CN108585869B - 一种原位自生max相改性复合材料的制备方法 - Google Patents

一种原位自生max相改性复合材料的制备方法 Download PDF

Info

Publication number
CN108585869B
CN108585869B CN201810440245.4A CN201810440245A CN108585869B CN 108585869 B CN108585869 B CN 108585869B CN 201810440245 A CN201810440245 A CN 201810440245A CN 108585869 B CN108585869 B CN 108585869B
Authority
CN
China
Prior art keywords
composite material
powder
sic
slurry
max phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810440245.4A
Other languages
English (en)
Other versions
CN108585869A (zh
Inventor
殷小玮
巨攀飞
范晓孟
马晓康
王童童
马昱昭
党潇琳
成来飞
张立同
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwestern Polytechnical University
Original Assignee
Northwestern Polytechnical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern Polytechnical University filed Critical Northwestern Polytechnical University
Priority to CN201810440245.4A priority Critical patent/CN108585869B/zh
Publication of CN108585869A publication Critical patent/CN108585869A/zh
Application granted granted Critical
Publication of CN108585869B publication Critical patent/CN108585869B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • C04B35/5611Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on titanium carbides
    • C04B35/5615Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on titanium carbides based on titanium silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/65Reaction sintering of free metal- or free silicon-containing compositions
    • C04B35/806
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3839Refractory metal carbides
    • C04B2235/3843Titanium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/402Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/428Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5244Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5248Carbon, e.g. graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5252Fibers having a specific pre-form
    • C04B2235/5256Two-dimensional, e.g. woven structures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/616Liquid infiltration of green bodies or pre-forms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Abstract

本发明涉及一种原位自生MAX相改性复合材料的制备方法,以TiC粉和少量的Al粉为原料,通过把羧甲基纤维素钠加入热水中溶解制成溶液后,混入TiC粉及Al粉,然后通过浆料浸渍法引入到Cf/SiC或SiCf/SiC多孔预制体中或直接制备成陶瓷,再通过真空液硅渗透法得到MAX相改性复合材料,本发明相对于现有的技术方案避免了引入C,没有多余的SiC生成,提高了MAX相含量,并且使用的Al量较少,所以没有残余的Al存在。本发明通过TiC与Al粉混合,液硅渗透反应生成了MAX相。本发明避免了引入C,没有多余的SiC生成,提高了MAX相含量。本发明使用的Al量较少,所以没有残余的Al存在。

Description

一种原位自生MAX相改性复合材料的制备方法
技术领域
本发明属于一种制备复合材料的方法,涉及一种原位自生MAX相改性复合材料的制备方法。
背景技术
MAX相是一种特殊的层状陶瓷,其结构中同时包含共价键、金属键、离子键,所以MAX相同时具有耐高温、抗氧化、高导电、高导热等优良性能。MAX相引入到复合材料中可以提高复合材料的力学性能、电磁性能、抗氧化性能等。目前的主要制备方法是热压、聚合物裂解法、放电等离子烧结等。Ti3SiC2、Ti3Si(Al)C2都属于MAX相。
文献1“殷小玮,张立同,成来飞,何珊珊,范尚武,刘永胜.Ti3SiC2改性C/SiC复合材料的制备方法,中国,CN101508591.2009.”公开了一种将TiC粉浆料浸渗到C/SiC和C/C复合材料中,制备改性复合材料的方法,通过此方法得到的Ti3SiC2改性的C/SiC复合材料,具有良好的力学性能。
文献2“Fan,X.,et al.(2014).Synthesis of Ti3SiC2-based materials byreactive melt infiltration.International Journal of Refractory Metals andHard Materials 45:1-7.”公开了通过TiC与C粉混合后与Si进行溶体渗透反应来制备Ti3SiC2相陶瓷,由于该过程中必须使用C粉,样品中会生成SiC,所以会降低了MAX相的相对含量。
文献3“Wang,L.,et al.(2014)."Ti3Si(Al)C2-based ceramics fabricated byreactive melt infiltration with Al70Si30alloy."Journal of the European CeramicSociety 34(6):1493-1499.”公开了一种通过Al-Si合金溶体渗透的方法制备Ti3Si(Al)C2相,得到的材料是由Ti3Si(Al)C2、SiC、Ti(Al,Si)3、TiC、Al组成的多相复合材料,由于使用的Al-Si合金Al的含量较高,所以内部存在大量的铝,对材料的高温力学性能会有很大的影响。
发明内容
要解决的技术问题
为了避免现有技术的不足之处,本发明提出一种原位自生MAX相改性复合材料的制备方法,在不加入C的情况下生成MAX相,避免生成多余的SiC,并且由于使用的Al的量比较少,所以不存在残余的Al,会大幅度提高材料的高温力学性能。
技术方案
一种原位自生MAX相改性复合材料的制备方法,其特征在于以颗粒直径为0.5~1.5μm的TiC粉、Al粉为原料,TiC粉与Al粉的质量比为30:1~6:1,并按以下步骤制备:
步骤1:在60~100℃蒸馏水中加入质量分数0.5~2%的羧甲基纤维素钠,搅拌溶解成溶液,冷却至室温;
步骤2:TiC粉、Al粉加入溶液中,所述TiC的加入量为蒸馏水质量50~70%,球磨12~24小时得到浆料;
步骤3、将浆料通过浆料浸渍法引入Cf/SiC或SiCf/SiC多孔预制体中得到复合材料预制体:将Cf/SiC或SiCf/SiC多孔预制体放入密闭容器中,多孔预制体悬挂在浆料之上,抽真空至真空度为1000~10000Pa,保持10~20分钟,然后将多孔预制体浸没在浆料中,继续抽真空真空度1000~10000Pa,保持10~20分钟,然后给密闭容器通入氩气或氮气使得密闭容器内部压力达到0.8~1MPa,保持压力20~40分钟后取出置于烘箱中100~150℃烘干0.5~2小时,重复此步骤直到预制体较上次增重少于1%;
步骤4、将复合材料预制体经过真空液硅渗透得到原位自生MAX相改性的复合材料:将经过浆料浸渍法后的多孔预制体或预制体片包裹在Si粉中,在真空度为1000~10000Pa的真空炉中1400~1600℃保温10~60分钟。
所述Cf/SiC或SiCf/SiC多孔预制体的开气孔率为15~30vol%。
有益效果
本发明提出的一种原位自生MAX相改性复合材料的制备方法,以TiC粉和少量的Al粉为原料,通过把羧甲基纤维素钠加入热水中溶解制成溶液后,混入TiC粉及Al粉,然后通过浆料浸渍法引入到Cf/SiC或SiCf/SiC多孔预制体中或直接制备成陶瓷,再通过真空液硅渗透法得到MAX相改性复合材料,本发明相对于现有的技术方案避免了引入C,没有多余的SiC生成,提高了MAX相含量,并且使用的Al量较少,所以没有残余的Al存在。
本发明通过TiC与Al粉混合,液硅渗透反应生成了MAX相。本发明避免了引入C,没有多余的SiC生成,提高了MAX相含量。本发明使用的Al量较少,所以没有残余的Al存在。
附图说明
图1为实施例1中的MAX相EDS图谱。
图2为实施例2中的改性复合材料XRD图谱。
图3为实施例3中的改性复合材料XRD图谱。
图4为实施例3中的改性复合材料的弯曲测试应力-应变曲线。
图5为实施例3中的BSE图片。
具体实施方式
现结合实施例、附图对本发明作进一步描述:
实施例1,选取密度为1.54g/cm3的二维C/SiC多孔复合材料,将1.5g的羧甲基纤维素钠溶解在300mL 80℃的水中,然后将180g粒径为1μm的TiC粉末与6g粒径为1μm的Al粉加入溶液中,球磨混合24小时后得到浆料。将复合材料和浆料放入密闭容器中,复合材料悬挂在浆料之上,抽真空至真空度低于1000Pa,保持真空度15分钟,然后将复合材料浸没在浆料中,继续抽真空,保持30分钟,取出在150℃烘箱中烘干1小时,重复三次浆料浸渍得到复合材料预制体。然后将得到的复合材料预制体埋在Si粉中,在高温真空炉中1600℃下保温30分钟反应,得到密度为2.23g/cm3,开气孔率为8%的MAX相改性的Cf/SiC复合材料,基体中Ti3Si(Al)C2,TiSi2,SiC体积分数分别为42vol%,35vol%和23vol%。
实施例2,选取密度为1.54g/cm3的二维C/SiC多孔复合材料,将1.5g的羧甲基纤维素钠溶解在300mL 80℃的水中,然后将180g粒径为1μm的TiC粉末与12g粒径为1μm的Al粉加入溶液中,球磨混合24小时后得到浆料。将复合材料和浆料放入密闭容器中,复合材料悬挂在浆料之上,抽真空至真空度低于1000Pa,保持真空度15分钟,然后把复合材料浸没在浆料中,继续抽真空,保持30分钟,取出在150℃烘箱中烘干1小时,重复三次浆料浸渍得到复合材料预制体。然后将得到的复合材料预制体埋在Si粉中,在高温真空炉中1600℃下保温30分钟反应,得到密度为2.21g/cm3,开气孔率为11.8%的MAX相改性的Cf/SiC复合材料。
实施例3,选取密度为1.54g/cm3的二维C/SiC多孔复合材料,将1.5g的羧甲基纤维素钠溶解在300mL 80℃的水中,然后将180g粒径为1μm的TiC粉末与18g粒径为1μm的Al粉加入溶液中,球磨混合24小时后得到浆料。将复合材料和浆料放入密闭容器中,复合材料悬挂在浆料之上,抽真空至真空度低于1000Pa,保持真空度15分钟,然后把复合材料浸没在浆料中,继续抽真空,保持30分钟,取出在150℃烘箱中烘干1小时,重复三次浆料浸渍得到复合材料预制体。然后将得到的复合材料预制体埋在Si粉中,在高温真空炉中1600℃下保温30分钟反应得到密度为2.23g/cm3,开气孔率为8%的MAX相改性的Cf/SiC复合材料。
从图3中可以看出,所得到的材料含有Ti3Si(Al)C2相。
从图4中可以看出,所得到的改性后的材料其弯曲强度为365MPa。
实施例4,选取密度为1.54g/cm3的二维C/SiC多孔复合材料,将1.5g的羧甲基纤维素钠溶解在300mL 80℃的水中,然后将180g粒径为1μm的TiC粉末与24g粒径为1μm的Al粉加入溶液中,球磨混合24小时后得到浆料。把复合材料和混合溶液放入密闭容器中,复合材料悬挂在浆料之上,抽真空至真空度低于1000Pa,保持真空度15分钟后把复合材料浸没在浆料中,继续抽真空30分钟后取出在150℃烘箱中烘干1小时,重复三次浆料浸渍得到复合材料预制体,然后把得到的复合材料预制体埋在Si粉中,在高温真空炉中1600℃下保温30分钟反应,得到的复合材料中基体中Ti3Si(Al)C2,TiSi2,SiC体积分数分别为,59vol%,27vol%,14vol%。
实施例5,选取密度为1.54g/cm3的二维C/SiC多孔复合材料,将1.5g的羧甲基纤维素钠溶解在300mL 80℃的水中,然后将180g粒径为1μm的TiC粉末与30g粒径为1μm的Al粉加入溶液中,球磨混合24小时后得到浆料,把复合材料和混合溶液放入密闭容器中,复合材料悬挂在浆料之上,抽真空至真空度低于1000Pa,保持真空度15分钟后把复合材料浸没在浆料中,继续抽真空30分钟后取出在150℃烘箱中烘干1小时,重复三次浆料浸渍得到复合材料预制体,然后把得到的复合材料预制体埋在Si粉中,在高温真空炉中1600℃下保温30分钟反应,得到复合材料基体中Ti3Si(Al)C2,TiSi2,SiC体积分数分别为,69vol%,15vol%,16vol%。

Claims (1)

1.一种原位自生MAX相改性复合材料的制备方法,其特征在于以颗粒直径为0.5~1.5μm的TiC粉、Al粉为原料,TiC粉与Al粉的质量比为30:1~6:1,并按以下步骤制备:
步骤1:选取密度为1.54g/cm3的二维Cf/SiC多孔复合材料,将1.5g的羧甲基纤维素钠溶解在300mL 80℃的水中,搅拌溶解成溶液,冷却至室温;
步骤2:将180g粒径为1μm的TiC粉末与6g~30g粒径为1μm的Al粉加入溶液中,球磨混合24小时后得到浆料;
步骤3、将浆料通过浆料浸渍法引入Cf/SiC多孔预制体中得到复合材料预制体:将Cf/SiC多孔预制体放入密闭容器中,多孔预制体悬挂在浆料之上,抽真空至真空度为1000~10000Pa,保持10~20分钟,然后将多孔预制体浸没在浆料中,继续抽真空真空度1000~10000Pa,保持10~20分钟,然后给密闭容器通入氩气或氮气使得密闭容器内部压力达到0.8~1MPa,保持压力20~40分钟后取出置于烘箱中100~150℃烘干0.5~2小时,重复此步骤直到预制体较上次增重少于1%;
步骤4、将复合材料预制体经过真空液硅渗透得到原位自生MAX相改性的复合材料:将经过浆料浸渍法后的多孔预制体包裹在Si粉中,在真空度为1000~10000Pa的真空炉中1400~1600℃保温10~60分钟;
所述Cf/SiC多孔预制体的开气孔率为15~30vol%。
CN201810440245.4A 2018-05-10 2018-05-10 一种原位自生max相改性复合材料的制备方法 Active CN108585869B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810440245.4A CN108585869B (zh) 2018-05-10 2018-05-10 一种原位自生max相改性复合材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810440245.4A CN108585869B (zh) 2018-05-10 2018-05-10 一种原位自生max相改性复合材料的制备方法

Publications (2)

Publication Number Publication Date
CN108585869A CN108585869A (zh) 2018-09-28
CN108585869B true CN108585869B (zh) 2021-06-11

Family

ID=63636162

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810440245.4A Active CN108585869B (zh) 2018-05-10 2018-05-10 一种原位自生max相改性复合材料的制备方法

Country Status (1)

Country Link
CN (1) CN108585869B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109095925A (zh) * 2018-10-16 2018-12-28 西北工业大学 一种原位自生Zr3Al3C5改性C/SiC复合材料的制备方法
CN109231989A (zh) * 2018-11-01 2019-01-18 燕山大学 一种高活性合金插层Ti3AlMC2陶瓷材料的制备方法
CN110256093A (zh) * 2019-07-09 2019-09-20 中国航发北京航空材料研究院 一种降低熔渗工艺制备SiCf/SiC复合材料中残余硅含量的方法
CN110885254B (zh) * 2019-12-02 2021-05-04 中南大学 一种多孔Ti3SiC2/SiC复合材料及其制备方法
CN112479718B (zh) * 2020-11-20 2022-10-04 航天特种材料及工艺技术研究所 一种Ti3SiC2 MAX相界面层改性SiC/SiC复合材料及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101066869A (zh) * 2007-06-13 2007-11-07 北京交通大学 一种无TiC杂质相的碳化硅钛陶瓷粉体的合成方法
CN101269966A (zh) * 2008-04-29 2008-09-24 北京交通大学 原位置换反应热压制备SiC/Ti3SiC2材料的方法
CN101508591A (zh) * 2008-11-10 2009-08-19 西北工业大学 Ti3SiC2改性C/SiC复合材料的制备方法
EP2676946A1 (en) * 2011-01-26 2013-12-25 NGK Insulators, Ltd. Ti3sic2 material, electrode, spark plug, and processes for production thereof
CN103910532A (zh) * 2013-01-05 2014-07-09 中国科学院宁波材料技术与工程研究所 涂层无机纤维增韧max相陶瓷复合材料、其制备方法及用途

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1179916C (zh) * 2003-06-20 2004-12-15 武汉理工大学 以Al为助剂原位热压反应制备单相致密碳化硅钛块体材料的方法
CN100465134C (zh) * 2007-02-09 2009-03-04 上海大学 低温无压烧结制备致密Ti3AlC2陶瓷的方法
CN105732040B (zh) * 2014-12-10 2018-08-24 辽宁法库陶瓷工程技术研究中心 一种微波自蔓延法制备Ti3AlC2的合成方法
CN106966749B (zh) * 2016-06-03 2018-05-29 北京航空航天大学 一种用Ti3Si(Al)C2改性热结构复合材料的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101066869A (zh) * 2007-06-13 2007-11-07 北京交通大学 一种无TiC杂质相的碳化硅钛陶瓷粉体的合成方法
CN101269966A (zh) * 2008-04-29 2008-09-24 北京交通大学 原位置换反应热压制备SiC/Ti3SiC2材料的方法
CN101508591A (zh) * 2008-11-10 2009-08-19 西北工业大学 Ti3SiC2改性C/SiC复合材料的制备方法
EP2676946A1 (en) * 2011-01-26 2013-12-25 NGK Insulators, Ltd. Ti3sic2 material, electrode, spark plug, and processes for production thereof
CN103910532A (zh) * 2013-01-05 2014-07-09 中国科学院宁波材料技术与工程研究所 涂层无机纤维增韧max相陶瓷复合材料、其制备方法及用途

Also Published As

Publication number Publication date
CN108585869A (zh) 2018-09-28

Similar Documents

Publication Publication Date Title
CN108585869B (zh) 一种原位自生max相改性复合材料的制备方法
JP7164906B2 (ja) 金属材料又は金属複合材料の調製方法
CN104628407B (zh) 一种Al2O3纤维增韧MAX相陶瓷基复合材料的制备方法
CN110734289B (zh) 一种一硼化物高熵陶瓷及其制备方法
CN103724014B (zh) 一种高热导金刚石掺杂SiC陶瓷的制备方法
CN102161594B (zh) 一种SiC晶须强化的SiC陶瓷基复合材料及其制备方法
CN101747044B (zh) 以中间相炭微球为炭源的反应烧结碳化硅陶瓷的制备方法
CN105152670B (zh) 一种SiC纳米线增强SiBCN陶瓷的制备方法
CN110128146B (zh) 一种具有多功能的碳化硼基复相陶瓷及其反应热压烧结制备方法
CN109928756B (zh) 一种碳化硅增强碳基复合材料及制备方法
CN112830790B (zh) 一种铪铌基三元固溶体硼化物的导电陶瓷及其制备方法和应用
CN107043261A (zh) 一种Ti增强B4C/SiC复相陶瓷
CN103833403A (zh) 一种碳化硅晶须增韧碳化硼陶瓷复合材料的制备方法及产品
CN109180161B (zh) 一种高纯钛硅化碳/氧化铝复合材料及其制备方法
CN109704772A (zh) 一种原位韧化的碳化硼基陶瓷复合材料及制备方法
CN102976760A (zh) 添加稀土氧化物的硼化锆-碳化硅复相陶瓷材料及其制备方法
CN104086178B (zh) 一种铌钛铝碳固溶体陶瓷材料及其制备方法
CN105924176A (zh) 碳化硼基复相陶瓷及其放电等离子烧结制备方法
CN102173802A (zh) 一种原位(TiB2+SiC)/Ti3SiC2复相陶瓷材料及其制备方法
JPH10505053A (ja) 窒化ホウ素
CN109354504B (zh) 一种碳化硼基复合陶瓷烧结助剂及烧结工艺
CN103819193A (zh) 一种多孔Ti3AlC2陶瓷及其NaCl水洗制备方法
CN103803950B (zh) 一种氮化硼纳米管增强陶瓷基复合材料及其制备方法
CN103194631A (zh) 高体积分数氧化铝陶瓷颗粒增强铝复合材料的制备方法
CN104911384B (zh) 一种钨基难熔碳化物复合材料的低温制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant