WO2012102121A1 - ポリイミド樹脂ワニス及びそれを用いた絶縁電線、電機コイル、モータ - Google Patents

ポリイミド樹脂ワニス及びそれを用いた絶縁電線、電機コイル、モータ Download PDF

Info

Publication number
WO2012102121A1
WO2012102121A1 PCT/JP2012/050782 JP2012050782W WO2012102121A1 WO 2012102121 A1 WO2012102121 A1 WO 2012102121A1 JP 2012050782 W JP2012050782 W JP 2012050782W WO 2012102121 A1 WO2012102121 A1 WO 2012102121A1
Authority
WO
WIPO (PCT)
Prior art keywords
aromatic diamine
polyimide resin
aromatic
polyimide
resin varnish
Prior art date
Application number
PCT/JP2012/050782
Other languages
English (en)
French (fr)
Inventor
齋藤 秀明
菅原 潤
雅晃 山内
吉田 健吾
悠史 畑中
Original Assignee
住友電工ウインテック株式会社
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電工ウインテック株式会社, 住友電気工業株式会社 filed Critical 住友電工ウインテック株式会社
Priority to US13/807,616 priority Critical patent/US20130098656A1/en
Priority to CN201280001743XA priority patent/CN103003332A/zh
Priority to KR1020127034002A priority patent/KR20130141348A/ko
Publication of WO2012102121A1 publication Critical patent/WO2012102121A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/303Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups H01B3/38 or H01B3/302
    • H01B3/306Polyimides or polyesterimides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09D179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F5/00Coils
    • H01F5/06Insulation of windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/30Windings characterised by the insulating material

Definitions

  • the present invention relates to a polyimide resin varnish that can be coated and baked on a conductor to form an insulating film, an insulated wire having an insulating layer formed using this polyimide resin varnish, an electric coil, and a motor using the same.
  • an insulating layer (insulating film) covering the conductor is required to have excellent insulation, adhesion to the conductor, heat resistance, mechanical strength, and the like.
  • the resin that forms the insulating layer include a polyimide resin, a polyamideimide resin, and a polyesterimide resin.
  • a high voltage is applied to an insulated wire constituting the electric device, and partial discharge (corona discharge) is likely to occur on the surface of the insulating film.
  • the generation of corona discharge is likely to cause local temperature rise and generation of ozone and ions.
  • Insulated wires used at high voltages are also required to improve the corona discharge starting voltage for the above reasons, and it is known that reducing the dielectric constant of the insulating layer is effective for this purpose.
  • Polyimide resin is a material with excellent heat resistance and relatively low dielectric constant.
  • the polyimide resin has a rigid structure, there is a problem that the tensile elongation at break is small and the flexibility is low.
  • a coil used for a motor may be subjected to a process of greatly deforming the insulated wire, such as forming the coil by winding the insulated wire and then inserting the coil into the slot.
  • the insulating layer has low flexibility, the insulating film is likely to be damaged during processing, and the electrical characteristics may be deteriorated or the insulating film may be cracked.
  • Patent Document 1 describes a polyimide resin having an aromatic ether structure. Specifically, a polyimide by reacting an acid anhydride having an aromatic ether structure such as 4,4′-oxydiphthalic dianhydride (ODPA) with a diamine having an aromatic ether structure and a diamine having a fluorene structure. The precursor is synthesized. The flexibility is improved by using an acid anhydride having an aromatic ether structure and a diamine. Further, it is described that the polyimide resin having such a structure has a low dielectric constant and can provide an insulating film excellent in suppressing corona generation.
  • ODPA 4,4′-oxydiphthalic dianhydride
  • the glass transition temperature of the polyimide resin described in the example of Patent Document 1 is 265 ° C. to 302 ° C., which is lower than the glass transition temperature of general polyimide (about 400 ° C.).
  • the present invention has been made in view of the above problems, and provides a polyimide resin varnish capable of forming an insulating film capable of improving the workability by increasing the flexibility of the film without reducing the heat resistance. Let it be an issue.
  • the present invention also provides an insulated wire having an insulating layer formed using the above-described polyimide resin varnish and capable of satisfying required characteristics such as heat resistance and mechanical strength, and an electric coil and a motor using the same. This is the issue.
  • the present invention is a polyimide resin varnish mainly composed of a polyimide precursor resin obtained by reacting an aromatic diamine and an aromatic tetracarboxylic dianhydride,
  • the aromatic diamine is A first aromatic diamine having an aromatic ether bond represented by the following formula (1) and having a total of three or more of one or both of a benzene ring and a naphthalene ring;
  • a first aromatic diamine having an aromatic ether structure and a total of three or more of one or both of a benzene ring and a naphthalene ring is used.
  • the first aromatic diamine is a flexible component having a large molecular weight because it has three or more benzene rings or naphthalene rings.
  • a second aromatic diamine having two benzene rings is used in combination with the first aromatic diamine. By using the second aromatic diamine in combination, the strength of the polyimide resin can be increased.
  • the imide group concentration is (Molecular weight of imide group) / (Molecular weight of all polymers) ⁇ 100 (%) It is a value calculated by. Since the polyimide precursor is obtained by reacting an aromatic diamine and an aromatic tetracarboxylic dianhydride, the imide group concentration is increased when the molecular weight of each monomer (aromatic diamine or aromatic tetracarboxylic dianhydride) increases. Get smaller. When the imide group concentration is lower than 25%, the heat resistance is lowered, and when the imide group concentration is higher than 35%, the flexibility tends to be lowered. By setting the imide group concentration in the range of 25% or more and 35% or less, a polyimide resin having a balance between heat resistance and flexibility can be obtained.
  • the first aromatic diamine used in the present invention has a large molecular weight
  • the molecular weight of the aromatic tetracarboxylic dianhydride used in combination with the first aromatic diamine is also large, the imide group concentration in the entire polyimide resin is reduced and the heat resistance is reduced. descend.
  • the first aromatic diamine and the second aromatic diamine are used as the diamine component, and the aromatic tetracarboxylic dianhydride component having a molecular weight such that the imide group concentration is 25% to 35% is used.
  • the polyimide resin which can be compatible with heat resistance and a softness
  • concentration of a highly polar imide group becomes lower than the imide group density
  • the aromatic tetracarboxylic dianhydride is preferably pyromellitic dianhydride (hereinafter PMDA) (Claim 2). Since pyromellitic dianhydride has a relatively small molecular weight and a rigid structure, even when a flexible component having a large molecular weight is selected as the first aromatic diamine, the polyimide imide group concentration is 25% or more and 35% or less. It is possible to achieve both the flexibility and heat resistance of the polyimide resin.
  • PMDA pyromellitic dianhydride
  • Examples of the first aromatic diamine include 2,2-bis [4- (aminophenoxy) phenyl] propane, 1,1-bis [4- (4-aminophenoxy) phenyl] cyclohexane, 1,3-bis ( It is preferable to select one or more selected from the group consisting of 4-aminophenoxy) benzene and 1,4-bis (4-aminophenoxy) benzene.
  • These aromatic diamines have a large molecular weight and can improve the flexibility of the polyimide resin.
  • PMDA is selected as the acid anhydride
  • the balance between flexibility, heat resistance, and mechanical strength (tensile strength) is preferable.
  • the content ratio (molar ratio) between the first aromatic diamine and the second aromatic diamine is preferably 30:70 to 90:10 (claim 4). 50:50 to 80:20 is more preferable.
  • the amount of the first aromatic diamine is less than this range, the elongation of the polyimide resin may be small and the flexibility may be insufficient.
  • the amount of the second aromatic diamine is less than this range, defects such as pinholes are likely to occur in the polyimide resin film, and it becomes difficult to obtain sufficient toughness.
  • Invention of Claim 5 is an insulated wire which has an insulating layer which coat
  • the invention according to claim 6 is an electric coil formed by winding the insulated wire.
  • a seventh aspect of the present invention is a motor having the electric coil according to the sixth aspect. Since an insulated wire excellent in workability and heat resistance is used, a coil with a high space factor can be obtained, and the coil and motor can be downsized. Further, even when a high voltage is applied, the insulating film is hardly deteriorated, so that the life can be extended.
  • the present invention it is possible to provide a polyimide resin varnish for an insulated wire excellent in mechanical strength such as flexibility and tensile strength and heat resistance. Moreover, the insulated wire of the present invention can satisfy required characteristics such as heat resistance and mechanical strength, and can improve the corona discharge start voltage.
  • FIG. 3A It is a schematic diagram explaining the measuring method of a dielectric constant. It is a cross-sectional schematic diagram which shows an example of the insulated wire of this invention. It is a schematic diagram which shows an example of the coil of this invention. 3B is a schematic diagram showing an example of the coil of the present invention, and is a cross-sectional view taken along the line A-A ′ of FIG. 3A. FIG. It is a schematic diagram which shows an example of the motor of this invention.
  • the polyimide precursor resin (polyamic acid) which is the main component of the polyimide resin varnish of the present invention is obtained by condensation polymerization of an aromatic tetracarboxylic dianhydride and an aromatic diamine. This condensation polymerization reaction can be performed under the same conditions as in the synthesis of a conventional polyimide precursor.
  • aromatic tetracarboxylic dianhydrides include pyromellitic dianhydride (PMDA), 4,4′-oxydiphthalic dianhydride (ODPA), 3,4,3 ′, 4′-biphenyltetracarboxylic dianhydride.
  • Anhydride (BPDA), 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride (BTDA), 3,3 ′, 4,4′-diphenylsulfone tetracarboxylic dianhydride, bicyclo (2, 2,2) -Oct-7-ene-2,3,5,6-tetracarboxylic dianhydride, 1,2,4,5-cyclohexanetetracarboxylic dianhydride, 2,2-bis (3 Examples include 4-dicarboxyphenyl) hexafluoropropane dianhydride, 5- (2,5-dioxotetrahydrofuryl) -3-methyl-3-cyclohexene-1,2-dicarboxylic dianhydride, and the like.
  • pyromellitic dianhydride (PMDA) represented by the following formula (3) is preferable because it has a low molecular weight and a rigid structure and can improve the heat resistance of the polyimide resin.
  • the first aromatic diamine and the second aromatic diamine are used in combination.
  • the first aromatic diamine one having an aromatic ether bond and a total of three or more of one or both of a benzene ring and a naphthalene ring is used.
  • BAPP 2,2-bis [4- (aminophenoxy) phenyl] propane
  • BAPP 1,1-bis [4- (4-) represented by the following formula (5)
  • TPE-R 1,3-bis (4-aminophenoxy) benzene
  • TPE-Q 1,4-bis (4-aminophenoxy) Benzene
  • an aromatic diamine represented by the following formula (2) and having two benzene rings is used.
  • MDA 4,4′-methylenedianiline
  • ODA 4,4′-diaminodiphenyl ether
  • the aromatic tetracarboxylic dianhydride, the first aromatic diamine, and the second aromatic diamine are selected so that the imide group concentration after imidization is 25% or more and 35% or less.
  • the imide group concentration is (Molecular weight of imide group) / (Molecular weight of all polymers) ⁇ 100 It is a value calculated by. Specifically, the imide group concentration is calculated by the following method.
  • concentration in a unit unit is calculated from the molecular weight of aromatic tetracarboxylic dianhydride and aromatic diamine.
  • the above aromatic tetracarboxylic dianhydride, the first aromatic diamine and the second aromatic diamine are mixed and reacted.
  • the mixing ratio of the first aromatic diamine and the second aromatic diamine is 30:70 to 90:10 (molar ratio). 50:50 to 80:20 is more preferable.
  • the reaction proceeds favorably, which is preferable.
  • an aprotic polar organic solvent such as N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, ⁇ -butyrolactone can be used. These organic solvents may be used alone or in combination of two or more.
  • the amount of the organic solvent is not particularly limited as long as it can uniformly disperse the aromatic acid anhydride component, the aromatic diamine component and the like, but is usually 100 mass per 100 mass parts of the total amount of these components. To 1000 parts by mass (so that the resin concentration is about 10% to 50%). When the amount of the organic solvent is reduced, the amount of the solid content of the polyimide resin varnish thus obtained is increased, which is effective for cost reduction.
  • additives such as pigments, dyes, inorganic or organic fillers, lubricants, adhesion improvers, reactive low molecules, compatibilizers, and the like may be added to the polyimide resin varnish.
  • other resins can be mixed and used within a range not impairing the gist of the present invention.
  • a polyimide resin varnish is applied on a conductor directly or through another layer and baked to form an insulating layer.
  • the polyimide precursor resin is imidized to become polyimide.
  • Application and baking can be performed in the same manner as in the production of a normal insulated wire.
  • an insulating layer is formed by repeating several times of baking in a furnace with a preset temperature of 350 to 500 ° C. for 5 to 10 seconds per pass. The thickness of the insulating layer is 10 ⁇ m to 150 ⁇ m.
  • the conductor copper, copper alloy, aluminum or the like can be used.
  • the size of the conductor and the cross-sectional shape thereof are not particularly limited, but in the case of a round wire, a conductor diameter of 100 ⁇ m to 5 mm is generally used, and in the case of a flat wire, one having a side length of 500 ⁇ m to 5 mm is generally used.
  • the insulating layer may be a single layer or multiple layers.
  • the insulating layer is a single layer, only the insulating layer formed by applying and baking the above polyimide resin varnish becomes the insulating layer.
  • the insulating layer has a multilayer structure, another insulating layer is formed before or after the formation of the insulating layer made of polyimide.
  • the resin for forming the other insulating layer any resin such as polyimide, polyamideimide, polyesterimide, polyurethane, and polyetherimide can be used.
  • a surface lubricating layer as the outermost layer as the insulating layer because workability is improved. Moreover, you may apply
  • FIG. 2 is a schematic sectional view showing an example of the insulated wire of the present invention.
  • a multilayer insulating layer is provided outside the conductor 1, and the insulating layer is a first insulating layer 2, a second insulating layer 3, and a surface lubricating layer 4 from the conductor side.
  • a polyamideimide resin varnish added with an adhesion improver is applied and baked to form the first insulating layer 2, and the polyimide resin varnish of the present invention is applied and baked to form the second resin layer 3.
  • the insulated wire of the present invention is not limited to this shape.
  • FIG. 3A is a schematic view showing an example of the electric coil of the present invention
  • FIG. 3B is a cross-sectional view taken along line A-A ′ of FIG. 3A
  • the electric wire 12 is formed by winding the insulated wire 11 outside the core 13 made of a magnetic material.
  • a member composed of a core and an electric coil is used as a rotor or a stator of a motor.
  • a stator 15 in which a plurality of divided stators 14 including a core 13 and an electric coil 12 are combined and arranged in an annular shape is used as a constituent member of a motor.
  • Examples 1 to 8, Comparative Examples 1 to 6) Preparation of polyimide precursor resin
  • the types and amounts of aromatic diamines shown in Tables 1 and 2 are dissolved in N-methylpyrrolidone, the types and amounts of aromatic tetracarboxylic acid anhydrides shown in Table 1 are added, and then at room temperature for 1 hour in a nitrogen atmosphere. Stir. Thereafter, the mixture was stirred at 60 ° C. for 20 hours to finish the reaction, and cooled to room temperature to obtain a polyimide resin varnish.
  • the numerical value of the compounding amount described in Table 1 is a molar ratio.
  • Table 1 shows the imide group concentration calculated from the molecular weight of each component.
  • Polyimide resin varnish is applied to the surface of a conductor wire with a conductor diameter (diameter) of about 1 mm and baked to form an insulation layer with a thickness of about 40 ⁇ m, thereby producing insulated wires of Examples 1-8 and Comparative Examples 1-6. did.
  • the conductor is removed from the resulting insulated wire to form a tubular insulating layer, and the glass transition temperature is measured using a dynamic viscoelasticity measuring device (DMS) at a temperature range of 20 ° C. to 500 ° C. and a temperature increase rate of 10 ° C./min did.
  • DMS dynamic viscoelasticity measuring device
  • a conductor was removed from the obtained insulated wire to form a tubular insulating layer, and a tensile test was performed using a tensile tester at a distance between chucks of 20 mm and 10 mm / min to measure elongation at break.
  • the polyimide films of Examples 1 to 8 using an aromatic diamine having two benzene rings and an aromatic diamine having three or more benzene rings and having an imide group concentration of 25% to 35% are all
  • the glass transition temperature is 300 ° C. or higher
  • the film elongation is 100% or higher
  • both heat resistance and flexibility are achieved.
  • the dielectric constant is also 2.9 to 3.1, which is lower than that of a general polyimide resin.
  • Comparative Example 1 does not use an aromatic diamine having 3 or more benzene rings, the glass transition temperature is high but the film elongation is less than 100%.
  • Comparative Example 2 does not use the first aromatic diamine having two benzene rings, but uses paraphenylenediamine (PPD) having one benzene ring. Similar to Comparative Example 1, the glass transition temperature is high but the film elongation is small.
  • Comparative Example 3 and Comparative Example 4 use only the second aromatic diamine having three or more benzene rings. The film strength was low and cracking occurred, and the film elongation was not measurable.
  • Comparative Example 5 also uses only the second aromatic diamine having three or more benzene rings.
  • the acid component 4,4′-oxydiphthalic dianhydride (ODPA) having an aromatic ether bond in the molecule is used, so that the film elongation is 100% or more, but the glass transition temperature is low and the heat resistance is high. Inferior.
  • ODPA 4,4′-oxydiphthalic dianhydride
  • Comparative Example 6 the first aromatic diamine having two benzene rings and the second aromatic diamine having three or more benzene rings are used in combination, but the imide group concentration is higher than 35%. The film elongation is less than 100% and the flexibility is inferior.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Power Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Insulated Conductors (AREA)
  • Paints Or Removers (AREA)
  • Organic Insulating Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

コロナ放電開始電圧を高くできるとともに、耐熱性、機械的強度等の要求特性を満たすことのできる絶縁電線を提供する。芳香族ジアミンと芳香族テトラカルボン酸二無水物とを反応して得られるポリイミド前駆体樹脂を主成分とするポリイミド樹脂ワニスであって、前記芳香族ジアミンは、芳香族エーテル結合を有し、ベンゼン環を3つ以上有する第1の芳香族ジアミンと、下記式(2)で表される第2の芳香族ジアミンとからなり、前記ポリイミド前駆体樹脂のイミド化後のイミド基濃度が25%以上35%以下である、ポリイミド樹脂ワニス。(式中、RはCH又はOである。)

Description

ポリイミド樹脂ワニス及びそれを用いた絶縁電線、電機コイル、モータ
 本発明は導体に塗布、焼付けして絶縁皮膜を形成することができるポリイミド樹脂ワニス、及びこのポリイミド樹脂ワニスを用いて形成された絶縁層を有する絶縁電線およびそれを用いた電機コイル、モータに関する。
 モータ等のコイル用巻線として用いられる絶縁電線において、導体を被覆する絶縁層(絶縁皮膜)には、優れた絶縁性、導体に対する密着性、耐熱性、機械的強度等が求められている。絶縁層を形成する樹脂としては、ポリイミド樹脂、ポリアミドイミド樹脂、ポリエステルイミド樹脂等がある。
 また適用電圧が高い電気機器、例えば高電圧で使用されるモータ等では、電気機器を構成する絶縁電線に高電圧が印加され、その絶縁皮膜表面で部分放電(コロナ放電)が発生しやすくなる。コロナ放電の発生により局部的な温度上昇やオゾンやイオンの発生が引き起こされやすくなり、その結果絶縁電線の絶縁被膜に劣化が生じることで早期に絶縁破壊を起こし、電気機器の寿命が短くなる。高電圧で使用される絶縁電線には上記の理由によりコロナ放電開始電圧の向上も求められており、そのためには絶縁層の誘電率を低くすることが有効であることが知られている。
 ポリイミド樹脂は耐熱性に優れ、また誘電率も比較的低い材料である。しかしポリイミド樹脂は剛直な構造をしているため引張破断伸びが小さく柔軟性が低いという問題がある。モータに使用されるコイルでは、占積率を上げるために絶縁電線を捲線してコイルを形成した後にコイルをスロット中に挿入する等、絶縁電線を大きく変形させる加工を行うことがある。この時絶縁層の柔軟性が低いと加工時に絶縁皮膜が損傷を受けやすく、電気特性が不良となったり絶縁皮膜の割れが発生したりするおそれがある。
 特許文献1には芳香族エーテル構造を有するポリイミド樹脂が記載されている。具体的には、4,4’-オキシジフタル酸二無水物(ODPA)等の芳香族エーテル構造を有する酸無水物と、芳香族エーテル構造を有するジアミン及びフルオレン構造を有するジアミンとを反応させてポリイミド前駆体を合成している。芳香族エーテル構造を有する酸無水物及びジアミンを用いることで可とう性を向上している。またこのような構造のポリイミド樹脂は低誘電率でありコロナ発生抑制に優れた絶縁皮膜を得ることができる、と記載されている。
特開2010-67408号公報
 ポリイミド樹脂の分子構造中に芳香族エーテル構造を導入すると皮膜の柔軟性は向上するが、芳香族エーテル構造を導入していないポリイミド樹脂と比べて耐熱性が悪くなるという問題がある。たとえば特許文献1の実施例に記載されているポリイミド樹脂のガラス転移温度は265℃~302℃であり、一般的なポリイミドのガラス転移温度(約400℃)に比べて低くなっている。
 本発明は上記の問題に鑑みてなされたものであり、耐熱性を低下させることなく皮膜の柔軟性を高くして耐加工性を向上できる絶縁皮膜を形成可能なポリイミド樹脂ワニスを提供することを課題とする。また本発明は上記のポリイミド樹脂ワニスを用いて形成された絶縁層を有し、耐熱性、機械的強度等の要求特性を満たすことのできる絶縁電線及びそれを用いた電機コイル、モータを提供することを課題とする。
 本発明は、芳香族ジアミンと芳香族テトラカルボン酸二無水物とを反応して得られるポリイミド前駆体樹脂を主成分とするポリイミド樹脂ワニスであって、
前記芳香族ジアミンは、
下記式(1)で表される芳香族エーテル結合を有すると共にベンゼン環、ナフタレン環の一方又は両方を合計3つ以上有する第1の芳香族ジアミンと、
下記式(2)で表される第2の芳香族ジアミンとからなり、
前記ポリイミド前駆体樹脂のイミド化後のイミド基濃度が25%以上35%以下である、ポリイミド樹脂ワニスである(請求項1)。
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
 ポリイミド樹脂の柔軟性を上げるため、芳香族エーテル構造を有すると共にベンゼン環、ナフタレン環の一方又は両方を合計3つ以上有する第1の芳香族ジアミンを用いる。第1の芳香族ジアミンはベンゼン環又はナフタレン環を3つ以上有していることから分子量が大きく柔軟な成分である。また第1の芳香族ジアミンと併用してベンゼン環を2つ有する第2の芳香族ジアミンを使用する。第2の芳香族ジアミンを併用することでポリイミド樹脂の強度を上げることができる。
 また本発明者らはポリイミド樹脂のイミド基濃度に着目した。イミド基濃度は、ポリイミド前駆体をイミド化した後のポリイミド樹脂において、
 (イミド基部分の分子量)/(全ポリマーの分子量)×100(%)
で計算される値である。ポリイミド前駆体は芳香族ジアミンと芳香族テトラカルボン酸二無水物とを反応して得られるので、各モノマー(芳香族ジアミン又は芳香族テトラカルボン酸二無水物)の分子量が大きくなるとイミド基濃度は小さくなる。イミド基濃度が25%よりも低くなると耐熱性が低くなり、イミド基濃度が35%よりも大きくなると柔軟性が低下する傾向がある。イミド基濃度を25%以上35%以下の範囲とすることで耐熱性と柔軟性とのバランスの取れたポリイミド樹脂を得ることができる。
 本願発明で使用する第1の芳香族ジアミンは分子量が大きいため、これと組み合わせて使用する芳香族テトラカルボン酸二無水物の分子量も大きいとポリイミド樹脂全体でのイミド基濃度が小さくなり耐熱性が低下する。ジアミン成分として上記の第1の芳香族ジアミン及び第2の芳香族ジアミンを使用すると共に、イミド基濃度が25%以上35%以下となるような分子量の芳香族テトラカルボン酸二無水物成分を使用することで、耐熱性と柔軟性とを両立可能なポリイミド樹脂を得ることができる。また極性の高いイミド基の濃度が、例えばカプトンに代表される一般的なポリイミド樹脂のイミド基濃度(36.6%)よりも低くなることから、誘電率の低いポリイミドを得ることができる。
 前記芳香族テトラカルボン酸二無水物はピロメリット酸二無水物(以下、PMDA)であると好ましい(請求項2)。ピロメリット酸二無水物は比較的分子量が小さく、剛直な構造であるため、第1の芳香族ジアミンとして分子量が大きく柔軟な成分を選択した場合でもポリイミドのイミド基濃度を25%以上35%以下とすることができ、ポリイミド樹脂の柔軟性と耐熱性を両立できる。
 前記第1の芳香族ジアミンとしては、2,2-ビス[4-(アミノフェノキシ)フェニル]プロパン、1,1-ビス[4-(4-アミノフェノキシ)フェニル]シクロヘキサン、1,3-ビス(4-アミノフェノキシ)ベンゼン、及び1,4-ビス(4-アミノフェノキシ)ベンゼンからなる群から選択される1種以上を選択することが好ましい(請求項3)。これらの芳香族ジアミンは分子量が大きく、ポリイミド樹脂の柔軟性を向上できる。特に酸無水物としてPMDAを選択した場合には柔軟性と耐熱性、機械強度(引張強度)のバランスが取れて好ましい。
 前記第1の芳香族ジアミンと、前記第2の芳香族ジアミンとの含有比率(モル比)は30:70~90:10とすると好ましい(請求項4)。50:50~80:20がより好ましい。第1の芳香族ジアミン量がこの範囲よりも少ない場合はポリイミド樹脂の伸びが小さく柔軟性が不十分となる場合がある。また第2の芳香族ジアミンの量がこの範囲よりも少ない場合はポリイミド樹脂皮膜にピンホールなどの欠陥が生じやすく、十分な靭性が得られにくくなる。
 請求項5に記載の発明は、導体及び該導体を直接又は他の層を介して被覆する絶縁層を有する絶縁電線であって、前記絶縁層は上記のポリイミド樹脂ワニスを塗布、焼付けして形成された絶縁層である、絶縁電線である。柔軟性に優れると共に耐熱性、引張強度に優れるポリイミドで形成された絶縁層を有するため、耐加工性及び耐熱性に優れた絶縁電線が得られる。また絶縁層の誘電率が低いため、コロナ放電開始電圧の高い絶縁電線が得られる。
 請求項6に記載の発明は、上記の絶縁電線を捲線してなる電機コイルである。また請求項7に記載の発明は、請求項6に記載の電機コイルを有するモータである。耐加工性及び耐熱性に優れた絶縁電線を使用していることから占積率の高いコイルが得られ、コイル及びモータの小型化が可能となる。また高電圧が印加された場合でも絶縁皮膜の劣化が起こりにくいので、寿命を長くすることが可能である。
 本発明によれば、柔軟性、引張強度等の機械強度及び耐熱性に優れた絶縁電線用のポリイミド樹脂ワニスを提供することができる。また本発明の絶縁電線は耐熱性、機械強度等の要求特性を満たすことができるとともにコロナ放電開始電圧を向上できる。
誘電率の測定方法を説明する模式図である。 本発明の絶縁電線の一例を示す断面模式図である。 本発明のコイルの一例を示す模式図である。 本発明のコイルの一例を示す模式図で、図3AのA-A’断面図である。 本発明のモータの一例を示す模式図である。
 本発明のポリイミド樹脂ワニスの主成分であるポリイミド前駆体樹脂(ポリアミック酸)は、芳香族テトラカルボン酸二無水物と芳香族ジアミンとの縮合重合によって得られる。この縮合重合反応は、従来のポリイミド前駆体の合成と同様な条件にて行うことができる。
 芳香族テトラカルボン酸二無水物としては、ピロメリット酸二無水物(PMDA)、4,4’-オキシジフタル酸二無水物(ODPA)、3,4,3’,4’-ビフェニルテトラカルボン酸二無水物(BPDA)、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物(BTDA)、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、ビシクロ(2,2,2)-オクト-7-エン-2,3,5,6-テトラカルボン酸二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)ヘキサフルオロプロパン二無水物、5-(2,5-ジオキソテトラヒドロフリル)-3-メチル-3-シクロヘキセン-1,2-ジカルボン酸二無水物等が例示される。
 この中でも下記式(3)で表されるピロメリット酸二無水物(PMDA)は低分子量で剛直な構造を持つため、ポリイミド樹脂の耐熱性を向上できる点で好ましい。
Figure JPOXMLDOC01-appb-C000004
 芳香族ジアミンは第1の芳香族ジアミンと第2の芳香族ジアミンとを併用する。第1の芳香族ジアミンとしては、芳香族エーテル結合を有し、ベンゼン環、ナフタレン環の一方又は両方を合計3つ以上有するものを用いる。第1の芳香族ジアミンとしては、ベンゼン環を4つ有する2,2-ビス[4-(アミノフェノキシ)フェニル]プロパン(BAPP)、ベンゼン環を4つ有する1,1-ビス[4-(4-アミノフェノキシ)フェニル]シクロヘキサン(4-APBZ)、ベンゼン環を3つ有する1,3-ビス(4-アミノフェノキシ)ベンゼン(TPE-R)、ベンゼン環を3つ有する1,4-ビス(4-アミノフェノキシ)ベンゼン(TPE-Q)、ベンゼン環を3つ有する1,3-ビス(3-アミノフェノキシ)ベンゼン(3-APB)、ベンゼン環2つとナフタレン環1つを有する1,5-ビス(3-アミノフェノキシ)ナフタレン(1,5-BAPN)等が例示できる。分子中に芳香族エーテル結合を多く含む分子を使用すると柔軟性向上効果が高くなる。
 この中でも下記式(4)で表される2,2-ビス[4-(アミノフェノキシ)フェニル]プロパン(BAPP)、下記式(5)で表される1,1-ビス[4-(4-アミノフェノキシ)フェニル]シクロヘキサン(4-APBZ)、下記式(6)で表される1,3-ビス(4-アミノフェノキシ)ベンゼン(TPE-R)、1,4-ビス(4-アミノフェノキシ)ベンゼン(TPE-Q)が好ましく使用できる。
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
 第2の芳香族ジアミンとしては、下記式(2)で表され、ベンゼン環を2つ有する芳香族ジアミンを使用する。具体的には下記式(7)で表される4,4’-メチレンジアニリン(MDA)、下記式(8)で表される4,4’-ジアミノジフェニルエーテル(ODA)が好ましく使用できる。
Figure JPOXMLDOC01-appb-I000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
 芳香族テトラカルボン酸二無水物、第1の芳香族ジアミン、及び第2の芳香族ジアミンは、イミド化後のイミド基濃度が25%以上35%以下となるように選択する。イミド基濃度はポリイミド前駆体をイミド化した後のポリイミド樹脂において、
 (イミド基部分の分子量)/(全ポリマーの分子量)×100
で計算される値である。具体的には以下の方法でイミド基濃度を計算する。
 芳香族テトラカルボン酸二無水物、芳香族ジアミンの分子量からユニット単位でのイミド基濃度を計算する。例えば下記式(9)で示されるポリイミドの場合、イミド基濃度は
イミド基分子量=70.03×2=140.06
ユニット分子量=894.96となるため、
イミド基濃度(%)=(140.06)/(894.96)×100=15.6%
となる。第1の芳香族ジアミンを含有するユニットのイミド基濃度と第2の芳香族ジアミンを含有するイミド基濃度とをそれぞれ求め、第1の芳香族ジアミンと第2の芳香族ジアミンの含有割合をかけてポリイミド全体のイミド基濃度を計算する。
Figure JPOXMLDOC01-appb-C000011
 上記の芳香族テトラカルボン酸二無水物、第1の芳香族ジアミン、第2の芳香族ジアミンを混合して反応させる。第1の芳香族ジアミンと第2の芳香族ジアミンとの混合比率は30:70~90:10(モル比)とする。50:50~80:20がより好ましい。また芳香族ジアミンの合計量(当量)と、芳香族テトラカルボン酸二無水物の合計量(当量)を約1:1とすると反応が良好に進行して好ましい。なお本発明の趣旨を損ねない範囲で、上記の芳香族テトラカルボン酸二無水物、第1の芳香族ジアミン、第2の芳香族ジアミン以外の酸無水物成分、ジアミン成分を併用しても良い。それぞれの材料を混合し、有機溶媒中で加熱して反応させてポリイミド前駆体樹脂を得る。
 有機溶媒としては、N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、γ-ブチロラクトン等の非プロトン性極性有機溶媒が使用できる。これらの有機溶媒は単独で用いても2種以上を組み合わせても良い。
 有機溶媒の量は、芳香族酸無水物成分、芳香族ジアミン成分等を均一に分散させることができる量であれば良く、特に制限されないが、通常これらの成分の合計量100質量部あたり100質量部~1000質量部(樹脂濃度で10%~50%程度となるように)使用する。有機溶媒量を少なくするとできあがったポリイミド樹脂ワニスの固形分量が多くなり、コスト低減に有効である。
 ポリイミド樹脂ワニスには顔料、染料、無機又は有機のフィラー、潤滑剤、密着向上剤等の各種添加剤や反応性低分子、相溶化剤等を添加しても良い。さらに、本発明の趣旨を損ねない範囲で他の樹脂を混合して使用することもできる。
 ポリイミド樹脂ワニスを導体上に直接又は他の層を介して塗布、焼き付けして絶縁層を形成する。焼付け工程でポリイミド前駆体樹脂がイミド化してポリイミドとなる。塗布、焼付けは通常の絶縁電線の製造と同様に行うことができる。例えば、導体に樹脂ワニスを塗布した後、設定温度を350~500℃とした炉内を1パス当たり5~10秒間通過させて焼付ける作業を数回繰り返して絶縁層を形成する。絶縁層の厚みは10μm~150μmとする。
 導体としては、銅や銅合金、アルミ等を使用できる。導体の大きさやその断面形状は特に限定されないが、丸線の場合は導体径が100μm~5mmのものが、平角線の場合は一辺の長さが500μm~5mmのものが一般に使用される。
 絶縁層は単層であっても多層であっても良い。絶縁層が単層である場合は上記のポリイミド樹脂ワニスを塗布、焼き付けして形成された絶縁層のみが絶縁層となる。絶縁層を多層にする場合は、上記のポリイミドからなる絶縁層の形成前又は形成後に他の絶縁層を形成する。他の絶縁層を形成する樹脂としてはポリイミド、ポリアミドイミド、ポリエステルイミド、ポリウレタン、ポリエーテルイミド等任意の樹脂を使用できる。
 さらに、絶縁層として、最外層に表面潤滑層を有すると加工性が向上して好ましい。また絶縁電線の外側に表面潤滑油を塗布しても良い。この場合はさらにインサート性や加工性が向上する。
 図2は本発明の絶縁電線の一例を示す断面模式図である。導体1の外側に多層の絶縁層があり、絶縁層は導体側から第1の絶縁層2、第2の絶縁層3、表面潤滑層4となっている。例えば密着向上剤を添加したポリアミドイミド樹脂ワニスを塗布、焼き付けして第1の絶縁層2を形成し、本発明のポリイミド樹脂ワニスを塗布焼き付けして第2の樹脂層3を形成する。なお本発明の絶縁電線はこの形状に限定されるものではない。
 図3Aは本発明の電機コイルの一例を示す模式図であり、図3Bは図3AのA-A’断面図である。磁性材料からなるコア13の外側に絶縁電線11を捲線して電機コイル12が形成される。コアと電機コイルからなる部材は、モータのロータやステータとして使用される。例えば、図4に示すように、コア13と電機コイル12とからなる分割ステータ14を複数組み合わせて環状に配置したステータ15を、モータの構成部材として使用する。
 次に、本発明を実施例に基づいてさらに詳細に説明する。なお本発明の範囲はこの実施例のみに限定されるものではない。
(実施例1~8、比較例1~6)
(ポリイミド前駆体樹脂の作製)
 表1及び表2に示す種類と量の芳香族ジアミンをN-メチルピロリドンに溶解させた後、表1に示す種類と量の芳香族テトラカルボン酸無水物を加えて窒素雰囲気下室温で1時間撹拌した。その後60℃で20時間撹拌し反応を終え、室温まで冷却してポリイミド樹脂ワニスを得た。なお表1に記載している配合量の数値はモル比である。また各成分の分子量から計算したイミド基濃度を表1中に記載している。
(絶縁電線の作製)
 ポリイミド樹脂ワニスを導体径(直径)約1mmの導線の表面に常法によって塗布、焼付けして厚み約40μmの絶縁層を形成し、実施例1~8、比較例1~6の絶縁電線を作製した。
(ガラス転移温度の評価)
 得られた絶縁電線から導体を取り除いてチューブ状の絶縁層とし、動的粘弾性測定装置(DMS)を用いて温度範囲20℃~500℃、昇温速度10℃/分でガラス転移温度を測定した。
(機械特性の評価)
 得られた絶縁電線から導体を取り除いてチューブ状の絶縁層とし、引張試験機を用いてチャック間距離20mm、10mm/minで引張試験を行い、破断伸びを測定した。
(誘電率の測定)
 得られた各絶縁電線について、絶縁層の誘電率を測定した。図1に示すように、絶縁電線の表面3カ所に銀ペーストを塗布して測定用のサンプルを作製した(塗布幅は両端2カ所が10mm、中央部分が100mmである)。導体と銀ペースト間の静電容量をLCRメータで測定し、測定した静電容量の値と被膜の厚みから誘電率を算出した。なお測定は温度30℃、湿度50%の条件で行った。以上の評価結果を表1及び表2に示す。
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
 (注)mTBHG:2,2’-ジメチル-4,4’-ジアミノビフェニル
 ベンゼン環を2つ有する芳香族ジアミンとベンゼン環を3つ以上有する芳香族ジアミンとを使用し、イミド基濃度を25%以上35%以下とした実施例1~実施例8のポリイミド皮膜は、全てガラス転移温度が300℃以上であり皮膜伸びも100%以上あり、耐熱性と柔軟性とを両立している。また誘電率も2.9~3.1であり、一般的なポリイミド樹脂の誘電率よりも低くなっている。
 比較例1はベンゼン環を3つ以上有する芳香族ジアミンを使用していないため、ガラス転移温度は高いが皮膜伸びが100%よりも小さい。比較例2はベンゼン環を2つ有する第1の芳香族ジアミンを使用せず、ベンゼン環が一つのパラフェニレンジアミン(PPD)を使用している。比較例1と同様、ガラス転移温度は高いが皮膜伸びが小さい。比較例3及び比較例4はベンゼン環を3つ以上有する第2の芳香族ジアミンのみを使用している。皮膜の強度が低く割れが生じて皮膜伸びは測定不可能であった。
 比較例5もベンゼン環を3つ以上有する第2の芳香族ジアミンのみを使用している。また、酸成分として、分子内に芳香族エーテル結合を有する4,4’-オキシジフタル酸二無水物(ODPA)を使用しているので皮膜伸びは100%以上であるが、ガラス転移温度が低く耐熱性が劣る。比較例6はベンゼン環を2つ有する第1の芳香族ジアミンとベンゼン環を3つ以上有する第2の芳香族ジアミンとを組み合わせて使用しているが、イミド基濃度が35%よりも大きいため、皮膜伸びが100%よりも小さく柔軟性が劣る。
  1 導体
  2 第1の絶縁層
  3 第2の絶縁層
  4 表面潤滑層
 11 絶縁電線
 12 電機コイル
 13 コア
 14 分割ステータ
 15 ステータ

Claims (7)

  1.  芳香族ジアミンと芳香族テトラカルボン酸二無水物とを反応して得られるポリイミド前駆体樹脂を主成分とするポリイミド樹脂ワニスであって、
    前記芳香族ジアミンは、
    下記式(1)で表される芳香族エーテル結合を有すると共にベンゼン環、ナフタレン環の一方又は両方を合計3つ以上有する第1の芳香族ジアミンと、
    下記式(2)で表される第2の芳香族ジアミンとからなり、
    前記ポリイミド前駆体樹脂のイミド化後のイミド基濃度が25%以上35%以下である、ポリイミド樹脂ワニス。
    Figure JPOXMLDOC01-appb-I000001
  2.  前記芳香族テトラカルボン酸二無水物が、ピロメリット酸二無水物である、請求項1に記載のポリイミド樹脂ワニス。
  3.  前記第1の芳香族ジアミンが、2,2-ビス[4-(アミノフェノキシ)フェニル]プロパン、1,1-ビス[4-(4-アミノフェノキシ)フェニル]シクロヘキサン、1,3-ビス(4-アミノフェノキシ)ベンゼン、及び1,4-ビス(4-アミノフェノキシ)ベンゼンからなる群から選択される1種以上である、請求項1又は2に記載のポリイミド樹脂ワニス。
  4.  前記第1の芳香族ジアミンと、前記第2の芳香族ジアミンとの含有比率(モル比)が30:70~90:10である、請求項1~3のいずれか1項に記載のポリイミド樹脂ワニス。
  5.  導体及び該導体を直接又は他の層を介して被覆する絶縁層を有する絶縁電線であって、前記絶縁層は、請求項1~4のいずれか1項に記載のポリイミド樹脂ワニスを塗布、焼付けして形成された絶縁層である、絶縁電線。
  6.  請求項5に記載の絶縁電線を捲線してなる電機コイル。
  7.  請求項6に記載の電機コイルを有するモータ。
PCT/JP2012/050782 2011-01-28 2012-01-17 ポリイミド樹脂ワニス及びそれを用いた絶縁電線、電機コイル、モータ WO2012102121A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/807,616 US20130098656A1 (en) 2011-01-28 2012-01-17 Polyimide resin varnish, and insulated wire, electrical coil, and motor using same
CN201280001743XA CN103003332A (zh) 2011-01-28 2012-01-17 聚酰亚胺树脂清漆、以及使用该聚酰亚胺树脂清漆的绝缘线、电线圈和电动机
KR1020127034002A KR20130141348A (ko) 2011-01-28 2012-01-17 폴리이미드 수지 바니쉬 및 그것을 이용한 절연 전선, 전기 코일, 모터

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011016219A JP2012153848A (ja) 2011-01-28 2011-01-28 ポリイミド樹脂ワニス及びそれを用いた絶縁電線、電機コイル、モータ
JP2011-016219 2011-01-28

Publications (1)

Publication Number Publication Date
WO2012102121A1 true WO2012102121A1 (ja) 2012-08-02

Family

ID=46580693

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/050782 WO2012102121A1 (ja) 2011-01-28 2012-01-17 ポリイミド樹脂ワニス及びそれを用いた絶縁電線、電機コイル、モータ

Country Status (5)

Country Link
US (1) US20130098656A1 (ja)
JP (1) JP2012153848A (ja)
KR (1) KR20130141348A (ja)
CN (1) CN103003332A (ja)
WO (1) WO2012102121A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130161061A1 (en) * 2011-12-22 2013-06-27 Hitachi Cable, Ltd. Insulated wire and coil using the same
CN103680697A (zh) * 2012-09-03 2014-03-26 日立金属株式会社 绝缘电线和使用该绝缘电线的线圈
US10546667B2 (en) 2012-10-16 2020-01-28 Hitachi Metals, Ltd. Insulated wire and coil using same

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8986834B2 (en) * 2010-08-25 2015-03-24 Hitachi Metals, Ltd. Polyester imide resin insulating coating material, insulated wire using same, and coil
JP2013131423A (ja) 2011-12-22 2013-07-04 Hitachi Cable Ltd 絶縁電線及びコイル
JP2013191356A (ja) * 2012-03-13 2013-09-26 Hitachi Cable Ltd 絶縁電線及びそれを用いて形成されたコイル
JP6226169B2 (ja) 2013-06-11 2017-11-08 日立化成株式会社 絶縁被覆ワイヤ及びマルチワイヤ配線板
JP2015130281A (ja) * 2014-01-08 2015-07-16 三井化学株式会社 多層絶縁電線
JP6394697B2 (ja) * 2014-06-27 2018-09-26 日立金属株式会社 絶縁電線及びコイル
JP5990233B2 (ja) * 2014-09-18 2016-09-07 株式会社デンソー 絶縁電線
WO2017048070A1 (ko) * 2015-09-16 2017-03-23 한국전기연구원 고함량의 세라믹을 가지는 변성 pai 절연바니쉬가 다층 구조로 코팅된 각형 코일 및 이의 제조방법
KR102518139B1 (ko) * 2015-09-16 2023-04-05 한국전기연구원 고함량의 세라믹을 가지는 변성 pai 절연바니쉬가 다층 구조로 코팅된 각형 코일 및 이의 제조방법
CN105348180A (zh) * 2015-10-12 2016-02-24 吉林大学 1,1’-二[4-﹙5-氨基-2-吡啶氧基﹚苯基]环己烷二胺单体及其制备方法
WO2020016954A1 (ja) * 2018-07-18 2020-01-23 住友電気工業株式会社 樹脂ワニス、絶縁電線及び絶縁電線の製造方法
KR101959807B1 (ko) * 2018-08-22 2019-03-20 에스케이씨코오롱피아이 주식회사 방향족 카르복실산을 포함하는 도체 피복용 폴리이미드 바니쉬 및 이의 제조방법
EP3892672A4 (en) * 2018-12-07 2022-08-31 Toyo Seikan Group Holdings, Ltd. FIBER-REINFORCED POLYIMIDE RESIN PRECURSOR AND PROCESS FOR THE PRODUCTION THEREOF
EP3950784A4 (en) * 2019-03-29 2022-12-21 Essex Furukawa Magnet Wire Japan Co., Ltd. INSULATED ELECTRICAL WIRE, SPOOL, AND ELECTRIC/ELECTRONIC APPLIANCE
WO2022180791A1 (ja) * 2021-02-26 2022-09-01 東特塗料株式会社 絶縁層形成用樹脂ワニス
KR102564595B1 (ko) * 2021-07-20 2023-08-09 피아이첨단소재 주식회사 폴리아믹산 조성물 및 이를 포함하는 폴리이미드 피복물
KR102564597B1 (ko) * 2021-07-20 2023-08-09 피아이첨단소재 주식회사 폴리이미드 피복물
KR20230106929A (ko) 2022-01-07 2023-07-14 엘에스이브이씨 주식회사 다층 구조를 갖는 각형 권선

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63221126A (ja) * 1987-03-09 1988-09-14 Kanegafuchi Chem Ind Co Ltd 吸水特性に優れたポリイミド樹脂
JPS6416833A (en) * 1987-07-10 1989-01-20 Kanegafuchi Chemical Ind Polyamic acid copolymer, polyimide copolymer therefrom and production thereof
JPS6416834A (en) * 1987-07-10 1989-01-20 Kanegafuchi Chemical Ind Polyamic acid copolymer, polyimide copolymer therefrom and production thereof
JPH01165624A (ja) * 1987-12-23 1989-06-29 Sumitomo Bakelite Co Ltd 耐熱性樹脂の製造方法
JPH0649361A (ja) * 1992-07-30 1994-02-22 Mitsui Toatsu Chem Inc ポリアミド酸水溶液
JPH09106711A (ja) * 1995-10-11 1997-04-22 Sumitomo Electric Ind Ltd 絶縁された電線
WO2004031270A1 (ja) * 2002-10-07 2004-04-15 Teijin Limited ポリイミドフィルムおよびその製造法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4670342A (en) * 1985-04-08 1987-06-02 General Electric Company Method of making electrical inductive devices for use in hermetic refrigerant atmospheres
US20040010062A1 (en) * 2001-09-27 2004-01-15 Byeong-In Ahn Polyimide copolymer and methods for preparing the same
KR100548625B1 (ko) * 2003-03-24 2006-01-31 주식회사 엘지화학 고내열성 투명 폴리이미드 전구체 및 이를 이용한 감광성수지 조성물
US8680397B2 (en) * 2008-11-03 2014-03-25 Honeywell International Inc. Attrition-resistant high temperature insulated wires and methods for the making thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63221126A (ja) * 1987-03-09 1988-09-14 Kanegafuchi Chem Ind Co Ltd 吸水特性に優れたポリイミド樹脂
JPS6416833A (en) * 1987-07-10 1989-01-20 Kanegafuchi Chemical Ind Polyamic acid copolymer, polyimide copolymer therefrom and production thereof
JPS6416834A (en) * 1987-07-10 1989-01-20 Kanegafuchi Chemical Ind Polyamic acid copolymer, polyimide copolymer therefrom and production thereof
JPH01165624A (ja) * 1987-12-23 1989-06-29 Sumitomo Bakelite Co Ltd 耐熱性樹脂の製造方法
JPH0649361A (ja) * 1992-07-30 1994-02-22 Mitsui Toatsu Chem Inc ポリアミド酸水溶液
JPH09106711A (ja) * 1995-10-11 1997-04-22 Sumitomo Electric Ind Ltd 絶縁された電線
WO2004031270A1 (ja) * 2002-10-07 2004-04-15 Teijin Limited ポリイミドフィルムおよびその製造法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130161061A1 (en) * 2011-12-22 2013-06-27 Hitachi Cable, Ltd. Insulated wire and coil using the same
CN103680697A (zh) * 2012-09-03 2014-03-26 日立金属株式会社 绝缘电线和使用该绝缘电线的线圈
US10546667B2 (en) 2012-10-16 2020-01-28 Hitachi Metals, Ltd. Insulated wire and coil using same

Also Published As

Publication number Publication date
CN103003332A (zh) 2013-03-27
JP2012153848A (ja) 2012-08-16
KR20130141348A (ko) 2013-12-26
US20130098656A1 (en) 2013-04-25

Similar Documents

Publication Publication Date Title
WO2012102121A1 (ja) ポリイミド樹脂ワニス及びそれを用いた絶縁電線、電機コイル、モータ
JP5365899B2 (ja) ポリアミドイミド樹脂絶縁塗料及びそれを用いた絶縁電線
JP5609732B2 (ja) 絶縁塗料及びそれを用いた絶縁電線
JP5626530B2 (ja) 絶縁塗料及びその製造方法並びにそれを用いた絶縁電線及びその製造方法
JP2012224697A (ja) ポリイミド樹脂ワニス及びそれを用いた絶縁電線、電機コイル、モータ
JP2013253124A (ja) ポリイミド樹脂ワニス及びそれを用いた絶縁電線、電機コイル、モータ
JP2012184416A (ja) ポリアミドイミド樹脂絶縁塗料及びそれを用いた絶縁電線
JP6394697B2 (ja) 絶縁電線及びコイル
WO2012153636A1 (ja) ポリイミド樹脂ワニス及びそれを用いた絶縁電線、電機コイル、モータ
JP2012195290A (ja) 絶縁電線
JP2012234625A (ja) 絶縁電線及びそれを用いた、電機コイル、モータ
JP2013051030A (ja) 絶縁電線及びそれを用いた電機コイル、モータ
WO2020203193A1 (ja) 絶縁電線、コイル、及び電気・電子機器
JP2013101759A (ja) 絶縁電線及びそれを用いた、電機コイル、モータ
JP2013033669A (ja) 多層絶縁電線及びそれを用いた電機コイル、モータ
JP2012046619A (ja) 絶縁電線及びそれを用いた電機コイル、モータ
JP2017095594A (ja) 樹脂ワニス及び絶縁電線
JP2013028695A (ja) ポリイミド樹脂ワニス及びそれを用いた絶縁電線、電機コイル、モータ
JP5837397B2 (ja) 絶縁電線及びそれを用いた、電機コイル、モータ
JP5407059B2 (ja) 絶縁電線
JP2013155281A (ja) 絶縁塗料、該絶縁塗料を用いた絶縁電線および該絶縁電線を用いたコイル
JP5712661B2 (ja) ポリアミドイミド樹脂絶縁塗料及びそれを用いた絶縁電線
JP2011159578A (ja) 絶縁電線及びそれを用いた電機コイル、モータ
JP2012243614A (ja) 絶縁電線及びそれを用いた電機コイル、モータ
JP2015130281A (ja) 多層絶縁電線

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280001743.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12739357

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10761/CHENP/2012

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20127034002

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13807616

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12739357

Country of ref document: EP

Kind code of ref document: A1