WO2012111587A1 - 熱可塑性樹脂組成物およびその成形品 - Google Patents

熱可塑性樹脂組成物およびその成形品 Download PDF

Info

Publication number
WO2012111587A1
WO2012111587A1 PCT/JP2012/053223 JP2012053223W WO2012111587A1 WO 2012111587 A1 WO2012111587 A1 WO 2012111587A1 JP 2012053223 W JP2012053223 W JP 2012053223W WO 2012111587 A1 WO2012111587 A1 WO 2012111587A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
acid
resin composition
resin
parts
Prior art date
Application number
PCT/JP2012/053223
Other languages
English (en)
French (fr)
Inventor
内藤 祉康
大助 桑原
隆正 大脇
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to EP12746984.9A priority Critical patent/EP2676996B1/en
Priority to KR1020137018108A priority patent/KR20140032970A/ko
Priority to US13/981,675 priority patent/US8871849B2/en
Priority to JP2012513393A priority patent/JP5120521B2/ja
Priority to CN2012800013871A priority patent/CN102906184A/zh
Publication of WO2012111587A1 publication Critical patent/WO2012111587A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • C08L25/12Copolymers of styrene with unsaturated nitriles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/08Homopolymers or copolymers of acrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/10Homopolymers or copolymers of methacrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/10Homopolymers or copolymers of methacrylic acid esters
    • C08L33/12Homopolymers or copolymers of methyl methacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/04Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L55/00Compositions of homopolymers or copolymers, obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in groups C08L23/00 - C08L53/00
    • C08L55/02ABS [Acrylonitrile-Butadiene-Styrene] polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • C08K2003/321Phosphates
    • C08K2003/324Alkali metal phosphate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • C08K2003/329Phosphorus containing acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • C08L2205/035Polymer mixtures characterised by other features containing three or more polymers in a blend containing four or more polymers in a blend

Definitions

  • the present invention relates to a thermoplastic resin composition having excellent impact resistance, durability due to heat retention (hereinafter, also referred to as thermal stability), and excellent molding processability, and a low environmental load, and a molded article comprising the same. It is.
  • plant-derived resins that can reduce the use of fossil resources and suppress carbon dioxide emissions have attracted attention.
  • Typical examples of plant-derived resins include aliphatic polyester resins such as polylactic acid resins, but the mechanical strength and heat resistance (heat distortion temperature) of molded products are lower than those of the existing petroleum resins.
  • heat distortion temperature heat distortion temperature
  • Patent Document 1 discloses that a phosphoric acid compound is added to an alloy of rubber-reinforced styrene resin, polycarbonate resin, and polyester resin to improve mechanical strength and thermal stability. Although the thermal stability is described, the thermal stability technique for the polyester resin is not described, and further improvement is necessary for improving the thermal stability of the rubber-reinforced styrene resin and the polyester resin.
  • Patent Document 2 discloses that both mechanical strength and heat resistance can be improved by alloying an aliphatic polyester resin with a rubber-reinforced styrene resin or an acrylic resin and further adding a dicarboxylic acid anhydride. , Investigation of the thermal stability is insufficient, and further improvement has been required. Furthermore, although it is described that the use of maleic acid anhydride or succinic acid anhydride is preferable as the dicarboxylic acid anhydride, molding processing at the time of compounding an aliphatic polyester resin, a rubber-reinforced styrene resin, and an acrylic resin is performed thereafter. Occasionally irritating odors occurred, and there were problems in terms of safety and hygiene when considering the effects on the human body during production.
  • An object of the present invention is to provide a thermoplastic resin composition of an aliphatic polyester resin excellent in mechanical properties typified by impact resistance and thermal stability and a molded product thereof without problems in terms of safety and hygiene.
  • styrene resin A
  • graft copolymer B
  • an aliphatic polyester resin C
  • the present invention includes the following (1) to (11).
  • a resin composition containing a styrene-based resin (A), a graft copolymer (B) and an aliphatic polyester resin (C) is blended with phosphoric acid and / or monosodium phosphate (D).
  • Thermoplastic resin composition (2)
  • thermoplastic resin composition according to any one of (1) to (3), comprising 0.01 to 5 parts by weight of phosphoric acid and / or monosodium phosphate (D) with respect to 100 parts by weight of the resin composition Plastic resin composition.
  • D monosodium phosphate
  • Plastic resin composition In 100 parts by weight of the resin composition, 10 to 80 parts by weight of the styrene resin (A), 5 to 70 parts by weight of the graft copolymer (B), and 1 to 85 of the aliphatic polyester resin (C).
  • the thermoplastic resin composition according to any one of (1) to (4), comprising 0 to 30 parts by weight of an acrylic resin (E) by weight.
  • thermoplastic resin composition according to any one of (1) to (5), wherein the styrene resin (A) is obtained by polymerizing at least the aromatic vinyl monomer (a1).
  • the graft copolymer (B) is obtained by graft polymerization of a monomer component containing at least an unsaturated carboxylic acid alkyl ester monomer (b1) to the rubbery polymer (r).
  • the thermoplastic resin composition according to any one of (6).
  • thermoplastic resin composition according to any one of (1) to (8), wherein components other than the aliphatic polyester resin (C) are melt-kneaded, and then the aliphatic polyester resin (C) A method for producing a thermoplastic resin composition, characterized by further adding melt kneading.
  • thermoplastic resin composition excellent in mechanical properties typified by impact resistance, thermal stability, and further molding processability, and a molded product without problems in terms of safety and hygiene.
  • thermoplastic resin composition of the present invention will be specifically described.
  • thermoplastic resin composition of the present invention is prepared by adding phosphoric acid and / or monosodium phosphate (D) to a resin composition containing a styrene resin (A), a graft copolymer (B) and an aliphatic polyester resin (C). ).
  • the styrene resin (A) used in the present invention includes styrene, ⁇ -methylstyrene, o-methylstyrene, p-methylstyrene, o-ethylstyrene, p-ethylstyrene, pt-butylstyrene, and the like. Is obtained by subjecting the aromatic vinyl monomer (a1) to known bulk polymerization, bulk suspension polymerization, solution polymerization, precipitation polymerization or emulsion polymerization, preferably at least aromatic vinyl monomer.
  • An unsaturated carboxylic acid alkyl ester monomer (a2), a vinyl cyanide monomer (a3), and other vinyl monomers copolymerizable therewith It is a copolymer obtained by copolymerizing the monomer mixture (a) containing the body (a4).
  • the styrene resin (A) does not include a graft copolymer obtained by graft polymerization of a monomer component to the rubber polymer (r).
  • aromatic vinyl monomer (a1) constituting the styrene resin (A) include styrene, ⁇ -methylstyrene, o-methylstyrene, p-methylstyrene, o, as described above.
  • -Ethyl styrene, p-ethyl styrene, pt-butyl styrene and the like can be mentioned, among which styrene or ⁇ -methyl styrene is preferably used. These can use 1 type (s) or 2 or more types.
  • the unsaturated carboxylic acid alkyl ester monomer (a2) constituting the styrenic resin (A) is not particularly limited, but an acrylate ester having an alkyl group having 1 to 6 carbon atoms or a substituted alkyl group and / or Methacrylic acid esters are preferred. Specific examples include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, n-butyl (meth) acrylate, and (meth) acrylic acid.
  • the vinyl cyanide monomer (a3) constituting the styrene resin (A) is not particularly limited, and specific examples include acrylonitrile, methacrylonitrile, ethacrylonitrile, etc., among which acrylonitrile is preferable. Used. These can use 1 type (s) or 2 or more types.
  • vinyl monomers (a4) constituting the styrene resin (A) include aromatic vinyl monomers (a1), unsaturated carboxylic acid alkyl ester monomers (a2), vinyl cyanide. There is no particular limitation as long as it is copolymerizable with the monomer (a3).
  • maleimide monomers such as N-methylmaleimide, N-ethylmaleimide, N-cyclohexylmaleimide, N-phenylmaleimide, Acrylic acid, methacrylic acid, maleic acid, maleic acid monoethyl ester, maleic anhydride, vinyl monomers having a carboxyl group such as phthalic acid and itaconic acid, 3-hydroxy-1-propene, 4- hydroxy-1-butene, cis-4-hydroxy-2-butene, trans-4-hydroxy-2-butene, 3-hydro Vinyl monomers having hydroxyl groups such as cis-2-methyl-1-propene, cis-5-hydroxy-2-pentene, trans-5-hydroxy-2-pentene, 4,4-dihydroxy-2-butene , Vinyl monomers having an epoxy group such as glycidyl acrylate, glycidyl methacrylate, glycidyl ethacrylate, glycidyl itaconate, ally
  • the blending ratio of the monomer mixture (a) is preferably 0 to 100% of the unsaturated carboxylic acid alkyl ester monomer (a2) relative to 1 to 100% by weight of the aromatic vinyl monomer (a1). 99% by weight, 0 to 50% by weight of vinyl cyanide monomer (a3), and 0 to 99% by weight of other vinyl monomers (a4) copolymerizable therewith, more preferably aromatic Vinyl monomer (a1) 10 to 90 wt%, unsaturated carboxylic acid alkyl ester monomer (a2) 50 to 90 wt%, vinyl cyanide monomer (a3) 0 to 40 wt%, and Other vinyl monomers (a4) copolymerizable with them 0 to 50% by weight, more preferably aromatic vinyl monomers (a1) 15 to 80% by weight, unsaturated carboxylic acid alkyl ester monomer Body (a2) 60-80% by weight, vinyl cyanide System monomer (a3) 0 ⁇ 30 wt%, and is copolymerizable
  • the properties of the styrenic resin (A) are not limited, but preferably the intrinsic viscosity [ ⁇ ] measured at 30 ° C. using a methyl ethyl ketone solvent is 0.20 to 2.00 dl / g, preferably 0.8.
  • the molecular weight of the styrene resin (A) is not limited, but preferably, the weight average molecular weight measured by gel permeation chromatography (GPC) using a tetrahydrofuran solvent is in the range of 10,000 to 400,000. More preferably, a thermoplastic resin composition having excellent impact resistance and molding processability can be obtained by using a resin having a range of 50,000 to 150,000.
  • GPC gel permeation chromatography
  • the styrene resin (A) used in the present invention include polystyrene, high impact polystyrene, AS resin, AAS resin, AES resin, MAS resin, MS resin, and the like.
  • the styrene resin (A) used in the present invention may be one type or two or more types, for example, styrene copolymerized with methyl methacrylate as the unsaturated carboxylic acid alkyl ester monomer (a2).
  • a styrenic resin that is not copolymerized with a methacrylic resin and methyl methacrylate a resin having excellent impact resistance, heat resistance, surface appearance, and colorability can be obtained.
  • the graft copolymer (B) used in the present invention is a known bulk polymerization, bulk suspension polymerization, solution polymerization, precipitation polymerization or emulsification in the presence of the rubbery polymer (r). By being subjected to polymerization, the rubber component (r) is obtained by graft polymerization of a monomer component.
  • the graft copolymer (B) includes not only a graft copolymer in which a monomer component is graft-polymerized to the rubber polymer (r) but also a single amount not grafted to the rubber polymer (r).
  • the body component polymer may be included.
  • the rubbery polymer (r) is not particularly limited, but those having a glass transition temperature of 0 ° C. or lower are suitable, and diene rubbers, acrylic rubbers, ethylene rubbers and the like can be preferably used. Specific examples include , Polybutadiene, styrene-butadiene copolymer, block copolymer of styrene-butadiene, acrylonitrile-butadiene copolymer, butyl acrylate-butadiene copolymer, polyisoprene, butadiene-methyl methacrylate copolymer, butyl acrylate -Methyl methacrylate copolymer, butadiene-ethyl acrylate copolymer, ethylene-propylene copolymer, ethylene-isoprene copolymer and ethylene-methyl acrylate copolymer.
  • polybutadiene, styrene-butadiene copolymer, styrene-butadiene block copolymer and acrylonitrile-butadiene copolymer are particularly preferably used from the viewpoint of impact resistance. It can be used in a mixture of two or more.
  • the weight average particle diameter of the rubber polymer (r) is not particularly limited, but is preferably in the range of 0.05 to 1.0 ⁇ m, particularly 0.1 to 0.5 ⁇ m. By setting the weight average particle diameter of the rubber polymer in the range of 0.05 ⁇ m to 1.0 ⁇ m, excellent impact resistance can be exhibited. Further, as the rubbery polymer, one or more kinds can be used, and it is preferable to use two or more kinds of rubbery polymers having different weight average particle diameters in terms of impact resistance and fluidity. For example, a so-called bimodal rubber using a rubber polymer having a small weight average particle diameter and a rubber polymer having a large weight average particle diameter may be used.
  • the rubber polymer (r) has a weight average particle diameter of sodium alginate described in “Rubber Age, Vol. 88, p. 484 to 490, (1960), by E. Schmidt, P.H. Biddison”. Method, that is, by using the fact that the polybutadiene particle size to be creamed differs depending on the concentration of sodium alginate, the particle size of 50% cumulative weight fraction is obtained from the weight proportion of cream and the cumulative weight fraction of sodium alginate concentration. Can be measured.
  • the gel content of the rubbery polymer (r) is not particularly limited, but is preferably 40 to 99% by weight and more preferably 60 to 95% by weight in terms of impact resistance and heat resistance. 70 to 90% by weight is particularly preferable.
  • the gel content can be measured by a method in which toluene is extracted at room temperature for 24 hours to obtain a ratio of insoluble matter.
  • the rubber component (r) is preferably 10 to 80% by weight, more preferably 30 to 70% by weight, and the monomer component is preferably 20 to 90% by weight. More preferably, it is obtained by graft polymerization of 30 to 70% by weight. Even if the ratio of the rubbery polymer is less than the above range or exceeds the above range, the impact strength and the surface appearance may be lowered.
  • the monomer component constituting the graft component of the graft copolymer (B) preferably contains at least an unsaturated carboxylic acid alkyl ester monomer (b1), and, if necessary, an aromatic vinyl monomer.
  • the unsaturated carboxylic acid alkyl ester monomer (b1) constituting the graft copolymer (B) is not particularly limited, but an acrylate ester having an alkyl group having 1 to 6 carbon atoms or a substituted alkyl group and / or Or a methacrylic acid ester is suitable. Specific examples include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, n-butyl (meth) acrylate, t-butyl (meth) acrylate, (meth) acrylic.
  • methyl methacrylate is most preferably used. . These can be used alone or in combination of two or more thereof.
  • the aromatic vinyl monomer (b2) constituting the graft copolymer (B) is not particularly limited, and specific examples include styrene, ⁇ -methylstyrene, o-methylstyrene, p-methylstyrene, o-Ethyl styrene, p-ethyl styrene, pt-butyl styrene and the like can be mentioned, among which styrene and ⁇ -methyl styrene are preferably used. These can use 1 type (s) or 2 or more types.
  • the vinyl cyanide monomer (b3) constituting the graft copolymer (B) is not particularly limited, and specific examples include acrylonitrile, methacrylonitrile and ethacrylonitrile. Among them, acrylonitrile is Preferably used. These can use 1 type (s) or 2 or more types.
  • vinyl monomers (b4) constituting the graft copolymer (B) include unsaturated carboxylic acid alkyl ester monomers (b1), aromatic vinyl monomers (b2), and cyanide.
  • the copolymer is not particularly limited as long as it can be copolymerized with the vinyl monomer (b3).
  • Specific examples thereof include maleimide monomers such as N-methylmaleimide, N-ethylmaleimide, N-cyclohexylmaleimide, and N-phenylmaleimide.
  • Monomer vinyl monomer having carboxyl group or carboxyl group, such as acrylic acid, methacrylic acid, maleic acid, maleic acid monoethyl ester, maleic anhydride, phthalic acid and itaconic acid, 3-hydroxy-1-propene 4-hydroxy-1-butene, cis-4-hydroxy-2-butene, trans-4-hydroxy-2-butene, 3- Vinyl monomers having a hydroxyl group such as droxy-2-methyl-1-propene, cis-5-hydroxy-2-pentene, trans-5-hydroxy-2-pentene, 4,4-dihydroxy-2-butene , Vinyl monomers having an epoxy group such as glycidyl acrylate, glycidyl methacrylate, glycidyl ethacrylate, glycidyl itaconate, allyl glycidyl ether, styrene-p-glycidyl ether and p-glycidyl styrene,
  • the composition ratio of the monomer mixture (b) is preferably 20 to 90% by weight, more preferably 30 to 80% by weight of the unsaturated carboxylic acid alkyl ester monomer (b1).
  • (B2) is preferably 0 to 70% by weight, more preferably 0 to 50% by weight
  • vinyl cyanide monomer (b3) is preferably 0 to 50% by weight, more preferably 0 to 30% by weight.
  • the amount of the other vinyl monomer (b4) copolymerizable with is preferably 0 to 70% by weight, more preferably 0 to 50% by weight.
  • the graft copolymer (B) contains an ungrafted polymer in addition to the graft copolymer having a structure in which the monomer component is grafted to the rubbery polymer (r). It is.
  • the graft ratio of the graft copolymer (B) is not particularly limited, but in order to obtain a resin composition having a good balance between impact resistance and gloss, it is 10 to 100% by weight, particularly 20 to 80% by weight. A range is preferable.
  • the properties of the ungrafted polymer contained in the graft copolymer (B) are not particularly limited, but the intrinsic viscosity [ ⁇ ] (measured at 30 ° C.) of methyl ethyl ketone solubles is 0.10 to 1.00 dl / g, particularly in the range of 0.20 to 0.80 dl / g, is a preferable condition for obtaining a resin composition having excellent impact resistance.
  • the graft copolymer (B) can be obtained by known polymerization methods.
  • it can be obtained by a method of emulsion polymerization by continuously supplying a mixture of a monomer and a chain transfer agent and a solution of a radical generator dissolved in an emulsifier to a polymerization vessel in the presence of a rubbery polymer latex. .
  • the aliphatic polyester resin (C) used in the present invention includes a polymer mainly composed of an aliphatic hydroxycarboxylic acid, a polymer mainly composed of an aliphatic polycarboxylic acid and an aliphatic polyhydric alcohol, and the like. Is mentioned.
  • polymers having an aliphatic hydroxycarboxylic acid as a main component include polyglycolic acid, polylactic acid, poly-3-hydroxybutyric acid, poly-4-hydroxybutyric acid, poly-4-hydroxyvaleric acid, poly-3-hydroxy Hexanoic acid or polycaprolactone is exemplified, and the polymer mainly composed of an aliphatic polycarboxylic acid and an aliphatic polyhydric alcohol includes polyethylene adipate, polyethylene succinate, polybutylene adipate, or polybutylene succinate. Can be mentioned.
  • These aliphatic polyester resins can be used alone or in combination of two or more.
  • a polymer containing hydroxycarboxylic acid as a main constituent is preferable, and polylactic acid is particularly preferably used.
  • the polylactic acid is a polymer mainly composed of L-lactic acid and / or D-lactic acid, but may contain other copolymer components other than lactic acid as long as the object of the present invention is not impaired.
  • examples of such other copolymer component units include polyvalent carboxylic acids, polyhydric alcohols, hydroxycarboxylic acids, lactones, and the like.
  • Polyvalent carboxylic acids such as ethylene glycol, propylene glycol, butanediol, heptanediol, hexanediol, octanediol, nonanediol, decanediol, 1,4-cyclohexanedimethanol, neopentylglycol, glycerin, trimethyl Propanediol, penta
  • Hydroxycarboxylic acids such as 3-hydroxybutyric acid, 4-hydroxybutyric acid, 4-hydroxyvaleric acid, 6-hydroxycaproic acid, hydroxybenzoic acid, glycolide, ⁇ -caprolactone glycolide, ⁇ -caprolactone, ⁇ -propiolactone, ⁇ - Lactones such as butyrolactone, ⁇ - or ⁇ -butyrolactone, pivalolactone, and ⁇ -valerolactone can be used.
  • These copolymer components can be used alone or in combination of two or more.
  • the polylactic acid preferably has a higher optical purity of the lactic acid component.
  • the L-form or D-form is preferably contained in an amount of 80 mol% or more, and more preferably 90 mol% or more. It is preferable that it is contained in an amount of 95 mol% or more.
  • polylactic acid stereocomplex in terms of heat resistance and molding processability.
  • L-form is 90 mol% or more, preferably 95 mol% or more, more preferably 98 mol% or more of poly-L-lactic acid and D-form is 90 mol% or more
  • a method of mixing 95 mol% or more, more preferably 98 mol% or more of poly-D-lactic acid by melt kneading or solution kneading is preferable.
  • a method of using poly-L-lactic acid and poly-D-lactic acid as a block copolymer can be mentioned, and a polylactic acid stereocomplex can be easily formed. how to make L- lactic acid and poly -D- acid block copolymer.
  • a known polymerization method can be used.
  • a direct polymerization method from lactic acid, a ring-opening polymerization method via lactide, or the like can be employed. .
  • the molecular weight and molecular weight distribution of the aliphatic polyester resin (C) are not particularly limited as long as they can be substantially molded, but the weight average molecular weight is preferably 10,000 or more, more preferably 4 It should be 10,000 or more, particularly preferably 80,000 or more.
  • the weight average molecular weight herein is a weight average molecular weight in terms of polymethyl methacrylate (PMMA) measured by gel permeation chromatography (GPC) using hexafluoroisopropanol as a solvent.
  • the melting point of the aliphatic polyester resin (C) is not particularly limited, but is preferably 90 ° C. or higher, and more preferably 150 ° C. or higher.
  • the melt viscosity ratio ((A) / (C)) of the styrenic resin (A) and the aliphatic polyester resin (C) is such that a resin composition having excellent heat resistance is obtained. It is preferably in the range of 0.1 to 10.
  • the melt viscosity is a value measured at 220 ° C. and a shear rate of 1000 s ⁇ 1 using a capillary graph measuring device (Capillograph Type 1C, manufactured by Toyo Seiki Seisakusho Co., Ltd., orifice length 20 mm, orifice diameter 1 mm).
  • an acrylic resin (E) in addition to the above (A) to (C) as the resin composition.
  • the acrylic resin (E) used in the present invention is a polymer or copolymer of an alkyl (meth) acrylate monomer, and includes a styrene resin (A), a graft copolymer (B), a fat It is a polymer other than the group polyester resin (C).
  • the impact resistance can be improved by adding the acrylic resin (E).
  • alkyl (meth) acrylate monomer examples include methyl methacrylate, methyl acrylate, ethyl acrylate, ethyl methacrylate, butyl acrylate, butyl methacrylate, cyclohexyl methacrylate, hydroxyethyl methacrylate, glycidyl methacrylate, Allyl methacrylate, aminoethyl acrylate, propylaminoethyl acrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, glycidyl acrylate, dicyclopentenyloxyethyl acrylate, dicyclopentanyl acrylate, diacrylic acid Butanediol, nonanediol diacrylate, polyethylene glycol diacrylate, methyl 2- (hydroxymethyl) acrylate, ethyl 2- (hydroxymethyl) acrylate, methacrylic acid Ethyl methacrylate, butyl meth
  • a copolymer containing a ring structural unit such as a lactone ring, maleic anhydride, glutaric anhydride, etc. in the main chain can be used.
  • the acrylic resin (E) used in the present invention is preferably a polymethyl methacrylate resin mainly composed of a methyl methacrylate component unit, and a polymethyl methacrylate resin containing 70% or more of the methyl methacrylate component unit. More preferred is polymethyl methacrylate (PMMA) resin.
  • the molecular weight and molecular weight distribution of the acrylic resin (E) are not particularly limited as long as they can be substantially molded, but from the viewpoint of molding processability, the weight average molecular weight is 1,000 to 450, is preferably 000, more preferably from 10,000 to 200,000, more preferably 30,000 to 150,000.
  • the weight average molecular weight here is a weight average molecular weight in terms of polymethyl methacrylate (PMMA) measured by GPC using hexafluoroisopropanol as a solvent.
  • the glass transition temperature of the acrylic resin (E) is preferably 60 ° C. or higher, more preferably 70 ° C. or higher, further preferably 80 ° C. or higher, particularly preferably 90 ° C. or higher, and 100 ° C. or higher. Is most preferred.
  • the upper limit is not particularly limited, in terms of moldability, preferably 0.99 ° C. or less.
  • the glass transition temperature here is a value of the glass transition temperature obtained by differential scanning calorimeter (DSC) measurement, and is a temperature at which the specific heat capacity change in the glass transition temperature region becomes a half value.
  • the syndiotacticity of the methacrylic resin is preferably 20% or more, more preferably 30% or more, and further preferably 40% or more. Although an upper limit is not specifically limited, 90% or less is preferable at the point of a moldability.
  • the heterotacticity is preferably 50% or less, more preferably 40% or less, and further preferably 30% or less.
  • isotacticity is preferably 20% or less, more preferably 15% or less, and even more preferably 10% or less.
  • acrylic resin (E) As a manufacturing method of acrylic resin (E), well-known polymerization methods, such as block polymerization, solution polymerization, suspension polymerization, and emulsion polymerization, can be used.
  • the blending ratio of the resin composition in the present invention is not particularly limited, but in order to achieve the effects of the present invention, the styrene-based resin (A) is preferably 10 to 80 parts by weight in a total amount of 100 parts by weight of the resin composition, More preferably 15 to 75 parts by weight, still more preferably 20 to 70 parts by weight, particularly preferably 30 to 60 parts by weight, and the graft copolymer (B) is preferably 5 to 70 parts by weight, and more preferably 5 to 70 parts by weight.
  • the aliphatic polyester resin (C) is preferably 1 to 85 parts by weight, more preferably 5 to 80 parts by weight, The amount is more preferably 5 to 70 parts by weight, and the acrylic resin (E) is preferably 0 to 30 parts by weight, more preferably 1 to 30 parts by weight, still more preferably 2 to 20 parts by weight. It is the amount part.
  • the thermoplastic resin composition of the present invention is characterized by containing phosphoric acid and / or monosodium phosphate (D) in addition to the resin component.
  • Phosphoric acid and / or monosodium phosphate (D) prevents the alkaline decomposition of the aliphatic polyester resin (C) caused by the graft copolymer (B) exhibiting alkalinity during the production process, and the heat of the resin composition Used for the purpose of improving stability.
  • the heat stability of the resin composition and the like are already known going on to superior to other neutralizing agents, including organic acids, characterized in.
  • monosodium phosphate is preferred for use in food appliances, toys, and other applications where the safety and hygiene of the human body is more strictly required.
  • Monosodium phosphate itself is widely used in the medical field and food additives, and its safety when ingested has already been confirmed, as well as preventing hygiene hazards caused by food utensils.
  • the Polyolefin Hygiene Council which is an industry self-regulatory group, has been recognized as suitable as a resin additive (registered on the positive list of additives).
  • the content of phosphoric acid and / or monosodium phosphate (D) in the thermoplastic resin composition of the present invention is in the range of 0.01 to 5 parts by weight with respect to 100 parts by weight of the total resin composition. more preferably from 0.1 to 2 parts by weight, more preferably 0.1 to 0.5 part by weight.
  • the content of phosphoric acid and / or monosodium phosphate (D) is less than 0.01 parts by weight, the effect of inhibiting alkaline decomposition of the aliphatic polyester resin (C) is not sufficiently exhibited, and the present invention.
  • the initial impact resistance of the thermoplastic resin composition decreases, but also the impact resistance may significantly decrease during heat retention. Sometimes foaming and the surface appearance of the molded product may deteriorate.
  • inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid, acetic acid, oxalic acid, malonic acid, succinic acid, maleic acid, adipic acid, sebacic acid, azelaic acid, dodecanedioic acid, cyclohexanedicarboxylic acid, citric acid, terephthalic acid Acids, isophthalic acid, orthophthalic acid, benzoic acid, trimellitic acid, pyromellitic acid, phenol, naphthalenedicarboxylic acid, diphenic acid and other organic acids, oxalic acid, malonic acid, succinic acid, maleic acid, adipic acid, sebacic acid, Azelaic acid, dodecanedioic acid, citric acid, orthophthalic acid, trimellitic acid, and pyromellitic acid acid anhydride.
  • inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid,
  • a crystal nucleating agent from the viewpoint of improving heat resistance.
  • the crystal nucleating agent those generally used as a polymer crystal nucleating agent can be used without particular limitation, and any of inorganic crystal nucleating agents and organic crystal nucleating agents can be used. The above can be used.
  • inorganic crystal nucleating agents include talc, kaolinite, montmorillonite, mica, synthetic mica, clay, zeolite, silica, graphite, carbon black, zinc oxide, magnesium oxide, calcium oxide, titanium oxide, calcium sulfide, and nitriding.
  • examples thereof include metal salts of boron, magnesium carbonate, calcium carbonate, barium sulfate, aluminum oxide, neodymium oxide, and phenylphosphonate, and talc, kaolinite, montmorillonite, and synthetic mica are preferable from the viewpoint of a large effect of improving heat resistance. .
  • These may be used alone or in combination of two or more.
  • These inorganic crystal nucleating agents are preferably modified with an organic substance in order to enhance dispersibility in the composition.
  • the content of the inorganic crystal nucleating agent is preferably 0.01 to 100 parts by weight, more preferably 0.05 to 50 parts by weight, and more preferably 0.1 to 30 parts by weight with respect to 100 parts by weight of the aliphatic polyester resin (C). Part by weight is more preferred.
  • organic crystal nucleating agents include sodium benzoate, potassium benzoate, lithium benzoate, calcium benzoate, magnesium benzoate, barium benzoate, lithium terephthalate, sodium terephthalate, potassium terephthalate, calcium oxalate , Monosodium laurate, potassium laurate, sodium myristate, potassium myristate, calcium myristate, sodium octacosanoate, calcium octacosanoate, monosodium stearate, potassium stearate, lithium stearate, calcium stearate, magnesium stearate, Barium stearate, sodium montanate, calcium montanate, sodium toluate, sodium salicylate, potassium salicylate, salicylic acid , Metal salts of organic carboxylic acids such as aluminum dibenzoate, potassium dibenzoate, lithium dibenzoate, sodium ⁇ -naphthalate, sodium cyclohexanecarboxylate, organic sulfonates such as
  • the content of the organic crystal nucleating agent is preferably 0.01 to 30 parts by weight, more preferably 0.05 to 10 parts by weight, and more preferably 0.1 to 5 parts by weight with respect to 100 parts by weight of the aliphatic polyester resin (C). Part by weight is more preferred.
  • plasticizer those generally used as polymer plasticizers can be used without particular limitation, and examples thereof include polyester plasticizers, glycerin plasticizers, polycarboxylic acid ester plasticizers, polyalkylene glycol plasticizers, and the like. mention may be made of an epoxy-based plasticizers, alone to be able to use two or more.
  • polyester plasticizer examples include acid components such as adipic acid, sebacic acid, terephthalic acid, isophthalic acid, naphthalenedicarboxylic acid, diphenyldicarboxylic acid, propylene glycol, 1,3-butanediol, 1,4-butane.
  • acid components such as adipic acid, sebacic acid, terephthalic acid, isophthalic acid, naphthalenedicarboxylic acid, diphenyldicarboxylic acid, propylene glycol, 1,3-butanediol, 1,4-butane.
  • polyesters composed of diol components such as diol, 1,6-hexanediol, ethylene glycol and diethylene glycol
  • polyesters composed of hydroxycarboxylic acid such as polycaprolactone.
  • These polyesters may be end-capped with a monofunctional carboxylic acid or monofunctional alcohol, or may be end-capped with an epoxy compound or the like.
  • glycerin plasticizer examples include glycerin monoacetomonolaurate, glycerin diacetomonolaurate, glycerin monoacetomonostearate, glycerin diacetomonooleate, and glycerin monoacetomonomontanate.
  • polycarboxylic acid plasticizers include phthalates such as dimethyl phthalate, diethyl phthalate, dibutyl phthalate, dioctyl phthalate, diheptyl phthalate, dibenzyl phthalate, butyl benzyl phthalate, and trimellitic acid.
  • Trimellitic acid esters such as tributyl, trioctyl trimellitic acid, trihexyl trimellitic acid, sebacic acid esters such as diisodecyl adipate, n-octyl-n-decyl adipate adipate, triethyl acetylcitrate, tributyl acetylcitrate, etc.
  • Citrate esters, azelaic acid esters such as di-2-ethylhexyl azelate, dibutyl sebacate, and sebacic acid esters such as di-2-ethylhexyl sebac
  • polyalkylene glycol plasticizer examples include polyethylene glycol, polypropylene glycol, poly (ethylene oxide / propylene oxide) block and / or random copolymer, polytetramethylene glycol, ethylene oxide addition polymer of bisphenols, bisphenols Polyalkylene glycols such as propylene oxide addition polymers, tetrahydrofuran addition polymers of bisphenols, or end-capped compounds such as terminal epoxy-modified compounds, terminal ester-modified compounds, and terminal ether-modified compounds.
  • the epoxy plasticizer generally refers to an epoxy triglyceride composed of an alkyl epoxy stearate and soybean oil, but there are also so-called epoxy resins mainly made of bisphenol A and epichlorohydrin. It can be used as a plasticizer.
  • plasticizers include benzoate esters of aliphatic polyols such as neopentyl glycol dibenzoate, diethylene glycol dibenzoate, triethylene glycol di-2-ethylbutyrate, fatty acid amides such as stearamide, oleic acid
  • aliphatic carboxylic acid esters such as butyl, oxyacid esters such as methyl acetylricinoleate and butyl acetylricinoleate, pentaerythritol, various sorbitols, polyacrylic acid esters, silicone oils, and paraffins.
  • the plasticizer preferably used in the present invention is preferably at least one selected from polyester plasticizers and polyalkylene glycol plasticizers, among those exemplified above.
  • the content of the plasticizer is preferably in the range of 0.01 to 30 parts by weight, more preferably in the range of 0.1 to 20 parts by weight, with respect to 100 parts by weight of the aliphatic polyester resin (C).
  • the range of 10 parts by weight is more preferable.
  • the crystal nucleating agent and the plasticizer may be used alone, but they are preferably used in combination.
  • filler other than the inorganic crystal nucleating agent it is preferable to contain a filler other than the inorganic crystal nucleating agent from the viewpoint of improving heat resistance.
  • fillers other than the inorganic crystal nucleating agent fibrous, plate-like, granular, and powdery materials that are usually used for reinforcing thermoplastic resins can be used.
  • Organic fiber fillers such as kenaf, ramie, cotton, jute, hemp, sisal, flax, linen, silk, manila hemp, sugar cane, wood pulp, paper waste, waste paper and wool, glass flakes, graphite, metal foil, ceramic beads Sericite, bentonite, dolomite, fine silicic acid, feldspar powder, potassium titanate, shirasu balloon, aluminum
  • inorganic fibrous fillers are preferable, and glass fibers and wollastonite are particularly preferable.
  • use of an organic fibrous filler is also preferable, and natural fibers and regenerated fibers are more preferable from the viewpoint of taking advantage of the biodegradability of the aliphatic polyester resin (C).
  • the aspect ratio (average fiber length / average fiber diameter) of the fibrous filler used for blending is preferably 5 or more, more preferably 10 or more, and further preferably 20 or more.
  • the filler may be coated or focused with a thermoplastic resin such as ethylene / vinyl acetate copolymer or a thermosetting resin such as an epoxy resin, and a coupling agent such as aminosilane or epoxysilane. May be processed.
  • a thermoplastic resin such as ethylene / vinyl acetate copolymer or a thermosetting resin such as an epoxy resin
  • a coupling agent such as aminosilane or epoxysilane. May be processed.
  • the content of the filler is preferably 0.1 to 200 parts by weight, more preferably 0.5 to 100 parts by weight with respect to 100 parts by weight of the aliphatic polyester resin (C).
  • the carboxyl group-reactive terminal blocking agent is not particularly limited as long as it is a compound capable of blocking the carboxyl terminal group of the polymer, and those used as a blocking agent for the carboxyl terminal of the polymer can be used.
  • the carboxyl group-reactive end-blocking agent not only blocks the end of the aliphatic polyester resin (C), but also includes lactic acid and formic acid generated by thermal decomposition or hydrolysis of naturally-occurring organic fillers.
  • the carboxyl group of the acidic low molecular weight compound can also be blocked.
  • the end-capping agent is more preferably a compound that can also block the hydroxyl end where an acidic low molecular weight compound is generated by thermal decomposition.
  • a carboxyl group-reactive end-blocking agent it is preferable to use at least one compound selected from an epoxy compound, an oxazoline compound, an oxazine compound, a carbodiimide compound, and an isocyanate compound, and in particular, an epoxy compound and / or a carbodiimide.
  • Compounds are preferred.
  • the content of the carboxyl group reactive end-capping agent is preferably in the range of 0.01 to 10 parts by weight, more preferably in the range of 0.05 to 5 parts by weight, with respect to 100 parts by weight of the aliphatic polyester resin (C). .
  • the timing of adding the carboxyl group-reactive end-blocking agent is not particularly limited, but it is previously melt-kneaded with the aliphatic polyester resin (C) in that not only heat resistance is improved, but also mechanical properties and thermal stability can be improved. After that, it is preferable to knead with others.
  • stabilizers antioxidants, ultraviolet absorbers, weathering agents, etc.
  • lubricants lubricants, mold release agents, flame retardants, colorants including dyes or pigments, antistatic agents, as long as the object of the present invention is not impaired.
  • a foaming agent or the like can be added.
  • thermoplastic resins for example, polyamide resins, polyphenylene sulfide resins, polyether ether ketone resins, polyester resins other than aliphatic polyester resins (C), polysulfone resins, Polyethersulfone resin, aromatic and aliphatic polycarbonate resin, polyarylate resin, polyphenylene oxide resin, polyacetal resin, polyimide resin, polyetherimide resin, aromatic and aliphatic polyketone resin, fluororesin, polyvinyl chloride resin, poly Vinylidene chloride resin, vinyl ester resin, cellulose acetate resin, polyvinyl alcohol resin, etc.) or thermosetting resin (eg, phenol resin, melamine resin, polyester resin, silicone resin, epoxy) Butter, and the like) may further contain at least one or more of such. By blending these resins, it is possible to obtain a molded article having excellent properties.
  • thermoplastic resins for example, polyamide resins, polyphenylene sulfide resins, polyether ether ket
  • thermoplastic resin composition of the present invention can be blended at any stage for producing the thermoplastic resin composition of the present invention.
  • a resin component is blended.
  • the method of adding simultaneously and the method of adding after melt-kneading at least 2 component resin previously are mentioned.
  • thermoplastic resin composition of the present invention examples include a resin component and phosphoric acid and / or monosodium phosphate (D), and if necessary, a crystal nucleating agent, a plasticizer, a filler, and other additives.
  • examples thereof include a method of pre-blending the agent and then uniformly melting and kneading with a single or twin screw extruder above the melting point of the resin component, and a method of removing the solvent after mixing in the solution.
  • aliphatic polyester resin (C) may alkali-decompose depending on the component to mix, alkaline decomposition of aliphatic polyester resin (C) is carried out. In order to suppress, it is preferable to prepare a pellet in which the graft copolymer (B), phosphoric acid and / or monosodium phosphate (D) are kneaded in advance.
  • thermoplastic resin composition when the thermoplastic resin composition is produced for the purpose of molding as an extruded product such as a sheet, the components other than the aliphatic polyester resin (C) are melted and kneaded, and then the aliphatic polyester resin (C) is added and further melted. It is preferable to produce the thermoplastic resin composition of the present invention by kneading.
  • resin components other than the aliphatic polyester resin (C) and phosphoric acid and / or monosodium phosphate from the top feed port (main raw material feed side) of the twin-screw extruder ( D), and the crystal nucleating agent, plasticizer, filler, and other additives, and then aliphatic from the side supply port (sub-material supply side) existing near the center of the barrel length of the twin-screw extruder.
  • a polyester resin (C) is supplied and further melted and kneaded to obtain a thermoplastic resin composition.
  • this method can reduce the occurrence of irregularities that cause damage to the surface appearance.
  • thermoplastic resin composition of the present invention can be molded by any method such as generally known injection molding, extrusion molding, inflation molding, blow molding, etc., and can be widely used as molded products of all shapes. Molded products are films, sheets, fibers / clothes, non-woven fabrics, injection molded products, extrusion molded products, vacuum / pressure molded products, blow molded products, or composites with other materials. It is useful for electronic equipment materials, agricultural materials, horticultural materials, fishery materials, civil engineering / architectural materials, stationery, medical supplies, toilet seats and sundries.
  • Intrinsic viscosity [ ⁇ ] of the methyl ethyl ketone soluble part of the styrene resin (A) and the graft copolymer (B) The sample to be measured was calculated from viscosity measurement at 30 ° C. using an Ubbelohde viscometer as a 0.2 g / 100 ml methyl ethyl ketone solvent and a 0.4 g / 100 ml methyl ethyl ketone solvent.
  • Weight average molecular weight of the polylactic acid which is the aliphatic polyester resin (C) was measured using a gel permeation chromatography (GPC) apparatus manufactured by Water, using a differential refractometer as a detector (Water 2414).
  • GPC gel permeation chromatography
  • PMMA polymethyl methacrylate
  • MIXED-B two) manufactured by Polymer Laboratories, distillate hexafluoroisopropanol, flow rate 1 ml / min, column temperature 40 ° C.
  • the weight average molecular weight of the methylethyl soluble part of the styrene resin (A) and the graft copolymer (B) was measured using the same apparatus and conditions as those for polylactic acid except that tetrahydrofuran was used as the distillate. did.
  • the molding conditions of the test piece were a cylinder temperature of 220 ° C. and a mold temperature of 60 ° C.
  • MFR measurement It measured according to ISO1133 (temperature 220 degreeC and 98N load conditions measurement).
  • Heat resistance evaluation thermo deformation temperature measurement
  • the heat distortion temperature was measured according to ISO75-1,2.
  • the molding conditions of the test piece were a cylinder temperature of 220 ° C. and a mold temperature of 60 ° C.
  • the test piece was molded under the following conditions. The test piece was retained at a cylinder temperature of 220 ° C for 10 minutes and injected into a mold adjusted to a mold temperature of 60 ° C to obtain a test piece. Subsequent work was performed according to ISO179.
  • thermoplastic resin composition pellets are sandwiched between metal molds, and the molten material heated and pressed at 220 ° C. for 3 minutes with a pressure press machine is pulled, and the length is 100 mm ⁇ 300 mm and the thickness is 0.3 to 0. A 5 ⁇ m sheet was prepared. This was visually evaluated for appearance, and indicated as + if there was no irregularity in this area and-if there was irregularity.
  • the reaction temperature After raising the reaction temperature to 65 ° C over 30 minutes, the temperature was raised to 100 ° C over 120 minutes. Thereafter, the reaction system was cooled, the polymer was separated, washed, and dried according to the usual method to obtain a bead-shaped polymer.
  • the intrinsic viscosity of the methyl ethyl ketone soluble part of the obtained styrene resin was 0.53 dl / g, and the weight average molecular weight was 134,000.
  • the monomer component is 67 parts by weight of methyl methacrylate, 20 parts by weight of styrene, 13 parts by weight of acrylonitrile, 0.33 parts by weight of t-dodecyl mercaptan is 0.35 parts by weight, and 2,2′-azobisisobutyro Suspension polymerization was performed in the same manner as in the above (A) -1, except that 0.31 part by weight of nitrile was changed to 0.4 part by weight.
  • the intrinsic viscosity of the methyl ethyl ketone soluble part of the obtained styrene resin was 0.46 dl / g, and the weight average molecular weight was 114,000.
  • the resulting graft copolymer had a graft rate of 50%, an intrinsic viscosity of methyl ethyl ketone solubles of 0.30 dl / g, and a weight average molecular weight of 83,000.
  • Emulsion polymerization was performed in the same manner as in (B) -1, except that the monomer components were changed to 35 parts by weight of methyl methacrylate, 12.5 parts by weight of styrene, and 2.5 parts by weight of acrylonitrile.
  • the graft ratio of the obtained graft copolymer was 45%, the intrinsic viscosity of methyl ethyl ketone soluble matter was 0.28 dl / g, and the weight average molecular weight was 75,000.
  • Examples 1 to 17, Comparative Examples 1 to 9 After dry blending the raw materials having the compositions (parts by weight) shown in Tables 1 and 2, a twin screw extruder (“TEX-30” manufactured by Nippon Steel Works) set at an extrusion temperature of 220 ° C. was used. Melting and kneading and pelletizing are performed, and the obtained pellets are injection molded using an injection molding machine (“IS55EPN injection molding machine” manufactured by Toshiba Machine Co., Ltd.) under conditions of a molding temperature of 220 ° C. and a mold temperature of 60 ° C. Various characteristics of the test piece obtained by the above were evaluated. The evaluation results are shown in Table 1 and Table 2, respectively.
  • thermoplastic resin composition of the present invention is excellent in mechanical properties such as impact resistance and thermal stability, and has an irritating odor at the time of melt compounding and molding. It was also excellent in terms of safety and hygiene from the production of the thermoplastic resin composition to the final product after molding.
  • Examples 18 to 20 For the compositions of Examples 9, 10 and 12, the components other than the aliphatic polyester resin (C) were dry blended, and then a twin screw extruder set at an extrusion temperature of 220 ° C. (“TEX-30 manufactured by Nippon Steel Works, Ltd.) )), And then the aliphatic polyester resin (C) is supplied from the side feed of the extruder and further melt-kneaded, pelletized, and the resulting pellets are produced by an injection molding machine (manufactured by Toshiba Machine Co., Ltd.). Various characteristics of the test pieces obtained by injection molding under the conditions of a molding temperature of 220 ° C. and a mold temperature of 60 ° C. were evaluated using an “IS55EPN injection molding machine”). The evaluation results are as shown in Table 1. The thermal stability and impact resistance of Examples 18 to 20 had the same properties as those of Examples 9, 10 and 12, but the surface appearance (sheet roughness evaluation) Excellent results were obtained compared to Examples 9, 10 and 12.
  • thermoplastic resin composition of the present invention is excellent in impact resistance, thermal stability, and molding processability, so that it is a film, sheet, fiber / cloth, non-woven fabric, injection molded product, extrusion molded product, vacuum / pressure molded product, Blow molded products or composites with other materials, such as automobile materials, electrical and electronic equipment materials, agricultural materials, horticultural materials, fishery materials, civil engineering and construction materials, stationery, medical supplies, Useful for toilet seats, sundries, or other uses.

Abstract

 本発明は、スチレン系樹脂(A)、グラフト共重合体(B)および脂肪族ポリエステル樹脂(C)を含む樹脂組成物に、リン酸および/またはリン酸1ナトリウム(D)を配合してなる、熱可塑性樹脂組成物に関するものであり、耐衝撃性に代表される機械特性および熱安定性に優れるほか、安全・衛生面で問題なく成形することができる。

Description

熱可塑性樹脂組成物およびその成形品
 本発明は、耐衝撃性、熱滞留による耐久性(以下、熱安定性、ともいう。)、さらには成形加工性に優れ、低環境負荷である熱可塑性樹脂組成物およびそれからなる成形品に関するものである。
 従来の成形用材料は、ポリエチレン樹脂、ポリプロプレン樹脂、ナイロン樹脂、ポリエステル樹脂、ABS樹脂、ポリカーボネート樹脂、ポリアセタール樹脂などあらゆる分野に使用されてきた。製品の使用後には、埋め立てや焼却処分されてきたため、半永久的な地中への残留または、焼却時の二酸化炭素の発生など地球環境に対し大きく負荷を与えてきた。近年、地球温暖化の要因として、温室効果ガスの1つである二酸化炭素の大気中の濃度上昇が指摘され、地球規模での二酸化炭素排出抑制の機運が高まってきている。
 このような環境保全の見地からバイオマスの活用が注目され化石資源原料の代替検討がなされている。成形用材料においても、化石資源使用量の削減および二酸化炭素排出量の抑制可能な植物由来の樹脂が注目されている。植物由来の樹脂として、ポリ乳酸樹脂をはじめとする脂肪族ポリエステル樹脂がその代表ではあるが、前記の既存石油系樹脂と比較して成形品の機械的強度や耐熱性(熱変形温度)が低下し、さらには樹脂の熱安定性も低下するため、ポリ乳酸をはじめとする脂肪族ポリエステルを使用できる適用範囲が狭くなっていた。また、脂肪族ポリエステル樹脂を使用することによる熱安定性の低下は、樹脂の流動特性に大きな影響を与えるため、安定した成形加工条件を得ることが困難になるほか、成形方法や成形機サイズなどにも大きな制約が発生してしまっていた。このような脂肪族ポリエステル樹脂の特徴は安定した物性保持を困難とするものであり、市場展開する際の量産化が難しくなり、今後より汎用樹脂として展開するに当たり大きな障害となっていた。
 前述の脂肪族ポリエステル樹脂の課題を改善するため、これまでに各種改良検討が行われており、その改良手法としては、前記の既存樹脂とのポリマーアロイや改質剤添加する手法が盛んに行われている。
 特許文献1には、ゴム強化スチレン系樹脂と、ポリカーボネート樹脂、ポリエステル樹脂のアロイにリン酸系化合物を添加し、機械的強度や熱安定性が向上することが開示されているが、ポリカーボネート樹脂の熱安定性について記載があるも、ポリエステル樹脂に対する熱安定性技術については記載されておらず、ゴム強化スチレン系樹脂とポリエステル樹脂のアロイに対する熱安定性向上には更なる改良が必要であった。
 また、特許文献2では、脂肪族ポリエステル樹脂にゴム強化スチレン系樹脂やアクリル系樹脂をアロイし、さらにジカルボン酸無水物を添加することで機械的強度と耐熱性の両者を向上できると開示あるも、熱安定性についての検討が不十分であり、更なる改良が必要であった。さらに、ジカルボン酸無水物としてマレイン酸無水物やコハク酸無水物の使用が好ましいと記載されているが、脂肪族ポリエステル樹脂とゴム強化スチレン系樹脂ならびにアクリル系樹脂とのコンパウンド時やその後の成形加工時に刺激臭が発生し、生産時の人体への影響を考慮した場合、安全・衛生面で問題があった。
特開2007-254507号公報 特開2007-191688号公報
 本発明は、耐衝撃性に代表される機械特性および熱安定性に優れた脂肪族ポリエステル樹脂の熱可塑性樹脂組成物ならびにその成形品を安全・衛生面で問題なく提供することを課題とする。
 本発明者らは、前記課題を解決すべく鋭意検討した結果、スチレン系樹脂(A)、グラフト共重合体(B)、脂肪族ポリエステル樹脂(C)、ならびにリン酸および/またはリン酸1ナトリウム(D)を配合してなる熱可塑性樹脂組成物とすることで、前記課題を解決できることが分かった。
 すなわち本発明は以下の(1)~(11)で構成される。
(1)スチレン系樹脂(A)、グラフト共重合体(B)および脂肪族ポリエステル樹脂(C)を含む樹脂組成物に、リン酸および/またはリン酸1ナトリウム(D)を配合してなる、熱可塑性樹脂組成物。
(2)前記樹脂組成物がさらにアクリル系樹脂(E)を含む、(1)に記載の熱可塑性樹脂組成物。
(3)脂肪族ポリエステル樹脂(C)がポリ乳酸である、(1)または(2)に記載の熱可塑性樹脂組成物。
(4)前記樹脂組成物100重量部に対して、リン酸および/またはリン酸1ナトリウム(D)を0.01~5重量部含む、(1)~(3)のいずれかに記載の熱可塑性樹脂組成物。
(5)前記樹脂組成物100重量部において、スチレン系樹脂(A)を10~80重量部、グラフト共重合体(B)を5~70重量部、脂肪族ポリエステル樹脂(C)を1~85重量部、およびアクリル系樹脂(E)を0~30重量部含む、(1)~(4)のいずれかに記載の熱可塑性樹脂組成物。
(6)スチレン系樹脂(A)が少なくとも芳香族ビニル系単量体(a1)を重合してなる、(1)~(5)のいずれかに記載の熱可塑性樹脂組成物。
(7)グラフト共重合体(B)がゴム質重合体(r)に少なくとも不飽和カルボン酸アルキルエステル系単量体(b1)を含む単量体成分をグラフト重合してなる、(1)~(6)のいずれかに記載の熱可塑性樹脂組成物。
(8)アクリル系樹脂(E)がポリメタクリル酸メチル系樹脂である、(2)~(7)のいずれかに記載の熱可塑性樹脂組成物。
(9)(1)~(8)のいずれかに記載の熱可塑性樹脂組成物の製造方法であって、脂肪族ポリエステル樹脂(C)以外の成分を溶融混練後、脂肪族ポリエステル樹脂(C)を添加してさらに溶融混練することを特徴とする、熱可塑性樹脂組成物の製造方法。
(10)(1)~(8)のいずれかに記載の熱可塑性樹脂組成物を成形してなる成形品。
(11)(1)~(8)のいずれかに記載の熱可塑性樹脂組成物を成形してなるシート。
 本発明によれば、耐衝撃性に代表される機械特性や、熱安定性、さらには成形加工性に優れた熱可塑性樹脂組成物ならびにその成形品を安全・衛生面で問題なく得ることができる。
 以下、本発明の熱可塑性樹脂組成物について、具体的に説明する。
 本発明の熱可塑性樹脂組成物は、スチレン系樹脂(A)、グラフト共重合体(B)および脂肪族ポリエステル樹脂(C)を含む樹脂組成物に、リン酸および/またはリン酸1ナトリウム(D)を配合することを特徴とする。
 本発明で用いられるスチレン系樹脂(A)とは、スチレンをはじめ、α-メチルスチレン、o-メチルスチレン、p-メチルスチレン、o-エチルスチレン、p-エチルスチレンおよびp-t-ブチルスチレンなどの芳香族ビニル系単量体(a1)を公知の塊状重合、塊状懸濁重合、溶液重合、沈殿重合または乳化重合に供することにより得られるものであり、好ましくは、少なくとも芳香族ビニル系単量体(a1)を含み、その他必要に応じて不飽和カルボン酸アルキルエステル系単量体(a2)、シアン化ビニル系単量体(a3)、およびこれらと共重合可能な他のビニル系単量体(a4)が含まれた単量体混合物(a)を共重合して得られる共重合体である。なお、スチレン系樹脂(A)には、ゴム質重合体(r)に単量体成分をグラフト重合して得られるグラフト共重合体は含まれない。
 スチレン系樹脂(A)を構成する芳香族ビニル系単量体(a1)については、具体例として、前述の通り、スチレンをはじめ、α-メチルスチレン、o-メチルスチレン、p-メチルスチレン、o-エチルスチレン、p-エチルスチレンおよびp-t-ブチルスチレンなどが挙げられるが、中でもスチレンまたはα-メチルスチレンが好ましく用いられる。これらは1種または2種以上を用いることができる。
 スチレン系樹脂(A)を構成する不飽和カルボン酸アルキルエステル系単量体(a2)については特に制限はないが、炭素数1~6のアルキル基または置換アルキル基を持つアクリル酸エステルおよび/またはメタクリル酸エステルが好適であり、具体例としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸t-ブチル、(メタ)アクリル酸n-ヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸クロロメチル、(メタ)アクリル酸2-クロロエチル、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸3-ヒドロキシプロピル、(メタ)アクリル酸2,3,4,5,6-ペンタヒドロキシヘキシルおよび(メタ)アクリル酸2,3,4,5-テトラヒドロキシペンチルなどが挙げられるが、なかでもメタクリル酸メチルが最も好ましく用いられる。これらはその1種または2種以上を用いることができる。
 スチレン系樹脂(A)を構成するシアン化ビニル系単量体(a3)についても特に制限はなく、具体例として、アクリロニトリル、メタクリロニトリルおよびエタクリロニトリルなどが挙げられるが、なかでもアクリロニトリルが好ましく用いられる。これらは1種または2種以上を用いることができる。
 スチレン系樹脂(A)を構成する他のビニル系単量体(a4)としては、芳香族ビニル系単量体(a1)、不飽和カルボン酸アルキルエステル系単量体(a2)、シアン化ビニル系単量体(a3)と共重合可能であれば特に制限はなく、具体例として、N-メチルマレイミド、N-エチルマレイミド、N-シクロヘキシルマレイミド、N-フェニルマレイミドなどのマレイミド系単量体、アクリル酸、メタクリル酸、マレイン酸、マレイン酸モノエチルエステル、無水マレイン酸、フタル酸およびイタコン酸などのカルボキシル基または無水カルボキシル基を有するビニル系単量体、3-ヒドロキシ-1-プロペン、4-ヒドロキシ-1-ブテン、シス-4-ヒドロキシ-2-ブテン、トランス-4-ヒドロキシ-2-ブテン、3-ヒドロキシ-2-メチル-1-プロペン、シス-5-ヒドロキシ-2-ペンテン、トランス-5-ヒドロキシ-2-ペンテン、4,4-ジヒドロキシ-2-ブテンなどのヒドロキシル基を有するビニル系単量体、アクリル酸グリシジル、メタクリル酸グリシジル、エタクリル酸グリシジル、イタコン酸グリシジル、アリルグリシジルエーテル、スチレン-p-グリシジルエーテルおよびp-グリシジルスチレンなどのエポキシ基を有するビニル系単量体、アクリルアミド、メタクリルアミド、N-メチルアクリルアミド、ブトキシメチルアクリルアミド、N-プロピルメタクリルアミド、アクリル酸アミノエチル、アクリル酸プロピルアミノエチル、メタクリル酸ジメチルアミノエチル、メタクリル酸エチルアミノプロピル、メタクリル酸フェニルアミノエチル、メタクリル酸シクロヘキシルアミノエチル、N-ビニルジエチルアミン、N-アセチルビニルアミン、アリルアミン、メタアリルアミン、N-メチルアリルアミン、p-アミノスチレンなどのアミノ基およびその誘導体を有するビニル系単量体、2-イソプロペニル-オキサゾリン、2-ビニル-オキサゾリン、2-アクロイル-オキサゾリンおよび2-スチリル-オキサゾリンなどのオキサゾリン基を有するビニル系単量体などが挙げられ、これらは1種または2種以上を用いることができる。
 前記単量体混合物(a)の配合比は、好ましくは、芳香族ビニル系単量体(a1)1~100重量%に対して、不飽和カルボン酸アルキルエステル系単量体(a2)0~99重量%、シアン化ビニル系単量体(a3)0~50重量%、およびこれらと共重合可能な他のビニル系単量体(a4)0~99重量%であり、より好ましくは芳香族ビニル系単量体(a1)10~90重量%、不飽和カルボン酸アルキルエステル系単量体(a2)50~90重量%、シアン化ビニル系単量体(a3)0~40重量%、およびこれらと共重合可能な他のビニル系単量体(a4)0~50重量%、さらに好ましくは芳香族ビニル系単量体(a1)15~80重量%、不飽和カルボン酸アルキルエステル系単量体(a2)60~80重量%、シアン化ビニル系単量体(a3)0~30重量%、およびこれらと共重合可能な他のビニル系単量体(a4)0~30重量%である。
 スチレン系樹脂(A)の特性には制限はないが、好ましくは、メチルエチルケトン溶媒を用いて、30℃で測定した固有粘度[η]が、0.20~2.00dl/g、好ましくは0.25~1.50dl/gの範囲のものが、より好ましくは、0.25~1.0dl/gの範囲のものを使用することにより、耐衝撃性および成形加工性に優れた熱可塑性樹脂組成物が得られる。
 スチレン系樹脂(A)の分子量には制限はないが、好ましくは、テトラヒドロフラン溶媒を用いて、ゲルパーミエーションクロマトグラフィー(GPC)で測定した重量平均分子量が、10,000~400,000の範囲、より好ましくは、50,000~150,000の範囲のものを使用することにより、耐衝撃性および成形加工性に優れた熱可塑性樹脂組成物が得られる。
 本発明で用いられるスチレン系樹脂(A)の具体例としては、ポリスチレン、ハイインパクトポリスチレン、AS樹脂、AAS樹脂、AES樹脂、MAS樹脂、MS樹脂等が挙げられる。また、本発明で用いられるスチレン系樹脂(A)は1種または2種以上を用いることができ、例えば、不飽和カルボン酸アルキルエステル系単量体(a2)としてメタクリル酸メチルを共重合したスチレン系樹脂とメタクリル酸メチルを共重合してないスチレン系樹脂を併用することにより、耐衝撃性、耐熱性、表面外観性、着色性のいずれにも優れたものが得られる。
 本発明で用いられるグラフト共重合体(B)とは、ゴム質重合体(r)の存在下で、単量体成分を、公知の塊状重合、塊状懸濁重合、溶液重合、沈殿重合または乳化重合に供することにより、ゴム質重合体(r)に単量体成分をグラフト重合して得られるものである。なお、グラフト共重合体(B)には、ゴム質重合体(r)に単量体成分がグラフト重合したグラフト共重合体だけでなく、ゴム質重合体(r)にグラフトしていない単量体成分の重合体を含みうる。
 ゴム質重合体(r)には特に制限はないが、ガラス転移温度が0℃以下のものが好適であり、ジエン系ゴム、アクリル系ゴム、エチレン系ゴムなどが好ましく使用でき、具体例としては、ポリブタジエン、スチレン-ブタジエン共重合体、スチレン-ブタジエンのブロック共重合体、アクリロニトリル-ブタジエン共重合体、アクリル酸ブチル-ブタジエン共重合体、ポリイソプレン、ブタジエン-メタクリル酸メチル共重合体、アクリル酸ブチル-メタクリル酸メチル共重合体、ブタジエン-アクリル酸エチル共重合体、エチレン-プロピレン共重合体、エチレン-イソプレン共重合体およびエチレン-アクリル酸メチル共重合体などが挙げられる。これらのゴム質重合体のうちでは、ポリブタジエン、スチレン-ブタジエン共重合体、スチレン-ブタジエンのブロック共重合体およびアクリロニトリル-ブタジエン共重合体が、特に耐衝撃性の観点から好ましく用いられ、1種または2種以上の混合物で使用することが可能である。
 ゴム質重合体(r)の重量平均粒子径には特に制限はないが、0.05~1.0μm、特に0.1~0.5μmの範囲であることが好ましい。ゴム質重合体の重量平均粒子径を0.05μm~1.0μmの範囲とすることによって、優れた耐衝撃性を発現することができる。また、ゴム質重合体としては、1種または2種以上を用いることができ、耐衝撃性と流動性の点で、重量平均粒子径が異なるゴム質重合体を2種以上用いることが好ましく、例えば、重量平均粒子径が小さいゴム質重合体と重量平均粒子径が大きいゴム質重合体を併用する、いわゆるバイモーダルゴムを用いてもよい。
 なお、ゴム質重合体(r)の重量平均粒子径は、「Rubber Age、Vol.88、p.484~490、(1960)、by E.Schmidt, P.H.Biddison」に記載のアルギン酸ナトリウム法、つまりアルギン酸ナトリウムの濃度によりクリーム化するポリブタジエン粒子径が異なることを利用して、クリーム化した重量割合とアルギン酸ナトリウム濃度の累積重量分率より累積重量分率50%の粒子径を求める方法により測定することができる。
 ゴム質重合体(r)のゲル含有率には特に制限はないが、耐衝撃性と耐熱性の点で、40~99重量%であることが好ましく、60~95重量%であることがより好ましく、70~90重量%であることが特に好ましい。ここで、ゲル含有率は、トルエンを用いて室温で24時間抽出して不溶分の割合を求める方法により測定することができる。
 グラフト共重合体(B)は、ゴム質重合体(r)が好ましくは10~80重量%、より好ましくは30~70重量%の存在下に、単量体成分を好ましくは20~90重量%、より好ましくは30~70重量%をグラフト重合して得られる。ゴム質重合体の割合が前記の範囲未満でも、また前記の範囲を超えても、衝撃強度や表面外観が低下する場合がある。
 グラフト共重合体(B)のグラフト成分を構成する単量体成分は、好ましくは、少なくとも不飽和カルボン酸アルキルエステル系単量体(b1)を含み、その他必要に応じて芳香族ビニル系単量体(b2)、シアン化ビニル系単量体(b3)、これらと共重合可能な他のビニル系単量体(b4)を含有する単量体混合物(b)である。
 グラフト共重合体(B)を構成する不飽和カルボン酸アルキルエステル系単量体(b1)には特に制限はないが、炭素数1~6のアルキル基または置換アルキル基を持つアクリル酸エステルおよび/またはメタクリル酸エステルが好適である。具体例としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸t-ブチル、(メタ)アクリル酸n-ヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸クロロメチル、(メタ)アクリル酸2-クロロエチル、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸3-ヒドロキシプロピル、(メタ)アクリル酸2,3,4,5,6-ペンタヒドロキシヘキシルおよび(メタ)アクリル酸2,3,4,5-テトラヒドロキシペンチルなどが挙げられるが、なかでもメタクリル酸メチルが最も好ましく用いられる。これらはその1種または2種以上を用いることができる。
 グラフト共重合体(B)を構成する芳香族ビニル系単量体(b2)には特に制限はなく、具体例としてはスチレンをはじめ、α-メチルスチレン、o-メチルスチレン、p-メチルスチレン、o-エチルスチレン、p-エチルスチレンおよびp-t-ブチルスチレンなどが挙げられるが、なかでもスチレンおよびα-メチルスチレンが好ましく用いられる。これらは1種または2種以上を用いることができる。
 グラフト共重合体(B)を構成するシアン化ビニル系単量体(b3)には特に制限はなく、具体例としてはアクリロニトリル、メタクリロニトリルおよびエタクリロニトリルなどが挙げられるが、なかでもアクリロニトリルが好ましく用いられる。これらは1種または2種以上を用いることができる。
 グラフト共重合体(B)を構成する他のビニル系単量体(b4)としては、不飽和カルボン酸アルキルエステル系単量体(b1)、芳香族ビニル系単量体(b2)、シアン化ビニル系単量体(b3)と共重合可能であれば特に制限はないが、具体例としては、N-メチルマレイミド、N-エチルマレイミド、N-シクロヘキシルマレイミド、N-フェニルマレイミドなどのマレイミド系単量体、アクリル酸、メタクリル酸、マレイン酸、マレイン酸モノエチルエステル、無水マレイン酸、フタル酸およびイタコン酸などのカルボキシル基または無水カルボキシル基を有するビニル系単量体、3-ヒドロキシ-1-プロペン、4-ヒドロキシ-1-ブテン、シス-4-ヒドロキシ-2-ブテン、トランス-4-ヒドロキシ-2-ブテン、3-ヒドロキシ-2-メチル-1-プロペン、シス-5-ヒドロキシ-2-ペンテン、トランス-5-ヒドロキシ-2-ペンテン、4,4-ジヒドロキシ-2-ブテンなどのヒドロキシル基を有するビニル系単量体、アクリル酸グリシジル、メタクリル酸グリシジル、エタクリル酸グリシジル、イタコン酸グリシジル、アリルグリシジルエーテル、スチレン-p-グリシジルエーテルおよびp-グリシジルスチレンなどのエポキシ基を有するビニル系単量体、アクリルアミド、メタクリルアミド、N-メチルアクリルアミド、ブトキシメチルアクリルアミド、N-プロピルメタクリルアミド、アクリル酸アミノエチル、アクリル酸プロピルアミノエチル、メタクリル酸ジメチルアミノエチル、メタクリル酸エチルアミノプロピル、メタクリル酸フェニルアミノエチル、メタクリル酸シクロヘキシルアミノエチル、N-ビニルジエチルアミン、N-アセチルビニルアミン、アリルアミン、メタアリルアミン、N-メチルアリルアミン、p-アミノスチレンなどのアミノ基およびその誘導体を有するビニル系単量体、2-イソプロペニル-オキサゾリン、2-ビニル-オキサゾリン、2-アクロイル-オキサゾリンおよび2-スチリル-オキサゾリンなどのオキサゾリン基を有するビニル系単量体などが挙げられ、これらは1種または2種以上を用いることができる。
 単量体混合物(b)の組成比は、不飽和カルボン酸アルキルエステル系単量体(b1)が好ましくは20~90重量%、より好ましくは30~80重量%、芳香族ビニル系単量体(b2)が好ましくは0~70重量%、より好ましくは0~50重量%、シアン化ビニル系単量体(b3)が好ましくは0~50重量%、より好ましくは0~30重量%、これらと共重合可能な他のビニル系単量体(b4)が好ましくは0~70重量%、より好ましくは0~50重量%である。
 前述の通り、グラフト共重合体(B)は、ゴム質重合体(r)に単量体成分がグラフトした構造をとったグラフト共重合体の他に、グラフトしていない重合体を含有したものである。グラフト共重合体(B)のグラフト率は特に制限がないが、耐衝撃性および光沢が均衡してすぐれる樹脂組成物を得るためには、10~100重量%、特に20~80重量%の範囲であることが好ましい。ここで、グラフト率は次式により算出される値である。
グラフト率(%)=[<ゴム質重合体にグラフト重合したビニル系共重合体量>/<グラフト共重合体のゴム含有量>]×100。
 グラフト共重合体(B)に含まれるグラフトしていない重合体の特性は特に制限されないが、メチルエチルケトン可溶分の固有粘度[η](30℃で測定)が、0.10~1.00dl/g、特に0.20~0.80dl/gの範囲であることが、すぐれた耐衝撃性の樹脂組成物を得るために好ましい条件である。
 前述の通り、グラフト共重合体(B)は、公知の重合法で得ることができる。例えば、ゴム質重合体ラテックスの存在下に単量体および連鎖移動剤の混合物と乳化剤に溶解したラジカル発生剤の溶液を連続的に重合容器に供給して乳化重合する方法などによって得ることができる。
 本発明で使用される脂肪族ポリエステル樹脂(C)は、脂肪族ヒドロキシカルボン酸を主たる構成成分とする重合体、脂肪族多価カルボン酸と脂肪族多価アルコールを主たる構成成分とする重合体などが挙げられる。具体的には、脂肪族ヒドロキシカルボン酸を主たる構成成分とする重合体として、ポリグリコール酸、ポリ乳酸、ポリ3-ヒドロキシ酪酸、ポリ4-ヒドロキシ酪酸、ポリ4-ヒドロキシ吉草酸、ポリ3-ヒドロキシヘキサン酸またはポリカプロラクトンなどが挙げられ、脂肪族多価カルボン酸と脂肪族多価アルコールを主たる構成成分とする重合体としては、ポリエチレンアジペート、ポリエチレンサクシネート、ポリブチレンアジペートまたはポリブチレンサクシネートなどが挙げられる。これらの脂肪族ポリエステル樹脂は、単独ないし2種以上を用いることができる。これらの脂肪族ポリエステル樹脂の中でも、ヒドロキシカルボン酸を主たる構成成分とする重合体が好ましく、特にポリ乳酸が好ましく使用される。
 ポリ乳酸としては、L-乳酸および/またはD-乳酸を主たる構成成分とする重合体であるが、本発明の目的を損なわない範囲で、乳酸以外の他の共重合成分を含んでいてもよい。かかる他の共重合成分単位としては、例えば、多価カルボン酸、多価アルコール、ヒドロキシカルボン酸、ラクトンなどが挙げられ、具体的には、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、アゼライン酸、セバシン酸、ドデカンジオン酸、フマル酸、シクロヘキサンジカルボン酸、テレフタル酸、イソフタル酸、フタル酸、2,6-ナフタレンジカルボン酸、5-ナトリウムスルホイソフタル酸、5-テトラブチルホスホニウムスルホイソフタル酸などの多価カルボン酸類、エチレングリコール、プロピレングリコール、ブタンジオール、ヘプタンジオール、ヘキサンジオール、オクタンジオール、ノナンジオ-ル、デカンジオール、1,4-シクロヘキサンジメタノ-ル、ネオペンチルグリコール、グリセリン、トリメチロールプロパン、ペンタエリスリトール、ビスフェノ-ルA、ビスフェノールにエチレンオキシドを付加反応させた芳香族多価アルコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコールなどの多価アルコール類、グリコール酸、3-ヒドロキシ酪酸、4-ヒドロキシ酪酸、4-ヒドロキシ吉草酸、6-ヒドロキシカプロン酸、ヒドロキシ安息香酸などのヒドロキシカルボン酸類、グリコリド、ε-カプロラクトングリコリド、ε-カプロラクトン、β-プロピオラクトン、δ-ブチロラクトン、β-またはγ-ブチロラクトン、ピバロラクトン、δ-バレロラクトンなどのラクトン類などを使用することができる。これらの共重合成分は、単独ないし2種以上を用いることができる。
 ポリ乳酸は、耐熱性の観点から乳酸成分の光学純度が高い方が好ましく、総乳酸成分の内、L体あるいはD体が80モル%以上含まれることが好ましく、さらには90モル%以上含まれることが好ましく、95モル%以上含まれることが特に好ましい。
 また、耐熱性、成形加工性の点で、ポリ乳酸ステレオコンプレックスを用いることも好ましい態様の一つである。ポリ乳酸ステレオコンプレックスを形成させる方法としては、例えば、L体が90モル%以上、好ましくは95モル%以上、より好ましくは98モル%以上のポリ-L-乳酸とD体が90モル%以上、好ましくは95モル%以上、より好ましくは98モル%以上のポリ-D-乳酸を溶融混練や溶液混練などにより混合する方法が挙げられる。また、別の方法として、ポリ-L-乳酸とポリ-D-乳酸をブロック共重合体とする方法も挙げることができ、ポリ乳酸ステレオコンプレックスを容易に形成させることができるという点で、ポリ-L-乳酸とポリ-D-乳酸をブロック共重合体とする方法が好ましい。
 脂肪族ポリエステル樹脂(C)の製造方法としては、既知の重合方法を用いることができ、特にポリ乳酸については、乳酸からの直接重合法、ラクチドを介する開環重合法などを採用することができる。
 脂肪族ポリエステル樹脂(C)の分子量や分子量分布は、実質的に成形加工が可能であれば、特に限定されるものではないが、重量平均分子量としては、好ましくは1万以上、より好ましくは4万以上、特に好ましくは8万以上であるのがよい。ここでいう重量平均分子量とは、溶媒としてヘキサフルオロイソプロパノールを用いたゲルパーミエーションクロマトグラフィー(GPC)で測定したポリメタクリル酸メチル(PMMA)換算の重量平均分子量である。
 脂肪族ポリエステル樹脂(C)の融点は、特に限定されるものではないが、90℃以上であることが好ましく、さらに150℃以上であることが好ましい。
 なお、本発明においては、耐熱性に優れる樹脂組成物が得られるという点で、スチレン系樹脂(A)と脂肪族ポリエステル樹脂(C)の溶融粘度比((A)/(C))が、0.1~10の範囲にあることが好ましい。溶融粘度は、キャピラリーグラフ測定装置(株式会社東洋精機製作所製キャピログラフ1C型、オリフィス長さ20mm、オリフィス径1mm)を用いて、220℃、剪断速度1000s-1における測定値を用いる。
 本発明においては、樹脂組成物として前記(A)~(C)に加えて、さらにアクリル系樹脂(E)を配合することが好ましい。
 本発明で使用するアクリル系樹脂(E)とは、(メタ)アクリル酸アルキル系単量体の重合体または共重合体であり、スチレン系樹脂(A)、グラフト共重合体(B)、脂肪族ポリエステル樹脂(C)以外の重合体である。アクリル樹脂(E)の添加により、耐衝撃性を向上させることができる。
 (メタ)アクリル酸アルキル系単量体としては、メタクリル酸メチル、アクリル酸メチル、アクリル酸エチル、メタクリル酸エチル、アクリル酸ブチル、メタクリル酸ブチル、メタクリル酸シクロヘキシル、メタクリル酸ヒドロキシエチル、メタクリル酸グリシジル、メタクリル酸アリル、アクリル酸アミノエチル、アクリル酸プロピルアミノエチル、アクリル酸2-ヒドロキシエチル、アクリル酸2-ヒドロキシプロピル、アクリル酸グリシジル、アクリル酸ジシクロペンテニルオキシエチル、アクリル酸ジシクロペンタニル、ジアクリル酸ブタンジオール、ジアクリル酸ノナンジオール、ジアクリル酸ポリエチレングリコール、2-(ヒドロキシメチル)アクリル酸メチル、2-(ヒドロキシメチル)アクリル酸エチル、メタクリル酸、メタクリル酸エチル、メタクリル酸ブチル、メタクリル酸シクロへキシル、メタクリル酸ジメチルアミノエチル、メタクリル酸エチルアミノプロピル、メタクリル酸フェニルアミノエチル、メタクリル酸シクロヘキシルアミノエチル、メタクリル酸2-ヒドロキシエチル、メタクリル酸2-ヒドロキシプロピル、メタクリル酸グリシジル、メタクリル酸ジシクロペンテニルオキシエチル、メタクリル酸ジシクロペンタニル、メタクリル酸ペンタメチルピペリジル、メタクリル酸テトラメチルピペリジル、メタクリル酸ベンジル、ジメタクリル酸エチレングリコール、ジメタクリル酸プロピレングリコール、ジメタクリル酸ポリエチレングリコールなどが挙げられ、これらの1種又は2種以上を用いることができる。
 また、ラクトン環、マレイン酸無水物、グルタル酸無水物などの環構造単位を主鎖に含有する共重合体を用いることもできる。
 本発明で用いられるアクリル系樹脂(E)としては、メタクリル酸メチル成分単位を主成分とするポリメタクリル酸メチル系樹脂が好ましく、メタクリル酸メチル成分単位を70%以上含むポリメタクリル酸メチル系樹脂がより好ましく、ポリメチルメタクリレート(PMMA)樹脂がさらに好ましい。
 また、アクリル系樹脂(E)の分子量や分子量分布は、実質的に成形加工が可能であれば、特に限定されるものではないが、成形加工性の観点から重量平均分子量1,000~450,000であることが好ましく、10,000~200,000がより好ましく、30,000~150,000がさらに好ましい。ここでいう重量平均分子量とは、溶媒としてヘキサフルオロイソプロパノールを用いたGPCで測定したポリメチルメタクリレート(PMMA)換算の重量平均分子量である。
 また、耐熱性の点で、アクリル系樹脂(E)のガラス転移温度は、60℃以上が好ましく、70℃以上がより好ましく、80℃以上がさらに好ましく、90℃以上が特に好ましく、100℃以上が最も好ましい。上限は特に限定されないが、成形性の点で、150℃以下が好ましい。ここでいうガラス転移温度は、示差走査型熱量計(DSC)測定により求めたガラス転移温度の値であり、ガラス転移温度領域における比熱容量変化が半分の値となる温度である。
 アクリル系樹脂(E)としてポリメタクリル酸メチル系樹脂を用いる場合には、メタクリル系樹脂のシンジオタクチシチーは、20%以上が好ましく、30%以上がより好ましく、40%以上がさらに好ましい。上限は特に限定されないが、成形性の点で、90%以下が好ましい。また、耐熱性の点で、ヘテロタクチシチーが50%以下であることが好ましく、40%以下であることがより好ましく、30%以下であることがさらに好ましい。また、耐熱性の点で、アイソタクチシチーが20%以下であることが好ましく、15%以下であることがより好ましく、10%以下であることがさらに好ましい。ここでいうシンジオタクチシチー、ヘテロタクチシチー、アイソタクチシチーとは、溶媒として、重水素化クロロホルムを用いたH-NMR測定による直鎖分岐のメチル基の積分強度比から算出した値である。
 アクリル系樹脂(E)の製造方法としては、塊状重合、溶液重合、懸濁重合、乳化重合等の公知の重合方法を用いることができる。
 本発明における樹脂組成物の配合比は特に限定されないが、本発明の効果を奏するにあたっては、樹脂組成物の合計量100重量部において、スチレン系樹脂(A)が好ましくは10~80重量部、より好ましくは15~75重量部、さらに好ましくは20~70重量部、特に好ましくは30~60重量部であり、グラフト共重合体(B)が好ましくは5~70重量部、より好ましくは5~65重量部、さらに好ましくは10~60重量部、特に好ましくは10~50重量部であり、脂肪族ポリエステル樹脂(C)が好ましくは1~85重量部以下、より好ましくは5~80重量部、さらに好ましくは5~70重量部であり、アクリル系樹脂(E)が好ましくは0~30重量部、より好ましくは1~30重量部、さらに好ましくは2~20重量部である。
 本発明の熱可塑性樹脂組成物は、前記樹脂成分に加えて、リン酸および/またはリン酸1ナトリウム(D)を含有することを特徴とする。リン酸および/またはリン酸1ナトリウム(D)は、グラフト共重合体(B)がその製造過程によりアルカリ性を示すことによる脂肪族ポリエステル樹脂(C)のアルカリ分解を防止し、樹脂組成物の熱安定性を向上させる目的で使用される。そして、樹脂組成物の原料配合や溶融コンパウンド、ならびに得られた樹脂組成物の成形時に発生する刺激臭による人体への安全・衛生面、樹脂組成物の熱安定性などの観点において、既に公知となっている有機酸など含めた他の中和剤よりも優れることを特徴とする。
 特に、食品用器具や玩具など人体への安全・衛生がより厳しく求められる用途へ展開させる場合には、リン酸1ナトリウムの使用が好ましい。リン酸1ナトリウム自体は、医療分野や食品添加物に広く使用されており、摂取した場合の安全性が既に確認されているほか、食品用器具などに起因する衛生上の危害を未然に防止するための業界自主規制団体であるポリオレフィン等衛生協議会でも樹脂添加剤として適切であることが認められている(添加剤のポジティブリストに登録されている)。
 本発明の熱可塑性樹脂組成物におけるリン酸および/またはリン酸1ナトリウム(D)の含有量は、樹脂組成物の合計100重量部に対し、0.01~5重量部の範囲であることが好ましく、より好ましくは0.1~2重量部、さらに好ましくは0.1~0.5重量部である。リン酸および/またはリン酸1ナトリウム(D)の含有量が0.01重量部に満たない場合には、脂肪族ポリエステル樹脂(C)のアルカリ分解抑制の効果が十分に発揮されず、本発明の熱可塑性樹脂組成物の初期の耐衝撃性が低下するだけでなく、熱滞留において耐衝撃性が大幅に低下することがあり、一方、5重量部を超える場合には、成形品の熱滞留時の発泡や成形品の表面外観が低下することがある。
 その他、グラフト共重合体(B)のアルカリ性の中和ができる酸性の物質であれば、本発明におけるリン酸および/またはリン酸1ナトリウム(D)の特性を損なわない範囲、また製造面での安全・衛生の観点で影響が発生しない範囲であれば、いかなるものでも使用することができる。具体的には、塩酸、硫酸、硝酸などの無機酸、酢酸、シュウ酸、マロン酸、コハク酸、マレイン酸、アジピン酸、セバシン酸、アゼライン酸、ドデカン二酸、シクロヘキサンジカルボン酸、クエン酸、テレフタル酸、イソフタル酸、オルトフタル酸、安息香酸、トリメリット酸、ピロメリット酸、フェノール、ナフタレンジカルボン酸、ジフェン酸などの有機酸、シュウ酸、マロン酸、コハク酸、マレイン酸、アジピン酸、セバシン酸、アゼライン酸、ドデカン二酸、クエン酸、オルトフタル酸、トリメリット酸、ピロメリット酸の酸無水物が挙げられる。リン酸またはリン酸1ナトリウム以外の前記化合物を併用する時、必ずしも1種で使用する必要は無く、併用することもできる。
 本発明においては、耐熱性が向上するという観点から、さらに結晶核剤を含有することが好ましい。結晶核剤としては、一般にポリマーの結晶核剤として用いられるものを特に制限なく用いることができ、無機系結晶核剤および有機系結晶核剤のいずれをも使用することができ、単独ないし2種以上用いることができる。
 無機系結晶核剤の具体例としては、タルク、カオリナイト、モンモリロナイト、マイカ、合成マイカ、クレー、ゼオライト、シリカ、グラファイト、カーボンブラック、酸化亜鉛、酸化マグネシウム、酸化カルシウム、酸化チタン、硫化カルシウム、窒化ホウ素、炭酸マグネシウム、炭酸カルシウム、硫酸バリウム、酸化アルミニウム、酸化ネオジウムおよびフェニルホスホネートの金属塩などが挙げられ、耐熱性を向上させる効果が大きいという観点から、タルク、カオリナイト、モンモリロナイトおよび合成マイカが好ましい。これらは単独ないし2種以上を用いることができる。これらの無機系結晶核剤は、組成物中での分散性を高めるために、有機物で修飾されていることが好ましい。
 無機系結晶核剤の含有量は、脂肪族ポリエステル樹脂(C)100重量部に対して、0.01~100重量部が好ましく、0.05~50重量部がより好ましく、0.1~30重量部がさらに好ましい。
 有機系結晶核剤の具体例としては、安息香酸ナトリウム、安息香酸カリウム、安息香酸リチウム、安息香酸カルシウム、安息香酸マグネシウム、安息香酸バリウム、テレフタル酸リチウム、テレフタル酸ナトリウム、テレフタル酸カリウム、シュウ酸カルシウム、ラウリン酸1ナトリウム、ラウリン酸カリウム、ミリスチン酸ナトリウム、ミリスチン酸カリウム、ミリスチン酸カルシウム、オクタコサン酸ナトリウム、オクタコサン酸カルシウム、ステアリン酸1ナトリウム、ステアリン酸カリウム、ステアリン酸リチウム、ステアリン酸カルシウム、ステアリン酸マグネシウム、ステアリン酸バリウム、モンタン酸ナトリウム、モンタン酸カルシウム、トルイル酸ナトリウム、サリチル酸ナトリウム、サリチル酸カリウム、サリチル酸亜鉛、アルミニウムジベンゾエート、カリウムジベンゾエート、リチウムジベンゾエート、ナトリウムβ-ナフタレート、ナトリウムシクロヘキサンカルボキシレートなどの有機カルボン酸金属塩、p-トルエンスルホン酸ナトリウム、スルホイソフタル酸ナトリウムなどの有機スルホン酸塩、ステアリン酸アミド、エチレンビスラウリン酸アミド、パルチミン酸アミド、ヒドロキシステアリン酸アミド、エルカ酸アミド、トリメシン酸トリス(t-ブチルアミド)などのカルボン酸アミド、低密度ポリエチレン、高密度ポリエチレン、ポリプロピレン、ポリイソプロピレン、ポリブテン、ポリ-4-メチルペンテン、ポリ-3-メチルブテン-1、ポリビニルシクロアルカン、ポリビニルトリアルキルシラン、高融点ポリ乳酸などのポリマー、エチレン-アクリル酸またはメタクリル酸コポリマーのナトリウム塩、スチレン-無水マレイン酸コポリマーのナトリウム塩などのカルボキシル基を有する重合体のナトリウム塩またはカリウム塩(いわゆるアイオノマー)、ベンジリデンソルビトールおよびその誘導体、ナトリウム-2,2’-メチレンビス(4,6-ジ-t-ブチルフェニル)フォスフェートなどのリン化合物金属塩および2,2-メチルビス(4,6-ジ-t-ブチルフェニル)ナトリウムなどが挙げられ、耐熱性を向上させる効果が大きいという観点からは、有機カルボン酸金属塩およびカルボン酸アミドが好ましい。これらは単独ないし2種以上用いることができる。
 有機系結晶核剤の含有量は、脂肪族ポリエステル樹脂(C)100重量部に対して、0.01~30重量部が好ましく、0.05~10重量部がより好ましく、0.1~5重量部がさらに好ましい。
 本発明においては、耐熱性が向上するという観点から、さらに可塑剤を含有することが好ましい。可塑剤としては、一般にポリマーの可塑剤として用いられるものを特に制限なく用いることができ、例えばポリエステル系可塑剤、グリセリン系可塑剤、多価カルボン酸エステル系可塑剤、ポリアルキレングリコール系可塑剤及びエポキシ系可塑剤などを挙げることができ、単独ないし2種以上用いることができる。
 ポリエステル系可塑剤の具体例としては、アジピン酸、セバチン酸、テレフタル酸、イソフタル酸、ナフタレンジカルボン酸、ジフェニルジカルボン酸などの酸成分と、プロピレングリコール、1,3-ブタンジオール、1,4-ブタンジオール、1,6-ヘキサンジオール、エチレングリコール、ジエチレングリコールなどのジオール成分からなるポリエステルやポリカプロラクトンなどのヒドロキシカルボン酸からなるポリエステルなどを挙げることができる。これらのポリエステルは単官能カルボン酸もしくは単官能アルコールで末端封鎖されていてもよく、またエポキシ化合物などで末端封鎖されていてもよい。
 グリセリン系可塑剤の具体例としては、グリセリンモノアセトモノラウレート、グリセリンジアセトモノラウレート、グリセリンモノアセトモノステアレート、グリセリンジアセトモノオレートおよびグリセリンモノアセトモノモンタネートなどを挙げることができる。
 多価カルボン酸系可塑剤の具体例としては、フタル酸ジメチル、フタル酸ジエチル、フタル酸ジブチル、フタル酸ジオクチル、フタル酸ジヘプチル、フタル酸ジベンジル、フタル酸ブチルベンジルなどのフタル酸エステル、トリメリット酸トリブチル、トリメリット酸トリオクチル、トリメリット酸トリヘキシルなどのトリメリット酸エステル、アジピン酸ジイソデシル、アジピン酸n-オクチル-n-デシルアジピン酸エステルなどのセバシン酸エステル、アセチルクエン酸トリエチル、アセチルクエン酸トリブチルなどのクエン酸エステル、アゼライン酸ジ-2-エチルヘキシルなどのアゼライン酸エステル、セバシン酸ジブチル、およびセバシン酸ジ-2-エチルヘキシルなどのセバシン酸エステルなどを挙げることができる。
 ポリアルキレングリコール系可塑剤の具体例としては、ポリエチレングリコール、ポリプロピレングリコール、ポリ(エチレンオキサイド・プロピレンオキサイド)ブロック及び/またはランダム共重合体、ポリテトラメチレングリコール、ビスフェノール類のエチレンオキシド付加重合体、ビスフェノール類のプロピレンオキシド付加重合体、ビスフェノール類のテトラヒドロフラン付加重合体などのポリアルキレングリコールあるいはその末端エポキシ変性化合物、末端エステル変性化合物および末端エーテル変性化合物などの末端封鎖化合物などを挙げることができる。
 エポキシ系可塑剤とは、一般にはエポキシステアリン酸アルキルと大豆油とからなるエポキシトリグリセリドなどを指すが、その他にも、主にビスフェノールAとエピクロロヒドリンを原料とするような、いわゆるエポキシ樹脂も可塑剤として使用することができる。
 その他の可塑剤の具体例としては、ネオペンチルグリコールジベンゾエート、ジエチレングリコールジベンゾエート、トリエチレングリコールジ-2-エチルブチレートなどの脂肪族ポリオールの安息香酸エステル、ステアリン酸アミドなどの脂肪酸アミド、オレイン酸ブチルなどの脂肪族カルボン酸エステル、アセチルリシノール酸メチル、アセチルリシノール酸ブチルなどのオキシ酸エステル、ペンタエリスリトール、各種ソルビトール、ポリアクリル酸エステル、シリコーンオイルおよびパラフィン類などを挙げることができる。
 なお、本発明で好ましく使用される可塑剤としては、前記に例示したものの中でも、特にポリエステル系可塑剤及びポリアルキレングリコール系可塑剤から選択した少なくとも1種が好ましい。
 可塑剤の含有量は、脂肪族ポリエステル樹脂(C)100重量部に対して、0.01~30重量部の範囲が好ましく、0.1~20重量部の範囲がより好ましく、0.5~10重量部の範囲がさらに好ましい。
 本発明においては、結晶核剤と可塑剤を各々単独で用いてもよいが、これらを併用して用いることが好ましい。
 本発明においては、耐熱性が向上するという観点から、さらに無機系結晶核剤以外の充填剤を含有することが好ましい。無機系結晶核剤以外の充填剤としては、通常熱可塑性樹脂の強化に用いられる繊維状、板状、粒状、粉末状のものを用いることができる。具体的には、ガラス繊維、アスベスト繊維、炭素繊維、グラファイト繊維、金属繊維、チタン酸カリウムウイスカー、ホウ酸アルミニウムウイスカー、マグネシウム系ウイスカー、珪素系ウイスカー、ワラストナイト、セピオライト、アスベスト、スラグ繊維、ゾノライト、エレスタダイト、石膏繊維、シリカ繊維、シリカ・アルミナ繊維、ジルコニア繊維、窒化ホウ素繊維、窒化硅素繊維及びホウ素繊維などの無機繊維状充填剤、ポリエステル繊維、ナイロン繊維、アクリル繊維、再生セルロース繊維、アセテート繊維、ケナフ、ラミー、木綿、ジュート、麻、サイザル、亜麻、リネン、絹、マニラ麻、さとうきび、木材パルプ、紙屑、古紙及びウールなどの有機繊維状充填剤、ガラスフレーク、グラファイト、金属箔、セラミックビーズ、セリサイト、ベントナイト、ドロマイト、微粉珪酸、長石粉、チタン酸カリウム、シラスバルーン、珪酸アルミニウム、酸化珪素、石膏、ノバキュライト、ドーソナイトおよび白土などなどの板状や粒状の充填剤が挙げられる。これらの充填剤の中では、無機繊維状充填剤が好ましく、特にガラス繊維、ワラストナイトが好ましい。また、有機繊維状充填剤の使用も好ましく、脂肪族ポリエステル樹脂(C)の生分解性を生かすという観点から、天然繊維や再生繊維がさらに好ましい。また、配合に供する繊維状充填剤のアスペクト比(平均繊維長/平均繊維径)は5以上であることが好ましく、10以上であることがさらに好ましく、20以上であることがさらに好ましい。
 また、前記の充填剤は、エチレン/酢酸ビニル共重合体などの熱可塑性樹脂や、エポキシ樹脂などの熱硬化性樹脂で被覆または集束処理されていてもよく、アミノシランやエポキシシランなどのカップリング剤などで処理されていてもよい。
 充填剤の含有量は、脂肪族ポリエステル樹脂(C)100重量部に対して、0.1~200重量部が好ましく、0.5~100重量部がより好ましい。
 本発明においては、脂肪族ポリエステル樹脂(C)の加水分解抑制による耐熱性、耐久性が向上という観点から、さらにカルボキシル基反応性末端封鎖剤を含有することが好ましい。カルボキシル基反応性末端封鎖剤としては、ポリマーのカルボキシル末端基を封鎖することのできる化合物であれば特に制限はなく、ポリマーのカルボキシル末端の封鎖剤として用いられているものを用いることができる。本発明においてかかるカルボキシル基反応性末端封鎖剤は、脂肪族ポリエステル樹脂(C)の末端を封鎖するのみではなく、天然由来の有機充填剤の熱分解や加水分解などで生成する乳酸やギ酸などの酸性低分子化合物のカルボキシル基も封鎖することができる。また、前記末端封鎖剤は、熱分解により酸性低分子化合物が生成する水酸基末端も封鎖できる化合物であることがさらに好ましい。
 このようなカルボキシル基反応性末端封鎖剤としては、エポキシ化合物、オキサゾリン化合物、オキサジン化合物、カルボジイミド化合物、イソシアネート化合物から選ばれる少なくとも1種の化合物を使用することが好ましく、なかでもエポキシ化合物および/またはカルボジイミド化合物が好ましい。
