WO2012117809A1 - ドリル - Google Patents

ドリル Download PDF

Info

Publication number
WO2012117809A1
WO2012117809A1 PCT/JP2012/052622 JP2012052622W WO2012117809A1 WO 2012117809 A1 WO2012117809 A1 WO 2012117809A1 JP 2012052622 W JP2012052622 W JP 2012052622W WO 2012117809 A1 WO2012117809 A1 WO 2012117809A1
Authority
WO
WIPO (PCT)
Prior art keywords
drill
thinning
cutting edge
chisel
tip
Prior art date
Application number
PCT/JP2012/052622
Other languages
English (en)
French (fr)
Inventor
高一 新井
義一 新井
勝世 木村
Original Assignee
株式会社ビック・ツール
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011046991A external-priority patent/JP4834183B1/ja
Priority to US13/816,895 priority Critical patent/US8579557B2/en
Priority to BR112013022396A priority patent/BR112013022396A2/pt
Priority to RU2013135906/02A priority patent/RU2566700C2/ru
Priority to CA2827327A priority patent/CA2827327C/en
Priority to KR1020127026846A priority patent/KR101378208B1/ko
Application filed by 株式会社ビック・ツール filed Critical 株式会社ビック・ツール
Priority to CN201280002351.5A priority patent/CN103379976B/zh
Priority to SG2013065537A priority patent/SG193007A1/en
Priority to ES12751858.7T priority patent/ES2661848T3/es
Priority to EP12751858.7A priority patent/EP2684630B1/en
Priority to AU2012224287A priority patent/AU2012224287B2/en
Priority to MX2014009460A priority patent/MX352882B/es
Publication of WO2012117809A1 publication Critical patent/WO2012117809A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B51/00Tools for drilling machines
    • B23B51/02Twist drills
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B51/00Tools for drilling machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B3/00Sharpening cutting edges, e.g. of tools; Accessories therefor, e.g. for holding the tools
    • B24B3/24Sharpening cutting edges, e.g. of tools; Accessories therefor, e.g. for holding the tools of drills
    • B24B3/26Sharpening cutting edges, e.g. of tools; Accessories therefor, e.g. for holding the tools of drills of the point of twist drills
    • B24B3/32Sharpening cutting edges, e.g. of tools; Accessories therefor, e.g. for holding the tools of drills of the point of twist drills for thinning the point
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2251/00Details of tools for drilling machines
    • B23B2251/04Angles, e.g. cutting angles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2251/00Details of tools for drilling machines
    • B23B2251/08Side or plan views of cutting edges
    • B23B2251/085Discontinuous or interrupted cutting edges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2251/00Details of tools for drilling machines
    • B23B2251/14Configuration of the cutting part, i.e. the main cutting edges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2251/00Details of tools for drilling machines
    • B23B2251/18Configuration of the drill point
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T408/00Cutting by use of rotating axially moving tool
    • Y10T408/89Tool or Tool with support
    • Y10T408/909Having peripherally spaced cutting edges
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T408/00Cutting by use of rotating axially moving tool
    • Y10T408/89Tool or Tool with support
    • Y10T408/909Having peripherally spaced cutting edges
    • Y10T408/9095Having peripherally spaced cutting edges with axially extending relief channel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T408/00Cutting by use of rotating axially moving tool
    • Y10T408/89Tool or Tool with support
    • Y10T408/909Having peripherally spaced cutting edges
    • Y10T408/9095Having peripherally spaced cutting edges with axially extending relief channel
    • Y10T408/9097Spiral channel

