WO2012101970A1 - リチウム二次電池およびその製造方法 - Google Patents

リチウム二次電池およびその製造方法 Download PDF

Info

Publication number
WO2012101970A1
WO2012101970A1 PCT/JP2012/000181 JP2012000181W WO2012101970A1 WO 2012101970 A1 WO2012101970 A1 WO 2012101970A1 JP 2012000181 W JP2012000181 W JP 2012000181W WO 2012101970 A1 WO2012101970 A1 WO 2012101970A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
negative electrode
active material
positive electrode
electrode active
Prior art date
Application number
PCT/JP2012/000181
Other languages
English (en)
French (fr)
Inventor
武澤 秀治
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN2012800062280A priority Critical patent/CN103329330A/zh
Priority to US13/981,084 priority patent/US20130302688A1/en
Priority to JP2012554655A priority patent/JP5555334B2/ja
Publication of WO2012101970A1 publication Critical patent/WO2012101970A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0421Methods of deposition of the material involving vapour deposition
    • H01M4/0423Physical vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/045Electrochemical coating; Electrochemical impregnation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M2010/4292Aspects relating to capacity ratio of electrodes/electrolyte or anode/cathode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making

Definitions

  • the present invention relates to a lithium secondary battery and a method for manufacturing the same.
  • Lithium secondary batteries have high capacity and high energy density, and are easy to reduce in size and weight.
  • mobile phones personal digital assistants (PDAs), notebook personal computers, video cameras, It is widely used as a power source for portable small electronic devices such as portable game machines.
  • PDAs personal digital assistants
  • portable small electronic devices such as portable game machines.
  • the operating environment of the battery becomes relatively high (30 to 60 ° C.) due to heat generated by the components when the device is driven. For this reason, performance (capacity and life) in a harsher environment than before is required.
  • lithium transition metal composite oxide As the positive electrode active material, for example, a lithium transition metal composite oxide is used.
  • the lithium transition metal composite oxide include lithium-containing composite oxides such as lithium cobalt oxide (LiCoO 2 ) having a layered structure, lithium nickel oxide (LiNiO 2 ), and lithium manganese spinel (LiMn 2 O 4 ) having a spinel structure. Things are known.
  • lithium nickel oxides such as LiNiO 2 have a high reversible capacity (180 to 200 mAh / g) in the voltage range used for LiCoO 2 , and can absorb and release a larger amount of lithium. For this reason, when LiNiO 2 is used, further increase in capacity of the lithium secondary battery can be realized while suppressing side reactions such as decomposition of the electrolytic solution. Moreover, since the stability of the crystal structure of LiNiO 2 is low, there is also a problem that the charge / discharge cycle life is short. Furthermore, nickel-based lithium-containing composite oxide generally has an irreversible capacity that cannot be substantially used at room temperature. For this reason, when a battery is formed using a nickel-based lithium-containing composite oxide as a positive electrode active material, there is a problem that the initial capacity of the battery is lost.
  • nickel-based lithium-containing composite oxides have irreversible capacity.
  • the cause of the irreversible capacity of the negative electrode is mainly the formation of a solid electrolyte interface (SEI) during initial charge, reduction of oxide, and trapping in the crystal structure of lithium occluded by charge. Can be mentioned. Many are irreversible reactions.
  • SEI solid electrolyte interface
  • the main cause of the irreversible capacity of the positive electrode is said to be an increase in polarization due to the slow diffusion of lithium into the crystal structure at the end of discharge.
  • This irreversible capacity is not a complete irreversible reaction but changes with temperature and current density. That is, the reversible capacity can be increased to some extent by decreasing the reaction resistance by increasing the temperature or decreasing the current density.
  • the irreversible capacity of the positive electrode and the negative electrode (material, electrode) is reduced.
  • the irreversible capacity is eliminated before the battery is constructed by pretreatment of preliminarily occluding and releasing Li from the negative electrode.
  • the irreversible capacities of the positive electrode and the negative electrode are balanced and canceled at the initial charge / discharge.
  • Patent Document 1 in order to stabilize the crystal structure of lithium nickel oxide, a part of Ni of LiNiO 2 is replaced with cobalt (Co), aluminum (Al), or the like. It has been proposed to use a positive electrode active material substituted with an element.
  • Patent Document 2 LiNi 0.80 Co 0.15 Al 0.05 O 2 is used as a positive electrode active material, and after battery assembly, charging and discharging are first performed at room temperature, and then heated and charged at 45 to 60 ° C. at least three times. A technique for reducing the irreversible capacity of the positive electrode by repeating discharge is disclosed.
  • Patent Document 3 discloses that lithium is occluded in advance in a carbon material by attaching a lithium foil to a carbon material of a negative electrode (transfer method).
  • Patent Document 4 in a battery using a carbon-based negative electrode and a nickel-based lithium-containing composite oxide-based positive electrode, the irreversible capacity of the carbon-based negative electrode is optimized (39 mAh / g or more and 61 mAh / g or less) to obtain nickel. Disclosed is a technique for offsetting the capacity loss caused by the irreversible capacity of the lithium-containing composite oxide and minimizing the decrease in battery capacity.
  • the lithium secondary battery is usually installed inside an electric device or the like and can be used at a temperature higher than room temperature (for example, 45 ° C.).
  • room temperature for example, 45 ° C.
  • high capacity is achieved while ensuring cycle characteristics when using a lithium secondary battery using lithium transition metal composite oxide as a positive electrode active material in a high temperature environment. It is difficult to do.
  • Patent Document 1 When the positive electrode active material proposed in Patent Document 1 is used, the irreversible capacity of the positive electrode active material is reduced, and charge / discharge cycle characteristics can be improved.
  • Patent Document 2 since the battery capacity at 20 ° C. after performing warming charge / discharge is greater than that before performing warming charge / discharge, polarization at the end of discharge of the positive electrode active material by warming charge / discharge is performed. It is described that can be reduced.
  • the charge / discharge test is performed by returning the battery after performing the warming charge / discharge at a temperature of 45 to 60 ° C. to the room temperature, the capacity is the same as before the warming charge / discharge. Returned to capacity.
  • the polarization at the end of discharge of the positive electrode active material is reversible with respect to temperature, and the capacity cannot be irreversibly increased by heating and discharging.
  • the reversible capacity is 99 to 124 mAh / g
  • the active material filling density is 2.43 g / cm 3
  • the energy density of the positive electrode is low.
  • Patent Document 3 proposes that a predetermined amount of lithium be occluded in advance in the negative electrode in order to offset the irreversible capacity of the positive electrode and the negative electrode at room temperature (20 ° C.).
  • the lithium foil is directly attached to a part of the surface of the carbon material, since lithium is occluded only in the vicinity of the portion of the carbon material surface facing the lithium foil, the entire surface of the carbon material is uniformly distributed. There is a problem that it is difficult to occlude lithium.
  • lithium is occluded in the vicinity of the surface of the carbon material, and does not easily enter the inside of the carbon material. For this reason, it is difficult to occlude a larger amount of lithium in the carbon material in advance.
  • the battery capacity is substantially the same, and the increase in the capacity of the positive electrode due to the environmental temperature cannot be used.
  • Patent Documents 1 to 4 considers the change in the charge / discharge behavior of the positive electrode with the environmental temperature of the lithium secondary battery. Although it is possible to increase the reversible capacity of the positive electrode in a high temperature environment, the present inventors have investigated that the lithium secondary batteries disclosed in Patent Documents 1 to 4 sufficiently increase the capacity of the positive electrode. Can not enjoy.
  • the present invention has been made in consideration of the above circumstances, and its purpose is to suppress a decrease in charge / discharge cycle characteristics in a lithium secondary battery using a lithium transition metal composite oxide as a positive electrode active material, The purpose is to increase the battery capacity.
  • the lithium secondary battery of the present invention includes a positive electrode having a positive electrode active material capable of occluding and releasing lithium ions, a negative electrode having a negative electrode active material capable of occluding and releasing lithium ions, and a gap between the positive electrode and the negative electrode.
  • a lithium secondary battery including a separator disposed and an electrolyte having lithium ion conductivity, wherein the positive electrode active material includes a lithium nickel composite oxide having substantially irreversible capacity, and the negative electrode active material includes In which lithium is occluded in advance by a vacuum deposition method or an electrochemical method, and in the fully discharged state of the lithium secondary battery when the environmental temperature is 25 ° C., the amount of lithium that can be released in the negative electrode is It is larger than the irreversible capacity of the lithium secondary battery.
  • the method for producing a lithium secondary battery of the present invention includes (A) a positive electrode active material capable of occluding and releasing lithium ions, and a positive electrode containing a lithium nickel composite oxide having substantially irreversible capacity; A step of preparing a negative electrode having a releasable negative electrode active material, (B) a step of preliminarily occluding lithium in the negative electrode active material, and (C) a vacuum deposition method or an electrochemical method.
  • a method for producing a lithium secondary battery comprising: a step of forming an electrode group by arranging the negative electrode after preliminarily occluding lithium and the positive electrode through a separator, wherein the environmental temperature is 25 ° C. In the fully discharged state of the lithium secondary battery, the amount of lithium that can be released in the negative electrode is larger than the irreversible capacity of the lithium secondary battery. The amount of lithium is set to pre-occluded to B).
  • another lithium secondary battery of the present invention includes a positive electrode having a positive electrode active material capable of occluding and releasing lithium ions, a negative electrode having a negative electrode active material capable of occluding and releasing lithium ions, the positive electrode and the negative electrode.
  • a lithium secondary battery including a separator disposed between and an electrolyte having lithium ion conductivity, wherein the positive electrode active material includes a lithium transition metal composite oxide having irreversible capacity, and the negative electrode active material Lithium is occluded in the substance, and in the fully discharged state of the lithium secondary battery when the environmental temperature is 25 ° C., the amount of lithium that can be released in the negative electrode is higher than the environmental temperature.
  • the lithium pre-occlusion amount of the negative electrode active material is Greater than the irreversible capacity, the difference between the negative electrode active spare storage capacity and irreversible capacity of the negative electrode of the lithium material, the is a difference between the irreversible capacity of the positive electrode and releasable amount of lithium in the negative electrode equal.
  • the polarization is improved at the end of discharge of the positive electrode in a high temperature environment.
  • the increase in reversible capacity can be used to increase the capacity of lithium secondary batteries. Therefore, the battery capacity can be increased without deteriorating the charge / discharge cycle characteristics.
  • 5 is a graph illustrating charge / discharge behavior in a conventional lithium secondary battery using a graphite-based negative electrode active material. It is a graph which shows an example of the charging / discharging behavior in the lithium secondary battery when lithium is previously occluded in the negative electrode. It is a graph which shows an example of the charging / discharging behavior in the lithium secondary battery of the embodiment according to the present invention.
  • 6 is a graph illustrating charge / discharge behavior in a conventional lithium secondary battery using a silicon-based negative electrode active material. It is a graph which shows an example of the charging / discharging behavior in the lithium secondary battery when lithium is previously occluded in the negative electrode.
  • the inventor of the present invention in particular, in a conventional lithium secondary battery using a nickel-based lithium-containing composite oxide as a positive electrode active material (for example, the batteries described in Patent Documents 1 to 4) under a high temperature environment. It has been found that it is difficult to achieve high capacity while ensuring cycle characteristics.
  • an object of the present invention is to use a lithium secondary battery at a temperature higher than room temperature in a lithium secondary battery using a lithium transition metal composite oxide, particularly a nickel-based lithium-containing composite oxide as a positive electrode active material.
  • the battery capacity is increased while suppressing a decrease in charge / discharge cycle characteristics.
  • the present inventor has conducted earnest research in order to achieve both high capacity and high cycle characteristics in a high temperature environment in a lithium secondary battery using a lithium transition metal composite oxide as a positive electrode active material.
  • a lithium transition metal composite oxide as a positive electrode active material.
  • lithium was previously applied to the negative electrode so that the amount of reversible (releasable) lithium contained in the negative electrode was larger than the irreversible capacity of the lithium secondary battery. It has been found that the capacity can be increased in a high temperature environment without deteriorating cycle characteristics by occlusion.
  • the “amount of releasable lithium contained in the negative electrode” is a capacity excluding the amount not released (irreversible capacity of the negative electrode) out of the amount of lithium occluded in the negative electrode in a completely discharged state at 25 ° C.
  • step by step taking as an example the case of using a nickel-based lithium-containing composite oxide as the lithium transition metal composite oxide.
  • FIG. 1 is a graph showing a typical charge / discharge potential behavior (25 ° C.) of a nickel-based lithium-containing composite oxide.
  • the graph shown in FIG. 1 shows changes in potential when Li x Ni 0.815 Co 0.15 Al 0.035 O 2 is used as the nickel-based lithium-containing composite oxide and the x value is changed in the range of 0.3 ⁇ x ⁇ 1.0. It is the result of having measured.
  • the present inventor has raised the environmental temperature (for example, 45 ° C.) or extremely decreased the current density (for example, 0.06 mA / cm 2 ). It has been clarified that the usable capacity increases at a high discharge end potential. That is, in the graph shown in FIG. 1, the x value when the polarization suddenly increased during discharge was around 0.9, and the x value when the potential change suddenly increased was around 0.8. However, when the environmental temperature, current density, or the like changes, the x value at these points can change.
  • the environmental temperature, current density, or the like changes, the x value at these points can change.
  • FIG. 2 is a graph showing a discharge potential curve of a positive electrode using a nickel-based lithium-containing composite oxide as a positive electrode active material.
  • a discharge potential curve was obtained using LiNi 0.815 Co 0.15 Al 0.035 O 2 with a current density of 3.0 mA / cm 2 , a charge end potential of 4.25 V, and a discharge end potential of 2.0 V.
  • the ambient temperature was 25 ° C and 45 ° C.
  • the discharge potential hardly changes with temperature in the region where the x value is 0.8 or less.
  • the potential change suddenly increases at an environmental temperature of 25 ° C, but the potential change is small at an environmental temperature of 45 ° C.
  • the x value exceeds 0.9 at an environmental temperature of 25 ° C., for example, the polarization increases.
  • the environmental temperature is 45 ° C.
  • the polarization is kept small even if the x value exceeds 0.9, and the x value is Polarization increases after exceeding 0.95.
  • the capacity increases by about 6% compared to the case of the environmental temperature of 25 ° C.
  • the potential profile at the end of discharge is the same, but the discharge capacity increases.
  • the obtained precursor and lithium carbonate were mixed so that the molar ratio of lithium, cobalt, nickel and aluminum (Li: Co: Ni: Al) was 1: 0.815: 0.15: 0.035 did.
  • the mixture was calcined in an oxygen atmosphere at a temperature of 500 ° C. for 7 hours and pulverized.
  • the pulverized fired product was fired again at a temperature of 800 ° C. for 15 hours.
  • the fired product was pulverized and classified to obtain a positive electrode active material having a composition represented by LiNi 0.815 Co 0.15 Al 0.035 O 2 .
  • the aluminum foil on which the positive electrode active material layer was formed was rolled to form a working electrode.
  • the thickness of the working electrode that is, the total thickness of the current collector and the positive electrode active material layer was 65 ⁇ m, and the working electrode capacity per unit area was 3.0 mAh / cm 2 .
  • this working electrode capacity uses lithium metal as a counter electrode, charging current value: 0.1 mA / cm 2 , end voltage: 4.25 V, discharge current value: 0.1 mA / cm 2 , end voltage: 3.0 V It is a capacity
  • the electrolytic copper foil on which the active material layer was formed was rolled to obtain a counter electrode having a thickness of 80 ⁇ m.
  • the capacity of the counter electrode was made larger than that of the working electrode in order to evaluate the performance of the working electrode.
  • the negative electrode capacity per unit area was 4.1 mAh / cm 2 .
  • the negative electrode capacity is obtained by using lithium metal as a counter electrode under the conditions of a charging current value: 0.1 mA / cm 2 , a final voltage: 0 V, a discharge current value: 0.1 mA / cm 2 , and a final voltage: 1.5 V. This is the capacity when constant current charge / discharge is performed.
  • lithium corresponding to 0.5 mAh / cm 2 is electrochemically previously applied to the negative electrode so that the discharge end voltage of the evaluation cell is not affected by the change in discharge potential of the negative electrode. Occupied. Thereby, at the end of discharge, the time when the potential of the negative electrode rises can be sufficiently delayed from the time when the potential of the positive electrode greatly decreases. Therefore, the potential of the negative electrode can be made substantially flat in the evaluation test.
  • the irreversible capacity of the negative electrode active material was 0.35 mAh / cm 2 . That is, the reversible capacity included at the time of discharge is 0.15 mAh / cm 2 .
  • a stacked cell including an electrode group configured by stacking a positive electrode, a separator, and a negative electrode is used as an evaluation cell.
  • FIG. 13 is a cross-sectional view schematically showing the configuration of the evaluation cell used in this example.
  • the evaluation cell includes a positive electrode 11, a negative electrode 12, a separator 13, a positive electrode lead 14, a negative electrode lead 15, a gasket 16 and an outer case 17.
  • the positive electrode 11 includes a positive electrode current collector 11a and a positive electrode active material layer 11b
  • the negative electrode 12 includes a negative electrode current collector 12a and a negative electrode active material layer 12b.
  • the separator 13 is disposed between the positive electrode active material layer 11b and the negative electrode active material layer 12b.
  • the positive electrode lead 14 is connected to the positive electrode current collector 11a
  • the negative electrode lead 15 is connected to the negative electrode current collector 12a.
  • An electrode group composed of the positive electrode 11, the negative electrode 12, and the separator 13 is enclosed in an outer case 17 together with an electrolyte.
  • the working electrode prepared in (1-2) above was cut into a size of 20 mm ⁇ 20 mm to obtain the positive electrode 11.
  • the counter electrode obtained in the above (1-3) was cut into 20 mm ⁇ 20 mm, and the negative electrode 12 was obtained.
  • the positive electrode lead 14 and the negative electrode lead 15 were welded to the portions of the current collectors 11a and 12a of the positive electrode 11 and the negative electrode 12 where the active material layers 11b and 12b were not formed, respectively.
  • the positive electrode 11, the separator 13, and the negative electrode 12 were laminated so that the positive electrode active material layer 11 b and the negative electrode active material layer 12 b faced through the separator (polyethylene microporous film) 13, thereby producing an electrode group. .
  • This electrode group was inserted into an outer case 17 made of an aluminum laminate together with 0.5 g of electrolyte.
  • EC ethylene carbonate
  • EMC ethyl methyl carbonate
  • DEC diethyl carbonate
  • lithium metal was prepared as a reference electrode.
  • a reference electrode (not shown) was disposed in the vicinity of the positive electrode 11 in the outer case 17.
  • the positive electrode lead 14, the negative electrode lead 15, and the reference electrode lead (not shown) were led out of the outer case 17 from the opening of the outer case 17. Thereafter, the opening of the outer case 17 was welded while vacuuming the inside of the outer case 17. In this way, an evaluation cell was obtained.
  • the lithium content of the positive electrode active material at the end of charge and at the end of discharge (discharge end), that is, the x value in the composition Li x Ni 0.815 Co 0.15 Al 0.035 O 2 of the positive electrode active material was examined.
  • Table 1 shows the x value at the end of discharge. In any of tests (a) to (d), the x value at the end of charging was 0.232.
  • Constant current charging 0.7 CmA, final voltage 4.2 V
  • Constant voltage charging End current 0.05 CmA, rest time 20 minutes
  • test (a) at the test temperature of 25 ° C., the current density was 0.2 C, and the positive electrode potential at which the x value was 0.96 was defined as the discharge end potential.
  • test (b) at a test temperature of 25 ° C., the current density is set to a very low value so that the positive electrode potential does not become 2 V or less (a region where the potential drops rapidly), and the x value becomes 0.96. Discharge was performed.
  • the discharge end potential was 2.65 V, the same as the discharge end potential in the test (b). Furthermore, in the test (d), for comparison, standard charge / discharge was performed at 25 ° C. with a current density of 0.2 C and a discharge end potential of 2.65 V.
  • FIG. 3 the discharge curves of the positive electrode active materials in tests (a) to (c) are shown in FIG.
  • the horizontal axis represents capacity (mAh)
  • the vertical axis represents discharge voltage (V).
  • test (c) and (d) the discharge conditions other than the test temperature are the same. From the results of capacity deterioration rate and utilization capacity of these tests, it was found that both utilization capacity and reversibility can be improved when the test temperature is higher than room temperature.
  • the capacity used was 202 mAh / g, but the capacity deterioration rate was highest in test (a), and decreased in the order of test (b) and test (c). . From this, it was confirmed that when the discharge end potential of the positive electrode is low (test (a)), the reversibility is lower than when the discharge end potential is high (test (b)). Furthermore, even when the discharge end potential of the positive electrode was the same, it was found that if the test temperature was higher than room temperature (test (c)), the reversibility could be improved.
  • test (c) when the test temperature is high (test (c)), it is possible to achieve both high capacity and high reversibility. This is because when the test temperature is higher than room temperature (45 ° C in this case), the charge transfer resistance (reaction resistance) can be reduced not only at the end of discharge but also at the entire charge and discharge, so that reversible deterioration can be suppressed. It is done.
  • FIG. 4B is a schematic graph showing the charge transfer resistance of the positive electrode at the initial stage and after 500 cycles.
  • FIG. 4C shows the Arrhenius plots (graphs 91, 92, 93) regarding the redox reaction of the positive electrode at the initial stage of the cycle and the positive electrode after 500 cycles of charge / discharge at 25 ° C. and 45 ° C. Show.
  • the horizontal axis represents the reciprocal of the absolute temperature K
  • the vertical axis represents the exchange current density io (logarithmic notation) of the oxidation-reduction reaction of the positive electrode.
  • the value of the exchange current density io increases as the absolute temperature increases.
  • the slope of each graph represents the activation energy.
  • the activation energies in the oxidation-reduction reaction of the positive electrode in the initial cycle and the positive electrode after 500 cycles of charge / discharge at 25 ° C. and 45 ° C. were 48.9 kJ / mol, 64.1 kJ / mol and 64. 3 kJ / mol.
  • the activation energy of the positive electrode after 500 cycles is substantially the same regardless of the test temperature.
  • the graph 92 (test temperature: 25 ° C.) is located above the graph 93 (test temperature: 45 ° C.), and it can be seen that the test temperature 25 ° C. is easier to react (that is, the cycle deterioration is smaller).
  • the exchange current density io at point ⁇ in the graph 93 (test temperature: 45 ° C.) is higher than the exchange current density io at point ⁇ in the graph 92 (test temperature: 25 ° C.). This indicates that the apparent cycle deterioration is smaller when the test temperature is 45 ° C. than 25 ° C.
  • the present inventor improves capacity and cycle characteristics by designing for use at a high temperature (for example, 45 ° C.), not on the assumption of use at room temperature. I got the knowledge that I can do it.
  • the x value is larger than 0.92 in the region where the positive electrode voltage is low (2 V or less). For this reason, if discharge is performed until the x value becomes larger than 0.92 for the purpose of increasing the capacity, the cycle characteristics of the positive electrode active material are deteriorated.
  • the working voltage range of the positive electrode is set to be greater than 2V, and a normal battery cannot be discharged until the positive electrode voltage is 2V or less. Only when the battery is used in a high temperature environment, the x value becomes larger than 0.92 in the operating voltage range of the positive electrode. Therefore, the capacity can be increased without degrading the cycle characteristics. As can be seen from the above, it is very important to optimize the positive electrode potential, the negative electrode potential, and the battery voltage at the end of discharge so that the performance is maximized at a high temperature (for example, 45 ° C.).
  • FIG. 5 is a graph illustrating charge / discharge behavior at 25 ° C. in a conventional lithium secondary battery using a graphite-based material as a negative electrode active material and a nickel-based lithium-containing composite oxide as a positive electrode active material.
  • the vertical axis represents potential based on lithium metal, and the horizontal axis represents relative capacity.
  • the positive electrode potential is Vc and the negative electrode potential is Va.
  • the positive electrode potential Vc gradually decreases from the start of discharge and then rapidly decreases at the end of discharge.
  • the negative electrode potential Va rises very slowly from the start of discharge.
  • the potential change gradually increases at the end of discharge, and the negative electrode potential Va rises rapidly.
  • the positive electrode potential Vc rapidly decreases before the potential change of the negative electrode potential Va increases.
  • the difference (cell voltage) between the positive electrode potential Vc and the negative electrode potential Va becomes equal to or lower than a predetermined voltage, and the discharge ends.
  • the positive electrode potential at the end of discharge is referred to as “positive electrode discharge end potential Vce (dis) ”, and the negative electrode potential is referred to as “negative electrode discharge end potential Vae (dis) ”.
  • the predetermined voltage is referred to as “cell discharge end voltage Vcelle (dis) ”.
  • the discharge end voltage Vcelle (dis) of the cell is set to 2.5 V, for example.
  • the irreversible capacity Qc of the positive electrode becomes the irreversible capacity of the battery.
  • the irreversible capacity Qc of the positive electrode and the irreversible capacity Qa of the negative electrode are devised so as to substantially cancel at 25 ° C.
  • the profile of the positive electrode potential Vc changes so that the capacity increases. That is, as shown by the curve Vc ′ in FIG. 5, the point where the positive electrode potential Vc rapidly decreases shifts to the left side.
  • the negative electrode potential Va rises abruptly before the positive electrode potential Vc rapidly decreases, and the discharge ends at that point (negative electrode potential regulation). For this reason, the amount by which the capacity of the battery actually increases is very small (about 1%) compared to the amount that can increase the capacity of the positive electrode by using the battery at 45 ° C.
  • the charging start position of the positive electrode potential Vc can be shifted to the right in the graph shown in FIG.
  • “preliminarily occluding lithium” in the negative electrode refers to the negative electrode (negative electrode active material) before the electrode group is formed by making the negative electrode and the positive electrode face each other with a separator in the manufacturing process of the lithium secondary battery. This means storing lithium.
  • FIG. 6 is a graph showing an example of charge / discharge behavior of a lithium secondary battery at 25 ° C. when the same amount of lithium as the irreversible capacity Qa is previously stored in the negative electrode.
  • the relative capacity at the charging start point is smaller than the relative capacity at the point where the negative electrode potential Va rises.
  • the relative capacity at the charging start point substantially matches the relative capacity at the point where the negative electrode potential Va rises. Therefore, in the complete discharge state at 25 ° C., the releasable (reversible) amount of lithium Qb in the negative electrode becomes equal to the irreversible capacity of the battery, that is, the irreversible capacity Qc of the positive electrode.
  • the “fully discharged state at 25 ° C.” refers to a state in which the battery is discharged at a current of 0.2 C until the battery voltage becomes 2.5V.
  • the charging start point of the negative electrode is shifted to the right side (in the direction of increasing the capacity). Therefore, the portion on the right side of the charging start point in the profile of the negative electrode potential Va shown in FIG. 6 is a charge / discharge curve in an actual lithium battery.
  • the present inventor can prevent the influence on the positive electrode potential Vc due to the rise of the negative electrode potential Va and more reliably maintain the positive electrode potential regulation by occluding the lithium more than the irreversible capacity Qa of the negative electrode in the negative electrode. I found.
  • FIG. 7 is a graph showing another example of charge / discharge behavior at 25 ° C. of a lithium secondary battery using a negative electrode in which lithium is previously occluded.
  • the negative electrode was previously occluded with an amount of lithium (Qa + qa) larger than the irreversible capacity Qa.
  • the excess lithium amount qa occluded in the negative electrode becomes the reversible capacity of the negative electrode.
  • the irreversible capacity (Qc) of lithium in the positive electrode is present in the negative electrode in a discharged state. Accordingly, in the complete discharge state at 25 ° C., the releasable lithium amount Qb in the negative electrode is larger than the irreversible capacity of the battery, that is, the irreversible capacity Qc of the positive electrode.
  • an amount of lithium Qb equal to the sum of the excess lithium amount qa and the positive electrode irreversible capacity Qc (that is, the irreversible capacity of the battery) is present as movable lithium in the negative electrode.
  • the excess lithium amount qa may be larger than 0 (qa> 0), but when a graphite-based material is used as the negative electrode active material, it is preferably at least 0.1 times the irreversible capacity Qa of the negative electrode (qa ⁇ Qa ⁇ 0.1). More preferably, it is 0.5 times or more (qa ⁇ Qa ⁇ 0.5). Therefore, the amount of lithium previously occluded in the negative electrode is preferably 1.1 times or more, more preferably 1.5 times or more the irreversible capacity Qa of the negative electrode. Thereby, the influence on the positive electrode potential Vc due to the rise of the negative electrode potential Va can be more effectively reduced.
  • the excess lithium amount qa is preferably 2.0 times or less of the irreversible capacity. Therefore, the amount of lithium previously occluded in the negative electrode is preferably 3.0 times or less the irreversible capacity Qa of the negative electrode.
  • FIG. 8 shows a charge / discharge behavior at 25 ° C. of a lithium secondary battery using a negative electrode having a structure in which film-like SiO 0.25 is deposited on a substrate and a positive electrode containing a nickel-based lithium-containing composite oxide as a positive electrode active material.
  • the lithium amount Qb that can be released in the negative electrode in a completely discharged state at 25 ° C. is smaller than the irreversible capacity of the battery, that is, the irreversible capacity Qc of the positive electrode.
  • the discharge potential of the positive electrode changes, for example, as indicated by the dotted line Vc ′, and as a result, the negative electrode potential may be regulated. For this reason, a part of the increase in capacity of the positive electrode due to use at a high temperature is not reflected in the increase in battery capacity.
  • the loss due to the increase in the capacity of the positive electrode can be reduced as in the configuration shown in FIG. realizable.
  • FIG. 10 is a diagram showing the charge / discharge behavior at 25 ° C. when more lithium (Qa + qa) than the irreversible capacity Qa of the negative electrode is preliminarily occluded in the negative electrode.
  • lithium (Qa + qa 1.1 ⁇ Qa) 1.1 times the irreversible capacity Qa is previously occluded in the negative electrode.
  • the releasable lithium amount Qb in the negative electrode is larger than the irreversible capacity of the battery, that is, the irreversible capacity Qc of the positive electrode.
  • the end point of discharge is regulated by the positive electrode potential.
  • the slope of the negative electrode potential at the end of discharge is smaller than the slope of the negative electrode potential shown in FIG.
  • the discharge potential of the positive electrode changes as indicated by the dotted line Vc ′, but the positive electrode discharge potential Vc ′ rapidly decreases before the negative electrode potential rises. It becomes. Therefore, it is possible to reflect all the increase in the capacity of the positive electrode due to use at a high temperature in the increase in the battery capacity.
  • the excess lithium amount qa may be larger than 0 (qa> 0), but when a material containing silicon is used as the negative electrode active material, it is preferably at least 0.1 times the irreversible capacity Qa of the negative electrode (qa ⁇ Qa x 0.1). More preferably, it is 0.3 times or more (qa ⁇ Qa ⁇ 0.3). Therefore, the amount of lithium previously occluded in the negative electrode is preferably 1.1 times or more, more preferably 1.3 times or more the irreversible capacity Qa of the negative electrode. Thereby, the influence on the positive electrode potential Vc due to the rise of the negative electrode potential Va can be more effectively reduced.
  • the amount of lithium previously stored in the negative electrode is too large, there is a possibility that sufficient battery capacity cannot be secured.
  • the amount of lithium stored in advance is preferably not more than twice the irreversible capacity Qa of the negative electrode.
  • the irreversible capacity of the negative electrode tends to decrease as the environmental temperature of the battery increases.
  • the reason is considered as follows.
  • One factor of the irreversible capacity Qa of the negative electrode is that lithium occluded in the negative electrode is trapped in the crystal structure. This is because the irreversible capacity due to the lithium trap decreases when the environmental temperature of the battery rises and the lithium diffusion rate increases.
  • the irreversible capacity Qa of the negative electrode decreases and the charge / discharge polarization decreases, so that the rising of the negative electrode potential at the end of discharge can be further suppressed. That is, as shown in FIG. 11, the rising point of the negative electrode potential when the environmental temperature is 45 ° C. may be shifted to the lower capacity side (left side of FIG. 11) than the rising point of the negative electrode potential when 25 ° C. it can. Therefore, even if the environmental temperature rises, the positive electrode potential regulation can be more reliably maintained.
  • the difference between the excess lithium amount qa occluded in the negative electrode, ie, the lithium pre-occlusion amount (Qa + qa) of the negative electrode active material and the irreversible capacity Qa of the negative electrode Is equal to the difference between the releasable lithium amount Qb in the negative electrode and the irreversible capacity Qc of the positive electrode.
  • FIG. 17 An example of the charge / discharge potential behavior of the cobalt-based lithium-containing composite oxide is shown in FIG. As can be seen from FIG. 17, in the cobalt-based lithium-containing composite oxide, when the temperature reaches 45 ° C., the polarization of discharge is reduced and the capacity is increased. Therefore, in a conventional battery using a cobalt-based lithium-containing composite oxide (lithium cobaltate: LCO) as a positive electrode active material and graphite as a negative electrode active material (a battery in which lithium is not previously stored in the negative electrode), the negative electrode at 25 ° C. Since the irreversible capacity is larger than the irreversible capacity of the positive electrode, the battery is restricted in negative electrode capacity.
  • LCO lithium cobaltate
  • the positive electrode potential is regulated even when the battery is used at a high temperature. Accordingly, even in a battery using a cobalt-based lithium-containing composite oxide, a high capacity can be realized in a high temperature environment.
  • a part or the whole of the surface of the positive electrode active material is used for other metal oxides, hydroxides, metal salts for the purpose of reducing the oxidative decomposition reaction of the electrolyte solution on the positive electrode active material under a high voltage, for example. Etc. may be covered.
  • LCO whose surface is coated with a metal oxide or the like is used as the positive electrode active material, the same effect as described above can be obtained by controlling the lithium preocclusion amount with respect to the negative electrode.
  • lithium metal is attached to the negative electrode, and a local battery is formed via an electrolytic solution to be charged, or lithium is charged from the counter electrode, whereby lithium is occluded in the negative electrode.
  • the lithium metal attached to the negative electrode it is preferable to use an extremely thin lithium metal (thickness: 10 ⁇ m or less) in order to uniformly store lithium in the negative electrode.
  • thickness thickness: 10 ⁇ m or less
  • lithium metal is directly brought into contact with the negative electrode active material, and the negative electrode active material is occluded only by diffusion in the solid phase.
  • a method for bringing lithium metal into direct contact deposition on a negative electrode active material by a vapor phase method such as vacuum deposition, or a material obtained by depositing lithium metal on another substrate and a negative electrode active material are brought into close contact with each other as necessary.
  • a method of applying heat transfer method.
  • an electrochemical method or a vapor phase method such as a vacuum evaporation method is used as a lithium pre-occlusion method.
  • the present inventor has found that when a silicon-based material is used as the negative electrode active material, if the lithium is occluded by a vapor phase method, the polarization at the end of discharge can be made smaller than when the electrochemical method is used. .
  • FIG. 12 is a diagram illustrating charge / discharge curves of a negative electrode preliminarily occluded with lithium by a vacuum deposition method and a negative electrode preliminarily occluded with lithium by an electrochemical method.
  • the charge / discharge curve of the negative electrode preliminarily occluded with lithium by an electrochemical method is substantially the same as the charge / discharge curve of a negative electrode not preliminarily occluded with lithium.
  • the irreversible capacity of the negative electrode is reduced when lithium is preoccluded using the vacuum deposition method. This is because a part of lithium trapped in the crystal structure of the negative electrode becomes movable, and the irreversible capacity is reduced accordingly. Thereby, positive electrode potential regulation can be held more effectively.
  • lithium be preliminarily occluded in a portion (non-opposing portion) that does not face the positive electrode in the layer made of the negative electrode active material (negative electrode active material layer).
  • the area of the negative electrode active material layer (negative electrode mixture area) in the negative electrode is larger than the area of the positive electrode active material layer (positive electrode mixture area) in the positive electrode. . Accordingly, a part of the negative electrode active material layer becomes an unopposed portion.
  • the average discharge potential of the whole negative electrode can be made lower than the potential of the portion of the negative electrode facing the positive electrode (opposing portion). It becomes possible to maintain regulations.
  • the excessive lithium quantity qa is set so that the sum of the excess lithium quantity qa and the charge capacity of the positive electrode does not exceed the discharge capacity of the negative electrode. Is preferred. If the sum of the excess lithium qa and the charge capacity of the positive electrode exceeds the discharge capacity of the negative electrode, lithium may be deposited on the negative electrode.
  • the irreversible capacity of the positive electrode tends to increase when the packing density of the positive electrode is increased or the primary particle size of the positive electrode active material is increased.
  • the increase rate of the irreversible capacity of the positive electrode greatly depends on the environmental temperature. For example, when the environmental temperature is 45 ° C., the irreversible capacity hardly increased even when the particle physical properties of the positive electrode active material were changed as described above, and a discharge capacity almost the same as the conventional one was obtained. Therefore, in a battery using such a positive electrode active material, the amount of increase in capacity when used at a high temperature is more significant than the capacity when used at room temperature. Therefore, it is preferable to have a configuration that maximizes the capacity when used at high temperatures. Thereby, when using at high temperature, a high capacity
  • Nickel-based positive electrode active material is composed of secondary particles that are aggregates of primary particles.
  • the nickel-based positive electrode active material is produced, for example, as follows.
  • a precursor of a positive electrode active material is prepared by a coprecipitation method. Specifically, the pH of an aqueous solution in which a plurality of raw material salts are dissolved is adjusted to precipitate a complex metal hydroxide (precursor) that is homogeneous at the atomic level. Next, the precursor is dried and mixed with the lithium salt. Then, a positive electrode active material is obtained by baking the mixture of a precursor and lithium salt by a predetermined atmosphere and temperature. Increasing the firing temperature increases the primary particle size of the positive electrode active material. A preferable firing temperature is 780 to 820 ° C., whereby a positive electrode active material having a primary particle diameter of about 0.2 to 1.5 ⁇ m is produced.
  • the packing density of the positive electrode active material is high.
  • a preferred packing density is 3.0 to 4.0 g / cm 3 , more preferably 3.5 to 3.9 g / cm 3 . If it is less than 3.0 g / cm 3 , the degree of secondary particle collapse is small, but sufficient volume capacity density cannot be obtained. On the other hand, if it is larger than 4.0 g / cm 3 , the degree of secondary particle collapse becomes remarkable, and a sufficient porosity cannot be provided inside the positive electrode active material layer, resulting in a decrease in output characteristics.
  • the primary particles constituting the secondary particles may collapse due to the pressure.
  • it is preferable that the primary particles constituting the secondary particles are as large as possible and that there are few grain boundaries present in the secondary particles. Crystallinity can be increased to increase the strength of the secondary particles.
  • the primary particle diameter (average particle diameter) is preferably 0.5 to 1.5 ⁇ m.
  • Nickel-based oxides are sensitive to the atmosphere, and their surface may be altered when exposed to the atmosphere. When nickel-based oxides come into contact with the air during the manufacturing process, some of the Li ions in the oxide crystal structure are replaced with protons. The exchanged Li ions react with hydroxide ions and carbon dioxide to produce lithium hydroxide and lithium carbonate.
  • the positive electrode active material of this embodiment is preferably a composite metal oxide of nickel and lithium.
  • the nickel-based lithium-containing composite oxide a part of Ni is based on LiNiO 2 , Mg, Sc, Y, Mn, Fe, Co, Ni, Cu, Zn, Al, Cr, Pb, Sb and B
  • the nickel-based lithium-containing composite oxide Li a Ni 1- (b + c) Co b M c O 2 ( however, 1.0 ⁇ a ⁇ 1.05,0.1 ⁇ b ⁇ 0.35, It is preferable to use 0.005 ⁇ c ⁇ 0.30 and M is at least one selected from Al, Sr, and Ca.
  • the LiNiO 2 -based positive electrode active material it is particularly preferable to dissolve Co and Al in order to suppress the end-of-discharge polarization that is the cause of the irreversible capacity (ie, Li a Ni 1- (b + c) Co b Al c O 2).
  • the end-of-discharge polarization ie, Li a Ni 1- (b + c) Co b Al c O 2.
  • the active material based on LiNiO 2 generally has a problem that the crystal structure change due to charge / discharge is relatively large and excellent reversibility cannot be obtained.
  • a high capacity can be obtained. While maintaining the above, reversibility can be improved. The reason will be described below.
  • the a value is 1.0 or more, the amount of lithium salt used as a raw material is sufficient, the presence of electrochemically inactive impurities such as nickel oxide and cobalt oxide is suppressed, and it is difficult to induce a decrease in capacity.
  • the a value is 1.05 or less, the lithium salt used as a raw material does not exist excessively, so that the lithium compound is suppressed from remaining as an impurity, and similarly, it is difficult to induce a decrease in capacity.
  • a value is a composition at the time of non-charging.
  • the lithium secondary battery of this embodiment contains a lithium nickel composite oxide having substantially irreversible capacity as a positive electrode active material.
  • the particle physical properties and preferred composition of the positive electrode active material are as described above.
  • the material of the negative electrode active material is not particularly limited, for example, the above-described carbon-based material such as graphite, silicon-based material such as SiOx, or the like can be used. Further, lithium is occluded in advance in the negative electrode active material.
  • the amount of lithium stored in advance is set so that the amount of lithium that can be released in the negative electrode is larger than the irreversible capacity of the lithium secondary battery in the fully discharged state of the lithium secondary battery when the environmental temperature is 25 ° C. Has been.
  • the lithium secondary battery of this embodiment exhibits charge / discharge behavior as illustrated in FIG. 7 when a carbon-based material is used as the negative electrode active material and as illustrated in FIG. 10 when a silicon-based material is used.
  • the end of discharge can be regulated not only at room temperature but also at high temperature (for example, 40 to 50 ° C.) by the positive electrode potential (positive electrode potential regulation). For this reason, the increase in reversible capacity due to the improved polarization at the end of discharge of the positive electrode in a high temperature environment can be used for increasing the capacity of the lithium secondary battery. Therefore, the battery capacity can be increased without deteriorating the charge / discharge cycle characteristics.
  • capacitance in the lithium secondary battery of this embodiment can be measured with the following method.
  • the “releasable lithium amount in the negative electrode” Qb can be obtained by disassembling the discharged battery and measuring the negative electrode capacity of the battery.
  • the “irreversible capacity of the negative electrode” Qa is obtained by measuring the amount of lithium in the negative electrode after measuring the amount of lithium that can be released.
  • the “irreversible capacity of the positive electrode” Qc can be calculated by measuring the amount of lithium in the positive electrode active material before discharge and the amount of lithium in the positive electrode active material after discharge, and obtaining the difference between them.
  • the amount of lithium previously occluded in the negative electrode can be calculated by the following equation using each capacity obtained by the above method.
  • Preliminary storage amount of lithium amount of lithium releasable in negative electrode Qb ⁇ irreversible capacity Qc of positive electrode + irreversible capacity Qa of negative electrode
  • the increase in the capacity of the positive electrode is obtained by measuring the change in the capacity of the positive electrode by changing the temperature.
  • FIG. 16 is a schematic cross-sectional view showing an example of the lithium secondary battery of the present embodiment.
  • the lithium secondary battery includes a battery case 1, an electrode group 4 accommodated in the battery case 1, and insulating rings 8 respectively disposed above and below the electrode group 4.
  • the battery case 1 has an opening upward, and the opening is sealed by a sealing plate 2.
  • the electrode group 4 has a configuration in which the positive electrode 5 and the negative electrode 6 are wound in a spiral shape with a separator 7 interposed therebetween. From the positive electrode 5, for example, a positive electrode lead 5 a made of aluminum is drawn, and from the negative electrode 6, for example, a negative electrode lead 6 a made of copper is drawn. The positive electrode lead 5 a is connected to the sealing plate 2 of the battery case 1. The negative electrode lead 6 a is connected to the bottom of the battery case 1. Although not shown, an electrolyte is injected into the battery case 1 together with the electrode group 4.
  • Such a lithium secondary battery is manufactured as follows. First, the negative electrode 6 and the positive electrode 5 are formed, and the negative electrode 6 and the positive electrode 5 are wound together with the separator 63 to form the electrode group 4. Next, insulating plates 8 are mounted on the upper and lower sides of the electrode group 4, respectively. Further, the positive electrode lead 5 a drawn from the positive electrode 4 is welded to the sealing plate 66, and the negative electrode lead 6 a drawn from the negative electrode 6 is welded to the bottom of the battery case 1 and inserted into the battery case 1. Thereafter, a non-aqueous electrolyte (not shown) that conducts lithium ions is injected into the battery case 1, and the opening of the battery case 1 is sealed with the sealing plate 2 through the insulating packing 3.
  • the positive electrode 5 in the present embodiment includes a positive electrode current collector and a positive electrode active material layer (positive electrode mixture layer) formed on the surface of the positive electrode current collector.
  • the positive electrode current collector may be, for example, a metal foil such as aluminum, or a metal foil that has been subjected to lath processing or etching.
  • a material for the positive electrode current collector those commonly used in this field can be used.
  • metal materials such as stainless steel, titanium, and aluminum can be used.
  • the thickness of the positive electrode current collector is, for example, 10 ⁇ m or more.
  • the thickness of the positive electrode current collector is preferably 30 ⁇ m or less, more preferably 20 ⁇ m or less.
  • the positive electrode active material layer is formed on one side or both sides of the positive electrode current collector, for example, by the following method.
  • a paste-like positive electrode mixture is prepared by kneading and dispersing a positive electrode active material, a binder, a conductive agent, and, if necessary, a thickener in a solvent.
  • a positive electrode mixture is applied to the surface of the positive electrode current collector and then dried to obtain a positive electrode active material layer.
  • a method for rolling the current collector on which the active material layer is formed is not particularly limited. For example, rolling may be performed a plurality of times at a linear pressure of 1000 to 3000 kg / cm with a roll press until the active material layer has a predetermined thickness.
  • the thickness of the positive electrode 5 (the total thickness of the positive electrode active material layer and the current collector) is, for example, 100 ⁇ m to 200 ⁇ m.
  • the positive electrode 5 preferably has flexibility.
  • the positive electrode active material layer in this embodiment includes a nickel-based lithium-containing composite oxide capable of occluding and releasing lithium as the positive electrode active material.
  • the preferred composition of the nickel-based lithium-containing composite oxide is the same as that described above.
  • the binder used for the positive electrode active material layer is not particularly limited as long as it is a material that is stable with respect to the solvent and electrolyte used.
  • a fluorine-based binder acrylic rubber, modified acrylic rubber, styrene-butadiene rubber (SBR), isopropylene rubber, butadiene rubber, acrylic polymer, vinyl polymer, etc. alone, or a mixture of two or more kinds It can be used as a copolymer.
  • fluorine-based binder examples include polyvinylidene fluoride (PVDF), a copolymer of vinylidene fluoride (VDF (registered trademark)) and hexafluoropropylene (HFP) (P (VDF-HFP)), and polytetrafluoro
  • PVDF polyvinylidene fluoride
  • HFP hexafluoropropylene
  • PVDF-HFP hexafluoropropylene
  • An ethylene resin dispersion or the like is preferably used.
  • the amount is preferably 1 to 4 g with respect to 100 g of the active material.
  • carboxymethyl cellulose methyl cellulose, hydroxymethyl cellulose, ethyl cellulose, polyvinyl alcohol, oxidized starch, phosphorylated starch, casein, and the like are preferably used.
  • acetylene black, artificial graphite, natural graphite, carbon fiber, or the like can be used alone or as a mixture of two or more.
  • the mixing ratio with respect to the active material is preferably 0.5 to 3.0 g with respect to 100 g of the active material. Further, it is preferable to mix carbon black such as acetylene black and graphite material such as artificial graphite.
  • the solvent is not particularly limited as long as it can dissolve the binder.
  • an organic binder for example, N-methyl-2-pyrrolidone (NMP), N, N-dimethylformamide, tetrahydrofuran, dimethylacetamide, dimethyl sulfoxide, hexamethylsulfuramide, tetramethylurea, acetone
  • NMP N-methyl-2-pyrrolidone
  • An organic solvent such as methyl ethyl ketone can be used.
  • These organic solvents may be used alone, or a mixed solvent obtained by mixing two or more of these may be used.
  • an aqueous binder it is preferable to use water or warm water as a solvent.
  • NMP nickel-based oxides that are sensitive to moisture
  • NMP nickel-based oxides that are sensitive to moisture
  • the method for producing the positive electrode paste is not particularly limited. For example, using a planetary mixer, a homomixer, a pin mixer, a kneader, a homogenizer, etc., the positive electrode or negative electrode active material, the binder, and a conductive agent or conductive auxiliary agent added as necessary are kneaded and dispersed in a solvent. be able to.
  • the above manufacturing methods may be used alone or in combination. Further, when kneading and dispersing in a solvent, various dispersants, surfactants, stabilizers and the like can be added as necessary.
  • the method of applying the mixture and drying is not particularly limited.
  • the paste mixture kneaded and dispersed in a solvent can be easily applied to the current collector surface using, for example, a slit die coater, reverse roll coater, lip coater, blade coater, knife coater, gravure coater, dip coater ( Can be applied).
  • the applied mixture may be dried by a method close to natural drying. Considering productivity, it is preferable to dry at a temperature of 70 ° C. to 200 ° C.
  • the negative electrode 6 in this embodiment includes a negative electrode current collector and a negative electrode active material layer formed on the surface of the negative electrode current collector.
  • a negative electrode active material graphite-based materials such as artificial graphite and natural graphite, and alloy-based materials such as silicon and tin can be used.
  • the graphite material it is preferable to use a graphite material having a reversible capacity of 350 mAh / g or more and an irreversible capacity of 30 mAh / g or less.
  • a graphite-based material When such a graphite-based material is used, a larger reversible capacity can be obtained at a charge / discharge potential close to the Li metal potential.
  • the shape of the graphite material may be processed into a spherical shape, a scale shape or a lump shape. In order to increase the packing density, graphites having different particle sizes may be mixed.
  • a silicon containing compound, a tin containing compound, etc. are mentioned.
  • the silicon-containing compound include silicon, silicon oxide, silicon nitride, silicon-containing alloy, silicon compound and its solid solution.
  • the silicon oxide include silicon oxide represented by the composition formula: SiO ⁇ (0 ⁇ ⁇ 2).
  • silicon carbide include silicon carbide represented by the composition formula: SiC ⁇ (0 ⁇ ⁇ 1).
  • the silicon nitride include silicon nitride represented by the composition formula: SiN ⁇ (0 ⁇ ⁇ 4/3).
  • the silicon-containing alloy examples include an alloy containing silicon and one or more elements selected from the group consisting of Fe, Co, Sb, Bi, Pb, Ni, Cu, Zn, Ge, In, Sn, and Ti. . Further, a part of silicon is selected from the group consisting of B, Mg, Ni, Ti, Mo, Co, Ca, Cr, Cu, Fe, Mn, Nb, Ta, V, W, Zn, C, N, and Sn. It may be substituted with one or more elements. Among these, it is particularly preferable to use SiO ⁇ (0 ⁇ ⁇ 2) which is excellent in reversibility of charge / discharge.
  • tin-containing compound examples include tin, tin oxide, tin nitride, tin-containing alloy, tin compound and its solid solution, and the like.
  • tin-containing compounds include tin, tin oxides such as SnO ⁇ (0 ⁇ ⁇ 2), SnO 2 , Ni—Sn alloys, Mg—Sn alloys, Fe—Sn alloys, Cu—Sn alloys, and Ti—Sn.
  • Tin-containing alloys such as alloys, tin compounds such as SnSiO 3 , Ni 2 Sn 4 and Mg 2 Sn can be preferably used.
  • tin and tin oxides such as SnO ⁇ (0 ⁇ ⁇ 2) and SnO 2 are particularly preferable.
  • the negative electrode current collector for example, a rolled foil or an electrolytic foil made of copper or a copper alloy can be used.
  • the shape of the negative electrode current collector is not particularly limited, and may be a perforated foil, an expanded material, a lath material, or the like in addition to the foil.
  • the thicker the negative electrode current collector the higher the tensile strength, which is preferable.
  • the negative electrode current collector is too thick, the void volume inside the battery case decreases, and as a result, the energy density may decrease.
  • protrusions, particles, and the like may be provided on the surface of the foil.
  • the negative electrode active material layer is formed on one side or both sides of the negative electrode current collector, for example, by the following method.
  • a paste-like negative electrode mixture is prepared by kneading and dispersing a negative electrode active material, a binder, and, if necessary, a thickener and a conductive additive in a solvent.
  • a negative electrode mixture is applied to the surface of the negative electrode current collector, and then dried to obtain a negative electrode active material layer.
  • the negative electrode current collector on which the negative electrode active material layer is formed is rolled. In this way, the negative electrode 6 is obtained.
  • the negative electrode 6 preferably has flexibility.
  • the method for producing the paste mixture of the positive electrode and the negative electrode is not particularly limited. For example, using a planetary mixer, a homomixer, a pin mixer, a kneader, a homogenizer, etc., the positive electrode or negative electrode active material, the binder, and a conductive agent or conductive auxiliary agent added as necessary are kneaded and dispersed in a solvent. be able to.
  • the above manufacturing methods may be used alone or in combination. Further, when kneading and dispersing in a solvent, various dispersants, surfactants, stabilizers and the like can be added as necessary.
  • the method of applying the mixture and drying is not particularly limited.
  • the paste mixture kneaded and dispersed in a solvent can be easily applied to the current collector surface using, for example, a slit die coater, reverse roll coater, lip coater, blade coater, knife coater, gravure coater, dip coater ( Can be applied).
  • the applied mixture may be dried by a method close to natural drying. Considering productivity, it is preferable to dry at a temperature of 70 ° C. to 200 ° C.
  • a method for rolling the current collector on which the active material layer is formed is not particularly limited. For example, rolling may be performed a plurality of times at a linear pressure of 1000 to 3000 kg / cm with a roll press until the active material layer has a predetermined thickness. Or you may perform rolling of multiple times from which a linear pressure differs.
  • an alloy-based active material it may be deposited directly on the negative electrode current collector by a vapor phase method such as vacuum deposition, sputtering, or CVD.
  • a microporous film or non-woven fabric of polyolefin resin such as polyethylene resin or polypropylene resin can be used.
  • the microporous membrane or the nonwoven fabric may be a single layer or may have a multilayer structure. Preferably, it has a two-layer structure composed of a polyethylene resin layer and a polypropylene resin layer, or a three-layer structure composed of two polypropylene resin layers and a polyethylene resin layer disposed therebetween.
  • the separator which has is used. These separators preferably have a shutdown function.
  • the thickness of the separator 7 is 10 micrometers or more and 30 micrometers or less, for example.
  • the non-aqueous electrolyte includes a non-aqueous solvent and an electrolyte.
  • the non-aqueous solvent contains, for example, a cyclic carbonate and a chain carbonate as main components.
  • the cyclic carbonate is preferably at least one selected from ethylene carbonate (EC), propylene carbonate (PC), and butylene carbonate (BC).
  • the chain carbonate is preferably at least one selected from dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), and the like.
  • the electrolyte includes, for example, a lithium salt having a strong electron withdrawing property.
  • lithium salts examples include LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , LiCF 3 SO 3 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 , LiC (SO 2 CF 3 ) 3 etc. can be used.
  • These electrolytes may be used alone or in combination of two or more. Further, these electrolytes are preferably dissolved in the non-aqueous solvent described above at a concentration of 0.5 to 1.5M.
  • the non-aqueous electrolyte may contain a polymer material.
  • a polymer material that can gel a liquid material can be used.
  • the polymer material those commonly used in this field can be used. Examples thereof include polyvinylidene fluoride, polyacrylonitrile, and polyethylene oxide.
  • nickel-based lithium-containing composite oxide (lithium nickel composite oxide) is used as the positive electrode active material.
  • other lithium transition metal composite oxide for example, a composite metal of cobalt and lithium is used.
  • a cobalt-based lithium-containing composite oxide (lithium cobalt composite oxide) that is an oxide may be used.
  • Li a CoO 2 (where 1.0 ⁇ a ⁇ 1.10) may be used as the cobalt-based lithium-containing composite oxide.
  • a part of Co may be substituted with another element for the purpose of improving cycle characteristics and thermal stability.
  • the surface of the cobalt-based lithium-containing composite oxide may be coated with a metal oxide or the like.
  • the cobalt-based lithium-containing composite oxide also exhibits a behavior similar to the charge / discharge potential behavior of the nickel-based lithium-containing composite oxide illustrated in FIG. The same effect can be obtained. That is, the increase in the reversible capacity of the positive electrode under a high temperature environment can be used for increasing the capacity of the lithium secondary battery. As a result, the battery capacity can be increased while suppressing a decrease in charge / discharge cycle characteristics.
  • the positive electrode active material in this embodiment is not limited to lithium nickel composite oxide or lithium cobalt composite oxide, but other lithium transition metal composite oxides (for example, transition metals such as manganese, chromium, iron, vanadium, and lithium) And a mixed metal oxide).
  • Examples and Comparative Examples The inventor produced lithium secondary batteries of Examples and Comparative Examples and compared battery capacities when used at room temperature and high temperature. The method and results will be described below.
  • positive electrode active materials A and B used in Examples and Comparative Examples
  • two types of nickel-based lithium-containing composite oxides having different average particle sizes of primary particles LiNi 0.815 Co 0.15 Al 0.035 O 2 ) (hereinafter referred to as positive electrode active materials A and B) was used.
  • the obtained precursor and lithium carbonate were mixed so that the molar ratio of lithium, cobalt, nickel and aluminum (Li: Co: Ni: Al) was 1: 0.815: 0.15: 0.035 did.
  • the mixture was calcined in an oxygen atmosphere at a temperature of 500 ° C. for 7 hours and pulverized.
  • the pulverized fired product was fired again at a temperature of 800 ° C. for 15 hours.
  • the fired product was pulverized and classified to obtain a positive electrode active material A having a composition of LiNi 0.815 Co 0.15 Al 0.035 O 2 .
  • the average particle diameter of the primary particles of the positive electrode active material A was 0.5 ⁇ m.
  • Positive electrode active material B A positive electrode active material B having a composition of LiNi 0.815 Co 0.15 Al 0.035 O 2 was produced in the same manner as the positive electrode active material A except that the mixture of the precursor and lithium carbonate was baked at 800 ° C. The average particle diameter of the primary particles of the positive electrode active material B was 1.0 ⁇ m.
  • This precursor and lithium carbonate were mixed so that the molar ratio of lithium, cobalt, and magnesium was 1: 0.98: 0.02.
  • the mixture was calcined at a temperature of 600 ° C. for 10 hours and pulverized.
  • the pulverized fired product was fired again at a temperature of 900 ° C. for 10 hours.
  • the fired product was pulverized and classified to obtain a positive electrode active material C represented by LiCo 0.98 Mg 0.02 O 2 .
  • the positive electrode active material C was composed only of primary particles having an average particle diameter of 5 microns.
  • positive electrodes A-1 and A-2 were produced using the positive electrode active material A, and positive electrode B-1 was produced using the positive electrode active material B.
  • Positive electrode A-1 100 g of the positive electrode active material A powder is sufficiently mixed with 1.2 g of acetylene black (conductive agent), 1.2 g of artificial graphite (conductive agent), 2 g of polyvinylidene fluoride powder (binder) and 50 ml of organic solvent (NMP). Thus, a mixture paste was prepared. This mixture paste was applied to one side of an aluminum foil (positive electrode current collector) having a thickness of 15 ⁇ m. The mixture paste was dried to obtain a positive electrode active material layer.
  • the aluminum foil on which the positive electrode active material layer was formed was rolled to form positive electrode A-1.
  • the thickness of the positive electrode that is, the total thickness of the current collector and the positive electrode active material layer was 65 ⁇ m, and the electrode capacity per unit area was 3.5 mAh / cm 2 .
  • capacitance uses lithium metal as a counter electrode, charging current value: 0.1 mA / cm ⁇ 2 >, final voltage: 4.25V, discharge current value: 0.1 mA / cm ⁇ 2 >, final voltage: 3.0V It is a capacity
  • the packing density of the obtained positive electrode A-1 was 3.55 g / cm 3 .
  • the aluminum foil on which the positive electrode active material layer was formed was rolled to form positive electrode A-2.
  • the thickness of the positive electrode was 60 ⁇ m, and the electrode capacity per unit area was 3.5 mAh / cm 2 .
  • the method for measuring the electrode capacitance is the same as the method described in (2-1) above.
  • the packing density of the obtained positive electrode A-2 was 3.85 g / cm 3 .
  • Positive electrode A-3 A positive electrode active material A was used and produced in the same manner as the positive electrode A-1, except for the packing density.
  • the packing density was 2.90 g / cm 3 .
  • the thickness of the positive electrode that is, the total thickness of the current collector and the positive electrode active material layer was 77 ⁇ m, and the electrode capacity per unit area was 3.5 mAh / cm 2 .
  • Positive electrode B-1 100 g of the positive electrode active material B powder is sufficiently mixed with 1.2 g of acetylene black (conductive agent), 1.2 g of artificial graphite (conductive agent), 2 g of polyvinylidene fluoride powder (binder) and 50 ml of organic solvent (NMP). Thus, a mixture paste was prepared. This mixture paste was applied to one side of an aluminum foil (positive electrode current collector) having a thickness of 15 ⁇ m. The mixture paste was dried to obtain a positive electrode active material layer.
  • the aluminum foil on which the positive electrode active material layer was formed was rolled to form positive electrode B-1.
  • the thickness of the positive electrode was 65 ⁇ m, and the electrode capacity per unit area was 3.5 mAh / cm 2 .
  • the method for measuring the electrode capacitance is the same as the method described in (2-1) above.
  • the packing density of the obtained positive electrode B-1 was 3.55 g / cm 3 .
  • Positive electrode C-1 A mixture paste was prepared by sufficiently mixing 100 g of the positive electrode active material C powder with 2 g of acetylene black (conductive agent), 3 g of polyvinylidene fluoride powder (binder) and 50 ml of an organic solvent (NMP). This mixture paste was applied to one side of an aluminum foil (positive electrode current collector) having a thickness of 15 ⁇ m. The mixture paste was dried to obtain a positive electrode active material layer.
  • the aluminum foil on which the positive electrode active material layer was formed was rolled to form positive electrode C-1.
  • the thickness of the positive electrode that is, the total thickness of the current collector and the positive electrode active material layer was 58 ⁇ m, and the electrode capacity per unit area was 3.5 mAh / cm 2 .
  • capacitance uses a lithium metal as a counter electrode, charging current value: 0.1 mA / cm ⁇ 2 >, end voltage: 4.35V, discharge current value: 0.1 mA / cm ⁇ 2 >, end voltage: 3.0V It is a capacity
  • the packing density of the obtained positive electrode C-1 was 3.70 g / cm 3 .
  • the copper foil on which the negative electrode active material layer was formed was rolled to form a graphite negative electrode having a thickness (total thickness of the current collector and the negative electrode active material layer) of 76 ⁇ m.
  • the electrode capacity per unit area was 4.1 mAh / cm 2 .
  • the capacity of this electrode is as follows: in the capacity evaluation using lithium metal as the counter electrode, the charging current value is 0.1 mA / cm 2 , the final voltage is 0 V, the discharge current value is 0.1 mA / cm 2 , and the final voltage is 1.5 V. It is a capacity
  • a negative electrode current collector having irregularities on the surface was produced by a roller processing method.
  • a ceramic layer having a thickness of 100 ⁇ m was formed by spraying chromium oxide on the surface of a cylindrical iron roller (diameter: 50 mm).
  • a plurality of recesses having a depth of 6 ⁇ m were formed on the surface of the ceramic layer by laser processing. Each recess was circular with a diameter of 12 ⁇ m when viewed from above the ceramic layer. At the bottom of each recess, the central portion was substantially planar, and the peripheral edge of the bottom had a rounded shape.
  • the arrangement of these recesses was a close-packed arrangement in which the distance between the axes of adjacent recesses was 20 ⁇ m. In this way, a convex forming roller was obtained.
  • an alloy copper foil (trade name: HCL-02Z, thickness: 26 ⁇ m, manufactured by Hitachi Cable Ltd.) containing zirconia at a ratio of 0.03% by weight with respect to the total amount was placed at 600 ° C. in an argon gas atmosphere. Heating was performed for 30 minutes at a temperature, and annealing was performed. This alloy copper foil was passed at a pressure of 2 t / cm through a pressure contact portion where two convex forming rollers were pressure contacted.
  • both surfaces of alloy copper foil were pressure-molded, and the negative electrode collector which has a some convex part on both surfaces was obtained.
  • a cross section perpendicular to the surface of the negative electrode current collector was observed with a scanning electron microscope, a plurality of convex portions having an average height of about 6 ⁇ m were formed on both surfaces of the negative electrode current collector.
  • copper particles were formed on the upper surface of the convex portion by electrolytic plating.
  • the surface roughness Ra was 2.0 ⁇ m.
  • a negative electrode active material layer was formed on the surface of the negative electrode current collector produced by the above method by oblique vapor deposition.
  • an electron beam evaporation apparatus 50 shown in FIG. 15 was used for forming the negative electrode active material layer.
  • the vapor deposition apparatus 50 includes a vacuum chamber 51 and an exhaust pump 56 for exhausting the vacuum chamber 51. Inside the vacuum chamber 51, a fixing base 53 for fixing the current collector 21, a gas introduction pipe 52 for introducing oxygen gas into the chamber 51, and evaporation for supplying silicon to the surface of the current collector 21. A crucible 55 loaded with a source is installed. For example, silicon can be used as the evaporation source. Further, although not shown, an electron beam heating means for evaporating the material of the evaporation source is provided.
  • the gas introduction pipe 52 includes an oxygen nozzle 54, and is positioned so that oxygen gas emitted from the oxygen nozzle 54 is supplied near the surface of the current collector 21.
  • the fixed base 53 and the crucible 55 are such that the vapor deposition particles (here, silicon atoms) from the crucible 55 are on the surface of the current collector 21 from an angle (deposition angle) ⁇ with respect to the normal direction D of the current collector 21. It is arrange
  • the fixed base 53 has a rotation axis. By rotating the fixed base 53 around the rotation axis, the angle ⁇ of the fixed base 53 with respect to the horizontal plane 60 becomes equal to a predetermined deposition angle ⁇ .
  • the “horizontal plane” refers to a plane perpendicular to the direction in which the material of the evaporation source charged in the crucible 55 is vaporized and faces the fixing base 53.
  • a method and conditions for forming the negative electrode active material layer using the vapor deposition apparatus 50 will be described below.
  • the negative electrode current collector (30 mm ⁇ 30 mm) was fixed to the fixing base 53 of the vapor deposition apparatus 50.
  • the oxygen flow rate was gradually reduced to gradually reduce the degree of vacuum (vacuum degree in the first vapor deposition step: 3.5 ⁇ 10 ⁇ 2 Pa ⁇ 7
  • the degree of vacuum in the first vapor deposition step 1.0 ⁇ 10 ⁇ 2 Pa).
  • the oxygen flow rate was kept constant (vacuum degree: 5 ⁇ 10 ⁇ 4 Pa).
  • Negative electrode active material silicon, purity 99.9999%, oxygen released from oxygen nozzle 54 manufactured by High Purity Chemical Laboratory Co., Ltd .: purity 99.7%, fixed base 53 manufactured by Nippon Oxygen Co., Ltd.
  • Angle ⁇ 60 °
  • Electron beam output 5kW
  • Deposition time 3 minutes x 40 times
  • a negative electrode active material layer including a plurality of active material bodies was formed on one surface of the negative electrode current collector.
  • Each of the active material bodies had a structure in which 40 columnar lumps were laminated, and was arranged on the corresponding convex part of the negative electrode current collector. Moreover, it grew from the top part of the convex part and the side surface near the top part in the direction in which the convex part extends. Thereafter, oblique deposition was performed on the opposite surface of the negative electrode current collector by the same method to form a negative electrode active material layer containing a plurality of active material bodies. Thus, the silicon negative electrode which has a negative electrode active material layer on both surfaces of a negative electrode collector was obtained.
  • the thickness of the negative electrode active material layer was determined.
  • a cross section perpendicular to the negative electrode current collector in the obtained negative electrode is observed with a scanning electron microscope, and for 10 active material bodies formed on the surface of the convex portion, from the vertex of the convex portion to the vertex of the active material body. The length of each was measured. The average of these was calculated as “the thickness of the negative electrode active material layer”. As a result, the thickness of each negative electrode active material layer was 14 ⁇ m.
  • the degree of oxidation x in the vicinity of the interface between the negative electrode current collector (Cu) and the negative electrode active material layer was 1.0.
  • the degree of oxidation x is inclined to gradually decrease.
  • the oxidation degree x was 0.12.
  • the average composition of the whole negative electrode active material layer was SiO 0.25 (the average of the degree of oxidation x was 0.25).
  • the degree of oxidation x refers to the molar ratio of the amount of oxygen to the amount of silicon in silicon oxide (SiOx).
  • the weight of silicon per unit area was 2.0 mg / cm 2 . Furthermore, the electrode capacity per unit area was set to 5.5 mAh / cm 2 .
  • the capacity of this electrode is as follows: in the capacity evaluation using lithium metal as the counter electrode, the charging current value is 0.1 mA / cm 2 , the final voltage is 0 V, the discharge current value is 0.1 mA / cm 2 , and the final voltage is 1.5 V. It is a capacity
  • the irreversible capacity of the obtained silicon negative electrode was 1.0 mAh / cm 2 .
  • Lithium Pre-Occlusion Lithium was previously occluded in the graphite negative electrode and silicon negative electrode obtained in (3) above by an electrochemical method or a vacuum deposition method, and negative electrodes a-1, b- 1, a-2 and b-2 were produced by the following method.
  • Negative electrode b-1 Using the same electrochemical method as that for the negative electrode a-1, lithium equivalent to 1.65 mAh / cm 2 larger than the irreversible capacity of the silicon negative electrode was occluded in the silicon negative electrode. This silicon negative electrode was designated as negative electrode b-1.
  • the discharge capacity of the negative electrode b-1 was substantially the same as the discharge capacity before preliminarily storing lithium (5.5 mAh / cm 2 ) (FIG. 12).
  • Negative electrode a-2 Lithium metal was deposited on the graphite negative electrode in an argon atmosphere using a resistance heating vapor deposition apparatus (manufactured by ULVAC, Inc.).
  • lithium metal was loaded into a tantalum boat in a chamber of a resistance heating vapor deposition apparatus.
  • the graphite negative electrode was fixed so that the negative electrode active material layer formed on one side of the graphite negative electrode faced the tantalum boat.
  • a 50 A current was passed through a tantalum boat in an argon atmosphere, and a lithium metal equivalent to 0.5 mAh / cm 2 was deposited on the negative electrode active material layer of the graphite negative electrode.
  • This graphite negative electrode was designated as negative electrode a-2.
  • Negative electrode b-2 Lithium metal was vapor-deposited on the silicon negative electrode using the same method (vacuum vapor deposition method) as that for the negative electrode a-2. When the silicon negative electrode was fixed in the chamber, the silicon negative electrode was fixed so that one of the negative electrode active material layers formed on both sides of the silicon negative electrode faced the tantalum boat. By vapor deposition of lithium metal, 1.6 mAh / cm 2 of lithium was deposited on one negative electrode active material layer of the silicon negative electrode. This silicon negative electrode was designated as negative electrode b-2.
  • the discharge capacity of the negative electrode b-2 was 6.1 mAh / cm 2 , increasing from the discharge capacity before preliminarily storing lithium (5.5 mAh / cm 2 ).
  • the discharge curves of the silicon negative electrode before and after the lithium pre-occlusion were examined, it was found that the capacity increased on the discharge side as described above with reference to FIG.
  • a negative electrode in which lithium was preoccluded by a transfer method was also produced.
  • lithium metal corresponding to 1.6 mAh / cm 2 was deposited on a copper substrate.
  • a copper substrate on which lithium metal was deposited and a silicon negative electrode were attached and integrated to obtain a precursor.
  • the copper substrate and the silicon negative electrode were laminated and pasted so that the lithium metal deposited on the copper substrate and the silicon of the silicon negative electrode faced each other.
  • the obtained precursor was immersed in an electrolytic solution and allowed to stand for 8 hours in an environment of 25 ° C., and lithium was occluded in silicon.
  • the same electrolyte as that used in the charge / discharge test was used.
  • the copper substrate was released from the silicon negative electrode. According to this method, lithium was occluded only 15% of the charged amount (1.6 mAh / cm 2 ).
  • the silicon negative electrode thus obtained was designated as b-3.
  • Example 1 a method for manufacturing the lithium secondary battery of Example 1 will be described with reference to FIG. 13 again.
  • Example 1 the positive electrode A-1 and the negative electrode a-1 produced by the method described above were used.
  • the positive electrode A-1 was cut into a size of 20 mm ⁇ 20 mm to obtain the positive electrode 11. Further, the negative electrode a-1 was cut into a size of 20.5 mm ⁇ 20.5 mm, and the negative electrode 12 was obtained.
  • the positive electrode lead 14 and the negative electrode lead 15 were welded to the current collector portions of the positive electrode 11 and the negative electrode 12 where the active material layers 11b and 12b were not formed, respectively.
  • the negative electrode 12, the separator 13 and the positive electrode 11 are laminated so that the active material layers 11b and 12b of the positive electrode 11 and the negative electrode 12 face each other through the separator 13 (here, a polyethylene microporous film), and the electrode group is formed.
  • the separator 13 here, a polyethylene microporous film
  • This electrode group was inserted into an outer case 17 made of an aluminum laminate together with 0.2 g of electrolyte.
  • electrolyte ethylene carbonate (EC), ethyl methyl carbonate (EMC), diethyl carbonate (DEC), and vinylene carbonate (VC) were mixed in a volume ratio of 20: 30: 50: 2 and LiPF 6 was added at 1.0 mol / L.
  • LiPF 6 LiPF 6 was added at 1.0 mol / L.
  • a non-aqueous electrolyte solution dissolved at a concentration of was used.
  • lithium metal was prepared as a reference electrode.
  • the positive electrode lead 14, the negative electrode lead 15, and the reference electrode lead (not shown) were led out of the outer case 17 from the opening of the outer case 17. Subsequently, the opening of the outer case 17 was welded while vacuuming the inside of the outer case 17. Thus, the lithium secondary battery of Example 1 was produced.
  • lithium secondary batteries of Examples 2 to 6 and Comparative Examples 1 to 3 were produced.
  • Table 2 shows the types of positive and negative electrodes used in the lithium secondary batteries of the examples and comparative examples.
  • Table 3 shows the irreversible capacities of the negative electrode and battery in each example and comparative example, the amount of lithium previously stored in the negative electrode, and the amount of releasable lithium contained in the negative electrode in a completely discharged state at 25 ° C.
  • the discharge capacity per active material weight of the positive electrode in charging / discharging in the first cycle was calculated, and was defined as “utilization capacity of positive electrode active material (mAh / g)”. .
  • Table 4 shows the capacity used.
  • the volume energy density (Wh / L) of each lithium secondary battery was calculated using this utilization capacity (initial capacity), the average discharge voltage, and the volume of the electrode group in the charged state.
  • Table 4 shows the volume energy density ratio obtained by setting the volume energy density of Comparative Example 1 to 100.
  • the lithium secondary battery of Comparative Example 1 exhibited the potential behavior described above with reference to FIG. Therefore, even when the environmental temperature was increased from 25 ° C. to 45 ° C., the increase in the capacity of utilization of the positive electrode active material was slight.
  • the lithium secondary batteries of Examples 1 and 2 having the same configuration as that of Comparative Example 1 except that a predetermined amount of lithium was occluded in the negative electrode were the potential behavior described above with reference to FIG. showed that.
  • the usage capacity when the environmental temperature was 25 ° C. was the same as that of Comparative Example 1, but the usage capacity when the environmental temperature was 45 ° C. was the same as the usage capacity when 25 ° C. Compared to 6%.
  • Comparative Example 2 showed the potential behavior described above with reference to FIG.
  • Comparative Example 2 since the irreversible capacity of the negative electrode (SiOx) was large, the utilization capacity of the positive electrode active material was low. In addition, the capacity used was constant regardless of the environmental temperature. This is because the end of the discharge is regulated by the negative electrode potential, so that the increase in the positive electrode capacity is not reflected in the battery capacity at all.
  • Example 3 having the same configuration as Comparative Example 1 except that a predetermined amount of lithium was occluded in the negative electrode exhibited the potential behavior shown in FIG. In Example 3, since the end point of discharge was regulated by the positive electrode potential, the capacity of the positive electrode active material increased significantly compared to Comparative Example 2.
  • the use capacity was further increased by 6% by increasing the environmental temperature (25 ° C. ⁇ 45 ° C.). For this reason, it was confirmed that not only the battery capacity was increased by pre-occluding lithium in the negative electrode, but also the capacity increase of the positive electrode accompanying the increase in environmental temperature could be used.
  • Example 4 has the same configuration as Example 3 except that the packing density of the positive electrode is high.
  • Example 4 also showed the same potential behavior as Example 3, but the rate of increase in utilization capacity due to increased environmental temperature (25 ° C. ⁇ 45 ° C.) was higher than the rate of increase in Example 3 (6%). Also became larger.
  • the packing density of the positive electrode was reduced (Example 5), the rate of increase in utilization capacity was smaller than that in Example 3. From this result, it is possible to increase the battery capacity at a high temperature more effectively by controlling the packing density of the positive electrode to a range greater than 3.0 g / cm 3 and less than 4.0 g / cm, for example. I understood.
  • Example 6 has the same configuration as that of Example 3 except that the primary particle diameter of the positive electrode was increased.
  • Example 6 also showed the same potential behavior as Example 3, but the rate of increase in utilization capacity due to increased environmental temperature (25 ° C. ⁇ 45 ° C.) was higher than the rate of increase in Example 3 (6%). Also became larger. Therefore, it was found that the battery capacity at high temperature can be more effectively increased by controlling the primary particle size of the positive electrode.
  • Example 8 using the cobalt-based lithium-containing composite oxide as the positive electrode active material, high charge / discharge cycle characteristics were obtained as in the other examples. Moreover, it turned out that utilization capacity can be increased by raising environmental temperature. The rate of increase in usage capacity was about 3%.
  • Examples 3 to 7 using a silicon-based negative electrode preliminarily occluded with lithium higher cycle characteristics were obtained than in Comparative Example 2 using a silicon-based negative electrode not preliminarily occluded with lithium.
  • this is a battery with positive electrode capacity restriction, and does not use the rising portion of the potential at the end of discharge of the negative electrode.
  • Comparative Example 2 is a battery with negative electrode capacity restriction, and uses the potential region of the rising edge of the negative electrode at the end of discharge. This is because if the negative electrode is used in this region, particle cracking due to shrinkage of the negative electrode active material during discharge increases.
  • Example 7 and Example 3 differ only in the lithium pre-occlusion method for the silicon-based negative electrode. From the comparison of these evaluation results, even if the lithium pre-occlusion method is different, the increase rate of the used capacity with the increase in the environmental temperature is the same, and the effect of enabling high capacity at high temperature is obtained. Was confirmed. Further, when lithium is preliminarily occluded by vacuum deposition (Example 3), the occlusion and release of lithium becomes smooth, and the charge / discharge polarization is smaller than that when electrochemically occluded (Example 7), which is high. Cycle characteristics were obtained.
  • Example 3 to 7 using nickel-based lithium-containing composite oxide as the positive electrode active material the utilization capacity was increased by increasing the environmental temperature, compared to Example 8 using cobalt-based lithium-containing composite oxide. The rate has increased. Accordingly, it has been found that when the nickel-based lithium-containing composite oxide is used as the positive electrode active material, the effect of increasing the utilization capacity according to the present embodiment can be obtained more significantly. This is because when nickel-based lithium-containing composite oxide is used as the positive electrode active material, the temperature dependence of lithium diffusion in the positive electrode active material at the end of discharge is high. That is, the irreversible capacity becomes relatively large at room temperature, and the capacity increase increases as the temperature is raised.
  • the lithium secondary battery of the present invention can be used for the same applications as conventional lithium secondary batteries.
  • it is useful as a power source for portable electronic devices such as personal computers, mobile phones, mobile devices, personal digital assistants (PDAs), portable game devices, and video cameras.
  • PDAs personal digital assistants
  • it is expected to be used as a secondary battery for assisting an electric motor, a power tool, a cleaner, a power source for driving a robot, a power source for a plug-in HEV, etc. in a hybrid electric vehicle, a fuel cell vehicle and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

 本発明のリチウム二次電池は、リチウムイオンを吸蔵・放出可能な正極活物質を有する正極と、リチウムイオンを吸蔵・放出可能な負極活物質を有する負極と、前記正極と前記負極との間に配置されたセパレータと、リチウムイオン伝導性を有する電解質とを含むリチウム二次電池であって、前記正極活物質は、実質的に不可逆容量を有するリチウムニッケル複合酸化物を含み、前記負極活物質には予めリチウムが吸蔵されており、環境温度が25℃のときの前記リチウム二次電池の完全放電状態において、前記負極中の放出可能なリチウム量が、前記リチウム二次電池の不可逆容量より大きい。

Description

リチウム二次電池およびその製造方法
 本発明は、リチウム二次電池およびその製造方法に関する。
 リチウム二次電池は、高容量および高エネルギー密度を有し、小型化および軽量化が容易なことから、例えば携帯電話、携帯情報端末(Personal Digital Assistants:PDA)、ノート型パーソナルコンピュータ、ビデオカメラ、携帯ゲーム機などの携帯用小型電子機器の電源として汎用されている。携帯用小型電子機器の多機能化、長時間駆動が今後もより一層求められている。機器駆動時の構成部品の発熱により、電池の動作環境が比較的高温(30~60℃)になる。そのため、従来よりも過酷な環境下での性能(容量、寿命)が求められている。
 リチウム二次電池のさらなる高容量化を実現するために、正極活物質の開発が進められている。正極活物質としては、例えばリチウム遷移金属複合酸化物が用いられる。リチウム遷移金属複合酸化物としては、層状構造を有するリチウムコバルト酸化物(LiCoO2)、リチウムニッケル酸化物(LiNiO2)、スピネル構造を有するリチウムマンガンスピネル(LiMn24)などのリチウム含有複合酸化物が知られている。
 このうちLiNiO2などのリチウムニッケル酸化物は、LiCoO2で使用される電圧範囲で高い可逆容量(180~200mAh/g)を有しており、より多量のリチウムを吸蔵・放出できる。このため、LiNiO2を用いると、電解液の分解などの副反応を抑えつつ、リチウム二次電池のさらなる高容量化を実現できる。また、LiNiO2の結晶構造の安定性が低いため、充放電サイクル寿命が短いという課題もある。さらに、ニッケル系リチウム含有複合酸化物は、一般に、室温では実質的に利用できない不可逆容量を有している。このため、ニッケル系リチウム含有複合酸化物を正極活物質として用いて電池を構成すると、電池としての初期容量をロスするという課題があった。
 ニッケル系リチウム含有複合酸化物が不可逆容量を有する原因は様々である。
 例えば、負極の不可逆容量の原因としては、主に、初期充電時の固体電解質界面(SEI:Solid Electrolyte Interface)の形成、酸化物の還元、充電で吸蔵されたリチウムの結晶構造内へのトラップが挙げられる。多くは、不可逆な反応である。一方、正極の不可逆容量の主な原因は、放電末期に結晶構造内へのリチウム拡散が遅くなることによる分極の増加であると言われている。この不可逆容量は、完全な不可逆反応ではなく、温度や電流密度によって変化する。つまり、温度を上げたり、電流密度を下げることによって反応抵抗を下げることにより、可逆容量をある程度増加させることが可能である。
 電池の初期容量のロスを最小化し、電池容量を増加させるためにいくつかの方法がある。
(1)正極、負極(材料、電極)の不可逆容量を低減させる。
(2)予め負極にLiを吸蔵させたり、放出させる前処理によって、電池を構成する前に不可逆容量を解消させておく。
(3)正極および負極の不可逆容量をバランスさせ、初期充放電時に相殺させる。
 上記の(1)の方法として、例えば特許文献1には、リチウムニッケル酸化物の結晶構造を安定化させるために、LiNiO2のNiの一部をコバルト(Co)やアルミニウム(Al)などの他元素に置換した正極活物質を用いることが提案されている。また、特許文献2には、LiNi0.80Co0.15Al0.052を正極活物質として用い、電池の組立後に最初に室温で充放電を行い、その後に45~60℃で3回以上の加温充放電を繰り返すことにより、正極の不可逆容量を低減させる技術が開示されている。
 上記の(2)の方法として、例えば特許文献3には、負極の炭素材にリチウム箔を貼り付けることにより(転写法)、炭素材にリチウムを予め吸蔵させておくことが開示されている。
 上記の(3)の方法は、例えば特許文献4に開示されている。特許文献4では、炭素系の負極とニッケル系リチウム含有複合酸化物系の正極を用いた電池において、炭素系負極の不可逆容量を適正化(39mAh/g以上61mAh/g以下)することにより、ニッケル系リチウム含有複合酸化物の不可逆容量に起因する容量ロスを相殺し、電池容量の低下を最小限に抑える技術が開示されている。
特開平8-213015号公報 特開2000-268874号公報 特開平5-144472号公報 特開2008-226643号公報
 リチウム二次電池は、通常、電気機器等の内部に設置され、室温よりも高い温度(例えば45℃)で使用され得る。しかしながら、上述した従来の技術を用いても、リチウム遷移金属複合酸化物を正極活物質として用いたリチウム二次電池を高温環境下で使用する際に、サイクル特性を確保しつつ高容量化を実現することは困難である。
 特許文献1に提案された正極活物質を用いると、正極活物質の不可逆容量が低減し、充放電サイクル特性を向上できる。特許文献2では、加温充放電を行った後の20℃の電池容量は、加温充放電を行う前よりも増加していることから、加温充放電により正極活物質の放電末期の分極を低減できることが記載されている。しかし、本発明者が調べたところ、45~60℃の温度で加温充放電を行った後の電池を室温に戻して充放電試験を行うと、容量は、加温充放電を行う前の容量に戻った。つまり、正極活物質の放電末期の分極は温度に対して可逆であり、加温充放電によって不可逆的に容量を増加させることはできないと考えられる。また、特許文献2に開示された電池では、可逆容量が99~124mAh/g、活物質の充填密度が2.43g/cm3であり、正極のエネルギー密度は低い。
 特許文献3には、室温(20℃)において正極および負極の不可逆容量を相殺させるために、負極に所定量のリチウムを予め吸蔵させることが提案されている。しかしながら、リチウム箔を直接炭素材の表面の一部に貼り付ける転写法では、従来から、炭素材表面におけるリチウム箔に対向する部分近傍にのみリチウムが吸蔵されるので、炭素材表面全体に均一にリチウムを吸蔵させることが難しいという問題がある。
 また、本発明者が検討したところ、転写法によると、リチウムが炭素材の表面近傍に吸蔵され、炭素材の内部にまで入り込みにくい。このため、より多くの量のリチウムを炭素材に予め吸蔵させることは困難である。
 従って、後で詳述するように、リチウム二次電池の環境温度が変わっても、電池容量は略同程度であり、環境温度による正極の容量増加を利用できない。
 特許文献4に開示された技術によると、正極の不可逆容量に起因する容量ロスを低減できる。しかし、25℃における正極、負極の不可逆容量を基に、負極の不可逆容量の適正化を行うので、環境温度が変化した場合の正極あるいは負極の充放電挙動の変化を想定していない。
 このように、特許文献1~4は、いずれも、リチウム二次電池の環境温度に伴う正極の充放電挙動の変化を考慮したものではない。高温環境下では正極の可逆容量を増加させることが可能であるが、本発明者が検討したところ、特許文献1~4に開示されたリチウム二次電池では、そのような正極の容量増加を十分に享受できない。
 本発明は、上記事情を考慮してなされたものであり、その目的は、リチウム遷移金属複合酸化物を正極活物質として用いたリチウム二次電池において、充放電サイクル特性の低下を抑制しつつ、電池容量を増加させることにある。
 本発明のリチウム二次電池は、リチウムイオンを吸蔵・放出可能な正極活物質を有する正極と、リチウムイオンを吸蔵・放出可能な負極活物質を有する負極と、前記正極と前記負極との間に配置されたセパレータと、リチウムイオン伝導性を有する電解質とを含むリチウム二次電池であって、前記正極活物質は、実質的に不可逆容量を有するリチウムニッケル複合酸化物を含み、前記負極活物質には、真空蒸着法あるいは電気化学的手法によって予めリチウムが吸蔵されており、環境温度が25℃のときの前記リチウム二次電池の完全放電状態において、前記負極中の放出可能なリチウム量が、前記リチウム二次電池の不可逆容量より大きい。
 本発明のリチウム二次電池の製造方法は、(A)リチウムイオンを吸蔵・放出可能な正極活物質として、実質的に不可逆容量を有するリチウムニッケル複合酸化物を含む正極と、リチウムイオンを吸蔵・放出可能な負極活物質を有する負極とを用意する工程と、(B)前記負極活物質にリチウムを予め吸蔵させる工程と、(C)真空蒸着法あるいは電気化学的手法によって、前記負極活物質にリチウムを予め吸蔵させた後の前記負極と、前記正極とをセパレータを介して配置して電極群を形成する工程とを包含するリチウム二次電池の製造方法であって、環境温度が25℃のときの前記リチウム二次電池の完全放電状態において、前記負極中の放出可能なリチウム量が前記リチウム二次電池の不可逆容量よりも大きくなるように、前記工程(B)で予め吸蔵させるリチウムの量が設定される。
 さらに、本発明の他のリチウム二次電池は、リチウムイオンを吸蔵・放出可能な正極活物質を有する正極と、リチウムイオンを吸蔵・放出可能な負極活物質を有する負極と、前記正極と前記負極との間に配置されたセパレータと、リチウムイオン伝導性を有する電解質とを含むリチウム二次電池であって、前記正極活物質は、不可逆容量を有するリチウム遷移金属複合酸化物を含み、前記負極活物質にはリチウムが吸蔵されており、環境温度が25℃のときの前記リチウム二次電池の完全放電状態において、前記負極中の放出可能なリチウム量が、前記環境温度よりも高い温度における前記正極の容量増加分より大きく、かつ前記環境温度における前記正極の不可逆容量よりも大きく、前記負極活物質のリチウムの予備吸蔵量が、前記負極の不可逆容量より大きく、前記負極活物質のリチウムの予備吸蔵量と前記負極の不可逆容量との差と、前記負極中の放出可能なリチウム量と前記正極の不可逆容量との差とが等しい。
 本発明によると、正極活物質としてリチウム遷移金属複合酸化物を含む正極と、リチウムを予め吸蔵させた負極とを用いたリチウム二次電池において、高温環境下における正極の放電末期の分極良化による可逆容量の増加を、リチウム二次電池の高容量化に利用できる。従って、充放電サイクル特性を低下させることなく、電池容量を高めることができる。
ニッケル系リチウム含有複合酸化物の充放電電位挙動を説明するための図である。 ニッケル系リチウム含有複合酸化物の放電曲線を模式的に示す図である。 試験条件(a)~(c)で充放電試験を行った場合のニッケル系リチウム含有複合酸化物の充放電曲線を示す図である。 交換電流密度の温度依存性を求めるための式である。 初期サイクル時および500サイクル後の正極の電荷移動抵抗を示す模式的なグラフである。 ニッケル系リチウム含有複合酸化物の劣化状態を解析したグラフである。 黒鉛系の負極活物質を用いた従来のリチウム二次電池における充放電挙動を例示するグラフである。 リチウムを負極に予め吸蔵させた場合のリチウム二次電池における充放電挙動の一例を示すグラフである。 本発明による実施形態のリチウム二次電池における充放電挙動の一例を示すグラフである。 シリコン系の負極活物質を用いた従来のリチウム二次電池における充放電挙動を例示するグラフである。 リチウムを負極に予め吸蔵させた場合のリチウム二次電池における充放電挙動の一例を示すグラフである。 本発明による他の実施形態のリチウム二次電池における充放電挙動の一例を示すグラフである。 シリコン系の負極の充放電挙動を説明するための図である。 予備吸蔵を行った後のシリコン系の負極の充放電挙動を説明するための図である。 本発明の実施形態のリチウム二次電池の一例を模式的に示す断面図である。 正極活物質の放電曲線を例示するグラフである。 電子ビーム式蒸着装置50の構成を模式的に示す断面図である。 本発明のリチウム二次電池の構成を模式的に示す断面図である。 コバルト系リチウム含有複合酸化物の充放電挙動を示す図である。
 本発明者は、上述した課題のなかでも、特にニッケル系リチウム含有複合酸化物を正極活物質として用いた従来のリチウム二次電池(例えば特許文献1~4に記載の電池)では、高温環境下で使用する際に、サイクル特性を確保しつつ高容量化を実現することは困難であることを見出した。
 従って、本発明の目的は、リチウム遷移金属複合酸化物、特にニッケル系リチウム含有複合酸化物を正極活物質として用いたリチウム二次電池において、リチウム二次電池を室温よりも高い温度で使用する場合に、充放電サイクル特性の低下を抑制しつつ、電池容量を増加させることにある。
 本発明者は、正極活物質としてリチウム遷移金属複合酸化物を用いたリチウム二次電池において、高温環境下で高い容量と高いサイクル特性とを両立させるために、鋭意研究を行った。その結果、リチウム二次電池の25℃における完全放電状態で、負極に含まれる可逆な(放出可能な)リチウムの量がリチウム二次電池の不可逆容量よりも大きくなるように、負極に予めリチウムを吸蔵させることにより、サイクル特性を低下させることなく、高温環境下で高容量化を実現できることを見出した。「負極に含まれる放出可能なリチウムの量」とは、25℃における完全放電状態において、負極に吸蔵されているリチウム量のうち、放出されない量(負極の不可逆容量)を除く容量である。
 さらにこの検討の過程で、正極活物質の不可逆容量の温度依存性が、正極活物質の充填密度や粒子径と大きく関係していることも分かった。本発明者がさらに検討を重ねたところ、ニッケル系リチウム含有複合酸化物以外のリチウム遷移金属複合酸化物を用いても、ニッケル系リチウム含有複合酸化物と同様の傾向がみられることも分かった。
 以下、本発明者による検討結果を、リチウム遷移金属複合酸化物としてニッケル系リチウム含有複合酸化物を用いる場合を例に、順を追って説明する。
 <環境温度と充放電電位挙動との関係>
 図1は、ニッケル系リチウム含有複合酸化物の代表的な充放電電位挙動(25℃)を示すグラフである。図1に示すグラフは、ニッケル系リチウム含有複合酸化物としてLixNi0.815Co0.15Al0.0352を用い、x値を0.3≦x≦1.0の範囲で変化させた場合の電位変化を測定した結果である。
 測定では、上記ニッケル系リチウム含有複合酸化物に対し、0.3mA/cm2の電流密度で間欠充放電を行った。また、充放電中に、一定間隔で電流を休止させて開回路電位を測定した。休止時間は各1時間とした。電流印加および休止を連続して繰り返し、x値に対する電位挙動を図1にプロットした。図1に示すグラフでは、複数のx値でスパイク状の電位変化が生じている。これは、そのx値において充放電を休止した際の変化であり、その時点での開回路電位を示している。
 この結果からわかるように、x値が0.3以上0.8未満の範囲では、充電および放電時における閉回路電位と開回路電位との差は小さい。しかしながら、x値が0.8以上になると、放電における閉回路電位と開回路電位との差が徐々に大きくなり、x値が例えば0.9程度よりも大きくなると急激に増大している。これは、正極活物質によるリチウム吸蔵が遅いために、分極となって現れているからと考えられる。また、X線回折による結晶構造分析により、x=1.0まで完全に放電することによってリチウムを吸蔵させた状態の正極活物質の結晶構造の一部が、充放電前の正極活物質の結晶構造とは異なった構造に変化することが明らかになった。
 図1を参照しながら上述した現象と充放電可逆性(充放電サイクル特性)との関係について、詳細はまだ明らかではない。本発明者は、放電末期の反応抵抗の大きい領域を繰り返し使用すると、正極活物質の少なくとも一部が可逆性の低い結晶相に徐々に変質し、充放電サイクルに伴う反応抵抗の増加につながるのではないかと推測している。
 一方、本発明者は、さらなる検討を行った結果、環境温度を上げたり(例えば45℃)、電流密度を極端に下げると(例えば、0.06mA/cm2)、x値が0.8以上の領域の分極が小さくなり、高い放電終止電位において、使用できる容量が増加することが明らかになった。つまり、図1に示すグラフでは、放電の際に分極が急に大きくなる時点のx値は0.9付近であり、電位変化が急に大きくなる時点のx値は0.8付近であったが、環境温度や電流密度などが変わると、これらの時点のx値は変わり得る。以下、具体例を挙げて説明する。
 図2は、ニッケル系リチウム含有複合酸化物を正極活物質に用いた正極の放電電位曲線を示すグラフである。ここでは、LiNi0.815Co0.15Al0.0352を用いて、電流密度を3.0mA/cm2、充電終止電位を4.25V、放電終止電位を2.0Vとして、放電電位曲線を求めた。環境温度は25℃および45℃とした。
 図2に示す結果からわかるように、x値が0.8以下の領域では放電電位は温度によってほとんど変化しない。x値が0.8を超えると、環境温度25℃では電位変化が急に大きくなるが、環境温度45℃では電位変化は小さい。また、環境温度25℃では、x値が例えば0.9を超えると分極が増大するが、環境温度が45℃では、x値が0.9を超えても分極は小さく抑えられ、x値が0.95を超えてから分極が増大する。また、環境温度45℃では、環境温度25℃の場合よりも容量が約6%増加する。このように、温度を上げると、放電末期の電位プロファイルは同じであるが、放電容量は増加する。
 <正極活物質の放電容量および可逆性と環境温度との関係>
 上記の検討結果から、リチウム二次電池の環境温度が高くなると、正極の放電容量が増加することが確認された。そこで、本発明者は、次に、放電容量を一定とし、環境温度などを異ならせて正極活物質の充放電可逆性を調べた。
 ここでは、評価用セルを作製し、充放電試験(a)~(d)を行った。試験(a)~(c)では、異なる条件で、放電容量(x値)が同じ値(ここでは0.96)となるまで放電を行った。また、比較のため、充放電試験(d)として、通常の正極の使用電位範囲内で充放電を行った。これらの試験結果から、放電終止におけるx値が同じであっても、環境温度や正極の使用電位範囲によって正極の充放電可逆性が変化し得ることが分かった。以下、試験方法および結果を具体的に説明する。
 (1-1)正極活物質の作製
 まず、0.815mol/リットルの濃度で硫酸ニッケルを含む水溶液、0.15mol/リットルの濃度で硫酸コバルトを含む水溶液、および0.035mol/リットルの濃度で硫酸アルミニウムを含む水溶液をそれぞれ調整し、混合した。次いで、混合した水溶液を反応槽に連続して供給した。この後、反応槽中の水溶液のpHが10~13の間で維持されるように、反応槽に水酸化ナトリウムを滴下しながら、活物質の前駆体を合成した。得られた前駆体を十分に水洗し乾燥させた。このようにして、前駆体として、Ni0.815Co0.15Al0.035(OH)2からなる水酸化物を得た。
 得られた前駆体と炭酸リチウムとを、リチウム、コバルト、ニッケルおよびアルミニウムのモル比(Li:Co:Ni:Al)が、1:0.815:0.15:0.035になるように混合した。混合物を酸素雰囲気下、500℃の温度で7時間仮焼成し、粉砕した。次いで、粉砕された焼成物を、800℃の温度で再度15時間焼成した。焼成物を粉砕した後、分級することにより、LiNi0.815Co0.15Al0.0352で示される組成を有する正極活物質を得た。
 (1-2)正極(作用極)の作製
 上記の正極活物質(LiNi0.815Co0.15Al0.0352)の粉末100gに、アセチレンブラック(導電剤)2g、人造黒鉛(導電剤)2g、ポリフッ化ビニリデン粉末(結着剤)3gおよび有機溶媒(NMP)50mlを充分に混合して合剤ペーストを調製した。この合剤ペーストを、厚さが15μmのアルミニウム箔(正極集電体)の片面に塗布した。合剤ペーストを乾燥させて正極活物質層を得た。
 この後、正極活物質層が形成されたアルミニウム箔を圧延して作用極を形成した。作用極の厚さ、すなわち集電体および正極活物質層の合計厚さを65μm、単位面積あたりの作用極容量を3.0mAh/cm2とした。なお、この作用極容量は、リチウム金属を対極として用い、充電電流値:0.1mA/cm2、終止電圧:4.25V、放電電流値:0.1mA/cm2、終止電圧:3.0Vの条件で定電流充放電を行った場合の容量である。
 (1-3)負極(対極)の作製
 負極活物質として人造黒鉛100gと、結着剤として日本ゼオン(株)製の「BM-400B(商品名)」(スチレン-ブタジエン共重合体の変性体を40重量%含む水性分散液)2.5gと、増粘剤としてCMCを1gと、適量の水とを、プラネタリーミキサーにて攪拌し、合剤ペーストを調製した。この合剤ペーストを、厚さが10μmの電解銅箔の片面に塗布した。この後、合剤ペーストを乾燥させて、対極の活物質層を得た。
 次いで、活物質層が形成された電解銅箔を圧延し、厚さが80μmの対極を得た。対極の容量は、作用極の性能を評価するために、作用極の容量よりも大きくした。具体的には、単位面積あたりの負極容量を、4.1mAh/cm2とした。なお、この負極容量は、リチウム金属を対極に用い、充電電流値:0.1mA/cm2、終止電圧:0V、放電電流値:0.1mA/cm2、終止電圧:1.5Vの条件で定電流充放電を行った場合の容量である。
 また、後述する評価試験において、評価用のセルの放電終止電圧が、負極の放電電位変化の影響を受けないように、上記負極には0.5mAh/cm2相当のリチウムを電気化学的に予め吸蔵させておいた。これによって、放電末期において、負極の電位が立ち上がる時点を、正極の電位が大きく降下する時点よりも十分に遅らせることができる。従って、評価試験において、負極の電位を略平坦にすることができる。
 このように、人造黒鉛の平坦な電位領域を対極として用い、放電終止条件、環境温度を変えた時の正極活物質の充放電可逆性を評価することができる。負極活物質の不可逆容量は0.35mAh/cm2であった。つまり、放電時に含まれる可逆容量は0.15mAh/cm2である。
 (1-4)評価用セルの作製
 評価用セルとして、正極、セパレータおよび負極を積層することによって構成された電極群を含む積層型セルを用いる。
 図13は、本実施例で用いる評価用セルの構成を模式的に示す断面図である。
 評価用セルは、正極11、負極12、セパレータ13、正極リード14、負極リード15、ガスケット16および外装ケース17を含む。正極11は、正極集電体11aおよび正極活物質層11bを含み、負極12は、負極集電体12aおよび負極活物質層12bを含む。セパレータ13は、正極活物質層11bと負極活物質層12bとの間に配置されている。正極リード14は正極集電体11aに接続され、負極リード15は負極集電体12aに接続されている。正極11、負極12およびセパレータ13からなる電極群は、電解質とともに、外装ケース17に封入されている。
 次に、評価用セルの作製方法を説明する。
 上記(1-2)で作製した作用極を20mm×20mmのサイズに切り出し、正極11を得た。同様に、上記(1-3)で得られた対極を20mm×20mmに切り出し、負極12を得た。次いで、正極11および負極12の集電体11a、12aのうち活物質層11b、12bが形成されていない部分に、それぞれ、正極リード14および負極リード15を溶接した。
 この後、セパレータ(ポリエチレン微多孔膜)13を介して、正極活物質層11bと負極活物質層12bとが対向するように、正極11、セパレータ13および負極12を積層し、電極群を作製した。この電極群を電解質0.5gとともに、アルミニウムラミネートからなる外装ケース17に挿入した。電解質として、エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)とジエチルカーボネート(DEC)とを、EC:EMC:DEC=2:3:5の体積比で混合した混合溶媒に、1.0mol/Lの濃度でLiPF6を溶解させた。この後、2%の重量比でビニレンカーボネートをさらに添加し、電解液とした。
 次に、リチウム金属を参照極として用意した。参照極(図示せず)は、外装ケース17内の正極11の近傍に配置した。正極リード14、負極リード15および参照極リード(図示せず)を外装ケース17の開口部から外装ケース17の外部に導出した。この後、外装ケース17内部を真空減圧しながら外装ケース17の開口部を溶着した。このようにして、評価用セルを得た。
 (1-5)初期容量および充放電可逆性(充放電サイクル特性)の評価
 次に、評価用セルの初期容量を求めた。さらに、下記の(a)~(d)の試験条件で評価用セルの充放電試験を行い、正極活物質の初期容量と充放電可逆性との関係を調べた。
 まず、下記の条件で1サイクル目の充放電を行った。
(初期容量評価条件)
定電流充電:0.7CmA、終止電圧4.2V
定電圧充電:終止電流0.05CmA、休止時間20分定電流放電:0.2CmA、終止電圧(表中に記載)、休止時間20分
試験温度:表中に記載
 1サイクル目の充放電を行った後、1サイクル目の充放電における正極(作用極)の活物質重量あたりの放電容量を算出し、「利用容量(mAh/g)」とした。利用容量を表1に示す。
 また、充電終了時および放電終了時(放電終止)における正極活物質のリチウム含有量、すなわち正極活物質の組成LixNi0.815Co0.15Al0.0352におけるx値を調べた。放電終止におけるx値を表1に示す。なお、何れの試験(a)~(d)においても、充電終了時のx値は0.232であった。
 次いで、放電電流値を増大させ、下記の条件で2サイクル目以降の充放電を行った。
(充放電可逆性評価条件)
定電流充電:0.7CmA、終止電圧4.2V
定電圧充電:終止電流0.05CmA、休止時間20分
  定電流放電の条件および試験温度:
    試験(a) 試験温度25℃、0.2C、終止電位1.75V
    試験(b) 試験温度25℃、1.0C+0.2C+0.05C+0.02C、終止電位2.65V
    試験(c) 試験温度45℃、0.2C、終止電位2.65V
    試験(d) 試験温度25℃、0.2C、終止電位2.65V
なお、1.0C=12mAhとした。また、いずれの試験条件(a)~(d)においても定電流放電の終止時間を20分とした。
 上記の試験(a)~(d)では、同じ放電容量(x=0.96)まで放電させた。試験(a)では、25℃の試験温度で、電流密度を0.2Cとし、x値が0.96となる点の正極電位を放電終止電位とした。試験(b)では、25℃の試験温度で、正極電位が2V以下(電位が急激に降下する領域)とならないように電流密度を極めて低い値に設定して、x値が0.96になるまで放電を行った。一方、試験(c)では、試験温度を45℃として、上記と同じ放電容量(x=0.96)まで放電を行った。放電終止電位は試験(b)の放電終止電位と同じ2.65Vとした。さらに、試験(d)では、比較のため、25℃で、電流密度を0.2C、放電終止電位を2.65Vとして標準の充放電を行った。
 上記条件で充放電を繰り返した後、nサイクル時点の容量減少量をサイクル数nで除した値を容量劣化率(%/サイクル)として求めた。ここでは、充放電を500サイクル(n=500)繰り返し、500サイクル時点の容量劣化率を求めたので、その結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 また、試験(a)~(c)の正極活物質の放電曲線を図3に示す。図3の横軸は容量(mAh)、縦軸は放電電圧(V)である。
 試験(c)および(d)では、試験温度以外の放電条件は同じである。これらの試験の容量劣化率および利用容量の結果から、試験温度が室温よりも高くなると、利用容量および可逆性を何れも向上できることが分かった。また、試験(a)~(c)では、利用容量は何れも202mAh/gであるが、容量劣化率は試験(a)が最も高く、試験(b)、試験(c)の順に低くなった。このことから、正極の放電終止電位が低いと(試験(a))、放電終止電位の高い場合(試験(b))よりも可逆性が低下することが確認された。さらに、正極の放電終止電位が同じであっても、試験温度が室温よりも高いと(試験(c))、可逆性を向上できることが分かった。
 これらの結果からわかるように、試験温度が高いと(試験(c))、高容量で、かつ高い可逆性を両立させることが可能になる。これは、試験温度が室温よりも高い(ここでは45℃)ときには、放電末期だけではなく、充放電全体で電荷移動抵抗(反応抵抗)を低減できるため、可逆性の劣化を抑制できるからと考えられる。
 次いで、試験温度25℃および45℃の場合の正極活物質の劣化の状態を比較した。
 まず、充電状態の交流インピーダンス測定から正極の電荷移動抵抗の温度依存性を測定し、図4Aの式に従って、交換電流密度の温度依存性を調べた。なお、図4Bは、初期および500サイクル後の正極の電荷移動抵抗を示す模式的なグラフである。このようにして求めた、サイクル初期の正極、および、25℃および45℃で500サイクルの充放電を行った後の正極の酸化還元反応に関するアレニウスプロット(グラフ91、92、93)を図4Cに示す。
 図4Cの横軸は絶対温度Kの逆数であり、縦軸は正極の酸化還元反応の交換電流密度io(対数表記)である。交換電流密度ioの値が大きくなるほど、反応が進みやすいことを意味する。何れのグラフ91~93でも、絶対温度が高くなるほど交換電流密度ioの値が大きくなっている。
 各グラフの傾きは活性化エネルギーを表す。サイクル初期の正極、および、25℃および45℃で500サイクルの充放電を行った後の正極の酸化還元反応における活性化エネルギーは、それぞれ、48.9kJ/mol、64.1kJ/molおよび64.3kJ/molである。
 このように、500サイクル後の正極の活性化エネルギー(すなわちグラフ92、93の傾き)は、試験温度によらず略同じである。また、グラフ92(試験温度:25℃)はグラフ93(試験温度:45℃)よりも上方に位置しており、試験温度25℃の方が反応しやすい(すなわちサイクル劣化が小さい)ことがわかる。しかしながら、グラフ93(試験温度:45℃)の点αの交換電流密度ioは、グラフ92(試験温度:25℃)の点βの交換電流密度ioよりも高くなっている。これは、試験温度が25℃よりも45℃のときの方が、見かけ上のサイクル劣化が小さいことを表している。
 これらの検討結果から、本発明者は、室温で使用することを前提に設計するのではなく、高温(例えば45℃)で使用することを考慮して設計することにより、容量およびサイクル特性を向上できるという知見を得た。
 室温で電池を使用する際には、正極の電圧が低い領域(2V以下)でx値が0.92より大きくなる。このため、容量を高める目的でx値が0.92よりも大きくなるまで放電を行うと、正極活物質のサイクル特性の低下を引き起こす。また、機器の電圧の制限から、正極の使用電圧領域は2Vより大きくなるように設定されており、通常の電池では、正極電圧が2V以下となるまで放電を行うことはできない。電池を高温環境下で使用して初めて、正極の使用電圧領域においてx値が0.92よりも大きくなる。従って、サイクル特性を低下させることなく、容量を高めることが可能になる。このことから分かるように、高温(例えば45℃)で性能が最大化するように、放電末期の正極電位、負極電位、電池電圧を適正化させることが非常に重要になる。
 <放電電位挙動と不可逆容量との関係>
 まず、負極活物質として黒鉛系材料、正極活物質としてリチウム遷移金属複合酸化物(ここではニッケル系リチウム含有複合酸化物)を用いたリチウム二次電池を例に、放電電位挙動と不可逆容量との関係を説明する。
 図5は、負極活物質として黒鉛系材料、正極活物質としてニッケル系リチウム含有複合酸化物を用いた従来のリチウム二次電池における25℃の充放電挙動を例示するグラフである。縦軸は、リチウム金属を基準とする電位、横軸は相対容量を表している。図5において、正極電位をVc、負極電位をVaとする。充放電時の電池電圧Vcellは正極電位と負極電位との差(=Va-Vc)で表される。
 このグラフから分かるように、正極電位Vcは、放電開始から緩やかに低下した後、放電末期で急激に降下する。負極電位Vaは、放電開始から極めて緩やかに上昇する。放電末期で電位変化が徐々に大きくなり、負極電位Vaが急上昇する。
 この系では、負極電位Vaの電位変化が大きくなる前に、正極電位Vcが急激に降下する。この時点で、正極電位Vcと負極電位Vaとの差(セル電圧)が、所定の電圧以下となり、放電が終了する。放電終了時の正極電位を「正極の放電終止電位Vce(dis)」、負極電位を「負極の放電終止電位Vae(dis)」という。また、上記所定の電圧を「セルの放電終止電圧Vcelle(dis)」という。この例では、セルの放電終止電圧Vcelle(dis)は、例えば2.5Vに設定されている。また、正極の不可逆容量Qcが電池の不可逆容量となる。
 このように、25℃で正極の不可逆容量Qcと負極の不可逆容量Qaとがほぼ相殺するように工夫されている。
 図2を参照しながら前述したように、電池を使用する温度が45℃になると、正極電位Vcのプロファイルは、容量が増加するように変化する。すなわち、図5に曲線Vc’で示すように、正極電位Vcが急激に低下する点が左側にシフトする。しかしながら、正極電位Vcのプロファイルがそのように変化しても、正極電位Vcが急激に低下する前に負極電位Vaが急激に立ち上がり、その時点で放電が終了する(負極電位規制)。このため、本来、45℃で電池を使用することによって正極の容量の増加させることが可能な量に対して、実際に電池の容量が増加する量は非常に小さくなる(約1%程度)。
 これに対し、負極にリチウムを予め吸蔵させると、図5に示すグラフにおいて、正極電位Vcの充電の開始位置を右方向にずらすことができる。なお、負極にリチウムを「予め吸蔵させる」とは、リチウム二次電池の製造工程において、負極と正極とをセパレータを介して対向させて電極群を形成する前に、負極(負極活物質)にリチウムを吸蔵させておくことを意味する。
 図6は、負極に不可逆容量Qaと同量のリチウムを予め吸蔵させた場合のリチウム二次電池の25℃における充放電挙動の一例を示すグラフである。
 前述の図5に示すグラフでは、充電開始点の相対容量は、負極電位Vaが立ち上がる点の相対容量よりも小さかったが、図6に示すグラフでは、負極に不可逆容量分のリチウムを吸蔵させているため、充電開始点の相対容量は、負極電位Vaの立ち上がる点の相対容量と略一致している。従って、25℃の完全放電状態において、負極中の放出可能な(可逆な)リチウム量Qbは、電池の不可逆容量、すなわち正極の不可逆容量Qcと等しくなる。本明細書において、「25℃の完全放電状態」とは、0.2Cの電流で電池電圧が2.5Vになるまで電池を放電した状態を指すものとする。
 なお、負極に予めリチウムが吸蔵されていると、負極の充電開始点は、右側(容量が高くなる方向)にシフトする。従って、図6に示す負極電位Vaのプロファイルのうち充電開始点よりも右側の部分が実際のリチウム電池における充放電曲線となる。
 本発明者が検討したところ、図6に示す構成によると、電池の使用温度が高く(例えば45℃)なって正極の放電電位が点線Vc’のように変化しても、放電の終了時点は正極電位Vcで制御される(正極電位規制)。このため、電池の使用温度が高いことによって得られる正極の容量増加分ΔCを電池の容量として使用することが可能になる。
 しかしながら、図6に示す構成では、正極の放電電位Vcが急激に低下する点がより左方向にシフトすると、負極電位Vaの立ち上がり点近傍の電位変化の影響を受けて、正極の放電電位が急激に低下する時点よりも前に放電が終了するおそれがある。このような場合、正極電位が急激に低下する時点で放電を終了するよりも電池容量が小さくなる。
 そこで、本発明者は、負極の不可逆容量Qaよりも過剰なリチウムを負極に吸蔵させることにより、負極電位Vaの立ち上がりによる正極電位Vcへの影響を防止して正極電位規制をより確実に維持できることを見出した。
 図7は、リチウムを予め吸蔵させた負極を用いたリチウム二次電池の25℃における充放電挙動の他の例を示すグラフである。この例では、負極に、不可逆容量Qaよりも多くの量(Qa+qa)のリチウムを予め吸蔵させた。
 負極に吸蔵させた過剰なリチウム量qaは、負極の可逆容量となる。さらに正極の不可逆容量分(Qc)のリチウムが放電状態で負極に存在する。従って、25℃の完全放電状態では、負極中の放出可能なリチウム量Qbは、電池の不可逆容量、すなわち正極の不可逆容量Qcよりも多くなる。具体的には、負極には、過剰なリチウム量qaと、正極の不可逆容量Qc(すなわち電池の不可逆容量)との合計と等しい量Qbのリチウムが可動リチウムとして存在する。
 図7に示すグラフでは、充電開始点の相対容量は、負極電位Vaの立ち上がり点の相対容量よりも大きくなっている。このため、電池の使用温度が高く(例えば45℃)になって正極の放電電位が点線Vc’のように変化しても、放電の終了時点は正極電位Vcで制御される(正極電位規制)。この結果、負極に存在する可動リチウム量Qb(=qa+Qc)の一部が正極に挿入され、電池の放電容量が増加する。
 図7に示す構成によると、負極電位Vaの立ち上がり点近傍の電位変化の影響を受けにくいので、環境温度にかかわらず、正極の放電電位Vcが急激に低下する時点でより確実に放電を終了させることができる。従って、正極の容量増加分をロスなく電池容量の増加に反映させることが可能となり、高温環境下で電池容量を高めることができる。
 過剰なリチウム量qaは、0より大きければよいが(qa>0)、負極活物質として黒鉛系材料を用いる場合、負極の不可逆容量Qaの0.1倍以上であることが好ましい(qa≧Qa×0.1)。より好ましくは0.5倍以上である(qa≧Qa×0.5)。従って、負極に予め吸蔵させるリチウム量は、好ましくは負極の不可逆容量Qaの1.1倍以上、より好ましくは1.5倍以上である。これにより、負極電位Vaの立ち上がりによる正極電位Vcへの影響をより効果的に低減できる。
 一方、負極に予め吸蔵させるリチウム量が多すぎると、十分な電池容量を確保できなくなる可能性がある。負極活物質として黒鉛系材料を用いる場合、過剰なリチウム量qaは不可逆容量の2.0倍以下であることが好ましい。従って、負極に予め吸蔵させるリチウム量は、負極の不可逆容量Qaの3.0倍以下であることが好ましい。
 次に、負極活物質として、黒鉛系材料の代わりにシリコンなどの合金系材料を用いた場合の放電電位挙動と不可逆容量との関係を検討したので説明する。
 まず、負極に予めリチウムを吸蔵させていない従来のリチウム二次電池の充放電挙動を説明する。図8は、膜状のSiO0.25を基板に堆積させた構造を有する負極と、正極活物質としてニッケル系リチウム含有複合酸化物を含む正極とを用いたリチウム二次電池の25℃の充放電挙動を例示する図である。
 図8に示すように、この電池では、負極の不可逆容量Qaが正極の不可逆容量Qcよりも大きいので(Qa>Qc)、放電の終了は負極電位によって規制される(負極電位規制)。正極の容量の一部(図8に示すΔCrs)は25℃において利用できない。
 この電池の負極に、負極の不可逆容量Qaの0.9倍のリチウム(0.9×Qa)を予め吸蔵させると、25℃において、図9に示す充放電挙動が得られる。図9に示すように、電池を25℃で使用する際には正極電位によって放電の終了時点が規制される。このため、正極の容量の大部分を電池容量として利用できる。ただし、放電末期において負極電位の傾斜が大きいため、容量ロスが生じ得る。
 図9に示す構成では、25℃の完全放電状態で、負極中の放出可能なリチウム量Qbは、電池の不可逆容量、すなわち正極の不可逆容量Qcよりも小さい。このような電池を高温(例えば45℃)で使用すると、正極の放電電位は例えば点線Vc’のように変化し、この結果、負極電位規制となる場合がある。このため、高温で使用することによる正極の容量増加分の一部は、電池容量の増加に反映されない。
 これに対し、負極の不可逆容量Qaよりも多くのリチウムを負極に予め吸蔵させると、図7に示す構成と同様に、正極の容量増加分のロスを低減でき、高温環境下で高容量化を実現できる。
 図10は、負極の不可逆容量Qaよりも多くのリチウム(Qa+qa)を負極に予め吸蔵させた場合の、25℃における充放電挙動を示す図である。ここでは、不可逆容量Qaの1.1倍のリチウム(Qa+qa=1.1×Qa)を負極に予め吸蔵させる例を示す。この例では、25℃の完全放電状態で、負極中の放出可能なリチウム量Qbは、電池の不可逆容量、すなわち正極の不可逆容量Qcよりも大きい。
 図10に示すように、電池を25℃で使用する際には正極電位によって放電の終了時点が規制される。また、放電末期における負極電位の傾斜は、図9に示す負極電位の傾斜よりも小さい。この電池を高温(例えば45℃)で使用すると、正極の放電電位は点線Vc’のように変化するが、負極電位が立ち上がる前に正極の放電電位Vc’が急激に低下するため、正極電位規制となる。従って、高温で使用することによる正極の容量増加分の全てを電池容量の増加に反映させることが可能である。
 過剰なリチウム量qaは、0より大きければよいが(qa>0)、負極活物質としてシリコンを含む材料を用いる場合、負極の不可逆容量Qaの0.1倍以上であることが好ましい(qa≧Qa×0.1)。より好ましくは0.3倍以上である(qa≧Qa×0.3)。従って、負極に予め吸蔵させるリチウム量は、好ましくは負極の不可逆容量Qaの1.1倍以上、より好ましくは1.3倍以上である。これにより、負極電位Vaの立ち上がりによる正極電位Vcへの影響をより効果的に低減できる。
 一方、負極に予め吸蔵させるリチウム量が多すぎると、十分な電池容量を確保できなくなる可能性がある。負極活物質としてシリコンを含む材料を用いる場合、予め吸蔵させるリチウム量は、負極の不可逆容量Qaの2倍以下であることが好ましい。
 また、上記の検討を行う過程で、シリコンを含む負極を用いると、電池の環境温度の上昇に応じて、負極の不可逆容量が減少する傾向があることも分かった。この理由は以下のように考えられる。負極の不可逆容量Qaの要因の1つとして、負極に吸蔵されたリチウムが結晶構造内にトラップされることが挙げられる。電池の環境温度が上昇してリチウム拡散速度が高くなると、リチウムのトラップに起因する不可逆容量が減少するからである。
 さらに、環境温度の上昇によって、充放電の分極が小さくなることも分かった。そもそも、充放電電位に大きなヒステリシスが存在する。これが出現する原因はよく分かっていないが、環境温度の上昇により、そのヒステリシスが小さくなることがわかった。
 このように、環境温度が上昇すると、負極の不可逆容量Qaが減少し、かつ、充放電分極が減少するため、放電末期における負極電位の立ち上がりをさらに抑制できる。すなわち、図11に示すように、環境温度が45℃の場合の負極電位の立ち上がる点を、25℃の場合の負極電位の立ち上がる点よりも低容量側(図11の左側)にシフトさせることができる。従って、環境温度が上昇しても、より確実に正極電位規制を維持することができる。
 なお、図7および図10からわかるように、本実施形態では、負極に吸蔵させた過剰なリチウム量qa、すなわち負極活物質のリチウムの予備吸蔵量(Qa+qa)と負極の不可逆容量Qaとの差は、負極中の放出可能なリチウム量Qbと正極の不可逆容量Qcとの差と等しい。
 上記ではニッケル系リチウム含有複合酸化物を例に、放電電位挙動と不可逆容量との関係を検討した結果を説明したが、本発明者が検討したところ、他のリチウム遷移金属複合酸化物、例えばコバルト系リチウム含有複合酸化物も、図2に例示したニッケル系リチウム含有複合酸化物の充放電電位挙動と類似の挙動を示し、その挙動と不可逆容量との間に上記と同様の関係があることがわかった。
 コバルト系リチウム含有複合酸化物の充放電電位挙動の一例を図17に示す。図17から分かるように、コバルト系リチウム含有複合酸化物も、45℃になると放電の分極が低減し、容量が増加する。従って、正極活物質としてコバルト系リチウム含有複合酸化物(コバルト酸リチウム:LCO)、負極活物質として黒鉛を用いた従来の電池(負極の予めリチウムが吸蔵されていない電池)では、25℃において負極の不可逆容量の方が正極の不可逆容量よりも大きくなるため、負極容量規制の電池になる。さらに、LCOを正極活物質とする正極と、黒鉛負極よりも不可逆容量比率の大きいシリコン系負極とを組み合わせた従来の電池でも、同様に負極容量規制になる。したがって、これらの電池を、正極の分極が小さくなって放電容量が増えるような高温環境下(例えば45℃)で使用しても、負極の容量規制のため、電池容量の増加につながらない。また、予めリチウムを吸蔵させた負極を用いることにより、室温で正極容量規制となる電池であっても、負極に予め吸蔵させた量(予備吸蔵量)が小さいと、電池の使用温度が高くなることによる正極の容量増加分の一部が電池容量の増加に反映されない場合がある。
 これに対し、負極の不可逆容量Qaよりも多くのリチウムを負極に予め吸蔵させることにより、電池を高温で使用しても正極電位規制となる。従って、コバルト系リチウム含有複合酸化物を用いた電池においても、高温環境下で高容量化を実現できる。
 なお、正極活物質の表面の一部または全体は、例えば高電圧下における正極活物質上での電解液の酸化分解反応を低減させる目的などで、他の金属酸化物や水酸化物、金属塩などで被覆されていてもよい。例えば、表面に金属酸化物などを被覆したLCOを正極活物質として用いた場合でも、負極に対するリチウムの予備吸蔵量を制御することにより、上記と同様の効果が得られる。
 <負極にリチウムを予備吸蔵させる方法>
 続いて、負極にリチウムを予め吸蔵させる(予備吸蔵)方法を検討したので、その結果を説明する。
 負極にリチウムを吸蔵させる方法としては、電気化学的手法や乾式手法などがある。
 電気化学的手法では、負極にリチウム金属を貼り付け、電解液を介して局部電池を形成して充電させたり、対極からリチウムを充電させたりすることによって、リチウムを負極に吸蔵させる。負極に貼り付けるリチウム金属としては、負極に均一にリチウムを吸蔵させるためには極薄いリチウム金属(厚さ:10μm以下)を用いることが好ましい。ただし、そのように薄いリチウム金属のハンドリングは困難であるという問題もある。
 乾式手法では、例えば、負極活物質上にリチウム金属を直接接触させ、固相内拡散のみで負極活物質に吸蔵させる。リチウム金属を直接接触させる方法としては、真空蒸着など気相法による負極活物質上への堆積、あるいは別の基板上にリチウム金属を堆積させたものと負極活物質とを密着させて必要に応じて熱をかける方法(転写法)がある。
 本発明者が検討したところ、電気化学的手法、あるいは真空蒸着法などの気相法によると、負極の不可逆容量Qaよりも多くのリチウムを負極に予め吸蔵させることが可能であった。これに対し、転写法によると、負極活物質の表面近傍のみにリチウムが吸蔵され、負極活物質内部にまでリチウムが入り込み難いので、予め吸蔵させることができるリチウム量は、他の手法を用いる場合よりも少なくなることが分かった。また、真空蒸着法などの他の手法では、負極活物質層の表面全体からリチウムを吸蔵できるのに対し、転写法では、負極活物質層の表面の一部(リチウム箔が貼り付けられた部分)のみからリチウムが吸蔵されるため、吸蔵可能なリチウム量はさらに減少する。
 このため、転写法を用いると、負極の不可逆容量Qaよりも多くのリチウムを負極に予め吸蔵させることは困難であり、負極中の放出可能なリチウム量を電池の不可逆容量よりも多くすることはできない。従って、本実施形態では、リチウムの予備吸蔵方法として、電気化学的手法、あるいは真空蒸着法などの気相法を用いる。
 また、本発明者は、負極活物質としてシリコン系材料を用いる場合には、気相法でリチウムを吸蔵させると、電気化学的手法を用いる場合よりも、放電末期の分極を小さくできることを見出した。
 図12は、真空蒸着法でリチウムを予備吸蔵させた負極、および、電気化学的手法によりリチウムを予備吸蔵させた負極の充放電曲線を例示する図である。電気化学的手法によりリチウムを予備吸蔵させた負極の充放電曲線は、リチウムを予備吸蔵させていない負極の充放電曲線と略同じである。
 図12に示すグラフから分かるように、真空蒸着法を用いてリチウムを予備吸蔵させると、負極の不可逆容量が減少する。これは、負極の結晶構造内にトラップされているリチウムの一部が可動となり、不可逆容量がその分だけ小さくなるからである。これにより、正極電位規制をさらに効果的に保持することができる。
 上記の何れの予備吸蔵方法を用いる場合であっても、負極活物質からなる層(負極活物質層)のうち正極と対向しない部分(未対向部)にも予めリチウムを吸蔵させることが好ましい。一般に、負極上にリチウムが析出することを防止するため、正極における正極活物質層の面積(正極合剤面積)よりも、負極における負極活物質層の面積(負極合剤面積)の方が大きい。従って、負極活物質層の一部は未対向部となる。負極活物質層の未対向部にもリチウムを予備吸蔵させると、負極全体の平均放電電位を、負極のうち正極に対向する部分(対向部)の電位より低くできるので、さらに効果的に正極電位規制を維持することが可能になる。なお、負極の不可逆容量Qaよりも過剰のリチウムを予備吸蔵させる場合、過剰のリチウム量qaと正極の充電容量の和が負極の放電容量を超えないように、過剰のリチウム量qaを設定することが好ましい。過剰のリチウム量qaと正極の充電容量の和が負極の放電容量を超えると、負極上にリチウムが析出するおそれがある。
 <正極活物質の粒子物性と不可逆容量との関係について>
 本発明者は、さらに、ニッケル系の正極活物質の粒子の形態や物性によって、正極活物質の不可逆容量やその温度依存性が変化することを見出した。
 電池を室温で使用する場合、正極の充填密度を高める、あるいは正極活物質の1次粒子径を大きくすると、正極の不可逆容量は大きくなる傾向がある。本発明者が調べたところ、正極の不可逆容量の増加率は環境温度に大きく依存することが分かった。例えば環境温度が45℃の場合、正極活物質の粒子物性を上記のように変化させても不可逆容量はほとんど増加せず、従来と略同じ放電容量が得られた。したがって、このような正極活物質を用いる電池では、室温で使用する際の容量に対する、高温で使用する際の容量の増加量がより顕著になる。よって、高温で使用する際の容量が最大となるような構成にすることが好ましい。これにより、高温で使用する際に、高い容量と高いサイクル特性とを両立させることができる。
 ニッケル系の正極活物質は、1次粒子の凝集体である2次粒子から構成される。ニッケル系の正極活物質は、例えば次のようにして作製される。
 まず、正極活物質の前駆体を共沈法で作製する。具体的には、複数の原料塩を溶解させた水溶液のpHを調整し、原子レベルで均質な複合金属水酸化物(前駆体)を沈殿させる。次に、前駆体を乾燥させて、リチウム塩と混合する。この後、前駆体とリチウム塩との混合物を所定の雰囲気、温度で焼成することによって、正極活物質を得る。焼成温度を高めると、正極活物質の1次粒子径が大きくなる。好ましい焼成温度は780~820℃であり、これにより、1次粒子径が0.2~1.5μm程度の正極活物質が作製される。
 高容量化のためには、正極活物質の充填密度は高いことが好ましい。好ましい充填密度は3.0~4.0g/cm3、より好ましくは3.5~3.9g/cm3である。3.0g/cm3未満であると、2次粒子の崩壊の程度は少ないが、十分な体積容量密度が得られない。一方、4.0g/cm3よりも大きいと、2次粒子の崩壊の程度が顕著になる上、正極活物質層の内部に十分な空隙率を設けられなくなり、出力特性が低下する。
 充填密度を高める方法として、ロールプレスなどによってプレス圧をかける方法がある。しかし、その圧力によって2次粒子を構成する1次粒子が崩れることがある。これを低減するためには、2次粒子を構成する1次粒子はできるだけ大きく、2次粒子内に存在する粒界は少ない方が良い。結晶性を高めて2次粒子の強度を高めることもできる。1次粒子径(平均粒径)は0.5~1.5μmであることが好ましい。
 正極活物質の充填密度を高くする、あるいは1次粒子径を大きくすると、正極の不可逆容量が増加する原因について、詳細は明らかではないが、次のように推測している。
 2次粒子が崩れると、1次粒子間に隙間ができる。隙間が大きくなると、1次粒子間でリチウムの固相内拡散が阻害される。1次粒子間の隙間に電解液が浸透した場合には、リチウムの拡散距離は短くなるが、1次粒子間で電子伝導パスが切れているため、固相内拡散が原因ではないが結果的に不可逆容量が増加する要因となる。また、ニッケル系の酸化物は大気に敏感で、大気に触れるとその表面が変質する恐れがある。ニッケル系の酸化物が製造工程中に大気に触れると、酸化物の結晶構造内のLiイオンが一部プロトンと入れ替わる。入れ替わったLiイオンは水酸化物イオンや二酸化炭素と反応し、水酸化リチウム、炭酸リチウムが生成される。このような生成物が1次粒子の表層に形成されると、前述と同様に、Liの固相内拡散が阻害される恐れがある。この結果、室温での正極の不可逆容量が大きくなり、室温および45℃における不可逆容量の差が大きくなると考えられる。
 本実施形態の正極活物質は、好ましくはニッケルとリチウムとの複合金属酸化物である。ニッケル系リチウム含有複合酸化物としては、LiNiO2をベースとして、Niの一部を、Mg、Sc、Y、Mn、Fe、Co、Ni、Cu、Zn、Al、Cr、Pb、SbおよびBよりなる群から選ばれる他の元素で置換した材料が挙げられる。ニッケル系リチウム含有複合酸化物のなかでも、LiaNi1-(b+c)Cobc2(ただし、1.0≦a≦1.05、0.1≦b≦0.35、0.005≦c≦0.30、MはAl、Sr、及びCaから選ばれる少なくとも1種)を用いることが好ましい。
 LiNiO2ベースの正極活物質において、不可逆容量の原因である放電末期の分極を抑制するためには、CoおよびAlを固溶させることが特に好ましい(すなわちLiaNi1-(b+c)CobAlc2)。これにより、放電末期での結晶構造において、a軸間隔の増加を抑制できる。a軸間隔が増加すると、Ni-Niの原子間距離が大きくなり、電子密度が低下するため、円滑な酸化還元反応を阻害すると考えられる。
 LiNiO2ベースの活物質には、一般に、充放電に伴う結晶構造変化が比較的大きく、優れた可逆性が得られないという問題があるが、上記のように組成を調整することによって、高容量を維持しながら、可逆性を改善することができる。以下、その理由を説明する。
 a値が1.0以上であれば、原料として用いるリチウム塩の量が十分であり、酸化ニッケル、酸化コバルトなどの電気化学的に不活性な不純物の存在が抑えられ、容量低下を誘発しにくくなる。また、a値が1.05以下であれば、原料として用いられるリチウム塩が過剰に存在しないので、リチウム化合物が不純物として残存することが抑えられ、同様に容量低下を誘発しにくくなる。なお、a値は未充電時の組成である。
 b値が0.10以上であれば、充放電可逆性をより確実に向上できる。また、b値が0.35以下であれば容量低下を生じにくい。さらに、c値が0.005≦c≦0.30の範囲であれば、熱安定性の点で好ましい。特に好ましくは0.01≦c≦0.10である。
 (実施形態)
 以下、図面を参照しながら、本発明による実施形態のリチウム二次電池の構成を説明する。本実施形態のリチウム二次電池は、正極活物質として、実質的に不可逆容量を有するリチウムニッケル複合酸化物を含む。正極活物質の粒子物性や好ましい組成などは前述したとおりである。負極活物質の材料は特に限定しないが、例えば前述した黒鉛などの炭素系材料、SiOxなどのシリコン系材料などが用いられ得る。また、負極活物質には、予めリチウムが吸蔵されている。予め吸蔵されているリチウムの量は、環境温度が25℃のときのリチウム二次電池の完全放電状態において、負極中の放出可能なリチウム量がリチウム二次電池の不可逆容量より大きくなるように設定されている。本実施形態のリチウム二次電池は、負極活物質として炭素系材料を用いる場合には図7、シリコン系材料を用いる場合には図10に例示するような充放電挙動を示す。
 本実施形態によると、上述したように、室温のみでなく、高温(例えば40~50℃)でも正極電位によって放電の終了を規制することが可能になる(正極電位規制)。このため、高温環境下における正極の放電末期の分極良化による可逆容量の増加を、リチウム二次電池の高容量化に利用できる。従って、充放電サイクル特性を低下させることなく、電池容量を高めることができる。
 本実施形態のリチウム二次電池における上記各容量は以下の方法で測定され得る。「負極中の放出可能なリチウム量」Qbは、放電させた後の電池を解体して、電池の負極容量を測定することによって得られる。「負極の不可逆容量」Qaは、放出可能なリチウム量を測定した後の負極のリチウム量を測定することによって得られる。また、「正極の不可逆容量」Qcは、放電前の正極活物質のリチウム量と放電後の正極活物質のリチウム量とを測定して、これらの差を求めることによって算出され得る。また、負極に予め吸蔵されていたリチウム量(リチウムの予備吸蔵量)は、上記方法で得られた各容量を用いて、次式により算出され得る。
        リチウムの予備吸蔵量=負極中の放出可能なリチウム量Qb-正極の不可逆容量Qc+負極の不可逆容量Qa
さらに、正極の容量増加分は、温度を変化させて、正極の容量の変化を測定することにより求められる。
 図16は、本実施形態のリチウム二次電池の一例を示す模式的な断面図である。
 リチウム二次電池は、電池ケース1と、電池ケース1に収容された電極群4と、電極群4の上下にそれぞれ配置された絶縁リング8とを備えている。電池ケース1は上方に開口を有しており、その開口は封口板2によって封口されている。
 電極群4は、正極5および負極6を、セパレータ7を介して複数回渦巻状に捲回した構成を有している。正極5からは、例えばアルミニウムからなる正極リード5aが引き出され、負極6からは、例えば銅からなる負極リード6aが引き出されている。正極リード5aは、電池ケース1の封口板2に接続されている。負極リード6aは、電池ケース1の底部に接続されている。また、図示しないが、電池ケース1の内部には、電極群4とともに電解液が注入されている。
 このようなリチウム二次電池は、次のようにして製造される。まず、負極6および正極5を形成し、負極6および正極5をセパレータ63とともに捲回して電極群4を形成する。次いで、電極群4の上下にそれぞれ絶縁板8を装着する。また、正極4から引き出された正極リード5aを封口板66に、負極6から引き出された負極リード6aを電池ケース1の底部にそれぞれ溶接し、電池ケース1に挿入する。この後、リチウムイオンを伝導する非水電解質(図示せず)を電池ケース1に注入し、電池ケース1の開口を、絶縁パッキング3を介して封口板2で封口する。
 本実施形態における正極5は、正極集電体と、正極集電体の表面に形成された正極活物質層(正極合剤層)とを備えている。
 正極集電体は、例えばアルミニウムなどの金属箔、ラス加工またはエッチング処理された金属箔などであってもよい。正極集電体の材料としては、この分野で常用されるものを使用できる。例えばステンレス鋼、チタン、アルミニウムなどの金属材料などを用いることができる。正極集電体の厚さは例えば10μm以上である。一方、正極集電体が厚くなりすぎると、電池ケース内部の空隙体積が小さくなり、その結果、エネルギー密度が低下するおそれがある。従って、正極集電体の厚さは30μm以下であることが好ましく、より好ましくは20μm以下である。
 正極活物質層は、正極集電体の片面または両面に、例えば次のような方法で形成される。まず、正極活物質、結着剤、導電剤、および必要に応じて増粘剤を溶剤に混練分散させたペースト状の正極合剤を作製する。次いで、正極集電体の表面に正極合剤を塗布した後、乾燥させて正極活物質層を得る。活物質層が形成された集電体を圧延する方法も特に限定されない。例えば、ロールプレス機によって、活物質層が所定の厚みになるまで、線圧1000~3000kg/cmで複数回の圧延を行ってもよい。あるいは、線圧の異なる複数回の圧延を行ってもよい。また、圧延による合剤内部応力を緩和するため、必要に応じ熱をかけながら圧延を行っても良い。このようにして、活物質の充填密度が3.0~4.0g/cmにする。このようにして、正極5が得られる。正極5の厚さ(正極活物質層および集電体の合計厚さ)は例えば100μm~200μmである。また、正極5は柔軟性を有することが好ましい。
 本実施形態における正極活物質層は、正極活物質として、リチウムを吸蔵放出可能なニッケル系リチウム含有複合酸化物を含んでいる。ニッケル系リチウム含有複合酸化物の好ましい組成は、前述した組成と同じである。
 正極活物質層に使用される結着剤としては、使用する溶剤や電解液に対して安定な材料であれば、特に限定されない。例えば、フッ素系結着材やアクリルゴム、変性アクリルゴム、スチレンーブタジエンゴム(SBR)、イソプロピレンゴム、ブタジエンゴム、アクリル系重合体、ビニル系重合体等を単独、或いは二種類以上の混合物または共重合体として用いることができる。フッ素系結着剤としては、例えば、ポリフッ化ビニリデン(PVDF)、フッ化ビニリデン(VDF(登録商標))とヘキサフルオロプロピレン(HFP)の共重合体(P(VDF-HFP))やポリテトラフルオロエチレン樹脂のディスパージョン等が好適に用いられる。活物質の高充填化により合剤空隙率の低減を抑制するため結着剤は少量で結着性を維持する必要がある。好ましくは活物質100gに対し1~4gである。
 増粘剤としては、カルボシキメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、酸化スターチ、リン酸化スターチ、ガゼイン等を好適に用いられる。
 導電剤としては、アセチレンブラック、人造黒鉛、天然黒鉛、炭素繊維等を単独、或いは二種類以上の混合物として用いることができる。活物質の高充填化により合剤空隙率の低減を抑制するため導電剤は少量で導電性を維持する必要がある。活物質に対する混合比率は、活物質100gに対し0.5~3.0gが好ましい。また、アセチレンブラックなどのカーボンブラックと人造黒鉛などの黒鉛材料を混合することが好ましい。
 溶剤は特に限定されず、結着剤が溶解可能な溶剤であればよい。有機系結着剤を使用する場合には、例えばN-メチル-2-ピロリドン(NMP)、N,N-ジメチルホルムアミド、テトラヒドロフラン、ジメチルアセトアミド、ジメチルスルホキシド、ヘキサメチルスルホルアミド、テトラメチル尿素、アセトン、メチルエチルケトン等の有機溶剤を用いることができる。これらの有機溶剤を単独で用いてもよいし、これらのうちの2種以上を混合した混合溶剤を用いてもよい。水系結着剤を使用する場合には、溶剤として水や温水を用いることが好ましい。水分に弱いニッケル系の酸化物に対しては、PVDFを溶解させたNMPが好ましい。
 正極のペースト状合剤の作製方法は、特に限定されない。例えば、プラネタリーミキサー、ホモミキサー、ピンミキサー、ニーダー、ホモジナイザー等を用いて、正極または負極活物質と、結着剤と、必要に応じて加える導電剤や導電助剤とを溶剤に混練分散させることができる。上記の作製方法を単独で用いてもよいし、あるいは組み合わせて用いてもよい。さらに、溶剤に混練分散させる際に、各種分散剤、界面活性剤、安定剤等を必要に応じて添加することも可能である。
 合剤の塗布および乾燥(塗着乾燥)方法も特に限定されない。溶剤に混錬分散させたペースト状合剤を、例えばスリットダイコーター、リバースロールコーター、リップコーター、ブレードコーター、ナイフコーター、グラビアコーター、ディップコーター等を用いて、集電体表面に容易に塗布(塗着)することができる。塗布された合剤は、自然乾燥に近い方法によって乾燥させてもよい。生産性を考慮すると、70℃~200℃の温度で乾燥させることが好ましい。
 本実施形態における負極6は、負極集電体と、負極集電体の表面に形成された負極活物質層とを備えている。負極活物質としては、人造黒鉛、天然黒鉛などの黒鉛系材料や、ケイ素、スズなどの合金系材料を用いることができる。
 黒鉛系材料としては、可逆容量が350mAh/g以上であって、不可逆容量が30mAh/g以下の黒鉛系材料を用いることがこのましい。このような黒鉛系材料を用いると、Li金属電位に近い充放電電位で、より大きな可逆容量を得ることができる。特に、格子面(002)の面間隔(d002)が3.350~3.400Åである結晶性の高い黒鉛材料を使用することが望ましい。黒鉛材料の形状は、球状、鱗片状または塊状に処理したものであってもよい。充填密度を上げるために、粒径の異なる黒鉛が混合されていてもよい。
 合金系材料としては、合金系活物質としては特に制限されず、公知のものを使用できる。たとえばケイ素含有化合物、スズ含有化合物などが挙げられる。ケイ素含有化合物としては、たとえばケイ素、ケイ素酸化物、ケイ素窒化物、ケイ素含有合金、ケイ素化合物とその固溶体などが挙げられる。ケイ素酸化物としては、たとえば組成式:SiOα(0<α<2)で表される酸化ケイ素が挙げられる。ケイ素炭化物としては、たとえば、組成式:SiCβ(0<β<1)で表される炭化ケイ素が挙げられる。ケイ素窒化物としては、たとえば組成式:SiNγ(0<γ<4/3)で表される窒化ケイ素が挙げられる。ケイ素含有合金としては、たとえばケイ素とFe、Co、Sb、Bi、Pb、Ni、Cu、Zn、Ge、In、SnおよびTiよりなる群から選ばれる1または2以上の元素を含む合金が挙げられる。また、ケイ素の一部がB、Mg、Ni、Ti、Mo、Co、Ca、Cr、Cu、Fe、Mn、Nb、Ta、V、W、Zn、C、NおよびSnよりなる群から選ばれる1または2以上の元素で置換されていてもよい。これらの中でも、充放電の可逆性に優れるSiOα(0<α<2)を用いることが特に好ましい。スズ含有化合物としては、たとえば、スズ、スズ酸化物、スズ窒化物、スズ含有合金、スズ化合物とその固溶体などが挙げられる。スズ含有化合物としては、たとえば、スズ、SnOδ(0<δ<2)、SnO2などのスズ酸化物、Ni-Sn合金、Mg-Sn合金、Fe-Sn合金、Cu-Sn合金、Ti-Sn合金などのスズ含有合金、SnSiO3、Ni2Sn4、Mg2Snなどのスズ化合物などを好ましく使用できる。これらの中でも、スズ、およびSnOβ(0<β<2)、SnO2などのスズ酸化物が特に好ましい。
 負極集電体として、例えば銅または銅合金からなる圧延箔、電解箔などを用いることができる。負極集電体の形状は特に限定されず、箔の他に、孔開き箔、エキスパンド材、ラス材等であってもよい。負極集電体が厚いほど、引張り強度が大きくなるので好ましい一方、負極集電体が厚くなりすぎると、電池ケース内部の空隙体積が小さくなり、その結果、エネルギー密度が低下するおそれがある。合剤との密着性を向上させる目的で、箔の表面に突起、粒子などが設けられていても良い。
 負極活物質の粉末を用いる場合は、負極活物質層は、負極集電体の片面または両面に、例えば次のような方法で形成される。まず、負極活物質、結着剤、および必要に応じて増粘剤、導電助剤を溶剤に混練分散させたペースト状の負極合剤を作製する。次いで、負極集電体の表面に負極合剤を塗布した後、乾燥させて負極活物質層を得る。続いて、負極活物質層が形成された負極集電体を圧延する。このようにして、負極6が得られる。また、負極6は柔軟性を有することが好ましい。
 正極および負極のペースト状合剤の作製方法は、特に限定されない。例えば、プラネタリーミキサー、ホモミキサー、ピンミキサー、ニーダー、ホモジナイザー等を用いて、正極または負極活物質と、結着剤と、必要に応じて加える導電剤や導電助剤とを溶剤に混練分散させることができる。上記の作製方法を単独で用いてもよいし、あるいは組み合わせて用いてもよい。さらに、溶剤に混練分散させる際に、各種分散剤、界面活性剤、安定剤等を必要に応じて添加することも可能である。
 合剤の塗布および乾燥(塗着乾燥)方法も特に限定されない。溶剤に混錬分散させたペースト状合剤を、例えばスリットダイコーター、リバースロールコーター、リップコーター、ブレードコーター、ナイフコーター、グラビアコーター、ディップコーター等を用いて、集電体表面に容易に塗布(塗着)することができる。塗布された合剤は、自然乾燥に近い方法によって乾燥させてもよい。生産性を考慮すると、70℃~200℃の温度で乾燥させることが好ましい。
 活物質層が形成された集電体を圧延する方法も特に限定されない。例えば、ロールプレス機によって、活物質層が所定の厚みになるまで、線圧1000~3000kg/cmで複数回の圧延を行ってもよい。あるいは、線圧の異なる複数回の圧延を行ってもよい。
 また、合金系活物質の場合は真空蒸着法やスパッタ、CVD法などの気相法によって負極集電体上に直接堆積させても良い。
 セパレータ7としては、ポリエチレン樹脂、ポリプロピレン樹脂などのポリオレフィン樹脂の微多孔膜または不織布を用いることができる。微多孔膜または不織布は単層であってもよいし、多層構造を有していてもよい。好ましくは、ポリエチレン樹脂層とポリプロピレン樹脂層とから構成される2層構造を有するか、あるいは、2層のポリプロピレン樹脂層とそれらの間に配置されたポリエチレン樹脂層とから構成される3層構造を有するセパレータを用いる。これらのセパレータはシャットダウン機能を有することが好ましい。また、セパレータ7の厚さは、例えば10μm以上30μm以下であることが好ましい。
 非水電解質は、非水溶媒および電解質を含む。非水溶媒は、主成分として、例えば環状カーボネートおよび鎖状カーボネートを含有する。環状カーボネートは、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、およびブチレンカーボネート(BC)から選ばれる少なくとも一種であることが好ましい。また、鎖状カーボネートは、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、およびエチルメチルカーボネート(EMC)等から選ばれる少なくとも一種であることが好ましい。電解質は、例えば電子吸引性の強いリチウム塩を含む。そのようなリチウム塩として、例えばLiPF6、LiBF4、LiClO4、LiAsF6、LiCF3SO3、LiN(SO2CF32、LiN(SO2252、LiC(SO2CF33等を用いることができる。これらの電解質は、一種類で使用してもよいし、二種類以上組み合わせて使用してもよい。また、これらの電解質は、0.5~1.5Mの濃度で上述した非水溶媒に溶解していることが好ましい。
 非水電解液には、高分子材料が含まれていてもよい。例えば、液状物をゲル化させ得る高分子材料を用いることができる。高分子材料としては、この分野で常用されるものを使用できる。例えばポリフッ化ビニリデン、ポリアクリロニトリル、ポリエチレンオキサイドなどが挙げられる。
 上記の実施形態では、正極活物質としてニッケル系リチウム含有複合酸化物(リチウムニッケル複合酸化物)を用いているが、代わりに、他のリチウム遷移金属複合酸化物、例えばコバルトとリチウムとの複合金属酸化物であるコバルト系リチウム含有複合酸化物(リチウムコバルト複合酸化物)を用いてもよい。コバルト系リチウム含有複合酸化物として、例えばLiaCoO2(ただし、1.0≦a≦1.10)を用いてもよい。Coの一部がサイクル特性や熱安定性を向上させる目的で他の元素に置換されていてもよい。また、コバルト系リチウム含有複合酸化物の表面は金属酸化物などで被覆されていてもよい。
 図17を参照しながら上述したように、コバルト系リチウム含有複合酸化物も、図2に例示したニッケル系リチウム含有複合酸化物の充放電電位挙動と類似の挙動を示すことから、上記の実施形態と同様の効果が得られる。すなわち、高温環境下における正極の可逆容量の増加を、リチウム二次電池の高容量化に利用することが可能となる。この結果、充放電サイクル特性の低下を抑制しつつ、電池容量を高めることができる。
 なお、本実施形態における正極活物質は、リチウムニッケル複合酸化物やリチウムコバルト複合酸化物に限定されず、他のリチウム遷移金属複合酸化物(例えばマンガン、クロム、鉄、バナジウムなどの遷移金属とリチウムとの複合金属酸化物)であってもよい。
 (実施例および比較例)
 本発明者は、実施例および比較例のリチウム二次電池を作製し、室温および高温で使用するときの電池容量を比較したので、その方法および結果を以下に説明する。
 (1)実施例および比較例で用いる正極活物質A、Bの作製
 実施例および比較例では、正極活物質として、1次粒子の平均粒径の異なる2種類のニッケル系リチウム含有複合酸化物(LiNi0.815Co0.15Al0.0352)(以下、正極活物質A、Bとする)を用いた。
 (1-1)正極活物質A
 まず、0.815mol/リットルの濃度で硫酸ニッケルを含む水溶液、0.15mol/リットルの濃度で硫酸コバルトを含む水溶液、および0.035mol/リットルの濃度で硫酸アルミニウムを含む水溶液をそれぞれ調整し、混合した。次いで、混合した水溶液を反応槽に連続して供給した。この後、反応槽中の水溶液のpHが10~13の間で維持されるように、反応槽に水酸化ナトリウムを滴下しながら、活物質の前駆体を合成した。得られた前駆体を十分に水洗し乾燥させた。このようにして、前駆体として、Ni0.815Co0.15Al0.035(OH)2からなる水酸化物を得た。
 得られた前駆体と炭酸リチウムとを、リチウム、コバルト、ニッケルおよびアルミニウムのモル比(Li:Co:Ni:Al)が、1:0.815:0.15:0.035になるように混合した。混合物を酸素雰囲気下、500℃の温度で7時間仮焼成し、粉砕した。次いで、粉砕された焼成物を、800℃の温度で再度15時間焼成した。焼成物を粉砕した後、分級することにより、LiNi0.815Co0.15Al0.0352の組成を有する正極活物質Aを得た。正極活物質Aの1次粒子の平均粒径は0.5μmであった。
 (1-2)正極活物質B
 前駆体と炭酸リチウムとの混合物を800℃で焼成した点以外は、正極活物質Aと同様の方法でLiNi0.815Co0.15Al0.0352の組成を有する正極活物質Bを作製した。正極活物質Bの1次粒子の平均粒径は1.0μmであった。
 (1-3)正極活物質C
 0.98mol/リットルの濃度で硫酸コバルトを含む水溶液と、0.02mol/リットルの濃度で硫酸マグネシウムを含む水溶液とを混合し、混合した水溶液を反応槽に連続して供給した。反応槽中の水溶液のpHが10~13の間で維持されるように、反応槽に水酸化ナトリウムを滴下しながら、活物質の前駆体を合成した。得られた前駆体を十分に水洗し乾燥させた。その結果、前駆体として、Co0.98Mg0.02(OH)2からなる水酸化物を得た。
 この前駆体と炭酸リチウムとを、リチウムとコバルトとマグネシウムとのモル比が、1:0.98:0.02になるように混合した。混合物を600℃の温度で10時間仮焼成し、粉砕した。次いで、粉砕された焼成物を900℃の温度で再度10時間焼成した。焼成物を粉砕した後、分級することにより、LiCo0.98Mg0.022で表される正極活物質Cを得た。正極活物質Cは、平均粒径5ミクロンの1次粒子のみで構成されていた。
 (2)正極の作製
 次いで、正極活物質Aを用いて正極A-1、A-2を作製し、正極活物質Bを用いて正極B-1を作製した。
 (2-1)正極A-1
 正極活物質Aの粉末100gに、アセチレンブラック(導電剤)1.2g、人造黒鉛(導電剤)1.2g、ポリフッ化ビニリデン粉末(結着剤)2gおよび有機溶媒(NMP)50mlを充分に混合して合剤ペーストを調製した。この合剤ペーストを、厚さが15μmのアルミニウム箔(正極集電体)の片面に塗布した。合剤ペーストを乾燥させて正極活物質層を得た。
 この後、正極活物質層が形成されたアルミニウム箔を圧延して正極A-1を形成した。正極の厚さ、すなわち集電体および正極活物質層の合計厚さを65μm、単位面積あたりの電極容量を3.5mAh/cm2とした。なお、この電極容量は、リチウム金属を対極として用い、充電電流値:0.1mA/cm2、終止電圧:4.25V、放電電流値:0.1mA/cm2、終止電圧:3.0Vの条件で定電流充放電を行った場合の容量である。得られた正極A-1の充填密度は3.55g/cm3であった。
 (2-2)正極A-2
 正極活物質Aの粉末100gに、アセチレンブラック(導電剤)1.2g、ポリフッ化ビニリデン粉末(結着剤)2gおよび有機溶媒(NMP)50mlを充分に混合して合剤ペーストを調製した。この合剤ペーストを、厚さが15μmのアルミニウム箔(正極集電体)の片面に塗布した。合剤ペーストを乾燥させて正極活物質層を得た。
 この後、正極活物質層が形成されたアルミニウム箔を圧延して正極A-2を形成した。正極の厚さを60μm、単位面積あたりの電極容量を3.5mAh/cm2とした。なお、電極容量の測定方法は、上記(2-1)で説明した方法と同様である。得られた正極A-2の充填密度は3.85g/cm3であった。
 (2-3)正極A-3
 正極活物質Aを用いて、充填密度以外は正極A-1と同様の方法で作製した。充填密度を2.90g/cm3とした。正極の厚さ、すなわち集電体および正極活物質層の合計厚さを77μm、単位面積あたりの電極容量を3.5mAh/cm2とした。
 (2-4)正極B-1
 正極活物質Bの粉末100gに、アセチレンブラック(導電剤)1.2g、人造黒鉛(導電剤)1.2g、ポリフッ化ビニリデン粉末(結着剤)2gおよび有機溶媒(NMP)50mlを充分に混合して合剤ペーストを調製した。この合剤ペーストを、厚さが15μmのアルミニウム箔(正極集電体)の片面に塗布した。合剤ペーストを乾燥させて正極活物質層を得た。
 この後、正極活物質層が形成されたアルミニウム箔を圧延して正極B-1を形成した。正極の厚さを65μm、単位面積あたりの電極容量を3.5mAh/cm2とした。なお、電極容量の測定方法は、上記(2-1)で説明した方法と同様である。得られた正極B-1の充填密度は3.55g/cm3であった。
 (2-5)正極C-1
 正極活物質Cの粉末100gに、アセチレンブラック(導電剤)2g、ポリフッ化ビニリデン粉末(結着剤)3gおよび有機溶媒(NMP)50mlを充分に混合して合剤ペーストを調製した。この合剤ペーストを、厚さが15μmのアルミニウム箔(正極集電体)の片面に塗布した。合剤ペーストを乾燥させて正極活物質層を得た。
 この後、正極活物質層が形成されたアルミニウム箔を圧延して正極C-1を形成した。正極の厚さ、すなわち集電体および正極活物質層の合計厚さを58μm、単位面積あたりの電極容量を3.5mAh/cm2とした。なお、この電極容量は、リチウム金属を対極として用い、充電電流値:0.1mA/cm2、終止電圧:4.35V、放電電流値:0.1mA/cm2、終止電圧:3.0Vの条件で定電流充放電を行った場合の容量である。得られた正極C-1の充填密度は3.70g/cm3であった。
 (3)負極の作製
 実施例および比較例の負極として、黒鉛系材料を負極活物質とする黒鉛負極と、シリコン系材料を負極活物質とするシリコン負極とを作製した。
 (3-1)黒鉛負極
 人造黒鉛と天然黒鉛とを重量比で60:40になるように混合し、負極活物質を作製した。次いで、この負極活物質100gに、ゴム系バインダー(結着剤)0.6g、およびカルボキシメチルセルロース(増粘剤)1.0gを充分に混合して合剤ペーストを調製した。この合剤ペーストを厚さが8μmの銅箔(負極集電体)の片面に塗布した。合剤ペーストを乾燥させて負極活物質層を得た。
 この後、負極活物質層が形成された銅箔を圧延して、厚さ(集電体および負極活物質層の合計厚さ)が76μmの黒鉛負極を形成した。単位面積あたりの電極容量を、4.1mAh/cm2とした。この電極容量は、リチウム金属を対極に用いた容量評価において、充電電流値:0.1mA/cm2、終止電圧:0V、放電電流値:0.1mA/cm2、終止電圧:1.5Vの条件で定電流充放電を行った場合の容量である。得られた黒鉛負極の不可逆容量は0.37mAh/cm2であった。
 (3-2)シリコン負極
 まず、ローラ加工法により、表面に凹凸を有する負極集電体を作製した。円筒形の鉄製ローラ(直径:50mm)の表面に酸化クロムを溶射して、厚さが100μmのセラミック層を形成した。このセラミック層の表面に、レーザー加工によって、深さが6μmの複数の凹部を形成した。各凹部は、セラミック層の上方から見て、直径が12μmの円形とした。各凹部の底部では、中央部はほぼ平面状であり、底部の周縁部は丸みを帯びた形状を有していた。また、これらの凹部の配置は、隣接する凹部の軸線間距離が20μmである最密充填配置とした。このようにして、凸部形成用ローラを得た。次いで、全量に対して0.03重量%の割合でジルコニアを含有する合金銅箔(商品名:HCL-02Z、厚さ26μm、日立電線(株)製)を、アルゴンガス雰囲気中、600℃の温度で30分間加熱し、焼き鈍しを行った。この合金銅箔を、2本の凸部形成用ローラを圧接させた圧接部に線圧2t/cmで通過させた。これにより、合金銅箔の両面が加圧成形されて、両面に複数の凸部を有する負極集電体が得られた。負極集電体の表面に垂直な断面を走査型電子顕微鏡で観察したところ、負極集電体の両面には、平均高さが約6μmの複数の凸部が形成されていた。その後、電解めっき法によって銅の粒子を凸部の上面に形成した。表面粗さRaは2.0μmであった。
 次に、上記方法で作製した負極集電体の表面に、斜め蒸着により負極活物質層を形成した。負極活物質層の形成には、図15に示す電子ビーム式蒸着装置50を用いた。
 蒸着装置50は、真空チャンバー51と、真空チャンバー51を排気するための排気ポンプ56とを備えている。真空チャンバー51の内部には、集電体21を固定するための固定台53と、チャンバー51に酸素ガスを導入するガス導入配管52と、集電体21の表面にケイ素を供給するための蒸発源が装填された坩堝55とが設置されている。蒸発源として、例えばケイ素を用いることができる。また、図示しないが、蒸発源の材料を蒸発させるための電子ビーム加熱手段を備えている。ガス導入配管52は、酸素ノズル54を備えており、酸素ノズル54から出射する酸素ガスが集電体21の表面近傍に供給されるように位置付けられている。固定台53と坩堝55とは、坩堝55からの蒸着粒子(ここではケイ素原子)が、集電体21の法線方向Dに対して角度(蒸着角度)ωの方向から集電体21の表面に入射するように配置されている。この例では、固定台53は回転軸を有しており、この回転軸のまわりに固定台53を回転させることによって、水平面60に対する固定台53の角度αが所定の蒸着角度ωに等しくなるように調整される。ここで、「水平面」とは、坩堝55に装填された蒸発源の材料が気化されて固定台53に向う方向に対して垂直な面をいう。
 蒸着装置50を用いて負極活物質層を形成する方法および条件を以下に説明する。
 まず、上記負極集電体(30mm×30mm)を蒸着装置50の固定台53に固定した。固定台53を、水平面に対する角度が60°(α=60°)である第1の位置(図15に示す実線の位置)と、水平面に対する角度が120°(180-α=120°)である第2の位置(図15に示す一点破線の位置)との間で切り替え可能に設定した。この後、固定台53の位置を第1の位置と第2の位置との間で交互に切り替えながら、40回の蒸着工程を行った。その際に、酸素の流量を調整し、真空度を制御することにより、組成の異なるSiOxを形成した。具体的には、1~7回目の蒸着工程では、徐々に酸素流量を減らして、真空度を徐々に低下させた(1回目の蒸着工程における真空度:3.5×10-2Pa→7回目の蒸着工程における真空度:1.0×10-2Pa)。その後の8~40回目の蒸着工程では、酸素流量を一定とした(真空度:5×10-4Pa)。
 詳細な蒸着条件や材料は以下の通りである。
負極活物質原料(蒸発源):シリコン、純度99.9999%、(株)高純度化学研究所製
酸素ノズル54から放出される酸素:純度99.7%、日本酸素(株)製
  固定台53の角度α:60°
  電子ビームの出力:5kW
  蒸着時間:3分×40回
 このようにして、負極集電体の一方の表面に、複数の活物質体を含む負極活物質層を形成した。活物質体のそれぞれは、40個の柱状塊が積層された構造を有しており、負極集電体の対応する凸部上に配置されていた。また、凸部の頂部および頂部近傍の側面から、凸部の延びる方向に成長していた。この後、負極集電体の反対側の表面にも、同様の方法で斜め蒸着を行い、複数の活物質体を含む負極活物質層を形成した。このようにして、負極集電体の両面に負極活物質層を有するシリコン負極を得た。
 次いで、負極活物質層の厚さを求めた。ここでは、得られた負極における負極集電体に垂直な断面を走査型電子顕微鏡で観察し、凸部表面に形成された活物質体10個について、凸部の頂点から活物質体の頂点までの長さをそれぞれ測定した。これらの平均を算出して「負極活物質層の厚さ」とした。この結果、負極活物質層の厚さは、それぞれ、14μmであった。
 また、負極活物質層の組成を分析したところ、負極集電体(Cu)と負極活物質層の界面(以下、「Cu-SiOx界面」と略す。)近傍における酸化度xは1.0と高く、Cu-SiOx界面から厚さが3μmまでの領域では、酸化度xは徐々に低くなるように傾斜していた。また、Cu-SiOx界面からの厚さが3~14μmの間の領域では、酸化度xは0.12であった。負極活物質層全体の平均の組成はSiO0.25(酸化度xの平均は0.25)であった。なお、酸化度xは、ケイ素酸化物(SiOx)におけるケイ素量に対する酸素量のモル比を指す。
 単位面積あたりのシリコンの重量は2.0mg/cm2であった。さらに、単位面積あたりの電極容量を5.5mAh/cm2とした。この電極容量は、リチウム金属を対極に用いた容量評価において、充電電流値:0.1mA/cm2、終止電圧:0V、放電電流値:0.1mA/cm2、終止電圧:1.5Vの条件で定電流充放電を行った場合の容量である。得られたシリコン負極の不可逆容量は1.0mAh/cm2であった。
 (4)リチウムの予備吸蔵
 上記(3)で得られた黒鉛負極およびシリコン負極に対し、電気化学的手法または真空蒸着法でリチウムを予め吸蔵させて、実施例で用いる負極a-1、b-1、a-2、b-2を以下の方法で作製した。
 (4-1)電気化学的手法
 ・負極a-1
 黒鉛負極と、その対極としてリチウム金属とを含む電気化学セルを用いて、黒鉛負極に、黒鉛負極の不可逆容量よりも多い0.5mAh/cm2相当のリチウムを吸蔵させた。この後、電気化学セルを解体して、リチウムを吸蔵させた黒鉛負極を取り出した。取り出した黒鉛負極を有機溶媒で洗浄した後、乾燥させた。この黒鉛負極を負極a-1とした。
 ・負極b-1
 負極a-1と同様の電気化学的手法を用いて、シリコン負極に、シリコン負極の不可逆容量よりも多い1.65mAh/cm2相当のリチウムを吸蔵させた。このシリコン負極を負極b-1とした。負極b-1の放電容量は、リチウムを予備吸蔵させる前の放電容量(5.5mAh/cm2)と略同じであった(図12)。
 (4-2)真空蒸着法
 ・負極a-2
 抵抗加熱蒸着装置((株)アルバック製)を用いて、黒鉛負極に対し、アルゴン雰囲気下にてリチウム金属の蒸着を行った。
 まず、抵抗加熱蒸着装置のチャンバー内のタンタル製ボートにリチウム金属を装填した。次いで、黒鉛負極の片面に形成された負極活物質層がタンタル製ボートを臨むように、黒鉛負極を固定した。この後、アルゴン雰囲気内にて、タンタル製ボートに50Aの電流を通電して、黒鉛負極の負極活物質層に0.5mAh/cm2相当のリチウム金属を蒸着した。この黒鉛負極を負極a-2とした。
 ・負極b-2
 負極a-2と同様の方法(真空蒸着法)を用いて、シリコン負極に対してリチウム金属の蒸着を行った。なお、シリコン負極をチャンバー内に固定する際には、シリコン負極の両面に形成された負極活物質層のうち一方がタンタル製ボートを臨むように、シリコン負極を固定した。リチウム金属の蒸着により、シリコン負極の一方の負極活物質層に1.6mAh/cm2相当のリチウムを蒸着させた。このシリコン負極を負極b-2とした。
 負極b-2の放電容量は、リチウムを予備吸蔵させる前の放電容量(5.5mAh/cm2)よりも増加し、6.1mAh/cm2であった。リチウムの予備吸蔵の前後のシリコン負極の放電曲線を調べると、図12を参照しながら前述したように、放電側で容量が増加していることがわかった。
 (4-3)比較例の負極
 比較例では、上記の黒鉛負極またはシリコン負極を、リチウムの予備吸蔵処理を行わずに使用した。リチウムを予備吸蔵していない黒鉛負極を負極a、リチウムを予備吸蔵していないシリコン負極を負極bとした。
 また、比較例として、転写法によってリチウムを予備吸蔵させた負極も作製した。まず、銅基板に1.6mAh/cm2相当のリチウム金属を蒸着させた。次いで、リチウム金属を蒸着させた銅基板とシリコン負極とを貼り付けて一体化し、前駆体を得た。このとき、銅基板に蒸着させたリチウム金属と、シリコン負極のシリコンとが向かい合うように、銅基板とシリコン負極とを重ねて貼り付けた。得られた前駆体を電解液に浸漬させて、25℃環境下で8時間静置し、シリコンにリチウムを吸蔵させた。電解液としては充放電試験に用いたものと同じものを使用した。吸蔵処理後、銅基板がシリコン負極から遊離していた。この方法によると、リチウムは仕込み量(1.6mAh/cm2)の15%しか吸蔵されなかった。このようにして得られたシリコン負極をb-3とした。
 (5)リチウム二次電池の作製
 実施例および比較例のリチウム二次電池として、図13を参照しながら前述した積層型セルを作製した。
 以下、再び図13を参照しながら、実施例1のリチウム二次電池の作製方法を説明する。実施例1では、上述した方法で作製した正極A-1および負極a-1を用いた。
 まず、正極A-1を20mm×20mmのサイズに切り出し、正極11を得た。また、負極a-1を20.5mm×20.5mmのサイズに切り出し、負極12を得た。正極11および負極12の活物質層11b、12bが形成されていない集電体部分に、それぞれ、正極リード14および負極リード15を溶接した。次いで、セパレータ13(ここではポリエチレン微多孔膜)を介して、正極11および負極12の活物質層11b、12b同士が対向するように、負極12、セパレータ13および正極11を積層し、電極群を作製した。なお、負極12の負極活物質層12bのうち正極活物質層11bと対向していない部分(未対向部)にも、対向している部分と同様に、所定のリチウムが予め吸蔵されていた。
 この電極群を電解質0.2gとともに、アルミニウムラミネートからなる外装ケース17に挿入した。電解質として、エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)とジエチルカーボネート(DEC)とビニレンカーボネート(VC)を体積比20:30:50:2の混合溶媒に、LiPF6を1.0mol/Lの濃度で溶解させた非水電解液を用いた。
 次に、リチウム金属を参照極として用意した。正極リード14、負極リード15および参照極リード(図示せず)を外装ケース17の開口部から外装ケース17の外部に導出した。続いて、外装ケース17内部を真空減圧しながら、外装ケース17の開口部を溶着させた。このようにして、実施例1のリチウム二次電池を作製した。
 同様にして、実施例2~6および比較例1~3のリチウム二次電池を作製した。各実施例および比較例のリチウム二次電池で使用する正極および負極の種類を表2に示す。また、表3には、各実施例および比較例における負極および電池の不可逆容量、負極に予め吸蔵させたリチウム量、および25℃の完全放電状態で負極に含まれる放出可能なリチウム量を示す。
 (6)電池容量および可逆性の評価
 まず、下記の評価条件により、実施例1~6および比較例1~3のリチウム二次電池の初期容量を求めた。
(初期容量評価条件)
定電流充電:9mA、終止電圧4.2V
定電圧充電:終止電流0.7mA、休止時間20分定電流放電:2.8mA、2.5V、休止時間20分
試験温度:表中に記載
なお、正極C-1を用いた場合は、定電流充電の終止電圧を4.3Vとした。
 上記の条件で1サイクル目の充放電を行った後、1サイクル目の充放電における正極の活物質重量あたりの放電容量を算出し、「正極活物質の利用容量(mAh/g)」とした。利用容量を表4に示す。また、この利用容量(初期容量)、平均放電電圧、および充電状態での電極群の体積を用いて、各リチウム二次電池の体積エネルギー密度(Wh/L)を算出した。比較例1の体積エネルギー密度を100として、体積エネルギー密度比を求めたので、表4に示す。
 次いで、下記の条件で2サイクル目以降の充放電を行い、各リチウム二次電池の可逆性を評価した。
(充放電可逆性評価条件)
定電流充電:9mA、終止電圧4.2V
定電圧充電:終止電流0.7mA、休止時間20分
定電流放電:14mA、終止電圧2.5V、休止時間20分
試験温度:45℃
なお、正極C-1を用いた場合は、定電流充電の終止電圧を4.3Vとした。
 上記条件で充放電を200サイクル繰り返した後、200サイクル時点の容量維持率(%)を求めた。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 比較例1のリチウム二次電池は、図5を参照しながら前述した電位挙動を示した。従って、環境温度を25℃から45℃に高めても、正極活物質の利用容量の増加は僅かであった。これに対し、負極に所定量のリチウムを吸蔵させたこと以外は比較例1と同様の構成を有する実施例1および実施例2のリチウム二次電池は、図7を参照しながら前述した電位挙動を示した。実施例1および2では、環境温度が25℃のときの利用容量は比較例1と同じであったが、環境温度が45℃になったときの利用容量は、25℃の場合の利用容量に対して6%増加した。また、比較例1と略同程度の高いサイクル特性を有することが分かった。従って、実施例1および2によると、サイクル特性を確保しつつ、環境温度の上昇に伴う正極の容量増加を電極の高容量化に利用できることが確認された。
 比較例2は、図8を参照しながら前述した電位挙動を示した。比較例2では、負極(SiOx)の不可逆容量が大きいので、正極活物質の利用容量が低くなった。また、この利用容量は環境温度にかかわらず一定であった。放電の終了が負極電位で規制されるため、正極の容量増加が電池容量に全く反映されないからである。これに対し、負極に所定量のリチウムを吸蔵させたこと以外は比較例1と同様の構成を有する実施例3は、図10に示す電位挙動を示した。実施例3では、放電の終了時点を正極電位で規制されるため、比較例2と比べて、正極活物質の利用容量が大幅に増加した。また、環境温度を高めた(25℃→45℃)ことによって、利用容量はさらに6%増加した。このため、負極へのリチウムの予備吸蔵によって、電池容量が高められるだけでなく、環境温度の上昇に伴う正極の容量増加分を利用できることが確認された。
 実施例4は、正極の充填密度が高いこと以外は実施例3と同様の構成を有する。実施例4も、実施例3と同様の電位挙動を示したが、環境温度を高めた(25℃→45℃)ことによる利用容量の増加率は、実施例3における増加率(6%)よりも大きくなった。一方、正極の充填密度を小さくすると(実施例5)、利用容量の増加率は実施例3よりも小さくなった。この結果から、正極の充填密度を例えば3.0g/cm3より大きく4.0g/cm未満の範囲に制御することにより、高温での電池容量をより効果的に高めることが可能であることが分かった。
 また、実施例6は、正極の一次粒子径を大きくしたこと以外は実施例3と同様の構成を有する。実施例6も、実施例3と同様の電位挙動を示したが、環境温度を高めた(25℃→45℃)ことによる利用容量の増加率は、実施例3における増加率(6%)よりも大きくなった。従って、正極の一次粒子径を制御することによって、より効果的に高温での電池容量をより高くできることが分かった。
 さらに、コバルト系リチウム含有複合酸化物を正極活物質として用いた実施例8でも、他の実施例と同様に、高い充放電サイクル特性が得られた。また、環境温度を高めることによって利用容量を増加できることが分かった。利用容量の増加率は3%程度であった。
 リチウムを予備吸蔵したシリコン系の負極を用いた実施例3~7では、リチウムを予備吸蔵しなかったシリコン系の負極を用いた比較例2よりも、高いサイクル特性が得られた。これは、実施例3~7では、正極容量規制の電池になり、負極の放電末期における電位の立ち上がり部分を使わない。これに対し、比較例2では、負極容量規制の電池であり、放電末期における負極の立ち上がり部分の電位領域を使用する。この領域で負極を使用すると、放電時に負極活物質が収縮することによる粒子割れが大きくなるからである。
 比較例3では、液相中の転写法でリチウムを吸蔵させようとしたが、上述したように、仕込み量の15%しか吸蔵されず、予備吸蔵量は負極の不可逆容量よりも大幅に少なかった。これは、処理後の銅基板がシリコン負極から遊離していたため、シリコンと接したリチウム金属が吸蔵されると物理的な接触が均一に保たれずに吸蔵量が低下したと考えられる。このため、実施例と比べてサイクル特性は低くなった。なお、ここでは例示していないが、仕込み量をさらに増加させても、上記と同様の理由から、予備吸蔵量を大幅に増加させることは困難であり、負極の不可逆容量の20%程度までしか吸蔵されない。したがって、転写法を用いた予備吸蔵方法では、本発明の効果が十分に得られないことが分かった。
 実施例7と実施例3とでは、シリコン系の負極に対するリチウムの予備吸蔵方法のみが異なっている。これらの評価結果の比較から、リチウムの予備吸蔵方法が異なっても、環境温度の上昇に伴う利用容量の増加率は同程度であり、高温での高容量化を可能にする効果が得られることを確認できた。また、真空蒸着でリチウムを予備吸蔵させると(実施例3)、リチウムの吸蔵放出が円滑になり、充放電の分極が電気化学的に吸蔵させた場合(実施例7)よりも小さくなり、高いサイクル特性が得られた。
 また、正極活物質としてニッケル系リチウム含有複合酸化物を用いた実施例3~7では、コバルト系リチウム含有複合酸化物を用いた実施例8よりも、環境温度を高めたことによる利用容量の増加率が大きくなった。従って、正極活物質としてニッケル系リチウム含有複合酸化物を用いる場合に、本実施形態による利用容量を高める効果がより顕著に得られることがわかった。これは、ニッケル系リチウム含有複合酸化物を正極活物質として用いると、放電末期における正極活物質内のリチウムの拡散の温度依存性が高いためである。つまり、室温では相対的に不可逆容量が大きくなり、温度を上げると容量増加が大きくなるからである。
 本発明のリチウム二次電池は、従来のリチウム二次電池と同様の用途に使用できる。特にパーソナルコンピュータ、携帯電話、モバイル機器、携帯情報端末(PDA)、携帯用ゲーム機器、ビデオカメラなどの携帯用電子機器の電源として有用である。また、ハイブリッド電気自動車、燃料電池自動車などにおいて電気モーターを補助する二次電池、電動工具、掃除機、ロボットなどの駆動用電源、プラグインHEVの動力源などとしての利用も期待される。
 11 正極
 11a 正極集電体
 11b 正極活物質層
 12 負極
 12a 負極集電体
 12b 負極活物質層
 13 セパレータ
 14 正極リード
 15 負極リード
 16 ガスケット
 17 外装ケース
 21 負極集電体
 50 電子ビーム式蒸着装置
 51 チャンバー
 52 ガス導入配管
 53 固定台
 54 酸素ノズル
 55 坩堝
 56 排気ポンプ

Claims (15)

  1.  リチウムイオンを吸蔵・放出可能な正極活物質を有する正極と、
     リチウムイオンを吸蔵・放出可能な負極活物質を有する負極と、
     前記正極と前記負極との間に配置されたセパレータと、
     リチウムイオン伝導性を有する電解質と
    を含むリチウム二次電池であって、
     前記正極活物質は、実質的に不可逆容量を有するリチウムニッケル複合酸化物を含み、
     前記負極活物質には予めリチウムが吸蔵されており、
     環境温度が25℃のときの前記リチウム二次電池の完全放電状態において、前記負極中の放出可能なリチウム量が、前記リチウム二次電池の不可逆容量より大きいリチウム二次電池。
  2.  前記負極活物質には、真空蒸着法あるいは電気化学的手法によって予めリチウムが吸蔵されている請求項1に記載のリチウム二次電池。
  3.  前記正極の前記正極活物質の充填密度は、3.0g/cm3より大きく4.0g/cm3未満である請求項1または2に記載のリチウム二次電池。
  4.  前記正極活物質は、1次粒子の集合体である2次粒子を形成し、前記1次粒子の平均粒径は0.5μm以上である請求項1から3のいずれかに記載のリチウム二次電池。
  5.  前記ニッケル系リチウム含有複合酸化物は、LiaNi1-(b+c)Cobc2(ただし、1.0≦a≦1.05、0.1≦b≦0.35、0.005≦c≦0.30、MはAl、Sr、及びCaから選ばれる少なくとも1種である)で表される組成を有する請求項1から4のいずれかに記載のリチウム二次電池。
  6.  前記負極は、前記負極活物質を含む負極活物質層を有し、前記正極は、前記正極活物質を含む正極活物質層を有し、
     前記負極活物質層の一部は、前記セパレータを介して前記正極活物質層と対向しており、
     前記負極活物質層のうち前記正極活物質層と対向している部分および、前記正極活物質層と対向していない部分に、予めリチウムが吸蔵されている請求項1から5のいずれかに記載のリチウム二次電池。
  7.  前記負極活物質はシリコンを含む請求項1から6のいずれかに記載のリチウム二次電池。
  8.  前記負極活物質には、真空蒸着法によって予めリチウムが吸蔵されている請求項7に記載のリチウム二次電池。
  9.  前記負極活物質は黒鉛を含む請求項1から6のいずれかに記載のリチウム二次電池。
  10.  前記完全放電状態は、0.2Cの電流で前記リチウム二次電池を電池電圧が2.5Vになるまで放電した状態である請求項1から9のいずれかに記載のリチウム二次電池。
  11.  (A)リチウムイオンを吸蔵・放出可能な正極活物質として、実質的に不可逆容量を有するリチウムニッケル複合酸化物を含む正極と、リチウムイオンを吸蔵・放出可能な負極活物質を有する負極とを用意する工程と、
     (B)真空蒸着法あるいは電気化学的手法によって前記負極活物質にリチウムを予め吸蔵させる工程と、
     (C)前記負極活物質にリチウムを予め吸蔵させた後の前記負極と、前記正極とをセパレータを介して配置して電極群を形成する工程と
    を包含するリチウム二次電池の製造方法であって、
     環境温度が25℃のときの前記リチウム二次電池の完全放電状態において、前記負極中の放出可能なリチウム量が前記リチウム二次電池の不可逆容量よりも大きくなるように、前記工程(B)で予め吸蔵させるリチウムの量が設定されるリチウム二次電池の製造方法。
  12.  前記負極活物質はシリコンを含み、前記工程(B)では、真空蒸着法によって前記負極活物質にリチウムを予め吸蔵させる請求項11に記載のリチウム二次電池の製造方法。
  13.  リチウムイオンを吸蔵・放出可能な正極活物質を有する正極と、
     リチウムイオンを吸蔵・放出可能な負極活物質を有する負極と、
     前記正極と前記負極との間に配置されたセパレータと、
     リチウムイオン伝導性を有する電解質と
    を含むリチウム二次電池であって、
     前記正極活物質は、不可逆容量を有するリチウム遷移金属複合酸化物を含み、
     前記負極活物質にはリチウムが吸蔵されており、
     環境温度が25℃のときの前記リチウム二次電池の完全放電状態において、
      前記負極中の放出可能なリチウム量が、前記環境温度よりも高い温度における前記正極の容量増加分より大きく、かつ前記環境温度における前記正極の不可逆容量よりも大きく、
      前記負極活物質のリチウムの予備吸蔵量が、前記負極の不可逆容量より大きく、
      前記負極活物質のリチウムの予備吸蔵量と前記負極の不可逆容量との差と、前記負極中の放出可能なリチウム量と前記正極の不可逆容量との差とが等しいリチウム二次電池。
  14.  前記リチウム遷移金属複合酸化物はリチウムニッケル複合酸化物である請求項13に記載のリチウム二次電池。
  15.  前記リチウム遷移金属複合酸化物はリチウムコバルト複合酸化物である請求項13に記載のリチウム二次電池。
PCT/JP2012/000181 2011-01-24 2012-01-13 リチウム二次電池およびその製造方法 WO2012101970A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2012800062280A CN103329330A (zh) 2011-01-24 2012-01-13 锂二次电池及其制造方法
US13/981,084 US20130302688A1 (en) 2011-01-24 2012-01-13 Lithium secondary battery and method for producing same
JP2012554655A JP5555334B2 (ja) 2011-01-24 2012-01-13 リチウム二次電池およびその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-012152 2011-01-24
JP2011012152 2011-01-24

Publications (1)

Publication Number Publication Date
WO2012101970A1 true WO2012101970A1 (ja) 2012-08-02

Family

ID=46580550

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/000181 WO2012101970A1 (ja) 2011-01-24 2012-01-13 リチウム二次電池およびその製造方法

Country Status (4)

Country Link
US (1) US20130302688A1 (ja)
JP (1) JP5555334B2 (ja)
CN (1) CN103329330A (ja)
WO (1) WO2012101970A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013149714A1 (en) 2012-04-04 2013-10-10 Merck Patent Gmbh Particles for electrophoretic displays comprising a core and a random - copolymer coating
WO2013170938A1 (en) 2012-05-14 2013-11-21 Merck Patent Gmbh Particles for electrophoretic displays
WO2013170937A1 (en) 2012-05-14 2013-11-21 Merck Patent Gmbh Particles for electrophoretic displays
WO2013170935A1 (en) 2012-05-14 2013-11-21 Merck Patent Gmbh Particles for electrophoretic displays
WO2013170936A1 (en) 2012-05-14 2013-11-21 Merck Patent Gmbh Particles for electrophoretic displays
WO2013170932A1 (en) 2012-05-14 2013-11-21 Merck Patent Gmbh Particles for electrophoretic displays
WO2013170934A1 (en) 2012-05-14 2013-11-21 Merck Patent Gmbh Particles for electrophoretic displays
JP2016076470A (ja) * 2014-10-06 2016-05-12 日立金属株式会社 リチウムイオン二次電池用正極活物質、それを用いたリチウムイオン二次電池用正極及びリチウムイオン二次電池
JPWO2015129166A1 (ja) * 2014-02-26 2017-03-30 三洋電機株式会社 非水電解質二次電池
JP2017076466A (ja) * 2015-10-13 2017-04-20 株式会社ニコン リチウムイオン二次電池用負極、リチウムイオン二次電池
JP2019096561A (ja) * 2017-11-27 2019-06-20 株式会社豊田自動織機 リチウムイオン二次電池
JPWO2019163483A1 (ja) * 2018-02-22 2021-02-04 三洋電機株式会社 非水電解質二次電池
US11545660B2 (en) 2017-10-20 2023-01-03 Lg Energy Solutions, Ltd. Long-life and ultra-high energy density lithium secondary battery

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9166222B2 (en) 2010-11-02 2015-10-20 Envia Systems, Inc. Lithium ion batteries with supplemental lithium
US9780358B2 (en) 2012-05-04 2017-10-03 Zenlabs Energy, Inc. Battery designs with high capacity anode materials and cathode materials
US10553871B2 (en) 2012-05-04 2020-02-04 Zenlabs Energy, Inc. Battery cell engineering and design to reach high energy
US11476494B2 (en) * 2013-08-16 2022-10-18 Zenlabs Energy, Inc. Lithium ion batteries with high capacity anode active material and good cycling for consumer electronics
CA2941316C (en) * 2014-04-03 2020-06-30 Sony Corporation Positive and negative electrode configuration of a secondary battery, battery pack, electronic device, electrically driven vehicle, storage device, and power system
KR102488677B1 (ko) * 2017-05-12 2023-01-16 주식회사 엘지에너지솔루션 리튬 이차전지의 제조방법
US11094925B2 (en) 2017-12-22 2021-08-17 Zenlabs Energy, Inc. Electrodes with silicon oxide active materials for lithium ion cells achieving high capacity, high energy density and long cycle life performance
JP7293055B2 (ja) * 2019-09-11 2023-06-19 株式会社東芝 充放電制御装置、電池パック、車両及び充放電制御方法
ES2975913T3 (es) * 2019-11-01 2024-07-17 Lg Energy Solution Ltd Método de preparación de electrodo negativo
US11585862B2 (en) * 2020-02-28 2023-02-21 Denso Corporation Battery deterioration prediction system
US11804592B2 (en) 2021-02-12 2023-10-31 WATTRII, Inc. High-energy cathodes, batteries, and methods of making the same
US11380893B1 (en) 2021-02-12 2022-07-05 WATTRII, Inc. High energy cathodes, batteries, and methods of making the same
CN117597474A (zh) * 2021-02-12 2024-02-23 瓦特里股份有限公司 高能量阴极及其制造方法
US11374209B1 (en) 2021-02-12 2022-06-28 WATTRII, Inc. High-energy cathodes, batteries, and methods of making the same
US12087909B2 (en) 2022-06-27 2024-09-10 WATTRII, Inc. High energy batteries and methods of making the same
KR102572748B1 (ko) * 2022-08-04 2023-08-29 에스케이온 주식회사 리튬 이차 전지용 양극 활물질의 제조 방법, 리튬 이차 전지용 양극 및 리튬 이차 전지

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11288716A (ja) * 1998-03-31 1999-10-19 Hitachi Maxell Ltd リチウムイオン二次電池
JP2005322420A (ja) * 2004-05-06 2005-11-17 Hitachi Ltd エネルギー貯蔵デバイス
JP2007165114A (ja) * 2005-12-14 2007-06-28 Shin Kobe Electric Mach Co Ltd リチウム二次電池
JP2008262832A (ja) * 2007-04-12 2008-10-30 Matsushita Electric Ind Co Ltd 非水電解質二次電池
JP2009076373A (ja) * 2007-09-21 2009-04-09 Shin Etsu Chem Co Ltd 非水系二次電池
JP2009272153A (ja) * 2008-05-08 2009-11-19 Hitachi Maxell Ltd リチウム二次電池
WO2010050507A1 (ja) * 2008-10-31 2010-05-06 日立マクセル株式会社 非水二次電池
WO2010106768A1 (ja) * 2009-03-18 2010-09-23 パナソニック株式会社 非水電解質二次電池用正極、それを用いた非水電解質二次電池、およびその製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8835027B2 (en) * 2007-09-21 2014-09-16 Uchicago Argonne, Llc Positive electrodes for lithium batteries
JP5419885B2 (ja) * 2008-10-08 2014-02-19 パナソニック株式会社 負極およびその製造方法ならびに非水電解質二次電池
JP5612375B2 (ja) * 2009-09-29 2014-10-22 日本碍子株式会社 正極活物質及びそれを用いたリチウム二次電池

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11288716A (ja) * 1998-03-31 1999-10-19 Hitachi Maxell Ltd リチウムイオン二次電池
JP2005322420A (ja) * 2004-05-06 2005-11-17 Hitachi Ltd エネルギー貯蔵デバイス
JP2007165114A (ja) * 2005-12-14 2007-06-28 Shin Kobe Electric Mach Co Ltd リチウム二次電池
JP2008262832A (ja) * 2007-04-12 2008-10-30 Matsushita Electric Ind Co Ltd 非水電解質二次電池
JP2009076373A (ja) * 2007-09-21 2009-04-09 Shin Etsu Chem Co Ltd 非水系二次電池
JP2009272153A (ja) * 2008-05-08 2009-11-19 Hitachi Maxell Ltd リチウム二次電池
WO2010050507A1 (ja) * 2008-10-31 2010-05-06 日立マクセル株式会社 非水二次電池
WO2010106768A1 (ja) * 2009-03-18 2010-09-23 パナソニック株式会社 非水電解質二次電池用正極、それを用いた非水電解質二次電池、およびその製造方法

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013149714A1 (en) 2012-04-04 2013-10-10 Merck Patent Gmbh Particles for electrophoretic displays comprising a core and a random - copolymer coating
WO2013170934A1 (en) 2012-05-14 2013-11-21 Merck Patent Gmbh Particles for electrophoretic displays
WO2013170937A1 (en) 2012-05-14 2013-11-21 Merck Patent Gmbh Particles for electrophoretic displays
WO2013170935A1 (en) 2012-05-14 2013-11-21 Merck Patent Gmbh Particles for electrophoretic displays
WO2013170936A1 (en) 2012-05-14 2013-11-21 Merck Patent Gmbh Particles for electrophoretic displays
WO2013170932A1 (en) 2012-05-14 2013-11-21 Merck Patent Gmbh Particles for electrophoretic displays
WO2013170938A1 (en) 2012-05-14 2013-11-21 Merck Patent Gmbh Particles for electrophoretic displays
JPWO2015129166A1 (ja) * 2014-02-26 2017-03-30 三洋電機株式会社 非水電解質二次電池
JP2016076470A (ja) * 2014-10-06 2016-05-12 日立金属株式会社 リチウムイオン二次電池用正極活物質、それを用いたリチウムイオン二次電池用正極及びリチウムイオン二次電池
JP2017076466A (ja) * 2015-10-13 2017-04-20 株式会社ニコン リチウムイオン二次電池用負極、リチウムイオン二次電池
US11545660B2 (en) 2017-10-20 2023-01-03 Lg Energy Solutions, Ltd. Long-life and ultra-high energy density lithium secondary battery
JP2019096561A (ja) * 2017-11-27 2019-06-20 株式会社豊田自動織機 リチウムイオン二次電池
JPWO2019163483A1 (ja) * 2018-02-22 2021-02-04 三洋電機株式会社 非水電解質二次電池
US11888147B2 (en) 2018-02-22 2024-01-30 Panasonic Holdings Corporation Nonaqueous electrolyte secondary batteries

Also Published As

Publication number Publication date
JP5555334B2 (ja) 2014-07-23
US20130302688A1 (en) 2013-11-14
JPWO2012101970A1 (ja) 2014-06-30
CN103329330A (zh) 2013-09-25

Similar Documents

Publication Publication Date Title
JP5555334B2 (ja) リチウム二次電池およびその製造方法
JP5117638B2 (ja) リチウム二次電池の充放電方法および充放電システム
JP7209780B2 (ja) 二次電池用正極活物質、その製造方法およびこれを含むリチウム二次電池
JP6523444B2 (ja) リチウム二次電池用正極活物質、この製造方法及びこれを含むリチウム二次電池
WO2011145301A1 (ja) リチウム二次電池
CN111226330A (zh) 二次电池用正极材料和包含该正极材料的锂二次电池
CN117038880A (zh) 用于锂二次电池的正极活性材料及包括其的锂二次电池
JP7463321B2 (ja) 正極活物質およびこれを含むリチウム二次電池
CN110710032B (zh) 用于锂二次电池的正极、其制备方法以及包括其的锂二次电池
CN110890525B (zh) 用于锂二次电池的正极活性材料及包括其的锂二次电池
JP2020031052A (ja) 正極活物質およびこれを含むリチウム二次電池
JP7523490B2 (ja) 正極活物質およびこれを含むリチウム二次電池
JP7297377B2 (ja) リチウム二次電池用正極活物質及び該正極活物質の製造方法
EP4037035A1 (en) Irreversible additive, cathode material comprising irreversible additive, and lithium secondary battery comprising cathode material
CN113823774A (zh) 正极活性材料及包括其的锂二次电池
JP7418490B2 (ja) リチウム複合酸化物およびこれを含むリチウム二次電池
CN111344256A (zh) 制备二次电池用正极活性材料的方法
JP2024127969A (ja) 正極活物質、正極及びこれを含むリチウム二次電池
KR20240113885A (ko) 양극 활물질 및 이를 포함하는 리튬 이차전지
KR102132878B1 (ko) 리튬 이차전지용 양극 활물질, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
JP7134552B2 (ja) リチウム二次電池用正極活物質及びリチウム二次電池
JP2023066395A5 (ja)
JP7335053B2 (ja) 非可逆添加剤、前記非可逆添加剤を含む正極、前記正極を含むリチウム二次電池
KR20170048208A (ko) 이차전지용 양극활물질 및 이를 포함하는 이차전지
CN112424977A (zh) 二次电池用正极活性材料和包含所述材料的锂二次电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12738997

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2012554655

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13981084

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12738997

Country of ref document: EP

Kind code of ref document: A1