrating a state and a functional configuration of a battery pack and a charger according to another embodiment of the present invention. Referring to FIG.
  • FIG. 6 is a diagram illustrating a state in which a battery pack and a charger are separated and a functional configuration according to another embodiment of the present invention.
  • FIG. 7 is a diagram illustrating a state and a functional configuration of a battery pack and a charger according to another embodiment of the present invention. Referring to FIG.
  • FIG. 8 is a view showing a state where a battery pack and a charger are separated and a functional configuration according to another embodiment of the present invention.
  • " control unit " as described in the specification means a unit for processing at least one function or operation, and may be implemented by hardware or software, or a combination of hardware and software.
  • FIGS. 1 to 4 are diagrams showing functional configurations of a battery pack 100 and a charger CS according to an embodiment of the present invention.
  • a battery pack 100 includes a battery module B, a first battery contactor BC1, a second battery contactor BC2, a first charge contactor CC1, A second measuring resistor MR2, a third measuring resistor MR3, a first power supply connector C1, a sensing unit 110, a memory unit 120, (130).
  • the battery module B may include at least one battery cell.
  • the battery module B includes a plurality of battery cells electrically connected to each other, the plurality of battery cells may be connected to one another in series, in parallel, or in series and in parallel.
  • the battery module B has a positive terminal (+) and a negative terminal (-).
  • One end of the first battery contactor BC1 is electrically connected to the positive terminal (+) of the battery module B and the other end of the second battery contactor BC2 is electrically connected to the negative terminal (-) of the battery module B. As shown in FIG.
  • the battery module B can be powered or charged according to the turn-on or turn-off state of the first battery contactor BC1 and the second battery contactor BC2.
  • the first battery contact BC1 and the second battery contact BC2 may be controlled to be turned on or off by the controller 130 described below.
  • the turn-on state refers to a state in which the contact of the contactor is in contact with one end and the other end of the contactor is electrically connected, and in the turn-off state, the contactor of the contactor is disconnected and one end and the other end of the contactor are electrically disconnected State.
  • One end of the first charge contactor CC1 is electrically connected to the other end of the first battery contactor BC1 and the other end of the second charge contactor CC2 is electrically connected to the other end of the second battery contactor BC2 Lt; / RTI >
  • the other ends of the first charging contactor CC1 and the second charging contactor CC2 are electrically connected to the first power connector C1, respectively. More specifically, the other end of the first charge contactor CC1 is electrically connected to the first input terminal IT1 of the first power connector C1, and the other end of the second charge contactor CC2 is electrically connected to the And is electrically connected to the second input terminal IT2 provided in the first power supply connector C1.
  • the first input terminal IT1 and the second input terminal IT2 are connected to the second power connector C2
  • the first output terminal OT1 and the second output terminal OT2 may be electrically connected to each other.
  • the first battery contactor BC1, the second battery contactor BC2, the first charge contactor CC1, and the second charge contactor CC2 are in a turned-on state, the first power connector C1 is connected to the second power connector C2, the power of the charger CS is charged to the battery module B.
  • the second node N2 and the third node N3 are respectively located at one end and the other end of the first input terminal IT1 and the first node N1 is connected to one end and the other end of the second input terminal IT2, And the fourth node N4 are located.
  • the first measurement resistor MR1 is electrically connected between the first node N1 and the second node N2
  • the second measurement resistor MR2 is electrically connected between the first node N1 and the third node N3
  • the third measuring resistor MR3 is electrically connected between the first node N1 and the fourth node N4 and is connected in parallel with the second charging contactor CC2.
  • the sensing unit 110 is operatively coupled to the controller 130. That is, the sensing unit 110 may be connected to the controller 130 to transmit an electrical signal to the controller 130 or to receive an electrical signal from the controller 130.
  • the sensing unit 110 measures a battery voltage applied between the positive terminal (+) and the negative terminal (-) of the battery module (B) according to a predetermined period or a sensing control of the controller 130.
  • the sensing unit 110 may sense the first measurement resistance MR1 applied to the first measurement resistance MR1, the second measurement resistance MR2 and the third measurement resistance MR3 according to a predetermined period or a sensing control of the controller 130 The second measured voltage, and the third measured voltage.
  • the sensing unit 110 senses the output of the sensing unit 110 between the first input terminal IT1 and the second input terminal IT2 or between the first output terminal OT1 and the second output terminal OT1, The charging voltage Vc of the charger CS applied between the terminals OT1 and OT2 is measured.
  • the sensing unit 110 repeatedly measures and measures battery current flowing into or out of the battery module (B).
  • the sensing unit 110 may then provide the controller 130 with a measurement signal indicating the measured battery voltage, the first measured voltage, the second measured voltage, the third measured voltage, the charged voltage Vc, and the battery current .
  • the sensing unit 110 includes a voltage sensor configured to measure the voltage of the battery module B. Further, the sensing unit 110 may further include a current sensor configured to measure a current of the battery module (B).
  • the controller 130 controls the battery voltage, the first measurement voltage, the second measurement voltage, the third measurement voltage, the charge voltage Vc, And stores the digital value in the memory unit 120.
  • the memory unit 120 is a semiconductor memory device that records, erases and updates data generated by the control unit 130 and performs fault diagnosis of each of the first charge contactor CC1 and the second charge contactor CC2 And stores a plurality of program codes prepared for this purpose. Also, the memory unit 120 is a memory unit that is used in the practice of the present invention
  • the memory unit 120 may be a DRAM, an SDRAM, a flash memory, a ROM, an EEPROM, a register, or the like.
  • the memory unit 120 may further include a storage medium storing program codes defining control logic of the controller 130.
  • the storage medium includes an inert storage element such as a flash memory or a hard disk.
  • the memory unit 120 may be physically separated from the control unit 130 or may be integrated with the control unit 130.
  • the control unit 130 determines whether or not to perform the failure diagnosis of the first charge contactor CC1 and the second charge contactor CC2 based on the diagnosis condition.
  • the diagnosis conditions include whether or not the first power connector C1 and the second power connector C2 are coupled, whether the charge end signal is received, and whether the first battery contact BC1 and the second battery contact BC2 Or whether or not the switch is turned on.
  • the charge termination request signal may be a signal output from the ECU of the vehicle including the battery pack according to the present invention.
  • the controller 130 includes a first power connector C1 and a second power connector C2 coupled to each other, a charge end signal is received, and a first battery contactor It is determined that the diagnostic conditions are satisfied if the first battery contact BC1 and the second battery contact BC2 are turned on.
  • the controller 130 When the charge completion signal is received, the controller 130 outputs an output end signal to the charger CS so that the charging voltage Vc of the charger CS is applied to the first output terminal OT1 and the second output terminal OT2 In the present invention.
  • the controller 130 determines to perform the failure diagnosis of the first charge contactor CC1 and the second charge contactor CC2 when the diagnosis condition is satisfied. Thereafter, the controller 130 controls at least one of the first charge contactor CC1 and the second charge contactor CC2 to be turned on or off, and the first measurement voltage measured in accordance with the control, The first charge contactor CC1 and the second charge contactor CC2 are each diagnosed based on at least one of the first measured voltage, the second measured voltage, and the third measured voltage.
  • control unit 130 is turned on for at least one of the first battery contactor BC1, the second battery contactor BC2, the first charge contactor CC1, and the second charge contactor CC2, State or a turn-off state.
  • the controller 130 turns off only the second charge contactor CC2 from the first charge contactor CC1 and the second charge contactor CC2, which are turned on, as shown in FIG. 2 And diagnoses whether the second charge contactor CC2 is turned off based on the third measured voltage.
  • the turn-off failure may mean a failure in which the controller 130 controls the contactor to turn off, but maintains the turn-on state.
  • the controller 130 can diagnose that a turn-off failure has occurred in the second charge contactor CC2 if the third measured voltage is less than the second reference voltage.
  • the controller 130 diagnoses that no turn-off failure has occurred in the second charge contactor CC2.
  • the controller 130 determines that the second power connector C2 having no charging voltage Vc applied to the first output terminal OT1 and the second output terminal OT2 is connected to the first power connector C1, And the contactor condition is that the first battery contactor BC1 and the second battery contactor BC2 are in the on state and the first charge contactor CC1 is in the on state, And calculates the theoretical value of the corresponding third measured voltage when the second charge contactor (CC2) is in the first contactor condition in the turned off state.
  • the controller 130 calculates the internal resistance CR1 of the charger CS using the battery current, the voltage applied between the first input terminal IT1 and the second input terminal IT2, The battery voltage and the charging voltage Vc (between the first resistance MR1 and the second resistance MR2) and between the insulation resistance of the battery pack 100 and the internal resistance CR1 of the charger CS, ) To calculate the first connector condition and the theoretical value of the third measured voltage in the first contactor condition.
  • the controller 130 controls the first power connector C1 and the second power connector C2 such that the connector 230 receives the charging voltage Vc from the first output terminal OT1 and the second output terminal OT2, And calculates the theoretical value of the corresponding third measured voltage when the contactor condition is the first contactor condition described above.
  • the controller 130 calculates the internal resistance CR1 of the charger CS using the battery current, the voltage applied between the first input terminal IT1 and the second input terminal IT2, The battery voltage and the charging voltage Vc (between the first resistance MR1 and the second resistance MR2) and between the insulation resistance of the battery pack 100 and the internal resistance CR1 of the charger CS, To calculate the theoretical value of the third measured voltage in the second connector condition and the first contactor condition.
  • the controller 130 sets the second reference voltage to be less than the calculated theoretical value of the third measured voltage.
  • the control unit 130 sets the second reference voltage corresponding to the insulation resistance of the battery pack 100 and the internal resistance CR1 of the charger CS connected to the battery pack 100, Diagnose the fault of the contactor (CC2).
  • the controller 130 If the turn-off failure of the second charge contactor CC2 is diagnosed, the controller 130 outputs a failure signal to inform the outside of the turn-off failure of the second charge contactor CC2.
  • the first charged contactor CC1 is turned off without controlling the second stratified charge contactor CC2 in the turned off state.
  • control unit 130 turns off only the first charge contactor CC1 from the first charge contactor CC1 which is turned on and the second charge contactor CC2 which is turned off, And diagnoses whether the first charge contactor (CC1) is turned off based on the measured voltage difference between the first measured voltage and the second measured voltage.
  • the control unit 130 diagnoses that a turn-off failure has occurred in the first charge contactor CC1 when the measured voltage difference is less than the first reference voltage.
  • the controller 130 diagnoses that no turn-off failure has occurred in the first charge contactor CC1.
  • the connector condition is the first connector condition and the contactor condition is that the first battery contactor BC1 and the second battery contactor BC2 are turned on
  • the controller 130 calculates the internal resistance CR1 of the charger CS using the battery current, the voltage applied between the first input terminal IT1 and the second input terminal IT2, The battery voltage and the charging voltage Vc (between the first resistance MR1 and the second resistance MR2) and between the insulation resistance of the battery pack 100 and the internal resistance CR1 of the charger CS, ) To calculate the theoretical value of the measured voltage difference between the first measured voltage and the second measured voltage under the first connector condition and the second contactor condition.
  • control unit 130 calculates the theoretical value of the measured voltage difference between the first measured voltage and the second measured voltage, in which the connector condition is the above-described second connector condition and the contactor condition corresponds to the second contactor condition described above do.
  • the controller 130 calculates the internal resistance CR1 of the charger CS using the battery current, the voltage applied between the first input terminal IT1 and the second input terminal IT2, The battery voltage and the charging voltage Vc (between the first resistance MR1 and the second resistance MR2) and between the insulation resistance of the battery pack 100 and the internal resistance CR1 of the charger CS, ) To calculate the theoretical value of the third measured voltage in the second connector condition and the second contactor condition.
  • the controller 130 sets the first reference voltage to less than the theoretical value of the measured voltage difference between the calculated first measured voltage and the second measured voltage.
  • the control unit 130 sets the first reference voltage in accordance with the insulation resistance of the battery pack 100 and the internal resistance CR1 of the charger CS connected to the battery pack 100, And diagnoses the failure of the contactor (CC1).
  • the controller 130 If the turn-off failure of the first charge contactor CC1 is diagnosed, the controller 130 outputs a failure signal to inform the outside of the failure of the first charge contactor CC1.
  • the second charge contactor CC2 when the turn-off failure occurs in the second charge contactor CC2, as shown in Fig. 4, the second charge contactor CC2 is not controlled to turn off and remains in the turn-on state.
  • the controller 130 controls the first charge contactor CC1, which is turned on, to turn off, without controlling the second charge contactor CC2, which is turned on due to a turn-off failure, And diagnoses whether the first charge contactor (CC1) is turned off based on the measured voltage difference between the first measured voltage and the second measured voltage.
  • control unit 130 diagnoses that a turn-off failure has occurred in the first charge contactor CC1 when the measured voltage difference between the first measured voltage and the second measured voltage is less than the first reference voltage.
  • the controller 130 diagnoses that no turn-off failure has occurred in the first charge contactor CC1.
  • the controller 130 calculates the internal resistance CR1 of the charger CS using the battery current, the voltage applied between the first input terminal IT1 and the second input terminal IT2, The battery voltage and the charging voltage Vc (between the first resistance MR1 and the second resistance MR2) and between the insulation resistance of the battery pack 100 and the internal resistance CR1 of the charger CS, ) To calculate the theoretical value of the measured voltage difference between the first measured voltage and the second measured voltage under the first connector condition and the third contactor condition.
  • control unit 130 calculates the theoretical value of the measured voltage difference between the first measured voltage and the second measured voltage, in which the connector condition is the above-described second connector condition and the contactor condition corresponds to the third contactor condition described above do.
  • the controller 130 calculates the internal resistance CR1 of the charger CS using the battery current, the voltage applied between the first input terminal IT1 and the second input terminal IT2, The battery voltage and the charging voltage Vc (between the first resistance MR1 and the second resistance MR2) and between the insulation resistance of the battery pack 100 and the internal resistance CR1 of the charger CS, ) To calculate the theoretical value of the third measured voltage in the second connector condition and the third contactor condition.
  • the controller 130 sets the first reference voltage to less than the theoretical value of the measured voltage difference between the calculated first measured voltage and the second measured voltage.
  • control unit 130 can turn off the first charge contactor CC1 based on the measured voltage difference between the first measured voltage and the second measured voltage even if the turn-off failure occurs in the second charge contactor CC2 Diagnose the failure.
  • the controller 130 If the turn-off failure of the first charge contactor CC1 is diagnosed, the controller 130 outputs a failure signal to inform the outside of the failure of the first charge contactor CC1.
  • the control unit 130 may selectively include a processor, an application-specific integrated circuit (ASIC), another chipset, a logic circuit, a register, a communication modem, a data processing device, etc., have. At least one of the various control logic executable by the control unit 130 may be combined, and the combined control logic may be written in a computer-readable code system and recorded in a computer-readable recording medium.
  • the recording medium is not particularly limited as long as it can be accessed by a processor included in the computer.
  • the recording medium includes at least one selected from the group including ROM, RAM, register, CD-ROM, magnetic tape, hard disk, floppy disk and optical data recording device.
  • the battery pack 100 'according to another embodiment of the present invention may have some components added to the battery pack 100 according to an embodiment of the present invention, and only the roles of some components may be different. Accordingly, repeated description will be omitted.
  • FIG. 5 is a view showing a state and a functional configuration in which the battery pack 100 'and the charger CS are combined according to another embodiment of the present invention.
  • FIG. 6 is a sectional view of the battery pack 100' according to another embodiment of the present invention. And the charger CS are separated from each other and a functional configuration thereof.
  • a battery pack 100 ' according to another embodiment of the present invention includes a first measurement contactor MC1, a second measurement contactor MC1, A second measurement contactor MC2 and a third measurement contactor MC3.
  • the first measurement contactor MC1 is electrically connected between the first measurement resistor MR1 and the second node N2. More specifically, one end of the first measuring resistor MR1 is electrically connected to the second node N2, and the other end of the first measuring resistor MR1 is electrically connected to one end of the first measuring contactor MC1 do. Then, the other end of the first measurement contactor MC1 is electrically connected to the first node N1. That is, the first measurement resistor MR1 and the first measurement contactor MC1 are electrically connected in series between the first node N1 and the second node N2.
  • the second measurement contactor MC2 is electrically connected between the second measurement resistor MR2 and the third node N3. More specifically, one end of the second measuring resistor MR2 is electrically connected to the third node N3, and the other end of the second measuring resistor MR2 is electrically connected to one end of the second measuring contactor MC2 do. Then, the other end of the second measurement contactor MC2 is electrically connected to the first node N1. That is, the second measuring resistor MR2 and the second measuring contactor MC2 are electrically connected in series between the first node N1 and the third node N3.
  • the third measurement contactor MC3 is electrically connected between the third measurement resistor MR3 and the fourth node N4. More specifically, one end of the third measuring resistor MR3 is electrically connected to the fourth node N4, and the other end of the third measuring resistor MR3 is electrically connected to one end of the third measuring contactor MC3 do. Then, the other end of the third measurement contactor MC3 is electrically connected to the first node N1. That is, the third measuring resistor MR3 and the third measuring contactor MC3 are electrically connected in series between the first node N1 and the fourth node N4.
  • the above-described measuring resistances MR1, ..., MR3 may be resistances used to measure the voltages applied to the first charging contactor CC1 and the second charging contactor CC2.
  • the measuring connectors MC1, ..., MC3 electrically connected to the measuring resistors may serve to conduct or interrupt the current flowing through the measuring resistors.
  • the control unit 130 determines whether one of the first measurement contactor MC1, the second measurement contactor MC2, and the third measurement contactor MC3, based on whether at least one of the charge start request signal and the charge end request signal is received, The above-mentioned operation state is controlled.
  • the charge start request signal and the charge end request signal may be signals output from the ECU of the vehicle including the battery pack according to the present invention.
  • the first power connector C1 and the second power connector C2 of the charger CS are coupled to each other to start charging, as shown in FIG. 5, Lt; / RTI >
  • the control unit 130 Upon receiving the charge start request signal, the control unit 130 first turns on the operating states of the first measurement contactor MC1, the second measurement contactor MC2, and the third measurement contactor MC3. Thereafter, the control unit 130 turns on the operation states of the first charge contactor CC2 and the second charge contactor CC2.
  • the control unit 130 determines whether the first charge contactor CC2 and the second charge contactor CC2 are in the ON state before the operation states of the first charge contactor CC2 and the second charge contactor CC2 are turned on, The second measuring contactor MC2 and the third measuring contactor MC3 are turned on.
  • the controller 130 controls the first charge contactor CC2 and the second charge contactor CC2 before the charge current is applied from the charger CS to the first charge contactor CC2 and the second charge contactor CC2, So that the voltage applied to the ground terminal CC2 can be monitored.
  • the charging may be completed and the first power connector C1 and the second power connector C2 of the charger CS may be disconnected.
  • control unit 130 when the control unit 130 receives the charge end signal, it first controls the operation state of the first charge contactor CC2 to be turned off. Thereafter, the controller 130 controls the first measurement contactor MC1 based on the measurement voltage difference between the first measurement voltage and the second measurement voltage applied to the first measurement resistance MR1 and the second measurement resistance MR2, respectively. And the second measurement contactor MC2.
  • the control unit 130 determines the operation state of the first measurement contactor MC1 and the second measurement contactor MC2 Off.
  • control unit 130 controls the operation state of the first charge contactor CC2 to be turned off, and when the operation state of the first charge contactor CC2 is controlled to be turned off Off state of the first measurement contactor MC1 and the second measurement contactor MC2.
  • control unit 130 may turn off only the operation state of the second measurement contactor MC2 if the measured voltage difference between the first measured voltage and the second measured voltage is equal to or greater than a predetermined first control voltage.
  • the controller 130 controls the first input terminal IT1 so that the voltage is not applied to the first input terminal IT1, By controlling the operation states of the measurement contactor MC1 and the second measurement contactor MC2 to be turned off, it is possible to prevent an accident that the user is electrically charged to the first input terminal IT1, .
  • the control unit 130 upon receiving the charge termination request signal, the control unit 130 first turns off the operation state of the second charge contactor CC2. Then, the controller 130 controls the operation state of the third measurement contactor MC3 based on the third measured voltage applied to the third measurement resistor MR3.
  • control unit 130 turns off the operation state of the third measurement contactor MC3 when the third measured voltage is equal to or greater than a preset second control voltage.
  • the controller 130 when the controller 130 receives the charging completion signal, it controls the operation state of the second charging contactor CC2 to be turned off, and when the operation state of the second charging contactor CC2 is controlled to be turned off Off state of the third measurement contactor MC3.
  • the controller 130 controls the third input terminal IT2 so that no voltage is applied to the second input terminal IT2, By turning off the operation state of the second input terminal IT2, it is possible to prevent an accident that the user is electrically charged to the second input terminal IT2 which can be exposed to the outside in the charging process.
  • the battery pack 100 according to another embodiment of the present invention is a battery pack 100 " 100 '), some components may be added and only the roles of some components may be different. Accordingly, repeated description will be omitted.
  • FIG. 7 is a view showing a state and a functional configuration in which a battery pack 100 "and a charger CS are combined according to another embodiment of the present invention.
  • FIG. 8 is a cross- 100 ") and the charger (CS) are separated from each other.
  • the battery pack 100 '' according to another embodiment of the present invention further includes an illuminance detector 140 'for the battery pack 100' according to another embodiment of the present invention .
  • the illuminance sensing unit 140 is installed inside the first power connector C1 to sense the illuminance around the first power connector C1.
  • the illuminance detector 140 detects the illuminance of the first power connector C1 and the charger CS, And is installed on the surface of the first power supply connector C1 out of the space sealed by the connector C2.
  • the first power connector C1 may have a connector cover.
  • the illuminance sensing unit 140 is installed on the surface of the first power connector C1 among the space sealed by the inner space of the first power connector C1 and the connector cover.
  • first power connector C1 when the first power connector C1 is coupled to the second power connector C2 of the charger CS or the connector cover of the first power connector C1 is closed, And may be located in an enclosed space in which light is not introduced, as shown in Fig.
  • the controller 130 compares the illuminance around the first power connector C1 measured by the illuminance detector 140 with a preset reference illuminance and outputs the illuminance of the first measurement contactor MC1 based on the comparison result.
  • the second measurement contactor (MC2), and the third measurement contactor (MC3) are used to compare the illuminance around the first power connector C1 measured by the illuminance detector 140 with a preset reference illuminance and outputs the illuminance of the first measurement contactor MC1 based on the comparison result.
  • the second measurement contactor (MC2), and the third measurement contactor (MC3) are examples of the second measurement contactor (MC2), and the third measurement contactor (MC3).
  • the preset reference illuminance may be an illuminance value for determining whether the first input terminal IT1 and the second input terminal IT2 of the first power connector C1 are exposed to the outside.
  • the controller 130 controls the first power connector C1 And the second power connector C2 of the charger CS are disconnected or the connector cover of the first power connector C1 is opened.
  • the controller 130 controls the first input terminal IT1 of the first power connector C1 It is determined that the second input terminal IT2 is exposed to the outside.
  • the controller 130 controls the first power connector C1 and the second power connector C1, It is judged that the second power supply connector C2 of the charger CS is engaged or the connector cover of the first power supply connector C1 is closed.
  • the controller 130 controls the first input terminal IT1 of the first power connector C1 It is determined that the second input terminal IT2 is not exposed to the outside.
  • the controller 130 determines whether the first measurement contactor MC1, the second measurement contactor MC2 And the third measurement contactor MC3 in the turn-off state.
  • the controller 130 controls the first and second charge contactors CC1 and CC2 CC2) to the turn-off state.
  • the controller 130 controls the first and second measurement contacts MC1, The operation state of the third measurement contactor MC3 and the third measurement contactor MC3 are controlled to be turned off to prevent an accident that the user is electrocuted to the first input terminal IT1 or the second input terminal IT2 exposed to the outside can do.
  • the automobile according to the present invention may include the battery pack according to the present invention described above.

Abstract

배터리 팩을 개시한다. 본 발명의 일 실시예에 따른 배터리 팩은, 배터리의 양극 단자와 음극 단자에 각각 일단이 전기적으로 연결되는 제1 배터리 컨택터와 제2 배터리 컨택터, 상기 제1 배터리 컨택터의 타단과 상기 제2 배터리 컨택터의 타단에 각각 일단이 전기적으로 연결되는 제1 충전 컨택터와 제2 충전 컨택터, 제1 출력 단자와 제2 출력 단자를 구비하는 충전기의 제2 전원 커넥터가 결합되는 제1 전원 커넥터 및 제2 전원 커넥터가 제1 전원 커넥터에 결합되고, 상기 충전기의 전원으로부터 상기 제1 출력 단자와 상기 제2 출력 단자 사이에 충전 전압이 인가되지 않은 경우, 상기 제1 충전 컨택터와 상기 제2 충전 컨택터를 차례로 턴 온 상태 또는 턴 오프 상태로 제어하여 상기 제1 충전 컨택터와 상기 제2 충전 컨택터 각각의 고장 여부를 진단하는 제어부를 포함한다.

Description

배터리 팩
본 출원은 2017년 11월 29일자로 출원된 한국 특허출원 번호 제10-2017-0162223호에 대한 우선권주장출원으로서, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 인용에 의해 본 출원에 원용된다.
본 발명은 배터리 팩에 관한 것으로서, 보다 상세하게는, 충전 컨택터에 연결된 측정 저항에 인가된 전압에 기초하여 충전 컨택터의 고장 여부를 진단하는 배터리 팩에 관한 것이다.
최근, 노트북, 비디오 카메라, 휴대용 전화기 등과 같은 휴대용 전자 제품의 수요가 급격하게 증대되고, 전기 자동차, 에너지 저장용 축전지, 로봇, 위성 등의 개발이 본격화됨에 따라, 반복적인 충방전이 가능한 고성능 이차 전지에 대한 연구가 활발히 진행되고 있다.
현재 상용화된 이차 전지로는 니켈 카드뮴 전지, 니켈 수소 전지, 니켈 아연 전지, 리튬 이차 전지 등이 있는데, 이 중에서 리튬 이차 전지는 니켈 계열의 이차 전지에 비해 메모리 효과가 거의 일어나지 않아 충방전이 자유롭고, 자가 방전율이 매우 낮으며 에너지 밀도가 높은 장점으로 각광을 받고 있다.
특히, 배터리 팩은 복수의 배터리 셀이 전기적으로 연결된 배터리 모듈을 포함함으로써, 전기 자동차에 요구되는 고용량, 고출력의 요구 설계를 충족시킬 수 있다. 이러한, 전기 자동차에 차용된 배터리 팩은 충전소의 충전기와 전기적으로 연결되어 전력이 충전될 수 있다.
이를 위하여, 전기 자동차에 차용된 배터리 팩은 배터리 모듈의 양극 단자와 음극 단자에 연결되어 배터리 모듈의 출력단의 전기적 연결을 제어하는 배터리 컨택터 및 충전기의 전력이 입력되는 충전 단자와 배터리 컨택터 사이의 전기적 연결을 제어하는 충전 컨택터를 포함할 수 있다.
특히, 충전 컨택터는 외부로 노출될 뿐만 아니라, 충전기의 전원 커넥터와 연결되는 입력 단자의 전기적 연결을 제어함으로써, 현재 충전 컨택터가 턴 온 상태인지 또는 턴 오프 상태인지 모니터링하고, 턴 온 상태 또는 턴 오프 상태로의 제어에 대응하여 실제로 충전 컨택터가 제어되는지 여부를 진단하는 것이 중요하다.
본 발명은, 배터리 팩의 제1 전원 커택터와 충전기의 제2 전원 커넥터가 연결된 상태에서 충전이 완료되거나 중단되어 충전 종료 요청 신호가 수신된 경우, 제1 충전 컨택터와 제2 충전 컨택터를 차례로 턴 오프 상태로 제어한 후, 제1 충전 컨택터와 제2 충전 컨택터 각각의 턴 오프 고장 여부를 진단하는 배터리 팩을 제공하는 것을 목적으로 한다.
본 발명의 다른 목적 및 장점들은 하기의 설명에 의해서 이해될 수 있으며, 본 발명의 실시예에 의해 보다 분명하게 알게 될 것이다. 또한, 본 발명의 목적 및 장점들은 특허청구범위에 나타난 수단 및 그 조합에 의해 실현될 수 있음을 쉽게 알 수 있을 것이다.
상기 목적을 달성하기 위한 본 발명의 일 실시예에 따른 배터리 팩은, 배터리의 양극 단자와 음극 단자에 각각 일단이 전기적으로 연결되는 제1 배터리 컨택터와 제2 배터리 컨택터; 상기 제1 배터리 컨택터의 타단과 상기 제2 배터리 컨택터의 타단에 각각 일단이 전기적으로 연결되는 제1 충전 컨택터와 제2 충전 컨택터; 상기 제2 충전 컨택터의 일단에 위치하는 제1 노드와 상기 제1 충전 컨택터의 일단에 위치하는 제2 노드 사이, 상기 제1 노드와 상기 제1 충전 컨택터의 타단에 위치하는 제3 노드 사이 및 상기 제1 노드와 상기 제2 충전 컨택터의 타단에 위치하는 제4 노드에 각각 전기적으로 연결되는 제1 측정 저항, 제2 측정 저항 및 제3 측정 저항; 상기 제1 충전 컨택터의 타단과 상기 제2 충전 컨택터의 타단에 각각 전기적으로 연결되는 제1 입력 단자와 제2 입력 단자를 구비하는 제1 전원 커넥터; 및 상기 제1 입력 단자와 상기 제2 입력 단자에 각각 전기적으로 연결되는 제1 출력 단자와 제2 출력 단자를 구비하는 충전기의 제2 전원 커넥터가 제1 전원 커넥터에 결합되고, 충전 종료 요청 신호를 수신하는 경우, 상기 제1 충전 컨택터와 상기 제2 충전 컨택터를 차례로 턴 온 상태 또는 턴 오프 상태로 제어하고, 제1 측정 저항, 제2 측정 저항 및 제3 측정 저항 각각에 인가된 제1 측정 전압, 제2 측정 전압 및 제3 측정 전압 중 하나 이상에 기초하여 상기 제1 충전 컨택터와 상기 제2 충전 컨택터 각각의 고장 여부를 진단하는 제어부를 포함한다.
바람직하게, 상기 제어부는 턴 온 상태인 상기 제2 충전 컨택터를 턴 오프 상태로 제어하고, 상기 제3 측정 전압에 기초하여 상기 제2 충전 컨택터의 턴 오프 고장 여부를 진단할 수 있다.
바람직하게, 상기 제어부는 상기 제3 측정 전압이 제2 기준 전압 미만이면 상기 제2 충전 컨택터에 턴 오프 고장이 발생된 것으로 진단할 수 있다.
바람직하게, 상기 제어부는 제3 측정 전압에 기초하여 상기 제2 충전 컨택터의 고장을 진단하고, 턴 온 상태인 상기 제1 충전 컨택터를 턴 오프 상태로 제어하고, 상기 제1 측정 전압과 상기 제2 측정 전압 간의 측정 전압차에 기초하여 상기 제1 충전 컨택터의 턴 오프 고장 여부를 진단할 수 있다.
바람직하게, 상기 제어부는 상기 제1 측정 전압과 상기 제2 측정 전압 간의 측정 전압차가 제1 기준 전압 미만이면 상기 제1 충전 컨택터에 턴 오프 고장이 발생된 것으로 진단할 수 있다.
바람직하게, 상기 제어부는 상기 제1 충전 컨택터와 상기 제2 충전 커낵터 중 하나 이상에 고장이 발생한 것으로 진단되면 고장 신호를 출력할 수 있다.
본 발명에 따른 자동차는 상기 배터리 팩을 포함한다.
본 발명의 실시예들 중 적어도 하나에 의하면, 제1 충전 컨택터와 제2 충전 컨택터 각각의 턴 오프 고장 여부를 진단하여 외부로 알림으로써, 충전이 종료되었음에도 제1 충전 컨택터와 제2 충전 컨택터가 각각 턴 온 상태를 유지하여 발생할 수 있는 전기 사고를 예방할 수 있다.
본 발명의 효과들은 이상에서 언급한 효과들로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 청구범위의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 후술되는 발명의 상세한 설명과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니된다.
도 1 내지 도 4는 본 발명의 일 실시예에 따른 배터리 팩과 충전기의 기능적 구성을 나타낸 도면이다.
도 5는 본 발명의 다른 실시예에 따른 배터리 팩과 충전기가 결합된 상태 및 기능적 구성을 나타낸 도면이다.
도 6은 본 발명의 다른 실시예에 따른 배터리 팩과 충전기가 분리된 상태 및 기능적 구성을 나타낸 도면이다.
도 7은 본 발명의 또 다른 실시예에 따른 배터리 팩과 충전기가 결합된 상태 및 기능적 구성을 나타낸 도면이다.
도 8은 본 발명의 또 다른 실시예에 따른 배터리 팩과 충전기가 분리된 상태 및 기능적 구성을 나타낸 도면이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야 한다.
따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
또한, 본 발명을 설명함에 있어 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.
제1, 제2 등과 같이 서수를 포함하는 용어들은, 다양한 구성요소들 중 어느 하나를 나머지와 구별하는 목적으로 사용되는 것이고, 그러한 용어들에 의해 구성요소들을 한정하기 위해 사용되는 것은 아니다.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라, 다른 구성요소를 더 포함할 수 있다는 것을 의미한다. 또한, 명세서에 기재된 <제어 유닛>과 같은 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어나 소프트웨어, 또는 하드웨어 및 소프트웨어의 결합으로 구현될 수 있다.
덧붙여, 명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐만 아니라, 그 중간에 다른 소자를 사이에 두고 "간접적으로 연결"되어 있는 경우도 포함한다.
이하, 본 발명의 일 실시예에 따른 배터리 팩(100)에 대해 설명하도록 한다.
도 1 내지 도 4는 본 발명의 일 실시예에 따른 배터리 팩(100)과 충전기(CS)의 기능적 구성을 나타낸 도면이다.
먼저 도 1을 참조하면, 배터리 팩(100)은 배터리 모듈(B), 제1 배터리 컨택터(BC1), 제2 배터리 컨택터(BC2), 제1 충전 컨택터(CC1), 제2 충전 컨택터(CC2), 제1 측정 저항(MR1), 제2 측정 저항(MR2), 제3 측정 저항(MR3), 제1 전원 커넥터(C1), 센싱부(110), 메모리부(120) 및 제어부(130)를 포함한다.
배터리 모듈(B)은, 적어도 하나의 배터리 셀을 포함할 수 있다. 배터리 모듈(B)이 서로 전기적으로 연결된 복수의 배터리 셀을 포함하는 경우, 복수의 배터리 셀은 상호 간에 직렬, 병렬 또는 직병렬로 연결될 수 있다. 배터리 모듈(B)은 양극 단자(+) 및 음극 단자(-)를 가진다.
제1 배터리 컨택터(BC1)는 일단이 배터리 모듈(B)의 양극 단자(+)에 전기적으로 연결되고, 제2 배터리 컨택터(BC2)는 일단이 배터리 모듈(B)의 음극 단자(-)에 전기적으로 연결된다.
이를 통해, 배터리 모듈(B)은 제1 배터리 컨택터(BC1)와 제2 배터리 컨택터(BC2)의 턴 온 상태 또는 턴 오프 상태에 따라 전력이 출력되거나 충전될 수 있다.
이러한, 제1 배터리 컨택터(BC1)와 제2 배터리 컨택터(BC2)는 후술되는 제어부(130)에 의해 턴 온 상태 또는 턴 오프 상태로 제어될 수 있다.
여기서, 턴 온 상태는 컨택터의 접점이 접촉되어 컨택터의 일단과 타단이 전기적으로 연결된 상태를 의미하고, 턴 오프 상태는 컨택터의 접점이 분리되어 컨택터의 일단과 타단이 전기적으로 차단된 상태를 의미한다.
제1 충전 컨택터(CC1)는 일단이 제1 배터리 컨택터(BC1)의 타단에 전기적으로 연결되고, 제2 충전 컨택터(CC2)는 일단이 제2 배터리 컨택터(BC2)의 타단에 전기적으로 연결된다.
또한, 제1 충전 컨택터(CC1)와 제2 충전 컨택터(CC2)는 타단이 각각 제1 전원 커넥터(C1)에 전기적으로 연결된다. 보다 구체적으로, 제1 충전 컨택터(CC1)의 타단은 제1 전원 커넥터(C1)에 구비된 제1 입력 단자(IT1)와 전기적으로 연결되고, 제2 충전 컨택터(CC2)의 타단은 제1 전원 커넥터(C1)에 구비된 제2 입력 단자(IT2)와 전기적으로 연결된다.
한편, 제1 전원 커넥터(C1)에 충전기(CS)의 제2 전원 커넥터(C2)가 연결되면, 제1 입력 단자(IT1)와 제2 입력 단자(IT2)에는 제2 전원 커넥터(C2)의 제1 출력 단자(OT1)와 제2 출력 단자(OT2)가 각각 전기적으로 연결될 수 있다.
이에 따라, 제1 배터리 컨택터(BC1), 제2 배터리 컨택터(BC2), 제1 충전 컨택터(CC1) 및 제2 충전 컨택터(CC2)가 턴 온 상태인 경우, 제1 전원 커넥터(C1)에 제2 전원 커넥터(C2)가 연결되면, 충전기(CS)의 전력이 배터리 모듈(B)에 충전된다.
한편, 제1 입력 단자(IT1)의 일단과 타단에는 각각 제2 노드(N2)와 제3 노드(N3)가 위치하고, 제2 입력 단자(IT2)의 일단과 타단에는 각각 제1 노드(N1)와 제4 노드(N4)가 위치한다.
이때, 제1 측정 저항(MR1)은 제1 노드(N1)와 제2 노드(N2) 사이에 전기적으로 연결되고, 제2 측정 저항(MR2)은 제1 노드(N1)와 제3 노드(N3) 사이에 전기적으로 연결된다. 또한, 제3 측정 저항(MR3)은 제1 노드(N1)와 제4 노드(N4) 사이에 전기적으로 연결되며, 제2 충전 컨택터(CC2)와 병렬 연결된다.
센싱부(110)는 제어부(130)와 동작 가능하게 결합된다. 즉, 센싱부(110)는 제어부(130)로 전기적 신호를 송신하거나 제어부(130)로부터 전기적 신호를 수신 가능하도록 제어부(130)에 접속될 수 있다.
센싱부(110)는 미리 설정된 주기 또는 제어부(130) 센싱 제어에 따라 배터리 모듈(B)의 양극 단자(+)와 음극 단자(-) 사이에 인가되는 배터리 전압을 측정한다.
또한, 센싱부(110)는 미리 설정된 주기 또는 제어부(130) 센싱 제어에 따라 제1 측정 저항(MR1), 제2 측정 저항(MR2) 및 제3 측정 저항(MR3) 각각에 인가되는 제1 측정 전압, 제2 측정 전압 및 제3 측정 전압을 측정한다.
또한, 센싱부(110)는 미리 설정된 주기 또는 제어부(130) 센싱 제어에 따라 제1 입력 단자(IT1)와 제2 입력 단자(IT2) 사이 또는 제1 출력 단자(OT1)와 제2 출력 단자(OT2) 사이에 인가되는 충전기(CS)의 충전 전압(Vc)을 측정한다.
또한, 센싱부(110)는 배터리 모듈(B)로 흘러 들어가거나 흘러 나오는 배터리 전류를 반복 측정하여 측정한다.
이후, 센싱부(110)는 측정된 배터리 전압, 제1 측정 전압, 제2 측정 전압, 제3 측정 전압, 충전 전압(Vc) 및 배터리 전류를 나타내는 측정 신호를 제어부(130)로 제공할 수 있다.
이를 위하여, 센싱부(110)는 배터리 모듈(B)의 전압을 측정하도록 구성된 전압 센서를 포함한다. 또한, 센싱부(110)는 배터리 모듈(B)의 전류를 측정하도록 구성된 전류 센서를 더 포함할 수 있다.
제어부(130)는 센싱부(110)로부터 측정 신호가 수신되면, 신호 처리를 통해 측정된 배터리 전압, 제1 측정 전압, 제2 측정 전압, 제3 측정 전압, 충전 전압(Vc) 및 배터리 전류 각각의 디지털 값을 결정하고 메모리부(120)에 저장할 수 있다.
메모리부(120)는 반도체 메모리 소자로서, 제어부(130)에 의해 생성되는 데이터를 기록, 소거, 갱신하며, 제1 충전 컨택터(CC1)와 제2 충전 컨택터(CC2) 각각의 고장 진단을 위해 마련된 복수의 프로그램 코드를 저장한다. 또한, 메모리부(120)는 본 발명을 실시할 때 사용되는
이러한, 메모리부(120)는 데이터를 기록, 소거, 갱신할 수 있다고 알려진 반도체 메모리 소자라면 그 종류에 특별한 제한이 없다. 일 예시로서, 메모리부(120)는 DRAM, SDRAM, 플래쉬 메모리, ROM, EEPROM, 레지스터 등일 수 있다. 메모리부(120)는 제어부(130)의 제어 로직을 정의한 프로그램 코드들을 저장하고 있는 저장매체를 더 포함할 수 있다. 저장매체는 플래쉬 메모리나 하드디스크와 같은 불활성 기억 소자를 포함한다. 메모리부(120)는 제어부(130)와 물리적으로 분리되어 있을 수도 있고, 제어부(130)와 일체로 통합되어 있을 수도 있다.
제어부(130)는 진단 조건에 기초하여 제1 충전 컨택터(CC1)와 제2 충전 컨택터(CC2)의 고장 진단을 수행할지 여부를 결정한다.
여기서, 진단 조건은 제1 전원 커넥터(C1)와 제2 전원 커넥터(C2)가 결합되었는지 여부, 충전 종료 요청 신호의 수신 여부 및 제1 배터리 컨택터(BC1)와 제2 배터리 컨택터(BC2)가 턴 온 상태인지 여부 중 하나를 포함할 수 있다.
여기서, 충전 종료 요청 신호는 본 발명에 따른 배터리 팩을 포함하는 자동차의 ECU에서 출력되는 신호일 수 있다.
일 실시예에 따른 제어부(130)는 도 1에 도시된 바와 같이, 제1 전원 커넥터(C1)와 제2 전원 커넥터(C2)가 결합되고, 충전 종료 요청 신호가 수신되고, 제1 배터리 컨택터(BC1)와 제2 배터리 컨택터(BC2)가 턴 온 상태이면 진단 조건을 만족하는 것으로 판단한다.
한편, 제어부(130)는 충전 종료 요청 신호가 수신되면 충전기(CS)로 출력 종료 신호를 출력하여 충전기(CS)의 충전 전압(Vc)이 제1 출력 단자(OT1)와 제2 출력 단자(OT2) 사이에 인가되지 않도록 할 수 있다.
제어부(130)는 진단 조건이 만족되면 제1 충전 컨택터(CC1)와 제2 충전 컨택터(CC2)의 고장 진단을 수행할 것으로 결정한다. 이후, 제어부(130)는 제1 충전 컨택터(CC1)와 제2 충전 컨택터(CC2) 중 하나 이상을 턴 온 또는 턴 오프 상태로 제어하고, 상기 제어에 따라 측정되는 제1 측정 전압, 제2 측정 전압 및 제3 측정 전압 중 하나 이상에 기초하여 제1 충전 컨택터(CC1)와 제2 충전 컨택터(CC2) 각각의 고장 여부를 진단한다.
이를 위하여, 제어부(130)는 제1 배터리 컨택터(BC1), 제2 배터리 컨택터(BC2), 제1 충전 컨택터(CC1) 및 제2 충전 컨택터(CC2) 중 적어도 하나를 위한 턴 온 상태 또는 턴 오프 상태로 제어하기 위한 제어 신호를 생성하도록 구성된다.
우선, 제어부(130)는 턴 온 상태인 제1 충전 컨택터(CC1)와 제2 충전 컨택터(CC2) 중에서 도 2에 도시된 바와 같이, 제2 충전 컨택터(CC2)만을 턴 오프 상태로 제어하고, 제3 측정 전압에 기초하여 제2 충전 컨택터(CC2)의 턴 오프 고장 여부를 진단한다.
여기서, 턴 오프 고장은 제어부(130)가 컨택터를 턴 오프로 제어하였으나 턴 온 상태를 유지하는 고장을 의미할 수 있다.
제어부(130)는 제3 측정 전압이 제2 기준 전압 미만이면 제2 충전 컨택터(CC2)에 턴 오프 고장이 발생한 것으로 진단할 수 있다.
반대로, 제어부(130)는 제3 측정 전압이 제2 기준 전압 이상이면 제2 충전 컨택터(CC2)에 턴 오프 고장이 발생하지 않은 것으로 진단한다.
한편, 제어부(130)는 커넥터 조건이 제1 출력 단자(OT1)와 제2 출력 단자(OT2)에 충전 전압(Vc)이 인가되지 않은 제2 전원 커넥터(C2)가 제1 전원 커넥터(C1)와 결합된 제1 커넥터 조건이고, 컨택터 조건이 제1 배터리 컨택터(BC1)와 제2 배터리 컨택터(BC2)가 턴 온 상태이며, 제1 충전 컨택터(CC1)가 턴 온 상태이고, 제2 충전 컨택터(CC2)가 턴 오프 상태인 제1 컨택터 조건인 경우에 대응하는 제3 측정 전압의 이론값을 산출한다.
보다 구체적으로, 제어부(130)는 배터리 전류와 제1 입력 단자(IT1) 및 제2 입력 단자(IT2) 사이에 인가된 전압을 이용하여 충전기(CS)의 내부 저항(CR1)을 산출하고, 제1 측정 저항(MR1), 제2 측정 저항(MR2), 제3 측정 저항(MR3), 배터리 팩(100)의 절연 저항 및 충전기(CS)의 내부 저항(CR1) 간에 배터리 전압과 충전 전압(Vc)의 분배 전압을 산출하여 제1 커넥터 조건과 제1 컨택터 조건에서의 제3 측정 전압의 이론값을 산출한다.
또한, 제어부(130)는 커넥터 조건이 제1 출력 단자(OT1)와 제2 출력 단자(OT2)에 충전 전압(Vc)이 인가되는 제2 전원 커넥터(C2)가 제1 전원 커넥터(C1)와 결합된 제2 커넥터 조건이고, 컨택터 조건이 상술된 제1 컨택터 조건인 경우에 대응하는 제3 측정 전압의 이론값을 산출한다.
보다 구체적으로, 제어부(130)는 배터리 전류와 제1 입력 단자(IT1) 및 제2 입력 단자(IT2) 사이에 인가된 전압을 이용하여 충전기(CS)의 내부 저항(CR1)을 산출하고, 제1 측정 저항(MR1), 제2 측정 저항(MR2), 제3 측정 저항(MR3), 배터리 팩(100)의 절연 저항 및 충전기(CS)의 내부 저항(CR1) 간에 배터리 전압과 충전 전압(Vc)의 분배 전압을 산출하여 제2 커넥터 조건과 제1 컨택터 조건에서의 제3 측정 전압의 이론값을 산출한다.
이후, 제어부(130)는 제2 기준 전압을 산출된 제3 측정 전압의 이론값 미만으로 설정한다.
이를 통해, 제어부(130)는 배터리 팩(100)의 절연 저항 및 배터리 팩(100)과 연결되는 충전기(CS)의 내부 저항(CR1)에 대응하여 제2 기준 전압을 설정함으로써, 정확하게 제2 충전 컨택터(CC2)의 고장을 진단한다.
제어부(130)는 제2 충전 컨택터(CC2)의 턴 오프 고장이 진단되면 고장 신호를 출력하여 외부로 제2 충전 컨택터(CC2)의 턴 오프 고장을 알린다.
한편, 제2 충전 컨택터(CC2)에 턴 오프 고장이 발생하지 않은 경우, 제1 충전 컨택터(CC1)의 턴 오프 고장을 진단하기 위하여, 제어부(130)는 도 3에 도시된 바와 같이, 턴 오프 상태인 제2 층전 컨택터(CC2)는 제어하지 않고, 제1 충전 컨택터(CC1)를 턴 오프 상태로 제어한다.
이때, 제어부(130)는 턴 온 상태인 제1 충전 컨택터(CC1)와 턴 오프 상태인 제2 충전 컨택터(CC2) 중에서 제1 충전 컨택터(CC1)만을 턴 오프 상태로 제어하고, 제1 측정 전압과 제2 측정 전압 간의 측정 전압차에 기초하여 제1 충전 컨택터(CC1)의 턴 오프 고장 여부를 진단한다.
제어부(130)는 측정 전압차가 제1 기준 전압 미만이면 제1 충전 컨택터(CC1)에 턴 오프 고장이 발생한 것으로 진단한다.
반대로, 제어부(130)는 측정 전압차가 제1 기준 전압 이상이면 제1 충전 컨택터(CC1)에 턴 오프 고장이 발생하지 않은 것으로 진단한다.
한편, 제어부(130)는 커넥터 조건이 상술된 제1 커넥터 조건이고, 컨택터 조건이 제1 배터리 컨택터(BC1)와 제2 배터리 컨택터(BC2)가 턴 온 상태이고, 제1 충전 컨택터(CC1)와 제2 충전 컨택터(CC2)가 턴 오프 상태인 제2 컨택터 조건에 대응하는 제1 측정 전압과 제2 측정 전압 간에 측정 전압차의 이론값을 산출한다.
보다 구체적으로, 제어부(130)는 배터리 전류와 제1 입력 단자(IT1) 및 제2 입력 단자(IT2) 사이에 인가된 전압을 이용하여 충전기(CS)의 내부 저항(CR1)을 산출하고, 제1 측정 저항(MR1), 제2 측정 저항(MR2), 제3 측정 저항(MR3), 배터리 팩(100)의 절연 저항 및 충전기(CS)의 내부 저항(CR1) 간에 배터리 전압과 충전 전압(Vc)의 분배 전압을 산출하여 제1 커넥터 조건과 제2 컨택터 조건에서의 제1 측정 전압과 제2 측정 전압 간에 측정 전압차의 이론값을 산출한다.
또한, 제어부(130)는 커넥터 조건이 상술된 제2 커넥터 조건이고, 컨택터 조건이 상술된 제2 컨택터 조건에 대응하는 제1 측정 전압과 제2 측정 전압 간에 측정 전압차의 이론값을 산출한다.
보다 구체적으로, 제어부(130)는 배터리 전류와 제1 입력 단자(IT1) 및 제2 입력 단자(IT2) 사이에 인가된 전압을 이용하여 충전기(CS)의 내부 저항(CR1)을 산출하고, 제1 측정 저항(MR1), 제2 측정 저항(MR2), 제3 측정 저항(MR3), 배터리 팩(100)의 절연 저항 및 충전기(CS)의 내부 저항(CR1) 간에 배터리 전압과 충전 전압(Vc)의 분배 전압을 산출하여 제2 커넥터 조건과 제2 컨택터 조건에서의 제3 측정 전압의 이론값을 산출한다.
이후, 제어부(130)는 제1 기준 전압을 산출된 제1 측정 전압과 제2 측정 전압 간에 측정 전압차의 이론값 미만으로 설정한다.
이를 통해, 제어부(130)는 배터리 팩(100)의 절연 저항 및 배터리 팩(100)과 연결되는 충전기(CS)의 내부 저항(CR1)에 대응하여 제1 기준 전압을 설정함으로써, 정확하게 제1 충전 컨택터(CC1)의 고장을 진단한다.
제어부(130)는 제1 충전 컨택터(CC1)의 턴 오프 고장이 진단되면 고장 신호를 출력하여 제1 충전 컨택터(CC1)의 고장을 외부로 알린다.
한편, 제2 충전 컨택터(CC2)에 턴 오프 고장이 발생한 경우, 도 4에 도시된 바와 같이, 제2 충전 컨택터(CC2)는 턴 오프 상태로 제어되지 않고 턴 온 상태를 유지한다.
이때, 제어부(130)는 턴 오프 고장이 발생하여 턴 온 상태인 제2 충전 컨택터(CC2)는 제어하지 않고, 턴 온 상태인 제1 충전 컨택터(CC1)만을 턴 오프 상태로 제어하고, 제1 측정 전압과 제2 측정 전압 간의 측정 전압차에 기초하여 제1 충전 컨택터(CC1)의 턴 오프 고장 여부를 진단한다.
보다 구체적으로, 제어부(130)는 제1 측정 전압과 제2 측정 전압 간의 측정 전압차가 제1 기준 전압 미만이면 제1 충전 컨택터(CC1)에 턴 오프 고장이 발생한 것으로 진단한다.
반대로, 제어부(130)는 측정 전압차가 제1 기준 전압 이상이면 제1 충전 컨택터(CC1)에 턴 오프 고장이 발생하지 않은 것으로 진단한다.
이때, 제어부(130)는 커넥터 조건이 상술된 제1 커넥터 조건이고, 제1 배터리 컨택터(BC1)와 제2 배터리 컨택터(BC2)가 턴 온 상태이고, 제1 충전 컨택터(CC1)와 제2 충전 컨택터(CC2)가 턴 온 상태인 제3 컨택터 조건에 대응하는 제1 측정 전압과 제2 측정 전압 간에 측정 전압차의 이론값을 산출한다.
보다 구체적으로, 제어부(130)는 배터리 전류와 제1 입력 단자(IT1) 및 제2 입력 단자(IT2) 사이에 인가된 전압을 이용하여 충전기(CS)의 내부 저항(CR1)을 산출하고, 제1 측정 저항(MR1), 제2 측정 저항(MR2), 제3 측정 저항(MR3), 배터리 팩(100)의 절연 저항 및 충전기(CS)의 내부 저항(CR1) 간에 배터리 전압과 충전 전압(Vc)의 분배 전압을 산출하여 제1 커넥터 조건과 제3 컨택터 조건에서의 제1 측정 전압과 제2 측정 전압 간에 측정 전압차의 이론값을 산출한다.
또한, 제어부(130)는 커넥터 조건이 상술된 제2 커넥터 조건이고, 컨택터 조건이 상술된 제3 컨택터 조건에 대응하는 제1 측정 전압과 제2 측정 전압 간에 측정 전압차의 이론값을 산출한다.
보다 구체적으로, 제어부(130)는 배터리 전류와 제1 입력 단자(IT1) 및 제2 입력 단자(IT2) 사이에 인가된 전압을 이용하여 충전기(CS)의 내부 저항(CR1)을 산출하고, 제1 측정 저항(MR1), 제2 측정 저항(MR2), 제3 측정 저항(MR3), 배터리 팩(100)의 절연 저항 및 충전기(CS)의 내부 저항(CR1) 간에 배터리 전압과 충전 전압(Vc)의 분배 전압을 산출하여 제2 커넥터 조건과 제3 컨택터 조건에서의 제3 측정 전압의 이론값을 산출한다.
이후, 제어부(130)는 제1 기준 전압을 산출된 제1 측정 전압과 제2 측정 전압 간에 측정 전압차의 이론값 미만으로 설정한다.
이를 통해, 제어부(130)는 제2 충전 컨택터(CC2)에 턴 오프 고장이 발생하더라도 제1 측정 전압과 제2 측정 전압 간의 측정 전압차에 기초하여 제1 충전 컨택터(CC1)의 턴 오프 고장 여부를 진단한다.
제어부(130)는 제1 충전 컨택터(CC1)의 턴 오프 고장이 진단되면 고장 신호를 출력하여 제1 충전 컨택터(CC1)의 고장을 외부로 알린다.
한편, 제어부(130)는 다양한 제어 로직들을 실행하기 위해 당업계에 알려진 프로세서, ASIC(application-specific integrated circuit), 다른 칩셋, 논리 회로, 레지스터, 통신 모뎀, 데이터 처리 장치 등을 선택적으로 포함할 수 있다. 제어부(130)에 의해 실행될 수 있는 다양한 제어 로직들은 적어도 하나 이상이 조합되고, 조합된 제어 로직들은 컴퓨터가 읽을 수 있는 코드 체계로 작성되어 컴퓨터가 읽을 수 있는 기록매체에 수록될 수 있다. 기록매체는 컴퓨터에 포함된 프로세서에 의해 접근이 가능한 것이라면 그 종류에 특별한 제한이 없다. 일 예시로서, 기록매체는 ROM, RAM, 레지스터, CD-ROM, 자기 테이프, 하드 디스크, 플로피디스크 및 광 데이터 기록장치를 포함하는 군에서 선택된 적어도 하나 이상을 포함한다.
이하, 본 발명의 다른 실시예에 따른 배터리 팩(100')에 대해 설명하도록 한다. 본 발명의 다른 실시예에 따른 배터리 팩(100')은 본 발명의 일 실시예에 따른 배터리 팩(100) 대비, 일부 구성 요소가 추가되고 일부 구성 요소의 역할만이 상이할 수 있다. 이에 따라, 반복되는 설명은 생략하도록 한다.
도 5는 본 발명의 다른 실시예에 따른 배터리 팩(100')과 충전기(CS)가 결합된 상태 및 기능적 구성을 나타낸 도면이고, 도 6은 본 발명의 다른 실시예에 따른 배터리 팩(100')과 충전기(CS)가 분리된 상태 및 기능적 구성을 나타낸 도면이다.
먼저 도 5를 참조하면, 본 발명의 다른 실시예에 따른 배터리 팩(100')은 본 발명의 일 실시예에 따른 배터리 팩(100) 대비 제1 측정 컨택터(MC1), 제2 측정 컨택터(MC2) 및 제3 측정 컨택터(MC3)를 더 포함할 수 있다.
제1 측정 컨택터(MC1)는 제1 측정 저항(MR1)과 제2 노드(N2) 사이에 전기적으로 연결된다. 보다 구체적으로, 제1 측정 저항(MR1)의 일단은 제2 노드(N2)에 전기적으로 연결되고, 제1 측정 저항(MR1)의 타단은 제1 측정 컨택터(MC1)의 일단에 전기적으로 연결된다. 이어서, 제1 측정 컨택터(MC1)의 타단은 제1 노드(N1)에 전기적으로 연결된다. 즉, 제1 측정 저항(MR1)과 제1 측정 컨택터(MC1)는 제1 노드(N1)와 제2 노드(N2) 사이에 전기적으로 직렬 연결된다.
제2 측정 컨택터(MC2)는 제2 측정 저항(MR2)과 제3 노드(N3) 사이에 전기적으로 연결된다. 보다 구체적으로, 제2 측정 저항(MR2)의 일단은 제3 노드(N3)에 전기적으로 연결되고, 제2 측정 저항(MR2)의 타단은 제2 측정 컨택터(MC2)의 일단에 전기적으로 연결된다. 이어서, 제2 측정 컨택터(MC2)의 타단은 제1 노드(N1)에 전기적으로 연결된다. 즉, 제2 측정 저항(MR2)과 제2 측정 컨택터(MC2)는 제1 노드(N1)와 제3 노드(N3) 사이에 전기적으로 직렬 연결된다.
제3 측정 컨택터(MC3)는 제3 측정 저항(MR3)과 제4 노드(N4) 사이에 전기적으로 연결된다. 보다 구체적으로, 제3 측정 저항(MR3)의 일단은 제4 노드(N4)에 전기적으로 연결되고, 제3 측정 저항(MR3)의 타단은 제3 측정 컨택터(MC3)의 일단에 전기적으로 연결된다. 이어서, 제3 측정 컨택터(MC3)의 타단은 제1 노드(N1)에 전기적으로 연결된다. 즉, 제3 측정 저항(MR3)과 제3 측정 컨택터(MC3)는 제1 노드(N1)와 제4 노드(N4) 사이에 전기적으로 직렬 연결된다.
상술된 측정 저항(MR1, ..., MR3)들은 제1 충전 컨택터(CC1)와 제2 충전 컨택터(CC2)에 인가된 전압을 측정하는데 사용되는 저항일 수 있다. 이러한, 측정 저항들과 전기적으로 연결된 측정 커넥터(MC1, ..., MC3)들은 측정 저항에 흐르는 전류를 도통 또는 차단시키는 역할을 수행할 수 있다.
제어부(130)는 충전 시작 요청 신호 및 충전 종료 요청 신호 중 하나 이상의 수신 여부에 기초하여 제1 측정 컨택터(MC1), 제2 측정 컨택터(MC2) 및 제3 측정 컨택터(MC3) 중 하나 이상의 동작 상태를 제어한다.
여기서, 충전 시작 요청 신호 및 충전 종료 요청 신호는 본 발명에 따른 배터리 팩을 포함하는 자동차의 ECU에서 출력되는 신호일 수 있다.
또한, 자동차의 ECU에서 충전 시작 요청 신호가 출력되면 도 5에 도시된 바와 같이, 충전을 시작하기 위하여 제1 전원 커넥터(C1)와 충전기(CS)의 제2 전원 커넥터(C2)가 결합된 상태일 수 있다.
제어부(130)는 충전 시작 요청 신호를 수신하면, 우선 제1 측정 컨택터(MC1), 제2 측정 컨택터(MC2) 및 제3 측정 컨택터(MC3)의 동작 상태를 턴 온으로 제어한다. 이후, 제어부(130)는 제1 충전 컨택터(CC2)와 제2 충전 컨택터(CC2)의 동작 상태를 턴 온으로 제어한다.
즉, 제어부(130)는 충전 시작 요청 신호를 수신하면, 제1 충전 컨택터(CC2)와 제2 충전 컨택터(CC2)의 동작 상태가 턴 온 되기 전에 제1 측정 컨택터(MC1), 제2 측정 컨택터(MC2) 및 제3 측정 컨택터(MC3)의 동작 상태를 턴 온 시킨다.
이를 통해, 제어부(130)는 제1 충전 컨택터(CC2)와 제2 충전 컨택터(CC2)에 충전기(CS)로부터 충전 전류가 인가되기 전부터 제1 충전 컨택터(CC2)와 제2 충전 컨택터(CC2)에 인가되는 전압을 모니터링할 수 있다.
한편, 자동차의 ECU에서 충전 종료 요청 신호가 출력되면 충전이 종료되어 제1 전원 커넥터(C1)와 충전기(CS)의 제2 전원 커넥터(C2)가 분리되기 직전의 상태일 수 있다.
이에 따라, 제어부(130)는 충전 종료 요청 신호를 수신하면, 우선 제1 충전 컨택터(CC2)의 동작 상태를 턴 오프로 제어한다. 이후, 제어부(130)는 제1 측정 저항(MR1)과 제2 측정 저항(MR2) 각각에 인가된 제1 측정 전압과 제2 측정 전압 간의 측정 전압차에 기초하여 제1 측정 컨택터(MC1)와 제2 측정 컨택터(MC2)의 동작 상태를 제어한다.
보다 구체적으로, 제어부(130)는 제1 측정 전압과 제2 측정 전압 간의 측정 전압차가 미리 설정된 제1 제어 전압 이상이면 제1 측정 컨택터(MC1)와 제2 측정 컨택터(MC2)의 동작 상태를 턴 오프로 제어한다.
즉, 제어부(130)는 충전 종료 요청 신호를 수신하면, 제1 충전 컨택터(CC2)의 동작 상태를 턴 오프로 제어하고, 제1 충전 컨택터(CC2)의 동작 상태가 턴 오프로 제어되면 제1 측정 컨택터(MC1)와 제2 측정 컨택터(MC2)의 동작 상태 턴 오프로 제어한다.
이때, 제어부(130)는 제1 측정 전압과 제2 측정 전압 간의 측정 전압차가 미리 설정된 제1 제어 전압 이상이면 제2 측정 컨택터(MC2)의 동작 상태만을 턴 오프로 제어할 수도 있다.
이를 통해, 제어부(130)는 충전의 종료로 인해 도 6에 도시된 바와 같이, 제1 전원 커넥터와 충전기의 제2 전원 커넥터가 분리되면 제1 입력 단자(IT1)에 전압이 인가되지 않도록 제1 측정 컨택터(MC1)와 제2 측정 컨택터(MC2)의 동작 상태를 턴 오프로 제어함으로써, 충전 과정에서 외부로 노출될 수 있는 제1 입력 단자(IT1)에 사용자가 감전되는 사고를 방지할 수 있다.
한편, 제어부(130)는 충전 종료 요청 신호를 수신하면, 우선 제2 충전 컨택터(CC2)의 동작 상태를 턴 오프로 제어한다. 이후, 제어부(130)는 제3 측정 저항(MR3)에 인가된 제3 측정 전압에 기초하여 제3 측정 컨택터(MC3)의 동작 상태를 제어한다.
보다 구체적으로, 제어부(130)는 제3 측정 전압이 미리 설정된 제2 제어 전압 이상이면 제3 측정 컨택터(MC3)의 동작 상태를 턴 오프로 제어한다.
즉, 제어부(130)는 충전 종료 요청 신호를 수신하면, 제2 충전 컨택터(CC2)의 동작 상태를 턴 오프로 제어하고, 제2 충전 컨택터(CC2)의 동작 상태가 턴 오프로 제어되면 제3 측정 컨택터(MC3)의 동작 상태 턴 오프로 제어한다.
이를 통해, 제어부(130)는 충전의 종료로 인해 도 6에 도시된 바와 같이, 제1 전원 커넥터와 충전기의 제2 전원 커넥터가 분리되면 제2 입력 단자(IT2)에 전압이 인가되지 않도록 제3의 동작 상태를 턴 오프로 제어함으로써, 충전 과정에서 외부로 노출될 수 있는 제2 입력 단자(IT2)에 사용자가 감전되는 사고를 방지할 수 있다.
이하, 본 발명의 또 다른 실시예에 따른 배터리 팩(100")에 대해 설명하도록 한다. 본 발명의 또 다른 실시예에 따른 배터리 팩(100")은 본 발명의 다른 실시예에 따른 배터리 팩(100') 대비, 일부 구성 요소가 추가되고 일부 구성 요소의 역할만이 상이할 수 있다. 이에 따라, 반복되는 설명은 생략하도록 한다.
도 7은 본 발명의 또 다른 실시예에 따른 배터리 팩(100")과 충전기(CS)가 결합된 상태 및 기능적 구성을 나타낸 도면이고, 도 8은 본 발명의 또 다른 실시예에 따른 배터리 팩(100")과 충전기(CS)가 분리된 상태 및 기능적 구성을 나타낸 도면이다.
도 7 및 도 8을 참조하면, 본 발명의 또 다른 실시예에 따른 배터리 팩(100")은 본 발명의 다른 실시예에 따른 배터리 팩(100') 대비 조도 감지부(140)를 더 포함할 수 있다.
조도 감지부(140)는 제1 전원 커넥터(C1)의 내측에 설치되어 제1 전원 커넥터(C1) 주변의 조도를 감지한다.
보다 구체적으로, 조도 감지부(140)는 제1 전원 커넥터(C1)와 충전기(CS)의 제2 전원 커넥터(C2)가 결합하면 제1 전원 커넥터(C1)와 충전기(CS)의 제2 전원 커넥터(C2)로 밀폐된 공간 중 제1 전원 커넥터(C1)의 표면에 설치된다.
한편, 제1 전원 커넥터(C1)는 커넥터 커버를 구비할 수 있다.
이때, 조도 감지부(140)는 커넥터 커버가 닫힌 경우, 제1 전원 커넥터(C1) 내측 공간과 커넥터 커버로 밀폐된 공간 중 제1 전원 커넥터(C1)의 표면에 설치된다.
즉, 제1 전원 커넥터(C1)와 충전기(CS)의 제2 전원 커넥터(C2)가 결합하거나 제1 전원 커넥터(C1)의 커넥터 커버가 닫힌 경우, 조도 감지부(140)는 도 7에 도시된 바와 같이, 광이 유입되지 않는 밀폐된 공간에 위치할 수 있다.
이를 이용하여, 제어부(130)는 조도 감지부(140)로부터 측정된 제1 전원 커넥터(C1) 주변의 조도와 미리 설정된 기준 조도를 비교하고, 비교 결과에 기초하여 제1 측정 컨택터(MC1), 제2 측정 컨택터(MC2) 및 제3 측정 컨택터(MC3) 중 하나 이상의 동작 상태를 제어한다.
여기서, 미리 설정된 기준 조도는 제1 전원 커넥터(C1)의 제1 입력 단자(IT1)와 제2 입력 단자(IT2)가 외부로 노출되었는지 여부를 판단하기 위한 조도값일 수 있다.
보다 구체적으로, 제어부(130)는 조도 감지부(140)로부터 측정된 제1 전원 커넥터(C1) 주변의 조도가 미리 설정된 기준 조도 이상이면, 도 8에 도시된 바와 같이, 제1 전원 커넥터(C1)와 충전기(CS)의 제2 전원 커넥터(C2)가 분리되거나 제1 전원 커넥터(C1)의 커넥터 커버가 열린 것으로 판단한다.
즉, 제어부(130)는 조도 감지부(140)로부터 측정된 제1 전원 커넥터(C1) 주변의 조도가 미리 설정된 기준 조도 이상이면, 제1 전원 커넥터(C1)의 제1 입력 단자(IT1)와 제2 입력 단자(IT2)가 외부로 노출된 것으로 판단한다.
반대로, 제어부(130)는 조도 감지부(140)로부터 측정된 제1 전원 커넥터(C1) 주변의 조도가 미리 설정된 기준 조도 미만이면, 도 7에 도시된 바와 같이, 제1 전원 커넥터(C1)와 충전기(CS)의 제2 전원 커넥터(C2)가 결합되거나 제1 전원 커넥터(C1)의 커넥터 커버가 닫힌 것으로 판단한다.
즉, 제어부(130)는 조도 감지부(140)로부터 측정된 제1 전원 커넥터(C1) 주변의 조도가 미리 설정된 기준 조도 미만이면, 제1 전원 커넥터(C1)의 제1 입력 단자(IT1)와 제2 입력 단자(IT2)가 외부로 노출되지 않은 것으로 판단한다.
이후, 제어부(130)는 조도 감지부(140)로부터 측정된 제1 전원 커넥터(C1) 주변의 조도가 미리 설정된 기준 조도 이상이면, 제1 측정 컨택터(MC1), 제2 측정 컨택터(MC2) 및 제3 측정 컨택터(MC3)의 동작 상태를 턴 오프 상태로 제어한다.
추가로, 제어부(130)는 조도 감지부(140)로부터 측정된 제1 전원 커넥터(C1) 주변의 조도가 미리 설정된 기준 조도 이상이면, 제1 충전 컨택터(CC1)와 제2 충전 컨택터(CC2)의 동작 상태를 턴 오프 상태로 제어한다.
이를 통해, 제어부(130)는 제1 전원 커넥터(C1)의 제1 입력 단자(IT1)와 제2 입력 단자(IT2)가 외부로 노출되면 제1 측정 컨택터(MC1), 제2 측정 컨택터(MC2) 및 제3 측정 컨택터(MC3)의 동작 상태를 턴 오프 상태로 제어함으로써, 외부로 노출된 제1 입력 단자(IT1) 또는 제2 입력 단자(IT2)에 사용자가 감전되는 사고를 방지할 수 있다.
한편, 본 발명에 따른 자동차는 상술된 본 발명에 따른 배터리 팩을 포함할 수 있다.
이상에서 설명한 본 발명의 실시예는 장치 및 방법을 통해서만 구현이 되는 것은 아니며, 본 발명의 실시예의 구성에 대응하는 기능을 실현하는 프로그램 또는 그 프로그램이 기록된 기록 매체를 통해 구현될 수도 있으며, 이러한 구현은 앞서 설명한 실시예의 기재로부터 본 발명이 속하는 기술분야의 전문가라면 쉽게 구현할 수 있는 것이다.
이상에서 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.
또한, 이상에서 설명한 본 발명은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 있어 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능하므로 전술한 실시예 및 첨부된 도면에 의해 한정되는 것이 아니라, 다양한 변형이 이루어질 수 있도록 각 실시예들의 전부 또는 일부가 선택적으로 조합되어 구성될 수 있다.

Claims (7)

  1. 배터리의 양극 단자와 음극 단자에 각각 일단이 전기적으로 연결되는 제1 배터리 컨택터와 제2 배터리 컨택터;
    상기 제1 배터리 컨택터의 타단과 상기 제2 배터리 컨택터의 타단에 각각 일단이 전기적으로 연결되는 제1 충전 컨택터와 제2 충전 컨택터;
    상기 제2 충전 컨택터의 일단에 위치하는 제1 노드와 상기 제1 충전 컨택터의 일단에 위치하는 제2 노드 사이, 상기 제1 노드와 상기 제1 충전 컨택터의 타단에 위치하는 제3 노드 사이 및 상기 제1 노드와 상기 제2 충전 컨택터의 타단에 위치하는 제4 노드에 각각 전기적으로 연결되는 제1 측정 저항, 제2 측정 저항 및 제3 측정 저항;
    상기 제1 충전 컨택터의 타단과 상기 제2 충전 컨택터의 타단에 각각 전기적으로 연결되는 제1 입력 단자와 제2 입력 단자를 구비하는 제1 전원 커넥터; 및
    상기 제1 입력 단자와 상기 제2 입력 단자에 각각 전기적으로 연결되는 제1 출력 단자와 제2 출력 단자를 구비하는 충전기의 제2 전원 커넥터가 제1 전원 커넥터에 결합되고, 충전 종료 요청 신호를 수신하는 경우, 상기 제1 충전 컨택터와 상기 제2 충전 컨택터를 차례로 턴 온 상태 또는 턴 오프 상태로 제어하고, 제1 측정 저항, 제2 측정 저항 및 제3 측정 저항 각각에 인가된 제1 측정 전압, 제2 측정 전압 및 제3 측정 전압 중 하나 이상에 기초하여 상기 제1 충전 컨택터와 상기 제2 충전 컨택터 각각의 고장 여부를 진단하는 제어부를
    포함하는 배터리 팩.
  2. 제1항에 있어서,
    상기 제어부는
    턴 온 상태인 상기 제2 충전 컨택터를 턴 오프 상태로 제어하고, 상기 제3 측정 전압에 기초하여 상기 제2 충전 컨택터의 턴 오프 고장 여부를 진단하는 배터리 팩.
  3. 제2항에 있어서,
    상기 제어부는
    상기 제3 측정 전압이 제2 기준 전압 미만이면 상기 제2 충전 컨택터에 턴 오프 고장이 발생된 것으로 진단하는 배터리 팩.
  4. 제1항에 있어서,
    상기 제어부는
    제3 측정 전압에 기초하여 상기 제2 충전 컨택터의 고장을 진단하고, 턴 온 상태인 상기 제1 충전 컨택터를 턴 오프 상태로 제어하고, 상기 제1 측정 전압과 상기 제2 측정 전압 간의 측정 전압차에 기초하여 상기 제1 충전 컨택터의 턴 오프 고장 여부를 진단하는 배터리 팩.
  5. 제4항에 있어서,
    상기 제어부는
    상기 제1 측정 전압과 상기 제2 측정 전압 간의 측정 전압차가 제1 기준 전압 미만이면 상기 제1 충전 컨택터에 턴 오프 고장이 발생된 것으로 진단하는 배터리 팩.
  6. 제1항에 있어서,
    상기 제어부는
    상기 제1 충전 컨택터와 상기 제2 충전 커낵터 중 하나 이상에 고장이 발생한 것으로 진단되면 고장 신호를 출력하는 배터리 팩.
  7. 제1항 내지 제6항 중 어느 한 항에 따른 배터리 팩을 포함하는 자동차.
PCT/KR2018/014977 2017-11-29 2018-11-29 배터리 팩 WO2019107976A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2019561913A JP7070973B2 (ja) 2017-11-29 2018-11-29 バッテリーパック
EP18884733.9A EP3624250B1 (en) 2017-11-29 2018-11-29 Battery pack
US16/609,381 US11150301B2 (en) 2017-11-29 2018-11-29 Battery pack
CN201880025905.0A CN110537287B (zh) 2017-11-29 2018-11-29 电池组
PL18884733T PL3624250T3 (pl) 2017-11-29 2018-11-29 Pakiet akumulatorowy

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0162223 2017-11-29
KR1020170162223A KR102256097B1 (ko) 2017-11-29 2017-11-29 배터리 팩

Publications (1)

Publication Number Publication Date
WO2019107976A1 true WO2019107976A1 (ko) 2019-06-06

Family

ID=66665709

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/014977 WO2019107976A1 (ko) 2017-11-29 2018-11-29 배터리 팩

Country Status (7)

Country Link
US (1) US11150301B2 (ko)
EP (1) EP3624250B1 (ko)
JP (1) JP7070973B2 (ko)
KR (1) KR102256097B1 (ko)
CN (1) CN110537287B (ko)
PL (1) PL3624250T3 (ko)
WO (1) WO2019107976A1 (ko)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102256094B1 (ko) * 2017-11-28 2021-05-25 주식회사 엘지에너지솔루션 배터리 팩
KR102256598B1 (ko) * 2017-11-29 2021-05-26 주식회사 엘지에너지솔루션 배터리 팩
KR102256100B1 (ko) * 2017-11-29 2021-05-25 주식회사 엘지에너지솔루션 배터리 팩
DE102020106856A1 (de) 2020-03-12 2021-09-16 Webasto SE Verfahren und Vorrichtung zum Überwachen des Alterungszustands eines Schützes
KR102554673B1 (ko) * 2020-10-13 2023-07-13 삼성에스디아이 주식회사 배터리 팩

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0162223B1 (ko) 1995-07-08 1999-03-20 김광호 노래반주 기기의 음정조절수단 선택장치
JP2007285969A (ja) * 2006-04-19 2007-11-01 Yokogawa Electric Corp スイッチ故障検出回路
KR20130051228A (ko) * 2011-11-09 2013-05-20 주식회사 엘지화학 전기 접촉기 진단 장치 및 방법
KR20140020765A (ko) * 2012-08-10 2014-02-19 가부시키가이샤 지에스 유아사 스위치 고장 진단 장치 및 축전 장치
KR101716886B1 (ko) * 2014-11-07 2017-03-15 주식회사 엘지화학 정확한 진단 전압의 측정이 가능한 전기 접촉기 진단 장치
KR20170098049A (ko) * 2016-02-19 2017-08-29 주식회사 엘지화학 스위치 부품의 고장 진단 장치 및 방법

Family Cites Families (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002175750A (ja) * 2000-12-08 2002-06-21 Toyota Motor Corp リレーの溶着検出装置
JP4599260B2 (ja) * 2004-09-28 2010-12-15 プライムアースEvエナジー株式会社 電源制御装置、電源制御方法、プログラム及び記録媒体
JP4686356B2 (ja) * 2005-09-22 2011-05-25 矢崎総業株式会社 絶縁検出装置
JP2007240300A (ja) * 2006-03-08 2007-09-20 Yazaki Corp 絶縁検出方法および装置
JP4749190B2 (ja) 2006-03-24 2011-08-17 三洋電機株式会社 車両用の電源装置とこの電源装置のコンタクターの溶着を判別する溶着検出方法
JP4996190B2 (ja) 2006-09-29 2012-08-08 矢崎総業株式会社 電圧検出装置
JP4816628B2 (ja) 2007-11-30 2011-11-16 トヨタ自動車株式会社 車両の充電制御装置
FR2948461B1 (fr) * 2009-07-24 2011-07-01 Renault Sa Procede de diagnostic du fonctionnement d'un dispositif de coupure et de raccordement d'une batterie a un reseau de bord de vehicule automobile
JP5474463B2 (ja) * 2009-09-16 2014-04-16 トヨタ自動車株式会社 非接触受電装置およびそれを備える電動車両
CN102782930B (zh) 2010-01-06 2015-03-04 株式会社Lg化学 电池控制设备和方法
JP5450144B2 (ja) 2010-02-10 2014-03-26 三洋電機株式会社 車両用の電源装置及びこの電源装置を搭載する車両
KR101182890B1 (ko) * 2010-12-01 2012-09-13 삼성에스디아이 주식회사 배터리 팩 충전 제어 시스템
DE102011004516A1 (de) * 2011-02-22 2012-08-23 Sb Limotive Company Ltd. Schaltung und Verfahren zur Diagnose von Schaltkontakten in einem batteriebetriebenen Straßenfahrzeug
KR101542641B1 (ko) * 2011-09-23 2015-08-07 주식회사 엘지화학 배터리 충전 시스템 및 이를 이용한 충전 방법
KR101750073B1 (ko) * 2011-10-13 2017-07-03 에스케이이노베이션 주식회사 릴레이 융착 모니터링 회로
DE102012213159A1 (de) * 2012-07-26 2014-01-30 Robert Bosch Gmbh Batteriesystem mit Batterieschützen und einer Diagnosevorrichtung zum Überwachen des Funktionszustandes der Schütze sowie dazugehöriges Diagnoseverfahren
KR102044737B1 (ko) * 2012-08-21 2019-11-15 에스케이이노베이션 주식회사 릴레이 제어 시스템 및 그 제어 방법
KR101976849B1 (ko) * 2012-12-05 2019-05-09 현대자동차주식회사 배터리 과충전 및 과방전 방지 장치
JP2014169933A (ja) * 2013-03-04 2014-09-18 Seiko Instruments Inc バッテリ装置
JP5989620B2 (ja) 2013-09-17 2016-09-07 株式会社東芝 組電池モジュール及び断線検出方法
KR101667635B1 (ko) * 2013-10-24 2016-10-19 엘에스산전 주식회사 고전압 릴레이 고장 진단 장치 및 이의 방법
JP6454466B2 (ja) 2013-11-11 2019-01-16 三菱自動車工業株式会社 充電制御装置
JP6418874B2 (ja) * 2014-01-15 2018-11-07 株式会社マキタ バッテリパック
KR20150109153A (ko) * 2014-03-19 2015-10-01 엘에스산전 주식회사 케이블 설치형 충전 제어 장치 및 그 동작 방법
JP2015230784A (ja) * 2014-06-04 2015-12-21 三菱自動車工業株式会社 コンタクタ故障判定装置
JP2016010263A (ja) * 2014-06-25 2016-01-18 トヨタ自動車株式会社 蓄電システム
JP6370681B2 (ja) * 2014-11-04 2018-08-08 矢崎総業株式会社 異常検出回路
JP6098653B2 (ja) * 2015-02-17 2017-03-22 トヨタ自動車株式会社 給電装置及びそれを備えた車両
JP6467971B2 (ja) * 2015-02-18 2019-02-13 三菱自動車工業株式会社 接続検出回路
JP6160643B2 (ja) 2015-03-17 2017-07-12 トヨタ自動車株式会社 車両の電源システム
JP6589368B2 (ja) 2015-05-20 2019-10-16 日産自動車株式会社 電源装置、及び、電源装置の異常を診断する診断方法
JP6503893B2 (ja) * 2015-05-28 2019-04-24 三菱自動車工業株式会社 車両の充電制御装置
DE102015008467A1 (de) * 2015-07-01 2016-01-28 Daimler Ag Vorrichtung und Verfahren zum Überprüfen einer Funktionsüberwachungseinrichtung eines Schaltschützes eines Kraftfahrzeugs
US10377247B2 (en) 2015-07-27 2019-08-13 Ford Global Technologies, Llc High voltage battery contactor arrangement for DC fast charging
CN105109347B (zh) * 2015-09-18 2018-05-18 惠州市亿能电子有限公司 电动汽车高压上电电路及其控制方法
JP2017093008A (ja) * 2015-11-02 2017-05-25 三菱自動車工業株式会社 コンタクタ故障判定装置およびコンタクタ故障判定方法
JP2017120191A (ja) 2015-12-28 2017-07-06 三菱自動車工業株式会社 故障判定装置
JP2017125417A (ja) 2016-01-12 2017-07-20 株式会社デンソー 電子制御装置
KR102519118B1 (ko) * 2016-02-24 2023-04-05 삼성에스디아이 주식회사 배터리 보호 회로
JP2017175790A (ja) 2016-03-24 2017-09-28 株式会社豊田自動織機 充電コネクタ接続検知装置
CN207924092U (zh) * 2018-02-01 2018-09-28 宁波吉利汽车研究开发有限公司 一种电池管理系统的继电器粘合故障检测电路

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0162223B1 (ko) 1995-07-08 1999-03-20 김광호 노래반주 기기의 음정조절수단 선택장치
JP2007285969A (ja) * 2006-04-19 2007-11-01 Yokogawa Electric Corp スイッチ故障検出回路
KR20130051228A (ko) * 2011-11-09 2013-05-20 주식회사 엘지화학 전기 접촉기 진단 장치 및 방법
KR20140020765A (ko) * 2012-08-10 2014-02-19 가부시키가이샤 지에스 유아사 스위치 고장 진단 장치 및 축전 장치
KR101716886B1 (ko) * 2014-11-07 2017-03-15 주식회사 엘지화학 정확한 진단 전압의 측정이 가능한 전기 접촉기 진단 장치
KR20170098049A (ko) * 2016-02-19 2017-08-29 주식회사 엘지화학 스위치 부품의 고장 진단 장치 및 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3624250A4

Also Published As

Publication number Publication date
KR20190063266A (ko) 2019-06-07
CN110537287B (zh) 2022-08-16
EP3624250B1 (en) 2021-05-26
KR102256097B1 (ko) 2021-05-25
EP3624250A1 (en) 2020-03-18
PL3624250T3 (pl) 2021-10-18
US20200049770A1 (en) 2020-02-13
CN110537287A (zh) 2019-12-03
EP3624250A4 (en) 2020-06-10
JP7070973B2 (ja) 2022-05-18
JP2020521415A (ja) 2020-07-16
US11150301B2 (en) 2021-10-19

Similar Documents

Publication Publication Date Title
WO2019107976A1 (ko) 배터리 팩
WO2019107979A1 (ko) 배터리 팩
WO2019107982A1 (ko) 배터리 팩
WO2019151779A1 (ko) 프리차지 저항 보호 장치
WO2019216532A1 (ko) 배터리 제어 장치 및 이를 포함하는 에너지 저장 시스템
WO2019022377A1 (ko) 마스터 배터리 관리 유닛 및 이를 포함하는 배터리팩
WO2013151355A1 (ko) 고장 자가 진단 기능을 구비한 절연 저항 측정 장치 및 이를 이용한 자가 진단 방법
WO2019017596A1 (ko) 무선 배터리 관리 시스템 및 이를 포함하는 배터리팩
WO2019088440A1 (ko) 배터리의 내부 저항을 최적화하기 위한 배터리 관리 시스템 및 방법
WO2021085893A1 (ko) 누전 검출 장치, 누전 검출 방법 및 전기 차량
WO2019107978A1 (ko) 배터리 팩
WO2020055117A1 (ko) 배터리 관리 장치
WO2019177303A1 (ko) 과방전 방지 장치
WO2020162675A1 (ko) 배터리 관리 장치, 배터리 관리 방법 및 배터리 팩
WO2021080247A1 (ko) 병렬 멀티 배터리 팩에 포함된 스위치부의 턴온 동작 제어 장치 및 방법
WO2020055162A1 (ko) 스위치 진단 장치 및 방법
WO2019107983A1 (ko) 배터리 팩
WO2022080709A1 (ko) 릴레이 진단 장치, 릴레이 진단 방법, 배터리 시스템, 및 전기 차량
WO2022145822A1 (ko) 배터리 관리 장치 및 방법
WO2019107935A1 (ko) 배터리 팩
WO2021066357A1 (ko) 배터리 관리 장치
WO2021049753A1 (ko) 배터리 진단 장치 및 방법
WO2023063625A1 (ko) 배터리 진단 장치, 배터리 팩, 전기 차량, 및 배터리 진단 방법
WO2023287180A1 (ko) 배터리 진단 장치, 배터리 팩, 전기 차량 및 배터리 진단 방법
WO2020005025A1 (ko) 전류 센서 진단 장치 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18884733

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019561913

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018884733

Country of ref document: EP

Effective date: 20191212

NENP Non-entry into the national phase

Ref country code: DE