WO2012113368A2 - Hydraulische einrichtung zur betätigung einer kupplung - Google Patents

Hydraulische einrichtung zur betätigung einer kupplung Download PDF

Info

Publication number
WO2012113368A2
WO2012113368A2 PCT/DE2012/000129 DE2012000129W WO2012113368A2 WO 2012113368 A2 WO2012113368 A2 WO 2012113368A2 DE 2012000129 W DE2012000129 W DE 2012000129W WO 2012113368 A2 WO2012113368 A2 WO 2012113368A2
Authority
WO
WIPO (PCT)
Prior art keywords
pump
working cylinder
hydraulic
hydraulic device
clutch
Prior art date
Application number
PCT/DE2012/000129
Other languages
English (en)
French (fr)
Other versions
WO2012113368A3 (de
Inventor
Marco Grethel
Andreas Englisch
Eric MÜLLER
Original Assignee
Schaeffler Technologies AG & Co. KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=46026576&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2012113368(A2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Schaeffler Technologies AG & Co. KG filed Critical Schaeffler Technologies AG & Co. KG
Priority to KR1020197014138A priority Critical patent/KR102198076B1/ko
Priority to KR1020137021944A priority patent/KR20140010046A/ko
Priority to EP12718564.3A priority patent/EP2678570B1/de
Priority to CN201280010295.XA priority patent/CN103403360B/zh
Priority to DE112012000961.4T priority patent/DE112012000961B4/de
Publication of WO2012113368A2 publication Critical patent/WO2012113368A2/de
Publication of WO2012113368A3 publication Critical patent/WO2012113368A3/de
Priority to US13/974,221 priority patent/US20130333366A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D25/00Fluid-actuated clutches
    • F16D25/12Details not specific to one of the before-mentioned types
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D47/00Systems of clutches, or clutches and couplings, comprising devices of types grouped under at least two of the preceding guide headings
    • F16D47/06Systems of clutches, or clutches and couplings, comprising devices of types grouped under at least two of the preceding guide headings of which at least one is a clutch with a fluid or a semifluid as power-transmitting means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/18Combined units comprising both motor and pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B7/00Systems in which the movement produced is definitely related to the output of a volumetric pump; Telemotors
    • F15B7/005With rotary or crank input
    • F15B7/006Rotary pump input
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D48/00External control of clutches
    • F16D48/02Control by fluid pressure
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • H02K11/38Control circuits or drive circuits associated with geared commutator motors of the worm-and-wheel type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/10Casings or enclosures characterised by the shape, form or construction thereof with arrangements for protection from ingress, e.g. water or fingers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/06Means for converting reciprocating motion into rotary motion or vice versa
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/2053Type of pump
    • F15B2211/20546Type of pump variable capacity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/25Pressure control functions
    • F15B2211/251High pressure control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6306Electronic controllers using input signals representing a pressure
    • F15B2211/6313Electronic controllers using input signals representing a pressure the pressure being a load pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6336Electronic controllers using input signals representing a state of the output member, e.g. position, speed or acceleration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D48/00External control of clutches
    • F16D48/02Control by fluid pressure
    • F16D2048/0227Source of pressure producing the clutch engagement or disengagement action within a circuit; Means for initiating command action in power assisted devices
    • F16D2048/0233Source of pressure producing the clutch engagement or disengagement action within a circuit; Means for initiating command action in power assisted devices by rotary pump actuation
    • F16D2048/0245Electrically driven rotary pumps
    • F16D2048/0248Reversible rotary pumps, i.e. pumps that can be rotated in the two directions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D48/00External control of clutches
    • F16D48/02Control by fluid pressure
    • F16D2048/0257Hydraulic circuit layouts, i.e. details of hydraulic circuit elements or the arrangement thereof
    • F16D2048/0266Actively controlled valves between pressure source and actuation cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/302Signal inputs from the actuator
    • F16D2500/3024Pressure
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K17/00Asynchronous induction motors; Asynchronous induction generators
    • H02K17/02Asynchronous induction motors
    • H02K17/32Structural association of asynchronous induction motors with auxiliary mechanical devices, e.g. with clutches or brakes
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/108Structural association with clutches, brakes, gears, pulleys or mechanical starters with friction clutches

Definitions

  • volumetric flow sources There are basically two types of volumetric flow sources known for such transmission lines. In one case, this is a partial function of a more complex hydraulic control, which can fulfill even more tasks.
  • the volume flows of a mechanically or electrically driven hydraulic pump are split over a valve logic and a partial flow is used for clutch actuation. This solution is expensive if only one or two hydraulic functions are needed.
  • a bypass or bypass choke may be provided between the pump ports to provide a targeted “degradation” in the volumetric efficiency of the pump, thereby increasing the “pressure hold speed” and thus improving the controllability of the pressure.
  • Figure 1 shows the hydraulic diagram of a hydraulic device according to the invention with a single-acting hydraulic cylinder with spring return and with an electrically driven reversing pump, a control valve, a high tank and a pressure sensor;
  • FIG. 3 shows a hydraulic device according to the invention, in which a bypass parallel to
  • control unit 6 In turn, the control unit 6 generates a command that stops the duty cycle of the working cylinder 10 due to the externally supplied signals, it controls the electric motor 3 and the positive displacement pump 4 in the opposite direction of rotation, so that the working cylinder 10 is sucked empty and therefore retracted.
  • the aspirated volume flow is returned to the reservoir 7.
  • the displacement pump 4 may be a pump of any embodiment, provided they can deliver the required volume flow and reach the required pressure level.
  • hydraulic pumps are suitable as displacement pumps 4, which can perform fast speed changes, including fast starts and changes of direction.
  • Pumps for example external gear pumps, in which the displacement chambers are defined or stabilized purely geometrically, are particularly suitable.
  • a pressure measuring sensor 14 may be connected to the control unit 6 via a signal line 15 so that it can stop the pumping process as soon as the pressure level required for a successful working cycle of the working cylinder 10 is reached.
  • a further embodiment of the hydraulic device according to FIG. 4 provides a working cylinder 23 in double-acting design.
  • the displacement pump 4 is controlled by the electric motor 3 so that it fills the working cylinder 23 (left chamber) via the line 24 and this extends.
  • positive displacement pump 4 is reversed or reversed. It then fills via the line 25 the working cylinder 23 (right chamber), whereby this retracts again.
  • the two ports 26 and 27 of the positive displacement pump 4 are connected with the interposition of seat and check valves 28 and 29 with the conduit 11 and the reservoir 7.
  • the positive displacement pump 4 opens either the seat valve 29 during extension of the working cylinder 23 and seat valve 28 when retracting the same.
  • the cohesion of the individual segments of the hydraulic device can be realized in different ways, for example by bolting the assemblies together, by suitable non-detachable connections between the units or as shown in Fig.5 and Fig.6, by standing upright.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Power Engineering (AREA)
  • Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

Die Erfindung betrifft eine hydraulische Einrichtung, insbesondere zur Betätigung einer Kupplung, mit einem nahe der Kupplung angeordneten hydraulischen Arbeitszylinder, der über eine hydraulische Leitung mit einer Volumenstromquelle verbunden ist. Der Volumenstrom dieser Volumenstromquelle ist durch eine Steuereinheit in Abhängigkeit von Signalen der der hydraulischen Einrichtung zugeordneten Sensoren beeinflussbar. Die Volumenstromquelle ist durch eine in einem gemeinsamen Gehäuse angeordnete Kombination aus einem Elektromotor und einer Pumpe gebildet.

Description

Hydraulische Einrichtung zur Betätigung einer Kupplung
Die Erfindung betrifft eine hydraulische Einrichtung zur Betätigung einer Kupplung.
Bekannt sind hydraulische Kraftübertragungsstrecken mit Nehmer- und Geberzylindem. Der hydraulische Nehmerzylinder ist hierbei der Kupplung örtlich nahe zugeordnet. Bei automatisierten Übertragungsstrecken kann der Geberzylinder als eine steuerbare und/oder regelbare Volumenstromquelle ausgeführt sein.
Es sind grundsätzlich zwei Arten von Volumenstromquellen für derartige Kraftübertragungsstrecken bekannt. Dabei handelt es sich in einem Fall um eine Teilfunktion einer komplexeren hydraulischen Steuerung, die noch weitere Aufgaben erfüllen kann. Die Volumenströme einer mechanisch oder elektrisch angetriebenen Hydraulikpumpe werden dabei über eine Ventillogik aufgeteilt und ein Teilstrom wird zur Kupplungsbetätigung verwendet. Diese Lösung ist aufwendig, wenn nur eine oder zwei hydraulische Funktionen benötigt werden.
In einem anderen Fall wird ein sogenannter Hydrastataktor als Volumenstromquelle eingesetzt.
Derartige Lösungen sind beispielsweise in der Druckschrift WO 2011050767 A1 beschrieben. Dabei wird eine Drehbewegung eines elektrischen Antriebs auf eine Gewindespindel übertragen, die mit als Planeten um die Gewindespindel herum angeordneten weiteren Gewindespindeln im Kontakt steht und auf diese Weise eine lineare Bewegung der Planeten erzeugt, die wiederum eine Verbindung mit einem Verdrängerkolben haben und diesen linear hin und her bewegen. Allerdings kann sich die große Übersetzung der Drehbewegung in die Linearbewegung negativ auf das Hystereseverhalten und die Dynamik auswirken.
Die Aufgabe der Erfindung besteht darin, eine hydraulische Einrichtung zur Betätigung einer Kupplung bereitzustellen, die als kompakte Einheit ausführbar ist, ein deutlich verbessertes Ansprechverhalten hat, die sich infahrzeuginteme Steuerungssysteme integrieren lässt, aber auch solitär betrieben werden kann, weitgehend wartungsfrei arbeitet und im Übrigen die bei den Lösungen des Standes der Technik aufgezeigten Nachteile nicht aufweist. Die Aufgabe wird gelöst mit einer hydraulische Einrichtung zur Betätigung einer Kupplung, mit den Merkmalen des kennzeichnenden Teils des Patentanspruches 1 in Verbindung mit den Merkmalen des Oberbegriffes dieses Anspruches,
Demgemäß betrifft die vorliegende Erfindung eine hydraulische Einrichtung, insbesondere zur Betätigung einer Kupplung, mit einem nahe der Kupplung angeordneten hydraulischen Arbeitszylinder, wobei der Arbeitszylinder über eine hydraulische Leitung mit einer Volumenstromquelle verbunden ist. Der Volumenstrom der Volumenstromquelle ist durch eine Steuereinheit in Abhängigkeit von Signalen der der hydraulischen Einrichtung zugeordneten Sensoren beeinflussbar. Die Volumenstromquelle ist durch eine in einem gemeinsamen Gehäuse angeordnete Kombination bzw. Einheit aus einem Elektromotor und einer Pumpe gebildet.
Gemäß der vorliegenden der Erfindung wird der oben beschriebene Hydrostataktor dergestalt weiterentwickelt, dass vorteilhafterweise anstelle eines voluminösen Verdrängerkolbens und eines komplizierten Planetengetriebes eine vergleichsweise einfache Pumpenanordnung verwendet werden kann, deren Drehzahl reversiert werden kann. Eine solche Einrichtung kann gemäß einem Vorteil der vorliegenden Erfindung kleiner als ein Hydrostataktor gebaut werden und lässt sich in vierfacher Weise an Einsatzbedingungen anpassen, wodurch die Freizügigkeit bei der Anordnung bzw. beim Einbau zusätzlich verbessert wird. Die erfinderische Lösung besteht also darin den Verdrängerkolben und das Planetengetriebe des Hydrostataktors durch eine spezielle Pumpenanordnung zu ersetzen.
Die erfindungsgemäße hydraulische Einrichtung kann beispielsweise zur Versorgung und Ansteuerung einfach wirkender Hydraulikzylinder verwendet werden. Eine Kombination aus einem Elektromotor und einer Hydraulikpumpe ist so ausgelegt, dass ein schneller Druckaufbau und bei Bedarf ein schneller Drehrichtungswechsel möglich sind. Elektromotor und Pumpe sind deshalb so ausgelegt, dass sie mit hoher Dynamik auf Änderungen reagieren können. Rotierende Teile sind deshalb zur Verminderung von Trägheiten möglichst klein dimensioniert.
Bei den Hydraulikpumpen ist vorteilhafterweise jede Ausführungsform geeignet, die unmittelbar mit dem Anlauf einen großen Volumenstrom und ein hohes Druckniveau gewährleisten kann. Geeignete Baufomnen hierfür sind Zahnrad-, Flügelrad-, Drehschieber-, Radial- oder Axialkolbenpumpen.
Wird eine Kupplung mit der vorliegenden hydraulischen Einrichtung betätigt, wird die Pumpe durch den Elektromotor angetrieben, so dass das Fluid in Richtung zum Arbeitszylinder {Nehmerzylinder) gefördert wird. Ein Sensorsystem überwacht hierbei den Betätigungszustand der Kupplung, des Kupplungsausrü- ckers oder des Arbeitszylinders. Über Sensorsignale können die Pumpendrehzahl und / oder die Pumpen- laufdauer permanent geregelt werden, um den Zielzustand der Kupplung zu erhalten. Das Sensorsignal kann von einer Wegmessung an der Kupplung oder einer Druckmessung in der hydraulischen Strecke zur Kupplung oder von beiden generiert werden.
Zum Halten der Kupplung in der Zielposition gibt es die folgenden bevorzugten Möglichkeiten. Im einen Fall wird die Drehzahl der Pumpe so weit reduziert, dass sie nur noch ihren eigenen Leckagestrom ausgleicht. Das heißt, die Pumpe hält den Druck, ohne dass weiteres zusätzliches Fluid in die hydraulische Strecke zur Kupplung gefordert wird und die Kupplung eine zusätzliche Betätigung erfährt. Es wird also lediglich der Leckagestrom ausgeglichen. Vorteilhaft ist es hierbei, dass keine weiteren Bauteile zum Halten der Kupplungsposition notwendig sind. Allerdings muss permanent Energie zum Halten der Kupplung aufgebracht werden.
Im anderen Fall ist ein Ventil vorgesehen, das die Hydraulikstrecke zwischen Pumpe und Kupplung verschließt, sobald die Zielposition der Kupplung erreicht ist. Mit besonderem Vorteil wird als Ventil ein Sitzventil (Rückschlagventil) gewählt Die sehr geringe Leckage des Sitzventils ermöglicht es, dass die Pumpe und damit der Elektromotor nicht permanent getrieben werden müssen, um die Kupplung in der Zielposition zu halten. Der Energiebedarf für die Betätigung des Ventils ist dabei geringer als das Betreiben des Elektromotors zum Halten der Kupplung ohne Ventil. Allerdings wird ein zusätzliches Bauteil in der Form eines Elektromagneten zum Betätigen des Ventils benötigt.
Zum Deaktivieren der Kupplung können folgende Strategien eingesetzt werden. Die Pumpe kann aktiv entgegen ihrer Förderrichtung betrieben (reversiert) werden, um die hydraulische Strecke schnell zu entleeren. Bei diesem Vorgang kann es erforderlich sein, dass der Betätigungszustand der Kupplung über eine Sensorik überwacht wird. Nach dem so genannten Kiss-Point der Kupplung wird in der Regel keine große Dynamik bzw. eine geringere Dynamik bezüglich der weiteren Öffnung gefordert. Um ein Leersaugen der hydraulischen Strecke zu verhindern, kann ab dem Kiss-Point oder kurz danach die Pumpendrehzahl auf Null gebracht werden. Die Restentleerung der hydraulischen Strecke kann dann über die Spalte der Pumpe erfolgen.
Bei dynamisch unkritischen Vorgängen ist es vorstellbar, dass die in der Kupplung und der hydraulischen Strecke gespeicherte Energie teilweise zurückgewonnen werden kann. Die Pumpe arbeitet dann als hydraulischer Motor und der Elektromotor als Generator. Wenn das System zusätzlich noch ein Vemegelungsventil aulweist, ist dieses zeitgleich mit oder vor der Deaktivierung der Kupplung zu öffnen. Eine Auslegung des hydraulischen Systems der Einrichtung kann durch den Fachmann auf vielfältige Weise erfolgen. So kann eine Auslegung unter anderem nach den Erfordernissen der anzusteuernden Kupplung, nach äußeren Anforderungen, wie beim Fahrzeugbetrieb, sowie unter Optimierungs- und energetischen Gesichtspunkten erfolgen.
Es ist bei einer vorteilhaften Ausgestaltung der Erfindung auch möglich zwischen der Kupplung und dem Ventil in dem gemeinsamen Gehäuse einen Druckspeicher anzuordnen. Dieser Druckspeicher kann zum Beispiel als Tellerfederspeicher ausgeführt sein. Der Druckspeicher kann je nach seiner Auslegung zwei unterschiedliche Funktionen erfüllen. Einerseits kann er eine Reduzierung des Leistungsbedarfes beim Betätigungsvorgang bewirken und andererseits kann er für eine Volumennachführung beim Halten der Kupplung zum Ausgleich auftretender Leckagen sorgen.
Neben der oben beschriebenen Versorgung eines einfach wirkenden Zylinders kann mittels der Reversierpumpeneinheit, die aus einem Elektromotor mit Elektronik zum Steuern und oder Regeln der Pumpleistung und der Hydraulikpumpe besteht, auch ein doppelt wirkender Zylinder angesteuert werden. Im einfachsten Fall wird mittels der Reversierpumpeneinheit gezielt das Volumen von einer Zylinderkammer in die andere Zylinderkammer gefördert. Wenn die Volumina der beiden Zylinderräume unterschiedlich groß sind, kann ein einfaches Umpumpen des Fluids vom einen in den anderen Zylinderraum nicht erfolgen. In diesem Fall kann eine Anordnung von sogenannten Nachsauge- und Überdruckventilen für einen ausgeglichenen Fluidhaushalt sorgen.
Die erfindungsgemäße hydraulische Einrichtung mit der Kombination aus Elektromotor und Pumpe kann vorteifhafterweise sehr kompakt aufgebaut sein und die folgenden Merkmale aufweisen. Der Rotor und der Stator des Elektromotors können sich mit der Verdrängereinheit der Pumpe ein gemeinsames Gehäuse teilen. Der Rotor des Elektromotors kann vollständig oder teilweise in den Lagerbrillen der Zahnradpumpe gelagert werden. Eine Lagerstelle des Elektromotors bzw. der Pumpe kann auch in das Ventit- oder das Druckspeichergehäuse gelegt werden. Die Ventileinheit und der Tellerfederdruckspeicher können sich ein weiteres Gehäuseteil teilen. Der Tankraum kann zwischen dem Motor- / Pumpengehäuse und dem Ventil- bzw. Druckspeichergehäuse angeordnet sein. Je nach Anwendungstall kann die Ventileinheit ausgetauscht und ggf. auf die Speicherfunktion verzichtet werden. Die systemrelevante Sensorik d.h. die Drehzahl-, Drehwinkel- und /oder Daicksensorik kann direkt in die Steuerelektronik der Elektramo- tor/Pumpenkombination integriert werden. Die besondere Kompaktheit dieser Kombination ermöglicht in vielen Fällen eine örtliche Nähe zum Aktor, so dass auch eine Wegmessung in die Steuerelektronik integ- rierbar ist. Die Spule für den Elektromagneten des Ventils kann ebenfalls direkt in Steuereinheit integriert sein.
Bei einerweiteren Ausführungsfonm der Erfindung kann eine Bypassblende oder eine Bypassdrossel zwischen den Pumpenanschlüssen vorgesehen sein, um eine gezielte„Verschlechterung" des volumetri- schen Wirkungsgrads der Pumpe herbeizuführen. Damit wird die„Druckhaltedrehzahl" erhöht und somit die Regelbarkeit des Druckes verbessert.
Die Erfindung wird nachstehend anhand von Ausführungsbeispielen und Zeichnungen näher erläutert. Dabei zeigen:
Figur 1 das hydraulische Schema einer erfindungsgemäßen hydraulischen Einrichtung mit einem einfach wirkenden Hydraulikzylinder mit Federrückstellung und mit einer elektrisch angetriebenen Reversierpumpe, einem Steuerventil, einem Hochtank und einem Drucksensor;
Figur 2 eine im Vergleich zur Einrichtung der Figur 1 weiter entwickelte erfindungsgemäße
Einrichtung, bei derein zusätzlicher Druckspeicher vorgesehen ist;
Figur 3 eine erfindungsgemäße hydraulische Einrichtung, bei der ein Bypass parallel zur
Reversierpumpe angeordnet ist;
Figur 4 eine erfindungsgemäße hydraulische Einrichtung zur Ansteuerung eines doppelt wirkenden
Arbeitszytinders;
Figur 5 eine perspektivische Darstellung der erfindungsgemäßen hydraulischen Einrichtung mit einem kompakten Einheitsgehäuse für alle Komponenten Einrichtung, zum Teil in Explosionsdarstellung; und
Figur 6 eine Schntttdarstellung des kompakten Einheitsgehäuses der Figur 5 mit allen darin
angeordneten Einzelkomponenten.
Die Grundschaltung der vorliegenden hydraulischen Einrichtung ist in der Figur 1 dargestellt. Innerhalb eines durch eine unterbrochene Umrisslinie schematisch dargestellten gemeinsamen Gehäuses 1 ist eine hydraulische Einrichtung 2 angeordnet. Diese besteht im wesentlichen aus einem Elektromotor 3, der mit einer Verdrängerpumpe 4 kraftschlüssig verbunden ist, einem 2/2-Steuerventil 5, einer elektrischen Steuereinheit 6, einem Vorratsbehälter 7, einer hydraulischen Leitung 8 zwischen der Verdrängerpumpe 4 und dem Eingang des 22-Steuerverrtils 5, einer hydraulischen Leitung 9 zwischen dem Ausgang des 2/2-Steuerventils 5 und einem Arbeitszylinder 10 sowie einer hydraulischen Leitung 11 zwischen der Verdrängerpumpe 4 und dem Vorratsbehälter 7.
Die Steuereinheit 6 ist über einen Anschluss 12 mit einer Steuereinrichtung eines übergeordneten Systems, z. B. mit Sensoren an einem Kupplungspedal und/oder mit weiteren Sensoren, die bestimmte Zustände innerhalb eines Antriebsstranges ermitteln, verbunden. Sie kann daraus oder durch manuell ausgelöste Befehle ein Signal generieren, das den Elektromotor 3 anlaufen lässt. Mit dem Anlaufen des Elektromotors 3 läuft zugleich die Verdrängerpumpe 4 an. Sie saugt Hydraulikflüssigkeit aus dem Vorratsbehälter 7, wobei in der Leitung 8 ein höherer Druck aufgebaut wird. Das 2/2-Steuerventil 5 ist in seiner Ausgangsstellung so geschaltet, dass die Leitung 8 und die Leitung 9 miteinander verbunden sind, sodass der Arbeitszylinder 10 mit einem Druck- Volumenstrom beaufschlagt und die Kolbenstange 13 zur Betätigung einer nicht dargestellten Kupplung ausgefahren wird.
Generiert die Steuereinheit 6 wiederum aufgrund der von außen gelieferten Signale einen Befehl, der den Arbeitszyklus des Arbeitszylinders 10 beendet, steuert sie den Elektromotor 3 und die Verdrängerpumpe 4 in die entgegengesetzte Drehrichtung, sodass der Arbeitszylinder 10 leer gesaugt und daher eingefahren wird. Der abgesaugte Volumenstrom wird in den Vorratsbehälter 7 zurückbefördert.
Bei der oben beschriebenen Arbeitsweise kann auch auf das 2/2-Steuerventil 5 verzichtet werden und die Leitungen 8 und 9 können direkt miteinander verbunden werden.
Die Verdrängerpumpe 4 kann eine Pumpe beliebiger Ausführungsform sein, sofern sie den geforderten Volumenstrom liefern und das geforderte Druckniveau erreichen kann. Insbesondere sind als Verdrängerpumpen 4 Hydraulikpumpen geeignet, die schnelle Drehzahländerungen, inklusive schnelle Anläufe und Drehrichtungswechsel ausführen können. Besonders geeignet sind Pumpen, beispielsweise Außenzahnradpumpen, bei denen die Verdrängungsräume rein geometrisch definiert bzw. stabilisiert sind, geeignet. Ein Druckmesssensor 14 kann über eine Signalleitung 15 mit der Steuereinheit 6 verbunden sein, sodass diese die den Pumpvorgang stoppen kann, sobald das für einen erfolgreichen Arbeitszyklus des Arbeitszylinders 10 erforderliche Druckniveau erreicht ist.
Ebenso kann die Steuereinheit 6 Messsignale des Druckmesssensors 14 auswerten und die
Verdrängerpumpe 4 intermittierend oder auch mit geringerer Drehzahl laufen lassen, um ein aufgrund von Leckagen abfallendes Druckniveau aufrecht zu erhalten.
Eine bevorzugte Ausführungsform der hydraulischen Einrichtung sieht die Anordnung des 2/2- Steuerventils 5 vor, das durch einen Elektromagneten 16 ansteuerbar und durch ein Federelement 17 rückstellbar ist. In seiner dargestellten ersten Stellung, die die Ausgangsstellung bildet, stellt das 2/2- Steuerventil 5 eine Verbindung zwischen der Verdrängerpumpe 4 und dem Arbeitszylinder 10 her. Sobald der Druckmesssensor 14 an die Steuereinheit 6 das Erreichen des geforderten Druckniveaus meldet, kann die Steuereinheit 6 über die elektrische Leitung 18 den Elektromagneten 16 ansteuern und das 2/2-Steuerventil 5 in die zweite Stellung steuern, in der ein Sitzventil 19 des 2/2-Steuerventils 5, ein Rückfließen des Hydraulikmediums verhindert.
Die Verdrängerpumpe 4 muss bei diesem Anwendungsfall also in energiesparender Weise nur bis zum Erreichen des geforderten Druckniveaus betrieben werden und durch das Umschalten des Steuerventils 5 in die zweite Stellung wird der Arbeitszylinder 10 in der ausgefahrenen Stellung gehalten.
Eine übliche Kupplung beinhaltet eine Federanordnung 20, welche den Arbeitszylinder 10 in die Ausgangsstellung zurückstellt, ansonsten kann eine separate Federanordnung 20 zur Rückstellung vorgesehen sein.
Gemäß Figur 2 sieht eine verbesserte Ausführungsform im Bereich der Leitung 9 zusätzlich einen Druckspeicher 21 vor, der beispielsweise als Tellerfederspeicher ausgeführt sein kann. Dieser kann durch eine Volumennachführung bei Erreichen des ausgefahrenen Zustandes des Arbeitszylinders 10 in der zweiten Stellung des 22-Steuerventils 5 dafür sorgen, dass auftretende Leckströme ausgeglichen werden und das geforderte Druckniveau in der Leitung 9 und in dem Arbeitszylinder 10 bestehen bleibt. Außerdem kann eine Integration des Leistungsbedarfes beim Betätigungsvorgang erfüllt werden.
Eine weitere bevorzugte Ausführungsform der hydraulischen Einrichtung umfasst gemäß Figur 3 eine parallel zur Verdrängerpumpe 4 angeordnete Bypassblende bzw. Drosseleinrichtung 22. Der über die Drosseleinrichtuna 22 auftretende Verluststram mindert zwar bewusst den volumetrischen Wirkunasarad der Verdrängerpumpe 4. Dies hat zur Folge, dass die erforderliche Drehzahl des Elektromotors 3 zur Einregelung eines definierten Drucks im Arbeitszylinder 10 höher wird, was aber bezüglich der Drehzahlsteuerung / Drehzahlregelung bei kleinen erforderlichen Förderströmen deutliche Vorteile darstellt.
Eine weitere Ausführungsform der hydraulischen Einrichtung sieht gemäß Figur 4 einen Arbeitszylinder 23 in doppelt wirkender Ausführung vor. Die Verdrängerpumpe 4 wird dabei durch den Elektromotor 3 so angesteuert, dass sie über die Leitung 24 den Arbeitszylinder 23 (linke Kammer) füllt und dieser ausfährt. Am Ende des Arbeitszyklus wird Verdrängerpumpe 4 umgesteuert bzw. reversiert. Sie füllt dann über die Leitung 25 den Arbeitszylinder 23 (rechte Kammer), wodurch dieser wieder einfährt. Die beiden Anschlüsse 26 und 27 der Verdrängerpumpe 4 sind unter Zwischenschaltung von Sitz- bzw. Rückschlagventilen 28 und 29 mit der Leitung 11 und dem Vorratsbehälter 7 verbunden. Je nach Drehrichtung der Verdrängerpumpe 4 öffnet entweder das Sitzventil 29 beim Ausfahren des Arbeitszylinders 23 und Sitzventil 28 beim Einfahren desselben. Für den Fall, dass die den Eingängen des Arbeitszylinders 23 zugeordneten Druckmesssensoren 14 oder 30 einen Druckverlust signalisieren, kann die Steuereinheit 6 die Verdrängerpumpe 4 weiter laufen lassen, wobei ein zu viel geförderter Volumenstrom über die Druckbegrenzungsventile 31 und 32 abgeleitet und über die Leitungen 33 bzw. 34 dem Vorratsbehälter 7 zugeführt wird.
Im Zusammenhang mit den Figuren 5 und 6 wird nachfolgend eine derzeit bevorzugte Ausführungsform der Erfindung beschrieben.
Mit einem modular aufgebauten Gehäuse, das ein lokales Steuergerät 35, ein Motor-Pumpen-Gehäuse 40, ein Ventil-Druckspeicher-Gehäuse 46, einen Abschlussdeckel 49 und ein am Ventil-Druckspeicher- Gehäuse 46 angeflanschtes 22-Steuerventil 45 umfasst, wird eine kompakte Baueinheit aufgebaut, die alle Funktionen hinsichtlich Vorratshaltung des hydraulischen Mediums, Erzeugung eines Volumenstromes und Signalverarbeitung in sich vereinigt.
Diese kompakte Baueinheit bedarf bei ihrer Verwendung lediglich noch der Herstellung der
hydraulischen und der elektrischen Anschlüsse sowie der Anschlüsse der außerhalb angeordneten Sensoren. Die Kompaktheit dieser Baueinheit ermöglicht es, sie weitgehend frei von Beschränkungen an Orten innerhalb von Fahrzeugen oder Anlagen anzuordnen. So besteht beispielsweise eine Möglichkeit, die kompakte Baueinheit nahe dem die Kupplung betätigenden hydraulischen Arbeitszylinder (Nehmerzylinder) anzuordnen. lm Motor-Pumpen-Gehäuse 40 sind der Stator 37 und der Rotor 38 des Elektromotors so angeordnet, dass die Welle des Elektromotors das Pumpenrad 41 tragen kann. Beidseitig des Pumpenrades 41 sind die Lagerbrillen 42 angeordnet, wobei die Gesamtanordnung dem Aufbau einer Zahnradpumpe entspricht. Die Lagerbrillen 42 des Pumpenrades 41 bilden auch die Lagerung des Rotors 38 des Elektromotors. Eine der beiden Lagerstellen kann alternativ auch im Ventil-Druckspeicher-Geäuse 46 untergebracht sein. Selbstverständlich kann in Analogie dazu auch die zweite Lagerstelle von der Pumpenbrille ins Motor-Pumpen-Gehäuse 40 verlegt werden.
Das Motor-Pumpen-Gehäuse 40 und der Abschlussdeckel 49 bilden gemeinsam einen Tankraum 43 aus, der das hydraulische Medium aufnimmt. Eine Einfüllöffhung lässt das Befüllen des Tankraums 43 zu. Sie wird mit einer Verschlusskappe 50 abgedeckt.
Im Abschlussdeckel 49 ist ferner der Speicherraum 44 angeordnet, der im Zusammenwirken mit einem Mitteldeckel 48 und einer Tellerfeder 47 ein veränderliches Volumen hat und die Aufgabe eines wie oben erwähnten Druckspeichers übernimmt.
Ein 2/2-Steuerventil 45 ist zwischen dem Abschlussdeckel 49 und dem Motor-Pumpen-Gehäuse 30 angeordnet. Es dient der Steuerung des zum Nehmerzylinder zu führenden Volumenstroms.
Mit dem lokalen Steuergerät 35 ist femer eine Drehzahl-Drehwinkel-Sensorik 39 kombiniert (Figur 6), sodass eine exakte Steuerung der kompakten hydrostatischen Einrichtung zur Kupplungsbetätigung möglich ist.
Der Zusammenhalt der einzelnen Segmente der hydraulischen Einrichtung kann auf verschiedene weise, beispielsweise durch Verschrauben der Baueinheiten untereinander, durch geeignete unlösbare Verbindungen zwischen den Einheiten oderwie in Fig.5 und Fig. 6 dargestellt, durch Stehboizen, realisiert werden.
Die Anwendung der erfindungsgemäßen hydraulischen Einrichtung beschränkt sich nicht nicht nur auf die Betätigung von Kupplungen, wie beispielsweise Kupplungen für Doppelkupplungsgetriebe, Hybridtrennkupplungen, Stufenautomaten und Schaltgetriebe allgemein. Die vorliegenden hydraulischen Einrichtungen können auch für die Zuschaltung von Allradantrieben (AWD), die Betätigung eines Differenzi- algetriebes oder eine Parksperre eingesetzt werden. Hydrostatische Einrichtungen, die mit doppelt wirkenden Arbeitszylindem zusammenarbeiten, können neben Kupplungen auch für Gangsteller, AWD- Zuschattuna und Parksrjerrenschaltunaen verwendet werden. Die Erfindung schafft also vorteilhafterweise Möglichkeiten, eine an das jeweilige Anforderungsbild anzupassende kompakte hydraulische Einrichtung so auszugestalten, dass sie präzise steuerbar ist, energiesparend arbeiten kann und zudem in den in Frage kommenden Einsatzgebieten aufgrund ihrer kompakten Bauweise ohne Probleme verbaut werden kann.
Bezugszeichenliste
Gehäuse
aulische Einrichtung
Elektromotor
Verdrängerpumpe
2/2-Steuerventil
Steuereinheit
Vorratsbehälter
Leitung
Leitung
Arbeitszylinder
Leitung
Anschluss
Kolbenstange
Druckmesssensor
Signalleitung
Elektromagnet
Federelement
Leitung
Sitzventil
Federanordnung
Druckspeicher
Drosseleinrichtung
Arbeitszylinder
Leitung
Leitung
Anschluss
Anschluss
Sitzventil
Sitzventil
Druckmesssensor
Druckbegrenzungsventil
Druckbegrenzungsventil Leitung
Leitung
lokales Steuergerät integrierter Drucksensor Stator
Rotor
Drehzahl-Drehwinkel-Sensorik Motor-Pumpen-Gehäuse Pumpenrad
Lagerbrille
Tankraum
Speicherraum
2/2-Steuerventil
Ventil-Druckspeicher-Gehäuse Tellerfeder
Mitteldeckel
Abschlussdeckel
Verschlusskappe

Claims

Patentansprüche
1. Hydraulische Einrichtung, insbesondere zur Betätigung einer Kupplung, mit einem nahe der Kupplung angeordneten hydraulischen Arbeitszylinder (10),
wobei der Arbeitszylinder (10) über eine hydraulische Leitung (8, 9) mit einer Volumenstromquelle verbunden ist und wobei der Volumenstrom der Volumenstromquelle durch eine Steuereinheit (6) in Abhängigkeit von Signalen der der hydraulischen Einrichtung (2) zugeordneten Sensoren steuerbar ist, dadurch gekennzeichnet, dass die Volumenstromquelle durch eine in einem gemeinsamen Gehäuse (1) angeordnete Kombination aus einem Elektromotor (3) und einer hydraulischen Pumpe (4) gebildet ist.
2. Hydraulische Einrichtung nach Anspruch 1 ,
dadurch gekennzeichnet, dass die Pumpe (4) eine Verdrängerpumpe, vorzugsweise in der Form einer Zahnradpumpe, einer Flügelzellenpumpe, einer Radialkolbenpumpe oder einer Axialkolbenpumpe ist.
3. Hydraulische Einrichtung nach Anspruch 1 oder 2,
dadurch gekennzeichnet, dass die Kombination aus dem Elektromotor (3) und der Pumpe (4) in zwei Drehrichtungen betreibbar ist.
4. Hydraulische Einrichtung nach einem der Ansprüche 1 bis 3,
dadurch gekennzeichnet, dass der Pumpe (4) eine Drosseleinrichtung (22) parallel geschaltet ist.
5. Hydraulische Einrichtung nach Anspruch 1 ,
dadurch gekennzeichnet, dass in dem gemeinsamen Gehäuse (1) die Steuereinheit (6) und/oder ein Vorratsbehälter (7) für das hydraulische Medium und/oder ein Druckspeicher (21) angeordnet sind.
6. Hydraulische Einrichtung nach einem der Ansprüche 1 bis 5,
dadurch gekennzeichnet, dass die Steuereinheit (6) Komponenten umfasst, die Messsignale von Sensoren verarbeiten kann, die innerhalb der hydraulischen Einrichtung (2) oder außerhalb derselben angeordnet sind, wobei die Messsignale Signale des E- lektromotors (3) und/oder der Pumpe (4), und/oder Druckmesswerte und Wegmess- werte des Arbeitszylinders (10) und/oder Signale eines durch den Arbeitszylinder getriebenen externen Elements umfassen.
7. Hydraulische Einrichtung nach einem der Ansprüche 1 bis 6,
dadurch gekennzeichnet, dass der Arbeitszylinder (10) ein einfach wirkender Arbeitszylinder (10), ein einfach wirkender Arbeitszylinder mit einer Federanordnung (20) zur Rückstellung oder ein doppelt wirkender Arbeitszylinder (23) ist.
8. Verfahren zur Betätigung eines Arbeitszylinders mit einer hydraulischen Einrichtung, nach einem der Ansprüche 1 bis 7,
dadurch gekennzeichnet, dass die hydraulische Einrichtung (2) über ihre Steuereinheit (6) einen durch ein Stellorgan oder durch eine Steuerung generierten Startbefehl erhält, dass die Steuereinheit (6) nachfolgend die Kombination aus dem Elektromotor (3) und der Pumpe (4) in Betrieb setzt und wenigstens einen Arbeitszyklus ausführt, durch den der Arbeitszylinder (10) ausgefahren wird, und dass die Steuereinheit (6) nach Erhalt eines Beendigungssignals einen Druckabfall im Leitungssystem veranlasst, wobei der Arbeitszylinder (10) eingefahren wird..
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass nach erfolgtem Druckaufbau im Arbeitszylinder (10) ein Sitzventil (19) geschlossen wird, um die hydraulische Strecke zwischen der Pumpe (4) und dem Arbeitszylinder (10) zu verschließen.
10. Verfahren nach Anspruch 8 oder 9, dadurch gekennzeichnet, dass der Druckabfall nach Beendigung eines Arbeitszyklus durch eine Druckentlastung im Arbeitszylinder (10), durch öffnen des Sitzventils (19), durch Steuern der Kombination aus dem Elektromotor (3) und der Pumpe (4) in den Revers ierbetrieb oder durch Spaltverluste in der Pumpe (4) erfolgt.
PCT/DE2012/000129 2011-02-23 2012-02-14 Hydraulische einrichtung zur betätigung einer kupplung WO2012113368A2 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020197014138A KR102198076B1 (ko) 2011-02-23 2012-02-14 클러치의 작동을 위한 유압 장치
KR1020137021944A KR20140010046A (ko) 2011-02-23 2012-02-14 클러치의 작동을 위한 유압 장치
EP12718564.3A EP2678570B1 (de) 2011-02-23 2012-02-14 Hydraulische einrichtung zur betätigung einer kupplung
CN201280010295.XA CN103403360B (zh) 2011-02-23 2012-02-14 用于操作离合器的液压装置
DE112012000961.4T DE112012000961B4 (de) 2011-02-23 2012-02-14 Hydraulische Einrichtung zur Betätigung einer Kupplung
US13/974,221 US20130333366A1 (en) 2011-02-23 2013-08-23 Hydraulic device for actuating a clutch

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102011012180 2011-02-23
DE102011012180.3 2011-02-23
DE102011083880.5 2011-09-30
DE102011083880 2011-09-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/974,221 Continuation US20130333366A1 (en) 2011-02-23 2013-08-23 Hydraulic device for actuating a clutch

Publications (2)

Publication Number Publication Date
WO2012113368A2 true WO2012113368A2 (de) 2012-08-30
WO2012113368A3 WO2012113368A3 (de) 2013-01-24

Family

ID=46026576

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2012/000129 WO2012113368A2 (de) 2011-02-23 2012-02-14 Hydraulische einrichtung zur betätigung einer kupplung

Country Status (5)

Country Link
US (1) US20130333366A1 (de)
EP (1) EP2678570B1 (de)
KR (2) KR102198076B1 (de)
DE (2) DE112012000961B4 (de)
WO (1) WO2012113368A2 (de)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015200852A1 (de) 2015-01-20 2016-07-21 Schaeffler Technologies AG & Co. KG Hydraulisches Kupplungsbetätigungssystem mit Pumpe
DE102015200777A1 (de) 2015-01-20 2016-07-21 Schaeffler Technologies AG & Co. KG Hydraulisches Kupplungsbetätigungssystem mit Senkbremsventil
DE102016218150A1 (de) 2016-09-21 2018-03-22 Schaeffler Technologies AG & Co. KG Hydrauliksystem, Verfahren zum Betreiben eines Antriebsstrangs eines Kraftfahrzeugs sowie Antriebsstrang
DE102017110394B3 (de) 2017-05-12 2018-06-28 Schaeffler Technologies AG & Co. KG Elektrischer Pumpenaktuator, stufenloses Getriebe mit elektrischen Pumpenaktuator und Steuerungsverfahren für elektrischen Pumpenaktuator
EP3183458B1 (de) 2014-08-18 2018-08-01 GETRAG B.V. & Co. KG Fluidbeaufschlagungsvorrichtung für ein getriebe für ein kraftfahrzeug
DE102017106198A1 (de) 2017-03-22 2018-09-27 Schaeffler Technologies AG & Co. KG Betätigungsmodul für Kupplungen und Gangstellersysteme und Getriebe mit Betätigungsmodul
DE102017117277A1 (de) 2017-07-31 2019-01-31 Schaeffler Technologies AG & Co. KG Hydraulisches Betätigungssystem für ein stufenloses Getriebe, stufenloses Getriebe und Verfahren zum Betrieb eines stufenlosen Getriebes
DE102017116969A1 (de) 2017-07-27 2019-01-31 Schaeffler Technologies AG & Co. KG Verfahren zum Ansteuern eines stufenlosen Getriebes und Steuereinheit zur Ausführung des Verfahrens
DE102018124222A1 (de) 2018-04-10 2019-10-10 Schaeffler Technologies AG & Co. KG Elektromotorischer Pumpenaktor sowie Verfahren zu dessen Herstellung und Kupplung umfassend einen solchen elektromotorischen Pumpenaktor
DE102018124220A1 (de) 2018-04-10 2019-10-10 Schaeffler Technologies AG & Co. KG Elektrischer Pumpenaktor und Kupplung, sowie Verfahren zur Montage eines Pumpenaktors
DE102018124229A1 (de) 2018-04-10 2019-10-10 Schaeffler Technologies AG & Co. KG Elektrischer Pumpenaktor mit Kühlblech
DE102018112670A1 (de) * 2018-05-28 2019-11-28 Schaeffler Technologies AG & Co. KG Hydraulische Aktorik eines seriellen Hybridgetriebes mit Parksperrenfunktion
WO2020043235A1 (de) 2018-08-28 2020-03-05 Schaeffler Technologies AG & Co. KG Hydrauliksystem und antriebseinheit
DE102018130700A1 (de) 2018-12-03 2020-06-04 Schaeffler Technologies AG & Co. KG Verfahren zum Herstellen einer hydraulischen Bereitschaft eines Hydrauliksystems sowie Hydrauliksystem
DE102018131117A1 (de) 2018-12-06 2020-06-10 Schaeffler Technologies AG & Co. KG Verfahren zum Entfernen von Luft aus einem Hydrauliksystem sowie Hydrauliksystem
DE102019125519A1 (de) * 2019-09-23 2021-03-25 Schaeffler Technologies AG & Co. KG Betätigungseinrichtung mit Kupplungsaktor und integrierter Kühlmittelpumpfunktion
DE202018006786U1 (de) 2018-05-28 2022-11-16 Schaeffler Technologies AG & Co. KG Hydraulikeinrichtung mit zwei unterschiedlichen Fluidquellen zur Versorgung entweder eines ersten Verbrauchers oder eines zweiten Verbrauchers
DE102022103384A1 (de) 2022-02-14 2023-08-17 Schaeffler Technologies AG & Co. KG Verfahren zur Vorbefüllung eines Hydrauliksystems eines hydraulischen Aktors eines Kraftfahrzeugs
DE102022105029A1 (de) 2022-03-03 2023-09-07 Schaeffler Technologies AG & Co. KG Verfahren zur Steuerung einer hydraulisch betätigten Trennkupplung
DE102022109833A1 (de) 2022-04-25 2023-10-26 Schaeffler Technologies AG & Co. KG Verfahren zu Steuerung eines Hydrauliksystems
WO2023232177A1 (de) 2022-05-30 2023-12-07 Schaeffler Technologies AG & Co. KG Verfahren zur erkennung eines sicheren zustands eines ventils eines hydrauliksystems
DE102022123558A1 (de) 2022-09-15 2024-03-21 Schaeffler Technologies AG & Co. KG Verfahren zur Betätigung einer Parksperre eines Kraftfahrzeugs
DE102022125281A1 (de) 2022-09-30 2024-04-04 Schaeffler Technologies AG & Co. KG Verfahren zur Inbetriebnahme einer Pumpe mit Pumpenmotor, angeordnet in einem Hydrauliksystem

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012218977B4 (de) 2012-10-18 2022-01-05 Schaeffler Technologies AG & Co. KG Hydrostatisch betätigtes Doppelkupplungssystem sowie Verfahren zu dessen Betätigung
WO2014111088A2 (de) 2013-01-18 2014-07-24 Schaeffler Technologies Gmbh & Co. Kg Fluidisches system und verfahren zum ansteuern einer kupplungseinrichtung
DE102014207814A1 (de) 2013-04-25 2014-10-30 Schaeffler Technologies Gmbh & Co. Kg Hydrostatisches Kupplungsbetätigungssystem
DE112014003435B4 (de) * 2013-07-24 2020-06-18 Schaeffler Technologies AG & Co. KG Hydrauliksystem mit einem Druckbegrenzungsventil
DE102014213489A1 (de) * 2013-07-31 2015-02-05 Schaeffler Technologies Gmbh & Co. Kg Hydraulisches Betätigungssystem
DE112014004527A5 (de) * 2013-10-01 2016-06-23 Schaeffler Technologies AG & Co. KG Aktor
DE102014218397A1 (de) 2013-10-18 2015-04-23 Schaeffler Technologies Gmbh & Co. Kg Hydraulisches System für Impulskupplungs- und Anfahrkupplungsaktuierung
US10107308B2 (en) 2013-11-14 2018-10-23 Schaeffler Technlogies Ag & Co. Kg Piston-cylinder unit and method for operating same
DE112015001779A5 (de) * 2014-04-11 2017-01-12 Schaeffler Technologies AG & Co. KG Vollintegrierte Hydraulikkupplung
DE102014006556B3 (de) * 2014-05-06 2015-02-19 Thomas Magnete Gmbh Pumpenaggregat mit Elektromotor
US10428841B2 (en) * 2014-08-13 2019-10-01 Robert Bosch Gmbh Electrohydraulic system for use under water, and process valve having an electrohydraulic system of said type
US9726239B2 (en) 2015-03-11 2017-08-08 American Axle & Manufacturing, Inc. Clutched power transmitting device with reduced lag time for actuation
DE102015210167A1 (de) * 2015-06-02 2016-12-08 Schaeffler Technologies AG & Co. KG Hydrauliksystem mit pumpenverlustenminimierender Kupplungsbetätigung
DE102015217270A1 (de) * 2015-09-10 2017-03-16 Schaeffler Technologies AG & Co. KG Pumpenaktor für eine hydraulische Kupplungsbetätigungsanordnung
DE102016115925B4 (de) 2016-08-26 2022-08-11 Gkn Automotive Ltd. System zur hydraulischen Betätigung einer Parksperre
JP6715151B2 (ja) 2016-09-29 2020-07-01 本田技研工業株式会社 クラッチアクチュエータ
DE202016107084U1 (de) * 2016-12-16 2018-03-19 Trioliet B. V. Planetengetriebe und Lastschaltgetriebe
CN110691921B (zh) * 2017-05-30 2021-10-15 舍弗勒技术股份两合公司 用于调设液压执行设施的运行点的方法
WO2019046787A1 (en) * 2017-09-01 2019-03-07 Eaton Intelligent Power Limited HYDRAULIC CONTROL UNIT FOR LIMITED SLIP DIFFERENTIAL
DE102019211466B3 (de) * 2019-07-31 2020-10-15 Danfoss Power Solutions Gmbh & Co. Ohg Hydraulikeinheit mit variabler Verdrängung sowie Verfahren zum Betreiben einer Hydraulikeinheit
CN116829843A (zh) * 2021-01-18 2023-09-29 舍弗勒技术股份两合公司 用于确定容积效率的方法,机动车动力总成的液压系统,混合动力模块,控制单元和计算机程序产品
CN114962379B (zh) * 2022-05-20 2023-05-30 北京理工大学 多行程液压缸与车辆

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011050767A1 (de) 2009-10-29 2011-05-05 Schaeffler Technologies Gmbh & Co. Kg Hydrostataktor

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2525292B1 (fr) * 1982-04-19 1986-12-19 Chatelin Jacques Servo-moteur hydraulique
US5135031A (en) 1989-09-25 1992-08-04 Vickers, Incorporated Power transmission
US5073091A (en) * 1989-09-25 1991-12-17 Vickers, Incorporated Power transmission
DE19647940C2 (de) * 1996-11-20 1999-05-12 Mannesmann Sachs Ag Hydraulischer Stellantrieb
DE19844001B4 (de) 1998-09-25 2007-08-02 Damcos A/S Hydraulisch betätigbare Armatur
JP3976512B2 (ja) 2000-09-29 2007-09-19 サンデン株式会社 冷媒圧縮用電動式圧縮機
US6814409B2 (en) * 2001-04-12 2004-11-09 A-Dec, Inc. Hydraulic drive system
US6655138B2 (en) * 2001-05-01 2003-12-02 Delphi Technologies, Inc. System and method for actuating and controlling a transfer case
FR2831226B1 (fr) 2001-10-24 2005-09-23 Snecma Moteurs Actionneur electrohydraulique autonome
AT6575U1 (de) 2002-10-31 2003-12-29 Magna Steyr Powertrain Ag & Co Einfachwirkender aktuator mit schnellöffnendem hydraulikventil zur steuerung einer kupplung
JP3988673B2 (ja) 2003-04-11 2007-10-10 三菱電機株式会社 電動油圧式パワーステアリング装置
FR2864000B1 (fr) 2003-12-18 2006-04-14 Hydroperfect Internat Systeme d'assistance de direction electro-hydraulique pour vehicule automobile
US8118571B2 (en) * 2005-03-31 2012-02-21 Dana Automotive Systems Group, Llc Actuator assembly
US8083041B2 (en) 2005-08-11 2011-12-27 American Axle & Manufacturing, Inc. Electrohydraulic torque transfer device
AT8986U1 (de) 2005-10-28 2007-03-15 Hoerbiger Automatisierungstech Hydraulische druckversorgungseinheit, sowie elektrohydraulische arbeitseinheit und spannsystem mit einer derartigen druckversorgungseinheit
DE102005059356A1 (de) 2005-12-13 2007-06-14 Zf Friedrichshafen Ag Hydrauliksystem an Kraftfahrzeugen
FR2907411B1 (fr) 2006-10-23 2009-05-08 Renault Sas Procede pour piloter un groupe electropompe d'un systeme d'assistance de direction electro-hydraulique pour un vehicule automobile.
SE532772C2 (sv) 2008-08-14 2010-04-06 Haldex Traction Ab Hydraulaktuator kontrollerande en eller flera slirkopplingar hos ett fördelningssystem
DE102008039011B4 (de) 2008-08-21 2020-01-16 MAE Maschinen- u. Apparatebau Götzen GmbH Druckspeicherlose hydraulische Antriebsanordnung sowie Verfahren zum druckspeicherlosen hydraulischen Antreiben eines Verbrauchers
DE102009056673B4 (de) * 2008-12-22 2015-08-20 Magna Powertrain Ag & Co. Kg Hydraulisches System, Drehmomentübertragungseinrichtung sowie Verfahren zur Kalibrierung eines Drucksensors
DE102009005410B4 (de) * 2009-01-19 2012-04-12 Gkn Driveline International Gmbh Aktuierungsanordnung und Verfahren zum Zuschalten einer Antriebsachse im Antriebsstrang eine Kraftfahrzeugs sowie Antriebsanordnung
DE102010005854B4 (de) 2010-01-26 2023-03-02 Pierburg Gmbh Aktuator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011050767A1 (de) 2009-10-29 2011-05-05 Schaeffler Technologies Gmbh & Co. Kg Hydrostataktor

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3183458B1 (de) 2014-08-18 2018-08-01 GETRAG B.V. & Co. KG Fluidbeaufschlagungsvorrichtung für ein getriebe für ein kraftfahrzeug
DE102015200777A1 (de) 2015-01-20 2016-07-21 Schaeffler Technologies AG & Co. KG Hydraulisches Kupplungsbetätigungssystem mit Senkbremsventil
DE102015200852B4 (de) * 2015-01-20 2017-01-05 Schaeffler Technologies AG & Co. KG Hydraulisches Kupplungsbetätigungssystem mit Pumpe
DE102015200852A1 (de) 2015-01-20 2016-07-21 Schaeffler Technologies AG & Co. KG Hydraulisches Kupplungsbetätigungssystem mit Pumpe
DE102016218150A1 (de) 2016-09-21 2018-03-22 Schaeffler Technologies AG & Co. KG Hydrauliksystem, Verfahren zum Betreiben eines Antriebsstrangs eines Kraftfahrzeugs sowie Antriebsstrang
DE102016218150B4 (de) 2016-09-21 2018-05-09 Schaeffler Technologies AG & Co. KG Hydrauliksystem, Verfahren zum Betreiben eines Antriebsstrangs eines Kraftfahrzeugs sowie Antriebsstrang
WO2018171837A1 (de) 2017-03-22 2018-09-27 Schaeffler Technologies AG & Co. KG Betätigungsmodul für kupplungen und gangstellersysteme und getriebe mit betätigungsmodul
DE102017106198A1 (de) 2017-03-22 2018-09-27 Schaeffler Technologies AG & Co. KG Betätigungsmodul für Kupplungen und Gangstellersysteme und Getriebe mit Betätigungsmodul
WO2018206050A1 (de) 2017-05-12 2018-11-15 Schaeffler Technologies AG & Co. KG Elektrischer pumpenaktuator, stufenloses getriebe mit elektrischen pumpenaktuator und steuerungsverfahren für elektrischen pumpenaktuator
DE102017110394B3 (de) 2017-05-12 2018-06-28 Schaeffler Technologies AG & Co. KG Elektrischer Pumpenaktuator, stufenloses Getriebe mit elektrischen Pumpenaktuator und Steuerungsverfahren für elektrischen Pumpenaktuator
US11767842B2 (en) 2017-05-12 2023-09-26 Schaeffler Technologies AG & Co. KG Electric pump actuator, stepless transmission with electric pump actuator and control method for an electric pump actuator
DE102017116969A1 (de) 2017-07-27 2019-01-31 Schaeffler Technologies AG & Co. KG Verfahren zum Ansteuern eines stufenlosen Getriebes und Steuereinheit zur Ausführung des Verfahrens
DE102017117277A1 (de) 2017-07-31 2019-01-31 Schaeffler Technologies AG & Co. KG Hydraulisches Betätigungssystem für ein stufenloses Getriebe, stufenloses Getriebe und Verfahren zum Betrieb eines stufenlosen Getriebes
DE102018124222A1 (de) 2018-04-10 2019-10-10 Schaeffler Technologies AG & Co. KG Elektromotorischer Pumpenaktor sowie Verfahren zu dessen Herstellung und Kupplung umfassend einen solchen elektromotorischen Pumpenaktor
DE102018124220A1 (de) 2018-04-10 2019-10-10 Schaeffler Technologies AG & Co. KG Elektrischer Pumpenaktor und Kupplung, sowie Verfahren zur Montage eines Pumpenaktors
DE102018124229A1 (de) 2018-04-10 2019-10-10 Schaeffler Technologies AG & Co. KG Elektrischer Pumpenaktor mit Kühlblech
DE202018006786U1 (de) 2018-05-28 2022-11-16 Schaeffler Technologies AG & Co. KG Hydraulikeinrichtung mit zwei unterschiedlichen Fluidquellen zur Versorgung entweder eines ersten Verbrauchers oder eines zweiten Verbrauchers
DE102018112670A1 (de) * 2018-05-28 2019-11-28 Schaeffler Technologies AG & Co. KG Hydraulische Aktorik eines seriellen Hybridgetriebes mit Parksperrenfunktion
WO2020043235A1 (de) 2018-08-28 2020-03-05 Schaeffler Technologies AG & Co. KG Hydrauliksystem und antriebseinheit
DE102018130700A1 (de) 2018-12-03 2020-06-04 Schaeffler Technologies AG & Co. KG Verfahren zum Herstellen einer hydraulischen Bereitschaft eines Hydrauliksystems sowie Hydrauliksystem
DE102018130700B4 (de) 2018-12-03 2020-07-02 Schaeffler Technologies AG & Co. KG Verfahren zum Herstellen einer hydraulischen Bereitschaft eines Hydrauliksystems sowie Hydrauliksystem
WO2020114546A1 (de) 2018-12-03 2020-06-11 Schaeffler Technologies AG & Co. KG Verfahren zum herstellen einer hydraulischen bereitschaft sowie hydrauliksystem
DE102018131117A1 (de) 2018-12-06 2020-06-10 Schaeffler Technologies AG & Co. KG Verfahren zum Entfernen von Luft aus einem Hydrauliksystem sowie Hydrauliksystem
DE102019125519A1 (de) * 2019-09-23 2021-03-25 Schaeffler Technologies AG & Co. KG Betätigungseinrichtung mit Kupplungsaktor und integrierter Kühlmittelpumpfunktion
WO2021058059A1 (de) 2019-09-23 2021-04-01 Schaeffler Technologies AG & Co. KG Betätigungseinrichtung mit kupplungsaktor und integrierter kühlmittelpumpfunktion
DE102019125519B4 (de) 2019-09-23 2024-05-08 Schaeffler Technologies AG & Co. KG Betätigungseinrichtung mit Kupplungsaktor und integrierter Kühlmittelpumpfunktion
WO2023151758A1 (de) 2022-02-14 2023-08-17 Schaeffler Technologies AG & Co. KG Verfahren zur vorbefüllung eines hydrauliksystems eines hydraulischen aktors eines kraftfahrzeugs
DE102022103384A1 (de) 2022-02-14 2023-08-17 Schaeffler Technologies AG & Co. KG Verfahren zur Vorbefüllung eines Hydrauliksystems eines hydraulischen Aktors eines Kraftfahrzeugs
DE102022105029A1 (de) 2022-03-03 2023-09-07 Schaeffler Technologies AG & Co. KG Verfahren zur Steuerung einer hydraulisch betätigten Trennkupplung
DE102022109833A1 (de) 2022-04-25 2023-10-26 Schaeffler Technologies AG & Co. KG Verfahren zu Steuerung eines Hydrauliksystems
WO2023232177A1 (de) 2022-05-30 2023-12-07 Schaeffler Technologies AG & Co. KG Verfahren zur erkennung eines sicheren zustands eines ventils eines hydrauliksystems
DE102022113487A1 (de) 2022-05-30 2023-12-14 Schaeffler Technologies AG & Co. KG Verfahren zur Erkennung eines sicheren Zustands eines Ventils eines Hydrauliksystems
DE102022123558A1 (de) 2022-09-15 2024-03-21 Schaeffler Technologies AG & Co. KG Verfahren zur Betätigung einer Parksperre eines Kraftfahrzeugs
DE102022125281A1 (de) 2022-09-30 2024-04-04 Schaeffler Technologies AG & Co. KG Verfahren zur Inbetriebnahme einer Pumpe mit Pumpenmotor, angeordnet in einem Hydrauliksystem

Also Published As

Publication number Publication date
KR20190059985A (ko) 2019-05-31
DE102012202162A1 (de) 2012-08-23
US20130333366A1 (en) 2013-12-19
WO2012113368A3 (de) 2013-01-24
EP2678570B1 (de) 2015-04-29
CN103403360A (zh) 2013-11-20
DE112012000961A5 (de) 2013-11-14
DE112012000961B4 (de) 2023-07-20
KR20140010046A (ko) 2014-01-23
KR102198076B1 (ko) 2021-01-05
EP2678570A2 (de) 2014-01-01

Similar Documents

Publication Publication Date Title
EP2678570B1 (de) Hydraulische einrichtung zur betätigung einer kupplung
EP2840264B1 (de) Störungssicheres Betätigungssystem
EP3046815B1 (de) Elektrisch angetriebene druckregel- und volumenfördereinheit
EP3126716B1 (de) Getriebesteuerung
EP2532914B1 (de) Hydraulische Betätigungsvorrichtung für die Betätigung von Kupplungen in insbesondere einem Mehrkupplungsgetriebe für Kraftfahrzeuge
EP2181221B1 (de) Drehwerk eines baggers mit einem hydraulikantrieb.
EP1960681B1 (de) Hydrauliksystem an kraftfahrzeugen
EP1588057B1 (de) Hydrauliksystem für verdrängergesteuerte linearantriebe
EP2553231B1 (de) Hydraulischer lüfterantrieb
WO2015067259A1 (de) Fluidanordnung
WO2016023712A1 (de) Elektrohydraulisches system für den einsatz unter wasser und prozessventil mit einem derartigen elektrohydraulischen system
EP0305761B1 (de) Sekundärgeregeltes hydrostatisches Getriebe mit offenem Kreislauf
DE102015213540A1 (de) Hocheffizientes hydraulisches verteilergetriebe
WO2015021981A1 (de) Fluidanordnung
WO2020043235A1 (de) Hydrauliksystem und antriebseinheit
DE102018007459A1 (de) Vorrichtung zur hydraulischen Kupplungsbetätigung und Getriebeschmierung für ein Kraftfahrzeug
WO2014177422A1 (de) Vorrichtung zur steuerung eines gaswechselventils einer brennkraftmaschine
DE112018001409B4 (de) Motorsteuerungsverfahren zur verbesserung der kaltansprechzeit in einem motorpumpen-hydrauliksystem
DE102015215515A1 (de) Betätigungssystem für eine Kupplung
DE102020111492A1 (de) Hydraulikanordnung
DE102016223386A1 (de) Pumpensystem, Automatikgetriebe und Kraftfahrzeug

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2012718564

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137021944

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112012000961

Country of ref document: DE

Ref document number: 1120120009614

Country of ref document: DE

REG Reference to national code

Ref country code: DE

Ref legal event code: R225

Ref document number: 112012000961

Country of ref document: DE

Effective date: 20131114