 カルボキシル基反応性末端封鎖剤の含有量は、脂肪族ポリエステル樹脂(C)100重量部に対して、0.01~10重量部の範囲が好ましく、0.05~5重量部の範囲がより好ましい。
 カルボキシル基反応性末端封鎖剤の添加時期は、特に限定されないが、耐熱性を向上するだけでなく、機械特性や熱安定性を向上できるという点で、脂肪族ポリエステル樹脂(C)と予め溶融混練した後、その他のものと混練することが好ましい。
 本発明において、本発明の目的を損なわない範囲で安定剤(酸化防止剤、紫外線吸収剤、耐候剤など)、滑剤、離型剤、難燃剤、染料または顔料を含む着色剤、帯電防止剤、発泡剤などを添加することができる。
 本発明において、本発明の目的を損なわない範囲で、他の熱可塑性樹脂(例えば、ポリアミド樹脂、ポリフェニレンサルファイド樹脂、ポリエーテルエーテルケトン樹脂、脂肪族ポリエステル樹脂(C)以外のポリエステル樹脂、ポリスルホン樹脂、ポリエーテルスルホン樹脂、芳香族および脂肪族ポリカーボネート樹脂、ポリアリレート樹脂、ポリフェニレンオキサイド樹脂、ポリアセタール樹脂、ポリイミド樹脂、ポリエーテルイミド樹脂、芳香族および脂肪族ポリケトン樹脂、フッ素樹脂、ポリ塩化ビニル系樹脂、ポリ塩化ビニリデン樹脂、ビニルエステル系樹脂、酢酸セルロース樹脂、ポリビニルアルコール樹脂など)または熱硬化性樹脂(例えば、フェノール樹脂、メラミン樹脂、ポリエステル樹脂、シリコーン樹脂、エポキシ樹脂など)などの少なくとも1種以上をさらに含有することができる。これらの樹脂を配合することで、優れた特性を有する成形品を得ることができる。
 本発明の熱可塑性樹脂組成物に配合されうる前記の種々の添加剤は、本発明の熱可塑性樹脂組成物を製造する任意の段階で配合することが可能であり、例えば、樹脂成分を配合する際に同時に添加する方法や、予め少なくとも2成分の樹脂を溶融混練した後に添加する方法が挙げられる。
 本発明の熱可塑性樹脂組成物の製造方法としては、例えば、樹脂成分およびリン酸および/またはリン酸1ナトリウム(D)、ならびに必要に応じて結晶核剤、可塑剤、充填剤、その他の添加剤を予めブレンドした後、樹脂成分の融点以上において一軸または二軸押出機で均一に溶融混練する方法や、溶液中で混合した後に溶媒を除く方法などが挙げられる。なお、前記成分を混合して熱可塑性樹脂組成物を製造する場合、混合する成分によっては脂肪族ポリエステル樹脂(C)がアルカリ分解することがあるため、脂肪族ポリエステル樹脂(C)のアルカリ分解を抑制するためには、あらかじめグラフト共重合体(B)、リン酸および/またはリン酸1ナトリウム(D)を混練したペレットを作製しておくことが好ましい。
 また、熱可塑性樹脂組成物をシートなどの押出成形品として成形する目的で製造する場合、脂肪族ポリエステル樹脂(C)以外の成分を溶融混練後に脂肪族ポリエステル樹脂(C)を添加してさらに溶融混練することによって本発明の熱可塑性樹脂組成物を製造することが好ましい。本方法について具体的な態様を挙げて説明すると、二軸押出機のトップ供給口(主原料供給側)より脂肪族ポリエステル樹脂(C)以外の樹脂成分とリン酸および/またはリン酸1ナトリウム(D)、ならびに前記結晶核剤、可塑剤、充填剤、その他の添加剤を供給し、その後、二軸押出機のバレル全長の中央付近に存在するサイド供給口(副原料供給側)より脂肪族ポリエステル樹脂(C)を供給してさらに溶融混練させて熱可塑性樹脂組成物を得る方法である。シートなどの成形品では表面外観が重要となる場合があるが、本方法によって、表面外観を損なう原因となるブツの発生を低減することができる。
 本発明の熱可塑性樹脂組成物は、通常公知の射出成形、押出成形、インフレーション成形、ブロー成形などの任意の方法で成形することができ、あらゆる形状の成形品として広く用いることができる。成形品とは、フィルム、シート、繊維・布、不織布、射出成形品、押出成形品、真空圧空成形品、ブロー成形品、または他の材料との複合体などであり、自動車用資材、電機・電子機器用資材、農業用資材、園芸用資材、漁業用資材、土木・建築用資材、文具、医療用品、便座、雑貨の用途として有用である。
 本発明を更に具体的にかつ詳細に説明するため、以下に実施例を挙げるが、これらの実施例は本発明を何ら制限するものではない。なお、ここで特に断りのない限り「%」は重量%を示す。
 以下に実施例で行った評価方法について示す。
 (1)スチレン系樹脂(A)、グラフト共重合体(B)のメチルエチルケトン可溶分の固有粘度[η]
 測定するサンプルを0.2g/100mlメチルエチルケトン溶媒、0.4g/100mlメチルエチルケトン溶媒としてウベローデ粘度計を用い、30℃での粘度測定より算出した。
 (2)グラフト共重合体(B)におけるゴム質重合体(r)の重量平均粒子径
 「Rubber Age、Vol.88、p.484~490、(1960)、by E.Schmidt, P.H.Biddison」に記載のアルギン酸ナトリウム法、即ち、アルギン酸ナトリウムの濃度によりクリーム化するポリブタジエン粒子径が異なることを利用して、クリーム化した重量割合とアルギン酸ナトリウム濃度の累積重量分率から累積重量分率50%の粒子径を求めた。
 (3)グラフト共重合体(B)のグラフト率
 80℃の温度で4時間真空乾燥を行ったゴム含有グラフト共重合体(A)の所定量(m;1g)にアセトン100mlを加え、70℃の温度の湯浴中で3時間還流し、この溶液を8800r.p.m.(10000G)で40分間遠心分離した後、不溶分を濾過し、この不溶分を80℃の温度で4時間真空乾燥し、重量(n)を測定した。グラフト率は、下記式により算出した。ここでLは、ゴム含有グラフト共重合体のゴム含有率である。
グラフト率(%)={[(n)-(m)×L]/[(m)×L]}×100。
 (4)重量平均分子量
 脂肪族ポリエステル樹脂(C)であるポリ乳酸の重量平均分子量は、Water社製ゲルパーミエーションクロマトグラフィー(GPC)装置を用い、示差屈折計を検出器(Water2414)とし、カラムとしてポリマーラボラトリーズ社製MIXED-B(2本)、留出液ヘキサフルオロイソプロパノール、流速1ml/min、カラム温度40℃の条件で測定されるポリメタクリル酸メチル(PMMA)換算の重量平均分子量として測定し、また、スチレン系樹脂(A)およびグラフト共重合体(B)のメチルエチル可溶分の重量平均分子量は留出液としてテトラヒドロフランを使用する以外はポリ乳酸での測定と同じ装置・条件で測定した。
 (5)シャルピー衝撃強度
 ISO179に準じて測定した。試験片の成形条件は、シリンダ温度220℃、金型温度60℃とした。
 (6)MFR測定
 ISO1133(温度220℃、98N荷重条件で測定)に準じて測定した。
 (7)耐熱性評価(熱変形温度測定)
 ISO75-1,2に準じて熱変形温度を測定した。試験片の成形条件は、シリンダ温度220℃、金型温度60℃とした。
 (8)熱滞留シャルピー衝撃強度
 試験片の成形条件は、シリンダ温度220℃で10分間滞留し、金型温度60℃に調整した金型内に射出し試験片を得た。その後の作業はISO179に準じて行った。
 (9)熱滞留MFR測定
 前記(6)のMFR測定の条件に加え、シリンダ内に10分さらに滞留させたものについて測定した。
 (10)熱安定性評価
 シャルピー衝撃強度とMFRにつき、初期値および熱滞留後の値をそれぞれ(I)、(H)として下記式より算出される変化率で熱滞留による耐久性を評価した。すなわち、変化率が小さいほど熱安定性に優れる。
シャルピー衝撃強度の変化率(%)=((I)-(H))/(I)×100
MFRの変化率(%)=((H)-(I))/(I)×100。
 (11)シートブツ評価
 熱可塑性樹脂組成物ペレットを金属金型で挟み、加圧プレス機で220℃、3分間加熱加圧させた溶融物を引っ張り、縦横100mm×300mmで、厚み0.3~0.5μmのシートを作成した。これを外観目視評価して、この面積中にブツがなければ+、ブツがあれば-で示した。
 (12)安全・衛生面の確認
 溶融コンパウンド時や得られたペレットの射出成形時の刺激臭の有無を確認した。
 以下、実施例に使用した原料およびその製造方法等を示す。
 [スチレン系樹脂(A)]
 <(A)-1の製造方法>
 容量が20Lで、バッフルおよびファウドラ型撹拌翼を備えたステンレス製オートクレーブに、メタクリル酸メチル/アクリルアミド共重合体(特公昭45-24151号公報記載)0.05重量部をイオン交換水165重量部に溶解した溶液を添加して400rpmで撹拌し、系内を窒素ガスで置換した。次に、下記混合物質を反応系で撹拌しながら添加し、60℃に昇温し重合を開始した。
スチレン                    70重量部
アクリロニトリル                30重量部
t-ドデシルメルカプタン            0.33重量部
2,2’-アゾビスイソブチロニトリル      0.31重量部。
 30分かけて反応温度を65℃まで昇温したのち、120分かけて100℃まで昇温した。以降、通常の方法に従い、反応系の冷却、ポリマーの分離、洗浄、乾燥を行なうことにより、ビーズ状のポリマーを得た。得られたスチレン系樹脂のメチルエチルケトン可溶分の固有粘度は0.53dl/g、重量平均分子量は134,000であった。
 <(A)-2の製造方法>
 2,2’-アゾビスイソブチロニトリル0.31重量部を0.15重量部に変更した以外は前記(A)-1と同様に懸濁重合を行った。得られたスチレン系樹脂のメチルエチルケトン可溶分の固有粘度は0.89dl/g、重量平均分子量は351,000であった。
 <(A)-3の製造方法>
 単量体成分をメタクリル酸メチル70重量部、スチレン25重量部、アクリロニトリル5重量部に変更した以外は前記(A)-1と同様に懸濁重合を行った。得られたスチレン系樹脂のメチルエチルケトン可溶分の固有粘度は0.35dl/g、重量平均分子量は105,000であった。
 <(A)-4の製造方法>
 単量体成分をメタクリル酸メチル67重量部、スチレン20重量部、アクリロニトリル13重量部に、t-ドデシルメルカプタン0.33重量部を0.35重量部に、2,2’-アゾビスイソブチロニトリル0.31重量部を0.4重量部に変更した以外は前記(A)-1と同様に懸濁重合を行った。得られたスチレン系樹脂のメチルエチルケトン可溶分の固有粘度は0.46dl/g、重量平均分子量は114,000であった。
 [グラフト共重合体(B)]
 <(B)-1の製造方法>
ポリブタジエン(重量平均粒子径0.35μm、ゲル含有率75%)50重量部
(日本ゼオン株式会社製“Nipol LX111A2”)(固形分換算)
オレイン酸カリウム               0.5重量部
ブドウ糖                    0.5重量部
ピロリン酸1ナトリウム             0.5重量部
硫酸第一鉄                   0.005重量部
脱イオン水                   120重量部。
 以上の物質を重合容器に仕込み、撹拌しながら65℃に昇温した。内温が65℃に達した時点を重合開始として、スチレン35重量部、アクリロニトリル15部、およびt-ドデシルメルカプタン0.3重量部を5時間かけて連続滴下した。並行してクメンハイドロパーオキサイド0.25重量部、オレイン酸カリウム2.5重量部および純水25重量部からなる水溶液を、7時間で連続滴下し反応を完結させた。得られたグラフト共重合体ラテックスを硫酸で凝固し、苛性ソ-ダで中和した後、洗浄、濾過、乾燥してパウダー状として得た。得られたグラフト共重合体のグラフト率は50%、メチルエチルケトン可溶分の固有粘度は0.30dl/g、重量平均分子量は83,000であった。
 <B-2>
 単量体成分をメタクリル酸メチル35重量部、スチレン12.5重量部、アクリロニトリル2.5重量部に変更した以外は前記(B)-1と同様に乳化重合を行った。得られたグラフト共重合体のグラフト率は45%、メチルエチルケトン可溶分の固有粘度は0.28dl/g、重量平均分子量は75,000であった。
 [脂肪族ポリエステル樹脂(C)]
 <C-1>ポリ乳酸
 NatureWorks社製のポリ乳酸(重量平均分子量200,000、D-乳酸単位1%、融点175℃のポリ-L-乳酸)。
 [リン酸および/またはリン酸1ナトリウム(D)]
 <(D)-1>リン酸(0.5mol/L水溶液)(関東化学株式会社製)
 <(D)-2>リン酸1ナトリウム無水物(太平化学産業株式会社製)。
 [アクリル系樹脂(E)]
 <(E)-1>ポリメチルメタクリレート樹脂(住友化学株式会社製“スミペックスMH”)。
 [ジカルボン酸無水物(F)]
 比較例1~5においては、リン酸および/またはリン酸1ナトリウム(D)の代わりに以下のジカルボン酸無水物(F)を使用した。
 <(F)-1>マレイン酸無水物(東京化成工業株式会社製)
 <(F)-2>コハク酸無水物(東京化成工業株式会社製)。
 [リン酸系化合物(G)]
 比較例6~7においては、リン酸および/またはリン酸1ナトリウム(D)の代わりに以下のリン酸化合物(G)を使用した。
 <(G)-1>オクタデシルジハイドロジェンホスフェートおよびジオクタデシルホスフェートの混合物(旭電化工業株式会社製、“アデカスタブAX-71”)
 <(G)-2>リン酸3ナトリウム(米山化学工業株式会社製)。
 [実施例1~17、比較例1~9]
 表1、表2に記載の組成(重量部)からなる原料をドライブレンドした後、押出温度220℃に設定した2軸スクリュー押出機(株式会社日本製鋼所製“TEX-30”)を使用して溶融混練、ペレタイズを行い、得られたペレットを射出成形機(東芝機械株式会社製“IS55EPN射出成形機”)を用いて、成形温度220℃、金型温度60℃の条件で射出成形することにより得られた試験片について、各種特性評価を行った。評価結果を表1、表2にそれぞれ示す。実施例1~17の結果から明らかなように、本発明の熱可塑性樹脂組成物は、耐衝撃性に代表される機械特性や熱安定性に優れるほか、溶融コンパウンド時並びに成形時の刺激臭がなく、熱可塑性樹脂組成物の生産から成形後の最終製品を得るまでの安全・衛生面でも優れていた。
 [実施例18~20]
 実施例9、10および12の組成について、脂肪族ポリエステル樹脂(C)以外の成分をドライブレンドした後、押出温度220℃に設定した2軸スクリュー押出機(株式会社日本製鋼所製“TEX-30”)を使用して溶融混練後、押出機のサイドフィードから脂肪族ポリエステル樹脂(C)を供給してさらに溶融混練し、ペレタイズを行い、得られたペレットを射出成形機(東芝機械株式会社製“IS55EPN射出成形機”)を用いて、成形温度220℃、金型温度60℃の条件で射出成形することにより得られた試験片について、各種特性評価を行った。評価結果は表1に示す通りであり、実施例18~20の熱安定性や耐衝撃性は実施例9、10および12と同等の性質を有していたが、表面外観(シートブツ評価)において実施例9、10および12と比較して優れた結果が得られた。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 本発明の熱可塑性樹脂組成物は、耐衝撃性、熱安定性、さらには成形加工性に優れるため、フィルム、シート、繊維・布、不織布、射出成形品、押出成形品、真空圧空成形品、ブロー成形品、または他の材料との複合体などであり、自動車用資材、電機・電子機器用資材、農業用資材、園芸用資材、漁業用資材、土木・建築用資材、文具、医療用品、便座、雑貨、またはその他の用途として有用である。

Claims (11)

  1.  スチレン系樹脂(A)、グラフト共重合体(B)および脂肪族ポリエステル樹脂(C)を含む樹脂組成物に、リン酸および/またはリン酸1ナトリウム(D)を配合してなる、熱可塑性樹脂組成物。
  2.  前記樹脂組成物がさらにアクリル系樹脂(E)を含む、請求項1に記載の熱可塑性樹脂組成物。
  3.  脂肪族ポリエステル樹脂(C)がポリ乳酸である、請求項1または2に記載の熱可塑性樹脂組成物。
  4.  前記樹脂組成物100重量部に対して、リン酸および/またはリン酸1ナトリウム(D)を0.01~5重量部含む、請求項1~3のいずれか1項に記載の熱可塑性樹脂組成物。
  5.  前記樹脂組成物100重量部において、スチレン系樹脂(A)を10~80重量部、グラフト共重合体(B)を5~70重量部、脂肪族ポリエステル樹脂(C)を1~85重量部、およびアクリル系樹脂(E)を0~30重量部含む、請求項1~4のいずれか1項に記載の熱可塑性樹脂組成物。
  6.  スチレン系樹脂(A)が少なくとも芳香族ビニル系単量体(a1)を重合してなる、請求項1~5のいずれか1項に記載の熱可塑性樹脂組成物
  7.  グラフト共重合体(B)がゴム質重合体(r)に少なくとも不飽和カルボン酸アルキルエステル系単量体(b1)を含む単量体成分をグラフト重合してなる、請求項1~6のいずれか1項に記載の熱可塑性樹脂組成物。
  8.  アクリル系樹脂(E)がポリメタクリル酸メチル系樹脂である、請求項2~7のいずれか1項に記載の熱可塑性樹脂組成物。
  9.  請求項1~8のいずれか1項に記載の熱可塑性樹脂組成物の製造方法であって、脂肪族ポリエステル樹脂(C)以外の成分を溶融混練後、脂肪族ポリエステル樹脂(C)を添加してさらに溶融混練することを特徴とする、熱可塑性樹脂組成物の製造方法。
  10.  請求項1~8のいずれか1項に記載の熱可塑性樹脂組成物を成形してなる成形品。
  11.  請求項1~8のいずれか1項に記載の熱可塑性樹脂組成物を成形してなるシート。
PCT/JP2012/053223 2011-02-15 2012-02-13 熱可塑性樹脂組成物およびその成形品 WO2012111587A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP12746984.9A EP2676996B1 (en) 2011-02-15 2012-02-13 Thermoplastic resin composition and molded articles thereof
KR1020137018108A KR20140032970A (ko) 2011-02-15 2012-02-13 열가소성 수지 조성물 및 그 성형품
US13/981,675 US8871849B2 (en) 2011-02-15 2012-02-13 Thermoplastic resin composition and molded product thereof
JP2012513393A JP5120521B2 (ja) 2011-02-15 2012-02-13 熱可塑性樹脂組成物およびその成形品
CN2012800013871A CN102906184A (zh) 2011-02-15 2012-02-13 热塑性树脂组合物及其成型品

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011029621 2011-02-15
JP2011-029621 2011-02-15
JP2011-256041 2011-11-24
JP2011256041 2011-11-24

Publications (1)

Publication Number Publication Date
WO2012111587A1 true WO2012111587A1 (ja) 2012-08-23

Family

ID=46672506

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/053223 WO2012111587A1 (ja) 2011-02-15 2012-02-13 熱可塑性樹脂組成物およびその成形品

Country Status (8)

Country Link
US (1) US8871849B2 (ja)
EP (1) EP2676996B1 (ja)
JP (1) JP5120521B2 (ja)
KR (1) KR20140032970A (ja)
CN (1) CN102906184A (ja)
MY (1) MY163062A (ja)
TW (1) TWI472570B (ja)
WO (1) WO2012111587A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014057766A1 (ja) 2012-10-10 2014-04-17 東レ株式会社 ポリ乳酸樹脂組成物、成形体およびポリ乳酸樹脂組成物の製造方法
WO2015037574A1 (ja) * 2013-09-11 2015-03-19 東レ株式会社 熱融解積層方式三次元造形用素材および熱融解積層方式3dプリント機器用フィラメント
JP7469934B2 (ja) 2020-03-30 2024-04-17 デンカ株式会社 多層シート及びその製造方法、並びに容器本体

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150114239A (ko) 2014-04-01 2015-10-12 제일모직주식회사 내열성 및 착색성이 향상된 열가소성 수지 조성물
US10619017B2 (en) * 2015-10-30 2020-04-14 Toray Industries, Inc. Fiber-reinforced thermoplastic resin molded article, and fiber-reinforced thermoplastic resin molding material
JP6218347B1 (ja) * 2017-07-21 2017-10-25 ユーエムジー・エービーエス株式会社 めっき用熱可塑性樹脂組成物、樹脂成形品およびめっき加工品
KR102223203B1 (ko) * 2018-12-27 2021-03-04 롯데첨단소재(주) 열가소성 수지 조성물 및 이로부터 제조된 성형품
CN111995838B (zh) * 2020-07-17 2022-11-08 中北大学 利用离子交联改性再生abs/hips共混材料及其制备方法
CN113980436B (zh) * 2021-12-20 2023-06-13 东莞市达瑞电子股份有限公司 一种改性聚酯透明复合材料及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0733933A (ja) * 1993-07-23 1995-02-03 Asahi Chem Ind Co Ltd 耐薬品性樹脂成形物
JP2004204194A (ja) * 2002-12-26 2004-07-22 Polyplastics Co 難燃性樹脂組成物
WO2007129437A1 (ja) * 2006-04-13 2007-11-15 Mitsubishi Engineering-Plastics Corporation 熱可塑性樹脂組成物および樹脂成形品
JP2008222790A (ja) * 2007-03-09 2008-09-25 Toray Ind Inc 樹脂組成物およびそれからなる成形品
JP2009120725A (ja) * 2007-11-15 2009-06-04 Toray Ind Inc ポリ乳酸系樹脂シート、および、情報記録カ−ド

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1130645A (zh) 1995-03-07 1996-09-11 财团法人工业技术研究院 聚对苯二甲酸二丁酯的催化剂组合物
US6989190B2 (en) * 2000-10-17 2006-01-24 General Electric Company Transparent polycarbonate polyester composition and process
JP2006045485A (ja) * 2004-07-02 2006-02-16 Nippon A & L Kk 熱可塑性樹脂組成物
JP5236868B2 (ja) 2006-03-20 2013-07-17 テクノポリマー株式会社 熱可塑性樹脂組成物及び成形品
WO2006118007A1 (ja) 2005-04-28 2006-11-09 Techno Polymer Co., Ltd. 熱可塑性樹脂組成物及び成形品
WO2007015448A1 (ja) 2005-08-04 2007-02-08 Toray Industries, Inc. 樹脂組成物およびそれからなる成形品
JP5140988B2 (ja) 2005-12-22 2013-02-13 東レ株式会社 樹脂組成物およびそれからなる成形品
US8871858B2 (en) * 2006-05-31 2014-10-28 Sabic Global Technologies B.V. Thermoplastic polycarbonate compositions
CN101724229B (zh) 2008-10-16 2012-09-05 上海红京印实业有限公司 一种车灯用极高耐热聚酯合金及其制备方法
DE102008060536A1 (de) 2008-12-04 2010-06-10 Bayer Materialscience Ag Saure Phosphorverbindungen enthaltende schlagzähmodifizierte Polycarbonat-Zusammensetzungen mit basisch gefälltem Emulsionspfropfpolymersiat

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0733933A (ja) * 1993-07-23 1995-02-03 Asahi Chem Ind Co Ltd 耐薬品性樹脂成形物
JP2004204194A (ja) * 2002-12-26 2004-07-22 Polyplastics Co 難燃性樹脂組成物
WO2007129437A1 (ja) * 2006-04-13 2007-11-15 Mitsubishi Engineering-Plastics Corporation 熱可塑性樹脂組成物および樹脂成形品
JP2008222790A (ja) * 2007-03-09 2008-09-25 Toray Ind Inc 樹脂組成物およびそれからなる成形品
JP2009120725A (ja) * 2007-11-15 2009-06-04 Toray Ind Inc ポリ乳酸系樹脂シート、および、情報記録カ−ド

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2676996A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014057766A1 (ja) 2012-10-10 2014-04-17 東レ株式会社 ポリ乳酸樹脂組成物、成形体およびポリ乳酸樹脂組成物の製造方法
JPWO2014057766A1 (ja) * 2012-10-10 2016-09-05 東レ株式会社 ポリ乳酸樹脂組成物、成形体およびポリ乳酸樹脂組成物の製造方法
US9920181B2 (en) 2012-10-10 2018-03-20 Toray Industries, Inc. Polylactic acid resin composition, molded product, and method of manufacturing polylactic acid resin composition
WO2015037574A1 (ja) * 2013-09-11 2015-03-19 東レ株式会社 熱融解積層方式三次元造形用素材および熱融解積層方式3dプリント機器用フィラメント
JP5751388B1 (ja) * 2013-09-11 2015-07-22 東レ株式会社 熱融解積層方式三次元造形用素材および熱融解積層方式3dプリント機器用フィラメント
US10179853B2 (en) 2013-09-11 2019-01-15 Toray Industries, Inc. Material for fused deposition modeling type three-dimensional modeling, and filament for fused deposition modeling type 3D printing device
JP7469934B2 (ja) 2020-03-30 2024-04-17 デンカ株式会社 多層シート及びその製造方法、並びに容器本体

Also Published As

Publication number Publication date
TWI472570B (zh) 2015-02-11
CN102906184A (zh) 2013-01-30
MY163062A (en) 2017-08-15
JPWO2012111587A1 (ja) 2014-07-07
US20130310502A1 (en) 2013-11-21
EP2676996B1 (en) 2015-08-12
EP2676996A1 (en) 2013-12-25
KR20140032970A (ko) 2014-03-17
JP5120521B2 (ja) 2013-01-16
US8871849B2 (en) 2014-10-28
TW201241076A (en) 2012-10-16
EP2676996A4 (en) 2014-07-02

Similar Documents

Publication Publication Date Title
JP5120521B2 (ja) 熱可塑性樹脂組成物およびその成形品
JP5494757B2 (ja) 樹脂組成物およびそれからなる成形品
JP5245229B2 (ja) 樹脂組成物およびそれからなる成形品
JP5751388B1 (ja) 熱融解積層方式三次元造形用素材および熱融解積層方式3dプリント機器用フィラメント
TWI396712B (zh) 樹脂組成物及其成形品
JP5272283B2 (ja) スチレン系樹脂組成物
JP2007191695A (ja) 樹脂組成物およびそれからなる成形品
JP5509517B2 (ja) 樹脂組成物およびそれからなる成形品
JP2007126589A (ja) 射出成形体
JP5228297B2 (ja) スチレン系樹脂組成物およびそれからなる成形品
JP2009120725A (ja) ポリ乳酸系樹脂シート、および、情報記録カ−ド
JP2014031409A (ja) 熱可塑性樹脂組成物およびその成形体
JP5229417B2 (ja) スチレン系樹脂組成物およびそれからなる成形品
JP4935222B2 (ja) 樹脂組成物およびそれからなる成形品
JP2006045487A (ja) 熱可塑性樹脂組成物
JP2013245222A (ja) ポリ乳酸系熱可塑性樹脂組成物およびその成形品
JP5483387B2 (ja) 樹脂組成物およびそれからなる成形品
JP2013181046A (ja) 熱可塑性樹脂組成物およびその成形品
JP5504548B2 (ja) スチレン系樹脂組成物
JP2006056988A (ja) 脂肪族ポリエステル樹脂組成物及びそれを用いた成形品
JP2008133466A5 (ja)
JP5954507B1 (ja) ポリ乳酸系熱可塑性樹脂組成物およびその成形品
JP2011099048A (ja) 熱可塑性樹脂組成物およびその成形品
JP2014040559A (ja) ポリ乳酸系熱可塑性樹脂組成物およびその成形品
JP2012087296A (ja) 熱可塑性樹脂組成物およびその成形品

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280001387.1

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2012513393

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12746984

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137018108

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13981675

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012746984

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1301004497

Country of ref document: TH

NENP Non-entry into the national phase

Ref country code: DE