WO2012105367A1 - Soiウェーハの製造方法 - Google Patents

Soiウェーハの製造方法 Download PDF

Info

Publication number
WO2012105367A1
WO2012105367A1 PCT/JP2012/051412 JP2012051412W WO2012105367A1 WO 2012105367 A1 WO2012105367 A1 WO 2012105367A1 JP 2012051412 W JP2012051412 W JP 2012051412W WO 2012105367 A1 WO2012105367 A1 WO 2012105367A1
Authority
WO
WIPO (PCT)
Prior art keywords
crystal silicon
single crystal
silicon layer
substrate
silicon
Prior art date
Application number
PCT/JP2012/051412
Other languages
English (en)
French (fr)
Inventor
昌次 秋山
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Priority to CN201280006999XA priority Critical patent/CN103339710A/zh
Priority to US13/983,078 priority patent/US20130309842A1/en
Priority to KR1020137020302A priority patent/KR20140005948A/ko
Priority to EP12742138.6A priority patent/EP2672508B1/en
Publication of WO2012105367A1 publication Critical patent/WO2012105367A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/185Joining of semiconductor bodies for junction formation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76251Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78603Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the insulating substrate or support

Definitions

  • the present invention relates to a method for manufacturing an SOI wafer.
  • Silicon on insulator (SOI) wafers have been widely used to reduce parasitic capacitance and measure device speed.
  • SOI wafers a wafer having a handle wafer made of an insulating transparent wafer called Silicon on Quartz (SOQ) or Silicon on Sapphire (SOS) is attracting attention.
  • SOQ is expected to be applied to optoelectronics utilizing the high transparency of quartz, or to high frequency devices utilizing low dielectric loss. Since SOS has a handle wafer made of sapphire, it has high thermal conductivity that cannot be obtained with quartz in addition to high transparency and low dielectric loss, so it is expected to be applied to high-frequency devices that generate heat. .
  • the present invention has been made in view of the above situation, and an object of the present invention is to provide a method for reducing defects generated on the surface and inside of a single crystal silicon layer by a bonding method at a relatively low temperature in a short time.
  • the method for producing a bonded substrate according to the present invention includes a step of obtaining a bonded substrate by forming a single crystal silicon layer by a bonding method on a handle substrate selected from materials having a heat-resistant temperature of 800 ° C. or higher, The method includes a step of depositing amorphous silicon on a single crystal silicon layer of the bonded substrate and a step of applying a heat treatment at 800 ° C. or higher.
  • a bonded substrate of the present invention in particular, in a bonded substrate made of a material having a coefficient of thermal expansion greatly different from that of silicon such as SOQ and SOS, defects generated on the surface and inside of the single crystal silicon layer by the bonding method. Can be reduced by a relatively low-temperature and short-time treatment.
  • bonded substrates 10 each having a single crystal silicon layer 5 formed on a handle substrate 3 selected from materials having a heat resistant temperature of 800 ° C. or higher, such as sapphire and quartz, are prepared by a bonding method (step a).
  • the method for manufacturing the bonded substrate is not particularly limited. For example, after bonding the handle substrate and the single crystal silicon substrate, (1) heat treatment is performed at about 500 ° C. in an inert gas atmosphere, and the crystal rearrangement effect is achieved.
  • a material having a heat resistant temperature of 800 ° C. or higher refers to a material that is not greatly deformed even after heat treatment at 800 ° C.
  • An amorphous material such as quartz can be defined by a glass transition temperature or the like (the glass transition temperature of quartz is around 1050 ° C.).
  • a crystalline material such as sapphire can be replaced with a melting point (the melting point of sapphire is around 2050 ° C.).
  • the handle substrate 3 may be transparent or opaque in the visible light region (400 nm to 700 nm).
  • silicon, silicon with an oxide film, silicon carbide, and aluminum nitride may be used. Can be adopted.
  • a preferable layer thickness of the single crystal silicon layer 5 it can be set to, for example, 20 nm to 500 nm in consideration of a polishing allowance when the polishing process described later is performed, and 50 nm to 500 nm when the polishing process is not performed. It can be 600 nm.
  • the bonding method since a damaged layer of about 150 nm remains on the surface of the single crystal silicon layer 5, it is preferable to perform CMP polishing before laminating an amorphous silicon layer 7 described later. Removing all damaged layers by polishing increases the film thickness variation, so in the actual process, most of them are removed by chemical etching, and then the surface is mirror-finished by mirror finish polishing. The method is reasonable. It is important to remove the damage layer on the surface as much as possible, and it has been empirically found that the effectiveness of the present invention is not influenced by the damage layer removal method (CMP, etching, or a combination of both methods).
  • CMP damage layer removal method
  • CMP polishing is performed in order to make the surface a mirror surface, polishing of 30 nm or more is generally performed.
  • cleaning by a wet process such as RCA cleaning or spin cleaning and / or cleaning by a dry process such as UV / ozone cleaning or HF vapor cleaning may be performed.
  • an amorphous silicon 7 is deposited on the single crystal silicon layer 5 (step b).
  • the method for depositing the amorphous silicon 7 is not particularly limited.
  • the LPCVD method is considered advantageous in terms of cost because it can process 100 to 200 wafers at a time, but there is no problem even if a sputtering method (PVD) or PECVD method is adopted.
  • PVD sputtering method
  • PECVD method PECVD method
  • the temperature condition during the deposition is preferably 600 ° C. or lower so that the polysilicon layer is not formed.
  • a more preferred upper temperature limit is 580 ° C.
  • a preferred lower temperature limit is 540 ° C.
  • the thickness of the amorphous silicon to be deposited is preferably in the range of 20 nm to 500 nm.
  • the gas type to be used is not particularly limited.
  • SiLP 4 may be used in the LPCVD method or the PECVD method.
  • a silicon target can be used.
  • the deposition pressure depends on the gas type, but is about 200 mTorr in the case of LPCVD.
  • the amorphous silicon layer 7 is crystallized to become the single crystal silicon covering layer 9 together with the single crystal silicon layer 5 (step c).
  • defects such as pits and microcracks existing on the surface of the single crystal silicon layer 5 are filled (recovered), and the number of defects can be reduced.
  • a preferable upper limit of the heat treatment temperature is determined in consideration of the heat resistance of the handle substrate, but may be less than about 1200 ° C. when the handle substrate is quartz and less than about 1300 ° C. when sapphire is used.
  • the heat treatment time can be set to 0.5 to 6 hours, for example, from the viewpoint of suppressing migration of atoms contained in the handle substrate.
  • the single crystal silicon layer 5 and the amorphous silicon layer 7 which are the base are clearly separated, so that the crystallization of the amorphous silicon layer 7 can be easily performed according to the orientation of the single crystal silicon layer 5 which is the base.
  • a high quality single crystal silicon coating layer 9 can be obtained at a relatively low temperature (800 ° C. to 1200 ° C.).
  • Comparative Example 2 An SOS substrate manufactured by a bonding method was prepared.
  • the thickness of the single crystal silicon layer was 100 nm.
  • the thickness of the BOX layer was 200 nm.
  • the wafer has a diameter of 150 mm and a thickness of 600 ⁇ m. This wafer was immersed in 49% hydrogen fluoride (HF) for 5 minutes, then rinsed with pure water, and the number of defects was counted with an optical microscope, and averaged (13 spots in the plane were observed). 14.1 defects / cm 2 were observed.
  • HF hydrogen fluoride
  • Example 1 A plurality of SOQ wafers used in Comparative Example 1 were prepared. Mirror polishing (CMP) was performed so that the single crystal silicon film thickness was 60 nm. After cleaning and drying, 40 nm of amorphous silicon was deposited with SiH 4 gas at 560 ° C. under a pressure of 200 mTorr. Thereafter, heat treatment was applied at 700 ° C., 800 ° C., 900 ° C., 1000 ° C., 1100 ° C., and 1200 ° C. for 1 hour. These wafers were subjected to the same HF immersion treatment as in Comparative Example 1, and the number of defects was counted. The results are shown in FIG.
  • CMP Mirror polishing
  • Example 2 A plurality of SOS wafers used in Comparative Example 2 were prepared. Mirror polishing (CMP) was performed so that the single crystal silicon film thickness was 60 nm. After cleaning and drying, 40 nm of amorphous silicon was deposited with SiH 4 gas at 560 ° C. under a pressure of 200 mTorr. Thereafter, heat treatment was applied at 700 ° C., 800 ° C., 900 ° C., 1000 ° C., 1100 ° C., 1200 ° C., and 1300 ° C. for 1 hour. These wafers were subjected to the same HF immersion treatment as in Comparative Example 2, and the number of defects was counted. The results are shown in FIG.
  • CMP Mirror polishing
  • Comparative Example 3 One SOQ wafer used in Comparative Example 1 was prepared. Mirror polishing (CMP) was performed so that the film thickness of the single crystal silicon was 60 nm. After cleaning and drying, 40 nm of polysilicon was deposited with SiH 4 gas at 620 ° C. under a pressure of 200 mTorr. Heat treatment was applied for 1 hour at a temperature of 1000 ° C. These wafers were subjected to the same HF immersion treatment as in Comparative Example 1, and the number of defects was counted. The results are shown in FIG. As a result, it was observed that the number of defects was higher than that of Example 1 treated at 1000 ° C. The deposited film was found to be unsuitable for polysilicon.
  • CMP Mirror polishing
  • Comparative Example 4 One SOS wafer used in Comparative Example 2 was prepared. Mirror polishing (CMP) is performed so that the single crystal silicon film thickness is 60 nm, and after cleaning and drying, polysilicon (average particle size: 0.1 ⁇ m or less) is formed with SiH 4 gas at a pressure of 200 mTorr at 620 ° C. to 40 nm. Deposited. Heat treatment was applied for 1 hour at a temperature of 1000 ° C. These wafers were subjected to the same HF immersion treatment as in Comparative Example 1, and the number of defects was counted. The results are shown in FIG. As a result, it was observed that the number of defects was higher than that of Example 2 treated at 1000 ° C. The deposited film was found to be unsuitable for polysilicon.
  • CMP Mirror polishing

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Recrystallisation Techniques (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

 本発明は、貼り合わせ法により単結晶シリコン層の表面および内部に生じた欠陥を比較的低温かつ短時間の処理で低減する方法を提供することを目的とする。すなわち本発明は、耐熱温度が800℃以上である材料から選択されるハンドル基板上に貼り合わせ法により単結晶シリコン層を形成し貼り合わせ基板を得る工程と、該貼り合わせ基板の単結晶シリコン層上にアモルファスシリコンを堆積する工程と、800℃以上の熱処理を加える工程とを含むSOIウェーハの製造方法に関する。

Description

SOIウェーハの製造方法
 本発明は、SOIウェーハの製造方法に関する。
 寄生容量を低減し、デバイスの高速化を測るためにSilicon on insulator(SOI)ウェーハが広く用いられるようになってきている。このSOIウェーハの中でもSilicon on Quartz(SOQ),Silicon on Sapphire(SOS)というハンドルウェーハが絶縁透明ウェーハで構成されるウェーハが注目を集めている。SOQは石英の高い透明性を活かしたオプトエレクトロニクス関係、もしくは低い誘電損失を活かした高周波デバイスへの応用が期待される。SOSはハンドルウェーハがサファイアで構成されることから、高い透明性や低誘電損失に加え、石英では得られない高い熱伝導率を有することから、発熱を伴う高周波デバイスへの応用が期待されている。
 高い品質を有する単結晶を積層するためには、バルクのシリコンウェーハから貼り合わせ・転写法でシリコン薄膜を形成することが理想的である。R面のサファイア上にシリコン層をヘテロエピ成長する方法や、ガラス上に非単結晶シリコンを成長し、その後レーザーアニールなどで結晶性を高めるCGシリコンなどが開発されているが、貼り合わせ法に勝る方法は無いといえる。
 但し、SOQ、SOSなどのウェーハを作製するためには、熱膨張率が大きく異なる異種材料を貼り合せることから、SOIウェーハ作製に広く用いられているSOITEC法を用いることが出来ないという問題がある。
 SOITEC法においては、二枚のウェーハを貼り合わせた後に、結合強度を高めるために450℃~500℃の熱処理を加える必要があり、ハンドル基板としてシリコンを採用するSOIにおいては2枚のシリコンウェーハを貼り合わせるので問題は無いが、SOQ,SOSウェーハでは、熱処理を加える際に貼り合わせウェーハが割れてしまうという問題がある。シリコン、石英、サファイアの膨張係数は、それぞれ2.6x10-6/K,0.56x10-6/K,5.8x10-6/Kである。
 この問題点を回避するために、貼り合わせ前に表面活性化処理を行い、貼り合わせ後に比較的低温の熱処理を施すことで高い結合強度を得る方法が一般的に知られている(例えば、非特許文献1を参照)。
G.L.Sun,J.Zhan,Q.Y.Tong,S. J.Xie,Y.M.Cai,and S.J.Lu,"Cool plasma activated surface in silicon direct bonding technology," J.de Physique,49(C4),79(1988)
 しかしながら、この様な低温処理で作製されたSOQ、SOSにしてもプロセス中の応力等で誘起され発現した欠陥(ピット、微小なクラックなど)はシリコン層内部には残存しており、これらの欠陥がデバイス特性に悪影響を与える懸念がある。市販されているSOIウェーハと同等の単結晶シリコン層を得るのは困難となっている。
 さらに貼り合わせ法において単結晶シリコン層形成のためにイオン注入法を採用した場合、剥離後形成された単結晶シリコン層の表面が損傷しやすい。
 一般にイオン注入などで生じたダメージを回復する為に熱処理を加えることはよく知られている。例えば、シリコンウェーハに酸素イオンを注入し、然る後に高温(1300℃)程度の熱を長時間加えるSIMOX法などである。しかしこの方法では、長時間(6時間~12時間)・高温のプロセスが必要であり、石英はその温度に耐えられない(ガラス転移温度は1050℃程度)。また、サファイアは耐熱性に優れるものの、900℃以上の熱処理を長時間加えることに起因してサファイアからのアルミの拡散が懸念される。
 本発明は、上記現状に鑑み、貼り合わせ法により単結晶シリコン層の表面および内部に生じた欠陥を比較的低温かつ短時間の処理で低減する方法を提供することを目的とする。
 この問題を解決するために、本発明者は以下のような方法を考案した。
 すなわち、本発明にかかる貼り合わせ基板の製造方法は、耐熱温度が800℃以上である材料から選択されるハンドル基板上に貼り合わせ法により単結晶シリコン層を形成し貼り合わせ基板を得る工程と、該貼り合わせ基板の単結晶シリコン層上にアモルファスシリコンを堆積する工程と、800℃以上の熱処理を加える工程とを含む方法である。
 本発明の貼り合わせ基板の製造方法により、特に、SOQ、SOSなどのシリコンと熱膨張率が大きく異なる材料との貼り合わせ基板において、貼り合わせ法により単結晶シリコン層の表面および内部に生じた欠陥を比較的低温かつ短時間の処理で低減することができる。
本発明に係る方法の模式的工程図である。 本発明に係る方法をSOQウェーハに適用した場合の欠陥密度のアニール温度依存性を示すグラフである。 本発明に係る方法をSOSウェーハに適用した場合の欠陥密度のアニール温度依存性を示すグラフである。 比較例3においてアモルファスシリコンまたはポリシリコンをSOQウェーハに適用しアニールした場合の欠陥密度を比較したグラフである。 比較例4においてアモルファスシリコンまたはポリシリコンをSOSウェーハに適用しアニールした場合の欠陥密度を比較したグラフである。
 以下に、本発明を、図面を参照して詳細に説明する。同じ部材には同じ符号を付して表した。なお、本発明は以下に説明する形態に制限されるものではない。
 本発明の方法の一連の工程を図1に示す。
 まず、貼り合わせ法により、サファイア、石英等の耐熱温度が800℃以上の材料から選択されるハンドル基板3上に単結晶シリコン層5が形成された貼り合わせ基板10をそれぞれ用意する(工程a)。
 貼り合わせ基板の製造方法としては特に限定されないが、例えば、ハンドル基板と単結晶シリコン基板とを貼り合わせた後、(1)不活性ガス雰囲気下500℃程度で熱処理を行い、結晶の再配列効果と注入した水素の気泡の凝集効果により熱剥離を行う方法;(2)貼り合わせ基板の両面間で温度差をつけることにより、水素イオン注入界面で剥離を行う方法;(3)単結晶シリコンに水素イオン(H)または水素分子イオン(H )を注入したのち、該単結晶シリコンのイオン注入した表面またはハンドル基板の表面をオゾン水処理、UVオゾン処理、イオンビーム処理またはプラズマ処理によって活性化処理して貼り合わせ、イオン注入層界面にて機械的剥離および/または光照射剥離(好ましくは400nm以上700nm以下のレーザー光または該波長域に極大強度を有するハロゲンランプ光やキセノンランプ光)を行う方法等により得ることができる。
 耐熱温度が800℃以上の材料とは、800℃の熱処理を経ても、大きな変形を伴わない状態である材料をいう。石英などの非晶質の材料ではガラス転移温度などで定義することも可能である(石英のガラス転移温度は1050℃付近である)。サファイアのような結晶材料は融点と置き換えることも可能である(サファイアの融点は2050℃付近である)。
 ハンドル基板3は、可視光域(400nm以上700nm)において透明であっても不透明であってもよく、上述したサファイア、石英のほかにも例えば、シリコン、酸化膜付きシリコン、炭化ケイ素、窒化アルミニウムを採用することができる。
