WO2018123937A1 - ドリル及びそれを用いた切削加工物の製造方法 - Google Patents
ドリル及びそれを用いた切削加工物の製造方法 Download PDFInfo
- Publication number
- WO2018123937A1 WO2018123937A1 PCT/JP2017/046366 JP2017046366W WO2018123937A1 WO 2018123937 A1 WO2018123937 A1 WO 2018123937A1 JP 2017046366 W JP2017046366 W JP 2017046366W WO 2018123937 A1 WO2018123937 A1 WO 2018123937A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- region
- blade
- main body
- drill
- cutting
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B51/00—Tools for drilling machines
- B23B51/02—Twist drills
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B35/00—Methods for boring or drilling, or for working essentially requiring the use of boring or drilling machines; Use of auxiliary equipment in connection with such methods
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B2251/00—Details of tools for drilling machines
- B23B2251/04—Angles, e.g. cutting angles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B2251/00—Details of tools for drilling machines
- B23B2251/08—Side or plan views of cutting edges
- B23B2251/082—Curved cutting edges
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B2251/00—Details of tools for drilling machines
- B23B2251/14—Configuration of the cutting part, i.e. the main cutting edges
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B2251/00—Details of tools for drilling machines
- B23B2251/18—Configuration of the drill point
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B2251/00—Details of tools for drilling machines
- B23B2251/50—Drilling tools comprising cutting inserts
Definitions
- This aspect relates to a drill used for cutting and a method for manufacturing a cut product.
- Patent Document 1 a drill described in Japanese Translation of PCT International Publication No. 2011-513083 (Patent Document 1) is known as a drill used for cutting a work material such as a metal member.
- the drill described in Patent Literature 1 has a chisel edge as a cutting edge and a pair of cutting lips positioned with the chisel edge interposed therebetween, and also has a primary margin and a secondary margin.
- the chisel edge angle is 80 degrees to 100 degrees.
- U.S. Patent No. 6,057,089 mentions that such a configuration maximizes the straightness of the hole and minimizes "slip" of the drill on the workpiece.
- an object of the present invention is to provide a drill that can improve the straightness of a machined hole and reduce the risk that a cutting edge will be lost early.
- a drill includes a rod-shaped main body extending along a rotation axis from a first end to a second end, a cutting blade positioned at the first end of the main body, and the cutting blade to the main body And a pair of grooves extending spirally from the rake face toward the second end side of the main body.
- the cutting blade includes a curved chisel edge that intersects the rotation axis when the main body is viewed toward the first end, a first blade that is positioned on the outer peripheral side of the main body with respect to the chisel edge, A chisel edge and a second blade connected to the first blade.
- the second blade When the main body is viewed toward the first end, the second blade extends from the chisel edge toward the outer periphery of the main body, and from the first portion toward the first blade. And a second portion that extends and is inclined with respect to the first portion.
- the rake face has a first region extending from the first portion and a second region extending from the second portion.
- the first rake angle of the first region is zero or a negative value
- the second rake angle of the second region is a negative value.
- the absolute value of the second rake angle is greater than the absolute value of the first rake angle.
- the drill according to the embodiment of the present disclosure will be described in detail with reference to the drawings.
- the drill of the present invention may include any component not shown in the drawings to which the present specification refers.
- the dimension of the member in each figure does not represent the dimension of an actual structural member, the dimension ratio of each member, etc. faithfully.
- An example drill 1 shown in FIG. 1 includes a main body 3, a cutting edge 5, a rake face 6, and a groove 7.
- the main body 3 has a rotation axis X and has a rod shape extending along the rotation axis X from the first end 3a toward the second end 3b.
- the main body 3 can rotate around the rotation axis X when the work material is cut.
- the first end 3a is described as the front end 3a
- the second end 3b is described as the rear end 3b.
- the first end 3a closer to the first end 3a than the second end 3b is the tip 3a side
- the second end 3b closer to the second end 3b than the first end 3a is the rear end 3b side. Will be described.
- the main body 3 may include a grip portion 9 and a cutting portion 11.
- the grip portion 9 in the example shown in FIG. 1 is a portion that is gripped by a rotating spindle or the like of a machine tool (not shown), and is a portion that is designed according to the shape of the spindle or the like in the machine tool.
- the cutting part 11 in the example shown in FIG. 1 is a part including a part that is located on the tip 3a side with respect to the grip part 9 and is in contact with the work material, and has a main role in the cutting work of the work material. It is. Note that an arrow Y in FIGS. 1 and 2 indicates the rotation direction of the main body 3 around the rotation axis X.
- the cutting part 11 in the example shown in FIGS. 3 and 4 includes a cutting edge 5, a rake face 6 and a part on the tip 3a side (tip part 11a) including a part of the groove 7 on a part on the rear end 3b side (rear). It is configured to be detachable from the end portion 11b). More specifically, the front end part 11a is held and restrained by the rear end part 11b.
- the cutting portion 11 is not limited to such a configuration, and may have a configuration in which the front end portion 11a and the rear end portion 11b are integrally formed.
- the drill 1 having a configuration in which the front end portion 11a and the rear end portion 11b are integrally formed is called a solid drill.
- the cutting part 11 may have a shape excluding a space corresponding to the groove 7 from a cylinder extending along the rotation axis X as shown in FIG.
- the portion corresponding to the land excluding the groove 7 on the outer peripheral surface of the cutting portion 11 has an arc shape located on substantially the same circle.
- the diameter of this substantially identical circle corresponds to the outer diameter of the cutting part 11.
- the material of the main body 3 is a cemented carbide containing WC (tungsten carbide) and containing Co (cobalt) as a binder phase, and this cemented carbide is added with TiC (titanium carbide) or TaC (tantalum carbide).
- WC tungsten carbide
- Co cobalt
- TiC titanium carbide
- TaC tantalum carbide
- alloys containing materials, metals such as stainless steel and titanium include alloys containing materials, metals such as stainless steel and titanium.
- the cutting blade 5 is located at the tip 3a of the main body 3, and is a part that can be used for cutting a work material.
- the cutting edge 5 is located at the tip 3 a of the main body 3, that is, the tip of the cutting part 11.
- the 2 has a chisel edge 5a, a first blade 5b, and a second blade 5c.
- the chisel edge 5a may have a curved shape and may intersect the rotation axis X when the main body 3 is viewed from the tip.
- the 1st blade 5b may be located in the outer peripheral side of the main body 3 rather than the chisel edge 5a.
- the second blade 5c may be located between the chisel edge 5a and the first blade 5b. At this time, the chisel edge 5a and the first blade 5b may be connected by the second blade 5c.
- the angle at which the adjacent blade portions intersect as compared with the case where the chisel edge 5a and the first blade 5b are directly connected. Can be reduced. Therefore, the load is difficult to concentrate on a specific region of the cutting blade 5 and the durability of the cutting blade 5 is high.
- the first blade 5b in the example shown in FIG. 2 is a part that mainly cuts the work material when the work material is cut, and may be regarded as a main cutting edge.
- the 2nd blade 5c in an example shown in FIG. 2 is a site
- the chisel edge 5a, the first blade 5b, and the second blade 5c may each be only one or plural.
- the cutting blade 5 has two first blades 5b and two second blades 5c.
- the two first blades 5b are 180 ° rotationally symmetric about the rotation axis X as in the example shown in FIG.
- the two second blades 5c may be 180 ° rotationally symmetric about the rotation axis X and may form a pair as in the example shown in FIG.
- the pair of second blades 5c are connected to both ends of the chisel edge 5a as in the example shown in FIG. 2, and may extend from the both ends of the chisel edge 5a toward the outer periphery of the main body 3 when viewed from the tip. Good. Further, the pair of first blades 5b are connected to the outer peripheral ends of the pair of second blades 5c, respectively, and may extend from the second blade 5c toward the outer periphery of the main body 3 when viewed from the front end. Good.
- the portion where the chisel edge 5a is located on the innermost peripheral side of the cutting blade 5 may be used.
- the pair of first blades 5b may be located on the outer peripheral side of the main body 3 relative to the chisel edge 5a and the pair of second blades 5c, and may be a portion positioned on the outermost peripheral side of the cutting blade 5. .
- the work material can be cut by the chisel edge 5a, the pair of first blades 5b, and the pair of second blades 5c.
- the front end view means that the main body 3 is viewed along the rotation axis X toward the front end 3a as shown in FIG. That is, it can be said that the front end view is a front view of the front end 3 a of the main body 3.
- the side closer to the outer peripheral surface of the main body 3 than the rotation axis X is described as the outer peripheral side
- the side closer to the rotation axis X than the outer peripheral surface of the main body 3 is described as the inner peripheral side.
- the chisel edge 5a is located on the most distal side of the drill 1, and may protrude toward the tip 3a with respect to the first blade 5b and the second blade 5c.
- the chisel edge 5 a is located so that the portion intersecting with the rotation axis X is located on the most distal side, and is inclined so as to move toward the rear end 3 b of the main body 3 as the distance from the rotation axis X increases.
- the so-called chisel angle of the chisel edge 5a may be set to about 110 to 170 °, for example.
- the pair of first blades 5b may be located apart via a chisel edge 5a as shown in FIG. Further, as shown in FIG. 2, the pair of second blades 5c may be located apart via a chisel edge 5a.
- the first blade 5b may have a concave curve shape at least when viewed from the tip.
- the first blade 5b has a concavely curved portion, chips generated by the first blade 5b are likely to curl. As a result, chips are easily discharged from the groove 7.
- the second blade 5c may have a first portion 5c1 and a second portion 5c2 in order from the inner peripheral side when viewed from the tip as shown in FIG.
- the first portion 5c1 in the example shown in FIG. 2 extends from the chisel edge 5a toward the outer periphery of the main body 3 in the second blade 5c.
- the first portion 5c1 may have a linear shape as shown in FIG.
- the second portion 5c2 in the example shown in FIG. 2 extends from the first portion 5c1 toward the first blade 5b in the second blade 5c and is inclined with respect to the first portion 5c1.
- the first portion 5 c 1 may extend from the end of the chisel edge 5 a toward the outer periphery in a side view from the direction orthogonal to the rotation axis X.
- the angle at which these virtual straight lines intersect may be set to about 130 to 170 °, for example.
- the second portion 5c2 may also extend from the first portion 5c1 toward the first blade 5b in a side view from the direction orthogonal to the rotation axis X.
- the angle at which these virtual straight lines intersect may be set to about 130 to 170 °, for example.
- the first portion 5c1 has a linear shape
- the second portion 5c2 is inclined with respect to the first portion 5c1.
- the chisel edge 5a is curved. Therefore, in the example illustrated in FIG. 2, a portion of the cutting blade 5 that intersects the rotation axis X and has a curved shape is a chisel edge 5 a.
- the portion of the cutting blade 5 that has a linear shape and is connected to the chisel edge 5a is the first portion 5c1
- the portion that is inclined and connected to the first portion 5c1 is the second portion 5c2.
- the groove 7 is located on the outer peripheral side with respect to the rotation axis X in the cutting portion 11 in the main body 3, and as shown in FIGS. 1 and 3, from the vicinity of the cutting edge 5 toward the rear end 3b of the main body 3. It extends.
- the groove 7 may extend spirally around the rotation axis X as shown in FIG.
- the cutting blade 5 has two first blades 5 b and two second blades 5 c. Therefore, in the example illustrated in FIG. 1, the pair of grooves 7 extend spirally from the vicinity of the pair of first blades 5 b in the cutting blade 5 toward the rear end 3 b of the main body 3. At this time, in order to stably hold the main body 3 with a machine tool, the groove 7 is formed only in the cutting part 11 and is not formed in the holding part 9.
- the groove 7 can be used for discharging chips generated by the cutting blade 5 (chisel edge 5a, first blade 5b, and second blade 5c) to the outside.
- chips formed on one of the pair of first blades 5 b are grooves 7 extending toward the first blade 5 b of the pair of grooves 7. It is discharged to the rear end 3 b side of the main body 3. Further, chips formed on the other (other) of the pair of first blades 5 b pass through the groove 7 extending toward the other first blade 5 b of the pair of grooves 7, and the rear end of the main body 3. It is discharged to the side 3b.
- one of the pair of grooves 7 is formed to overlap when the other of the pair of grooves 7 is rotated 180 ° around the rotation axis X.
- tip produced with each of a pair of 1st blade 5b can be poured favorably with each groove
- the depth of the groove 7 can be set to about 10 to 40% with respect to the outer diameter of the cutting part 11, for example.
- the depth of the groove 7 means, for example, a value obtained by subtracting the distance between the bottom of the groove 7 and the rotation axis X from the radius of the main body 3 in a cross section orthogonal to the rotation axis X.
- the bottom of the groove 7 means a portion of the groove 7 closest to the rotation axis X.
- the depth of the groove 7 can be set to about 2 to 8 mm.
- a rake face 6 is provided in a region along the cutting edge 5. That is, the rake face 6 extends from the cutting edge 5 toward the rear end 3 b of the main body 3. More specifically, the rake face 6 has a region along each part of the cutting edge 5.
- the rake face 6 may have a first region 61 extending from the first portion 5c1 and a second region 62 extending from the second portion 5c2.
- the first rake angle ⁇ 1 of the first region 61 may be zero or a negative value.
- the first rake angle ⁇ 1 of the first region 61 is zero.
- the second rake angle ⁇ ⁇ b> 2 of the second region 62 is a negative value.
- the absolute value of the second rake angle ⁇ 2 may be larger than the absolute value of the first rake angle ⁇ 1.
- the second blade 5 c has two portions (a first portion 5 c 1 and a second portion 5 c 2) that are positioned so as to be bent with respect to each other.
- the rake angles ⁇ 1 and ⁇ 2 of the extended regions (the first region 61 and the second region 62) are in the above relationship.
- the cutting edge 5 has high chipping resistance, and the component acting on the rear end 3b side (the component acting along the rotation axis X) of the cutting force generated during machining is large.
- the main body 3 is difficult to shake in the radial direction. Therefore, the cutting edge 5 is not easily lost early, and the straightness of the processed hole is high.
- the first rake angle ⁇ 1 of the first region 61 can be evaluated as an inclination angle of the first region 61 with respect to a virtual straight line parallel to the rotation axis X.
- the second rake angle ⁇ 2 of the second region 62 may be evaluated similarly as shown in FIG. 5 is a side view of the main body 3 viewed from the direction along the first portion 5c1, and FIG. 6 is a side view of the main body 3 viewed from the direction along the second portion 5c2.
- the first rake angle ⁇ 1 is zero or a negative value
- the second rake angle ⁇ 2 is a negative value
- the absolute value of the second rake angle ⁇ 2 is larger than the absolute value of the first rake angle ⁇ 1 (
- the first rake angle ⁇ 1 of the first region 61 can be calculated in an arbitrary cross section perpendicular to the first portion 5c1, and similarly, the second rake angle ⁇ 2 of the second region 62 is calculated as the second portion 5c2. It can be calculated in any cross section perpendicular to.
- the first region 61 may be a flat surface and may be inclined toward the rear in the rotational direction Y from the inner peripheral side toward the outer peripheral side.
- the second region 62 is also a flat surface and may be inclined toward the rear in the rotational direction Y from the inner peripheral side toward the outer peripheral side.
- the second rake angle ⁇ 2 may be constant. In this case, the variation of the cutting resistance applied to the second region 62 is small. In addition, since the direction of the cutting force applied to the second portion 5c2 during cutting is stable, it is easy to bite the work material. As a result, the chipping resistance of the cutting blade 5 is higher and the processing accuracy is improved.
- the fact that the second rake angle ⁇ 2 is constant does not mean that the second rake angle ⁇ 2 is constant over the entire area of the second region 62, and may be substantially the same.
- the second rake angle ⁇ 2 may have a variation of about 5%.
- the first rake angle ⁇ 1 may be zero. That is, in the example shown in FIG. 5, the first rake angle ⁇ ⁇ b> 1 is zero, and thus the first region 61 is parallel to the rotation axis X. In this case, for example, in the processing after the entire length of the cutting blade 5 has bitten on the work material, the cutting portion 11 is less likely to slip on the processing surface, so that the straightness of the processing hole is improved. At this time, when the first rake angle ⁇ 1 is zero over the entire first region 61, the biting property of the work material and the straightness of the processed hole are more preferably improved.
- the ridge line r61 on the rear end 3b side in the first region 61 and the ridge line r62 on the rear end 3b side in the second region 62 are both directed from the rotation axis X toward the outer peripheral side. Accordingly, it is inclined toward the rear end 3b.
- the ridge line r61 and the ridge line r62 are positioned as described above, the generated chips can be stably guided to the groove 7. As a result, chip discharge performance is improved.
- At least a part of the second region 62 may be located closer to the rear end 3 b than the first region 61. Since the 2nd part 5c2 is located in the outer peripheral side of the main body 3 rather than the 1st part 5c1, in the 2nd part 5c2, it is easy to produce more chips than the 1st part 5c1 at the time of cutting. At this time, when at least a part of the second region 62 is located closer to the rear end 3b than the first region 61, the chips generated in the second portion 5c2 can be stably guided to the groove 7. .
- the rake face 6 may further include a third region 63 extending from the chisel edge 5a.
- the third rake angle ⁇ 3 of the third region 63 may be a negative value.
- the absolute value of the third rake angle ⁇ ⁇ b> 3 may be reduced from the portion located near the rotation axis X in the third region 63 toward the outer peripheral side of the main body 3. In this case, since the third rake angle ⁇ 3 approaches zero as it moves away from the rotation axis X, the strength of the chisel edge 5a is high and the chisel edge 5a tends to bite into the work material.
- the first portion 5c1 and the second portion 5c2 are each linear in the front end view, and the length L2 of the second portion 5c2 is greater than the length L1 of the first portion 5c1. It may be large (L2> L1).
- L2 L1
- the biting property to the work material of the 2nd part 5c2 is high.
- the second angle ⁇ formed with 5b is an obtuse angle, and the second angle ⁇ may be larger than the first angle ⁇ ( ⁇ > ⁇ ).
- the cutting speed is relatively fast, and thus the strength of a portion where a larger cutting load is easily applied is high. As a result, the cutting edge 5 is more difficult to be lost.
- the first blade 5b may have a linear shape when viewed from the tip, or may have a concave curve shape when viewed from the tip as shown in FIG.
- the chips generated by the first blade 5b are easily curled, so that the chips are easily discharged by the groove 7.
- Examples of the concave curve shape of the first blade 5b include a circular arc shape.
- the rake face 6 may further include a fourth region 64 extending from the first blade 5b.
- the fourth rake angle ⁇ 4 of the fourth region 64 is a positive value and may be gradually changed.
- the fourth rake angle ⁇ 4 may increase as the distance from the rotation axis X increases. In this case, since the fourth rake angle ⁇ 4 is relatively large in the outer peripheral side region where the cutting speed is relatively fast in the fourth region 64, the cutting resistance is small.
- the fourth region 64 may have a linear shape or a concave curve shape in a cross section orthogonal to the rotation axis X.
- the fourth region 64 has a concave curve shape in the cross section orthogonal to the rotation axis X, chips are less likely to jump out of the outer peripheral surface of the main body 3. Therefore, the processed surface of the work material is hardly damaged.
- the width in the direction perpendicular to the rotation axis X in the first region 61 may become narrower as the distance from the first portion 5c1 increases. In this case, it is easy to ensure a wide width of the fourth region 64 toward the rear end 3b. Therefore, it is easy to stably discharge chips generated by the cutting blade 5 toward the rear end 3b of the main body 3.
- the width in the direction perpendicular to the rotation axis X in the second region 62 may become narrower as the distance from the second portion 5c2 increases. Also in this case, it is easy to ensure the width of the fourth region 64 toward the rear end 3b. Therefore, it is easy to stably discharge chips generated by the cutting blade 5 toward the rear end 3b of the main body 3.
- the boundary B between the first region 61 and the second region 62 may be separated from the rotation axis X toward the rear end 3b. In this case, it is easy to guide chips flowing through the first region 61 and the second region 62 toward the fourth region 64. Therefore, it is easy to stably discharge chips generated by the cutting blade 5 toward the rear end 3b of the main body 3.
- the drill 1 according to the present disclosure has been exemplified, but the present disclosure is not limited thereto, and may be arbitrary as long as it does not depart from the gist of the present disclosure.
- the shape of the cutting part 11 is not limited to the above-described aspect, and other commonly used shapes may be employed.
- the cutting part 11 may be tapered so that the core thickness of the inscribed circle increases from the front end 3a side toward the rear end 3b side.
- the cutting part 11 may be inclined so that the drill diameter (outer diameter) becomes larger or smaller as it goes from the front end 3a side to the rear end 3b side.
- the cutting part 11 may be provided with a so-called undercut or clearance.
- the manufacturing method of the cut workpiece according to the present embodiment includes the following steps (1) to (3).
- the drill 1 is arranged above the prepared work material 101, the drill 1 is rotated about the rotation axis X in the direction of arrow Y, and drilled in the Z1 direction toward the work material 101 Step 1 (see FIG. 7) (2) By bringing the drill 1 closer to the work material 101, the cutting edge of the rotating drill 1 is brought into contact with a desired position on the surface of the work material 101, so that the machining hole 103 is formed in the work material 101. Step of forming (through hole) (see FIG. 8) (3) Step of separating the drill 1 from the work material 101 in the Z2 direction (see FIG.
- the step (1) can be performed, for example, by fixing the work material 101 on a table of a machine tool to which the drill 1 is attached and bringing the drill 1 closer in a rotated state.
- the work material 101 and the drill 1 may be relatively close to each other, and the work material 101 may be close to the drill 1.
- step (2) setting is made so that a partial region on the rear end side of the cutting portion of the drill 1 is not inserted into the machining hole 103.
- a partial area on the rear end side of the cutting portion to function as an area for chip discharge, chips can be discharged smoothly through the area.
- the work material 101 and the drill 1 may be relatively separated from each other.
- the work material 101 may be separated from the drill 1. .
- the drill 1 when performing the cutting of the workpiece 101 as described above a plurality of times, for example, when forming a plurality of processed holes 103 in one workpiece 101, the drill 1 is rotated. What is necessary is just to repeat the process which makes the cutting blade of the drill 1 contact the different location of the workpiece 101, hold
- the present disclosure is not limited to this, and can be arbitrary without departing from the gist of the present disclosure.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Drilling Tools (AREA)
Abstract
一態様に基づくドリルは、本体と切刃とすくい面と溝とを備えている。切刃は、曲線状のチゼルエッジと一対の第1刃と一対の第2刃とを有している。第2刃は、チゼルエッジから延びた第1部分と、第1部分から第1刃に向かって延びた第2部分とを有している。すくい面は、第1部分から延びた第1領域と第2部分から延びた第2領域とを有している。第1領域の第1すくい角は、ゼロ又は負の値である。第2領域の第2すくい角は、負の値である。第2すくい角の絶対値は、第1すくい角の絶対値よりも大きい。
Description
本態様は、切削加工に用いられるドリル及び切削加工物の製造方法に関する。
従来、金属部材などの被削材の切削加工に用いられるドリルとして、特表2011-513083号公報(特許文献1)に記載のドリルが知られている。特許文献1に記載のドリルは、切刃としてチゼルエッジと該チゼルエッジを挟んで位置する一対の切削リップとを有しているとともに、1次マージン及び2次マージンを有している。そして、チゼルエッジ角が80度~100度である。特許文献1は、このような構成により、穴の真直度を最大限にし、且つ加工物上のドリルの「滑り」を最小化すると言及している。
このような特許文献1に記載のドリルにおいては、穴の真直度を最大限にするよう試みられているが、切刃のうち先端側に位置する部分のすくい角がポジであるため、刃先が早期に欠損する可能性がある。特に、被削材の表面が鋳肌等で硬くなっていることが多い鋳鉄加工のように、表面が部分的に硬い被削材を加工する際に、刃先が早期に欠損する可能性がある。
本態様は、上記の課題に鑑みてなされたものであり、加工穴の真直度を向上させるとともに、切刃が早期に欠損するおそれを低減できるドリルを提供することを目的とする。
一態様に基づくドリルは、第1端から第2端に向かって回転軸に沿って延びた棒形状の本体と、前記本体の前記第1端に位置する切刃と、前記切刃から前記本体の前記第2端の側に向かって延びたすくい面と、前記すくい面から前記本体の前記第2端の側に向かって螺旋状に延びた一対の溝と、を備える。前記切刃は、前記本体を前記第1端に向かって見た場合に、前記回転軸と交差する曲線状のチゼルエッジと、前記チゼルエッジよりも前記本体の外周側に位置する第1刃と、前記チゼルエッジ及び前記第1刃に接続された第2刃と、を有している。前記第2刃は、前記本体を前記第1端に向かって見た場合に、前記チゼルエッジから前記本体の外周に向かって延びた第1部分と、前記第1部分から前記第1刃へ向かって延びるとともに前記第1部分に対して傾斜して位置する第2部分と、を有している。前記すくい面は、前記第1部分から延びた第1領域と、前記第2部分から延びた第2領域と、を有している。前記第1領域の第1すくい角は、ゼロ又は負の値であり、前記第2領域の第2すくい角は、負の値である。前記第2すくい角の絶対値は、前記第1すくい角の絶対値よりも大きい。
以下、本開示の実施形態に係るドリルについて、図面を用いて詳細に説明する。但し、以下で参照する各図は、説明の便宜上、各実施形態を構成する部材のうち主要な部材のみを簡略化して示したものである。従って、本発明のドリルは、本明細書が参照する各図に示されていない任意の構成部材を備え得る。また、各図中の部材の寸法は、実際の構成部材の寸法及び各部材の寸法比率等を忠実に表したものではない。
<ドリル>
図1に示す一例のドリル1は、本体3と、切刃5と、すくい面6と、溝7と、を備えている。
図1に示す一例のドリル1は、本体3と、切刃5と、すくい面6と、溝7と、を備えている。
図1~図3に示すように、本体3は、回転軸Xを有しており、第1端3aから第2端3bに向かって回転軸Xに沿って延びた棒形状である。本体3は、被削材の切削加工時において回転軸Xを中心に回転することが可能である。なお、以下の記載においては、第1端3aを先端3a、第2端3bを後端3bと記載して説明する。また、第2端3bよりも第1端3aに近い第1端3aの側を先端3aの側、第1端3aよりも第2端3bに近い第2端3bの側を後端3bの側と記載して説明する。
本体3は、把持部9及び切削部11を備えていてもよい。図1に示す一例における把持部9は、工作機械(不図示)の回転するスピンドル等で把持される部位であり、工作機械におけるスピンドル等の形状に応じて設計される部位である。図1に示す一例における切削部11は、把持部9に対して先端3aの側に位置して被削材と接触する部分を含む部位であり、被削材の切削加工において主たる役割を有する部位である。なお、図1及び図2における矢印Yは、回転軸Xを中心とした本体3の回転方向を示している。
図3及び図4に示す一例における切削部11は、切刃5、すくい面6及び溝7の一部を含む先端3aの側の部位(先端部位11a)が後端3bの側の部位(後端部位11b)に対して着脱可能な構成となっている。より具体的には、先端部位11aが後端部位11bに把持されて拘束されている。切削部11は、このような構成に限らず、先端部位11a及び後端部位11bが一体的に形成された構成であっても構わない。一般的に、先端部位11a及び後端部位11bが一体的に形成された構成のドリル1は、ソリッドドリルと呼ばれる。
切削部11は、例えば、図2に示すように回転軸Xに沿って延びる円柱から溝7に該当する空間部分を除いた形状となっていてもよい。この場合には、回転軸Xに直交する断面において、切削部11の外周面における溝7を除いたランドに相当する部分は、略同一円上に位置する円弧形状となっている。この略同一円の直径が切削部11の外径に対応する。
切削部11の外径は、例えば6mm~42.5mmに設定してもよい。また、軸線の長さ(切削部11の長さ)をLとし、径(切削部11の外径)をDとするとき、例えばL=2D~20Dであってもよい。
本体3の材質としては、WC(タングステンカーバイド)を含有し、結合相としてCo(コバルト)を含有する超硬合金、この超硬合金にTiC(チタンカーバイド)又はTaC(タンタルカーバイド)のような添加物を含んだ合金、ステンレス及びチタンのような金属などが挙げられる。
以下、切刃5について説明する。切刃5は、本体3の先端3aに位置しており、被削材を切削するために用いることが可能な部位である。図1に示す一例においては、切刃5は、本体3の先端3a、すなわち切削部11の先端部分に位置している。
そして、図2に示す一例の切刃5は、チゼルエッジ(chisel edge)5a、第1刃5b、及び第2刃5cを有している。チゼルエッジ5aは、本体3を先端視した場合において、曲線状であるとともに、回転軸Xと交差していてもよい。第1刃5bは、チゼルエッジ5aよりも本体3の外周側に位置していてもよい。第2刃5cは、チゼルエッジ5a及び第1刃5bの間に位置していてもよい。このとき、チゼルエッジ5a及び第1刃5bが、第2刃5cによって接続されていてもよい。
第2刃5cがチゼルエッジ5a及び第1刃5bの間に位置している場合には、チゼルエッジ5a及び第1刃5bが直接に接続される場合と比較して、隣り合う刃の部分の交わる角度を小さくできる。そのため、切刃5の特定の領域に負荷が集中しにくく、切刃5の耐久性が高い。
図2に示す一例における第1刃5bは、被削材を切削加工する際に、被削材を主として切削する部位であり、主切刃と見なしてもよい。また、図2に示す一例における第2刃5cは、チゼルエッジ5a及び第1刃5bを接続する部位であり、接続刃あるいはシンニング刃と見なしてもよい。
チゼルエッジ5a、第1刃5b及び第2刃5cは、それぞれ1つのみであってもよく、また、それぞれ複数であってもよい。図2に示す一例においては、切刃5が、2つの第1刃5b及び2つの第2刃5cを有している。2つの第1刃5bは、図2に示す一例のように、回転軸Xを中心として180°回転対称であって、対を成していてもよい。2つの第2刃5cは、図2に示す一例のように、回転軸Xを中心として180°回転対称であって、対を成していてもよい。
一対の第1刃5b及び一対の第2刃5cが、回転軸Xを中心として180°回転対称である場合には、切刃5が被削材に食いつく際のブレを低減できる。なお、切刃5が、3つ以上の第1刃5b及び3つ以上の第2刃5cを有していても何ら問題ない。
一対の第2刃5cは、図2に示す一例のように、チゼルエッジ5aの両端部にそれぞれ接続され、先端視した場合において、チゼルエッジ5aの両端から本体3の外周に向かってそれぞれ延びていてもよい。また、一対の第1刃5bは、一対の第2刃5cにおける外周側の端部にそれぞれ接続され、先端視した場合において、第2刃5cから本体3の外周に向かってそれぞれ延びていてもよい。
チゼルエッジ5aが、切刃5における最も内周側に位置している部分であってもよい。そして、一対の第1刃5bは、チゼルエッジ5a及び一対の第2刃5cよりも本体3の外周側に位置しており、切刃5における最も外周側に位置している部分であってもよい。これらチゼルエッジ5a、一対の第1刃5b及び一対の第2刃5cによって被削材の切削を行うことが可能である。
ここで、先端視とは、図2に示すように、本体3を回転軸Xに沿って先端3aに向かって見ることを意味している。すなわち、先端視とは、本体3の先端3aの正面視のことであるとも言える。また、先端視において、回転軸Xよりも本体3の外周面に近い側を外周側、本体3の外周面よりも回転軸Xに近い側を内周側と記載している。
チゼルエッジ5aは、図4に示すように、ドリル1における最も先端方向の側に位置しており、第1刃5b及び第2刃5cに対して先端3aの側に突出していてもよい。図4に示す一例におけるチゼルエッジ5aは、回転軸Xと交差する部分が最も先端方向の側に位置しており、回転軸Xから離れるにつれて本体3の後端3bの側に向かうように傾斜している。チゼルエッジ5aのいわゆるチゼル角は、例えば110~170°程度に設定してもよい。
一対の第1刃5bは、図2に示すように、チゼルエッジ5aを間に介して離れて位置していてもよい。また、一対の第2刃5cは、図2に示すように、チゼルエッジ5aを間に介して離れて位置していてもよい。
第1刃5bは、図2に示すように、先端視した場合に、少なくとも一部が凹曲線形状であってもよい。先端視した場合において、第1刃5bが凹曲線形状の部位を有している場合には、第1刃5bで生成される切屑がカールし易い。その結果、溝7で切屑が排出され易くなる。
第2刃5cは、図2に示すように先端視した場合に、内周側から順に、第1部分5c1及び第2部分5c2を有していてもよい。図2に示す一例における第1部分5c1は、第2刃5cのうち、チゼルエッジ5aから本体3の外周に向かって延びている。第1部分5c1は、図2に示すように直線形状であってもよい。図2に示す一例における第2部分5c2は、第2刃5cのうち、第1部分5c1から第1刃5bに向かって延びるとともに第1部分5c1に対して傾斜して位置している。
第1部分5c1は、図4に示すように、回転軸Xに直交する方向からの側面視において、チゼルエッジ5aの端部から外周に向かって延びていてもよい。このとき、側面視において一対の第1部分5c1のそれぞれに沿って一対の仮想直線を引き伸ばした場合に、これらの仮想直線の交差する角度は、例えば130~170°程度に設定してもよい。
また、第2部分5c2も、図4に示すように、回転軸Xに直交する方向からの側面視において、第1部分5c1から第1刃5bに向かって延びていてもよい。このとき、側面視において一対の第2部分5c2のそれぞれに沿って一対の仮想直線を引き伸ばした場合に、これらの仮想直線の交差する角度は、例えば130~170°程度に設定してもよい。
図2に示す一例においては、第1部分5c1は直線形状であり、第2部分5c2は第1部分5c1に対して傾斜して位置している。一方、チゼルエッジ5aは曲線状である。したがって、図2に示す一例においては、切刃5のうち、回転軸Xと交差する部分であって曲線形状をなす部分が、チゼルエッジ5aである。そして、切刃5のうち、直線形状をなし、チゼルエッジ5aに接続する部分が、第1部分5c1であり、第1部分5c1に傾斜して接続する部分が、第2部分5c2である。
次に、溝7について説明する。溝7は、本体3における切削部11において、回転軸Xよりも外周側に位置しており、図1及び図3に示すように、切刃5の近くから本体3の後端3bに向かって延びている。
溝7は、図1などに示すように、回転軸Xの周りに螺旋状に延びていてもよい。図1に示す一例においては、切刃5が2つの第1刃5b及び2つの第2刃5cを有している。そのため、図1に示す一例において、切刃5における一対の第1刃5bの近くから本体3の後端3bに向かって一対の溝7がそれぞれ螺旋状に延びている。このとき、工作機械で安定して本体3を把持するため、溝7は、切削部11のみに形成されており、把持部9には形成されていない。
溝7は、切刃5(チゼルエッジ5a、第1刃5b及び第2刃5c)によって生成される切屑を外部に排出するために用いることが可能である。図1に示す一例のドリル1を用いた切削加工時において、一対の第1刃5bの一方で形成された切屑は、一対の溝7のうち、この第1刃5bに向かって延びた溝7を通って本体3の後端3bの側へと排出される。また、一対の第1刃5bのもう一方(他方)で形成された切屑は、一対の溝7のうち、この他方の第1刃5bに向かって延びた溝7を通って本体3の後端3bの側へと排出される。
このとき、一対の溝7の一方は、一対の溝7の他方を回転軸Xの周りで180°回転させた場合に重なり合うように形成されている。これにより、一対の第1刃5bのそれぞれで生じた切屑をそれぞれの溝7で良好に流すことができる。
溝7の深さは、例えば、切削部11の外径に対して10~40%程度に設定できる。ここで、溝7の深さとは、例えば、回転軸Xに直交する断面における、溝7の底と回転軸Xとの距離を本体3の半径から引いた値を意味する。ここで、溝7の底とは、溝7における回転軸Xに最も近い部分を意味している。切削部11の外径が20mmである場合には、例えば、溝7の深さは2~8mm程度に設定できる。
次に、すくい面6について説明する。図1に示す一例の本体3において、切刃5に沿った領域には、すくい面6が設けられている。すなわち、すくい面6は、切刃5から本体3の後端3bの側に向かって延びている。より具体的には、すくい面6は、切刃5の各部分に沿った領域を有している。
すくい面6は、図4に示すように、第1部分5c1から延びた第1領域61と、第2部分5c2から延びた第2領域62とを有していてもよい。第1領域61の第1すくい角θ1は、ゼロ又は負の値であってもよい。図5に示す一例においては、第1領域61の第1すくい角θ1がゼロである。図6に示す一例においては、第2領域62の第2すくい角θ2が、負の値である。
このとき、第2すくい角θ2の絶対値が、第1すくい角θ1の絶対値より大きくてもよい。図5及び図6に示す一例においては、第2刃5cが互いに屈曲して位置する2つの部分(第1部分5c1及び第2部分5c2)を有し、すくい面6のうち第2刃5cから延びた領域(第1領域61及び第2領域62)のすくい角θ1、θ2が上記の関係である。この場合には、切刃5の耐欠損性が高く、且つ、加工時に発生する切削力のうち後端3b側に向かって作用する成分(回転軸Xに沿って作用する成分)が大きいために本体3が径方向に振れにくい。そのため、切刃5が早期に欠損しにくく、加工穴の真直度が高い。
ここで、第1領域61の第1すくい角θ1とは、回転軸Xに平行な仮想直線に対する第1領域61の傾斜角度として評価できる。第2領域62の第2すくい角θ2は、図6に示すように、同様に評価すればよい。なお、図5は、第1部分5c1に沿った方向から見た本体3の側面図であり、図6は、第2部分5c2に沿った方向から見た本体3の側面図である。
図5及び図6に示す一例においては、第1すくい角θ1はゼロ又は負の値であり、第2すくい角θ2は負の値である。また、第2すくい角θ2の絶対値は、第1すくい角θ1の絶対値よりも大きい(|θ2|>|θ1|)、言い換えれば、第2すくい角θ2そのものの値は第1すくい角θ1そのものの値よりも小さくなっている(θ2<θ1)。
なお、ここで、第1領域61の第1すくい角θ1及び第2領域62の第2すくい角θ2が各領域において一定ではない場合には、|θ2|と|θ1|の大小関係は、第2領域62の第2すくい角θ2の絶対値の最小値|θ2|Minと、第1領域61の第1すくい角θ1の絶対値の最大値|θ1|Maxと、を比較して評価できる。言い換えれば、この場合、|θ2|Min>|θ1|Maxであればよい。なお、このとき、第1領域61の第1すくい角θ1は、第1部分5c1に垂直な任意の断面において算出でき、同様に、第2領域62の第2すくい角θ2は、第2部分5c2に垂直な任意の断面において算出できる。
また、第1領域61は、平面であるとともに、内周側から外周側に向かうにつれて回転方向Yの後方に向かって傾斜していてもよい。第2領域62もまた、平面であるとともに、内周側から外周側に向かうにつれて回転方向Yの後方に向かって傾斜していてもよい。
第2すくい角θ2は、一定であってもよい。この場合には、第2領域62にかかる切削抵抗の変動が小さい。加えて、切削加工時に第2部分5c2にかかる切削力の向きが安定するため、被削材へ食いつき易い。その結果、切刃5の耐欠損性がより高く、また、加工精度が向上する。
なお、第2すくい角θ2が一定であるとは、第2領域62の全域に渡って厳密に同じであることを意味するものではなく、実質的に同じであればよい。例えば、第2すくい角θ2が5%程度のばらつきを有していてもよい。
また、第1すくい角θ1は、ゼロであってもよい。すなわち、図5に示す一例においては、第1すくい角θ1がゼロであるため、回転軸Xに対して第1領域61が平行である。この場合には、例えば、切刃5の全長が被削材に食いついた後の加工において、切削部11が加工表面上で滑りにくくなるため、加工穴の真直度が向上する。このとき、第1領域61の全域に渡って第1すくい角θ1がゼロである場合には、より好適に被削材の食いつき性及び加工穴の真直度が向上する。
図4及び図5に示す一例においては、第1領域61における後端3bの側の稜線r61及び第2領域62における後端3bの側の稜線r62は、いずれも回転軸Xから外周側に向かうにつれて、後端3bの側に傾斜している。稜線r61及び稜線r62が上記のように位置している場合には、生成された切屑を安定して溝7に誘導できる。その結果、切屑排出性が向上する。
図4に示すように、第2領域62の少なくとも一部が、第1領域61よりも後端3bの側に位置していてもよい。第2部分5c2が第1部分5c1よりも本体3の外周側に位置しているため、切削加工時に、第2部分5c2においては第1部分5c1よりも多くの切屑が生じ易い。このとき、第2領域62の少なくとも一部が、第1領域61よりも後端3bの側に位置している場合には、第2部分5c2で生じた切屑を安定して溝7に誘導できる。
すくい面6は、チゼルエッジ5aから延びた第3領域63を更に有していてもよい。第3領域63の第3すくい角θ3は、負の値であってもよい。また、第3すくい角θ3の絶対値は、第3領域63における回転軸Xの近くに位置する部分から本体3の外周側に向かうにつれて小さくなっていてもよい。この場合には、回転軸Xから遠ざかるにつれて第3すくい角θ3がゼロに近づくため、チゼルエッジ5aの強度が高く、且つ、チゼルエッジ5aが被削材へ食いつき易い。
図2に示す一例のように、先端視において、第1部分5c1及び第2部分5c2が、それぞれ直線形状であるとともに、第2部分5c2の長さL2が、第1部分5c1の長さL1より大きくてもよい(L2>L1)。このように、第2部分5c2が直線形状である場合には、第2部分5c2の被削材への食いつき性が高い。
加えて、第1部分5c1よりも第2すくい角θ2の絶対値が相対的に大きい第2部分5c2の長さL2が第1部分5c1の長さL1よりも大きい場合には、加工時に発生する切削力のうち回転軸Xに沿った方向に作用する成分が大きい。そのため切削部11を把持部9に押し付ける力が大きい。その結果、被削材への食いつき性及び加工穴の真直度の両方が高い。
図2に示す一例のように、先端視において、第2部分5c2が直線形状である場合に、第1部分5c1と第2部分5c2とのなす第1角度α及び第2部分5c2と第1刃5bとのなす第2角度βは、いずれも鈍角であるとともに、第2角度βは第1角度αより大きくてもよい(β>α)。第2角度βが第1角度αより大きい場合には、切削速度が相対的に速いため、より大きな切削負荷がかかり易い部分の強度が高い。その結果、切刃5がさらに欠損しにくい。
第1刃5bは、例えば、先端視した場合において直線形状であってもよく、また、図2に示すように先端視した場合において凹曲線形状であってもよい。第1刃5bが凹曲線形状である場合には、第1刃5bで生成される切屑をカールさせ易くなるので、溝7で切屑が排出され易い。第1刃5bの凹曲線形状としては、例えば、円孤形状が挙げられる。
すくい面6は、第1刃5bから延びた第4領域64をさらに有していてもよい。第4領域64の第4すくい角θ4は正の値であるとともに徐変していてもよい。例えば、第4すくい角θ4は、回転軸Xから遠ざかるにつれて大きくなっていてもよい。この場合には、第4領域64のうち切削速度が相対的に速い外周側の領域において第4すくい角θ4が相対的に大きいため、切削抵抗が小さい。
第4領域64は、回転軸Xに直交する断面において、直線形状であってもよく、また、凹曲線形状であってもよい。回転軸Xに直交する断面において第4領域64が凹曲線形状である場合には、切屑が本体3の外周面よりも外側へ飛び出しにくくなる。そのため、被削材の加工面が傷つきにくい。
また、図4に示すように側面視した場合に、第1領域61における回転軸Xに直交する方向の幅は、第1部分5c1から離れるにしたがって狭くなっていてもよい。この場合には、後端3bに向かうにしたがって第4領域64の幅を広く確保し易い。そのため、切刃5で生じた切屑を本体3の後端3bの側へと安定して排出し易い。
同様に、図4に示すように側面視した場合に、第2領域62における回転軸Xに直交する方向の幅は、第2部分5c2から離れるにしたがって狭くなっていてもよい。この場合にも、後端3bに向かうにしたがって第4領域64の幅を広く確保し易い。そのため、切刃5で生じた切屑を本体3の後端3bの側へと安定して排出し易い。
第1領域61を正面視した場合に、第1領域61及び第2領域62の境界Bは、後端3bに向かうにしたがって回転軸Xから離れていてもよい。この場合には、第1領域61及び第2領域62を流れる切屑を第4領域64に向かって誘導し易い。そのため、切刃5で生じた切屑を本体3の後端3bの側へと安定して排出し易い。
以上、本開示に係るドリル1について例示したが、本開示はこれに限定されるものではなく、本開示の要旨を逸脱しない限り任意のものとすることができる。
例えば、切削部11の形状は、上述の態様に限定されるものではなく、通常用いられる他の形状を採用してもよい。例えば、切削部11は、内接円の芯厚が先端3aの側から後端3bの側に向かうにしたがって厚くなるようなテーパー状であってもよい。また、切削部11は、ドリル径(外径)が先端3aの側から後端3bの側に向かうにつれて大きくなるか、あるいは小さくなるように傾斜していてもよい。さらに、切削部11には、いわゆるアンダーカットやクリアランスが設けられていてもよい。
<切削加工物の製造方法>
次に、本開示の一実施形態に係る切削加工物の製造方法について、上述したドリル1を用いる場合を例に挙げて詳細に説明する。以下、図7~図9を参照しつつ説明する。
次に、本開示の一実施形態に係る切削加工物の製造方法について、上述したドリル1を用いる場合を例に挙げて詳細に説明する。以下、図7~図9を参照しつつ説明する。
本実施形態にかかる切削加工物の製造方法は、以下の(1)~(3)の工程を備える。
(1)準備された被削材101に対して上方にドリル1を配置し、ドリル1を、回転軸Xを中心に矢印Yの方向に回転させ、被削材101に向かってZ1方向にドリル1を近づける工程(図7参照)
(2)ドリル1をさらに被削材101に近づけることによって、回転しているドリル1の切刃を、被削材101の表面の所望の位置に接触させて、被削材101に加工穴103(貫通孔)を形成する工程(図8参照)
(3)ドリル1を被削材101からZ2方向に離す工程(図9参照)
(1)の工程は、例えば、被削材101を、ドリル1を取り付けた工作機械のテーブル上に固定し、ドリル1を回転した状態で近づけることにより行うことができる。なお、(1)の工程では、被削材101とドリル1とは相対的に近づけばよく、被削材101をドリル1に近づけてもよい。
(2)ドリル1をさらに被削材101に近づけることによって、回転しているドリル1の切刃を、被削材101の表面の所望の位置に接触させて、被削材101に加工穴103(貫通孔)を形成する工程(図8参照)
(3)ドリル1を被削材101からZ2方向に離す工程(図9参照)
(1)の工程は、例えば、被削材101を、ドリル1を取り付けた工作機械のテーブル上に固定し、ドリル1を回転した状態で近づけることにより行うことができる。なお、(1)の工程では、被削材101とドリル1とは相対的に近づけばよく、被削材101をドリル1に近づけてもよい。
次に、(2)の工程においては、ドリル1の切削部のうち後端の側の一部の領域が加工穴103に挿入されないように設定する。このように、切削部のうち後端の側の一部の領域を切屑排出のための領域として機能させることで、当該領域を介して切屑をスムーズに排出できる。
(3)の工程においても、上述の(1)の工程と同様に、被削材101とドリル1とは相対的に離隔すればよく、例えば被削材101をドリル1から離隔させてもよい。
以上のような(1)乃至(3)の工程を経ることによって、本実施形態に係る製造方法によれば、長期間に渡って真直度の高い加工穴103を有する切削加工物を得ることができる。
なお、以上に示したような被削材101の切削加工を複数回行う場合に、例えば、1つの被削材101に対して複数の加工穴103を形成する際には、ドリル1を回転させた状態を保持しつつ、被削材101の異なる箇所にドリル1の切刃を接触させる工程を繰り返せばよい。
以上、本開示に係る実施形態について例示したが、本開示はこれに限定されるものではなく、本開示の要旨を逸脱しない限り任意のものにできる。
1・・・ドリル
3・・・本体
5・・・切刃
5a・・・チゼルエッジ
5b・・・第1刃
5c・・・第2刃
5c1・・・第1部分
5c2・・・第2部分
6・・・すくい面
61・・・第1領域
62・・・第2領域
63・・・第3領域
64・・・第4領域
7・・・溝
9・・・把持部
11・・・切削部
101・・・被削材
103・・・加工穴
3・・・本体
5・・・切刃
5a・・・チゼルエッジ
5b・・・第1刃
5c・・・第2刃
5c1・・・第1部分
5c2・・・第2部分
6・・・すくい面
61・・・第1領域
62・・・第2領域
63・・・第3領域
64・・・第4領域
7・・・溝
9・・・把持部
11・・・切削部
101・・・被削材
103・・・加工穴
Claims (12)
- 第1端から第2端に向かって回転軸に沿って延びた棒形状の本体と、
前記本体の前記第1端に位置する切刃と、
前記切刃から前記本体の前記第2端の側に向かって延びたすくい面と、
前記すくい面から前記本体の前記第2端の側に向かって螺旋状に延びた溝と、を備え、
前記切刃は、前記本体を前記第1端に向かって見た場合に、
前記回転軸と交差する曲線状のチゼルエッジと、
前記チゼルエッジよりも前記本体の外周側に位置する第1刃と、
前記チゼルエッジ及び前記第1刃に接続された第2刃と、を有しており、
前記第2刃は、前記本体を前記第1端に向かって見た場合に、
前記チゼルエッジから前記本体の外周に向かって延びた第1部分と、
前記第1部分から前記第1刃へ向かって延びるとともに前記第1部分に対して傾斜して位置する第2部分と、を有し、
前記すくい面は、
前記第1部分から延びた第1領域と、
前記第2部分から延びた第2領域と、を有しており、
前記第1領域の第1すくい角は、ゼロ又は負の値であり、前記第2領域の第2すくい角は、負の値であり、
前記第2すくい角絶対値は、前記第1すくい角の絶対値よりも大きい、ドリル。 - 前記第2すくい角は、一定である、請求項1に記載のドリル。
- 前記第1すくい角は、ゼロである、請求項1又は2に記載のドリル。
- 前記すくい面は、前記チゼルエッジから延びた第3領域を更に有しており、
前記第3領域の第3すくい角は、負の値であるとともに、前記第3すくい角の絶対値は、前記回転軸の近くに位置する部分から前記ホルダ本体の外周側に向かうにつれて小さくなっている、請求項1~3のいずれか1つに記載のドリル。 - 前記本体を前記第1端に向かって見た場合に、前記第1部分及び前記第2部分は、それぞれ直線形状であるとともに、
前記第2部分の長さL2は、前記第1部分の長さL1よりも大きい、請求項1~4のいずれか1つに記載のドリル。 - 前記本体を前記第1端に向かって見た場合に、前記第1部分及び前記第2部分は、直線形状であるとともに、
前記本体を前記第1端に向かって見た場合に、前記第1部分と前記第2部分とのなす第1角度、及び前記第2部分と前記第1刃とのなす第2角度は、いずれも鈍角であるとともに、前記第2角度は前記第1角度よりも大きい、請求項1~5のいずれか1つに記載のドリル。 - 前記第2領域の少なくとも一部が、前記第1領域よりも前記第2端の側に位置している、請求項1~6のいずれか1つに記載のドリル。
- 側面視した場合に、前記第1領域における前記回転軸に直交する方向の幅は、前記第1部分から離れるにしたがって狭くなっている、請求項1~7のいずれか1つに記載のドリル。
- 側面視した場合に、前記第2領域における前記回転軸に直交する方向の幅は、前記第2部分から離れるにしたがって狭くなっている、請求項1~8のいずれか1つに記載のドリル。
- 前記第1領域を正面視した場合に、前記第1領域及び前記第2領域の境界は、前記第2端に向かうにしたがって前記回転軸から離れている、請求項1~9のいずれか1つに記載のドリル。
- 前記切刃は、前記第1刃及び前記第2刃を2つずつ有している、請求項1~10のいずれか1つに記載のドリル。
- 請求項1~11のいずれか1つに記載のドリルを回転させる工程と、
回転している前記ドリルを被削材に接触させる工程と、
前記ドリルを前記被削材から離す工程と、を備えた切削加工物の製造方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018559441A JP6791985B2 (ja) | 2016-12-26 | 2017-12-25 | ドリル及びそれを用いた切削加工物の製造方法 |
US16/473,258 US10882121B2 (en) | 2016-12-26 | 2017-12-25 | Drill and method for manufacturing machined product |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-250973 | 2016-12-26 | ||
JP2016250973 | 2016-12-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018123937A1 true WO2018123937A1 (ja) | 2018-07-05 |
Family
ID=62707651
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/046366 WO2018123937A1 (ja) | 2016-12-26 | 2017-12-25 | ドリル及びそれを用いた切削加工物の製造方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US10882121B2 (ja) |
JP (1) | JP6791985B2 (ja) |
WO (1) | WO2018123937A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2019176452A1 (ja) * | 2018-03-16 | 2021-03-11 | 株式会社Moldino | ドリル |
EP4385648A1 (en) | 2022-11-29 | 2024-06-19 | Tungaloy Corporation | Drilling tool |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI786325B (zh) * | 2018-10-04 | 2022-12-11 | 以色列商艾斯卡公司 | 具有設負傾角及正傾角二者之徑向延伸前切削刃的頂端部的切削頭、及旋轉切削工具 |
USD915591S1 (en) * | 2019-01-25 | 2021-04-06 | Beijing Smtp Technology Co., Ltd. | Ultrasonic cutter head for medical purpose |
US20240307978A1 (en) * | 2023-03-13 | 2024-09-19 | Kennametal Inc. | Modular rotary cutting tools |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06320316A (ja) * | 1993-05-14 | 1994-11-22 | Toshiaki Hosoi | ドリル |
JP2012192514A (ja) * | 2011-03-03 | 2012-10-11 | Big Tool Co Ltd | ドリル |
JP2012529375A (ja) * | 2009-06-08 | 2012-11-22 | マパル ファブリック フュール プラツィジョンズベルクゼウグ ドクトル.クレス カーゲー | ドリルビット |
JP2012529998A (ja) * | 2009-06-16 | 2012-11-29 | ケンナメタル インコーポレイテッド | リップと二次切れ刃との間に負の軸方向すくい角の移行部を有するツイストドリル |
JP5940205B1 (ja) * | 2015-10-20 | 2016-06-29 | 日進工具株式会社 | ドリル |
JP2016529124A (ja) * | 2013-08-30 | 2016-09-23 | マパル ファブリック フュール プラツィジョンズベルクゼウグ ドクトル.クレス カーゲー | ドリル |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2508539B2 (ja) * | 1987-10-05 | 1996-06-19 | 三菱マテリアル株式会社 | ドリル |
JPH01216707A (ja) * | 1988-02-23 | 1989-08-30 | Masao Kubota | ドリル |
EP2366478B1 (en) * | 2001-07-10 | 2020-04-15 | Mitsubishi Materials Corporation | Drill |
US8061938B2 (en) | 2008-03-10 | 2011-11-22 | Kennametal Inc. | Cutting tool with chisel edge |
SE532432C2 (sv) * | 2008-05-09 | 2010-01-19 | Sandvik Intellectual Property | Borrkropp med primära och sekundära släppningsytor |
DE102009012725B4 (de) * | 2009-03-11 | 2020-10-15 | Kennametal Inc. | Bohrerspitze sowie Bohrwerkzeug mit einer Bohrerspitze |
SE536296C2 (sv) * | 2011-02-08 | 2013-08-06 | Sandvik Intellectual Property | Borr med spånkanaler utformade för förbättrad spånevakuering |
CN103764325B (zh) * | 2011-09-06 | 2016-08-17 | Osg株式会社 | 钻头 |
JP5519723B2 (ja) * | 2012-04-11 | 2014-06-11 | 住友電工ハードメタル株式会社 | 刃先交換式ドリル |
JP2014004671A (ja) * | 2012-06-27 | 2014-01-16 | Sumitomo Electric Hardmetal Corp | ドリル |
DE102015204126A1 (de) * | 2015-03-06 | 2016-09-08 | Kennametal Inc. | Rotationswerkzeug sowie Verfahren zur Herstellung eines Rotationswerkzeugs |
-
2017
- 2017-12-25 WO PCT/JP2017/046366 patent/WO2018123937A1/ja active Application Filing
- 2017-12-25 JP JP2018559441A patent/JP6791985B2/ja active Active
- 2017-12-25 US US16/473,258 patent/US10882121B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06320316A (ja) * | 1993-05-14 | 1994-11-22 | Toshiaki Hosoi | ドリル |
JP2012529375A (ja) * | 2009-06-08 | 2012-11-22 | マパル ファブリック フュール プラツィジョンズベルクゼウグ ドクトル.クレス カーゲー | ドリルビット |
JP2012529998A (ja) * | 2009-06-16 | 2012-11-29 | ケンナメタル インコーポレイテッド | リップと二次切れ刃との間に負の軸方向すくい角の移行部を有するツイストドリル |
JP2012192514A (ja) * | 2011-03-03 | 2012-10-11 | Big Tool Co Ltd | ドリル |
JP2016529124A (ja) * | 2013-08-30 | 2016-09-23 | マパル ファブリック フュール プラツィジョンズベルクゼウグ ドクトル.クレス カーゲー | ドリル |
JP5940205B1 (ja) * | 2015-10-20 | 2016-06-29 | 日進工具株式会社 | ドリル |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2019176452A1 (ja) * | 2018-03-16 | 2021-03-11 | 株式会社Moldino | ドリル |
JP7352106B2 (ja) | 2018-03-16 | 2023-09-28 | 株式会社Moldino | ドリル |
EP4385648A1 (en) | 2022-11-29 | 2024-06-19 | Tungaloy Corporation | Drilling tool |
Also Published As
Publication number | Publication date |
---|---|
JP6791985B2 (ja) | 2020-11-25 |
US10882121B2 (en) | 2021-01-05 |
US20190366450A1 (en) | 2019-12-05 |
JPWO2018123937A1 (ja) | 2019-10-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018123937A1 (ja) | ドリル及びそれを用いた切削加工物の製造方法 | |
JP6122487B2 (ja) | ドリルおよびそれを用いた切削加工物の製造方法 | |
JP7216698B2 (ja) | 切削工具及び切削加工物の製造方法 | |
JP6165165B2 (ja) | 割出し可能切削インサート、そのための切削工具およびクランプ方法 | |
JP6470307B2 (ja) | ドリル及びそれを用いた切削加工物の製造方法 | |
JP7516714B2 (ja) | 回転工具 | |
JPWO2018221737A1 (ja) | 回転工具 | |
JP6725684B2 (ja) | 回転工具及びそれを用いた切削加工物の製造方法 | |
JP6882517B2 (ja) | 回転工具 | |
JP6941047B2 (ja) | 回転工具及び切削加工物の製造方法 | |
WO2019189415A1 (ja) | ドリル及び切削加工物の製造方法 | |
WO2018139584A1 (ja) | 切削インサート、ドリル及びそれを用いた切削加工物の製造方法 | |
JP6462364B2 (ja) | スローアウェイ式ドリル及びそれを用いた切削加工物の製造方法 | |
JP6110496B2 (ja) | ドリルおよびそれを用いた切削加工物の製造方法 | |
JP2009241239A (ja) | ドリルおよび穴あけ加工方法 | |
JP6342662B2 (ja) | ドリルおよびそれを用いた切削加工物の製造方法 | |
JP6294095B2 (ja) | ドリルおよびそれを用いた切削加工物の製造方法 | |
JP5882846B2 (ja) | リーマ、切削工具およびそれを用いた切削加工物の製造方法 | |
JP5560748B2 (ja) | 刃先交換式溝入れ工具及び周面溝入れ加工方法 | |
JP5471538B2 (ja) | 刃先交換式溝入れ工具及び端面溝入れ加工方法 | |
JP5635838B2 (ja) | 鋳抜き穴加工用コアドリル | |
JP5589401B2 (ja) | 刃先交換式溝入れ工具及び端面溝入れ加工方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17889026 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2018559441 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17889026 Country of ref document: EP Kind code of ref document: A1 |