Definitions

  • the present invention relates to a drill, and more particularly, to a drill that is suitably used when manually drilling a hole using a hand drill or a drilling machine.
  • a method for reducing the cutting resistance of a drill a method of narrowing the chisel width by thinning a cutting blade is known.
  • Conventional thinning is usually performed from the center of the drill to the heel (see FIG. 16A) or only in a narrow range of the center of the drill (see FIG. 16B).
  • FIGS. 16A and 16B the thinning portion is hatched, and a cutting edge formed by the thinning is indicated by (S1).
  • a drill with such thinning has an effect of reducing cutting resistance as compared with a drill without thinning (see FIG. 16C), when it is used for drilling work by a human power such as a hand drill or a drilling machine, It cannot be said that the resistance is sufficiently reduced, and the burden on the arm strength of the worker is large.
  • Patent Document 2 the present applicant has proposed a drill that is suitably used for peeling off spot welds of a car body of a car using a high hardness steel plate.
  • This drill has two cutting blades symmetrically about the rotational axis and is thinned at the tip, the chisel width is 0.05 to 0.3 mm, and the thinning is from the tip side of the drill. When viewed, it is applied at an angle of 1 to 4 ° with respect to a straight line connecting the cutting edges of both cutting edges.
  • this drill since the chisel width is narrow and the thinning is formed at the above angle, the thrust resistance at the time of cutting is small and the force applied by the operator is small compared to the conventional drill.
  • a rake angle formed by thinning is set to be larger than 90 ° in order to cope with a steel plate having high hardness. Therefore, the cutting force at the center is weak, and a considerable force is required until the workpiece is applied from the center to the outer peripheral edge during drilling with a hand drill. Further, since the chisel width is very narrow, there is a possibility that the tip may be chipped at the time of use. Particularly, in a drill made of powder high speed steel, the tip becomes more easily chipped because it becomes brittle.
  • Patent Documents 3 and 4 below also describe thinned drills.
  • the drill described in Patent Document 3 is for deep hole machining, and is intended for smooth discharge of chips by giving sufficient capacity to a thinning pocket (a recess defined by a thinning surface). The length of the cutting blade is increased.
  • the drill described in Patent Document 4 is a small-diameter drill for printed circuit boards, and is provided with general thinning to prevent chipping of a cemented carbide drill in order to drill a resin substrate containing glass fiber. It is.
  • the drill described in the following patent document 1 is a twist drill having X-shaped thinning.
  • the present invention has been made to solve the above-described problems of the prior art, can greatly reduce cutting resistance, and facilitates manual drilling work using a hand drill or drilling machine.
  • a drill that can be performed is provided.
  • the invention according to claim 1 is a drill having two cutting blades formed symmetrically about the rotation axis, and thinning is applied to the tip portion, when the cutting blade is viewed from the drill tip side,
  • the thinning surface formed by a thinning cutting edge extending from the chisel edge to the outer peripheral side of the drill in a shape including a curve and a main cutting edge extending from the end of the thinning cutting edge to the outer peripheral edge of the drill,
  • the present invention relates to a drill characterized by being formed in a substantially parabolic shape that is inclined with respect to the drill axis direction when viewed from the front side of the drill.
  • the invention according to claim 2 is directed to a heel side of a drill without an extension line obtained by extending a line extending along the deepest part of the thinning surface extending in the drill tip direction from the drill front center side. Or it is offset
  • the invention according to claim 3 relates to the drill according to claim 2, wherein a width of the deviation is within 10% of a drill diameter.
  • the invention according to claim 4 relates to the drill according to claim 2 or 3, wherein the extension line is shifted to a heel side of the drill.
  • the invention according to claim 5 relates to the drill according to claim 2 or 3, wherein the extension line is shifted toward the cutting edge side of the drill.
  • the invention according to claim 6 is characterized in that an extension line obtained by extending a line extending along the deepest portion of the thinning surface in the drill tip direction intersects with the center portion of the drill tip when viewed from the front side of the drill.
  • the invention according to claim 7 relates to the drill according to any one of claims 2 to 4, wherein a rake angle is formed in a portion including a portion directly below the chisel of the thinning cutting edge.
  • the invention according to claim 8 is characterized in that a rake angle is formed in a portion immediately below the chisel of the thinning cutting edge and not including the portion immediately below. It relates to the drill described in 1.
  • the rake angle ⁇ 1 formed by the main cutting edge and the rake angle ⁇ 2 formed by the thinning cutting edge are ⁇ 1 > ⁇ 2 > 0 °, except directly below the chisel.
  • the cutting resistance can be greatly reduced as compared with the conventional drill, and a drill capable of easily performing a manual drilling operation using a hand drill, a manual drilling machine, or the like. Can be provided.
  • the cutting resistance is reduced, the drilling accuracy is improved and the drilling time is shortened, so that the working efficiency is improved. Furthermore, it is possible to greatly extend the life of the drill.
  • a clear rake portion can be formed from the chisel to the cutting blade (also in a part of the heel portion) or from the vicinity of the chisel to the cutting blade except under the chisel. This sharply improves the sharpness.
  • the width of the deviation is within 10% of the drill diameter, the cutting resistance can be reduced more reliably and an excellent sharpness can be obtained.
  • a clear scoop part can be formed from a chisel to a cutting blade (a part heel part).
  • a clear cutting edge is formed from the chisel portion to the cutting edge portion, and sharpness is dramatically improved.
  • the cutting force obtained by the rotation of the drill is generated from the moment when the drill tip hits the workpiece. (This is because there is also a rake at the tip of the drill. Because a component force for the rake angle is generated and this component force acts on the workpiece side, the force that the operator presses against the drill can be small. Further, the rake angle is relatively large, and the cutting force is maximized as compared with the case where the extension line is displaced toward the cutting edge of the drill and the case where the extension line intersects the center of the drill tip.
  • a clear scoop can be obtained from the vicinity of the chisel to the cutting edge except under the chisel.
  • the chisel width is narrower than when the extension line is shifted toward the heel (case 1), and is substantially the same as when the extension line intersects the center of the drill tip (case 2).
  • the thinning portion can be made large, cutting resistance is reduced, and even if there is no scoop directly under the chisel, a sharpness equivalent to or better than the above two cases (cases 1 and 2) can be obtained.
  • an extension line extending in the drill tip direction from a line extending along the deepest part of the thinning surface intersects with the drill tip center portion when viewed from the drill front side. Except for, a clear cutting edge is formed from the chisel vicinity to the cutting edge portion, and sharpness is dramatically improved. In addition, since the chisel width is minimized, the cutting resistance is decreased, and the same cutting force as that obtained when the extension line is shifted to the heel side can be obtained.
  • the rake angle is formed in the portion including the portion immediately below the chisel of the thinning cutting edge, the rake angle is formed in all the portions in contact with the workpiece from directly under the chisel to the cutting edge. Since all acts as a cutting edge, there is an advantage that the cutting force is increased. (See Figure 12 (a) below)
  • the rake angle is formed in the portion of the thinning cutting blade that is immediately below the chisel and does not include the directly under the chisel, the portion that is in contact with the workpiece except for the portion immediately below the chisel is cut off. Acts as a blade.
  • a cutting force equivalent to the case where the rake angle is formed in the portion including the portion directly below the chisel of the thinning cutting edge (case 3) is obtained, but since the chisel tip becomes narrow, the cutting resistance of the chisel tip is reduced. The sharpness equivalent to the case 3 is obtained. (See FIGS.
  • the width of the thinning portion can be increased. Therefore, it is possible to respond by changing the thinning position according to the material and drill diameter of the workpiece, for example, for relatively hard materials and thick drill diameter, the thinning position is moved closer to the cutting edge side, For soft materials and fine drill diameters, it is possible to devise measures such as moving closer to the heel.
  • the rake angle ⁇ 1 formed by the main cutting edge and the rake angle ⁇ 2 formed by the thinning cutting edge satisfy ⁇ 1 > ⁇ 2 except directly under the chisel.
  • the apparent rake angle is reduced and the amount of biting into the work is reduced, so that even when the hand is manually pressed against the work, it can be easily cut.
  • ⁇ 2 > 0 ° there is no problem when ⁇ 2 is changed from 0 ° to minus (the cutting resistance increases and the sharpness is deteriorated).
  • FIG. 1 It is a figure which shows the drill which concerns on 1st embodiment of this invention, Comprising: (a) is a top view (figure which looked at the drill from the front end side), (b) is a front view of a front-end
  • (A) is a figure which shows the cross section orthogonal to a thinning part
  • (b) is a figure which shows the cross-section site
  • FIG. 1A and 1B are views showing a first embodiment of a drill according to the present invention, wherein FIG. 1A is a top view (a view of the drill viewed from the tip side), and FIG. 1B is a front view of the tip portion.
  • the drill according to the present invention has two cutting edges formed symmetrically with respect to the rotational axis, and the tip is thinned.
  • the cutting blade is a thinning cutting blade (1) extending in a shape including a curve from the chisel edge toward the outer periphery of the drill when viewed from the drill tip side, and a main extending from the end of the thinning cutting blade (1) to the outer periphery of the drill It consists of a cutting blade (2).
  • the main cutting edge (2) extends linearly from the end of the thinning cutting edge (1) to the outer peripheral edge of the drill, but may extend in a curved line, It may extend linearly including a curved portion. This is common to all embodiments of the present invention.
  • (3) is a flank
  • (4) is a chisel
  • (5) is a rake face formed by the main cutting edge (2)
  • (6) is a new rake face formed by thinning
  • (W) Is the chisel width.
  • the cutting edge length in the extending direction of the main cutting edge (2) is such that the length of the main cutting edge (2) is (A) and the length of the thinning cutting edge (1) is (B ), 0 ⁇ A ⁇ B is satisfied.
  • A> It may be possible to significantly reduce the cutting resistance as compared to the conventional drill B.
  • A> B may be satisfied as shown in an embodiment (see FIGS. 9 and 11) described later.
  • the cutting resistance is reduced as the ratio (B / (A + B)) of the length (B) of the thinning cutting edge (1) to the entire cutting edge length (A + B) is larger. It is preferable to make the length (B) of the thinning cutting blade (1) as long as possible and shorten the length (A) of the main cutting blade (2) as much as possible. However, when the length (A) of the main cutting edge (2) becomes 0, the surface accuracy of the drilled hole is lowered, so that 0 ⁇ A is necessary. Preferably, it is set so as to satisfy R ⁇ 0.1 ⁇ A with respect to the drill radius (R).
  • FIG. 2 is a view of the drill of the first embodiment as seen from the left slightly from the front.
  • rake angle formed by the main cutting edge (2) ( ⁇ 1), rake angle formed by the thinning cutting edge (1) ( ⁇ 2) is, ⁇ 1> ⁇ 2> 0 satisfy °.
  • ⁇ 2 ⁇ 0 ° ⁇ 2 ⁇ 0 ° close to 0 °.
  • the rake angle ( ⁇ 2 ) formed by the thinning cutting edge (1) is smaller than the rake angle ( ⁇ 1 ) formed by the main cutting edge (2). Means that it becomes smaller (relaxes).
  • the rake angle When the rake angle is large (tight), the amount of biting into the workpiece increases, and there is no problem when rotating the drill using a power source such as a machine tool. Human power is lost, and as a result, it cannot be cut.
  • the thinning cutting edge (1) so as to satisfy ⁇ 1 > ⁇ 2 , the apparent rake angle is reduced and the amount of biting into the work is reduced, and the work is pressed against the work by hand such as a hand drill. Even if it is a case, it will be easily cut.
  • ⁇ 2 > 0 ° is that when the rake angle ( ⁇ 2 ) formed by the thinning cutting edge (1) is changed from 0 ° to minus, the cutting resistance is increased and the sharpness is worsened.
  • the conventional drill is thinned so that the rake angle becomes negative because the cutting edge tends to be chipped if there is a rake at the center.
  • the twist angle of the drill varies depending on the type of drill, but is set to approximately 30 °. However, since the cutting resistance is large at this angle, it is unsuitable for manual drilling work such as a hand drill.
  • There is a method to reduce the cutting resistance by reducing the rake angle by reducing the torsion angle but it can be seen only by thinning as in the present invention without changing the conventional torsion angle rather than making a drill by changing the torsion angle.
  • the method of changing the rake angle has the great advantage that it can be performed very easily.
  • the cutting edge angle formed by the thinning cutting edge (1) (alpha 2) satisfies ⁇ 1 ⁇ 2 ⁇ 90 ° . (Refer to FIG. 6 for ⁇ 1 and ⁇ 2 )
  • the rake angle and the edge angle will be given.
  • the cutting edge angle is too sharp and the cutting edge bites into the workpiece like a wedge, so that the cutting resistance increases.
  • the rake angle is reduced and the edge angle is increased, thereby improving the sharpness (cutting resistance is reduced).
  • a gentle rake angle and a large blade edge angle suitable for the arm strength of the operator are created.
  • the clearance angle ( ⁇ ) is set so as to satisfy 0 ° ⁇ ⁇ 8 °. Preferably, it is set so as to satisfy 0 ° ⁇ ⁇ 4 °. In general, it is thought that a sharp cutting edge can be obtained by increasing the rake angle and increasing the rake angle, so that the sharpness can be obtained. have. However, if the clearance angle is increased as well as the rake angle, the cutting edge becomes sharp and the amount of biting into the workpiece increases. In the present invention, by setting the clearance angle ( ⁇ ) to be as small as 0 ° ⁇ ⁇ 4 °, the amount of biting into the workpiece is reduced, and even when it is manually pressed against the workpiece such as a hand drill, it can be easily cut. .
  • the clearance angle ( ⁇ ) is defined by the following (A) or (B).
  • the actual clearance angle of a drill having a diameter of 10 mm and a core thickness of 2 mm polished with a grinding wheel having a clearance angle of 3 ° and a radius (R) of 50 mm is about 3.573 °.
  • the chisel width (W) (see FIG. 1 (a)) is preferably set to be small so that it can be easily cut even when manually pressed against the workpiece such as a hand drill. Specifically, it is preferably set to 10% or less of the drill diameter. For example, when the drill diameter ⁇ is 2 to 13 mm, the chisel width (W) is set to be increased or decreased in the range of 0.1 to 0.8 mm according to the increase or decrease of the drill diameter.
  • the thinning angle is set smaller than that of a conventional drill.
  • the angle ( ⁇ ) at which the drill is applied to the grindstone at the time of thinning formation is increased.
  • the angle ( ⁇ ) is reduced as much as possible and the center of the drill is brought closer to the grinding surface tangent of the grindstone, the resistance of the portion called the web at the center of the drill is not received, so the cutting resistance is greatly reduced.
  • the thinning angle so as to satisfy the following (I) and (II).
  • the angle ( ⁇ in FIG. 4) formed by the drill center axis with respect to the vertical center line of the grinding wheel to be thinned is 0 to 20 °.
  • the angle formed by the drill center axis with respect to the center line in the width direction of the grinding wheel to be thinned is 20 to 35 ° (see FIG. 5).
  • the range of the thinning angle (II) is obtained when the tip angle is 118 ° and the twist angle is 30 °, and is not necessarily suitable for all drills.
  • FIG. 6A is a view showing a cross section perpendicular to the thinning portion of the drill (cross section AA in FIG. 6B).
  • the edge of the rake face (6) formed by thinning is the radius of the thinning ( R 2 ) is formed in an arc shape.
  • R 1 is the radius of the drill groove.
  • the main cutting edge (2) rake angle formed by the (theta 1), rake angle formed by the thinning cutting edge (1) (theta 2) is, ⁇ 1> ⁇ 2> a 0 ° Fulfill.
  • the main cutting edge angle formed by the (2) ( ⁇ 1), the cutting edge angle formed by the thinning cutting edge (1) ( ⁇ 2) satisfy the ⁇ 1 ⁇ 2 ⁇ 90 ° .
  • the edge shape of the rake face is not limited to an arc shape, and may be a shape combining an arc and a straight line. (See Figure 7)
  • the present inventors have the same sharpness when the edge shape of the rake face is an arc shape (FIG. 6A) and when the edge shape is a combination of an arc and a straight line (FIG. 7). Experiments have confirmed that there is no difference in resistance.
  • the drill according to the present invention may be a spot welding peeling drill (hereinafter referred to as a second embodiment) having a shape as shown in FIG.
  • the length of the cutting edge in the extending direction of the main cutting edge (2) is the length of the main cutting edge (2) (A) and the length of the thinning cutting edge (1) (B ), 0 ⁇ A ⁇ B is satisfied. More preferably, it is set so as to satisfy R ⁇ 0.1 ⁇ A with respect to the drill radius (R).
  • the rake angle ( ⁇ 1 ) formed by the main cutting edge and the rake angle ( ⁇ 2 ) formed by the thinning cutting edge preferably satisfy ⁇ 1 > ⁇ 2 > 0 °. Furthermore, it is preferable that the edge angle ( ⁇ 1 ) formed by the main cutting edge and the edge angle ( ⁇ 2 ) formed by the thinning cutting edge satisfy ⁇ 1 ⁇ 2 ⁇ 90 °. In addition, the clearance angle ( ⁇ ) preferably satisfies 0 ° ⁇ ⁇ 4 °.
  • the thinning surface (8) formed by the thinning cutting edge (1) is substantially parabolic (substantially U) inclined with respect to the drill axis direction (C) when viewed from the front side of the drill. (Refer to FIG. 2 and FIG. 8).
  • the direction of the inclination is the direction of transition from the thinning cutting edge (1) side to the main cutting edge (2) side as it goes from the drill tip side to the base end side (downward diagonally downward in front view). It is.
  • the angle of inclination ( ⁇ ) is set in a range of 20 to 35 ° (for example, 27.5 °).
  • this angle setting can be performed by setting the angle formed by the drill center axis to 20 to 35 ° (see FIG. 5) with respect to the center line in the width direction of the grindstone to be thinned. it can.
  • the angle at which the center of the grindstone (see the one-dot chain line (L) in FIG. 1A) is tilted with respect to the central axis in the longitudinal direction of the drill is determined by taking into account the twist angle of the drill. It is preferable to set in the range of ° to twist angle + 10 °. However, theoretically, this angle can be set from a twist angle of -10 ° to a half of the tip angle on the cutting edge side.
  • FIG. 9A and 9B are views showing a drill according to a third embodiment of the present invention, in which FIG. 9A is a top view (a view of the drill viewed from the tip side), and FIG. 9B is a front view of the tip portion.
  • the thinning surface (8) formed by the thinning cutting edge (1) is substantially parabolic (substantially) inclined with respect to the drill axis direction (C) when viewed from the front side of the drill. It is formed in a U shape (see FIG. 9B).
  • the deviation amount (d) is preferably within 10% of the drill diameter. This is because if it exceeds 10%, the cutting resistance increases and the sharpness decreases.
  • a rake angle is formed at a portion of the thinning cutting edge (1) including the portion directly below the chisel (4).
  • the rake face forming the rake angle is indicated by reference numeral (10). Since the rake angle is formed in the portion including directly under the chisel (4), a portion (9) in which the width in the direction parallel to the chisel is narrower than the chisel width (W) is formed immediately under the chisel (4). ing. (See Fig. 12 (a))
  • the cutting edge length in the extending direction of the main cutting edge (2) is such that the length of the main cutting edge (2) is (A) and the length of the thinning cutting edge (1) is (B ), A> B.
  • rake angle formed by the main cutting edge (2) ( ⁇ 1), rake angle formed by the thinning cutting edge (1) ( ⁇ 2) satisfies the ⁇ 1> ⁇ 2> 0 ° . The same is true immediately below the chisel (4).
  • FIG. 10A and 10B are views showing a drill according to a fourth embodiment of the present invention, wherein FIG. 10A is a top view (a view of the drill viewed from the tip side), and FIG. 10B is a front view of the tip portion.
  • the thinning surface (8) formed by the thinning cutting edge (1) is substantially parabolic (substantially) inclined with respect to the drill axis direction (C) when viewed from the drill front side. It is formed in a U shape (see FIG. 10B).
  • An extension line (D) extending in the drill tip direction from a line extending along the deepest part of the thinning surface (8) formed by the thinning cutting edge (1) is the center of the drill tip ( 7) Misaligned to the cutting edge side of the drill.
  • the deviation amount (d) is preferably within 10% of the drill diameter. This is because if it exceeds 10%, the cutting resistance increases and the sharpness decreases.
  • a rake angle is formed in a portion of the thinning cutting edge (1) immediately below the chisel (4) and not including the direct bottom. More specifically, a rake angle is formed on the main cutting edge (2) side from directly below the chisel (4) of the thinning cutting edge (1). In FIG. 10A, the rake face forming the rake angle is indicated by reference numeral (10).
  • the length of the main cutting edge (2) in the extending direction of the main cutting edge (2) is (A)
  • the length of the thinning cutting edge (1) is (B) )
  • 0 ⁇ A ⁇ B is satisfied.
  • rake angle formed by the main cutting edge (2) ( ⁇ 1), rake angle formed by the thinning cutting edge (1) ( ⁇ 2) is, ⁇ 1> ⁇ 2> 0 satisfy °.
  • ⁇ 2 ⁇ 0 ° ⁇ 2 ⁇ 0 ° close to 0 °).
  • FIG. 11A and 11B are views showing a drill according to a fifth embodiment of the present invention, in which FIG. 11A is a top view (a view of the drill viewed from the distal end side), and FIG. 11B is a front view of the distal end portion.
  • the thinning surface formed by the thinning cutting edge (1) is substantially parabolic (substantially U-shaped) inclined with respect to the drill axial direction (C) when viewed from the front side of the drill. ) (See FIG. 11B).
  • An extension line (D) extending in the drill tip direction from a line extending along the deepest part of the thinning surface (8) formed by the thinning cutting edge (1) is the center of the drill tip ( 7)
  • a rake angle is formed in a portion of the thinning cutting edge (1) immediately below the chisel (4) and not including the direct bottom. More specifically, a rake angle is formed on the main cutting edge (2) side from directly below the chisel (4) of the thinning cutting edge (1).
  • a rake face forming a rake angle is indicated by reference numeral (10).
  • the cutting edge length in the extending direction of the main cutting edge (2) is such that the length of the main cutting edge (2) is (A) and the length of the thinning cutting edge (1) is (B ), A> B.
  • rake angle formed by the main cutting edge (2) ( ⁇ 1), rake angle formed by the thinning cutting edge (1) ( ⁇ 2) is, ⁇ 1> ⁇ 2> 0 satisfy °.
  • ⁇ 2 ⁇ 0 ° ⁇ 2 ⁇ 0 ° close to 0 °).
  • the drill axis direction (C) It has the characteristic of being formed in the substantially parabolic shape (substantially U shape) inclined with respect to.
  • the load applied to the chisel is reduced, and the chisel width can be narrowed.
  • the chisel width after thinning can be reduced to about 3 to 5% of the drill diameter. Therefore, cutting resistance can be reduced and an excellent sharpness can be obtained, which is extremely effective for drilling performed manually.
  • FIGS. 13 to 14 are diagrams showing examples of the shape of a grindstone, and show the rotating end (outer peripheral edge) of the grindstone.
  • the grindstone is a grindstone having one or more radii of curvature at the rotating end.
  • One of the curvature radius of the grindstone and R 1, to the R 1 primarily radius for thinning cutting edge created across the cutting edge.
  • a grindstone that combines one or more radii of curvature may also be used.
  • thinning may be performed by including a straight portion between the R portions or by inclining the side surfaces.
  • Test based on the relationship between the length of the main cutting edge (A) and the length of the thinning cutting edge (B) ⁇ Test 1: The length of the main cutting edge (A) and the length of the thinning cutting edge (B) Relationship> Six types of different B-dimensions shown in Table 1 were thinned on a drill with a diameter of 10 mm (radius R 5 mm), and drills of examples and comparative examples were produced. The drill relief angles were all set to 4 °, and the chisel width was all 0.5 mm.
  • the drills of the above examples and comparative examples are attached to a rechargeable drill driver (manufactured by Panasonic) until the same operator manually sinks the outer peripheral blade against the metal plate (material SS400, thickness 9 mm) (see FIG. 15). ), Cutting.
  • the operator evaluated the ease of cutting work by each drill according to the following criteria. The evaluation results are shown in Table 2.
  • the drill of the example (0 ⁇ A ⁇ B) could be cut more easily than the drill of the comparative example (A> B). In other words, cutting resistance was small. In particular, the drills of Examples 1 to 3 (0 ⁇ A ⁇ B) had very low cutting resistance.
  • ⁇ Test 2 Comparison with other company's products 1> Four types of drills (diameter ⁇ 8.5 mm) shown in Table 3 were prepared.
  • the drill of Example 5 is a drill according to the present invention (see FIG. 1), and the drills of Comparative Examples 3 to 5 have shapes shown in FIGS. 16 (a) to 16 (c), respectively.
  • Example 5 and Comparative Examples 3 to 5 were attached to a rechargeable drill driver (manufactured by Panasonic), and the same operator manually cut the metal plate (material SS400, thickness 9 mm).
  • the cutting was temporarily stopped, and after confirming the shape of the hole, the cutting was continued until the outer peripheral edge further sank.
  • Tables 4 and 5 show the evaluation results for each drill. The reason for confirming the hole shape is that if the cutting resistance changes during the operation, the hole shape is unlikely to become a conical shape.
  • the drill of the example has a lower cutting resistance and less fluctuation than the comparative drill, and can be easily cut with a light force. Powder comes out.
  • the field of manufacturing one part such as automobile parts and electric parts in large quantities, continuous chips that may be wound on a drill due to automation and unmanned machinery are avoided.
  • drill manufacturers have prioritized the development of drills suitable for automatic machines that do not produce continuous chips.
  • the operator only needs to remove chips, so the sharpness improves even if continuous chips are produced. This improves work efficiency.
  • by discharging the chips along the drill groove there is no reduction in chip clogging as a deep hole drill,
  • ⁇ Test 3 Comparison with other company's products 2> Four types of drills (diameter ⁇ 6.5 mm) shown in Table 6 were prepared.
  • the drill of Example 6 is a drill according to the present invention (see FIG. 1), and the drills of Comparative Examples 6 to 8 have shapes shown in FIGS. 16 (a) to 16 (c), respectively.
  • the reason why the drill diameter ⁇ is set to 6.5 mm is to allow the outer peripheral blade to reach the metal plate before the drill tip penetrates a metal plate (thickness 3 mm) described later.
  • the drill of the example has durability far exceeding the drill of the comparative example with respect to SUS304, which is a difficult-to-cut material, than the SS material.
  • ⁇ Test 4 Comparison with other invented products> Three types of drills (diameter ⁇ 8.2 mm) shown in Table 8 were prepared.
  • the drill of Example 7 is a drill according to the present invention (see FIG. 8)
  • the drill of Comparative Example 9 is the drill described in Japanese Patent Application No. 2010-203777 (the prior application of the present applicant)
  • the drill of Comparative Example 10 Is the drill described in Patent Document 2.
  • the workpiece (Daihatsu Move replacement panel (high-tensile steel plate)) was drilled with the above three types of drills, and the sharpness and durability were confirmed. In order to avoid breakage, the drilling was performed to the same depth without using a through hole. First, holes were drilled one by one using the above three types of drills, and the sharpness of the drills was confirmed. The results are shown in Table 9.
  • Drilling was performed using the drills of Example 7 and Comparative Examples 9-10. The work was carried out continuously, and was finished when the operator judged that the drill was unusable (not drilled), and the durability of the drill was evaluated based on the number of drilled holes. The results are shown in Table 10.
  • the drill of Example 7 was found to have both sharpness and durability, unlike the drills of Comparative Examples 9 and 10. Further, when the tip of each drill was observed in an enlarged manner, the drills of Comparative Examples 9 and 10 were greatly worn at the chisel edge, whereas the drill of Example 6 had a large number of holes, but the chisel edge had a large number of holes. It was confirmed that there was little wear and the entire cutting edge was similarly worn. Since the drill of Example 7 has the widest chisel width, the force of pushing the operator's drill is dispersed, and it can be assumed that the chisel edge is less worn compared to the drills of Comparative Examples 9 and 10, and that many holes can be drilled. Moreover, even if the chisel width is widened, it is considered that the cutting force equivalent to that of the narrow one is obtained because it has a rake angle appropriate for cutting.
  • the drills of Examples 1 to 7 all have a thinning surface having a specific shape (the shape specified in claim 1), and all of the drills of Comparative Examples 1 to 10 have a thinning surface of the specific shape. Not done.
  • a supplementary explanation will be given of the drills used in Test 1 (Examples 1 to 4 and Comparative Examples 1 and 2).
  • Test 1 five types of thinning were formed on one type of drill mainly for the purpose of setting the dimensional ratio of A: B. Thinning was performed by creating a grindstone capable of a thinning dimension of 4.5 mm, specifically, in the shape of (2) in FIG.
  • the shape becomes an arc shape close to FIG. 16 (b), and the thinning surface formed by the thinning cutting edge does not become a substantially parabolic shape inclined with respect to the drill axis direction when viewed from the front side of the drill. In addition, it was not recognized as a shape that was close to the shape of the drill and inclined with respect to the drill axis direction.
  • ⁇ Test 5 Additional test 1> (1) Setting of drill diameter In accordance with the actual situation at the work site, the drill diameter was set to the following three types, which are the pilot hole diameters of screws. 1. M4: ⁇ 3.3mm 2. M5: ⁇ 4.2mm 3. M6: ⁇ 5.2mm
  • Example Drills The drills of Examples 8 to 10 were produced under the three conditions shown in Table 11 for the above three types of diameters.
  • the workpiece (SUS304 steel plate: thickness 3 mm ⁇ 100 mm ⁇ 500 mm) was used with a drilling machine (Kitakawa Kogyo Co., Ltd., model KFS-410 (used at 320 rpm / 60 Hz)).
  • a drilling machine Kitakawa Kogyo Co., Ltd., model KFS-410 (used at 320 rpm / 60 Hz)
  • a drilling test for drilling holes was performed, the time required for drilling was measured, and the chip shape was observed, and the results are shown in Table 12.
  • Drill of Comparative Example 11 Since the drill of Comparative Example 11 is a drill of ⁇ 3.175 mm or less including a curve in thinning, it is manufactured based on a drill of ⁇ 3.3 mm that is the closest in diameter to reality. Compared with the test results of Example 8. Other dimensions of the drill of Comparative Example 11 (see Publication 1) are shown below. ⁇ Chisel width: 0.15mm -Deletion part inclination angle ⁇ : 60 ° -Deletion section axial length d: 1.21 mm ⁇ Rake angle: -10 °
  • the drill of Comparative Example 13 has a feature that the thinning portion (thinning cutting edge) is longer than the cutting edge portion (main cutting edge), and therefore, based on a ⁇ 5.2 mm drill. It was manufactured and compared with the test result of Example 10 in which the thinning in which the length of the thinning portion is longer is the shape of the cutting edge.
  • Other dimensions of the drill of Comparative Example 13 are shown below.
  • the chisel width was initially set to be the same as that of the drill of the Example, but because the sharpness was very poor, a drill set to 4 to 5% of the drill diameter was produced again.
  • the drills of Comparative Examples 11 to 13 are made of stainless steel, there is no guarantee that the workpiece can be continuously drilled twice or more. Therefore, the time for drilling one hole at a time in the order of drilling machine ⁇ hand drill was measured. (Since there is a high possibility that the cutting blade breaks when drilling with a hand drill, we thought to reduce the damage to the blade tip by drilling with a drilling machine first.)
  • the drill of the example can drill holes at a speed two to three times higher than the drill of the comparative example.
  • the difference in the drilling time depending on the thinning position of the drill in the example is considered to be almost zero because the drilling time slightly increases with the increase in the drill diameter.
  • the drilling time of the air drill (hand drill) is shorter than that of the drilling machine because the drilling machine is set to the minimum rotational speed (320 rpm / 60 Hz). (If the drill diameter ⁇ 3.3 to 5.2 mm is taken into consideration, a rotation speed more than doubled seems to be appropriate.
  • ⁇ Test 6 Additional test 2> After completion of the additional test 1, the drills of Examples 8 to 10 and the drills of Comparative Examples 11 to 13 are used as they are, and these drills are attached to the drilling machine so that a plurality of through holes are continuously formed in the same workpiece as the additional test 1. I opened it. Check the cutting edge of the drill from time to time, paying attention to changes in sound and resistance during cutting, and stop drilling when damage (such as chipping or wear) that could interfere with cutting occurs in the cutting edge. The number of through-holes drilled up to was counted. In addition, the shape of the chips was observed. The drills of Examples 8 to 10 stopped drilling due to the size of the workpiece used before the damage to the extent that could interfere with cutting (the drilling space was lost). It shows in Table 18, and the test result of a comparative example drill is shown in Table 19.
  • the drill of the example is at least about 4 times (contrast of Example 10 and Comparative Example 13) to about 17 times (of Example 8 and Comparative Example 11) as compared with the comparative drill. It was confirmed that as many holes as possible could be drilled. It is considered that there is almost no difference due to the thinning position of the drill of the example (difference between the examples 8 to 10).
  • the drill of the example clean curled chips similar to the sine curve were discharged. Although the chip of such a shape is often seen for aluminum, it is hardly seen for stainless steel, so it can be seen that the sharpness is very excellent.
  • powdered chips are discharged, and it can be seen that the drill of the example is remarkably sharper than the drill of the comparative example.
  • the drill according to the present invention is suitably used as a drill used for manual drilling work using a hand drill or a drilling machine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Drilling Tools (AREA)

Abstract

(課題)切削抵抗を大幅に低減することができ、ハンドドリルやボール盤等を使用した人力による穴あけ作業を容易に行うことが可能であるドリルを提供すること。 (解決手段)回転軸対称に形成された2つの切刃を有し、先端部にシンニングが施されているドリルであって、前記切刃が、ドリル先端側から見たとき、チゼルエッジからドリル外周側に向けて曲線を含む形状に延びるシンニング切刃1と、前記シンニング切刃の端部からドリル外周端まで延びる主切刃2とからなり、前記シンニング切刃により形成されたシンニング面が、ドリル正面側から見たとき、ドリル軸芯方向に対して傾斜した略放物線状に形成されている。

Description

ドリル
 本発明はドリルに関し、特にハンドドリルやボール盤等を使用して人力で穴をあける際に好適に使用されるドリルに関する。
 近年、マシニングセンターなどの工作機械に使用されるドリルについては、工作機械が無人で加工が行われる全自動機が主流となってきていることから、全自動機に対応するドリルが数多く開発され販売されている。
 しかし、ハンドドリルやボール盤等の穴あけ時に作業者の力が必要な装置に使用されるドリルについては、積極的な研究開発が行われることがなく、数十年に亘って同じ様な形状のドリルが用いられているのが現状である。
 これらハンドドリルやボール盤等で使用されるドリルは、作業者の腕の力を利用して穴あけを行うため、切削抵抗が大きいと穴あけが困難となる。しかし、従来このようなドリルについては、ドリル自体の強度や剛性を確保することが先決であると考えられており、加えてドリルを購入した作業者が自分の好みにドリルを研磨して使用していたという実状もあって、ドリルメーカーにおいて切削抵抗を低減させるための研究は殆どなされていなかった。
 一般に、ドリルの切削抵抗を低減させるための方法として、切刃にシンニングを施してチゼル幅を狭くする方法が知られている。(例えば、下記特許文献1参照)
 従来のシンニングは、ドリル中心部からヒール部にかけて行われる(図16(a)参照)、或いはドリル中心部の狭い範囲のみに行われる(図16(b)参照)のが普通であった。尚、図16(a)(b)においてシンニング部にハッチングを施し、シンニングにより形成された切刃を(S1)で示す。
 このようなシンニングを施したドリルは、シンニング無しのドリル(図16(c)参照)と比べると切削抵抗の低減効果はあるものの、ハンドドリルやボール盤等の人力による穴あけ作業に使用する場合、切削抵抗の低減が充分とは言えず、作業者の腕力にかかる負担が大きい。
 本出願人は下記特許文献2において、高硬度の鋼板を使用した自動車の車体のスポット溶接部を剥離するために好適に用いられるドリルを提案している。
 このドリルは、回転軸対称に2枚の切刃を有し、先端部にシンニングが施されているドリルであって、チゼル幅が0.05~0.3mmであり且つシンニングがドリル先端側から見た場合において両切刃の刃先を結んだ直線に対して1~4°傾いた角度で施されているものである。
 このドリルによれば、チゼル幅が狭く且つシンニングが上記角度で形成されていることにより、従来のドリルに比べると、切削時のスラスト抵抗が小さく、作業者が加える力が少なくて済む。
 しかしながら、このドリルは、高硬度の鋼板に対応するためにシンニングにより形成されるすくい角を90°より大きく設定している。そのため、中心部の切削力が弱く、ハンドドリルでの穴あけ作業時においてワークが中心から外周刃にかかるまでの間はかなりの力が必要となる。また、チゼル幅が非常に狭いために、使用時に先端が欠けてしまう虞があり、特に粉末高速度鋼を材料とするドリルでは、脆くなるために一層先端が欠け易くなる。
 また、下記特許文献3及び4にも夫々シンニングを施したドリルが記載されている。
 特許文献3に記載されたドリルは深穴加工用のものであり、シンニングポケット(シンニング面により画成される凹所)に十分な容量を与えて切屑を円滑に排出することを目的として、シンニング切刃の長さを長くしたものである。
 特許文献4に記載されたドリルはプリント基板用小径ドリルであり、ガラス繊維を含む樹脂基板に穴あけするために、超硬合金製ドリルの欠けを防ぐための一般的なシンニングが施されているものである。
 また、下記特許文献1に記載されたドリルは、X形シンニングを有するツイストドリルである。
 しかしながら、特許文献1、3及び4に記載されたドリルはいずれもシンニングが施されているが、そのシンニングは切削抵抗の減少を目的としたものではない。そのため、シンニングによって切削抵抗が減少することはなく却って増加する場合もあり、ハンドドリル等の人力を利用して穴あけをするためのドリルとして満足できる良好な切れ味を得ることはできない。
特開2000-271811号公報 特開2006-88267号公報 特開平7-40119号公報 特開平7-164228号公報
 本発明は、上記したような従来技術の問題点を解決すべくなされたものであって、切削抵抗を大幅に低減することができ、ハンドドリルやボール盤等を使用した人力による穴あけ作業を容易に行うことが可能であるドリルを提供するものである。
 請求項1に係る発明は、回転軸対称に形成された2つの切刃を有し、先端部にシンニングが施されているドリルであって、前記切刃が、ドリル先端側から見たとき、チゼルエッジからドリル外周側に向けて曲線を含む形状に延びるシンニング切刃と、前記シンニング切刃の端部からドリル外周端まで延びる主切刃とからなり、前記シンニング切刃により形成されたシンニング面が、ドリル正面側から見たとき、ドリル軸芯方向に対して傾斜した略放物線状に形成されていることを特徴とするドリルに関する。
 請求項2に係る発明は、前記シンニング面の最深部に沿って延びる線をドリル先端方向に延長した延長線が、ドリル正面側から見たとき、ドリル先端中心部と交わらずにドリルのヒール側又は切刃側にずれていることを特徴とする請求項1記載のドリルに関する。
 請求項3に係る発明は、前記ずれの幅が、ドリル直径の10%以内であることを特徴とする請求項2記載のドリルに関する。
 請求項4に係る発明は、前記延長線が、ドリルのヒール側にずれていることを特徴とする請求項2又は3記載のドリルに関する。
 請求項5に係る発明は、前記延長線が、ドリルの切刃側にずれていることを特徴とする請求項2又は3記載のドリルに関する。
 請求項6に係る発明は、前記シンニング面の最深部に沿って延びる線をドリル先端方向に延長した延長線が、ドリル正面側から見たとき、ドリル先端中心部と交わることを特徴とする請求項1記載のドリルに関する。
 請求項7に係る発明は、前記シンニング切刃のチゼルの直下を含む部分にすくい角が形成されていることを特徴とする請求項2乃至4いずれかに記載のドリルに関する。
 請求項8に係る発明は、前記シンニング切刃のチゼルの直下近傍であって且つ直下を含まない部分にすくい角が形成されていることを特徴とする請求項2,3,5,6いずれかに記載のドリルに関する。
 請求項9に係る発明は、前記主切刃により形成されたすくい角θと、前記シンニング切刃により形成されたすくい角θがチゼルの直下を除いて、θ>θ>0°を満たすことを特徴とする請求項1乃至8いずれかに記載のドリルに関する。
 請求項1に係る発明によれば、従来のドリルに比べて切削抵抗を大幅に低減することができ、ハンドドリルや手動のボール盤等を使用した人力による穴あけ作業を容易に行うことが可能なドリルを提供することができる。また、切削抵抗が低減されることで、穴あけ精度が向上し、穴あけ時間が短縮するため作業効率が向上する。更にドリルの寿命を大幅に延ばすことも可能となる。
 請求項2に係る発明によれば、シンニング面の最深部に沿って延びる線をドリル先端方向に延長した延長線が、ドリル正面側から見たとき、ドリル先端中心部と交わらずにドリルのヒール側又は切刃側にずれていることから、チゼルから切刃にかけて(一部ヒール部にも)或いはチゼル直下を除いてチゼル近傍から切刃にかけて、明確なすくい部を形成することができる。これによって切れ味が飛躍的に向上する。
 請求項3に係る発明によれば、前記ずれの幅がドリル直径の10%以内であることから、より確実に切削抵抗を小さくすることができて優れた切れ味を得ることが可能となる。
 請求項4に係る発明によれば、前記延長線がドリルのヒール側にずれていることから、チゼルから切刃にかけて(一部ヒール部にも)明確なすくい部を形成することができる。これによってチゼル部から切刃部にかけて明確な切刃が形成され、切れ味が飛躍的に向上する。
 また、ドリル先端がワークに当たった瞬間からドリルの回転によって得られる切削力が生まれ(これは、ドリル先端にもすくいがあるため、例えばエアードリルの回転のみでも、ドリルがワークに当たった瞬間からすくい角分の分力が発生し、この分力はワーク側に作用するため)、作業者がドリルに押し付ける力が小さくて済む。
 また、すくい角は比較的大きくなり、前記延長線がドリルの切刃側にずれた場合や前記延長線がドリル先端中心部と交わる場合に比べて、切削力が最も大きくなる。
 請求項5に係る発明によれば、前記延長線がドリルの切刃側にずれていることから、チゼル直下を除いて、チゼル近傍から切刃にかけて明確なすくいが得られる。チゼル直下にはすくいが無いが、チゼル幅は、前記延長線がヒール側にずれた場合(場合1)よりも狭くなり、前記延長線がドリル先端中心部と交わる場合(場合2)と略同じとなり、加えて、シンニング部が大きくとれるため、切削抵抗が減少し、チゼル直下にすくいが無くとも、上記2つの場合(場合1,2)と同等以上の切れ味を得ることができる。
 請求項6に係る発明によれば、シンニング面の最深部に沿って延びる線をドリル先端方向に延長した延長線が、ドリル正面側から見たとき、ドリル先端中心部と交わることから、チゼル直下を除いて、チゼル近傍から切刃部にかけて明確な切刃が形成され、切れ味が飛躍的に向上する。また、チゼル幅が最小となるため、切削抵抗は却って減少し、前記延長線がヒール側にずれた場合と同様の切削力が得られる。
 請求項7に係る発明によれば、シンニング切刃のチゼルの直下を含む部分にすくい角が形成されていることから、チゼル直下から切刃にかけてワークと接する部分全てにすくい角が形成され、その全てが切刃として作用するため、切削力が大きくなるという利点がある。(後記図12(a)参照)
 請求項8に係る発明によれば、前記シンニング切刃のチゼルの直下近傍であって且つ直下を含まない部分にすくい角が形成されていることから、チゼル直下を除き、ワークと接する部分が切刃として作用する。これによって、シンニング切刃のチゼルの直下を含む部分にすくい角が形成されている場合(場合3)に準ずる切削力が得られるが、チゼル先端部が狭くなるため、チゼル先端部の切削抵抗が減少し、場合3と同等の切れ味が得られる。(後記図12(b)(c)参照)
 また、場合3と比較すると、シンニング部の幅を大きくとれる利点がある。そのため、ワークの材質やドリル径に応じてシンニング位置を変更して対応することができる、例えば、比較的硬い材質や太目のドリル径に対してはシンニング位置を切刃側に寄せて対応し、軟らかい材質や細目のドリル径に対してはヒール寄りにして対応する、等の工夫をすることができる。
 請求項9に係る発明によれば、主切刃により形成されたすくい角θと、シンニング切刃により形成されたすくい角θがチゼルの直下を除いて、θ>θを満たすことにより、見掛け上のすくい角が小さくなってワークに食い込む量が少なくなり、ハンドドリルなど人力でワークに押し付ける場合であっても容易に切れるようになる。また、θ>0°とすることにより、θを0°からマイナスとした場合の不具合(切削抵抗が増加して切れ味が悪くなる)が生じない。
本発明の第一実施形態に係るドリルを示す図であって、(a)は上面図(ドリルを先端側から見た図)、(b)は先端部の正面図である。 本発明に係るドリルを図1(b)よりも若干左方向から見た図である。 逃げ角を定義する図である。 シンニング形成時にドリルを砥石に当てる角度を示す図である。 シンニングの角度を示す図である。 (a)はシンニング部に直角な断面を示す図、(b)は(a)の断面部位(A-A断面)を示す図である。 すくい面の縁部形状の別の例を示す図である。 本発明に係るドリルの別の例(スポット溶接剥離用ドリル)(第二実施形態)を示す先端部の正面図である。 本発明の第三実施形態のドリルを示す図であって、(a)は上面図(ドリルを先端側から見た図)、(b)は先端部の正面図である。 本発明の第四実施形態のドリルを示す図であって、(a)は上面図(ドリルを先端側から見た図)、(b)は先端部の正面図である。 本発明の第五実施形態のドリルを示す図であって、(a)は上面図(ドリルを先端側から見た図)、(b)は先端部の正面図である。 本発明に係るドリルをチゼルに沿って縦方向(ドリル長さ方向)に切断した断面図であって、(a)は第三実施形態のドリル、(b)は第四実施形態のドリル、(c)は第五実施形態のドリルである。 本発明に係るドリルにおけるシンニング切刃の創成用の砥石形状の例を示す図であり、砥石の回転端部(外周縁部)を示している。 本発明に係るドリルにおけるシンニング切刃の創成用の砥石形状の例を示す図であり、砥石の回転端部(外周縁部)を示している。 実施例及び比較例のドリルの試験方法を示す図である。 従来のドリルの上面図(ドリルを先端側から見た図)である。
 以下、本発明に係るドリルの好適な実施形態について、図面を参照しながら説明する。
 図1は本発明に係るドリルの第一実施形態を示す図であって、(a)は上面図(ドリルを先端側から見た図)、(b)は先端部の正面図である。
 本発明に係るドリルは、回転軸対称に形成された2つの切刃を有し、先端部にシンニングが施されている。
 切刃は、ドリル先端側から見たとき、チゼルエッジからドリル外周側に向けて曲線を含む形状に延びるシンニング切刃(1)と、シンニング切刃(1)の端部からドリル外周端まで延びる主切刃(2)とからなる。尚、図示例において、主切刃(2)は、シンニング切刃(1)の端部からドリル外周端まで直線状に延びているが、曲線状に延びていてもよいし、直線状部分と曲線状部分とを含む線状に延びていてもよい。これは本発明の全ての実施形態に共通する。
 図中、(3)は逃げ面、(4)はチゼル、(5)は主切刃(2)により形成されたすくい面、(6)はシンニングにより形成された新たなすくい面、(W)はチゼル幅である。
 第一実施形態のドリルは、主切刃(2)の延びる方向における切刃長さが、主切刃(2)の長さを(A)、シンニング切刃(1)の長さを(B)としたとき、0<A≦Bを満たしている。
 シンニング切刃(1)の長さ(B)を、主切刃(2)の長さ(A)と同じかそれ以上に設定することにより、後述する実施例及び比較例に示す如く、A>Bである従来のドリルに比べて切削抵抗を大幅に低減することが可能となる場合がある。
 但し、本発明においては、後述する実施形態(図9、図11参照)に示すように、A>Bとしてもよい。
 第一実施形態のドリルでは、切刃長さ全長(A+B)に占めるシンニング切刃(1)の長さ(B)の割合(B/(A+B))が大きいほど切削抵抗が低減されるため、できるだけシンニング切刃(1)の長さ(B)を長くして主切刃(2)の長さ(A)を短くすることが好ましい。しかし、主切刃(2)の長さ(A)が0になると、開けた穴の面精度が低下するため、0<Aとする必要がある。好ましくは、ドリル半径(R)に対してR×0.1≦Aを満たすように設定する。
 図2は第一実施形態のドリルを正面より若干左方向から見た図である。
 主切刃(2)により形成されたすくい角(θ)と、シンニング切刃(1)により形成されたすくい角(θ)は、θ>θ>0°を満たす。但し、チゼル(4)の直下のみでθ≒0°(ほぼ0°に近いθ<0°)となる。
 シンニング切刃(1)により形成されたすくい角(θ)が、主切刃(2)により形成されたすくい角(θ)より小さいということは、シンニングを施すことにより見掛け上のすくい角が小さくなる(緩くなる)ことを意味する。
 すくい角が大きい(きつい)とワークに食い込む量が多くなり、工作機械など動力源を使用してドリルを回転させる場合には問題ないが、ハンドドリルなど人力でワークに押し付ける場合は負荷に対して人力が負けてしまい、結果として切れないということになる。
 本発明では、θ>θを満たすようにシンニング切刃(1)を形成することにより、見掛け上のすくい角が小さくなってワークに食い込む量が少なくなり、ハンドドリルなど人力でワークに押し付ける場合であっても容易に切れるようになる。
 θ>0°とするのは、シンニング切刃(1)により形成されたすくい角(θ)が0°からマイナスになると逆に切削抵抗が増加し、却って切れ味が悪くなるためである。因みに、従来のドリルでは、中心部にすくいがあると刃先が欠け易くなるという理由から、すくい角がマイナスになるようなシンニングが施されている。
 ドリルの捩れ角はドリルの種類によって様々であるが、概ね30°前後に設定されている。しかし、この角度では切削抵抗が大きいためにハンドドリルなどの人力での穴あけ作業においては不向きである。
 捩れ角を小さくすることによりすくい角を小さくして切削抵抗を低減する方法もあるが、捩れ角を変えてドリルを製作するよりも従来の捩れ角を変えずに本発明の如くシンニングのみで見掛けのすくい角を変える方法は極めて簡単に行うことができるという大きな利点がある。
 主切刃(2)により形成された刃先角(α)と、シンニング切刃(1)により形成された刃先角(α)は、α<α<90°を満たす。(尚、α,αについて図6参照)
 ここで、すくい角と刃先角について補足説明する。
 ドリルが本来持っているすくい角(シンニング形成前のすくい角)では、刃先角が鋭すぎて、刃先が楔のようにワークに鋭く食い込むため、切削抵抗が大きくなる。
 シンニングを行うことにより、すくい角が減少して刃先角が増大し、これによって切れ味が向上する(切削抵抗が減少する)。特に、本発明に係るドリルに施されるシンニングによれば、作業者の腕力に適した緩やかなすくい角と大きめの刃先角が創成されることとなる。
 逃げ角(β)は0°<β<8°を満たすように設定する。好ましくは0°<β≦4°を満たすように設定する。
 一般的には、逃げ角を大きくとり、すくい角を大きくすることで、鋭利な刃先を形成することにより、鋭い切れ味が得られると考えられており、市販のドリルは共通してこのような形状を有している。
 しかし、逃げ角もすくい角同様に大きくすると刃先が鋭くなってワークに食い込む量が多くなり、ハンドドリルなど人力でワークに押し付ける場合は切れなくなる。
 本発明では逃げ角(β)を0°<β≦4°と小さく設定することにより、ワークに食い込む量が少なくなり、ハンドドリルなど人力でワークに押し付ける場合であっても容易に切れるようになる。
 ここで、逃げ角(β)は下記(イ)又は(ロ)により定義される。
(イ)半径50mm以上の砥石外周部の砥石水平中心線上に、ドリル先端部の中心を合わせ、ドリル先端部の切刃部を砥石水平中心線と平行(=水平)に当て、ドリル後端部を、ドリル先端部を中心に砥石水平中心線より下降させたときの砥石水平中心線とドリル中心軸線のなす角度。(図3(a)参照)
(ロ)砥石側面(垂直平面)の砥石水平中心線上に、ドリル先端部の中心を合わせ、ドリル先端部の切刃部を砥石水平中心線と平行(=水平)に当て、ドリル後端部を、ドリル先端部を中心に砥石水平中心線より下降させたときの砥石水平中心線とドリル中心軸線のなす角度。(図3(b)参照)
 但し、(イ)と(ロ)とでは、図3(a)に示す砥石半径と、ドリル中心から切刃部までの距離:1/2W(W:心厚)とにより生まれる角度分(砥石半径50mmにおいて心厚(W)が2mmの場合、約0.573°、半径100mmにおいては約0.286°、半径150mmにおいては約0.191°)程度の違いが生じる。
 そのため、(イ)で求める場合、この差分を加えたものを逃げ角とすることが好ましい。つまり、逃げ角は下式の通りに求めることが好ましい。
(イ)(図3(a))の場合:逃げ角=β+tan-1((1-cos(sin-10.5W/R))R÷0.5W)
(ロ)(図3(b))の場合:逃げ角=β
 例えば、逃げ角3°で半径(R)50mmの砥石で研磨する、直径10mm、心厚2mmのドリルの実際の逃げ角は約3.573°となる。
 チゼル幅(W)(図1(a)参照)は、ハンドドリルなど人力でワークに押し付ける場合であっても容易に切れるようにするために小さく設定することが好ましい。具体的には、ドリル直径の10%以下に設定することが好ましい。例えば、ドリル直径φが2~13mmの場合、チゼル幅(W)はドリル直径の増減に応じて0.1~0.8mmの範囲で増減させて設定する。
 本発明では、シンニングの角度を従来のドリルに比べて小さく設定する。
 従来のシンニングは、ドリル自体の強度・剛性を優先するために、シンニング形成時にドリルを砥石に当てる角度(θ)を大きめにしていた。(図4(a)参照)
 角度(θ)を極力少なくし、砥石の研削面接線上にドリルの中心を近づけると、ドリル中心部のウエブと呼ばれる部分の抵抗を受けなくなるため、切削抵抗は大幅に減少する。(図4(b)参照)
 そこで、本発明においては、シンニングの角度を下記(I)及び(II)を満たすように設定することが好ましい。
(I)シンニングを行う砥石の垂直中心線に対してドリル中心軸線のなす角度(図4のθ)が0~20°
(II)シンニングを行う砥石の幅方向の中心線に対してドリル中心軸線のなす角度が20~35°(図5参照)
 但し、上記(II)のシンニングの角度の範囲は、先端角118°、捩れ角30°の場合に求められたものであり、必ずしも全てのドリルに対して好適とはいえない。理論上は、上記(II)のシンニングの角度の上限値は、ドリルの刃先と平行な位置(=先端角)の1/2の角度(118°の場合は59°)までの範囲に設定することができる。
 次に、シンニングの形状について説明する。
 図6(a)はドリルのシンニング部に直角な断面(図6(b)のA-A断面)を示す図である。
 図6(a)に示す例では、シンニングにより形成されたすくい面(6)の縁部(主切刃(2)により形成されたすくい面(5)との境界部)は、シンニングの半径(R)によって円弧状に形成されている。尚、(R)はドリル溝部の半径である。
 図示のように、主切刃(2)により形成されたすくい角(θ)と、シンニング切刃(1)により形成されたすくい角(θ)は、θ>θ>0°を満たす。
 また、主切刃(2)により形成された刃先角(α)と、シンニング切刃(1)により形成された刃先角(α)は、α<α<90°を満たす。
 本発明において、すくい面の縁部形状は、円弧状に限らず、円弧と直線を組み合わせた形状であってもよい。(図7参照)
 本発明者らは、すくい面の縁部形状が円弧状の場合(図6(a))と、円弧と直線を組み合わせた形状の場合(図7)とが、同等の切れ味を有し、切削抵抗に違いが無いことを実験により確認している。
 本発明に係るドリルは、図8に示すような形状を有する、スポット溶接剥離用ドリル(以下、第二実施形態と称す)であってもよい。尚、図8において、図1に示すドリルと同じ構成要素については同じ符号を付している。
 第二実施形態のドリルも、主切刃(2)の延びる方向における切刃長さは、主切刃(2)の長さを(A)、シンニング切刃(1)の長さを(B)としたとき、0<A≦Bを満たしている。より好ましくは、ドリル半径(R)に対してR×0.1≦Aを満たすように設定する。
 また、主切刃により形成されたすくい角(θ)と、シンニング切刃により形成されたすくい角(θ)が、θ>θ>0°を満たすことが好ましい。
 更に、主切刃により形成された刃先角(α)と、前記シンニング切刃により形成された刃先角(α)が、α<α<90°を満たすことが好ましい。
 加えて、逃げ角(β)が0°<β≦4°を満たすことが好ましい。
 本発明に係るドリルは、シンニング切刃(1)により形成されたシンニング面(8)が、ドリル正面側から見たとき、ドリル軸芯方向(C)に対して傾斜した略放物線状(略U字状)に形成されている(図2、図8参照)。
 傾斜の方向は、図示の通り、ドリル先端側から基端側に向かうにつれ、シンニング切刃(1)側から主切刃(2)側へと移行する方向(正面視にて左斜め下方向)である。
 傾斜の角度(γ)は、20~35°の範囲(例えば27.5°)に設定する。この角度設定は、上述したように、シンニングを行う砥石の幅方向の中心線に対してドリル中心軸線のなす角度が20~35°(図5参照)となるように設定することにより行うことができる。シンニングを行う際に、ドリル長手方向の中心軸に対して砥石の中心(図1(a)の一点鎖線(L)参照)を傾ける角度は、ドリルの捩れ角を考慮して、捩れ角-10°~捩れ角+10°の範囲に設定することが好ましい。但し、理論上はこの角度は捩れ角-10°~切刃側の先端角の1/2までに設定できる。
 これらの構成(シンニング切刃の形状、傾斜の方向、傾斜の角度)は、本発明の全ての実施形態のドリルに共通する構成である。
 図9は本発明の第三実施形態のドリルを示す図であって、(a)は上面図(ドリルを先端側から見た図)、(b)は先端部の正面図である。
 第三実施形態のドリルも、シンニング切刃(1)により形成されたシンニング面(8)が、ドリル正面側から見たとき、ドリル軸芯方向(C)に対して傾斜した略放物線状(略U字状)に形成されている(図9(b)参照)。
 シンニング切刃(1)により形成されたシンニング面(8)の最深部(シンニングにより削り取られた最も深い部分)に沿って延びる線をドリル先端方向に延長した延長線(D)は、ドリル正面側から見たとき、ドリル先端中心部(7)と交わらずにドリルのヒール側にずれている。
 ずれ量(d)は、ドリル直径の10%以内であることが好ましい。10%を超えると、切削抵抗が増加して切れ味が低下するためである。
 シンニング切刃(1)のチゼル(4)の直下を含む部分にはすくい角が形成されている。図9(a)において、すくい角を形成しているすくい面を符号(10)で示している。
 チゼル(4)の直下を含む部分においてすくい角が形成されていることにより、チゼル(4)の直下にはチゼルと平行な方向の幅がチゼル幅(W)より狭い部分(9)が形成されている。(図12(a)参照)
 第三実施形態のドリルは、主切刃(2)の延びる方向における切刃長さが、主切刃(2)の長さを(A)、シンニング切刃(1)の長さを(B)としたとき、A>Bとなっている。
 主切刃(2)により形成されたすくい角(θ)と、シンニング切刃(1)により形成されたすくい角(θ)は、θ>θ>0°を満たしている。チゼル(4)の直下においても同様である。
 図10は本発明の第四実施形態のドリルを示す図であって、(a)は上面図(ドリルを先端側から見た図)、(b)は先端部の正面図である。
 第四実施形態のドリルも、シンニング切刃(1)により形成されたシンニング面(8)が、ドリル正面側から見たとき、ドリル軸芯方向(C)に対して傾斜した略放物線状(略U字状)に形成されている(図10(b)参照)。
 シンニング切刃(1)により形成されたシンニング面(8)の最深部に沿って延びる線をドリル先端方向に延長した延長線(D)は、ドリル正面側から見たとき、ドリル先端中心部(7)と交わらずにドリルの切刃側にずれている。
 ずれ量(d)は、ドリル直径の10%以内であることが好ましい。10%を超えると、切削抵抗が増加して切れ味が低下するためである。
 シンニング切刃(1)のチゼル(4)の直下近傍であって且つ直下を含まない部分にはすくい角が形成されている。より具体的には、シンニング切刃(1)のチゼル(4)の直下よりも主切刃(2)側にすくい角が形成されている。図10(a)において、すくい角を形成しているすくい面を符号(10)で示している。
 第四実施形態のドリルは、主切刃(2)の延びる方向における切刃長さが、主切刃(2)の長さを(A)、シンニング切刃(1)の長さを(B)としたとき、0<A≦Bを満たしている。
 主切刃(2)により形成されたすくい角(θ)と、シンニング切刃(1)により形成されたすくい角(θ)は、θ>θ>0°を満たす。但し、チゼル(4)の直下のみでθ≒0°(ほぼ0°に近いθ<0°)となる。
 図11は本発明の第五実施形態のドリルを示す図であって、(a)は上面図(ドリルを先端側から見た図)、(b)は先端部の正面図である。
 第四実施形態のドリルも、シンニング切刃(1)により形成されたシンニング面が、ドリル正面側から見たとき、ドリル軸芯方向(C)に対して傾斜した略放物線状(略U字状)に形成されている(図11(b)参照)。
 シンニング切刃(1)により形成されたシンニング面(8)の最深部に沿って延びる線をドリル先端方向に延長した延長線(D)は、ドリル正面側から見たとき、ドリル先端中心部(7)と交わっている。
 シンニング切刃(1)のチゼル(4)の直下近傍であって且つ直下を含まない部分にはすくい角が形成されている。より具体的には、シンニング切刃(1)のチゼル(4)の直下よりも主切刃(2)側にすくい角が形成されている。図11(a)において、すくい角を形成しているすくい面を符号(10)で示している。
 第五実施形態のドリルは、主切刃(2)の延びる方向における切刃長さが、主切刃(2)の長さを(A)、シンニング切刃(1)の長さを(B)としたとき、A>Bとなっている。
 主切刃(2)により形成されたすくい角(θ)と、シンニング切刃(1)により形成されたすくい角(θ)は、θ>θ>0°を満たす。但し、チゼル(4)の直下のみでθ≒0°(ほぼ0°に近いθ<0°)となる。
 上記第三~第五実施形態のドリルはいずれも、上記第一実施形態及び第二実施形態のドリルと同様に、シンニング切刃(1)が、ドリル正面側から見たとき、ドリル軸芯方向(C)に対して傾斜した略放物線状(略U字状)に形成されているという特徴を有している。
 これにより、0<A≦Bを満たさなくとも、チゼルに掛かる負荷が減少し、チゼル幅を狭くすることが可能となる。具体的には、シンニング後のチゼル幅は、ドリル直径の3~5%程度まで狭くすることが可能となる。そのため、切削抵抗が減少して優れた切れ味を得ることができ、人力で行う穴あけ加工にとって絶大な効果を発揮する。
 以下、本発明に係るドリルにおけるシンニング切刃(1)の創成用の砥石形状について説明する。図13~図14は砥石形状の例を示す図であり、砥石の回転端部(外周縁部)を示している。
 砥石は、回転端部に1つ以上の曲率半径をもった砥石とする。
 砥石の曲率半径の1つをRとし、このRを主に切刃部に掛かるシンニング切刃創成用の半径とする。次にRと隣り合ってRと滑らかに繋がる曲面を形成する曲率半径Rを、主にヒール部に当たるように設ける。
 このRとRの2つの曲率半径の組み合わせを基本に、ドリルの直径及び芯厚の比率に応じて、図13に示すように、RとRの大小関係(R=R、R<R、R>R)を変更したり、太いドリルに対応するためにRとRの間により大きいRを設けたり、砥石幅に対して大きな曲率半径を収束させるために砥石コーナーに小さいR、Rを形成する。
 また、上記1つ以上の曲率半径を組み合わせた砥石を使用することもできる。
 更に、図14に示すように、R部の間に直線部を含ませたり、側面に傾斜をつけたりして、シンニングを施してもよい。
 以下、本発明に係るドリルの実施例及び比較例のドリルについての試験結果を示すことにより、本発明の効果をより明確なものとする。但し、本発明は以下の実施例に何ら限定されるものではない。
1.主切刃の長さ(A)とシンニング切刃の長さ(B)との関係に基づく試験
<試験1:主切刃の長さ(A)とシンニング切刃の長さ(B)との関係>
 直径φ10mm(半径R=5mm)のドリルに対して表1に示す6種類の異なるB寸法のシンニングを行い、実施例及び比較例のドリルを作製した。ドリルの逃げ角は全て4°に設定し、チゼル幅は全て0.5mmとした。
Figure JPOXMLDOC01-appb-T000001
 上記実施例及び比較例のドリルを充電式ドリルドライバー(Panasonic社製)に取り付けて、同一作業者が人力で金属板(材質SS400、厚さ9mm)に対して外周刃が沈むまで(図15参照)、切削を行った。
 作業者が各ドリルによる切削作業の容易さを以下の基準で評価した。評価結果を表2に示す。
<評価基準>
◎・・・軽い。(切削に殆ど力を要さない。)
○・・・比較的軽い。(切削に少し力を要する。)
×・・・重い。(切削に大きな力を要する。)
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、実施例のドリル(0<A≦B)は、比較例のドリル(A>B)に比べて容易に切削することができた。つまり切削抵抗が小さかった。特に、実施例1~3のドリル(0<A<B)は切削抵抗が非常に小さかった。
<試験2:他社製品等との比較1>
 表3に示す4種類のドリル(直径φ8.5mm)を用意した。実施例5のドリルは本発明に係るドリル(図1参照)であり、比較例3~5のドリルは夫々図16(a)~(c)に示す形状を有するものである。
Figure JPOXMLDOC01-appb-T000003
 上記実施例5、比較例3~5のドリルを充電式ドリルドライバー(Panasonic社製)に取り付けて、同一作業者が人力で金属板(材質SS400、厚さ9mm)に対して切削を行った。
 ドリル先端から外周刃までの約70%の長さがワークに沈んだ時点で一旦切削を停止し、穴の形状を確認した後、更に外周刃が沈むまで切削を続行した。各ドリルについての評価結果を表4及び表5に示す。尚、穴形状を確認した理由は、作業中に切削抵抗が変化すると穴形状が円錐形になりにくいためである。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 表4,5から明らかなように、実施例のドリルは、比較例のドリルに比べて切削抵抗が小さく且つ変動が少なく、切削を軽い力で容易に行うことができ、切削時には綺麗な連続切粉が出る。
 尚、自動車部品や電気部品など一部品を大量に製造する現場においては、機械の自動化・無人化によって、ドリルに巻きつく虞がある連続切粉は敬遠されている。そのため、ドリルメーカーは連続切粉が出ない自動機械に適したドリルの開発を優先して行ってきた。しかし、ハンドドリルが使用される現場(鉄道車両の艤装等)や手動ボール盤が使用される現場においては、作業者が切粉を除去すればよいため、連続切粉が出ても切れ味が向上することにより作業効率が向上する。また、切粉がドリル溝に沿って排出されることにより、深穴用のドリルとして切粉詰まりの減少がなくなる、
<試験3:他社製品等との比較2>
 表6に示す4種類のドリル(直径φ6.5mm)を用意した。実施例6のドリルは本発明に係るドリル(図1参照)であり、比較例6~8のドリルは夫々図16(a)~(c)に示す形状を有するものである。尚、ドリル直径φを6.5mmとした理由は、ドリル先端が後述する金属板(厚さ3mm)を貫通する前に、外周刃が金属板に達するようにするためである。
Figure JPOXMLDOC01-appb-T000006
 上記実施例6、比較例6~8のドリルを取り付けたボール盤(北川鉄工所製)を使用して、同一作業者が金属板(材質SUS304、厚さ3mm、幅60mm、長さ320mm)に対して貫通穴をあける作業を行った。作業は連続して行い、ドリルが使用不可(穴あけ不可)となったと作業者が判断した時点で終了し、あけた穴の数によりドリルの耐久性を評価した。結果を表7に示す。
Figure JPOXMLDOC01-appb-T000007
 表7から明らかなように、実施例のドリルは、SS材より難切削材であるSUS304に対して比較例のドリルを大きく上回る耐久性を有している。
<試験4:自社の他の発明品との比較>
 表8に示す3種類のドリル(直径φ8.2mm)を用意した。実施例7のドリルは本発明に係るドリル(図8参照)であり、比較例9のドリルは特願2010-203777号(本出願人の先願)に記載されたドリル、比較例10のドリルは前記特許文献2に記載されたドリルである。尚、材質による性能の違いは殆どない。実施例6のドリルは、シンニングを入れる砥石とドリル軸心の傾き角は27.5°(20~35°の中間値)とし、砥石の接線に沿ってドリルのシンニングを行った(シンニング角度(図4参照)θ=0°)
Figure JPOXMLDOC01-appb-T000008
 ワーク(ダイハツ・ムーブの交換パネル(高張力鋼板))に対して上記3種類のドリルで穴をあけ、切れ味と耐久性を確認した。穴あけは、折損を避けるために貫通穴とはせずに同程度の深さまで行った。
 先ず、上記3種類のドリルを用いて1穴ずつ穴あけを行い、ドリルの切れ味を確認した。結果を表9に示す。
Figure JPOXMLDOC01-appb-T000009
 上記実施例7、比較例9~10のドリルを使用して穴あけ作業を行った。作業は連続して行い、ドリルが使用不可(穴あけ不可)となったと作業者が判断した時点で終了し、あけた穴の数によりドリルの耐久性を評価した。結果を表10に示す。
Figure JPOXMLDOC01-appb-T000010
 表10から明らかなように、実施例7のドリルは比較例9,10のドリルとは異なり切れ味と耐久性の両方を兼ね備えていることが分かった。また、各ドリルの先端を拡大観察してみると、比較例9,10のドリルはチゼルエッジが大きく磨耗していたのに対し、実施例6のドリルは穴あけ数が多いにも関わらず、チゼルエッジの磨耗が少なく、刃先全体が同じように磨耗していることが確認された。実施例7のドリルはチゼル幅が最も広いため作業者のドリルを押す力が分散され、比較例9,10のドリルに比べてチゼルエッジが磨耗しにくく数多くの穴あけが可能になったと推測できる。また、チゼル幅を広くしても狭いものと同等の切削力が得られたのは切削に適正なすくい角を有しているためであると考えられる。
2.シンニングの形状に基づく試験
 上記試験1~4において、0<A≦Bを満たすドリルは満たさないドリル(A>B)に比べて切れ味が優れていることが確認された。しかし、本願発明者らは更なる追加試験を行った結果、0<A≦Bを満たさないドリルであっても、特定形状(請求項1に特定される形状)のシンニング面を有するドリルであれば優れた切れ味が得られる場合があることを発見した。
 以下、追加試験の結果を示す。
 尚、上記実施例1~7のドリルは全て特定形状(請求項1に特定される形状)のシンニング面を有しており、比較例1~10のドリルは全て当該特定形状のシンニング面を有していない。
 この点に関し、上記試験1で使用したドリル(実施例1~4及び比較例1,2)について補足説明する。
 試験1においては、主にA:Bの寸法比の設定を目的として、1種類のドリルに対して5種類の寸法のシンニングを形成した。シンニングは、主に4.5mmのシンニング寸法が可能な砥石、具体的には図13の(2)の形状のものを作成して行った。
 チゼル幅は全て0.5mmとしたため、シンニング切刃の長さ(B)の調整は、図4の(a)(b)に記したθの変更により行った。
 その結果、実施例1~4はドリルの溝部に深く当たる図4(b)の様な状態でシンニングを形成したのに対し(θ<20°)、比較例1,2は比較的浅く当たる図4(a)に近い状態で形成せざるを得なかった。(そのため結果的にθ>20°となってしまった)
 これにより、実施例1~4は上記特定形状(請求項1に特定される形状)のシンニング面を有するものとなったのに対し、比較例1,2は、ドリル先端側から見たときの形状が図16(b)に近い円弧形状となり、シンニング切刃により形成されたシンニング面が、ドリル正面側から見たときドリル軸芯方向に対して傾斜した略放物線状とはならず、単なる円弧に近い形状となり、しかもドリル軸芯方向に対して傾斜した形状とは認められなかった。
<試験5:追加試験1>
(1)ドリル径の設定
 作業現場の実情に即して、ドリル径をネジの下穴径である以下の3種類に設定した。
1.M4:φ3.3mm
2.M5:φ4.2mm
3.M6:φ5.2mm
(2)実施例ドリルの製作及び試験
 上記3種類の径に対し、表11に示す3条件で実施例8~10のドリルを製作した。
Figure JPOXMLDOC01-appb-T000011
 上記実施例8~10のドリルを使用し、ワーク(SUS304鋼板:厚さ3mm×100mm×500mm)に対してボール盤(北川工業社製、型式KFS-410(320rpm/60Hzで使用)を用いて1つ穴をあける穴あけ試験を行い、穴あけに要する時間を測定し、切粉形状を観察した。結果を表12に示す。
Figure JPOXMLDOC01-appb-T000012
 上記実施例8~10のドリルを使用し、上記ボール盤による穴あけ試験後、同じワークに対して、エアードリル(ハンドドリル)(ケーティーエス社製、MODEL AT12M 無負荷回転数:1200rpm)を用いた穴あけ試験を行った。ワークは万力を使用して垂直に固定し、実施例8~10のドリルを水平にしてワークに対し直角方向に穴あけを行った。(水平方向の穴あけは、垂直方向と比べて体重がかけられない分、作業者の腕力に負うところが大きい為、切削力(切れ味)が数値に現れやすい。) エアードリルを駆動するエアー圧は6~8kg/mmとした。尚、作業者の腕力によって切削時間が変わるため、各ドリルについて穴あけを3回ずつ行い、平均値を算出した。また切粉形状も観察した。結果を表13に示す。
Figure JPOXMLDOC01-appb-T000013
(3)比較例ドリルの製作及び試験
 上記3種類の径に対し、表14に示す3条件で比較例11~13のドリルを製作した。
Figure JPOXMLDOC01-appb-T000014
(3-1)比較例11のドリルについて
 比較例11のドリルは、シンニングに曲線を含むφ3.175mm以下のドリルであるため、現実的に直径が最も近いφ3.3mmのドリルを元に製作し、実施例8の試験結果と比較した。比較例11のドリルのその他の寸法(公報1参照)を以下に示す。
・チゼル幅:0.15mm
・削除部傾斜角α:60°
・削除部軸方向長さd:1.21mm
・すくい角:-10°
(3-2)比較例12のドリルについて
 比較例12のドリルは、シンニングに+5~15°のすくい角を有するドリルである。φ4.2mmのドリルを元に製作し、実施例9の試験結果と比較した。比較例12のドリルのその他の寸法(公報2参照)を以下に示す。
・チゼル幅:0.19mm
・すくい角:+5°
(3-3)比較例13のドリルについて
 比較例13のドリルは、シンニング部(シンニング切刃)が切刃部(主切刃)より長いという特徴を有するため、φ5.2mmのドリルを元に製作し、シンニング部の長さが長くなるシンニングが切刃よりの形状である実施例10の試験結果と比較した。比較例13のドリルのその他の寸法(公報3参照)を以下に示す。
・チゼル幅:0.22mm
・L1:0.86mm
・L2:1.83mm
・L2/L1=2.13(L2=1.3×L1~3.0×L1を満たす)
・すくい角:-5°
 比較例11~13のドリルについて、当初はチゼル幅を実施例のドリルと同程度に設定したが、切れ味が非常に悪い為、ドリル径の4~5%に設定したものを再度製作した。
 比較例11~13のドリルは、ワークがステンレス鋼であることを考慮すると、2回以上連続して穴あけができる保証がないため、ボール盤→ハンドドリルの順に1穴ずつあけた時間を測定した。(ハンドドリルでの穴あけにおいて切刃が折損する可能性が高いため、先にボール盤で穴あけすることで刃先のダメージを減らすように考えた。)
 比較例11~13のドリルを使用し、実施例8~10の試験と同様にボール盤を使用した穴あけ試験を行い、穴あけに要する時間を測定し、切粉形状を観察した。結果を表15に示す。
Figure JPOXMLDOC01-appb-T000015
 上記実施例8~10のドリルを使用し、上記ボール盤による穴あけ試験後、実施例8~10の試験と同様にエアードリル(ハンドドリル)を使用した穴あけ試験を行い、穴あけに要する時間を測定し、切粉形状を観察した。結果を表16に示す。
Figure JPOXMLDOC01-appb-T000016
(4)比較
 実施例と比較例の試験結果(穴あけ時間(秒))を、同じ径のドリル同士で比較した。結果を表17に示す。
Figure JPOXMLDOC01-appb-T000017
 表17に示す如く、実施例のドリルは、比較例のドリルに比べて2~3倍以上の速度で穴あけができることが確認された。
 実施例のドリルのシンニング位置による穴あけ時間の差(実施例8~10の差)は、ドリル径の増加に伴って穴あけ時間が微増していることから、殆ど無いと考えられる。
 ボール盤に比べて、エアードリル(ハンドドリル)の穴あけ時間が短いのは、ボール盤を最低回転数(320rpm/60Hz)に設定したためと考えられる。(ドリル径φ3.3~5.2mmを考慮すれば倍以上の回転数が適切と思われるが、試験中のドリルの折損を避けるために最低回転数で行った。)
 比較例のドリルは、一部の結果を除き(比較例11の2回目と3回目が逆転)、穴あけの回をおう毎に時間が増加する傾向がみられ切れ味の低下が感じられたが、実施例のドリルはこのような傾向はなく切れ味の低下は感じられなかった。
 実施例のドリルではカール状の切粉が排出されたのに対し、比較例のドリルでは粉状の切粉が排出されたことからも、実施例のドリルが比較例のドリルより切れ味が優れていることが分かる。
<試験6:追加試験2>
 上記追加試験1の終了後、実施例8~10のドリル及び比較例11~13のドリルをそのまま使用し、これらドリルを上記ボール盤に取り付けて上記追加試験1と同じワークに複数の貫通穴を連続してあけた。切削中の音や抵抗の変化に注意しながら、ドリルの切刃を随時確認し、切削に支障がでる程の損傷(欠けや磨耗など)が切刃に生じた時点で穴あけを中止し、それまでにあけた貫通穴の数を数えた。また切粉の形状を観察した。尚、実施例8~10のドリルは切削に支障がでる程の損傷が生じる前に、使用したワークの大きさの関係で穴あけを中止した(穴あけスペースが無くなった) 実施例ドリルの試験結果を表18に示し、比較例ドリルの試験結果を表19に示す。
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
 表18及び表19に示す如く、実施例のドリルは、比較例のドリルに比べて少なくとも約4倍(実施例10と比較例13の対比)~約17倍(実施例8と比較例11の対比)の数の穴あけができることが確認された。
 実施例のドリルのシンニング位置による差(実施例8~10の差)は、殆ど無いと考えられる。
 実施例のドリルではサインカーブと類似する綺麗なカール状の切粉が排出された。このような形状の切粉はアルミニウムに対しては良く見られるが、ステンレスに対しては殆ど見られないことから、切れ味が非常に優れていることが分かる。一方、比較例のドリルでは粉状の切粉が排出され、実施例のドリルが比較例のドリルより格段に切れ味が優れていることが分かる。
 本発明に係るドリルは、ハンドドリルやボール盤等を使用した手動の穴あけ作業に用いられるドリルとして好適に使用される。
1   シンニング切刃
2   主切刃
3   逃げ面
4   チゼル
5   主切刃により形成されたすくい面
6   シンニングにより形成されたすくい面
7   ドリル先端中心部
8   シンニング切刃により形成されたシンニング面
9   チゼルと平行な方向の幅がチゼル幅より狭い部分
10  すくい角を形成しているすくい面
A   主切刃の長さ
B   シンニング切刃の長さ
C   ドリル軸芯方向
D   シンニング面の最深部に沿って延びる線をドリル先端方向に延長した延長線
d   ずれ量
R   ドリル半径
θ  主切刃により形成されたすくい角
θ  シンニング切刃により形成されたすくい角
α  主切刃により形成された刃先角
α  シンニング切刃により形成された刃先角
β   逃げ角
γ   シンニング面の傾斜角度
   主切刃によるすくい面を形成する半径
  シンニングによるすくい面を形成する半径
W   チゼル幅
θ   シンニング形成時にドリルを砥石に当てる角度

Claims (9)

  1.  回転軸対称に形成された2つの切刃を有し、先端部にシンニングが施されているドリルであって、
     前記切刃が、ドリル先端側から見たとき、チゼルエッジからドリル外周側に向けて曲線を含む形状に延びるシンニング切刃と、前記シンニング切刃の端部からドリル外周端まで延びる主切刃とからなり、
     前記シンニング切刃により形成されたシンニング面が、ドリル正面側から見たとき、ドリル軸芯方向に対して傾斜した略放物線状に形成されていることを特徴とするドリル。
  2.  前記シンニング面の最深部に沿って延びる線をドリル先端方向に延長した延長線が、ドリル正面側から見たとき、ドリル先端中心部と交わらずにドリルのヒール側又は切刃側にずれていることを特徴とする請求項1記載のドリル。
  3.  前記ずれの幅が、ドリル直径の10%以内であることを特徴とする請求項2記載のドリル。
  4.  前記延長線が、ドリルのヒール側にずれていることを特徴とする請求項2又は3記載のドリル。
  5.  前記延長線が、ドリルの切刃側にずれていることを特徴とする請求項2又は3記載のドリル。
  6.  前記シンニング面の最深部に沿って延びる線をドリル先端方向に延長した延長線が、ドリル正面側から見たとき、ドリル先端中心部と交わることを特徴とする請求項1記載のドリル。
  7.  前記シンニング切刃のチゼルの直下を含む部分にすくい角が形成されていることを特徴とする請求項2乃至4いずれかに記載のドリル。
  8.  前記シンニング切刃のチゼルの直下近傍であって且つ直下を含まない部分にすくい角が形成されていることを特徴とする請求項2,3,5,6いずれかに記載のドリル。
  9.  前記主切刃により形成されたすくい角θと、前記シンニング切刃により形成されたすくい角θがチゼルの直下を除いて、θ>θ>0°を満たすことを特徴とする請求項1乃至8いずれかに記載のドリル。
PCT/JP2012/052622 2011-03-03 2012-02-06 ドリル WO2012117809A1 (ja)

Priority Applications (11)

Application Number Priority Date Filing Date Title
MX2014009460A MX352882B (es) 2012-02-06 2012-02-06 Broca.
BR112013022396A BR112013022396A2 (pt) 2011-03-03 2012-02-06 broca
RU2013135906/02A RU2566700C2 (ru) 2011-03-03 2012-02-06 Сверло
CA2827327A CA2827327C (en) 2011-03-03 2012-02-06 Drill
KR1020127026846A KR101378208B1 (ko) 2011-03-03 2012-02-06 드릴
US13/816,895 US8579557B2 (en) 2011-03-03 2012-02-06 Drill
CN201280002351.5A CN103379976B (zh) 2011-03-03 2012-02-06 钻头
SG2013065537A SG193007A1 (en) 2011-03-03 2012-02-06 Drill
ES12751858.7T ES2661848T3 (es) 2011-03-03 2012-02-06 Broca
EP12751858.7A EP2684630B1 (en) 2011-03-03 2012-02-06 Drill
AU2012224287A AU2012224287B2 (en) 2011-03-03 2012-02-06 Drill

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-046991 2011-03-03
JP2011046991A JP4834183B1 (ja) 2011-03-03 2011-03-03 ドリル
JP2011178567A JP5051801B2 (ja) 2011-03-03 2011-08-17 ドリル
JP2011-178567 2011-08-17

Publications (1)

Publication Number Publication Date
WO2012117809A1 true WO2012117809A1 (ja) 2012-09-07

Family

ID=46757748

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/052622 WO2012117809A1 (ja) 2011-03-03 2012-02-06 ドリル

Country Status (14)

Country Link
US (1) US8579557B2 (ja)
EP (1) EP2684630B1 (ja)
JP (1) JP5051801B2 (ja)
KR (1) KR101378208B1 (ja)
CN (1) CN103379976B (ja)
AU (1) AU2012224287B2 (ja)
BR (1) BR112013022396A2 (ja)
CA (1) CA2827327C (ja)
ES (1) ES2661848T3 (ja)
MY (1) MY181569A (ja)
RU (1) RU2566700C2 (ja)
SG (1) SG193007A1 (ja)
TW (1) TWI402122B (ja)
WO (1) WO2012117809A1 (ja)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013201062B4 (de) * 2013-01-23 2018-09-13 Kennametal Inc. Bohrspitze
JP6268716B2 (ja) * 2013-02-28 2018-01-31 三菱マテリアル株式会社 ドリル
WO2014175396A1 (ja) * 2013-04-26 2014-10-30 京セラ株式会社 ドリルおよびそれを用いた切削加工物の製造方法
USD734790S1 (en) * 2013-06-12 2015-07-21 Element Six (Production) (Pty) Ltd Drill bit tip
WO2015028431A1 (de) * 2013-08-30 2015-03-05 MAPAL Fabrik für Präzisionswerkzeuge Dr. Kress KG Bohrer
JP6519971B2 (ja) * 2014-01-16 2019-05-29 三菱日立ツール株式会社 ドリル
JP6240559B2 (ja) * 2014-05-22 2017-11-29 株式会社Subaru ドリル及びドリルの製造方法
WO2015182618A1 (ja) * 2014-05-26 2015-12-03 株式会社ビック・ツール 医療用ドリル
DE102015210817B4 (de) * 2015-06-12 2021-06-10 Kennametal Inc. Rotationswerkzeug sowie Verfahren zur Herstellung eines Rotationswerkzeugs
WO2017018478A1 (ja) * 2015-07-29 2017-02-02 京セラ株式会社 ドリル及びそれを用いた切削加工物の製造方法
CN106493413A (zh) * 2015-09-08 2017-03-15 创国兴业有限公司 钻头结构
JP5940205B1 (ja) * 2015-10-20 2016-06-29 日進工具株式会社 ドリル
JP5940208B1 (ja) * 2015-12-17 2016-06-29 日進工具株式会社 ドリル
JP6132377B1 (ja) * 2016-06-08 2017-05-24 株式会社ビック・ツール 歯科用ドリル及び該歯科用ドリルを用いた歯科インプラント埋込のための穿孔方法
WO2018075921A1 (en) 2016-10-21 2018-04-26 Kyocera Sgs Precision Tools, Inc. Drills and methods of using the same
WO2018123937A1 (ja) * 2016-12-26 2018-07-05 京セラ株式会社 ドリル及びそれを用いた切削加工物の製造方法
CN107052408A (zh) * 2017-01-10 2017-08-18 深圳市金洲精工科技股份有限公司 钻孔工具
CN107442816A (zh) * 2017-09-07 2017-12-08 深圳市鑫国钰精密工具有限公司 钻头
JP7082750B2 (ja) * 2018-03-22 2022-06-09 株式会社不二越 ドリル
JP6501374B1 (ja) 2018-04-06 2019-04-17 株式会社ビック・ツール ドリル
DE102018205681B4 (de) * 2018-04-13 2023-06-15 Kennametal Inc. Verfahren zur Herstellung eines Schneidwerkzeugs und Schneidwerkzeug
JP6720335B2 (ja) * 2018-05-21 2020-07-08 オーエスジー株式会社 ドリル
US11679442B2 (en) 2018-06-22 2023-06-20 Maestro Logistics, Llc Drill bit and method for making a drill bit
TWI786325B (zh) * 2018-10-04 2022-12-11 以色列商艾斯卡公司 具有設負傾角及正傾角二者之徑向延伸前切削刃的頂端部的切削頭、及旋轉切削工具
JP6727567B1 (ja) 2019-06-26 2020-07-22 株式会社ビック・ツール 炭素繊維複合材用ドリル
CN110744108B (zh) * 2019-10-15 2020-08-14 大连理工大学 一种加工复合材料具有刃倾槽结构的钻头加工方法
CN110842259B (zh) * 2019-11-11 2021-04-02 株洲钻石切削刀具股份有限公司 一种用于叠层焊接钢材孔加工的麻花钻
JPWO2023176003A1 (ja) 2022-03-15 2023-09-21
WO2024099854A1 (de) * 2022-11-07 2024-05-16 Robert Bosch Gmbh Bohrer

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60194411U (ja) * 1984-06-01 1985-12-25 三菱マテリアル株式会社 二枚刃のドリル
JPH0263912U (ja) * 1988-11-02 1990-05-14
JPH04315512A (ja) * 1991-04-11 1992-11-06 Sumitomo Electric Ind Ltd ドリル
JPH0740119A (ja) 1993-07-27 1995-02-10 Mitsubishi Materials Corp 穴明け工具
JPH07164228A (ja) 1993-12-09 1995-06-27 Union Tool Kk プリント基板用小径ドリルおよび加工方法
JP2000271811A (ja) 1999-03-23 2000-10-03 Toshiba Tungaloy Co Ltd ツイストドリル
JP2002126925A (ja) * 2000-10-25 2002-05-08 Mmc Kobelco Tool Kk ツイストドリル
JP2006088267A (ja) 2004-09-24 2006-04-06 Big Tool Co Ltd ドリル
JP2008093805A (ja) * 2006-10-13 2008-04-24 Osg Corp ドリル
JP2010203777A (ja) 2009-02-27 2010-09-16 Jtekt Corp 着磁パルサリング、その製造方法および転がり軸受装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2193186A (en) * 1938-06-06 1940-03-12 Herbert G Hard Twist drill
US2936658A (en) * 1956-08-08 1960-05-17 Oscar L Riley Twist drill
US4222690A (en) * 1977-12-03 1980-09-16 Ryosuke Hosoi Drill having cutting edges with the greatest curvature at the central portion thereof
SU1133044A1 (ru) * 1983-08-31 1985-01-07 Yashin Gennadij G Сверло спиральное двухперовое
DE3344620A1 (de) * 1983-12-09 1985-06-20 Hartmetallwerkzeugfabrik Andreas Maier GmbH + Co KG, 7959 Schwendi Mehrschneidenbohrer
SU1502228A1 (ru) * 1987-04-06 1989-08-23 Предприятие П/Я Г-4585 Спиральное двухперовое сверло
JPH0263912A (ja) * 1988-08-30 1990-03-05 Kayaba Ind Co Ltd アクティブサスペンションの油圧回路
US5338135A (en) 1991-04-11 1994-08-16 Sumitomo Electric Industries, Ltd. Drill and lock screw employed for fastening the same
FR2698809B1 (fr) * 1992-12-09 1995-02-24 Recoules Fils Ets Foret hélicoïdal de précision.
US6036410A (en) * 1994-12-27 2000-03-14 Shun'ko; Evgeny V. Tip portion of the drill bit
JP3162309B2 (ja) * 1996-11-28 2001-04-25 オーエスジー株式会社 高速重切削用チゼル付き巴型シンニングドリル
IL123858A (en) * 1998-03-27 2003-05-29 Iscar Ltd Drilling head
EP2366478B1 (en) * 2001-07-10 2020-04-15 Mitsubishi Materials Corporation Drill
JP3812480B2 (ja) * 2002-03-29 2006-08-23 三菱マテリアル株式会社 スローアウェイ式ドリル
JP2003291012A (ja) * 2002-03-29 2003-10-14 Mitsubishi Materials Corp スローアウェイ式ドリル
DE20307258U1 (de) * 2003-05-09 2004-09-16 Gühring, Jörg, Dr. Bohrwerkzeug zur Zerspanung von Guss-Werkstoffen
US20090317202A1 (en) * 2006-06-09 2009-12-24 Jiangsu Tiangong Tools Co., Ltd. Strong high performance twist drill
WO2009153066A1 (de) * 2008-06-21 2009-12-23 MAPAL Fabrik für Präzisionswerkzeuge Dr. Kress KG Bohrer

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60194411U (ja) * 1984-06-01 1985-12-25 三菱マテリアル株式会社 二枚刃のドリル
JPH0263912U (ja) * 1988-11-02 1990-05-14
JPH04315512A (ja) * 1991-04-11 1992-11-06 Sumitomo Electric Ind Ltd ドリル
JPH0740119A (ja) 1993-07-27 1995-02-10 Mitsubishi Materials Corp 穴明け工具
JPH07164228A (ja) 1993-12-09 1995-06-27 Union Tool Kk プリント基板用小径ドリルおよび加工方法
JP2000271811A (ja) 1999-03-23 2000-10-03 Toshiba Tungaloy Co Ltd ツイストドリル
JP2002126925A (ja) * 2000-10-25 2002-05-08 Mmc Kobelco Tool Kk ツイストドリル
JP2006088267A (ja) 2004-09-24 2006-04-06 Big Tool Co Ltd ドリル
JP2008093805A (ja) * 2006-10-13 2008-04-24 Osg Corp ドリル
JP2010203777A (ja) 2009-02-27 2010-09-16 Jtekt Corp 着磁パルサリング、その製造方法および転がり軸受装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2684630A4

Also Published As

Publication number Publication date
CA2827327C (en) 2015-03-17
AU2012224287A1 (en) 2013-09-12
TW201242691A (en) 2012-11-01
AU2012224287B2 (en) 2016-05-12
KR20130090751A (ko) 2013-08-14
KR101378208B1 (ko) 2014-03-28
TWI402122B (zh) 2013-07-21
EP2684630B1 (en) 2017-12-06
BR112013022396A2 (pt) 2016-12-06
EP2684630A1 (en) 2014-01-15
CN103379976B (zh) 2014-10-15
JP2012192514A (ja) 2012-10-11
SG193007A1 (en) 2013-10-30
EP2684630A4 (en) 2014-08-13
JP5051801B2 (ja) 2012-10-17
US20130142583A1 (en) 2013-06-06
ES2661848T3 (es) 2018-04-04
CA2827327A1 (en) 2012-09-07
CN103379976A (zh) 2013-10-30
RU2013135906A (ru) 2015-04-10
RU2566700C2 (ru) 2015-10-27
US8579557B2 (en) 2013-11-12
MY181569A (en) 2020-12-29

Similar Documents

Publication Publication Date Title
JP5051801B2 (ja) ドリル
JP5620929B2 (ja) 切削インサートおよび切削工具、並びにそれを用いた切削加工物の製造方法
JP6611260B2 (ja) ドリル
JP6501374B1 (ja) ドリル
WO2010050391A1 (ja) ボールエンドミル
JPWO2005102572A1 (ja) ボールエンドミル
US20100209203A1 (en) Drill systems, drill inserts and methods
WO2014069453A1 (ja) ボールエンドミル
KR20160039286A (ko) 멀티 블레이드 볼 엔드밀
TWI446980B (zh) Small diameter drill
JP4834183B1 (ja) ドリル
JP5301454B2 (ja) チップ式ボールエンドミルのチップ素材
JP6604437B2 (ja) 切削インサート及び刃先交換式回転切削工具
JP2022023828A (ja) ドリル
JPH0351057Y2 (ja)
JP2010201607A (ja) ボールエンドミル及びそれを用いた切削加工方法
JP4623674B2 (ja) 回転切削工具
WO2022025015A1 (ja) ドリル
JP2012056055A (ja) ドリル
JP2016147328A (ja) ドリル
JP2010125592A (ja) 鋳鉄加工用ドリル
JP2004291144A (ja) ドリル用切削インサートおよびドリルユニット
JP2003245814A (ja) ツイストドリル

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20127026846

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12751858

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13816895

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 12013501616

Country of ref document: PH

ENP Entry into the national phase

Ref document number: 2827327

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1301004822

Country of ref document: TH

ENP Entry into the national phase

Ref document number: 2012224287

Country of ref document: AU

Date of ref document: 20120206

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012751858

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2013135906

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013022396

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: MX/A/2014/009460

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: MX/A/2014/010575

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 112013022396

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130902