TWI470743B - 玻璃陶瓷為主半導體在絕緣體上結構及其製造方法 - Google Patents

玻璃陶瓷為主半導體在絕緣體上結構及其製造方法 Download PDF

Info

Publication number
TWI470743B
TWI470743B TW97111629A TW97111629A TWI470743B TW I470743 B TWI470743 B TW I470743B TW 97111629 A TW97111629 A TW 97111629A TW 97111629 A TW97111629 A TW 97111629A TW I470743 B TWI470743 B TW I470743B
Authority
TW
Taiwan
Prior art keywords
glass
semiconductor
layer
glass ceramic
ceramic
Prior art date
Application number
TW97111629A
Other languages
English (en)
Other versions
TW200905812A (en
Inventor
Purushottam Gadkaree Kishor
Ruth Pinckney Linda
Original Assignee
Corning Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Corning Inc filed Critical Corning Inc
Publication of TW200905812A publication Critical patent/TW200905812A/zh
Application granted granted Critical
Publication of TWI470743B publication Critical patent/TWI470743B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • H01L21/2003Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy characterised by the substrate
    • H01L21/2007Bonding of semiconductor wafers to insulating substrates or to semiconducting substrates using an intermediate insulating layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76251Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques
    • H01L21/76254Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques with separation/delamination along an ion implanted layer, e.g. Smart-cut, Unibond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78603Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the insulating substrate or support

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Thin Film Transistor (AREA)
  • Recrystallisation Techniques (AREA)
  • Glass Compositions (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

玻璃陶瓷為主半導體在絕緣體上結構及其製造方法
本發明大致是關於半導體結構,尤其是關於包含絕緣體上半導體結構的玻璃陶瓷,和製作玻璃陶瓷基絕緣體上半導體結構的方法。
到目前為止,最常用在絕緣體上半導體結構的半導體材料是矽。這種結構在文獻上被稱為絕緣體上矽(SOI)結構,以縮寫SOI來表示這種結構。本發明大致是關於絕緣體上半導體結構,包括絕緣體上矽結構。
為了方便說明,以下的討論常常是指絕緣體上矽結構。參考這種特定的絕緣體上半導體結構型態,使得本發明的說明更加容易,但是我們不希望,也不應該解釋成,以任何方式限制本發明的範疇。
這裡所使用的SOI縮寫一般是指絕緣體上半導體結構,包括但不限定是絕緣體上矽結構。同樣地,所使用的SOG縮寫一般是指玻璃上半導體結構,包括但不限定是玻璃上矽結構。SOG命名法也希望能包括玻璃陶瓷上半導體結構,包括但不限定是玻璃陶瓷上矽結構。SOI縮寫涵蓋了SOG。
為了高效能薄膜電晶體,太陽能電池,和譬如活性基質顯示器的顯示器,絕緣體上矽技術變得越重要。絕緣 體上矽晶片是由絕緣材料上實質上單晶質矽(通常是0.1-0.3微米厚度,但有些情況是5微米厚度)的薄層所構成。
取得這種晶片的各種方式包括:晶格匹配基板上Si的磊晶成長;黏接單晶質矽晶片到另一其上有增長SiO2 氧化層的矽晶片,接著拋光或蝕刻晶片的頂層到,譬如0.1到0.3微米厚的單晶質矽層;或植入氫或氧離子的離子植入方法,在氧離子植入的情況,形成以Si覆蓋在矽晶片中的氧化層,或者在氫離子植入的情況,分開(剝落)薄Si層黏接到另一具氧化層的Si晶片。這三種方法中,我們發現以離子植入為主的方法更具有商業實用價值。尤其,氫離子植入方法比氧植入處理更具優勢,因為氫離子植入方法所需的植入能量少於氧離子植入的50%,而且所需的劑量是小於兩個數量級。
藉由氫離子植入法剝離最初揭示於例如Bister等人之"Ranges of the 0.3-2MeV H+ and 0.7-2MeV H2+ Ions in Si and Ge," Radiation Effects,1982,59:199-202,以及更進一步由Michel Bruel加以證實。參閱Bruel之美國第5374564號專利;M.Bruel,Electronic Lett.31,1995 pp 1201-1202;以及L.Dicioccio,Y.Letiec,F.Letertre,C.Jaussad以及M.Bruel,Electronic Lett.32,1996,pp 1144-1145。
此方法通常包含下列步驟。在單晶質矽晶片上增生一熱氧化層。然後注入氫離子到此晶片,以產生表面下的 裂隙。注入能量決定裂隙產生的深度,而劑量則決定裂隙的密度。接著在室溫下放置此晶片和另一矽晶片(支撐基板)接觸,以形成暫時性黏接。然後加熱處理晶片到600℃,導致表面下裂隙的增生,用來分隔矽薄膜和Si晶片。然後再加熱結果組件到1000℃以上的溫度,以完全黏接Si薄膜和SiO2 底層到支撐基板,即未植入的Si晶片。這個過程因此形成一個絕緣體上矽結構,該矽結構有矽薄膜,該矽薄膜黏接到另一矽晶片,在該矽薄膜與該矽晶片之間內具有氧化物絕緣層。
在SOI結構的商業應用上,價格是一個很重要的考量。到目前為止,這種結構大部分的成本是在支撐氧化物層,頂部覆以Si薄膜的矽晶片,亦即大部分的成本是在支撐基板。在討論支撐基板時,有一些上述的參考文件提到石英玻璃,玻璃,和陶瓷玻璃。其他列在這些參考文件的支撐基板材料包括鑽石,藍寶石,碳化矽,氮化矽,陶瓷,金屬,以及塑膠。
雖然玻璃和玻璃陶瓷已經在先前技術的說明中用來作為以矽當作基底晶片的替代方案,但還沒有發展出利用玻璃和玻璃陶瓷形成SOI結構以作為支撐基板的實用技術。
美國第7176528和7192844號專利的SOI結構有一個或以上是由一層單晶質半導體(譬如塗料矽)所構成的區域附加到由氧化物玻璃或氧化物玻璃陶瓷所構成的支撐基板。氧化物玻璃或氧化物玻璃陶瓷最好是透明的,最 好有小於1000℃的應變點,在250℃的電阻小於或等於1016 Ω-cm,而且包含對應於提升溫度(譬如300℃-1000℃)的電場,可在玻璃或玻璃陶瓷內移動的正離子(譬如鹼金屬或鹼土離子)。
雖然這些氧化物玻璃或氧化物玻璃陶瓷為主的SOI結構已經改善了之前所提及的先前技術SOI結構,但氧化物玻璃或氧化物玻璃陶瓷為主的SOI結構內用到的玻璃並不能承受在高效能顯示器或電子應用所使用的高溫處理,而不會導致基板畸形;譬如利用高溫熱閘極氧化層的增長以允許在矽薄膜上製造高效能TFTs。
本公司之美國第2006/0038228號專利申請案解決該問題。該參考文獻說明了絕緣體上半導體結構,其包括半導體材料的第一層,附加到包括玻璃或玻璃陶瓷的第二層,玻璃或玻璃陶瓷的應變點等於或大於約800℃。這些結構可以用在高效能顯示器或電子應用上,然而是比先前技術以矽/石英為主的SOI結構低很多的製造成本,因此也滿足高效能顯示器或電子應用上所需的低成本SOI結構和合成裝備。
雖然這些氧化物玻璃或氧化物玻璃陶瓷為主的SOI結構,已經改善了之前所提及的先前技術SOI結構,但很難生產玻璃陶瓷為主的絕緣體上半導體結構,而由於在這種氧化物玻璃或氧化物玻璃陶瓷內使用的玻璃陶瓷玻璃中缺乏移動的離子,於是在隔離層產生夠大的強力黏接結構。
本發明改善了先前技術玻璃陶瓷為主的SOI結構,並提供了新型玻璃陶瓷為主的SOI結構,該新穎結構被強力黏接並顯示足夠大的隔離層。這些結構可以用在高效能顯示器或電子應用上。
本發明的一個實施例是關於絕緣體上半導體結構,包括由單晶質半導體材料層以及具加強含氧層的單晶質半導體材料組成的半導體元件;氧化物玻璃材料層;和玻璃陶瓷層。
更進一步的實施例包括了包含單晶質半導體材料的絕緣體上半導體層結構,和包含正離子的氧化物玻璃陶瓷,其中至少一部份結構依序包括:一層含單晶質半導體材料層;一層含具加強含氧層的單晶質半導體材料;一層含氧化物玻璃材料;一層含具有減少正離子濃度,其實質上並沒有改良劑正離子的玻璃陶瓷材料;一層含具有改良劑正離子以提高正離子濃度的玻璃陶瓷材料,包括至少一個來自具有減少正離子濃度的玻璃陶瓷材料的鹼土金屬改良劑離子;和一層由大塊玻璃陶瓷材料所構成。
在先前提及絕緣體上半導體結構實施例中,玻璃陶瓷包含尖晶石或莫來石結晶相,其中尖晶石或莫來石玻璃陶瓷呈現出在25-300℃範圍之熱膨脹係數在22-42x10-7 /℃。在更進一步實施例中,尖晶石或莫來石玻璃陶瓷呈現出在25-300℃範圍之熱膨脹係數在35-40x10-7 /℃。
依據本發明的一個或多個態樣,形成上述玻璃陶瓷/絕緣體上半導體結構的處理過程包括:將施體半導體晶片的植入表面施以離子植入處理,以產生施體半導體晶片的剝離層;使用電解黏接剝離層的植入表面到玻璃基板;分開剝離層和施體半導體晶片,以形成中間的前驅物玻璃結構上半導體;將中間的前驅物玻璃結構上半導體施以加熱步驟以結晶化前驅物玻璃,造成玻璃陶瓷結構上半導體的形成。
本發明的絕緣體上半導體和製造本發明的絕緣體上半導體結構的方法比先前技術具有更多優點。和熔融矽石或石英為主的SOI結構比起來,本發明滿足了此項技術用在高效能和電子應用上,低成本基板耐久的需求。更特定言之,併入玻璃陶瓷可使SOI晶片承受譬如熱閘極氧化層的高溫處理,而不會產生先前技術中低溫應變點玻璃所遭遇的畸形。此外,使用這種高應變點玻璃或玻璃陶瓷作為SOI結構基板材料,會產生最小的基板壓實(即尺寸改變),這通常是在TFT製造處理期間,低應變點基板材料會遭遇到的情況。
本發明其他的特徵和優點將會在以下的詳細描述中說明,有部分對那些熟悉此項技術的人從敘述中是顯而易見的,或是藉由實施敘述和申請專利範圍,以及附圖中所說明的本發明而得到理解。
我們要瞭解,以上大致說明和以下的詳細描述都只是本項發明的範例,用來提供人們可以理解本發明如其申請專利範圍的本質和特性的一個概觀或架構。
包括的附圖是用來提供人們本發明進一步的理解,因此也併入此份規格書的一部份。附圖並不需要照比例繪製,各種元件的大小也可能為了清楚說明而改變。附圖說明了本項發明一個或多個實施例,和詳細說明一起用來解釋本發明的原理與運作。
請參考附圖,相同的編號表示同樣的元件,圖1顯示的是依據本發明一個或多個實施例的SOG層結構100。SOG結構100最好包括半導體元件102,包含實質的單晶質半導體材料層104和具加強含氧層106的單晶質半導體材料。SOG層結構進一步包括包含氧化物玻璃材料的第三層108,和包含玻璃陶瓷材料的第四層110。
現在參考圖2,其顯示出本發明另一個實施例的SOG層結構200。SOG層結構200由6層結構組成,包括2層半導體元件102,氧化物玻璃層108和3層包含正離子的氧化物玻璃陶瓷基板110。更明確地說,SOG層結構200是由下列的層所構成:(1)實質的單晶質半導體材料層104;(2)具加強含氧層的單晶質半導體隔離層106;(3)氧化物玻璃材料隔離層108;(4)具有減少正離子 濃度,真正沒有改良劑正離子的氧化物玻璃陶瓷層202;(5)具有改良劑正離子的提高正離子濃度的氧化物玻璃陶瓷層204,包括至少一個選自於具有減少正離子濃度的氧化物玻璃陶瓷材料的鹼土金屬改良劑離子;以及(6)包含具有大量濃度玻璃陶瓷的氧化物玻璃陶瓷層210。
玻璃陶瓷上半導體結構可以使用在超過1000℃的高溫,因此可以使用在RF/高效能電子,光伏打裝置,數位影像等應用上,這是先前技術玻璃製品上的矽所無法做到的。
本發明的玻璃陶瓷上半導體結構可以製成任何層所需的厚度。例如,所需的層厚度是小於約10微米。層的厚度更好是小於約1微米。在某些本發明所需的實施例,第一半導體元件的厚度是在約10nm和500nm之間。玻璃陶瓷層的厚度最好是在約0.1mm和約10mm之間。玻璃陶瓷層的厚度更好是在約0.5mm和約1mm之間。有些玻璃陶瓷上半導體結構的應用,玻璃陶瓷層的厚度最好是大於或等於1微米,以避免在具有矽/SiO2 /矽設計的標準絕緣體上半導體結構以高頻運作時,提高寄生電容效應。在過去,這種厚度是很難達成的。依據本發明的某實施例,具有超過1微米厚度玻璃陶瓷層的玻璃陶瓷上半導體結構,只要使用厚度小於1微米的第二層就可以達成。因此第二基片較低限制的厚度最好是1微米。
一般而言,在整個本發明處理步驟,以及接下來執行在玻璃陶瓷上半導體結構的處理過程,玻璃陶瓷層需要足夠的厚度來支撐半導體元件。雖然理論上玻璃陶瓷基板的厚度沒有上限,但是超過支援功能,或者超過最後玻璃陶瓷上半導體結構所需要的厚度,一般而言也不是我們想要的,因為前驅物玻璃和所形成玻璃陶瓷基板的厚度太大,在稍後說明的本發明方法的黏接步驟(B,尤其是B3的電壓施加)期間,同樣施加電壓差,基板內電磁場強度就越低。
半導體層/元件內的半導體材料可以是矽基半導體材料,或是任何適合的半導體材料形態,譬如III-V半導體,II-IV半導體,II-IV-V半導體,或IV半導體。適合用在第一層半導體材料的矽基半導體材料範例包括矽(例如無摻雜之矽,n-摻雜之矽,p-摻雜之矽);摻雜鍺之矽(SiGe);和碳化矽(SiC)。其它可用在第一層的半導體材料範例包括Ge-,GeAs-,GaP-,和InP-基材料。根據材料性質,半導體層材料可以有很大範圍的CTE S。例如,第一層的半導體材料可以有在約20x10-7 /℃和約70x10-7 /℃之間的CTE。
半導體材料層的形式實質上是單晶質材料。用實質上一詞來描述第一層以說明半導體材料通常包含至少一些原有或故意加上的內部或表面缺陷,譬如晶格缺陷或一些晶粒間界。實質上一詞也可以反應出有些摻雜物可能扭曲或影響整個半導體材料的晶體結構。
玻璃前驅物和所形成的玻璃陶瓷基板108最好是從氧化物玻璃/玻璃陶瓷形成。雖然不必要,但其中描述的實施例最好包括應變點大於900℃的氧化物玻璃或玻璃陶瓷。如同傳統的玻璃製造技術,應變點是玻璃或玻璃陶瓷的黏滯係數是1014.6 泊(1013.6 Pa.s)時的溫度。
玻璃陶瓷層最好是從矽基玻璃前驅物所形成。SiO2 最好是以至少約30%莫耳比的濃度呈現在前驅物玻璃和所形成的玻璃陶瓷內。SiO2 呈現的濃度更好是至少約40%莫耳比。適合用在本發明的玻璃陶瓷包括那些顯示晶相的富鋁紅柱石和尖晶石。
就某些應用而言,譬如顯示器應用,在可見的,接近UV,及/或接近IR的波長範圍,玻璃陶瓷最好實質上是透明的。例如,在350nm到2微米的波長範圍,玻璃陶瓷最好實質上是透明的。
可利用這方面技術人員所熟悉的各種技術,從傳統的原始材料生產前驅物玻璃(以形成後續的玻璃陶瓷層),然後附加到半導體層/元件,使用以下描述的方法,和美國第7192844號專利,其發明名稱為GLASS-BASED SOI STRUCTURES的方法,該專利之說明在此加入作為參考。
在本發明的特定實施例中,玻璃或玻璃陶瓷最好包括至少一些正離子,在以下和美國第7192844號專利說明方法的黏接步驟(步驟B,尤其是步驟B3的電壓施加) 期間,朝向電場施加的方向移動,亦即離開黏接的第一和第二層間的介面,朝向第二層的背面。例如Li+ ,Na+ 及/或K+的鹼金屬離子,就適合用作此目的的正離子,因為它們通常比併入玻璃和玻璃陶瓷其他型態的正離子具有較高的移動性。然而,在本發明中並沒有使用到鹼金屬離子的玻璃和玻璃陶瓷。例如,本項發明絕緣體上半導體結構中的第二層,最好是使用具其他移動性離子的玻璃和玻璃陶瓷,譬如鹼土金屬離子(例如Ca2+ ,Mg2+ ,Ba2+ ,Sr2+ ),或其他像是Ag+ ,Cu+ ,Zn2+ ,和各種過渡金屬離子的正離子。
本發明的實施例中,玻璃或玻璃陶瓷包含鹼金屬或鹼土金屬離子,鹼金屬和鹼土金屬離子濃度的變化可以有很大的範圍,以氧化物為基準代表性的濃度是在0.1和40%重量比之間。以氧化物為基準鹼金屬離子的情況,鹼土金屬子濃度最好是0.1-10%重量比,而以氧化物為基準鹼土金屬子的情況,濃度最好是0-25%重量比。很多標稱不含鹼金屬的玻璃有數十到數百ppm的鹼金屬含量,可以在以半導體隔離層106下說明方法的步驟B3期間移動。
使用在本發明SOI結構較佳的玻璃陶瓷,包括一系列以下組成的透明玻璃陶瓷材料,以氧化物為基準所計算的重量百分比是:55-65% SiO2 ,15-25% Al2 O3 ,6-15% ZnO,0-6% MgO,0-10% TiO2 ,0-10% ZrO,0-15% Cs2 O,0-5% BaO,ZnO+MgO的組合是約大於等於8%,而 TiO2 +ZrO2 的組合是約大於4%。本發明中使用的代表性組成詳示於表I。
用來作為主要晶相較佳的玻璃陶瓷材料包含尖晶石。藉著主要的晶相,意味著這種晶相至少是約75體積百分比,最好是至少85%,更好是至少總晶相呈現的95%。本發明的玻璃陶瓷至少約20%重量比的晶相分散在玻璃基質內。
這些玻璃陶瓷顯示的熱膨脹係數在25-300℃的溫度範圍最好在約22-42x10-7 /℃之間,更好在約30-42x10-7 /℃之間,最好在約35-40x10-7 /℃之間以提供和矽接近的熱膨脹匹配。透明的意思是指1.1mm厚的本發明玻璃陶瓷片,在光譜的可視區域(400nm到700nm)顯示出大於85%的透射率。在某些應用,這些玻璃片也最好能顯示接近紫外線的透射率,譬如在350-400nm的範圍大於50%。
作為主要晶相的含尖晶石透明玻璃陶瓷材料更詳細地描述於美國第6197429號專利,其發明名稱為Method for Making Transparent Glass-Ceramics with High Temperature Dimensional Stability一文中,該專利之說明在此加入作為參考。
如同熟悉此項技術的人所知的,玻璃或玻璃陶瓷及其加附的半導體層之間鍵的強度是絕緣體上半導體結構關鍵性的特質。較高的鍵強度和持久性是非常重要的,可保證絕緣體上半導體結構可以承受得的住和薄膜電晶體以及結構內或結構上其他裝備製造有關的處理。半導體元件和前驅物基板(最後是在半導體和成品玻璃陶瓷上半導體中,氧化物玻璃層之間)之間的鍵強度,最好是至少8J/m2 。黏接層之間的鍵強度更好是至少10J/m2 。在某些特殊需求的實施例中,鍵強度至少是15J/m2 。鍵能可以利用壓痕測量來決定,可使用Nano Indenter II(MTS Systems Corporation,Eden Prairie,MN)和 Berkovich鑽石壓痕器來執行。如同熟悉此項技術的人所知的,也可以利用其他裝備來執行壓痕測量。壓痕的製作涵蓋負載的範圍,而且立即檢查環繞壓痕的區域作為分層的證據。鍵能的計算是依據D.B.Marshall和A.G.Evans的論文Measurement of Adherence of Residually Stressed Films by Indentation.I.Mechanics of Interface Delamination,J.Appl.Phys,56[10]2632-2638(1984),其相關的部份在其中也併入參考。更進一步決定鍵能的細節可在美國第10/779,582號專利申請案中找到。
以下所描述的方法和美國第7176528號專利可以讓熟悉此項技術的人製造玻璃陶瓷上半導體結構,該專利之說明在此加入作為參考。請參考圖3,將離子植入到給予半導體之後再施加電解黏接處理到前驅物玻璃基板和植入的施體半導體晶片,接著再分開施體半導體晶片的一部分形成包含具有薄半導體層前驅物玻璃基板的中間結構。然而,電解的部分將在以下討論,基本的處理包括在前驅物玻璃基板102和施體半導體晶片120施以溫度,電壓,和壓力一段時間。現在請參考圖3,說明了執行的處理步驟以產生和製造圖1和圖2個別的玻璃陶瓷上半導體結構100和200有關的中間結構。第一步驟(步驟A)是關於在施體半導體晶片304中產生剝離層302。為了討論的目的,施體半導體晶片304最好是實質上的單晶質Si晶片。
剝離層302最好是相當薄的矽層,可以在接下來的黏 接和分割步驟(待會將討論的步驟B和D),從Si半導體施體晶片306的其餘部份分開來。雖然本發明的實施例並不限定在任何特定形成剝離層的方法,然而一種適合的方法包括使用離子植入,在矽晶片304的表面310以下產生一個變弱的區域308。經由這個例子,可以使用氫離子植入,雖然也可以使用其他離子或多種離子組合,譬如硼+氫,氦+氫,或其他文獻中用來剝離的離子。更者,只要不背離本發明的精神和範疇,也可以使用其他已知或其中開發的適合技術來形成剝離層302。
在某實施例中,只使用氫離子植入的單一步驟施加到Si晶片的H離子植入劑量在1x1016 -1x1017 離子/cm2 之間。在另一個較低劑量的實施例中,就施加Ge晶片多種離子,低劑量的植入步驟。尤其,使用H和He組合低劑量的植入方式,首先施加Ge晶片H離子的植入劑量範圍在1x1015 -5x1016 離子/cm2 之間,接著植入氦的劑量,也是以低的劑量水準,範圍在1x1015 -5x1016 離子/cm2 之間。
無論使用來產生剝離層302的技術為何,最好是加以處理Si施體晶片304以減少表面310上的離子(譬如氫)濃度。例如,施體半導體晶片304最好是經過沖洗和清潔,而剝離層表面310最好是施以溫和的氧化作用。溫和的氧化作用處理方式可包括在氧電漿中處理,臭氧處理,以過氧化氫處理,過氧化氫和氨,過氧化氫和酸或這些處理過程的組合。我們希望在這些處理的期間,中 止表面基的氫會氧化成氫氧基,接著也使得矽晶片的表面呈親水性。氧電漿的處理最好在室溫,而氨或酸的處理最好在25-150℃的溫度下執行。在這種處理之後,以清潔劑再以蒸餾水清洗前驅物玻璃晶片312,之後再以硝酸接著以蒸餾水進一步清洗。
應該要注意這些處理是最佳化的。假使氫離子濃度沒有減少,那麼在矽和玻璃晶片之間的斥力,就可以在黏接處理期間藉由施加高壓來克服。
在離子植入之後,各個結構最好利用電解黏接處理(步驟B)黏接在一起。較佳的電解黏接處理描述於美國專利編號第7,192,844,整個說明在其中也併入參考。這種處理的部份將在以下討論。
首先,最好執行各個施體晶片表面310和前驅物玻璃基板表面314適度的表面清洗。接下來使中間結構直接或間接接觸(步驟B2),以達到圖4中所示的安排設計;施體半導體表面310和前驅物玻璃基板表面314明確地接觸在一起。
現在參考圖5,在接觸之前或之後,包含施體Si半導體晶片304,剝離層302,和前驅物玻璃基板312的結構在差異的溫度梯度下加熱(步驟B1);分別是T1 和T2 。前驅物玻璃基板312最好是加熱到比Si施體半導體晶片304和剝離層302(T1 )更高的溫度(T2 )。藉由這些例子,前驅物玻璃基板312和施體Si半導體晶片304之間的溫度差異是至少1℃,雖然差異可能高到約100到約150 ℃。這種溫度差異是具有匹配矽熱膨脹係數(CTE)的玻璃所需的,由於熱應力的關係,這會促使以後剝離層302和剩餘的施體半導體晶片306的分離更為容易。
一旦前驅物玻璃基板312和Si施體半導體晶片304之間的溫度差異穩定下來,就施加機械性壓力到黏接元件。壓力範圍最好是在約1到約50psi的範圍。施加較高的壓力,例如100psi以上的壓力可能會導致玻璃晶片破裂。
前驅物玻璃基板312和Si半導體晶片304的溫度最好在前驅物玻璃基板312應變點的約±150℃範圍內的溫度。接著,施以電壓(V1 /V2 )穿越前驅物玻璃/施體晶片中間組件,最好在正極(V1 )是Si半導體晶片304,而負極(V2 )是玻璃基板312(步驟B3)。施以電壓有可能會導致玻璃基板312內的鹼土金屬子從Si半導體/玻璃介面310/314移開,進一步進入玻璃基板312。這達成了兩項功能:(i)產生沒有鹼土金屬子的介面310/314;和(ii)前驅物玻璃基板312變得非常具反應性,並且以相當低溫加熱,就可以強力黏接到Si半導體層304。
現在參考圖6,(前驅物)玻璃基板結構上的中間半導體在這些條件下固定一段時間後(例如1個小時左右),移除電壓,讓中間結構冷卻到室溫。Si剩餘半導體晶片306從原來黏接到前驅物玻璃基板312的剝離層302分開(步驟C);如果沒有變得完全分離,這可能會包括一些皮 層。分割之後得到的是(前驅物)玻璃基板104上的中間半導體;基本上是薄Si半導體/剝離層302黏接到玻璃基板,如圖6所示。
由於熱應力,分離最好是經由碎裂剝離層302而達成。或者除此之外也可以使用機械式應力,譬如水噴射切割或化學蝕刻來促成分離。
應該要注意的是,黏接(加熱和施加電壓)處理期間的氣體可以是譬如氮及/或氬的惰性氣體,或只是室內的空氣。(前驅物)玻璃基板上的中間半導體接著在譬如氬的惰性氣體中經由加熱處理陶瓷化;步驟D(未顯示)。陶瓷化或加熱處理通常會跟著加熱處理循環,晶片放置在某一溫度成核結晶,接著保持在較高的溫度讓晶體增長;雖然使用了加熱處理,但無關於晶核形成保持溫度,假使晶體增長保持溫度上升的時程,慢到足以達到所需的晶體晶核形成:最好不大於50℃/hr。
在某實施例,玻璃陶瓷為主的尖晶石玻璃陶瓷上半導體結構的陶瓷化或加熱時程如下:晶核形成保持在800℃下2小時,接下來晶體增長保持在100℃下4小時。
由於加熱處理的結果,前驅物玻璃基板除了玻璃接近半導體的部份保留為氧化物玻璃之外,都轉換成玻璃陶瓷結構;這是由於缺少尖晶石形成的陽離子Zn,Mg,因為黏接處理時,他們已經移開介面了。在玻璃陶瓷(具有減少正離子濃度,真正沒有改良劑正離子的玻璃陶瓷材料)的某些深度,有足夠的離子(雖然和大塊玻璃比起來 仍然是減少的)來結晶。因而其他玻璃陶瓷部分(具有大塊玻璃陶瓷提升正離子濃度的玻璃陶瓷),擁有足夠的尖晶石形成的陽離子來達成結晶化。
頂端具有矽薄膜的結晶玻璃陶瓷比玻璃為主的成分更好,因為玻璃陶瓷為主的晶片在設備製造或其他處理期間,可以維持相當高的溫度。更者,高溫可以允許矽或其他玻璃陶瓷上半導體晶片的半導體磊晶生長。
範例:
本發明將藉著以下沒有限定的範例做進一步說明。
以8x1016 離子/cm2 劑量的氫離子和100Ke植入能量,利用業界可用的室溫離子植入技術,植入100mm直徑,100微米厚的矽晶片。然後在氧電漿中處理植入的晶片,以氧化表面基。
生產直徑100mm的前驅物玻璃晶片,包含詳列於表格I中範例1的組成份;明確地說以重量百分比表示包含60.3% SiO2 ,19% Al2 O3 ,2.1% MgO,2.1% BaO,1.0% As2 O5 ,7.5% ZrO2 和9.0% ZnO。然後利用Fischer Scientific Contrad 70設備在清潔劑中超音波沖洗前驅物玻璃晶片15分鐘。之後將前驅物玻璃晶片放在蒸餾水中清洗,施以超音波15分鐘,浸泡在10%的硝酸1個小時,最後再以蒸餾水洗淨。
最後利用旋轉式清洗烘乾器,以蒸餾水洗淨矽和前驅物玻璃晶片,之後在乾淨的室內烘乾。然後將這兩個晶片放置在Suss Microtech黏接器。前驅物玻璃晶片放置 在負電極,而矽晶片放置在正電極;放一個0.1mm黃銅隔離器在這兩個晶片之間作為分隔之用。
然後將這兩晶片在真空中(10-3 毫巴)微差加熱,接著讓其接觸;矽晶片加熱到545℃,而前驅物玻璃晶片則到595℃。之後穿越晶片表面施加晶片1750伏特電位。在電壓為零的一端,於這些條件下固定晶片20分鐘,再讓晶片冷卻至室溫。
冷卻之後,我們注意到晶片可以很輕易地分開,產生黏接到玻璃晶片的薄矽層。明確地說,我們注意到經由這種處理過程可取得玻璃晶片表面上強力黏著的矽薄膜高品質樣本。
接著在氬氣中以800℃加熱處理所產生中間玻璃上的矽樣本2個小時,再進一步以1000℃加熱處理4個小時,結晶玻璃上的矽玻璃晶片部份以產生玻璃陶瓷上的矽結構。應該要注意的是,所產生的玻璃陶瓷上矽結構的矽薄膜層是維持完整無傷,沒有分層或破裂的。
藉著以上的技術,施以所產生玻璃陶瓷上的矽結構ToF-SIMS分析如下。利用雙束策略使用兩個離子射束,一個用來間歇濺射,而另一個分析新產生的表面。使用Physical Electronics,Inc.,Eden Prairie,Minn.公司製造的TRIFT II儀器執行分析。使用低能量的Cs射束來濺射,並和分析用的脈動Ga射束同步。切下樣本的一小片以適合ToF-SIMS樣本架(約1cm2 )。用來濺射的5kV 133Cs+射束,和用來分析的15kV,600pA 69Ga+ 射束一 起使用。Cs射束在樣本的500μm×500μm區域光柵;而Ga射束則在Cs濺射區中央的50μm×50μm範圍加以分析。
這種ToF-SIMS分析的結果顯示於圖X。檢視圖5可以觀察到下列幾項:(1)具有減少正離子濃度,真正沒有改良劑正離子的玻璃陶瓷區域XX;(2)具有改良劑正離子的提升正離子濃度的玻璃陶瓷區域XX,包括至少一個來自第一玻璃陶瓷層的鹼土改良劑離子;和(3)在約0.3nm深度開始的第三層,顯示具有大量玻璃值的組成份。
藉著以上的技術,施以所產生玻璃陶瓷上的矽結構TEM分析如下。檢視TEM顯微相片所示的矽/玻璃陶瓷介面,可看到矽和結晶化玻璃陶瓷層之間存在玻璃隔離層。
最後藉著以上的技術,施以所產生玻璃陶瓷上的矽結構X-射線繞射分析如下。檢視X-射線繞射圖案顯示出呈現細緻的微晶大小,和鋅尖晶石和氧化鋯相位。
業界熟知此技術者了解本發明能夠作各種變化及改變而並不會脫離本發明之精神及範圍。因而,預期本發明將含蓋這些變化及改變,只要其符合下列申請專利範圍及同等情況範圍內。
100‧‧‧SOG層結構
102‧‧‧半導體元件、前驅物玻璃基板
104‧‧‧半導體材料層
106‧‧‧半導體隔離層、加強含氧層
108‧‧‧玻璃陶瓷基板、氧化物玻璃層
110‧‧‧氧化物玻璃陶瓷基板
120‧‧‧半導體晶片
200‧‧‧SOG層結構
202、204、210‧‧‧氧化物玻璃陶瓷層
302‧‧‧剝離層
304‧‧‧施體半導體晶片
306‧‧‧Si半導體施體晶片
308‧‧‧區域
310‧‧‧剝離層表面
312‧‧‧前驅物玻璃晶片
314‧‧‧前驅物玻璃基板表面
T1、T2‧‧‧溫度
V1、V2‧‧‧電壓
圖1是依據本發明的某實施例,玻璃陶瓷上半導體結構的橫截面示意圖。
圖2是依據本發明的另一實施例,玻璃陶瓷上半導體結構的橫截面示意圖。
圖3-6是依據本發明的某實施例,絕緣體上半導體結構的橫截面示意圖。
圖7是依據本發明所詳舉的範例型態中,玻璃上半導體結構的TOF-SIMs的深度輪廓圖。
圖8是依據本發明所詳舉的範例型態中,玻璃上半導體結構的TEM顯微照片。
圖9圖示的是依據本發明所詳舉的範例型態中,玻璃上半導體結構的X射線繞射圖案。
100‧‧‧SOG層結構
102‧‧‧半導體元件、前驅物玻璃基板
104‧‧‧半導體材料層
106‧‧‧半導體隔離層、加強含氧層
108‧‧‧玻璃陶瓷基板、氧化物玻璃層
110‧‧‧氧化物玻璃陶瓷基板

Claims (11)

  1. 一種絕緣體上半導體結構,包含:一實質上單晶半導體材料以及一包含正離子之氧化物玻璃陶瓷,其中至少一部份結構依序包括:一包含一單晶質半導體材料之層;一包含具有加強含氧含量的單晶質半導體材料之層;一包含一氧化物玻璃材料之層;一包含具有實質上沒有改良劑正離子之減少正離子濃度的玻璃陶瓷材料之層;一包含具有改良劑正離子以提高正離子濃度的玻璃陶瓷之層,包括至少一種由具有減少正離子濃度的玻璃陶瓷材料選取出的鹼土金屬改良劑離子;以及一包含大塊玻璃陶瓷材料之層。
  2. 依據申請專利範圍第1項之絕緣體上半導體結構,其中該玻璃及/或該玻璃陶瓷包含一種或多種正離子,其中在玻璃或玻璃陶瓷中以氧化物為基準之鋰、鈉及鉀離子總和為小於約2重量%。
  3. 依據申請專利範圍第1項之絕緣體上半導體結構,其中該玻璃或該玻璃陶瓷為不含鹼金屬離子。
  4. 依據申請專利範圍第1項之絕緣體上半導體結構,其中 該玻璃及/或該玻璃陶瓷包含尖晶石或莫來石晶相。
  5. 依據申請專利範圍第1項之絕緣體上半導體結構,其中該玻璃及/或該玻璃陶瓷在25-300℃範圍內呈現出熱膨脹係數在約22-42x10-7 /℃之間。
  6. 依據申請專利範圍第1項之絕緣體上半導體結構,其中半導體材料為矽為主之半導體材料以及由未摻雜之矽、n-摻雜之矽、p-摻雜之矽、摻雜鍺之矽(SiGe)以及碳化矽組成的群組中選取出。
  7. 依據申請專利範圍第1項之絕緣體上半導體結構,其中半導體材料由Ge、GeAs、GaP及InP為主之材料組成的群組中選取出。
  8. 依據申請專利範圍第5項之絕緣體上半導體結構,其中該玻璃陶瓷為透明的矽酸鹽為主之玻璃陶瓷,具有尖晶石晶相之主要晶相,及其組成以氧化物為基礎之重量%計係包含:55-65% SiO2 、15-25% Al2 O3 、6-15% ZnO、0-6% MgO、0-10% TiO2 、0-10% ZrO、0-15% Cs2 O、0-5% BaO、ZnO+MgO的總和為大於或等於約8%,以及TiO2 +ZrO2 的總和為大於約4%。
  9. 一種形成玻璃陶瓷上半導體結構之方法,該方法包含下 列步驟:(a)將一施體半導體晶片的一植入表面施以一離子植入處理以產生該施體半導體晶片的一剝離層;(b)使用電解黏接該剝離層的該植入表面到一前驅物玻璃基板;(c)分離該剝離層和該施體半導體晶片,留下黏接至該前驅物玻璃基板的該剝離層,以在該前驅物玻璃基板上形成一中間半導體;(d)將該前驅物玻璃基板上之該中間半導體施以加熱步驟以使前驅物玻璃基板結晶化,其導致玻璃陶瓷上半導體結構的形成。
  10. 依據申請專利範圍第9項之方法,其中該黏接步驟包含:(b1)對至少該玻璃基板及該施體半導體晶片之一者加熱;(b2)促使該玻璃基板經由該剝離層直接地或間接地接觸該施體半導體晶片;以及(b3)施加電壓於該玻璃基板與該施體半導體晶片兩端以產生黏接。
  11. 依據申請專利範圍第10項之方法,其中該玻璃基板及該半導體晶片之溫度提高至該玻璃基板應變點的上下約150℃範圍內以及其中該玻璃基板與該半導體晶片間之該電壓在約100至2000伏特之間。
TW97111629A 2007-03-30 2008-03-28 玻璃陶瓷為主半導體在絕緣體上結構及其製造方法 TWI470743B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US92098607P 2007-03-30 2007-03-30

Publications (2)

Publication Number Publication Date
TW200905812A TW200905812A (en) 2009-02-01
TWI470743B true TWI470743B (zh) 2015-01-21

Family

ID=39731485

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97111629A TWI470743B (zh) 2007-03-30 2008-03-28 玻璃陶瓷為主半導體在絕緣體上結構及其製造方法

Country Status (3)

Country Link
US (1) US7960736B2 (zh)
TW (1) TWI470743B (zh)
WO (1) WO2008121262A2 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9257328B2 (en) 2008-11-26 2016-02-09 Corning Incorporated Glass-ceramic-based semiconductor-on-insulator structures and method for making the same
JPWO2012002440A1 (ja) * 2010-06-29 2013-08-29 京セラ株式会社 半導体基板の表面処理方法、半導体基板、および太陽電池の製造方法
CN102451812B (zh) * 2010-10-26 2014-02-19 展晶科技(深圳)有限公司 荧光粉涂布方法
ES2443592T3 (es) 2010-11-04 2014-02-19 Corning Incorporated Vitrocerámica transparente de espinela exenta de As2O3 y Sb2O3
JP5696543B2 (ja) * 2011-03-17 2015-04-08 セイコーエプソン株式会社 半導体基板の製造方法
US9296183B2 (en) * 2011-11-30 2016-03-29 Corning Incorporated Metal dewetting methods and articles produced thereby
WO2013105634A1 (ja) 2012-01-12 2013-07-18 信越化学工業株式会社 熱酸化異種複合基板及びその製造方法
US9980384B2 (en) * 2012-06-21 2018-05-22 Kyocera Corporation Circuit board and electronic apparatus including the same
US10991617B2 (en) * 2018-05-15 2021-04-27 Applied Materials, Inc. Methods and apparatus for cleaving of semiconductor substrates
KR102178626B1 (ko) * 2018-10-30 2020-11-16 에이피시스템 주식회사 적층구조물 박리 방법, 유기발광소자 수리 방법 및 적층구조물 박리장치

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5968857A (en) * 1997-03-31 1999-10-19 Corning Incorporated Glass-ceramics
US6335231B1 (en) * 1998-09-04 2002-01-01 Semiconductor Energy Laboratory Co., Ltd. Method of fabricating a high reliable SOI substrate
US20040229444A1 (en) * 2003-02-18 2004-11-18 Couillard James G. Glass-based SOI structures
WO2006023289A2 (en) * 2004-08-18 2006-03-02 Corning Incorporated Strained semiconductor-on-insulator structures and methods for making strained semiconductor-on-insulator structures

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2002307578A1 (en) * 2002-04-30 2003-12-02 Agency For Science Technology And Research A method of wafer/substrate bonding
US7456080B2 (en) 2005-12-19 2008-11-25 Corning Incorporated Semiconductor on glass insulator made using improved ion implantation process

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5968857A (en) * 1997-03-31 1999-10-19 Corning Incorporated Glass-ceramics
US6335231B1 (en) * 1998-09-04 2002-01-01 Semiconductor Energy Laboratory Co., Ltd. Method of fabricating a high reliable SOI substrate
US20040229444A1 (en) * 2003-02-18 2004-11-18 Couillard James G. Glass-based SOI structures
WO2005029576A2 (en) * 2003-02-18 2005-03-31 Corning Incorporated Glass-based soi structures
WO2006023289A2 (en) * 2004-08-18 2006-03-02 Corning Incorporated Strained semiconductor-on-insulator structures and methods for making strained semiconductor-on-insulator structures

Also Published As

Publication number Publication date
WO2008121262A2 (en) 2008-10-09
TW200905812A (en) 2009-02-01
WO2008121262A3 (en) 2008-12-04
US7960736B2 (en) 2011-06-14
US20090050901A1 (en) 2009-02-26

Similar Documents

Publication Publication Date Title
TWI470743B (zh) 玻璃陶瓷為主半導體在絕緣體上結構及其製造方法
TWI388034B (zh) 玻璃陶瓷為主半導體在絕緣體上結構以及其製造方法
KR101291956B1 (ko) 증착된 장벽층을 구비한 유리 절연체 상의 반도체
TWI289904B (en) Strained semiconductor-on-insulator structures and methods for making strained semiconductor-on-insulator structures
US7410883B2 (en) Glass-based semiconductor on insulator structures and methods of making same
US7619283B2 (en) Methods of fabricating glass-based substrates and apparatus employing same
EP1936679A1 (en) Method for manufacturing an SOI substrate
TW201218312A (en) Semiconductor on glass substrate with stiffening layer and process of making the same
EP1955371A1 (en) Large area semiconductor on glass insulator
TWI437645B (zh) 玻璃陶瓷為主的絕緣層上半導體之結構及其製法

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees