WO2012102348A1 - Ti3SiC2質材料、電極、スパークプラグ、及びその製造方法 - Google Patents

Ti3SiC2質材料、電極、スパークプラグ、及びその製造方法 Download PDF

Info

Publication number
WO2012102348A1
WO2012102348A1 PCT/JP2012/051703 JP2012051703W WO2012102348A1 WO 2012102348 A1 WO2012102348 A1 WO 2012102348A1 JP 2012051703 W JP2012051703 W JP 2012051703W WO 2012102348 A1 WO2012102348 A1 WO 2012102348A1
Authority
WO
WIPO (PCT)
Prior art keywords
sic
mass
less
material according
electrode
Prior art date
Application number
PCT/JP2012/051703
Other languages
English (en)
French (fr)
Inventor
服部 哲也
貴文 木俣
義政 小林
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to EP12739019.3A priority Critical patent/EP2676946B1/en
Priority to JP2012554843A priority patent/JP6105937B2/ja
Publication of WO2012102348A1 publication Critical patent/WO2012102348A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/20Sparking plugs characterised by features of the electrodes or insulation
    • H01T13/39Selection of materials for electrodes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • C04B35/5611Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on titanium carbides
    • C04B35/5615Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on titanium carbides based on titanium silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • C04B35/5611Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on titanium carbides
    • C04B35/5618Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on titanium carbides based on titanium aluminium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/001Joining burned ceramic articles with other burned ceramic articles or other articles by heating directly with other burned ceramic articles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/021Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles in a direct manner, e.g. direct copper bonding [DCB]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T21/00Apparatus or processes specially adapted for the manufacture or maintenance of spark gaps or sparking plugs
    • H01T21/02Apparatus or processes specially adapted for the manufacture or maintenance of spark gaps or sparking plugs of sparking plugs
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3839Refractory metal carbides
    • C04B2235/3843Titanium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3891Silicides, e.g. molybdenum disilicide, iron silicide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/402Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/404Refractory metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/428Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/343Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/405Iron metal group, e.g. Co or Ni

Definitions

  • the present invention relates to a Ti 3 SiC 2 material excellent in spark wear resistance and oxidation resistance, an electrode, a spark plug, and a method for manufacturing the same.
  • Ni-based, Pt-based, and Ir-based alloys have been applied as electrode materials for spark plugs (Patent Document 1).
  • Ni-based alloys are advantageous in that they are inexpensive, but the spark plugs are inferior in resistance to sparks, so that frequent replacement of spark plugs is necessary.
  • Pt-based and Ir-based alloys have the advantage of long life because they are excellent in oxidation resistance and spark consumption, but they are disadvantageous in that they are expensive because they are noble metal alloys.
  • a Pt-based or Ir-based alloy tip is welded to the tip of a Ni-based alloy, and an electrode made of only a Pt-based or Ir-based alloy is proposed. There is a problem of peeling of the chip due to the presence of this (Patent Document 2). For this reason, there has been no spark plug electrode material that is inexpensive and has a sufficient lifetime.
  • Ti 3 SiC 2 has both high heat, electrical conductivity, thermal shock resistance, easy processability, which are the characteristics of metal, and excellent heat resistance and oxidation resistance, which is a characteristic of ceramics.
  • JP 2002-235139 A Japanese Patent No. 3562532 US2010 / 0052498 A1 Japanese Patent No. 4362582 Japanese Patent No. 3995143 JP 2005-89252 A
  • Ti 3 SiC 2 itself is excellent in spark wear resistance, oxidation resistance, and heat resistance. However, in order to use it as an electrode material, particularly as an electrode material for a spark plug, arc resistance (spark wear resistance, oxidation resistance) Sex) was not sufficient.
  • An object of the present invention is to provide a Ti 3 SiC 2 material excellent in arc resistance, an electrode, a spark plug, and a manufacturing method thereof.
  • the present inventors have found a dense Ti 3 SiC 2 sintered body in which almost no TiC phase remains.
  • TiC phase and pores are present, TiC and pores are preferentially oxidized and spark consumed, reducing the life of the electrode material. Therefore, in order to use it as an electrode material, particularly as an electrode material for a spark plug, a dense Ti 3 SiC 2 sintered body in which almost no TiC phase remains is necessary.
  • the following Ti 3 SiC 2 material, electrode, spark plug, and manufacturing method thereof are provided.
  • the main phase is Ti 3 SiC 2, TiC content 0.5 wt% or less, an open porosity of less 0.5% Ti 3 SiC 2 quality material.
  • a titanium source is mixed in a mass ratio of 68.0 to 73.5 mass%, a silicon source is 14.0 to 19.0 mass%, and a carbon source is 11.0 to 14.0 mass%. and, molding the mixed raw material powder thus obtained, then, the production method of Ti 3 SiC 2 quality material firing it.
  • a titanium source is 68.0 to 73.5 mass%
  • a silicon source is 9.0 to 19.0 mass%
  • an aluminum source is 0 to 5.0 mass%
  • a carbon source is 11.0 to A method for producing a Ti 3 SiC 2 material, which is mixed at a mass ratio of 14.0% by mass, the obtained raw material mixed powder is molded, and then fired.
  • first baking is performed in a vacuum or Ar atmosphere at 600 to 1400 ° C. for 0.5 to 20 hours, and subsequently higher than the first baking.
  • Ti 3 SiC 2 of the present invention has greatly reduced the number of out-of-phase TiC and open pores, arc resistance (spark wear resistance, oxidation resistance) is improved. Moreover, the arc resistance is further improved by the solid solution of Al. As a result, it is possible to obtain a spark plug electrode material that is significantly reduced in cost and arc resistance.
  • the main phase is Ti 3 SiC 2 , the TiC content is 0.5% by mass or less, and the open porosity is 0.5% or less.
  • the main phase refers to a phase of 60% by mass or more.
  • Ti 3 SiC 2 itself is excellent in spark wear resistance, oxidation resistance, and heat resistance. However, if a TiC phase or pores are present, TiC or pores are preferentially oxidized or spark consumed, resulting in a long life as an electrode material. Reduce.
  • the Ti 3 SiC 2 based material of the present invention is a dense sintered body of Ti 3 SiC 2 with almost no TiC phase remaining.
  • a titanium source, a silicon source, an aluminum source, and a carbon source are mixed at a compounding ratio as described later, and fired at a predetermined firing temperature, whereby the TiC content is 0.5 mass% or less and the open porosity is 0. .5% or less of Ti 3 SiC 2 can be synthesized.
  • Ti 3 SiC 2 material can be used as an electrode material, particularly as an electrode material for a spark plug. This material has good arc resistance (spark wear resistance, oxidation resistance).
  • the Ti 3 SiC 2 material of the present invention preferably has a Ti 5 Si 3 content of 8% by mass or less. More preferably, it is 7 mass% or less, More preferably, it is 6 mass% or less. When the Ti 5 Si 3 content is 8% by mass or less, the arc resistance can be improved.
  • the Ti 3 SiC 2 material of the present invention preferably has a SiC content of 5% by mass or less. More preferably, it is 4.5 mass% or less, More preferably, it is 4 mass% or less. Arc resistance can be improved because SiC content is 5 mass% or less.
  • the Ti 3 SiC 2 material of the present invention preferably has a TiSi 2 content of 3% by mass or less. More preferably, it is 0 mass%. When the TiSi 2 content is 3% by mass or less, the arc resistance can be improved.
  • the Ti 3 SiC 2 material of the present invention preferably has a thermal conductivity of 25 W / mK or more. More preferably, it is 30 W / mK or more.
  • the thermal conductivity is 25 W / mK or more, when used as a spark plug, heat dissipation is good against temperature rise due to fuel ignition, and oxidation consumption can be suppressed.
  • the Ti 3 SiC 2 material of the present invention preferably has a bending strength of 200 MPa or more. More preferably, it is 250 MPa or more, and more preferably 270 MPa or more. When the bending strength is 200 MPa or more, it can be used as a material for a member that requires strength.
  • the Ti 3 SiC 2 material of the present invention preferably has a coefficient of thermal expansion of 7 to 9 ppm / K. More preferably, it is 8 to 9 ppm / K. When the coefficient of thermal expansion is 7 to 9 ppm / K, it can be used as a material for members used at high temperatures.
  • the Ti 3 SiC 2 material of the present invention preferably has a volume resistivity of 1 ⁇ 10 ⁇ 4 ⁇ ⁇ cm or less. More preferably, it is 5 ⁇ 10 ⁇ 5 ⁇ ⁇ cm or less, and further preferably 3 ⁇ 10 ⁇ 5 ⁇ ⁇ cm or less.
  • the volume resistivity is 1 ⁇ 10 ⁇ 4 ⁇ ⁇ cm or less, there is little energy loss and it can be suitably used as a spark plug.
  • the Ti 3 SiC 2 material of the present invention preferably has an oxide film thickness of 40 ⁇ m or less when held at 1000 ° C. for 5 hours under atmospheric pressure. More preferably, it is 35 micrometers or less, More preferably, it is 30 micrometers or less. When the oxide film thickness is 40 ⁇ m or less, it is difficult to oxidize and can be used as a conductive material in use at high temperatures.
  • the Ti 3 SiC 2 material of the present invention can be used as an electrode material.
  • an electrode for a spark plug can be manufactured using a Ti 3 SiC 2 material.
  • FIG. 1 shows a spark plug 10 of the present invention.
  • the spark plug 10 is used for ignition in a combustion apparatus such as an engine, and includes a center electrode 1, a ground electrode 4, and the like.
  • the center electrode 1 and the ground electrode 4 can be made of a Ti 3 SiC 2 material. Therefore, the present invention is an electrode formed using a Ti 3 SiC 2 material and a spark plug 10 formed using the electrode.
  • the spark plug 10 includes a center electrode 1, an insulator 2 disposed on the outer periphery of the center electrode 1, a cylindrical metal shell (housing) 3 that holds the insulator, and a metal shell. 3 is connected to the ground electrode 4.
  • the center electrode 1 and the ground electrode 4 are opposed to each other so as to have a spark discharge gap.
  • the insulator 2 has an axial hole penetrating in the axial direction, and holds the center electrode 1 in the axial hole.
  • the metal shell 3 surrounds the periphery of the insulator 2 in the radial direction and holds the insulator 2.
  • the metal shell 3 is for fixing the spark plug 10 to the internal combustion engine.
  • One end of the ground electrode 4 is joined to the metal shell 3, and the other end faces the tip of the center electrode 1.
  • a method for manufacturing a Ti 3 SiC 2 quality material of the present invention a titanium source, a silicon source, an aluminum source, and a carbon source are mixed at a compounding ratio as will be described later, and fired at a predetermined firing temperature, whereby Ti 3 (Si, Al) C having a low TiC content is obtained. 2 can be obtained.
  • the amounts of the silicon source, aluminum source, and carbon source that are likely to deviate from the charged composition may be adjusted.
  • Method of manufacturing a Ti 3 SiC 2 quality material of the present invention as a raw material, a titanium source 68.0 to 73.5 wt%, a silicon source from 14.0 to 19.0 wt%, a carbon source 11.0 ⁇
  • the mass ratio here means the ratio of elements (Ti, Si, Al, C) contained in the raw material.
  • “14.0 mass% of the silicon source” means that when silicon carbide powder is used as the silicon source, the mass ratio of the Si raw material contained in the silicon carbide powder to 14.0 mass%. Firing after molding the obtained raw material mixed powder is preferably performed at two different temperatures.
  • the first baking is performed at 600 to 1400 ° C. for 0.5 to 20 hours in a vacuum or an Ar atmosphere, and subsequently, higher than the first baking at 1000 to 1750 ° C. for 0.5 to 20 hours. It is preferable to perform the second baking. Note that, after the first firing, the temperature is raised to the second firing temperature without lowering the temperature.
  • the firing time is more preferably 0.5 to 10 hours, and still more preferably 0.5 to 5 hours in both the first firing and the second firing.
  • titanium source metal titanium powder, TiH 2 or the like can be used.
  • silicon source metal silicon powder or the like can be used.
  • Carbon powder or the like can be used as the carbon source.
  • Metal aluminum powder can be used as the aluminum source.
  • compounds obtained by combining them, such as silicon carbide powder can also be used.
  • metal titanium powder, silicon carbide powder, and carbon powder, which are relatively inexpensive raw materials, can be used as starting raw materials.
  • the silicon source may be mixed in a large amount up to about 1.2 times mol with respect to the desired composition.
  • the carbon source may be mixed up to about 1.1 times mole.
  • the titanium source is 68.0 to 73.5 mass% as a raw material.
  • a raw material mixed powder obtained by mixing 9.0 to 19.0% by mass of a silicon source, 0 to 5.0% by mass of an aluminum source, and 11.0 to 14.0% by mass of a carbon source. Is formed and then fired. Firing after molding the obtained raw material mixed powder is preferably performed at two different temperatures. Specifically, the first baking is performed at 600 to 1400 ° C. for 0.5 to 20 hours in a vacuum or an Ar atmosphere, and subsequently, higher than the first baking at 1000 to 1750 ° C.
  • the firing time for both the first firing and the second firing is more preferably 0.5 to 10 hours, and further preferably 0.5 to 5 hours.
  • the silicon source may be mixed in a large amount up to about 1.2 times the mole of the desired composition when the raw materials are mixed. Moreover, you may mix many aluminum sources to about 1.1 times mole with respect to a desired composition. Also, the carbon source may be mixed up to about 1.1 times mole.
  • the first baking and the second baking can be performed by hot pressing.
  • the pressing pressure is preferably 50 to 450 kg / cm 2 . More preferably, it is 100 to 350 kg / cm 2 , and still more preferably 200 to 250 kg / cm 2 .
  • the center electrode 1 and the ground electrode 4 of the spark plug 10 can be formed by cutting the Ti 3 SiC 2 material of the present invention.
  • the insulator 2 is produced.
  • a cylindrical molded body is obtained by performing press molding using a raw material powder containing alumina, a binder, and the like. This is ground to form an insulator molded body.
  • the electrode (center electrode 1) is embedded in the insulator molded body, and these are fired to form the insulator molded body as the insulator 2, and at the same time, the electrode and the insulator 2 are joined. Since the firing of the insulator molded body and the bonding of the insulator and the electrode can be performed in one step, the manufacturing cost can be reduced.
  • the metal shell 3 is formed using a cylindrical metal material, and the ground electrode 4 is joined to the metal shell 3. Thereafter, the spark plug 10 can be obtained by fixing the insulator 2 including the center electrode 1 and the like and the metal shell 3 including the ground electrode 4.
  • Examples 1, 3 to 12, Comparative Examples 1 to 4 Metal titanium powder was used as a titanium source. Silicon carbide powder was used as the silicon source. As the carbon source, silicon carbide powder and carbon powder (the amount insufficient for silicon carbide powder) were used. Metal aluminum powder was used as the aluminum source. These raw materials were mixed at the raw material mixing ratio (mass%) shown in Table 1. Moreover, the ratio of the element contained in a raw material was described as element ratio. Mixing was performed in a mortar for 10 minutes using a pestle. About 20 g of the mixed powder was weighed and press molded to a diameter of 35 mm and a thickness of 10 mm.
  • Example 2 The raw materials were the same as in Example 1 and mixed at the raw material mixing ratio (% by mass) shown in Table 1.
  • the raw materials were mixed by different methods. That is, a cobblestone made of nylon (with iron core) was put in a pot, and pot mill mixing was performed for 4 hours using IPA as a solvent.
  • the mixed powder was dried with an evaporator and sieved with # 30 mesh. About 20 g of the mixed powder was weighed and press molded to a diameter of 35 mm and a thickness of 10 mm.
  • Example 9 to 10, 12 and Comparative Example 4 The compact obtained by press molding was hot pressed at 1000 ° C. for 4 hours in an Ar atmosphere at a press pressure of 210 kg / cm 2 . Thereafter, the temperature was further set to 1600 ° C. and hot pressing was performed for 4 hours to obtain a sintered body (sample).
  • Example 11 The compact obtained by press molding was hot pressed at 1000 ° C. for 4 hours in an Ar atmosphere at a press pressure of 210 kg / cm 2 . Thereafter, the temperature was further increased to 1,675 ° C., and hot pressing was performed for 4 hours to obtain a sintered body (sample).
  • Comparative Example 5 is a commercially available Ni alloy for a center electrode for a spark plug.
  • ⁇ Crystal phase The X-ray diffraction pattern of the obtained sintered body (sample) was measured by the ⁇ -2 ⁇ method. X-ray diffraction was performed using Cu-K ⁇ as a radiation source using an X-ray diffractometer (manufactured by Rigaku Corporation). The amount (% by mass) of each crystal phase was calculated from the intensity ratio between the main peak of Ti 3 SiC 2 and the other crystal phase peaks in the X-ray diffraction pattern.
  • Open porosity The open porosity was calculated by measuring the sintered body (sample) by the Archimedes method.
  • the sintered body was calculated from specific heat measured by differential scanning calorimetry (DSC), thermal diffusion coefficient measured by laser flash method, and density measured by Archimedes method (JIS R1611).
  • ⁇ Oxide film thickness About 0.5 to 1.5 g of sintered body (sample) (surface area of 1.6 to 3.2 cm 2 ) is placed in an alumina square box and kept at 1000 ° C. for 5 hours under atmospheric pressure. Were observed and measured by SEM.
  • ⁇ Arc consumption start current value, arc consumption speed> A sintered body (sample) processed to a diameter of 0.6 mm and a length of 15 to 20 mm was used as an anode, and SUS304 was used as a cathode. Specifically, the processed sintered body was opposed to the SUS304 cathode at an angle of 45 degrees to form an anode, and the negative-anode distance was set to 5 mm. Then, arc discharge was performed at room temperature and atmospheric pressure using a 100 kV power source. The current of the power source was discharged at 0.15 A for 5 minutes, and the arc discharge location was observed using an optical microscope to confirm the presence or absence of wear.
  • the current value on the primary side was increased by 0.05 A, and further discharge was performed for 5 minutes, and observation with an optical microscope was performed. This cycle (discharge ⁇ optical microscope observation) was repeated until consumption started.
  • the primary side current value was changed, and the current value at the start of consumption was defined as the arc consumption start current value.
  • the arc consumption rate was calculated by performing discharge for 5 minutes at a current value of the power source of 0.45 A, dividing the consumed diameter by scraping from the original shape at this time, and dividing by the discharge time.
  • the arc wear rate was 20 ⁇ m / min or less, evaluated as ⁇ , 21-30 ⁇ m / min as ⁇ , and 31 ⁇ m / min or more as ⁇ , and listed in the table.
  • the arc consumption rate will be compared.
  • Examples 1 to 12 having a TiC content of 0.5% by mass or less and an open porosity of 0.5% compared with Comparative Examples 1 to 4, the arc consumption rate was small and the arc resistance was good.
  • Comparative Example 1 having a large TiC content was seen to oxidize and scatter the TiC portion, but the TiC content was 0.5% by mass or less. In Example 1, almost no scattering points were observed.
  • Examples 1 to 5 and 9 to 11 Comparing Examples 1 to 5 and 9 to 11 with Example 12, Examples 1 to 5 and 9 to 11 in which the Al substitution amount of the Si part of Ti 3 SiC 2 is 30 mol% or less have a low arc consumption rate. The arc resistance was even better.
  • Examples 1 to 5 and Example 6 Examples 1 to 5 having a Ti 5 Si 3 content of 8% by mass or less had a low arc consumption rate and further improved arc resistance. Comparing Examples 1 to 5 and Example 7, Examples 1 to 5 having an SiC content of 5% by mass or less had a low arc consumption rate and further improved arc resistance. Comparing Examples 1 to 5 and Example 8, Examples 1 to 5 having a TiSi 2 content of 3% by mass or less had a low arc consumption rate and further improved arc resistance.
  • Examples 1 to 5 and 9 to 11 Comparing Examples 1 to 5 and 9 to 11 with Example 12, Examples 1 to 5 and 9 to 11 in which the Al substitution amount in the Si part of Ti 3 SiC 2 is 30 mol% or less have an arc consumption starting current value. The arc resistance was high. Comparing Examples 1 to 5 and Example 6, Examples 1 to 4 having a Ti 5 Si 3 content of 8% by mass or less had high arc consumption starting current values and good arc resistance. When Examples 1 to 5 and Example 7 were compared, Examples 1 to 5 having an SiC content of 5% by mass or less had high arc consumption starting current values and good arc resistance. When Examples 1 to 5 were compared with Example 8, Examples 1 to 5 having a TiSi 2 content of 3% by mass or less had high arc consumption starting current values and good arc resistance.
  • Examples 1 to 12 having good arc resistance had a thermal conductivity of 25 W / mK or more. Further, in Examples 1 to 12 having good arc resistance, the bending strength was 200 MPa or more. Further, Examples 1 to 12 having good arc resistance had a coefficient of thermal expansion of about 7 to 9 ppm / K. In Examples 1 to 12 having good arc resistance, the volume resistivity was 1 ⁇ 10 ⁇ 4 ⁇ ⁇ cm or less.
  • Example 1 In Examples 1, 3 to 4, 6, and 9 to 11, almost no peeling of the oxide film from the base material was observed when held at 1000 ° C. for 5 hours under atmospheric pressure, but in Example 12, the film was thick. As a result, the oxidation resistance decreased. Also, the arc consumption rate with a large thermal load was small when the Al content was 30 mol% or less, and the arc resistance was good.
  • Example 1 which is relatively close to the thermal expansion coefficient of the insulator of about 8 ppm / K is co-fired integrally with the insulator for the spark plug. It was possible to join. Further, in Examples 2 and 10, bonding was possible in the same manner. On the other hand, it was not joined in Comparative Example 5. Therefore, in Examples 1, 2, and 10 that can be joined by co-firing with an insulator, cost reduction can be expected by simplifying the spark plug manufacturing process.
  • the Ti 3 SiC 2 of the present invention significantly reduced the out-of-phase TiC and open pores, and thus improved arc resistance.
  • the Ti 3 SiC 2 material of the present invention can be used as an electrode material, particularly as an electrode material for a spark plug.
  • the electrode and spark plug using the Ti 3 SiC 2 material of the present invention are excellent in arc resistance at low cost.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Spark Plugs (AREA)

Abstract

 耐アーク性に優れたTiSiC質材料、電極、スパークプラグ、及びその製造方法を提供する。本発明のTiSiC質材料は、主相がTiSiCであり、TiC含有率が0.5質量%以下、開気孔率が0.5%以下である。主相のTiSiCのSiを、Alに0~30mol%置換することも好ましい。本発明のスパークプラグは、TiSiC質材料によって形成された電極を備える。

Description

Ti3SiC2質材料、電極、スパークプラグ、及びその製造方法
 本発明は、耐火花消耗性、耐酸化性に優れたTiSiC質材料、電極、スパークプラグ、及びその製造方法に関する。
 従来、スパークプラグ用電極材料としてNi系、Pt系、Ir系合金が適用されている(特許文献1)。Ni系合金は安価な点が長所となっているが、耐火花消耗性に劣っているため、スパークプラグの頻繁な交換が必要となる。一方で、Pt系、Ir系合金は耐酸化性および耐火花消耗性に優れているため長寿命という長所があるが、貴金属合金であるためコストが高い欠点がある。低コスト化するために、Ni系合金の先端にPt系、Ir系合金のチップを溶接し、電極先端のみがPt系、Ir系合金からなる電極も提案されているが、線膨張係数に差異があることによるチップの剥離などが問題となっている(特許文献2)。このため、安価で十分な寿命を有するスパークプラグ用電極材料は無かった。
 また、近年のエンジン燃費効率、高性能化等に伴い、プラグ電極曝露環境の苛酷化が進んでいるため、更に耐性(耐酸化性や耐火花消耗性など)に優れた電極材料に対するニーズが高まっている。合金系の代替としては耐火花消耗性・耐酸化性・耐熱性に優れ、かつ合金材料より低コストなTiSiCが提案されている(特許文献3)。
 TiSiCは、金属の特徴である高い熱・電気伝導率・耐熱衝撃性・易加工性と、セラミックスの特徴である優れた耐熱・耐酸化性を併せ持っており、スパークプラグ用電極材料として有望である。しかし、単相TiSiCの合成は難しく異相としてTiCやSiCが存在する。また、常圧焼結十分な緻密化が困難であり、数%の開気孔が残存し易い(特許文献4~6参照)。
特開2002-235139号公報 特許第3562532号公報 US2010/0052498 A1 特許第4362582号公報 特許第3951643号公報 特開2005-89252号公報
 TiSiC自体は耐火花消耗性・耐酸化性・耐熱性に優れているが、電極材料、特に、スパークプラグ用電極材料として用いるためには、耐アーク性(耐火花消耗性・耐酸化性)が十分とはいえなかった。
 本発明の課題は、耐アーク性に優れたTiSiC質材料、電極、スパークプラグ、及びその製造方法を提供することにある。
 上記課題を解決するために、本発明者らは、TiC相がほとんど残存しない緻密なTiSiC焼結体を見出した。TiC相や気孔が存在すると、TiCや気孔が優先的に酸化や火花消耗し、電極材料の寿命を低下させる。そのため、電極材料、特に、スパークプラグ用電極材料として用いるためには、TiC相がほとんど残存しない緻密なTiSiC焼結体が必要である。本発明によれば、以下のTiSiC質材料、電極、スパークプラグ、及びその製造方法が提供される。
[1] 主相がTiSiCであり、TiC含有率が0.5質量%以下、開気孔率が0.5%以下であるTiSiC質材料。
[2] 前記主相のTiSiCのSiを、Alに0~30mol%置換した前記[1]に記載のTiSiC質材料。
[3] TiSi含有量が8質量%以下である前記[1]または[2]に記載のTiSiC質材料。
[4] SiC含有量が5質量%以下である前記[1]~[3]のいずれかに記載のTiSiC質材料。
[5] TiSi含有量が3質量%以下である前記[1]~[4]のいずれかに記載のTiSiC質材料。
[6] 熱伝導率が25W/mK以上である前記[1]~[5]のいずれかに記載のTiSiC質材料。
[7] 曲げ強度が200MPa以上である前記[1]~[6]のいずれかに記載のTiSiC質材料。
[8] 熱膨張率が7~9ppm/Kである前記[1]~[7]のいずれかに記載のTiSiC質材料。
[9] 体積抵抗率が1×10-4Ω・cm以下である前記[1]~[8]のいずれかに記載のTiSiC質材料。
[10] 大気圧下、1000℃で5時間保持した時に形成される酸化皮膜厚が40μm以下である前記[1]~[9]のいずれかに記載のTiSiC質材料。
[11] 前記[1]~[10]のいずれかに記載のTiSiC質材料を用いた電極。
[12] 前記[11]に記載の電極を用いて形成されたスパークプラグ。
[13] 原料として、チタニウム源を68.0~73.5質量%、珪素源を14.0~19.0質量%、炭素源を11.0~14.0質質量%の質量割合で混合し、得られた原料混合粉末を成形し、その後、それを焼成するTiSiC質材料の製造方法。
[14] 原料として、チタニウム源を68.0~73.5質量%、珪素源を9.0~19.0質量%、アルミニウム源を0~5.0質量%、炭素源を11.0~14.0質量%の質量割合で混合し、得られた原料混合粉末を成形し、その後、それを焼成するTiSiC質材料の製造方法。
[15] 得られた前記原料混合粉末を成形した後に、真空またはAr雰囲気中で600~1400℃で0.5~20時間、第一の焼成を行い、続いて前記第一の焼成よりも高い1000~1750℃で0.5~20時間、第二の焼成を行う前記[13]または[14]に記載のTiSiC質材料の製造方法。
[16] 前記第一の焼成、及び前記第二の焼成は、ホットプレスによる焼成であり、プレス圧は50~450kg/cmである前記[13]~[15]のいずれかに記載のTiSiC質材料の製造方法。
[17] 前記[11]に記載の電極を絶縁碍子成形体中に埋設し、これらを焼成することにより、前記絶縁碍子成形体を絶縁碍子とし、同時に前記電極と前記絶縁碍子とを接合するスパークプラグの製造方法。
 本発明のTiSiCは、異相TiCおよび開気孔を大幅に低減したため耐アーク性(耐火花消耗性、耐酸化性)が向上する。また、Alの固溶によって、耐アーク性がさらに向上する。これにより低コストかつ耐アーク性を著しく向上させたスパークプラグ用の電極の材料とすることができる。
スパークプラグを示す断面模式図である。
 以下、図面を参照しつつ本発明の実施の形態について説明する。本発明は、以下の実施形態に限定されるものではなく、発明の範囲を逸脱しない限りにおいて、変更、修正、改良を加え得るものである。
 本発明のTiSiC質材料は、主相がTiSiCであり、TiC含有率が0.5質量%以下、開気孔率が0.5%以下である。ここで、主相とは、60質量%以上の相をいう。
 TiSiC自体は耐火花消耗性・耐酸化性・耐熱性に優れているが、TiC相や気孔が存在すると、TiCや気孔が優先的に酸化や火花消耗し、電極材料としての寿命を低下させる。本発明のTiSiC質材料は、TiC相がほとんど残存しない緻密なTiSiCの焼結体である。
 チタニウム源、珪素源、アルミニウム源、および炭素源を後述するような配合比で混合し、所定の焼成温度で焼成することにより、TiC含有率が0.5質量%以下で、開気孔率が0.5%以下のTiSiCを合成することができる。また、TiSiC質材料を電極材料、特に、スパークプラグ用電極材料として用いることができる。本材料は耐アーク性(耐火花消耗性、耐酸化性)が良好である。
 本発明のTiSiC質材料は、主相のTiSiCのSiを、Alに0~30mol%置換することも好ましい。すなわち、TiSi(1-x)Al(x=0~0.3)であることも好ましい。Alの置換は、好ましくは、0~20mol%、より好ましくは、0~10mol%である。TiSiCのSi部分を、Alで置換することにより、耐アーク性が向上する。
 本発明のTiSiC質材料は、TiSi含有量が8質量%以下であることが好ましい。より好ましくは、7質量%以下、さらに好ましくは、6質量%以下である。TiSi含有量が8質量%以下であることにより、耐アーク性を向上させることができる。
 本発明のTiSiC質材料は、SiC含有量が5質量%以下であることが好ましい。より好ましくは、4.5質量%以下、さらに好ましくは、4質量%以下である。SiC含有量が5質量%以下であることにより、耐アーク性を向上させることができる。
 本発明のTiSiC質材料は、TiSi含有量が3質量%以下であることが好ましい。より好ましくは、0質量%である。TiSi含有量が3質量%以下であることにより、耐アーク性を向上させることができる。
 本発明のTiSiC質材料は、熱伝導率が25W/mK以上であることが好ましい。より好ましくは、30W/mK以上である。熱伝導率が25W/mK以上であることにより、スパークプラグとして利用した場合、燃料着火による温度上昇に対して放熱性が良く、酸化消耗を抑えられる。
 本発明のTiSiC質材料は、曲げ強度が200MPa以上であることが好ましい。より好ましくは、250MPa以上、さらに好ましくは、270MPa以上である。曲げ強度が200MPa以上であることにより、強度が要求される部材の材料として利用することができる。
 本発明のTiSiC質材料は、熱膨張率が7~9ppm/Kであることが好ましい。より好ましくは、8~9ppm/Kである。熱膨張率が7~9ppm/Kであることにより、高温下において使用される部材の材料として利用することができる。
 本発明のTiSiC質材料は、体積抵抗率が1×10-4Ω・cm以下であることが好ましい。より好ましくは、5×10-5Ω・cm以下、さらに好ましくは、3×10-5Ω・cm以下である。体積抵抗率が1×10-4Ω・cm以下であると、エネルギーロスが少なく、スパークプラグとして好適に利用することができる。
 本発明のTiSiC質材料は、大気圧下、1000℃で5時間保持した時に形成される酸化皮膜厚が40μm以下であることが好ましい。より好ましくは、35μm以下、さらに好ましくは、30μm以下である。酸化皮膜厚が40μm以下であることにより、酸化されにくく、高温下の使用において導電材料として利用することができる。
 本発明のTiSiC質材料は、電極材料として利用することができる。具体的には、TiSiC質材料によって、スパークプラグ用の電極を作製することができる。図1に、本発明のスパークプラグ10を示す。スパークプラグ10は、エンジン等の燃焼装置における点火に用いられるものであり、中心電極1、接地電極4等を備える。TiSiC質材料によって、中心電極1、接地電極4を作製することができる。したがって、本発明は、TiSiC質材料を用いて形成された電極、その電極を用いて形成されたスパークプラグ10である。
 図1に示すように、スパークプラグ10は、中心電極1と、中心電極1の外周に配設された絶縁碍子2と、絶縁碍子を保持する筒状の主体金具(ハウジング)3と、主体金具3に接合された接地電極4と、を備える。中心電極1と接地電極4とは、火花放電ギャップを有するように対向している。
 絶縁碍子2は、軸線方向に貫通する軸孔を有し、その軸孔内で中心電極1を保持する。主体金具3は、絶縁碍子2の径方向周囲を取り囲み、絶縁碍子2を保持する。また、主体金具3は、内燃機関にスパークプラグ10を固定するためのものである。接地電極4は、一端が主体金具3に接合され、他端が中心電極1の先端部に対向している。
 次に、本発明のTiSiC質材料の製造方法を説明する。本発明では、チタニウム源、珪素源、アルミニウム源、および炭素源を後述するような配合比で混合し、所定の焼成温度で焼成することにより、TiC含有率が低いTi(Si,Al)Cを得ることができる。より単相に近いものを得るために、仕込み組成からずれやすい珪素源、アルミニウム源、炭素源の仕込み量を調整するとよい。乳鉢等を用いて短時間(数分~数十分)混合する場合は、珪素源を調整する(所望の組成に対して1.2倍モル程度まで多く混合)ことが好ましい。ポット等を用いて長時間(数時間)混合する場合は、原料の酸化が起こりやすいために、珪素源の調整に加えて、炭素源の調整(所望の組成に対して1.1倍モル程度まで多く混合)も行うことが好ましい。また、金属アルミニウムは融点が低いため、合成時に蒸気となり揮発することで組成ずれが起こりやすい。そのため、600~1400℃の温度域を0.5~20時間かけて昇温する焼成スケジュールにより、未反応のAlの揮発を抑制し、ほとんど組成ずれのない緻密なTi(Si,Al)C作製を得ることができる。
 本発明のTiSiC質材料の製造方法は、原料として、チタニウム源を68.0~73.5質量%、珪素源を14.0~19.0質量%、炭素源を11.0~14.0質量%の質量割合で混合し、得られた原料混合粉末を成形し、その後、それを焼成する方法である。ここでいう質量割合は、原料に含まれる元素(Ti、Si、Al、C)の割合のことを意味する。例えば、「珪素源を14.0質量%」とは、珪素源として炭化珪素粉末を用いる場合、炭化珪素粉末に含まれるSiの原料全体に対する質量割合が14.0質量%ということである。得られた原料混合粉末を成形した後の焼成は、2段階の異なる温度にて行うことが好ましい。具体的には、真空またはAr雰囲気中で600~1400℃で0.5~20時間、第一の焼成を行い、続いて第一の焼成よりも高い1000~1750℃で0.5~20時間、第二の焼成を行うことが好ましい。なお、第一の焼成後、降温せずに、第二の焼成温度まで昇温する。また、焼成時間は、第一の焼成も第二の焼成も、より好ましくは0.5~10時間、さらに好ましくは0.5~5時間である。
 チタニウム源としては、金属チタン粉末、TiH等を用いることができる。珪素源としては、金属珪素粉末等を用いることができる。炭素源としては、炭素粉末等を用いることができる。また炭素源として熱分解して炭素となるフェノール樹脂等を用いてもよい。アルミニウム源としては、金属アルミ粉末を用いることができる。また、それぞれが化合した化合物、例えば炭化珪素粉末等も用いることができる。以上のように、比較的安価な原料である金属チタン粉末、炭化珪素粉末、および炭素粉末を出発原料として利用することができる。
 原料の混合時には、珪素源は、所望の組成に対して1.2倍モル程度まで多く混合してもよい。また、炭素源は1.1倍モル程度まで多く混合しても良い。原料の混合割合、第一の焼成と第二の焼成の温度や時間を上記範囲とすることにより、異相が少ないTiSiC質材料を製造することができる。
 主相のTiSiCのSiを、Alに0~30mol%置換した場合の本発明のTiSiC質材料の製造方法は、原料として、チタニウム源を68.0~73.5質量%、珪素源を9.0~19.0質量%、アルミニウム源を0~5.0質量%、炭素源を11.0~14.0質量%の質量割合で混合し、得られた原料混合粉末を成形し、その後、それを焼成する方法である。得られた原料混合粉末を成形した後の焼成は、2段階の異なる温度にて行うことが好ましい。具体的には、真空またはAr雰囲気中で600~1400℃で0.5~20時間、第一の焼成を行い、続いて第一の焼成よりも高い1000~1750℃で0.5~20時間、第二の焼成を行うことが好ましい。なお、第一の焼成後、降温せずに、第二の焼成温度まで昇温する。焼成時間は、第一の焼成も第二の焼成も、より好ましくは0.5~10時間、さらに好ましくは0.5~5時間である。
 Siの一部をAlに置換する場合も、原料の混合時には、珪素源は、所望の組成に対して1.2倍モル程度まで多く混合してもよい。また、アルミニウム源は、所望の組成に対して1.1倍モル程度まで多く混合してもよい。また、炭素源は1.1倍モル程度まで多く混合しても良い。原料の混合割合、第一の焼成と第二の焼成の温度や時間を上記範囲とすることにより、異相が少ないTiSiC質材料を製造することができる。
 Siの一部をAlに置換する場合もしない場合も、第一の焼成、及び第二の焼成は、ホットプレスによって行うことができる。プレス圧は50~450kg/cmであることが好ましい。より好ましくは、100~350kg/cm、さらに好ましくは、200~250kg/cmである。プレス圧の範囲をこの範囲として、ホットプレスによって焼成を行うことにより、組成のずれを抑え、異相が少ないTiSiC質材料を製造することができる。
 次に、スパークプラグ10の製造方法について説明する。まず、本発明のTiSiC質材料に対して切削加工等を施すことによって、スパークプラグ10の中心電極1や接地電極4を形成することができる。
 次に、絶縁碍子2を作製する。例えば、アルミナ、バインダ等を含む原料粉末を用いて、プレス成形を行うことにより、筒状の成形体を得る。これを研削加工して絶縁碍子成形体とする。電極(中心電極1)を絶縁碍子成形体中に埋設し、これらを焼成することにより、絶縁碍子成形体を絶縁碍子2とし、同時に電極と絶縁碍子2とを接合する。絶縁碍子成形体の焼成と、絶縁碍子と電極との接合を一工程で行うことができるため、製造コストを削減することができる。
 一方、筒状の金属素材を用いて、主体金具3を形成し、主体金具3に接地電極4を接合する。その後、中心電極1等を備える絶縁碍子2と、接地電極4を備える主体金具3とを固定することにより、スパークプラグ10を得ることができる。
 以下、本発明を実施例に基づいてさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
<混合>
(実施例1、3~12、比較例1~4)
 チタニウム源として、金属チタン粉末を用いた。珪素源として、炭化珪素粉末を用いた。炭素源として、炭化珪素粉末、炭素粉末(炭化珪素粉末で不足する分)を用いた。アルミニウム源として、金属アルミ粉末を用いた。これらの原料を表1に記載の原料混合比(質量%)で混合した。また、原料に含まれる元素の割合を元素比として記載した。混合は、乳鉢中で、乳棒を用いて10分間行った。当該混合粉末を約20g秤量し、直径35mm、厚さ10mmにプレス成形した。
(実施例2)
 原料は、実施例1と同じものを用いて、表1に記載の原料混合比(質量%)で混合した。原料の混合を異なる方法にて行った。すなわち、ポットにナイロン製(鉄心入り)の玉石を入れ、溶媒にIPAを用いて4時間ポットミル混合した。混合粉末をエバポレータにて乾燥し、#30メッシュにて篩通しした。当該混合粉末を約20g秤量し、直径35mm、厚さ10mmにプレス成形した。
<焼成>
(実施例1~8、比較例1~3)
 プレス成形によって得られた成形体を、Ar雰囲気中1600℃で4時間、プレス圧210kg/cmでホットプレスして焼結体(試料)を得た。
(実施例9~10、12、比較例4)
 プレス成形によって得られた成形体を、Ar雰囲気中1000℃で4時間、プレス圧210kg/cmでホットプレスした。その後、さらに温度を1600℃とし、4時間ホットプレスして焼結体(試料)を得た。
(実施例11)
 プレス成形によって得られた成形体を、Ar雰囲気中1000℃で4時間、プレス圧210kg/cmでホットプレスした。その後、さらに温度を1675℃とし、4時間ホットプレスして焼結体(試料)を得た。
(比較例5)
 比較例5は、市販されているスパークプラグ用の中心電極のNi合金である。
<結晶相>
 得られた焼結体(試料)のX線回折パターンをθ-2θ法により測定した。X線回折は、X線回折装置(株式会社リガク製)を用いて、Cu-Kαを線源とした。X線回折パターンのTiSiCのメインピークとその他の結晶相のピークの強度比から、それぞれの結晶相の量(質量%)を算出した。
<開気孔率>
 開気孔率は、焼結体(試料)をアルキメデス法により測定することにより算出した。
<曲げ強度>
 曲げ強度は、焼結体(試料)を4点曲げ強度測定(JIS R1601)によって測定した。
<熱伝導率>
 焼結体(試料)を、示差走査熱量測定(DSC)により測定した比熱、レーザーフラッシュ法により測定した熱拡散係数、アルキメデス法により測定した密度から算出した(JIS R1611)。
<体積抵抗率>
 焼結体(試料)を4端子法により測定した(JIS R1650-2)。
<酸化皮膜厚>
 焼結体(試料)約0.5~1.5g(表面積1.6~3.2cm)を、アルミナ角箱に入れ、大気圧下で1000℃、5時間保持し、その酸化皮膜厚さをSEMにより観察、測定した。
<アーク消耗開始電流値、アーク消耗速度>
 焼結体(試料)を直径0.6mm、長さ15~20mmに加工したものを陽極とし、SUS304を陰極として使用した。具体的には、SUS304の陰極に対して、加工した焼結体を45度の角度で対向させて陽極とし、陰-陽極間距離を5mmに設定した。そして、100kVの電源を用いて、常温・大気圧下でアーク放電させた。電源の電流値を0.15Aで5分間の放電を行い、アーク放電箇所を光学顕微鏡を用いて観察し、消耗の有無を確認した。アーク放電による消耗がない場合は、1次側の電流値を0.05A増加させて更に5分間の放電を行い、光学顕微鏡観察を実施した。このサイクル(放電→光学顕微鏡観察)を消耗が開始するまで繰り返した。一次側の電流値を変化させ、消耗が開始したときの電流値をアーク消耗開始電流値とした。また、電源の電流値を0.45Aで5分間の放電を行い、このときの元の形状から削れて消耗した径を消耗量とし、放電時間で割ることでアーク消耗速度を算出した。
<耐アーク性の評価>
 アーク消耗速度が20μm/min以下のものを◎、21~30μm/minのものを○、31μm/min以上のものを×として評価し、表に記載した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 まず、アーク消耗速度について比較する。TiC含有量0.5質量%以下かつ開気孔率0.5%の実施例1~12は、比較例1~4と比較すると、アーク消耗速度が小さく、耐アーク性は良好であった。実施例1と比較例1の消耗形態をSEMにより比較すると、TiC含有量が多い比較例1は、TiC部分が酸化し飛散する様子が見られたが、TiC含有量が0.5質量%以下の実施例1ではほとんど飛散箇所が見られなかった。
 実施例1~5、9~11と実施例12を比較すると、TiSiCのSi部のAl置換量が30mol%以下の実施例1~5、9~11は、アーク消耗速度が小さく、耐アーク性はさらに良好であった。
 実施例1~5と実施例6を比較すると、TiSi含有量8質量%以下の実施例1~5は、アーク消耗速度が小さく、耐アーク性はさらに良好であった。実施例1~5と実施例7を比較すると、SiC含有量5質量%以下の実施例1~5は、アーク消耗速度が小さく、耐アーク性はさらに良好であった。実施例1~5と実施例8を比較すると、TiSi含有量3質量%以下の実施例1~5は、アーク消耗速度が小さく、耐アーク性はさらに良好であった。
 次に、アーク消耗開始電流値について比較する。実施例1~5、9~11と実施例12を比較すると、TiSiCのSi部のAl置換量が30mol%以下の実施例1~5、9~11は、アーク消耗開始電流値が高く、耐アーク性は良好であった。実施例1~5と実施例6を比較すると、TiSi含有量8質量%以下の実施例1~4は、アーク消耗開始電流値が高く、耐アーク性は良好であった。実施例1~5と実施例7を比較すると、SiC含有量5質量%以下の実施例1~5は、アーク消耗開始電流値が高く、耐アーク性は良好であった。実施例1~5と実施例8を比較すると、TiSi含有量3質量%以下の実施例1~5は、アーク消耗開始電流値が高く、耐アーク性は良好であった。
 耐アーク性が良好な実施例1~12は、熱伝導率が25W/mK以上であった。また、耐アーク性が良好な実施例1~12は、曲げ強度が200MPa以上であった。さらに、耐アーク性が良好な実施例1~12は、熱膨張率が7~9ppm/K程度であった。耐アーク性が良好な実施例1~12は、体積抵抗率が1×10-4Ω・cm以下であった。
 実施例1、3~4、6、9~11は、大気圧下1000℃で5時間保持した場合、酸化皮膜の母材からの剥離はほぼ見られなかったが、実施例12では皮膜が厚くなり、耐酸化性が低下した。また、熱的負荷の大きいアーク消耗速度も、Al含有量30mol%以下では小さく、耐アーク性が良好であった。
<絶縁碍子との接合性>
 絶縁碍子の主成分(アルミナ)とTiSiC緻密体を共焼し、これらが接合可能かを調べた。また、絶縁碍子の主成分(アルミナ)とNi合金とを共焼した。接合可能であったものを○、接合できなかったものを×として表2に記載した。
 表2に示すように、実施例1と比較例5を比較すると、絶縁碍子の熱膨張率の約8ppm/Kに比較的近い実施例1ではスパークプラグ用の絶縁碍子と一体で共焼し、接合可能であった。また、実施例2,10についても、同様に、接合可能であった。一方、比較例5では接合されなかった。そのため、絶縁碍子と共焼することにより接合可能な実施例1,2,10では、スパークプラグの製造工程の簡略化による低コスト化が期待できる。
 以上のように、本発明のTiSiCは異相TiCおよび開気孔を大幅に低減したため、耐アーク性が向上した。これにより低コストかつ耐アーク性を著しく向上させたスパークプラグ用の長寿命電極材料を提供することができる。
 本発明のTiSiC質材料は、電極材料、特にスパークプラグの電極材料として利用することができる。本発明のTiSiC質材料を用いた電極、スパークプラグは、低コストで耐アーク性に優れる。
1:中心電極、2:絶縁碍子、3:主体金具、4:接地電極、10:スパークプラグ。

Claims (17)

  1.  主相がTiSiCであり、TiC含有率が0.5質量%以下、開気孔率が0.5%以下であるTiSiC質材料。
  2.  前記主相のTiSiCのSiを、Alに0~30mol%置換した請求項1に記載のTiSiC質材料。
  3.  TiSi含有量が8質量%以下である請求項1または2に記載のTiSiC質材料。
  4.  SiC含有量が5質量%以下である請求項1~3のいずれか1項に記載のTiSiC質材料。
  5.  TiSi含有量が3質量%以下である請求項1~4のいずれか1項に記載のTiSiC質材料。
  6.  熱伝導率が25W/mK以上である請求項1~5のいずれか1項に記載のTiSiC質材料。
  7.  曲げ強度が200MPa以上である請求項1~6のいずれか1項に記載のTiSiC質材料。
  8.  熱膨張率が7~9ppm/Kである請求項1~7のいずれか1項に記載のTiSiC質材料。
  9.  体積抵抗率が1×10-4Ω・cm以下である請求項1~8のいずれか1項に記載のTiSiC質材料。
  10.  大気圧下、1000℃で5時間保持した時に形成される酸化皮膜厚が40μm以下である請求項1~9のいずれか1項に記載のTiSiC質材料。
  11.  請求項1~10のいずれか1項に記載のTiSiC質材料を用いた電極。
  12.  請求項11に記載の電極を用いて形成されたスパークプラグ。
  13.  原料として、チタニウム源を68.0~73.5質量%、珪素源を14.0~19.0質量%、炭素源11.0~14.0質量%の質量割合で混合し、
     得られた原料混合粉末を成形し、その後、それを焼成するTiSiC質材料の製造方法。
  14.  原料として、チタニウム源を68.0~73.5質量%、珪素源を9.0~19.0質量%、アルミニウム源を0~5.0質量%、炭素源を11.0~14.0質量%の質量割合で混合し、
     得られた原料混合粉末を成形し、その後、それを焼成するTiSiC質材料の製造方法。
  15.  得られた前記原料混合粉末を成形した後に、
     真空またはAr雰囲気中で600~1400℃で0.5~20時間、第一の焼成を行い、
     続いて前記第一の焼成よりも高い1000~1750℃で0.5~20時間、第二の焼成を行う請求項13または14に記載のTiSiC質材料の製造方法。
  16.  前記第一の焼成、及び前記第二の焼成は、ホットプレスによる焼成であり、プレス圧は50~450kg/cmである請求項13~15のいずれか1項に記載のTiSiC質材料の製造方法。
  17.  請求項11に記載の電極を絶縁碍子成形体中に埋設し、これらを焼成することにより、前記絶縁碍子成形体を絶縁碍子とし、同時に前記電極と前記絶縁碍子とを接合するスパークプラグの製造方法。
PCT/JP2012/051703 2011-01-26 2012-01-26 Ti3SiC2質材料、電極、スパークプラグ、及びその製造方法 WO2012102348A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP12739019.3A EP2676946B1 (en) 2011-01-26 2012-01-26 Ti3sic2 material, electrode, spark plug, and processes for production thereof
JP2012554843A JP6105937B2 (ja) 2011-01-26 2012-01-26 Ti3SiC2質材料、電極、スパークプラグ、及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201161436262P 2011-01-26 2011-01-26
US61/436,262 2011-01-26

Publications (1)

Publication Number Publication Date
WO2012102348A1 true WO2012102348A1 (ja) 2012-08-02

Family

ID=46543259

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/051703 WO2012102348A1 (ja) 2011-01-26 2012-01-26 Ti3SiC2質材料、電極、スパークプラグ、及びその製造方法

Country Status (4)

Country Link
US (1) US8877099B2 (ja)
EP (1) EP2676946B1 (ja)
JP (1) JP6105937B2 (ja)
WO (1) WO2012102348A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014198662A (ja) * 2013-03-15 2014-10-23 日本碍子株式会社 緻密質複合材料、その製法及び半導体製造装置用部材
JP2014208567A (ja) * 2013-03-25 2014-11-06 日本碍子株式会社 緻密質複合材料、その製法、接合体及び半導体製造装置用部材
JP2015051898A (ja) * 2013-09-06 2015-03-19 日本碍子株式会社 多孔質材料、ハニカム構造体及びハニカムフィルタ

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5999492B2 (ja) * 2012-09-11 2016-09-28 国立研究開発法人物質・材料研究機構 Ti3SiC2常圧焼結体及びその製造方法
CN104946922B (zh) * 2015-06-05 2017-08-25 山东正诺集团有限公司 一种Ti3SiC2‑Al汽车刹车盘材料的制备方法
RU2610380C2 (ru) * 2015-07-13 2017-02-09 федеральное государственное бюджетное образовательное учреждение высшего образования "Пермский национальный исследовательский политехнический университет" Способ получения композиционного материала на основе карбосилицида титана
DE102015113175A1 (de) * 2015-08-10 2016-09-29 Federal-Mogul Ignition Gmbh Zündkerze
CN105126887B (zh) * 2015-08-21 2017-11-21 成都易态科技有限公司 催化剂支撑体及其制备方法和应用
WO2017190246A1 (en) * 2016-05-04 2017-11-09 Lumiant Corporation Titanium silicide matrix composite with in situ formed titanium carbide reinforcement
CN108585869B (zh) * 2018-05-10 2021-06-11 西北工业大学 一种原位自生max相改性复合材料的制备方法
CN115196966B (zh) * 2021-04-12 2023-05-09 中国科学院上海硅酸盐研究所 一种温阻特性恒定的碳化硅复相陶瓷及其制备方法
CN114262834A (zh) * 2021-12-27 2022-04-01 成都大学 一种高温自润滑复合材料及其制备方法和应用
CN116102951A (zh) * 2022-12-26 2023-05-12 苏州微介面材料科技有限公司 一种抗静电不发火水性环氧涂料

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003020279A (ja) * 2001-07-09 2003-01-24 National Institute Of Advanced Industrial & Technology 金属性セラミック焼結体及びその製造方法
JP2004107152A (ja) * 2002-09-19 2004-04-08 National Institute Of Advanced Industrial & Technology 金属性セラミック粉末及びその製造方法
JP2005089252A (ja) * 2003-09-18 2005-04-07 National Institute Of Advanced Industrial & Technology 金属性セラミック焼結体チタンシリコンカーバイド及びその製造方法
US20100052498A1 (en) * 2008-08-29 2010-03-04 Walker Jr William J Ceramic electrode and ignition device therewith
JP2011088804A (ja) * 2009-09-28 2011-05-06 National Institute Of Advanced Industrial Science & Technology チタンシリコンカーバイドセラミックスの製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3562532B2 (ja) 1994-07-26 2004-09-08 株式会社デンソー 内燃機関用スパークプラグ
US5942455A (en) * 1995-11-14 1999-08-24 Drexel University Synthesis of 312 phases and composites thereof
US5882561A (en) * 1996-11-22 1999-03-16 Drexel University Process for making a dense ceramic workpiece
US6461989B1 (en) * 1999-12-22 2002-10-08 Drexel University Process for forming 312 phase materials and process for sintering the same
SE0004819L (sv) * 2000-12-21 2002-02-05 Sandvik Ab Motståndselement för extrema temperaturer
JP2002235139A (ja) 2001-02-05 2002-08-23 Mitsubishi Materials Corp 耐火花消耗性に優れた点火プラグ電極材
JP2003002745A (ja) * 2001-06-13 2003-01-08 National Institute Of Advanced Industrial & Technology チタンシリコンカーバイド焼結体及びその製造方法
CN1234641C (zh) * 2003-05-28 2006-01-04 中国科学院金属研究所 一种无TiC杂质的含铝Ti3SiC2材料的制备方法
WO2007093011A1 (en) * 2006-02-17 2007-08-23 Newcastle Innovation Limited Crystalline ternary ceramic precursors

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003020279A (ja) * 2001-07-09 2003-01-24 National Institute Of Advanced Industrial & Technology 金属性セラミック焼結体及びその製造方法
JP2004107152A (ja) * 2002-09-19 2004-04-08 National Institute Of Advanced Industrial & Technology 金属性セラミック粉末及びその製造方法
JP2005089252A (ja) * 2003-09-18 2005-04-07 National Institute Of Advanced Industrial & Technology 金属性セラミック焼結体チタンシリコンカーバイド及びその製造方法
US20100052498A1 (en) * 2008-08-29 2010-03-04 Walker Jr William J Ceramic electrode and ignition device therewith
JP2011088804A (ja) * 2009-09-28 2011-05-06 National Institute Of Advanced Industrial Science & Technology チタンシリコンカーバイドセラミックスの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
B.Y.LIANG: "Effect of alloying time on fabrication of Ti3Si(Al)C2 by spark plasma sintering", ADVANCES IN APPLIED CERAMICS, vol. 108, no. 3, 1 April 2009 (2009-04-01), pages 162 - 166, XP008171338 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014198662A (ja) * 2013-03-15 2014-10-23 日本碍子株式会社 緻密質複合材料、その製法及び半導体製造装置用部材
JP2014208567A (ja) * 2013-03-25 2014-11-06 日本碍子株式会社 緻密質複合材料、その製法、接合体及び半導体製造装置用部材
JP2015051898A (ja) * 2013-09-06 2015-03-19 日本碍子株式会社 多孔質材料、ハニカム構造体及びハニカムフィルタ

Also Published As

Publication number Publication date
EP2676946B1 (en) 2018-11-07
EP2676946A4 (en) 2015-02-25
JP6105937B2 (ja) 2017-03-29
EP2676946A1 (en) 2013-12-25
JPWO2012102348A1 (ja) 2014-06-30
US8877099B2 (en) 2014-11-04
US20120186723A1 (en) 2012-07-26

Similar Documents

Publication Publication Date Title
JP6105937B2 (ja) Ti3SiC2質材料、電極、スパークプラグ、及びその製造方法
JP4607253B2 (ja) スパークプラグ及びスパークプラグの製造方法
JP5172018B2 (ja) スパークプラグ及びスパークプラグの製造方法
JP6018071B2 (ja) セラミックス部材、半導体製造装置用部材及びセラミックス部材の製造方法
JP4651732B1 (ja) スパークプラグ
WO2010109792A1 (ja) スパークプラグ
JP2011070928A (ja) スパークプラグ及びスパークプラグの製造方法
WO2013128525A1 (ja) スパークプラグ
US6657166B2 (en) Silicon nitride sintered material and production process thereof
JP2010524816A (ja) 金属材料により規定される熱膨張係数に調整された組成を有するセラミック材料
JP5280877B2 (ja) セラミックヒータ及びグロープラグ
JPH07187793A (ja) 高熱伝導性窒化けい素構造部材および半導体パッケージ
JP2007008793A (ja) Al−Si−C系化合物を主構成物とする炭素含有導電性セラミックス
JP4578076B2 (ja) アルミナ焼結体、およびic基板
JP2014099431A (ja) コンポジットptcサーミスタ部材
JP2011154908A (ja) スパークプラグ、スパークプラグ用絶縁体及びその製造方法
JP4803651B2 (ja) セラミックヒータの製造方法およびグロープラグの製造方法
JP2019021501A (ja) セラミックヒータ、及びグロープラグ
JP2007197320A (ja) 耐食性セラミックス及びその製造方法
JP2003095747A (ja) 窒化珪素焼結体及びそれを用いてなる回路基板
JP2006306653A (ja) 窒化アルミニウム焼結体及びその製造方法
JP5603765B2 (ja) 炭化ケイ素発熱体の製造方法および炭化ケイ素発熱体ならびにハニカムの製造方法およびハニカム
JP4264236B2 (ja) 窒化アルミニウム焼結体の製造方法
JP5000088B2 (ja) 誘電体磁器組成物の製造方法と磁器コンデンサの製造方法
WO2023008300A1 (ja) 絶縁体およびスパークプラグ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12739019

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012554843

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012739019

Country of ref document: EP