 単結晶シリコン層5の好ましい層厚の目安としては、後述の研磨工程を経る場合は、研磨代を考慮して例えば、20nm~500nmとすることができ、研磨工程を経ない場合は、50nm~600nmとすることができる。
 貼り合わせ法を採用した場合、上記単結晶シリコン層5の表面には、150nm程度のダメージ層が残存するので、後述するアモルファスシリコン層7の積層に先立ち、CMP研磨を施すことが好ましい。ダメージ層全てを研磨で取り除くことは膜厚バラツキを増大させることになるので、実際のプロセスでは、大部分を化学的なエッチング方法で除去し、然る後に鏡面仕上げ研磨で表面を鏡面化するという方法が合理的である。表面のダメージ層を可能な限り取り去ることが重要であり、ダメージ層の除去方法(CMP、エッチングもしくは両方法の併用)には本発明の有効性は左右されないことが経験的に判明している。
 CMP研磨は、表面を鏡面化するために行うので、通常は30nm以上の研磨を行うのが一般的である。
 上記CMP研磨および鏡面仕上げ研磨の後、RCA洗浄やスピン洗浄等のウェットプロセスによる洗浄、および/または、UV/オゾン洗浄やHFベーパー洗浄等のドライプロセスによる洗浄を施してもよい。
 上記工程を経て得られた貼り合わせ基板10の単結晶シリコン層5には欠陥が残存している。そこで単結晶シリコン層5上にアモルファスシリコン7を被覆堆積する(工程b)。アモルファスシリコン7を堆積する方法は特に限定はされない。例えば、LPCVD法などは一度に100枚~200枚のウェーハを処理できるためにコスト的に有利と考えられるが、スパッタ法(PVD)やPECVD法を採用しても問題はない。
 ここで重要なことは、下地となる層が貼り合わせ法で形成された単結晶シリコンであることと、その上に形成されるシリコン層は完全なアモルファス(非晶質)であることが望ましい点である。堆積されるシリコンにポリシリコン(多結晶)が含まれていると、堆積層はランダムな方位で微小な結晶が存在しているため、このプロセスは上手く働かない。堆積時の温度条件としては、ポリシリコン層が形成されないように600℃以下であることが好ましい。
 より好ましい温度上限は、580℃であり、好ましい温度下限は、540℃である。堆積すべきアモルファスシリコンの厚みは好ましくは、20nm~500nmの範囲である。
 用いるガス種は、特に限定されないが、例えば、LPCVD法やPECVD法ではSiH等が挙げられる。スパッタ(PVD)法ではシリコンターゲットを用いることが出来る。
 成膜の圧力は、ガス種にもよるが、LPCVDの場合は200mTorr程度である。
 然る後に800℃以上の熱処理を加えることでアモルファスシリコン層7が結晶化し単結晶シリコン層5とともに単結晶シリコン被覆層9となる(工程c)。この過程で、単結晶シリコン層5の表面に存在していたピットや微小クラックなどの欠陥が埋まり(回復し)、欠陥数の低減を図ることができる。
 熱処理温度の好ましい上限は、ハンドル基板の耐熱性を考慮して定められるが、ハンドル基板が石英の場合ではおよそ1200℃未満、サファイアの場合ではおよそ1300℃未満とすることができる。
 熱処理時間としては、ハンドル基板に含まれる原子のマイグレーションを抑制する観点等から、例えば、0.5時間~6時間とすることができる。
 本発明にかかる方法では下地となる単結晶シリコン層5とアモルファスシリコン層7とが明確に分かれていることで、アモルファスシリコン層7の結晶化が下地となる単結晶シリコン層5の配向に従って容易に起こり、高い品質の単結晶シリコン被覆層9を比較的低温(800℃~1200℃)で得ることができる。
(比較例1)
 貼り合わせ法により作製されたSOQ基板を用意した。単結晶シリコン層の厚さは100nmとした。ウェーハの口径は150mmで厚さは625umである。このウェーハを49%のフッ化水素(HF)に5分間浸漬し、然る後に純水でリンスを行い、光学顕微鏡(倍率50倍)で3.0mm×3.0mmの区画における欠陥数を目視計数したところ、平均して(面内13箇所を観察した)、6.5個/cmの欠陥が観察された。
(比較例2)
 貼り合わせ法により作製されたSOS基板を用意した。単結晶シリコン層の厚さは100nmとした。BOX層の厚さを200nmとした。ウェーハの口径は150mmで厚さは600umである。このウェーハを49%のフッ化水素(HF)に5分間浸漬し、然る後に純水でリンスを行い、光学顕微鏡で欠陥数を数えたところ、平均して(面内13箇所を観察した)、14.1個/cmの欠陥が観察された。
(実施例1)
 比較例1で用いたSOQウェーハを複数枚用意した。単結晶シリコン膜厚を60nmとなるように鏡面研磨(CMP)を行い、洗浄・乾燥の後、200mTorrの圧力で560℃でSiHガスによりアモルファスシリコンを40nm堆積した。然る後に700℃、800℃、900℃、1000℃、1100℃、1200℃の温度で熱処理を1時間加えた。これらのウェーハを比較例1と同様のHF浸漬処理を行い、欠陥数を数えた。結果を図2および表1に示す。
Figure JPOXMLDOC01-appb-T000001
 結果として700℃では欠陥数低減に効果は無いが、800℃以上では効果があることが判明した。但し、1200℃処理のものはウェーハに変形が観察されたので、この温度は不適と判断した。
(実施例2)
 比較例2で用いたSOSウェーハを複数枚用意した。単結晶シリコン膜厚を60nmとなるように鏡面研磨(CMP)を行い、洗浄・乾燥の後、200mTorrの圧力で560℃でSiHガスによりアモルファスシリコンを40nm堆積した。然る後に700℃、800℃、900℃、1000℃、1100℃、1200℃、1300℃の温度で熱処理を1時間加えた。これらのウェーハを比較例2と同様のHF浸漬処理を行い、欠陥数を数えた。結果を図3および表2に示す。
Figure JPOXMLDOC01-appb-T000002
 結果として700℃では欠陥数低減に効果は無いが、800℃以上では効果があることが判明した。但し、1300℃処理のものはシリコン層表面の高いアルミニウムの汚染が観察された(>1×1013atoms/cm)。その他のものは1×1012atoms/cm未満であった。測定方法は、ICP-MS法を採用した。なお、1時間程度の処理で1300℃以上の熱処理によっても欠陥は回復するが、サファイアからのアルミニウムがシリコン層に到達するものと考えられ、不適と判断した。
(比較例3)
 比較例1で用いたSOQウェーハを1枚用意した。単結晶シリコン膜厚を60nmとなるように鏡面研磨(CMP)を行い、洗浄・乾燥の後、200mTorrの圧力で620℃でSiHガスによりポリシリコンを40nm堆積した。1000℃の温度で熱処理を1時間加えた。これらのウェーハを比較例1と同様のHF浸漬処理を行い、欠陥数を数えた。結果を図4に示す。結果として実施例1の1000℃処理のものと比較し、欠陥数が高いことが観察された。堆積する膜はポリシリコンでは不適であることが判明した。
(比較例4)
 比較例2で用いたSOSウェーハを1枚用意した。単結晶シリコン膜厚を60nmとなるように鏡面研磨(CMP)を行い、洗浄・乾燥の後、200mTorrの圧力で620℃でSiHガスによりポリシリコン(平均粒径:0.1μm以下)を40nm堆積した。1000℃の温度で熱処理を1時間加えた。これらのウェーハを比較例1と同様のHF浸漬処理を行い、欠陥数を数えた。結果を図5に示す。結果として実施例2の1000℃処理のものと比較し、欠陥数が高いことが観察された。堆積する膜はポリシリコンでは不適であることが判明した。
1 SOQ、SOSまたはSOIウェーハ
3 ハンドル基板
5 単結晶シリコン層
7 アモルファスシリコン
9 単結晶シリコン被覆層
10 貼り合わせ基板

Claims (5)

  1.  耐熱温度が800℃以上である材料から選択されるハンドル基板上に貼り合わせ法により単結晶シリコン層を形成し貼り合わせ基板を得る工程と、
     該貼り合わせ基板の単結晶シリコン層上にアモルファスシリコンを堆積する工程と、
     800℃以上の熱処理を加える工程とを含むSOIウェーハの製造方法。
  2.  前記ハンドル基板が、石英基板であり、前記熱処理温度が、1200℃未満であることを特徴とする請求項1に記載のSOIウェーハの製造方法。
  3.  前記ハンドル基板が、サファイア基板であり、前記熱処理温度が、1300℃未満であることを特徴とする請求項1に記載のSOIウェーハの製造方法。
  4.  前記ハンドル基板の材料が、シリコン、酸化膜付きシリコン、炭化ケイ素または窒化アルミニウムであることを特徴とする請求項1に記載のSOIウェーハの製造方法。
  5.  前記アモルファスシリコンの堆積が、低圧化学気相成長法、物理気相成長法またはプラズマ化学気相成長法により行われることを特徴とする請求項1ないし4のいずれかに記載のSOIウェーハの製造方法。
PCT/JP2012/051412 2011-02-02 2012-01-24 Soiウェーハの製造方法 WO2012105367A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201280006999XA CN103339710A (zh) 2011-02-02 2012-01-24 制备soi晶片的方法
US13/983,078 US20130309842A1 (en) 2011-02-02 2012-01-24 Method for manufacturing soi wafer
KR1020137020302A KR20140005948A (ko) 2011-02-02 2012-01-24 Soi 웨이퍼의 제조 방법
EP12742138.6A EP2672508B1 (en) 2011-02-02 2012-01-24 Method for manufacturing soi wafer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-020706 2011-02-02
JP2011020706A JP5819614B2 (ja) 2011-02-02 2011-02-02 Soiウェーハの製造方法

Publications (1)

Publication Number Publication Date
WO2012105367A1 true WO2012105367A1 (ja) 2012-08-09

Family

ID=46602586

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/051412 WO2012105367A1 (ja) 2011-02-02 2012-01-24 Soiウェーハの製造方法

Country Status (7)

