WO2012114736A1 - レンジフード - Google Patents

レンジフード Download PDF

Info

Publication number
WO2012114736A1
WO2012114736A1 PCT/JP2012/001192 JP2012001192W WO2012114736A1 WO 2012114736 A1 WO2012114736 A1 WO 2012114736A1 JP 2012001192 W JP2012001192 W JP 2012001192W WO 2012114736 A1 WO2012114736 A1 WO 2012114736A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
food
heating cooker
range hood
cooker
Prior art date
Application number
PCT/JP2012/001192
Other languages
English (en)
French (fr)
Inventor
政典 山中
崇 殿垣内
弘仁 堺
可知 昌道
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN201280006420.XA priority Critical patent/CN103328897B/zh
Priority to US13/992,008 priority patent/US9581338B2/en
Publication of WO2012114736A1 publication Critical patent/WO2012114736A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24CDOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
    • F24C15/00Details
    • F24C15/20Removing cooking fumes
    • F24C15/2042Devices for removing cooking fumes structurally associated with a cooking range e.g. downdraft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24CDOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
    • F24C15/00Details
    • F24C15/20Removing cooking fumes
    • F24C15/2021Arrangement or mounting of control or safety systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/04Ventilation with ducting systems, e.g. by double walls; with natural circulation
    • F24F7/06Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F2007/001Ventilation with exhausting air ducts

Definitions

  • the present invention relates to a range hood.
  • the conventional range hood that changes the air volume of the blower according to the temperature of the cooked product is provided with an exhaust fan motor, a thermoelectromotive force type temperature sensor, and a control unit.
  • the exhaust fan motor exhausts oily smoke and odor generated during cooking to the outside of the room.
  • the thermoelectromotive force type temperature sensor detects far infrared rays around the cooking device.
  • the control unit converts the result detected by the thermoelectromotive force type temperature sensor into a temperature.
  • the range hood determines the use state of the cooking device based on the temperature converted by the control unit, and drives or stops the exhaust fan motor. (For example, refer to Patent Document 1).
  • the previous detection temperature detected by the thermoelectromotive force type temperature sensor is compared with the next detection temperature detected after a certain time, and when a certain temperature difference occurs, the exhaust fan motor is driven. Yes.
  • Patent Document 1 is greatly affected by the temperature state at the start of detection and the heating state of cooking because the air volume is controlled when a certain temperature difference occurs.
  • the present invention is a range hood that includes a blower capable of changing the air volume and changes the air volume of the blower according to the temperature of the cooked food in the heating cooker, and is an average temperature of the cooked food temperature and the food ambient temperature on the upper surface of the heating cooker
  • a temperature sensor for detecting the ambient temperature of the cooking device, a signal receiving unit for receiving a cooking device signal from the cooking device, and an air flow control unit for changing the air flow of the blower.
  • the control unit calculates the food temperature from the average temperature using the ambient temperature as the food ambient temperature, and determines the air volume of the blower from the food temperature and the cooker signal.
  • the ambient temperature of the cooking product is equal to the ambient temperature of the cooking device detected by the temperature sensor.
  • the cooked product temperature is calculated from the ambient temperature and the average temperature of the upper surface of the cooking device.
  • the air volume of an air blower is controlled according to the calculated food temperature and the cooker signal from a heating cooker. Therefore, the air volume is controlled without being affected by the temperature state at the start of detection and the heating state of the food.
  • FIG. 1 is a front view showing an installation state of a range hood according to an embodiment of the present invention.
  • FIG. 2 is a figure which shows the side surface of the principal part which shows the installation state of the same range hood.
  • FIG. 3 is an enlarged cross-sectional view of a main part of FIG.
  • FIG. 4 is a bottom view of the main part viewed from the X direction of FIG.
  • FIG. 5 is a block diagram showing the range hood according to the embodiment of the present invention by function realizing means.
  • FIG. 6A is a diagram illustrating an upper surface of the heating cooker for explaining processing in the air volume control unit of the same range hood.
  • Drawing 6B is a figure showing the state where the heating part of the cooking-by-heating machine for explaining the processing in the air volume control part of the same range hood is not heated.
  • FIG. 6C is a diagram illustrating a state where the heating unit of the heating cooker for explaining the processing in the air volume control unit of the same range hood is heated and the cooked food is rising to a predetermined temperature.
  • FIG. 7 is a flowchart of the air volume control unit of the same range hood.
  • FIG. 8 is a different flowchart of the air volume control unit of the same range hood.
  • FIG. 9 is a cross-sectional side view of a main part showing different installation states of the same range hood.
  • FIG. 10 is a diagram showing a detection range by the range hood.
  • FIG. 1 is a front view showing an installed state of a range hood according to an embodiment of the present invention
  • FIG. 2 is a view showing a side surface of a main part showing the installed state of the range hood.
  • the range hood 10 is installed above the heating cooker 20.
  • the range hood 10 includes a blower 11 capable of changing the air volume inside and a hood body 13 having a suction port 12 on the lower surface.
  • the hood main body 13 forms a hood front portion 13 a on the front side of the suction port 12.
  • FIG. 3 is an enlarged cross-sectional view of the main part of FIG.
  • an operation switch case 14 is provided in the hood front portion 13a.
  • An operation switch 14 a is provided on the front surface of the operation switch case 14.
  • An infrared temperature sensor unit 30 and a signal receiver 15 are arranged in the operation switch case 14.
  • FIG. 4 is a bottom view of the main part viewed from the X direction of FIG.
  • a sensor cover 30 a is provided on the lower surface of the infrared temperature sensor unit 30, and a signal receiving cover 15 a is provided on the lower surface of the signal receiving unit 15.
  • FIG. 5 is a block diagram showing the range hood according to the embodiment of the present invention by function realizing means.
  • the infrared temperature sensor unit 30 includes an infrared sensor 31 and a temperature sensor 32.
  • the infrared sensor 31 detects an average temperature Tp of the cooked product temperature T and the cooked product ambient temperature Ts on the upper surface 20a of the cooking device 20 shown in FIG.
  • the temperature sensor 32 detects the ambient temperature Th of the heating cooker 20 shown in FIG.
  • the range hood 10 changes the air volume of the air blower 11 with the food temperature T in the heating cooker 20.
  • the range hood 10 includes a signal receiver 15 that receives a cooker signal 23 a from the heating cooker 20 and an air volume controller 16 that changes the air volume of the blower 11.
  • the range hood 10 further includes an input / setting unit 17 and a storage unit 18.
  • the type of the heating cooker 20 for example, an electromagnetic heating cooker or a gas cooking cooker, and the infrared sensor 31 shown in FIG.
  • the height 31a is input.
  • Data regarding the type of the cooking device 20 input or set in the input / setting unit 17 and the installation height 31 a are stored in the storage unit 18.
  • the storage area 18 stores in advance a food area Sa for determining the food temperature T.
  • the heating cooker 20 includes a heating unit 21 and a heating power adjustment unit 22 that adjusts the heating power of the heating unit 21. Furthermore, the cooking device 20 may include a signal transmission unit 23 and a storage unit 24. A thermal power signal from the thermal power adjustment unit 22 and a signal of the type of the heating cooker 20 stored in advance in the storage unit 24 are transmitted from the signal transmission unit 23.
  • the type of the heating cooker 20 is, for example, an electromagnetic heating cooker or a gas heating cooker.
  • the cooker signal 23 a transmitted from the signal transmission unit 23 is received by the signal reception unit 15.
  • the range hood 10 is provided with the signal transmission part 23 and the memory
  • FIG. 6A is a diagram showing an upper surface of the heating cooker for explaining the processing in the air volume control unit of the range hood according to the embodiment of the present invention.
  • the heating cooker 20 includes four heating units 21a, 21b, 21c, and 21d, and a cooked product (pan) 25 is placed on the heating unit 21a.
  • FIG. 6B is a diagram showing a state where the heating unit of the heating cooker is not heated for explaining processing in the air volume control unit of the range hood according to the embodiment of the present invention
  • FIG. 6C is in the air volume control unit of the same range hood. It is a figure which shows the state which the heating part of the heating cooker for demonstrating a process is heated, and the foodstuff is rising to predetermined temperature.
  • 6B and 6C show the detection range A of the infrared sensor 31.
  • the detection range A includes not only the food 25 but also the food 25 other than the food 25. Therefore, the infrared sensor 31 detects the average temperature Tp between the food temperature T targeted for the food 25 and the food ambient temperature Ts other than the food 25. The temperature sensor 32 detects the ambient temperature Th of the cooking device 20.
  • the cooked food 25 has a certain size on the heating cooker 20 and the average temperature Tp is equal to the ambient temperature Th detected by the temperature sensor 32 (FIG. 6B). Thereby, the cooked product temperature T is calculated from the ambient temperature Th and the average temperature Tp of the upper surface 20a of the heating cooker 20.
  • FIG. 7 is a flowchart of the air volume control unit of the range hood according to the embodiment of the present invention. As shown in FIGS. 5 and 7, in step 1 (S ⁇ b> 1), the area Sa of the cooked food 25 is set in advance and stored in the storage unit 18. Step 1 is executed at the production stage or initial setting of the range hood 10.
  • Step 2 (S2) is executed when the range hood 10 is installed.
  • An installation height 31 a that is the height from the heating cooker 20 to the infrared sensor 31 is input from the input / setting unit 17. This is because the width of the detection range A varies depending on the installation height 31a.
  • the detection range area Sh of the infrared sensor 31 is determined by the installation height 31a (step 3 (S3)). It is preferable that the detection range area Sh of the infrared sensor 31 associated in advance is stored in the storage unit 18 when the installation height 31a is input.
  • Step 4 (S4) and subsequent steps are executed when the range hood 10 is used.
  • the infrared sensor 31 detects the average temperature Tp of the food temperature T and the food ambient temperature Ts (step 4). Then, the ambient temperature Th of the heating cooker 20 is detected by the temperature sensor 32 (step 5 (S5)).
  • the food temperature T is calculated in the air volume control unit 16 together with the area Sa (S1) and the detection range area Sh (S3) of the food 25 (step 6).
  • the cooked product temperature T is calculated, for example, by the ratio between the difference between the average temperature Tp and the ambient temperature Th and the area Sa of the cooked product 25 with respect to the detection range area Sh.
  • the discrimination of the type of the heating cooker 20 in step 7 may be performed when the range hood 10 is installed in step 2 or may be performed when the range hood 10 is used.
  • the type of the cooking device 20 is input from the input / setting unit 17 and stored in the storage unit 18 when the range hood 10 is installed in Step 2.
  • the cooking device 20 includes the signal transmission unit 23
  • different cooking device signals 23a are transmitted between the gas heating cooking device and the electromagnetic cooking device when the range hood 10 is used.
  • the range hood 10 determines whether the type of the heating cooker 20 is a gas heating cooker or an electromagnetic heating cooker according to the type of the received cooker signal 23a.
  • the type of the heating cooker 20 is determined by the cooker signal 23a. Therefore, the setting of the range hood 10 by the kind of the heating cooker 20 becomes unnecessary.
  • step 8 (S8) depending on whether the heating cooker 20 is an electromagnetic heating cooker or a gas heating cooker, the relationship between the cooked product temperature T and the air flow rate of the blower 11 is, for example, a threshold value for changing the air flow notch. It is changed by changing. Specifically, in an electromagnetic heating cooker, the cooking material and the pan temperature are the main heat sources. In a gas heating cooker, cooking ingredients and a flame are the main heat sources. Therefore, the same air flow control can be performed for the same cooking content by increasing the threshold value for changing the air flow notch of the gas cooking device with respect to the electromagnetic cooking device.
  • the cooker signal 23a from the heating cooker 20 includes a thermal power signal 22a for determining the thermal power of the heating cooker 20.
  • step 8 (S8) the thermal power signal 22a transmitted from the heating cooker 20 is received.
  • step 9 (S9) the relationship between the cooked product temperature T and the air volume of the blower 11 is changed by the thermal power signal 22a, for example, by changing the threshold for changing the air volume notch.
  • step 10 (S10) the air volume control part 16 determines the air volume of the air blower 11 by the food temperature T (S6) and the relationship between the food temperature T and the air volume of the air blower 11 (S9). Then, the blower 11 is operated with the determined air volume.
  • the range hood 10 includes an infrared sensor 31, a temperature sensor 32, a signal receiving unit 15, and an air volume control unit 16.
  • the infrared sensor 31 detects an average temperature Tp of the cooked product temperature T and the cooked product ambient temperature Ts on the upper surface 20 a of the heating cooker 20.
  • the temperature sensor 32 detects the ambient temperature Th of the heating cooker 20.
  • the signal receiving unit 15 receives the cooker signal 23 a from the heating cooker 20.
  • the air volume control unit 16 controls the air volume of the blower 11.
  • the air volume control unit 16 uses the ambient temperature Th detected by the temperature sensor 32 as the cooked product ambient temperature Ts, and calculates the cooked product temperature T from the average temperature Tp detected by the infrared sensor 31. Then, the air volume of the blower 11 is determined from the calculated cooked product temperature T and the cooker signal 23 a received by the signal receiving unit 15. It is assumed that the cooked food 25 having a certain size is present on the heating cooker 20, and the cooked food ambient temperature Ts is equal to the ambient temperature Th of the heating cooker 20 detected by the temperature sensor 32. Thereby, the cooked product temperature T is calculated from the ambient temperature Th and the average temperature Tp of the upper surface 20a of the heating cooker 20. The air volume is controlled according to the calculated cooked product temperature T and the cooker signal 23a from the heating cooker 20. Therefore, the air volume is controlled without being affected by the temperature condition at the start of detection and the heating condition.
  • the main heat source is the cooking material and the temperature of the pan.
  • cooking ingredients and a flame are the main heat sources. Therefore, if an electromagnetic heating cooker and a gas heating cooker perform air volume calculation by the same calculation formula, the air volume will change even if the cooking contents are the same.
  • the relationship between the cooked product temperature T and the air volume of the blower 11 is changed depending on whether the heating cooker 20 is an electromagnetic heating cooker or a gas heating cooker. Therefore, the same air volume control is possible for the same cooking content regardless of whether the heating cooker 20 is an electromagnetic heating cooker or a gas heating cooker.
  • the cooker signal 23a different from the gas cooker and the electromagnetic cooker is transmitted.
  • the range hood 10 determines whether the type of the heating cooker 20 is a gas heating cooker or an electromagnetic heating cooker according to the type of the received cooker signal 23a. Therefore, it is not necessary to set the range hood 10 according to the type of the cooking device 20.
  • the air volume is controlled by adding the thermal power signal 22a transmitted from the heating cooker 20, the air volume is controlled without being affected by the heating condition.
  • the infrared temperature sensor unit 30 since the infrared temperature sensor unit 30 includes the infrared sensor 31 and the temperature sensor 32, the structure is simple and the cost is low.
  • FIG. 8 is a different flowchart of the air volume control unit of the range hood according to the embodiment of the present invention.
  • Step 11 (S11) is Step 1
  • Step 12 (S12) is Step 2
  • Step 13 (S13) is Step 3
  • Step 14 (S14) is Step 4
  • Step 15 (S15) is Step 5. The same.
  • step 17 the correction value ⁇ is determined depending on whether the step 7 and the heating cooker 20 are an electromagnetic heating cooker or a gas heating cooker, and the cooked product temperature T calculated in step 16 (S16) is determined. Other points are the same except for changes.
  • the cooker signal 23a from the heating cooker 20 includes a thermal power signal 22a for determining the thermal power of the heating cooker 20.
  • step 19 the thermal power signal 22a transmitted from the heating cooker 20 is received, the correction value ⁇ based on the thermal power signal 22a is determined, and the cooked product temperature T calculated in step 16 is changed.
  • step 20 (S20) the air volume control part 16 determines the air volume of the air blower 11 with the food temperature T (S16). The blower 11 is operated with the determined air volume.
  • the cooked food temperature T is changed depending on whether the heating cooker 20 is an electromagnetic heating cooker or a gas heating cooker. Therefore, for the same cooking content, the same air volume control can be performed for the same cooking content regardless of whether the cooking device 20 is an electromagnetic heating cooking device or a gas heating cooking device.
  • FIG. 9 is a diagram showing a side view of a main part showing different installation states of the range hood according to the embodiment of the present invention
  • FIG. 10 is a diagram showing a detection range by the range hood.
  • the range hood 10 includes a first infrared temperature sensor unit 30 ⁇ / b> B, which is a plurality of infrared temperature sensor units 30, and a second infrared temperature sensor unit 30 ⁇ / b> C.
  • the second infrared temperature sensor unit 30C sets the heating unit 21d as the detection range C.
  • the first infrared temperature sensor unit 30 ⁇ / b> B detects an average temperature Tp when the pan is the cooked food 25.
  • the second infrared temperature sensor unit 30C detects an average temperature Tp when the grill is used as the cooked food 25b.
  • the range hood 10 includes the first infrared temperature sensor unit 30B and the second infrared temperature sensor unit 30C. Therefore, even if it is a case where the wide range of the whole upper surface 20a of the heating cooker 20 is made into a detection range, a detection precision does not fall.
  • a grill cooking unit has a detection temperature lower than that of other cooking units, but a sensor dedicated to grill cooking is installed as the second infrared temperature sensor unit 30C. As a result, the air volume is changed depending on whether cooking is performed at a site with good exhaust collection efficiency or cooking at a site with poor exhaust collection efficiency, thereby enabling more efficient air volume control.
  • a compound eye sensor may be used as the infrared sensor 31 instead of providing a plurality of infrared temperature sensor units 30.
  • the compound eye sensor identifies where the grilled food is being cooked or cooked.
  • the air volume is changed depending on whether cooking is performed at a site with good exhaust collection efficiency or cooking at a site with poor exhaust collection efficiency, thereby enabling more efficient air volume control. Therefore, more accurate temperature detection is possible, and it is not necessary to install a plurality of infrared temperature sensor units 30.
  • the infrared temperature sensor unit 30 including the infrared sensor 31 and the temperature sensor 32 has been described.
  • the temperature sensor 32 may detect the indoor temperature where the heating cooker 20 is installed at a location away from the hood body 13.
  • the ambient temperature Th of the heating cooker 20 may rise above the room temperature, but the cooked product temperature T is accurately calculated by detecting the room temperature.
  • the installation height 31a that is the height of the infrared sensor 31 from the heating cooker 20 is reflected in the calculation of the cooked product temperature T. Therefore, even if the installation height 31a changes, the calculated cooked food temperature T does not change.
  • the present invention is suitable for a range hood in which the air volume of the blower is changed depending on the temperature of the food in the heating cooker.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ventilation (AREA)
  • Radiation Pyrometers (AREA)

Abstract

加熱調理器における調理物温度によって送風機の風量を変更するレンジフードであって、調理物温度と調理物周囲温度との平均温度を検出する赤外線センサーと、加熱調理器の周囲温度を検出する温度センサーと、信号受信部と、風量制御部とを備え、風量制御部では周囲温度を調理物周囲温度として平均温度から調理物温度を算出し、調理物温度と調理器信号とから送風機の風量を決定する。

Description

レンジフード
 本発明は、レンジフードに関する。
 調理物の温度によって送風機の風量を変更する従来のレンジフードは、排気ファンモーターと、熱起電力型温度センサーと、制御部とを備えていた。ここで排気ファンモーターは、調理時に発生する油煙や臭いを室外へ排気する。熱起電力型温度センサーは、加熱調理機器周辺の遠赤外線を検知する。制御部は、熱起電力型温度センサーが検出した結果を温度に変換する。そしてレンジフードは、制御部が変換した温度を基に加熱調理機器の使用状態を判断し、排気ファンモーターを駆動もしくは停止する。(例えば、特許文献1参照)。
 特許文献1のレンジフードでは、熱起電力型温度センサーが検知した前回検知温度と一定時間後に検知する次回検知温度とを比較し、一定の温度差が生じた場合に排気ファンモーターを駆動している。
 しかし特許文献1のレンジフードでは、一定の温度差が生じた場合に風量を制御するため検知開始時の温度状況、および調理の加熱状況による影響を大きく受けていた。
特開2009-121751号公報
 本発明は風量を変更可能な送風機を備え、加熱調理器における調理物温度によって送風機の風量を変更するレンジフードであって、加熱調理器の上面における調理物温度と調理物周囲温度との平均温度を検出する赤外線センサーと、加熱調理器の周囲温度を検出する温度センサーと、加熱調理器からの調理器信号を受信する信号受信部と、送風機の風量を変更する風量制御部とを備え、風量制御部では周囲温度を調理物周囲温度として平均温度から調理物温度を算出し、調理物温度と調理器信号とから送風機の風量を決定する。
 加熱調理器上に一定の大きさの調理物があり、調理物周囲温度が温度センサーにより検出する加熱調理器の周囲温度と等しいと仮定する。このことにより、周囲温度と加熱調理器の上面の平均温度とから調理物温度が算出される。そして、算出した調理物温度と加熱調理器からの調理器信号とに応じて送風機の風量が制御される。そのため、検知開始時の温度状況および調理物の加熱状況に影響を受けずに風量が制御される。
図1は、本発明の実施の形態のレンジフードの設置状態を示す正面図である。 図2は、同レンジフードの設置状態を示す要部の側面を示す図である。 図3は、図2の要部拡大断面図である。 図4は、図3のX方向から見た要部下面図である。 図5は、本発明の実施の形態のレンジフードを機能実現手段により表したブロック図である。 図6Aは、同レンジフードの風量制御部における処理を説明するための加熱調理器の上面を示す図である。 図6Bは、同レンジフードの風量制御部における処理を説明するための加熱調理器の加熱部が加熱されていない状態を示す図である。 図6Cは、同レンジフードの風量制御部における処理を説明するための加熱調理器の加熱部が加熱され調理物が所定の温度に上昇している状態を示す図である。 図7は、同レンジフードの風量制御部のフローチャートである。 図8は、同レンジフードの風量制御部の異なるフローチャートである。 図9は、同レンジフードの異なる設置状態を示す要部側面断面図である。 図10は、同レンジフードによる検知範囲を示す図である。
 以下、本発明の実施の形態について図面を参照しながら説明する。
 (実施の形態)
 図1は本発明の実施の形態のレンジフードの設置状態を示す正面図、図2は同レンジフードの設置状態を示す要部の側面を示す図である。
 図1に示すようにレンジフード10は、加熱調理器20の上方に設置される。また図2に示すようにレンジフード10は、風量の変更可能な送風機11を内部に備えるとともに、下面に吸込口12を備えたフード本体13を有している。フード本体13は、吸込口12よりも手前側にフード前部13aを形成している。
 図3は、図2の要部拡大断面図である。図3に示すようにフード前部13aには、操作スイッチケース14が設けられている。操作スイッチケース14の前面には、操作スイッチ14aが設けられている。操作スイッチケース14内には赤外線式温度センサーユニット30と、信号受信部15とが配置されている。
 図4は、図3のX方向から見た要部下面図である。図4に示すように赤外線式温度センサーユニット30の下面にはセンサカバー30aが、信号受信部15の下面には信号受信カバー15aが設けられている。
 図5は、本発明の実施の形態のレンジフードを機能実現手段により表したブロック図である。図5に示すように赤外線式温度センサーユニット30は、赤外線センサー31と温度センサー32とを備えている。赤外線センサー31は、図2に示す加熱調理器20の上面20aにおける調理物温度Tと調理物周囲温度Tsとの平均温度Tpを検出する。また温度センサー32は、図2に示す加熱調理器20の周囲温度Thを検出する。そしてレンジフード10は、加熱調理器20における調理物温度Tによって送風機11の風量を変更する。
 また図5に示すようにレンジフード10は、加熱調理器20からの調理器信号23aを受信する信号受信部15と、送風機11の風量を変更する風量制御部16とを備えている。さらにレンジフード10は、入力・設定部17と、記憶部18とを備えている。入力・設定部17にはレンジフード10の設置時、加熱調理器20の種類、例えば電磁式加熱調理器かガス式加熱調理器かと、図2に示す赤外線センサー31の加熱調理器20からの設置高さ31aとが入力される。入力・設定部17に入力又は設定された加熱調理器20の種類、および設置高さ31aに関するデータは、記憶部18に記憶される。また記憶部18には、調理物温度Tと判断するための調理物面積Saがあらかじめ記憶されている。
 また図5に示すように加熱調理器20は、加熱部21と、加熱部21の火力を調整する火力調整部22とを備えている。さらに加熱調理器20は、信号送信部23および記憶部24を備えている場合もある。火力調整部22からの火力信号、および記憶部24にあらかじめ記憶されている加熱調理器20の種類の信号が、信号送信部23から送信される。ここで加熱調理器20の種類とは、例えば電磁式加熱調理器かガス式加熱調理器かである。信号送信部23から送信される調理器信号23aは、信号受信部15にて受信される。
 なおレンジフード10が、信号送信部23および記憶部24を備えている場合、入力・設定部17への加熱調理器20の種類に関する入力は必要ない。
 図6Aは本発明の実施の形態のレンジフードの風量制御部における処理を説明するための加熱調理器の上面を示す図である。加熱調理器20は、4つの加熱部21a、21b、21c、21dを備え、加熱部21aに調理物(なべ)25が載置されている。図6Bは本発明の実施の形態のレンジフードの風量制御部における処理を説明するための加熱調理器の加熱部が加熱されていない状態を示す図、図6Cは同レンジフードの風量制御部における処理を説明するための加熱調理器の加熱部が加熱され調理物が所定の温度に上昇している状態を示す図である。図6B、図6Cでは、赤外線センサー31の検知範囲Aを示している。
 検知範囲Aは、調理物25だけでなく調理物25以外も検知範囲に含んでいる。従って赤外線センサー31は、調理物25を対象とする調理物温度Tと、調理物25以外を対象とする調理物周囲温度Tsとの平均温度Tpを検出する。また温度センサー32は、加熱調理器20の周囲温度Thを検出する。
 このように加熱調理器20上に一定の大きさの調理物25があり、平均温度Tpが温度センサー32にて検出する周囲温度Thと等しい(図6B)と仮定する。このことにより、周囲温度Thと加熱調理器20の上面20aの平均温度Tpとから調理物温度Tが算出される。
 図7は、本発明の実施の形態のレンジフードの風量制御部のフローチャートである。図5および図7に示すようにステップ1(S1)では、調理物25の面積Saがあらかじめ設定され、記憶部18に記憶される。ステップ1は、レンジフード10の生産段階又は初期設定にて実行される。
 ステップ2(S2)は、レンジフード10の設置時に実行される。加熱調理器20から赤外線センサー31までの高さである設置高さ31aが、入力・設定部17から入力される。設置高さ31aによって、検知範囲Aの広さが変わるためである。設置高さ31aによって、赤外線センサー31の検知範囲面積Shが決定される(ステップ3(S3))。なお、設置高さ31aの入力時に、あらかじめ関連づけされた赤外線センサー31の検知範囲面積Shが、記憶部18に記憶されることが好ましい。
 ステップ4(S4)以降は、レンジフード10の使用時に実行される。レンジフード10の使用時には、赤外線センサー31により調理物温度Tと調理物周囲温度Tsとの平均温度Tpが検出される(ステップ4)。そして温度センサー32により加熱調理器20の周囲温度Thが検出される(ステップ5(S5))。
 平均温度Tpと周囲温度Thとが検出されると、調理物25の面積Sa(S1)、検知範囲面積Sh(S3)とともに、風量制御部16において調理物温度Tが算出される(ステップ6)。調理物温度Tは、例えば平均温度Tpと周囲温度Thとの差と、検知範囲面積Shに対する調理物25の面積Saとの比率によって算出される。
 ステップ7(S7)における加熱調理器20の種類の判別は、ステップ2におけるレンジフード10の設置時に行われる場合と、レンジフード10の使用時に行われる場合とがある。加熱調理器20が信号送信部23を備えていない場合、ステップ2におけるレンジフード10の設置時に加熱調理器20の種類が入力・設定部17から入力され、記憶部18に記憶される。
 また加熱調理器20が信号送信部23を備えている場合、レンジフード10の使用時に、ガス式加熱調理器と電磁式加熱調理器とでは異なる調理器信号23aが発信される。レンジフード10は、受信した調理器信号23aの種類によって加熱調理器20の種類がガス式加熱調理器か、電磁式加熱調理器かを判別する。このように調理器信号23aによって、加熱調理器20の種類が判別される。そのため、加熱調理器20の種類によるレンジフード10の設定が不要となる。
 そしてステップ8(S8)において、加熱調理器20が電磁式加熱調理器かガス式加熱調理器かによって、調理物温度Tと送風機11の風量との関係が、例えば風量ノッチ変更のしきい値を変えることにより変更される。具体的には電磁式加熱調理器では、調理材料となべの温度とが主熱源になる。ガス式加熱調理器では、調理材料となべと炎とが主熱源になる。そのため、電磁式加熱調理器に対してガス式加熱調理器の風量ノッチ変更のしきい値が高くされることにより、同じ調理内容に対して同じ風量制御が可能となる。
 また、加熱調理器20からの調理器信号23aには、加熱調理器20の火力が判別される火力信号22aが含まれている。ステップ8(S8)において加熱調理器20から送信される火力信号22aが受信される。ステップ9(S9)では、火力信号22aによって調理物温度Tと送風機11の風量との関係が、例えば風量ノッチ変更のしきい値が変えられることにより変更される。
 そしてステップ10(S10)において、調理物温度T(S6)と、調理物温度Tと送風機11の風量との関係(S9)とによって送風機11の風量が風量制御部16において決定される。そして、決定された風量により送風機11が動作される。
 図5に示すように本発明の実施の形態のレンジフード10は、赤外線センサー31と、温度センサー32と、信号受信部15と、風量制御部16とを備える。図2に示すように赤外線センサー31は、加熱調理器20の上面20aにおける調理物温度Tと調理物周囲温度Tsとの平均温度Tpを検出する。温度センサー32は、加熱調理器20の周囲温度Thを検出する。信号受信部15は、加熱調理器20からの調理器信号23aを受信する。風量制御部16は、送風機11の風量を制御する。
 風量制御部16では、温度センサー32により検出される周囲温度Thを調理物周囲温度Tsとし、赤外線センサー31により検出される平均温度Tpから調理物温度Tを算出する。そして算出した調理物温度Tと、信号受信部15において受信する調理器信号23aとから送風機11の風量が決定される。加熱調理器20上に一定の大きさの調理物25があり、調理物周囲温度Tsが温度センサー32により検出する加熱調理器20の周囲温度Thと等しいと仮定する。このことにより、周囲温度Thと加熱調理器20の上面20aの平均温度Tpとから調理物温度Tが算出される。算出された調理物温度Tと、加熱調理器20からの調理器信号23aとに応じ、風量が制御される。従って、検知開始時の温度状況、および加熱状況に影響を受けずに風量が制御される。
 また電磁式加熱調理器は、調理材料となべの温度とが主熱源となる。ガス式加熱調理器は、調理材料となべと炎とが主熱源となる。そのため、電磁式加熱調理器とガス式加熱調理器とが同様の計算式により風量計算が行われれば、同じ調理内容でも風量が変わってしまう。しかし本発明の実施の形態のレンジフード10では、加熱調理器20が電磁式加熱調理器かガス式加熱調理器かによって、調理物温度Tと送風機11の風量との関係を変更する。そのため同じ調理内容に対し、加熱調理器20が電磁式加熱調理器であってもガス式加熱調理器であっても同じ風量制御が可能となる。
 また本発明の実施の形態では、ガス式加熱調理器と電磁式加熱調理器とは異なる調理器信号23aを発信する。レンジフード10は、受信した調理器信号23aの種類によって加熱調理器20の種類がガス式加熱調理器か、電磁式加熱調理器かを判別する。そのため、加熱調理器20の種類に応じ、レンジフード10の設定が行われる必要がない。
 また本発明の実施の形態では、加熱調理器20から送信される火力信号22aをも加えて風量が制御されるので、加熱状況の影響を受けずに風量が制御される。
 また本発明の実施の形態では、赤外線センサー31と温度センサー32とから赤外線式温度センサーユニット30が構成されるため、構造が簡易かつコストも安価となる。
 図8は、本発明の実施の形態のレンジフードの風量制御部の異なるフローチャートである。ステップ11(S11)はステップ1と、ステップ12(S12)はステップ2と、ステップ13(S13)はステップ3と、ステップ14(S14)はステップ4と、ステップ15(S15)はステップ5とそれぞれ同じである。
 ステップ17(S17)は、ステップ7と加熱調理器20が、電磁式加熱調理器かガス式加熱調理器かによって補正値αを決定してステップ16(S16)において算出される調理物温度Tを変更する点を除き、他の点は同じである。
 また、加熱調理器20からの調理器信号23aには、加熱調理器20の火力が判別される火力信号22aが含まれている。ステップ19(S19)において加熱調理器20から送信される火力信号22aを受信し、火力信号22aによる補正値βを決定してステップ16において算出される調理物温度Tを変更する。
 そしてステップ20(S20)において、調理物温度T(S16)によって送風機11の風量を風量制御部16が決定する。決定された風量により、送風機11が動作される。
 図8のフローチャートにおいても加熱調理器20が、電磁式加熱調理器かガス式加熱調理器かによって、算出される調理物温度Tを変更する。そのため同じ調理内容に対し、加熱調理器20が電磁式加熱調理器であってもガス式加熱調理器であっても同じ調理内容に対して同じ風量制御が可能となる。
 図9は本発明の実施の形態のレンジフードの異なる設置状態を示す要部の側面を示す図、図10は同レンジフードによる検知範囲を示す図である。図9に示すようにレンジフード10は、複数の赤外線式温度センサーユニット30である第1の赤外線式温度センサーユニット30Bと、第2の赤外線式温度センサーユニット30Cとを備えている。
 図9に示す第1の赤外線式温度センサーユニット30Bは、図10に示す3つの加熱部21a、21b、21cを検知範囲Bとする。また第2の赤外線式温度センサーユニット30Cは、加熱部21dを検知範囲Cとする。第1の赤外線式温度センサーユニット30Bは、なべを調理物25とした平均温度Tpを検出する。第2の赤外線式温度センサーユニット30Cは、グリルを調理物25bとした平均温度Tpを検出する。
 このように本発明の実施の形態のレンジフード10は、第1の赤外線式温度センサーユニット30Bと、第2の赤外線式温度センサーユニット30Cとを備えている。そのため、加熱調理器20の上面20a全体の広い範囲が検知範囲とされる場合であっても検知精度が落ちることがない。また、例えばグリル調理部では検知温度が他の調理部よりも低いが、グリル料理専用のセンサーが第2の赤外線式温度センサーユニット30Cとして設置される。その結果、排気捕集効率のよい部位において調理されている場合と、排気捕集効率の悪い部位において調理されている場合とにより風量が変更され、より効率的な風量制御が可能となる。
 また他の実施の形態として、赤外線式温度センサーユニット30が複数ユニット備えられる代わりに、赤外線センサー31として複眼式センサーが用いられてもよい。複眼式センサーによって、グリル料理が特定される、または加熱調理されている場所が特定される。その結果、排気捕集効率のよい部位において調理されている場合と、排気捕集効率の悪い部位において調理されている場合とにより風量が変更され、より効率的な風量制御が可能となる。従って、より正確な温度検知が可能となり、複数の赤外線式温度センサーユニット30が設置される必要がない。
 また上記の実施の形態では、赤外線センサー31と温度センサー32とを備えた赤外線式温度センサーユニット30により説明した。温度センサー32が、フード本体13から離れた場所において、加熱調理器20が設置される室内温度を検出してもよい。上記の実施の形態では、加熱調理器20の周囲温度Thが室温より上昇する可能性があるが、室内温度が検出されることにより調理物温度Tが正確に算出される。
 また本発明の実施の形態のレンジフード10は、調理物温度Tの算出に、赤外線センサー31の加熱調理器20からの高さである設置高さ31aが反映される。そのため、設置高さ31aが変わっても算出される調理物温度Tは変わらない。
 本発明は、加熱調理器での調理物温度によって送風機の風量が変更されるレンジフードに適している。
10  レンジフード
11  送風機
12  吸込口
13  フード本体
13a  フード前部
14  操作スイッチケース
14a  操作スイッチ
15  信号受信部
15a  信号受信カバー
16  風量制御部
17  入力・設定部
18  記憶部
20  加熱調理器
20a  上面
21,21a,21b,21c,21d  加熱部
22  火力調整部
22a  火力信号
23  信号送信部
23a  調理器信号
24  記憶部
25,25b  調理物
30,30B,30C  赤外線式温度センサーユニット
30a センサカバー
31  赤外線センサー
31a  設置高さ
32  温度センサー
T  調理物温度
Ts  調理物周囲温度
Th  周囲温度
Tp  平均温度

Claims (10)

  1. 風量を変更可能な送風機を備え、加熱調理器における調理物温度によって前記送風機の風量を変更するレンジフードであって、
    前記加熱調理器の上面における前記調理物温度と調理物周囲温度との平均温度を検出する赤外線センサーと、
    前記加熱調理器の周囲温度を検出する温度センサーと、
    前記加熱調理器からの調理器信号を受信する信号受信部と、
    前記送風機の風量を変更する風量制御部とを備え、
    前記風量制御部では前記周囲温度を前記調理物周囲温度として前記平均温度から前記調理物温度を算出し、前記調理物温度と前記調理器信号とから前記送風機の風量を決定することを特徴とするレンジフード。
  2. 前記加熱調理器が電磁式加熱調理器かガス式加熱調理器かによって、前記調理物温度と前記送風機の風量との関係が変更されることを特徴とする請求項1に記載のレンジフード。
  3. 前記加熱調理器が、電磁式加熱調理器かガス式加熱調理器かによって、算出される前記調理物温度を変更することを特徴とする請求項1に記載のレンジフード。
  4. 前記調理器信号によって前記加熱調理器の種類が判別されることを特徴とする請求項1に記載のレンジフード。
  5. 前記調理器信号に前記加熱調理器の火力が判別される火力信号が含まれることを特徴とする請求項1に記載のレンジフード。
  6. 前記温度センサーが前記加熱調理器が設置される室内温度を検出することを特徴とする請求項1に記載のレンジフード。
  7. 前記赤外線センサーと前記温度センサーとから赤外線式温度センサーユニットが構成されていることを特徴とする請求項1に記載のレンジフード。
  8. 前記赤外線式温度センサーユニットが複数備えられていることを特徴とする請求項7に記載のレンジフード。
  9. 前記赤外線センサーとして複眼式センサーが用いられることを特徴とする請求項1に記載のレンジフード。
  10. 前記調理物温度の算出には、前記赤外線センサーの前記加熱調理器からの高さである設置高さが反映されることを特徴とする請求項1に記載のレンジフード。
PCT/JP2012/001192 2011-02-25 2012-02-22 レンジフード WO2012114736A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201280006420.XA CN103328897B (zh) 2011-02-25 2012-02-22 抽油烟机
US13/992,008 US9581338B2 (en) 2011-02-25 2012-02-22 Extractor hood

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-039789 2011-02-25
JP2011039789A JP5899393B2 (ja) 2011-02-25 2011-02-25 レンジフード

Publications (1)

Publication Number Publication Date
WO2012114736A1 true WO2012114736A1 (ja) 2012-08-30

Family

ID=46720528

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/001192 WO2012114736A1 (ja) 2011-02-25 2012-02-22 レンジフード

Country Status (5)

Country Link
US (1) US9581338B2 (ja)
JP (1) JP5899393B2 (ja)
CN (1) CN103328897B (ja)
MY (1) MY166130A (ja)
WO (1) WO2012114736A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111412505A (zh) * 2020-03-31 2020-07-14 佛山市顺德区美的洗涤电器制造有限公司 控制方法、控制装置、吸油烟机和计算机可读存储介质

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090061752A1 (en) 2007-08-28 2009-03-05 Current Energy Controls, Lp Autonomous Ventilation System
CA2903307C (en) 2013-03-15 2019-12-03 Oy Halton Group Ltd. Water spray fume cleansing with demand-based operation
CN104896542B (zh) * 2014-03-04 2017-07-28 珠海格力电器股份有限公司 抽油烟机及其控制方法
KR102384504B1 (ko) 2015-10-30 2022-04-12 삼성전자주식회사 조리 기기, 조리 기기 제어 시스템 및 조리 기기의 제어 방법
CN105352103A (zh) * 2015-11-18 2016-02-24 无锡市凯源家庭用品有限公司 餐桌旁的味道吸除器
CN105333477B (zh) * 2015-11-18 2018-05-01 广东美的厨房电器制造有限公司 烟灶联动控制系统和方法
CN105352100A (zh) * 2015-11-18 2016-02-24 无锡市凯源家庭用品有限公司 智能餐厅味道吸除器
DE102016101048B3 (de) * 2016-01-21 2017-03-09 Schott Ag Glaskeramik-Kochmulde mit einem Infrarot-Sensor
CN106152211B (zh) * 2016-03-29 2019-02-15 宁波方太厨具有限公司 一种实时油烟浓度监测系统及应用有该系统的油烟机
CN107296507A (zh) * 2016-04-15 2017-10-27 松下知识产权经营株式会社 烹调辅助方法以及烹调辅助系统
KR102462768B1 (ko) * 2016-06-03 2022-11-02 엘지전자 주식회사 후드의 동작 방법, 그리고 이러한 후드를 포함하는 조리기기 시스템의 동작 방법
CN106094662A (zh) * 2016-08-22 2016-11-09 四川华索自动化信息工程有限公司 一种基于物联网技术的烟道温度监控系统
IT201600092209A1 (it) * 2016-09-13 2018-03-13 P G A Srl Sistema per automatizzare l'accensione, la regolazione e/o lo spegnimento di uno o piu' accessori per piani cottura o simili
JP2019215091A (ja) * 2016-10-12 2019-12-19 シャープ株式会社 換気ファン付き電子レンジおよび調理システム
USD834047S1 (en) * 2016-11-18 2018-11-20 Samsung Electronics Co., Ltd. Display screen or portion thereof with animated graphical user interface
CN108253483A (zh) * 2016-12-29 2018-07-06 宁波方太厨具有限公司 一种吸油烟机及该吸油烟机的自动控制方法
CN106871201A (zh) * 2017-03-23 2017-06-20 广东美的厨房电器制造有限公司 吸油烟机及其的控制方法和装置
US11666160B2 (en) 2017-08-24 2023-06-06 Unified Brands, Inc. Method for temperature monitoring and regulation and systems therefor
US11191370B2 (en) 2017-08-24 2021-12-07 Unified Brands, Inc. Temperature monitoring and control system
CN107741041B (zh) * 2017-10-19 2019-07-23 杭州老板电器股份有限公司 一种风量自调整油烟机的控制方法及风量自调整油烟机
CN109915866A (zh) * 2017-12-12 2019-06-21 众智光电科技股份有限公司 抽油烟机
CN107860045B (zh) * 2017-12-24 2019-12-27 孙铭禧 抽油烟机及其控制方法
FI127878B (fi) 2018-01-09 2019-04-30 Safera Oy Liesivahti, joka hyödyntää laajaa näkökenttää
JP7411197B2 (ja) * 2018-07-04 2024-01-11 富士工業株式会社 レンジフード
CN109323308A (zh) * 2018-07-13 2019-02-12 浙江绍兴苏泊尔生活电器有限公司 抽油烟机及其控制方法
US10619863B2 (en) 2018-08-03 2020-04-14 Haier Us Appliance Solutions, Inc. Cooking engagement system equipped with thermistor
US10627118B2 (en) 2018-08-03 2020-04-21 Haier Us Appliance Solutions, Inc. Cooking engagement system equipped with humidity sensor
US10845246B2 (en) * 2018-08-03 2020-11-24 Haier Us Appliance Solutions, Inc. Cooking engagement system equipped with infrared sensor
JP7121985B2 (ja) * 2018-08-06 2022-08-19 富士工業株式会社 レンジフード
JP7112079B2 (ja) * 2018-09-12 2022-08-03 富士工業株式会社 レンジフードの制御方法
PL3867575T3 (pl) * 2018-10-15 2023-10-09 Arçelik Anonim Sirketi Okap wyciągowy do wykrywania typu urządzenia do gotowania
FI128730B (fi) * 2018-10-30 2020-11-13 Safera Oy Menetelmä ja järjestely liesityypin tunnistamiseksi
CN109654563B (zh) * 2018-12-29 2020-03-17 佛山市云米电器科技有限公司 一种具有多种检测功能协同作用的烹饪系统
JP7365681B2 (ja) * 2019-02-14 2023-10-20 富士工業株式会社 レンジフード
CN111561718B (zh) * 2019-02-14 2024-04-09 富士工业株式会社 抽油烟机
JP7425454B2 (ja) * 2019-04-17 2024-01-31 富士工業株式会社 換気システム
CN111322648B (zh) * 2020-02-27 2022-03-18 宁波方太厨具有限公司 一种烹饪装置的控制方法
CN111412507B (zh) * 2020-03-31 2022-06-10 佛山市顺德区美的洗涤电器制造有限公司 控制方法、控制装置、吸油烟机和计算机可读存储介质
CN112212376B (zh) * 2020-09-18 2023-05-09 华帝股份有限公司 一种中央烟道系统和风量控制方法
CN114811683B (zh) * 2022-04-08 2023-06-20 宁波方太厨具有限公司 一种烹饪装置的控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09280619A (ja) * 1996-04-09 1997-10-31 Fuji Kogyo Kk レンジフードの自動運転制御方法
JPH11281106A (ja) * 1998-03-26 1999-10-15 Matsushita Seiko Co Ltd 調理器連動形レンジフード
JP2003083550A (ja) * 2001-09-06 2003-03-19 Toshiba Corp 加熱調理システム、加熱調理器および換気ファン装置
JP2009121751A (ja) * 2007-11-15 2009-06-04 Panasonic Corp レンジフード
JP2009144964A (ja) * 2007-12-13 2009-07-02 Panasonic Corp レンジフード
WO2010065793A1 (en) * 2008-12-03 2010-06-10 Oy Halton Group Ltd. Exhaust flow control system and method

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3690245A (en) * 1970-09-17 1972-09-12 Panacon Corp Range hood unit with fire safeguard fan control system
JPS58216921A (ja) * 1982-06-11 1983-12-16 Toshiba Corp 調理器の温度検知装置
US4903685A (en) * 1989-01-24 1990-02-27 Melink Stephen K Variable exhaust controller for commercial kitchens
JP2677128B2 (ja) * 1992-09-17 1997-11-17 松下電器産業株式会社 熱画像検出装置
JP3350721B2 (ja) 1994-10-07 2002-11-25 シャープ株式会社 着衣量測定装置および着衣量計測方法
KR960041890A (ko) * 1995-05-16 1996-12-19 구자홍 자동 조리장치
JPH08338765A (ja) * 1995-06-14 1996-12-24 Mitsubishi Heavy Ind Ltd 搬送装置の局部過熱検知装置
US7495220B2 (en) * 1995-10-24 2009-02-24 Bae Systems Information And Electronics Systems Integration Inc. Uncooled infrared sensor
US6515285B1 (en) * 1995-10-24 2003-02-04 Lockheed-Martin Ir Imaging Systems, Inc. Method and apparatus for compensating a radiation sensor for ambient temperature variations
US5614716A (en) * 1996-04-26 1997-03-25 Infratemp, Inc. Alternating current method and apparatus for ambient temperature compensation for modulated energy sensors
GB2323929B (en) * 1996-06-11 1999-06-09 Lg Electronics Inc Apparatus and method for measuring food temperature in microwave oven
US6132084A (en) * 1998-11-30 2000-10-17 General Electric Company Infrared non-contact temperature measurement for household appliances
DE19907149A1 (de) * 1999-02-19 2000-08-24 Bsh Bosch Siemens Hausgeraete Dunstabzugsvorrichtung zum bestimmungsgemäßen Einsatz oberhalb einer Kochstelle
KR100366020B1 (ko) * 1999-07-12 2002-12-26 삼성전자 주식회사 전자렌지의 해동 방법
US6169486B1 (en) * 1999-07-19 2001-01-02 General Electric Company Monitoring and control system for monitoring the temperature of a glass ceramic cooktop
DE19940123A1 (de) * 1999-08-24 2001-03-01 Bsh Bosch Siemens Hausgeraete Steuer- oder Regeleinrichtung eines Kochherdes
JP3615093B2 (ja) * 1999-08-25 2005-01-26 株式会社東芝 加熱調理器
WO2001084118A2 (en) * 2000-05-01 2001-11-08 Bae Systems Information And Electronic Systems Integration Inc. Methods and apparatus for compensating a radiation sensor for temperature variations of the sensor
DE20017525U1 (de) * 2000-10-12 2001-01-11 Taiwan Sakura Corp., Shen Kang, Taichung Selbststeuernder Schaltkreis eines Rauchabzuges zum Kochen
ATE274732T1 (de) * 2001-11-05 2004-09-15 Siemens Building Tech Ag Passiv-infrarotmelder
US7030378B2 (en) * 2003-08-05 2006-04-18 Bae Systems Information And Electronic Systems Integration, Inc. Real-time radiation sensor calibration
US6920874B1 (en) * 2004-03-01 2005-07-26 Robert Paul Siegel Intelligent ventilating safety range hood
US7279659B2 (en) * 2004-09-01 2007-10-09 Western Industries, Inc. Non-food warmer appliance
US7699051B2 (en) * 2005-06-08 2010-04-20 Westen Industries, Inc. Range hood
JP2009092338A (ja) * 2007-10-11 2009-04-30 Panasonic Corp レンジフードファン
CN101285601A (zh) * 2008-02-21 2008-10-15 胡述斌 集烟罩可调式变频智能吸油烟机
US20120111852A1 (en) * 2010-11-08 2012-05-10 General Electric Company Method and apparatus for temperature monitoring of a cook top

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09280619A (ja) * 1996-04-09 1997-10-31 Fuji Kogyo Kk レンジフードの自動運転制御方法
JPH11281106A (ja) * 1998-03-26 1999-10-15 Matsushita Seiko Co Ltd 調理器連動形レンジフード
JP2003083550A (ja) * 2001-09-06 2003-03-19 Toshiba Corp 加熱調理システム、加熱調理器および換気ファン装置
JP2009121751A (ja) * 2007-11-15 2009-06-04 Panasonic Corp レンジフード
JP2009144964A (ja) * 2007-12-13 2009-07-02 Panasonic Corp レンジフード
WO2010065793A1 (en) * 2008-12-03 2010-06-10 Oy Halton Group Ltd. Exhaust flow control system and method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111412505A (zh) * 2020-03-31 2020-07-14 佛山市顺德区美的洗涤电器制造有限公司 控制方法、控制装置、吸油烟机和计算机可读存储介质
CN111412505B (zh) * 2020-03-31 2022-04-08 佛山市顺德区美的洗涤电器制造有限公司 控制方法、控制装置、吸油烟机和计算机可读存储介质

Also Published As

Publication number Publication date
JP2012177498A (ja) 2012-09-13
US9581338B2 (en) 2017-02-28
MY166130A (en) 2018-05-24
JP5899393B2 (ja) 2016-04-06
CN103328897B (zh) 2016-11-09
CN103328897A (zh) 2013-09-25
US20130255661A1 (en) 2013-10-03

Similar Documents

Publication Publication Date Title
WO2012114736A1 (ja) レンジフード
JP4765647B2 (ja) レンジフードファン
US20140234496A1 (en) System and methods of improving the performance, safety and energy efficiency of a cooking appliance
JP2009092338A (ja) レンジフードファン
JP2014145518A (ja) レンジフード
JP5828121B2 (ja) レンジフード
JP7112079B2 (ja) レンジフードの制御方法
CN106123055A (zh) 用于加热器具的控制设备、方法及加热器具
JP5919459B2 (ja) レンジフード
EP3867575B1 (en) An exhaust hood for detecting the cooking device type
WO2007050136A3 (en) Conveyor oven apparatus and method
JP2008215741A (ja) レンジフード
JP6074691B2 (ja) レンジフード
JP5887481B2 (ja) レンジフード
KR101780217B1 (ko) 전기 쿡탑의 환기 시스템
KR20170127725A (ko) 가스레인지 연동형 자동 환기 시스템 및 그 제어방법
JP7329842B2 (ja) コンロシステム
JP2016156574A (ja) 加熱調理機器制御システム
JP6967486B2 (ja) 換気システム
KR101209599B1 (ko) 오븐의 조리물 량에 따른 온도제어방법
JP2002295833A (ja) 換気扇連動コンロ
JP2002061908A (ja) 換気風量自動制御システム
JP2013124840A (ja) レンジフード
JP2008228960A (ja) 誘導加熱調理器
AU2021101582A4 (en) Iot based gas leakage prevention system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12749583

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13992008

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12749583

Country of ref document: EP

Kind code of ref document: A1