Country Link
US (1) US20130309842A1 (ja)
EP (1) EP2672508B1 (ja)
JP (1) JP5819614B2 (ja)
KR (1) KR20140005948A (ja)
CN (1) CN103339710A (ja)
TW (1) TWI570805B (ja)
WO (1) WO2012105367A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105140107B (zh) * 2015-08-25 2019-03-29 上海新傲科技股份有限公司 带有电荷陷阱和绝缘埋层衬底的制备方法
KR20170002110U (ko) 2015-12-07 2017-06-15 박찬규 휴대폰용 보호 케이스
CN111682108A (zh) * 2020-02-29 2020-09-18 浙江集迈科微电子有限公司 一种三维的电感制作方法
CN112736167B (zh) * 2020-12-29 2022-02-01 济南晶正电子科技有限公司 一种复合衬底、复合薄膜及其制备方法,及射频滤波器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63226914A (ja) * 1987-03-16 1988-09-21 Fujitsu Ltd 半導体装置の製造方法
JPH08250421A (ja) * 1995-03-10 1996-09-27 Canon Inc 半導体基板の製造方法および半導体基板
JP2003324188A (ja) * 2002-04-30 2003-11-14 Ishikawajima Harima Heavy Ind Co Ltd 大面積単結晶シリコン基板の製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH077826B2 (ja) * 1983-08-25 1995-01-30 忠弘 大見 半導体集積回路
JPS60254609A (ja) * 1984-05-31 1985-12-16 Fujitsu Ltd 半導体装置の製造方法
JPH01270311A (ja) * 1988-04-22 1989-10-27 Seiko Epson Corp 薄膜形成方法
US6037199A (en) * 1999-08-16 2000-03-14 Taiwan Semiconductor Manufacturing Company, Ltd. SOI device for DRAM cells beyond gigabit generation and method for making the same
JP3974542B2 (ja) * 2003-03-17 2007-09-12 株式会社東芝 半導体基板の製造方法および半導体装置の製造方法
KR101155176B1 (ko) * 2005-07-12 2012-06-11 삼성전자주식회사 방향성이 조절된 단결정 와이어 및 이를 적용한트랜지스터의 제조방법
TWI260747B (en) * 2005-08-24 2006-08-21 Quanta Display Inc A method for forming a thin film transistor, and a method for transforming an amorphous layer into a poly crystal layer of a single crystal layer
KR100681262B1 (ko) * 2006-01-24 2007-02-09 삼성전자주식회사 스택형 반도체 장치의 제조 방법
US8193071B2 (en) * 2008-03-11 2012-06-05 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
JP5496540B2 (ja) * 2008-04-24 2014-05-21 株式会社半導体エネルギー研究所 半導体基板の作製方法
JP5414203B2 (ja) * 2008-05-23 2014-02-12 株式会社半導体エネルギー研究所 半導体装置の作製方法
FR2938120B1 (fr) * 2008-10-31 2011-04-08 Commissariat Energie Atomique Procede de formation d'une couche monocristalline dans le domaine micro-electronique
US8048773B2 (en) * 2009-03-24 2011-11-01 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing SOI substrate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63226914A (ja) * 1987-03-16 1988-09-21 Fujitsu Ltd 半導体装置の製造方法
JPH08250421A (ja) * 1995-03-10 1996-09-27 Canon Inc 半導体基板の製造方法および半導体基板
JP2003324188A (ja) * 2002-04-30 2003-11-14 Ishikawajima Harima Heavy Ind Co Ltd 大面積単結晶シリコン基板の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
G. L. SUN; J. ZHAN; Q. Y. TONG; S. J. XIE; Y. M. CAI; S. J. LU: "Cool plasma activated surface in silicon direct bonding technology", J. DE PHYSIQUE, vol. 49, no. C4, 1988, pages 79

Also Published As

Publication number Publication date
TWI570805B (zh) 2017-02-11
TW201246370A (en) 2012-11-16
EP2672508A1 (en) 2013-12-11
US20130309842A1 (en) 2013-11-21
EP2672508B1 (en) 2019-06-05
EP2672508A4 (en) 2014-07-02
CN103339710A (zh) 2013-10-02
JP2012160648A (ja) 2012-08-23
JP5819614B2 (ja) 2015-11-24
KR20140005948A (ko) 2014-01-15

Similar Documents

Publication Publication Date Title
JP6070954B2 (ja) 補剛層を有するガラス上半導体基板及びその作製プロセス
US7605022B2 (en) Methods of manufacturing a three-dimensional semiconductor device and semiconductor devices fabricated thereby
JP5926527B2 (ja) 透明soiウェーハの製造方法
JP3900741B2 (ja) Soiウェーハの製造方法
JP2013534057A (ja) Soi基板に仕上げを施す方法
TWI470743B (zh) 玻璃陶瓷為主半導體在絕緣體上結構及其製造方法
JP2010538459A (ja) 熱処理を用いる剥離プロセスにおける半導体ウエハの再使用
JP2006210899A (ja) Soiウエーハの製造方法及びsoiウェーハ
JP5417399B2 (ja) 複合ウェーハの製造方法
JP5819614B2 (ja) Soiウェーハの製造方法
TWI430339B (zh) 用於製備一多層結晶結構之方法
WO2014017368A1 (ja) Sos基板の製造方法及びsos基板
JP2013516767A5 (ja)
TWI716627B (zh) 貼合式soi晶圓的製造方法
JP5518205B2 (ja) 結晶シリコンの少なくとも一つの極薄層を含む多層膜を製造する方法
JP2022084662A (ja) 絶縁体上半導体構造の製造方法
JP2016508291A (ja) 多層半導体デバイス作製時の低温層転写方法
JP2009289948A (ja) 貼り合わせウェーハの製造方法
KR20090043109A (ko) 이온 주입에 의한 ion-cut기술 및 웨이퍼 접합기술을 이용한 실리콘 웨이퍼 상의 단결정 GaAs박막제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12742138

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012742138

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137020302

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13983078

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE