WO2012100609A1 - 从甲苯二异氰酸酯合成过程排放的焦油废渣回收甲苯二胺 - Google Patents

从甲苯二异氰酸酯合成过程排放的焦油废渣回收甲苯二胺 Download PDF

Info

Publication number
WO2012100609A1
WO2012100609A1 PCT/CN2011/084196 CN2011084196W WO2012100609A1 WO 2012100609 A1 WO2012100609 A1 WO 2012100609A1 CN 2011084196 W CN2011084196 W CN 2011084196W WO 2012100609 A1 WO2012100609 A1 WO 2012100609A1
Authority
WO
WIPO (PCT)
Prior art keywords
tda
waste
tar
tdi
water
Prior art date
Application number
PCT/CN2011/084196
Other languages
English (en)
French (fr)
Inventor
苏德水
Original Assignee
沧州丰源环保科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 沧州丰源环保科技有限公司 filed Critical 沧州丰源环保科技有限公司
Priority to EP11856910.2A priority Critical patent/EP2671867B1/en
Priority to JP2013550741A priority patent/JP6144204B2/ja
Priority to KR1020127026702A priority patent/KR101823448B1/ko
Priority to US13/639,768 priority patent/US8658828B2/en
Publication of WO2012100609A1 publication Critical patent/WO2012100609A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/62Preparation of compounds containing amino groups bound to a carbon skeleton by cleaving carbon-to-nitrogen, sulfur-to-nitrogen, or phosphorus-to-nitrogen bonds, e.g. hydrolysis of amides, N-dealkylation of amines or quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/43Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/44Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to only one six-membered aromatic ring
    • C07C211/49Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to only one six-membered aromatic ring having at least two amino groups bound to the carbon skeleton
    • C07C211/50Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to only one six-membered aromatic ring having at least two amino groups bound to the carbon skeleton with at least two amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/51Phenylenediamines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Definitions

  • the present invention relates to a process for the recovery of terpene diamine (TDA) by hydrolysis of high boiling tar waste or solid distillation residue from the synthesis of toluene diisocyanate (TDI) under mild reaction conditions.
  • TDA terpene diamine
  • TDI toluene diisocyanate
  • TDI is an important raw material for polyurethane production and is mainly used as raw materials and intermediates for polyurethane soft foams, rigid foams, adhesives, coatings, sealants and a range of elastomers.
  • TDA also has broad market prospects.
  • TDI is typically separated from the product mixture by rectification.
  • the high-boiling solid residue or distillation residue discharged from the bottom fraction of the rectification column after drying is commonly referred to as tar.
  • the tar is a mixture of polymeric biurets, by-products, and various impurities.
  • the prior art describes various methods of directly utilizing the materials in the distillation residue discharged from the TDI synthesis process.
  • the distillation residue is phosgenated by US 3, 499, 021 and returned to the process.
  • DE 42 11 774, DD 257 827 and US 3,694, 323 the distillation residue is mixed with diphenylnonane diisocyanate (MDI), partially distilled and converted to polyurethane.
  • MDI diphenylnonane diisocyanate
  • Another way to utilize the distillation residue is to hydrolyze it. It is a well-known technique to hydrolyze TDI tar by adding an aqueous solution of ammonia or alkaline earth metal hydroxide or an acidic aqueous solution of an inorganic or organic acid to prepare TDA.
  • TDA aqueous solution of ammonia or alkaline earth metal hydroxide or an acidic aqueous solution of an inorganic or organic acid
  • the TDA yield can be improved.
  • the yield improvement is limited and the practicability is poor. Reports in this regard can be found in US3, 331,876, US 3,128,310, DE2942678, DE1962598 and JP Sho 58-201751.
  • the hydrolysis technique described in Korean Patent No. 2001-52948 uses a continuous or semi-continuous reverse mixing reactor, which improves the mass transfer efficiency to a certain extent, but is limited to increasing the degree of mechanical mixing, and still does not improve the activity of the reactants.
  • the resistance limit of mass transfer is basically removed, and the effect is minimal.
  • Korean Patent No. 2001-1488 discloses a method in which ammonia water is used as a hydrolysis catalyst for tar waste, and hydrolysis is carried out in supercritical water at 350-600 ° C and 218-400 atmospheres. Although the high temperature and high pressure conditions of supercritical water can increase the hydrolysis rate, supercritical water not only corrodes the equipment, but also reduces the solubility of various salts, and ammonium bicarbonate, ammonium carbonate and Organic polyamine salts and their complex hydrate salts can cause problems such as blockage of equipment pipelines and secondary environmental pollution.
  • the Chinese patent CN200480015939.X has carried out a series of improvements on supercritical hydrolysis tar waste.
  • the yield of the hydrolysate p-phenylenediamine (TDA) has been significantly improved and can be reused in the TDI production process.
  • the hydrolysis catalyst carbonate and water pass. Recycling recycling.
  • the invention selects alkaline earth metal hydroxide or carbonate as a catalyst, can avoid the problems caused by the ammonia water catalyst, but still solves the problem that the reactants have poor solubility in water and difficult mass transfer, and thus still adopts high temperature and high pressure (100- 200 atmospheres, temperature 280-320 ° C) Supercritical hydrolysis method, it is difficult to get rid of the high requirements of equipment, high investment, production safety is difficult to guarantee, and the resulting equipment installation pipeline blockage, etc., difficult to achieve industrialization.
  • the object of the present invention is to recover TDA from tar waste discharged from the TDI synthesis process under mild conditions.
  • a method for recovering TDA from tar waste discharged from a TDI synthesis process comprising the steps of:
  • phase transfer catalyst selected from the group consisting of higher alcohols, polyols, polyether compounds having a boiling point range of 120-280 ° C and Combination
  • the slurry is hydrolyzed to produce TDA at a temperature of 120-180 ° C and a gauge pressure of 0-0.95 MPa;
  • the tar waste is pulverized into particles of 100 mesh or less.
  • the protective gas is preferably nitrogen.
  • the hydrolysis reaction can take from 8 to 16 hours.
  • the base may be sodium hydroxide or potassium hydroxide, or may be sodium carbonate or potassium carbonate.
  • the pH of the slurry is preferably not less than 10.
  • the weight percentage of the tar waste particles is 10-30%
  • the weight percentage of the phase transfer catalyst is 40-75%
  • the weight percentage of the base is 10-30%
  • the weight percentage of water is 0. -25 %.
  • the phase transfer catalyst is selected from the group consisting of n-heptanol, diethylene glycol, ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, hexanediol, and combinations thereof.
  • the above step d) may include: subjecting the hydrolysis reaction solution to thermal filtration to remove the solid precipitate, and then separating the first gas phase overhead fraction and the first bottom fraction through the first distillation column, the first gas phase overhead fraction containing Water vapor and light gaseous components, the first bottoms fraction comprising phase transfer catalyst, TDA and high boiling coal tar; and finally TDA is separated from the first bottoms fraction by vacuum distillation.
  • the above vacuum distillation may include: separating the first bottoms fraction from the second overhead vapor phase fraction and the second bottoms fraction through the second vacuum distillation column, the second overhead gas phase fraction containing the phase transfer catalyst; The bottoms fraction contains TDA and high boiling coal tar; and TDA is separated from the second bottoms fraction.
  • the step of separating TDA from the second bottoms fraction may include: separating the second bottoms fraction from the third overhead vapor phase fraction and the third bottoms fraction through a third distillation column, the third overhead fraction containing TDA, The third bottoms fraction contains high boiling coal tar.
  • phase transfer catalyst separated by the second vacuum distillation column is preferably recycled.
  • the water vapor contained in the first gas phase overhead fraction is preferably condensed after being condensed.
  • the hydrolysis reaction can be carried out in two or more reactors in series or in parallel.
  • the hydrolysis reaction can also be carried out in a temperature-controlled heated reactor, in a stirrable reactor, and/or in a closed or reactor with a reflux unit.
  • the invention greatly improves the hydrolysis rate of the tar end, and realizes mild conditions such as
  • TDA recovery up to 60% Efficient recovery of TDA at 120-180 ° C and 0-0.95 MPa (measured pressure) (TDA recovery up to 60%), and by recycling phase transfer catalyst (with a recovery of up to 99.6%) and water,
  • the invention has significant economic benefits and environmental friendliness.
  • the TDI tar solid waste granules, diethylene glycol, sodium hydroxide and water were mixed at a weight ratio of 10:75:10:5. After stirring, the air was purged with nitrogen, and then refluxed at 180 ° C (normal pressure, that is, the measured pressure was OMPa) for 10 hours. The hydrolyzed mixture is subjected to hot filtration to remove unreacted solid residue, salt, etc., and then water vapor is removed through the first column (can be recycled after condensation) and light gaseous components, and the second column recovers diethylene glycol. (Recovery rate: 99.4%), product TDA was obtained from the third column overhead fraction, and the TDA yield was 58% by weight of the amount of added waste.
  • the TDI tar solid waste granules, diethylene glycol, sodium hydroxide and water were mixed at a weight ratio of 10:75:10:5. After stirring, the atmosphere was purged with nitrogen, and then reacted at 180 ° C for 10 hours in a closed reaction vessel (0.95 MPa). The remaining steps are the same as in the first embodiment.
  • the recovery of diethylene glycol was 99.5 %, and the yield of TDA was 60% (by weight) of the amount of added waste.
  • the TDI tar solid waste granules, diethylene glycol and potassium hydroxide were mixed at a weight ratio of 15:70:15. After stirring, the air was purged with nitrogen, and then refluxed at 180 ° C (atmospheric pressure) for 10 hours. The remaining steps are similar to Embodiment 1. The recovery of diethylene glycol was 99.2%, and the yield of TDA was 53% (by weight) of the amount of added waste.
  • the TDI tar solid waste granules, diethylene glycol and potassium hydroxide were mixed at a weight ratio of 15:70:15. After stirring, the atmosphere was purged with nitrogen, and then reacted at 180 ° C for 10 hours in a closed reaction vessel (0.15 MPa). The remaining steps are similar to Embodiment 1.
  • the recovery of diethylene glycol was 99.3 %, and the yield of TDA was 55% (by weight) of the amount of waste added.
  • the TDI tar solid waste granules, 1,2-propanediol, potassium hydroxide and water were mixed at a weight ratio of 20:60:15:5. After stirring, the atmosphere was purged with nitrogen, and then reacted at 140 ° C for 12 hours in a closed reaction vessel (0.3 MPa). The remaining steps are the same as in the first embodiment. Among them, the recovery rate of 1,2-propanediol was 99.2%, and the TDA yield was 42% of the amount of added waste.
  • TDI tar solid waste granules, 1,2-propanediol and hydrazine are mixed in a weight ratio of 20:60:20. After stirring, the atmosphere was purged with nitrogen, and then refluxed at 130 ° C (atmospheric pressure) for 10 hours. The remaining steps are similar to Embodiment 1. Among them, the recovery rate of 1,2-propanediol was 98.7 %, and the TDA yield was 39% of the amount of added waste.
  • TDI tar solid waste granules, 1,2-propanediol and hydrazine are mixed in a weight ratio of 20:60:20. After stirring, the atmosphere was purged with nitrogen, and then reacted at 130 ° C for 10 hours in a closed reaction vessel (0.15 MPa). The remaining steps are similar to Embodiment 1. Among them, the recovery rate of 1,2-propanediol was 98.9 %, and the TDA yield was 38% of the amount of added waste.
  • TDI tar solid waste pellets 1,3-propanediol, sodium hydroxide and water at 15:45:15: Mix 25 by weight. After stirring, the atmosphere was purged with nitrogen, and the mixture was refluxed at 160 ° C for 8 hours. The remaining steps are the same as in the first embodiment. The recovery of 1,3-propanediol was 98.3 %, and the yield of TDA was 38% of the amount of waste added.
  • TDI tar solid waste granules, 1,3-propanediol, hydrazine hydroxide and water were mixed at a weight ratio of 15:45:15:25. After stirring, the atmosphere was purged with nitrogen, and then reacted at 160 ° C for 12 hours in a closed reaction vessel (0.55 MPa). The remaining steps are the same as in the first embodiment. The recovery of 1,3-propanediol was 98.9 %, and the yield of TDA was 44% of the amount of waste added.
  • TDI tar solid waste granules, 1,3-propanediol and sodium hydroxide were mixed at a weight ratio of 25:50:25. After stirring, the atmosphere was purged with nitrogen, and the mixture was refluxed (normal pressure) at 160 ° C for 8 hours. The remaining steps are similar to Embodiment 1. The recovery of 1,3-propanediol was 98.1%, and the yield of TDA was 37% of the amount of waste added.
  • the TDI tar solid waste granules, 1,3-propanediol and hydrazine hydroxide were mixed at a weight ratio of 25:50:25. After stirring, the atmosphere was purged with nitrogen, and the mixture was reacted at 160 ° C for 12 hours in a closed reaction vessel (0.15 MPa). The remaining steps are similar to Embodiment 1. The recovery of 1,3-propanediol was 98.8 %, and the yield of TDA was 43% of the amount of waste added.
  • the TDI tar solid waste granules, ethylene glycol, sodium hydroxide and water were mixed at a weight ratio of 15:65:10:10. After stirring, the atmosphere was purged with nitrogen and then hydrolyzed at 150 ° C for 15 hours under reflux (normal pressure). The remaining steps are the same as in the first embodiment.
  • the recovery of ethylene glycol was 99.3%, and the yield of TDA was 57% of the amount of waste added.
  • the TDI tar solid waste granules, ethylene glycol, sodium hydroxide and water were mixed at a weight ratio of 15:65:10:10. After stirring, the atmosphere was purged with nitrogen, and then reacted at 120 ° C for 13 hours in a closed reaction vessel (0.15 MPa). The remaining steps are the same as in the first embodiment.
  • the recovery of ethylene glycol was 99.6%, and the yield of TDA was 49% of the amount of waste added.
  • the TDI tar solid waste granules, ethylene glycol and sodium hydroxide were mixed at a weight ratio of 20:65:15. After stirring, the atmosphere was purged with nitrogen, and the mixture was refluxed (atmospheric pressure) at 140 ° C for 15 hours. The remaining steps are similar to Example 1. The recovery rate of ethylene glycol is 99.0%. The TDA yield was 55% of the amount of added waste.
  • the TDI tar solid waste granules, ethylene glycol and sodium hydroxide were mixed at a weight ratio of 20:65:15. After stirring, the atmosphere was purged with nitrogen, and then reacted at 140 ° C for 13 hours in a closed reaction vessel (0.15 MPa). The remaining steps are similar to Embodiment 1. The recovery of ethylene glycol was 99.1%, and the yield of TDA was 50% of the amount of waste added.
  • TDI tar solid waste granules, 1,4-butanediol, sodium hydroxide and water were mixed at a weight ratio of 30:40:25:5. After stirring, the atmosphere was purged with nitrogen, and then hydrolyzed at 150 ° C for 15 hours. The remaining steps are the same as in the first embodiment.
  • the recovery of 1,4-butanediol was 99%, and the yield of TDA was 42% of the amount of waste added.
  • TDI tar solid waste granules, 1,4-butanediol, hydrazine hydroxide and water were mixed at a weight ratio of 30:40:25:5. After stirring, the atmosphere was purged with nitrogen, and then reacted at 150 ° C for 10 hours in a closed reactor (0.4 MPa). The remaining steps are the same as in the first embodiment.
  • the recovery of 1,4-butanediol was 99.2%, and the yield of TDA was 38% of the amount of waste added.
  • the TDI tar solid waste granules, 1,4-butanediol and sodium hydroxide were mixed at a weight ratio of 30:40:30. After stirring, the atmosphere was purged with nitrogen, and then refluxed at 150 ° C (atmospheric pressure) for 15 hours. The remaining steps are similar to Embodiment 1. The recovery of 1,4-butanediol was 98.7 %, and the TDA yield was 41% of the amount of added waste.
  • the TDI tar solid waste granules, 1,4-butanediol and hydrazine hydroxide were mixed at a weight ratio of 30:40:30. After stirring, the atmosphere was purged with nitrogen, and then reacted at 150 ° C for 14 hours in a closed reaction vessel (0.15 MPa). The remaining steps are similar to Embodiment 1. The recovery of 1,4-butanediol was 98.8 %, and the yield of TDA was 40% of the amount of waste added.
  • the TDI tar solid waste granules, hexanediol, sodium hydroxide and water were mixed at a weight ratio of 10:45:10:25. After stirring, the atmosphere was purged with nitrogen, and then refluxed at 130 ° C for 11 hours. The remaining steps are the same as in the first embodiment. The recovery of hexanediol was 99%, and the TDA yield was 42% of the amount of waste added.
  • Example 22 The TDI tar solid waste granules, hexanediol, sodium hydroxide and water were mixed at a weight ratio of 10:45:10:25. After stirring, the atmosphere was purged with nitrogen, and then reacted at 130 ° C for 9 hours in a closed reaction vessel (0.2 MPa). The remaining steps are the same as in the first embodiment. The recovery of hexanediol was 99.1%, and the yield of TDA was 37% of the amount of waste added.
  • the TDI tar solid waste granules, hexanediol and sodium hydroxide were mixed at a weight ratio of 25:50:25. After stirring, the atmosphere was purged with nitrogen, and then refluxed at 130 ° C (atmospheric pressure) for 11 hours. The remaining steps are similar to Embodiment 1. The recovery of hexanediol was 98.7 %, and the yield of TDA was 41% of the amount of added slag.
  • the TDI tar solid waste granules, hexanediol and carbonic acid clock were mixed at a weight ratio of 20:50:30. After stirring, the atmosphere was purged with nitrogen, and then reacted at 130 ° C for 9 hours in a closed reaction vessel (0.15 MPa). The remaining steps are similar to Embodiment 1. The recovery of hexanediol was 98.8 %, and the yield of TDA was 36% of the amount of added slag.
  • the TDI tar solid waste granules, n-heptanol and sodium hydroxide and water were mixed at a weight ratio of 15:60:15:10. After stirring, the atmosphere was purged with nitrogen, and then refluxed at 120 ° C for 16 hours. The remaining steps are the same as in the first embodiment.
  • the recovery of n-heptanol was 98.0%, and the yield of TDA was 35% of the amount of waste added.
  • TDI tar solid waste granules, n-heptanol and hydrazine hydroxide and water were mixed at a weight ratio of 15:60:15:10. After stirring, the atmosphere was purged with nitrogen, and the mixture was reacted at 120 ° C for 16 hours in a closed reaction vessel (0.15 MPa). The remaining steps are the same as in the first embodiment.
  • the recovery of n-heptanol was 98.5 %, and the yield of TDA was 36% of the amount of waste added.
  • the TDI tar solid waste granules an equal mixture of butanediol and hexanediol, sodium carbonate and water were mixed at a weight ratio of 10:60:30:10. After stirring, the air was purged with nitrogen, and then reacted at 140 ° C in a closed reaction vessel (0.3 MPa) for 10 hours. The remaining steps are the same as in the first embodiment. The recovery of the mixed alcohol was 99.2%, and the TDA yield was 43% of the amount of the added waste.
  • TDI tar solid waste granules an equal mixture of diethylene glycol and ethylene glycol, and sodium hydroxide were mixed at a weight ratio of 20:65:15. After stirring, after passing through the nitrogen to exhaust the air, The reaction was carried out at 140 ° C under reflux (atmospheric pressure) for 14 hours. The remaining steps are similar to Example 1. The recovery of the mixed alcohol was 99.0%, and the TDA yield was 55% of the amount of the added waste.
  • the TDI tar solid waste granules, an equal mixture of diethylene glycol and n-heptanol, and a hydrogen oxidation clock were mixed at a weight ratio of 28:50:22. After stirring, the atmosphere was purged with nitrogen, and then reacted at 130 ° C for 14 hours in a closed reaction vessel (0.15 MPa). The remaining steps are similar to Embodiment 1. The recovery of the mixed alcohol was 98.9 %, and the TDA yield was 46% of the amount of the added waste.
  • TDI tar solid waste granules an equal mixture of 1,2-propanediol and n-heptanol, and potassium hydroxide and water were mixed at a weight ratio of 15:60:15:10. After stirring, the atmosphere was purged with nitrogen, and then reacted at 130 ° C for 14 hours in a closed reaction vessel (0.2 MPa). The remaining steps are the same as in the first embodiment. The recovery of the mixed alcohol was 98.0%, and the TDA yield was 41% of the amount of the added waste.
  • phase transfer catalyst is used for the hydrolysis reaction of the TDI tar waste residue, the industrial production can be realized under relatively mild conditions, and the TDA is recovered, thereby realizing the purpose of resource reuse.
  • the recovery of indolediamine of the present invention is about 35-60% by weight of the solids of the TDI high-boiling tar waste used for hydrolysis, thereby reducing the amount of solid waste which is finally incinerated by 35-60% by weight.
  • the residual wastewater and the used phase transfer catalyst after the hydrolysis reaction of the present invention can be recycled, which not only improves the economics of the process, but also the final solid waste does not aggravate the negative impact on the environment.
  • the present invention achieves efficient recovery of TDA under mild conditions, and recycles wastewater and used phase transfer catalysts, making it practical for industrial production, economical and environmentally friendly. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Processing Of Solid Wastes (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

从曱苯二异氰酸酯合成过程排放的焦油废渣回收曱苯二胺 技术领域
本发明涉及在温和反应条件下, 通过水解曱苯二异氰酸酯 (TDI ) 合成过程排放的高沸点焦油废渣或固体蒸馏残余物来回收制备曱苯二 胺(TDA ) 的方法。
背景技术
TDI是重要的聚氨酯生产原料, 主要用于聚氨酯软泡、 硬泡、 粘 合剂、涂料、密封剂及系列弹性体的原料和中间体。 TDA作为制备 TDI 的主要原料以及制备多种染料与医药中间体的重要原料, 同样有着广 阔的市场前景。
TDI合成工艺结束时, 通常利用精馏法从产品混合物中分离得到 TDI。精馏塔底部馏分经干燥后排放的高沸点固体残渣或蒸馏残余物俗 称焦油末。 焦油末是由聚合缩二脲、 副产物和多种杂质组成的混合物。
现有技术描述了直接利用 TDI合成过程排放的蒸馏残余物中的物 质的各种方法。 US3, 499,021对蒸馏残余物进行光气化处理并返回到工 艺中。 在 DE4211774、 DD257827和 US3,694,323中, 蒸馏残余物与二 苯基曱烷二异氰酸酯 (MDI) 混合, 部分蒸馏并转化成聚氨酯。
DD296088. US4, 143,008、 US4,000,099和 US4, 311,800描述了蒸馏残 余物与多元醇直接反应形成相应的聚氨酯, 用以制备合成树脂、 木质 纤维素等。 但是, 这些工艺所得到的产物附加值不高, 醇耗量大(醇 解反应需消耗掉至少 24%的多元醇) , 并且成本高。
利用蒸馏残余物的另一种途径是对其进行水解。 采用添加氨水、 碱土金属氢氧化物的碱性水溶液, 或者无机、 有机酸的酸性水溶液, 对 TDI焦油末进行水解以制备 TDA是众所周知的技术。但由于该焦油 末具有特殊物理化学性质, 既难溶于水又难溶于有机溶剂, 其水解属 非均相反应, 传质、 传热过程慢, 致使常温常压下水解反应速度极慢, 收率极低。
通过提高水解温度和压力、 改善物料混合接触方式等方法, 虽可 以提高 TDA收率, 但由于受水的沸点低、 反应物水溶性差的限制, 收 率提高程度有限, 实用性较差。 这方面的报导可见 US3, 331,876、 US3,128,310、 DE2942678、 DE1962598以及 JP昭 58-201751。 另外, 韩国专利 2001-52948介绍的水解技术采用连续或半连续的逆向混合反 应器, 虽在一定程度上提高了传质效率, 但仅限于增加机械混合的程 度, 仍未改善反应物活性, 难以根本摆脱传质的阻力限制, 收效甚微。
采用亚临界水或超临界水水解方式, 可以进一步提高水解温度与 压力, 提高反应速度, 增加 TDA收率。 韩国专利 2001-1488披露了一 种方法,其中用氨水作为焦油废料的水解催化剂,在 350-600 °C、218-400 个大气压下, 在超临界水中进行水解。 尽管超临界水的高温高压条件 可以提高水解速度, 但超临界水不仅使设备腐蚀, 还降低了多种盐类 的溶解度, 加之水解过程中由部分氨水转化而成的碳酸氢铵、 碳酸铵 和有机聚胺盐及其复合水合物盐类, 均会导致设备管线堵塞及二次环 境污染等问题。
中国专利 CN200480015939.X对超临界水解焦油废料进行了系列 改进, 水解产物曱苯二胺 (TDA ) 的收率获得显著提高, 并可回用于 TDI生产过程, 其水解催化剂碳酸盐和水通过回收循环使用。 该发明 选用碱土金属氢氧化物或者碳酸盐作为催化剂, 能够避免氨水催化剂 带来的问题, 但仍未解决反应物在水中溶解性差、 传质困难的问题, 因而仍然采用了高温高压 ( 100-200个大气压、 温度为 280-320°C ) 超 临界水解方式, 故难以摆脱对设备的高要求、 高投入, 生产安全性难 以保证, 以及由此带来的设备装置管线堵塞等问题, 难以实现工业化。
基于上述问题,从 TDI蒸馏残余物制备 TDA至今未能以工业规模 实施, 致使目前大部分 TDI蒸馏残余物不得不被高温焚烧掉, 不仅造 成大量资源浪费, 而且难以避免造成二次污染。
尽管水解法处理焦油末可以大大减少 TDI蒸馏残余物的焚烧量, 能从废物中回收利用高附加值的 TDA, 从而实现异氰酸酯产业节能减 排和资源循环利用的目的,但是由于水解 TDI焦油废渣制备 TDA属于 非均相反应, 低于 250°C水解存在传质阻力大、 反应活性差等不足, 而 高于 400°C水解又出现目标产物 TDA易热解等问题。 这导致现有方法 存在如下问题: 受水解介质沸点低的限制, 难以提高水解反应的温度, 水解效率差; 选用不合适的催化剂导致焦油末转化成价值低的有机盐 类, 无法实现资源的再利用; 使用过量的水、 废水或丢弃物中含有的 氮成分导致二次污染; 通过高温高压的方法虽然可以一定程度上提高 水解收率, 但超临界水解设备投入高, 操作安全性得不到保障, 难以 实现真正的工业化生产; 醇解工艺耗醇量过大, 目标产物价值不高; 醇解后再水解制备 TDA时收率极低, 经济适用性差。 因此, 水解 TDI 工艺焦油废渣直接制备 TDA存在相当大的难度, 现有技术难以满足工 业化的需求。
发明内容
本发明的目的是在温和条件下, 从 TDI合成过程排放的焦油废渣 回收 TDA。
根据本发明, 提供了一种从 TDI合成过程排放的焦油废渣回收 TDA的方法, 包括步骤:
a ) 将所述焦油废渣粉碎成颗粒;
b )将所述焦油废渣的颗粒分散在相转移催化剂、 碱和水中以获得 浆料,所述相转移催化剂选自沸点范围在 120-280°C的高级醇、多元醇、 聚醚类化合物及其组合;
c )保护性气体保护下, 在温度 120-180°C和表测压力 0-0.95MPa 下, 使所述浆料发生水解反应以产生 TDA; 以及
d )从水解反应溶液中回收所得到的 TDA。
优选焦油废渣粉碎成 100目以下的颗粒。
保护性气体优选为氮气。
水解反应的时间可以为 8-16小时。
碱可以为氢氧化钠或氢氧化钾, 也可以是碳酸钠或碳酸钾。
浆料的 pH值优选不低于 10。
优选在所述浆料中, 所述焦油废渣颗粒的重量百分比为 10-30 %、 相转移催化剂的重量百分比为 40-75 %、 碱的重量百分比为 10-30 %、 水 的重量百分比为 0-25 %。
优选相转移催化剂选自正庚醇、二甘醇、 乙二醇、 1,2-丙二醇、 1,3- 丙二醇、 1,4-丁二醇、 己二醇及其组合。
上述步骤 d )可以包括: 对水解反应溶液进行热滤以除去固体沉淀 物, 然后经第一蒸馏塔分离出第一气相塔顶馏分和第一塔底馏分, 所 述第一气相塔顶馏分含有水蒸气和轻质气态组分, 所述第一塔底馏分 含有相转移催化剂、 TDA以及高沸点煤焦油; 最后通过减压蒸馏, 从 第一塔底馏分中分离出 TDA。 上述减压蒸馏可以包括: 使第一塔底馏分经第二减压蒸馏塔分离 出第二塔顶气相馏分和第二塔底馏分, 所述第二塔顶气相馏分含有相 转移催化剂; 第二塔底馏分含有 TDA以及高沸点煤焦油; 并由第二塔 底馏分分离出 TDA。
由第二塔底馏分分离出 TDA的步骤可以包括: 使第二塔底馏分经 第三蒸馏塔分离出第三塔顶气相馏分和第三塔底馏分, 所述第三塔顶 馏分含有 TDA, 第三塔底馏分含有高沸点煤焦油。
经第二减压蒸馏塔分离出的相转移催化剂优选被循环使用。
第一气相塔顶馏分中包含的水蒸气冷凝后优选被循环使用。
水解反应可以在串联或并联的两个或更多个反应器中进行。 水解 反应还可以在可控温加热的反应器中进行, 在可搅拌的反应器中进行, 和 /或在密闭或者带有回流装置的反应器中进行。
本发明大大提高了焦油末的水解速度, 实现了温和条件例如
120-180°C和 0-0.95MPa (表测压力) 下对 TDA的高效回收( TDA回 收率高达 60% ),并通过循环使用相转移催化剂(其回收率高达 99.6% ) 和水, 使本发明具有显著的经济效益和环境友好性。
具体实施方式
通过下列实施例可以更好地理解本发明, 但并不能理解为对本发 明范围的任何限制。
实施例 1
将 TDI焦油固体废渣颗粒、 二甘醇、 氢氧化钠和水以 10:75:10:5 的重量比进行混合。 搅拌下, 通入氮气赶尽空气后, 于 180°C回流(常 压, 即表测压力为 OMPa )水解 10小时。 对水解后的混合液进行热滤, 以除去未反应的固体残渣和盐等, 然后经第一塔除去水蒸气(冷凝后 可以循环使用) 和轻质气态组分, 第二塔回收二甘醇 (回收率为 99.4 % ) , 由第三塔塔顶馏分得到产品 TDA, TDA收率为加入废渣量的 58% (重量百分比) 。
实施例 2
将 TDI焦油固体废渣颗粒、 二甘醇、 氢氧化钠和水以 10:75:10:5 的重量比进行混合。 搅拌下, 通入氮气赶尽空气后, 于 180°C在密闭的 反应釜(0.95MPa ) 中反应 10小时。 其余步骤同实施例 1。 其中二甘 醇回收率为 99.5 % , TDA收率为加入废渣量的 60% (重量百分比) 。 实施例 3
将 TDI焦油固体废渣颗粒、 二甘醇和氢氧化钾以 15:70:15的重量 比进行混合。 搅拌下, 通入氮气赶尽空气后, 于 180°C回流(常压)反 应 10小时。 其余步骤类似于实施例 1。 其中二甘醇回收率为 99.2 % , TDA收率为加入废渣量的 53% (重量百分比) 。
实施例 4
将 TDI焦油固体废渣颗粒、 二甘醇和氢氧化钾以 15:70:15的重量 比进行混合。 搅拌下, 通入氮气赶尽空气后, 于 180°C在密闭的反应釜 ( 0.15MPa ) 中反应 10小时。 其余步骤类似于实施例 1。 其中二甘醇 回收率为 99.3 % , TDA收率为加入废渣量的 55% (重量百分比) 。
实施例 5
将 TDI焦油固体废渣颗粒、 1,2-丙二醇、 氢氧化钟和水以 20:
60:15:5的重量比进行混合。 搅拌下, 通入氮气赶尽空气后, 于 140°C 回流水解 12小时。 其余步骤同实施例 1。 其中 1,2-丙二醇的回收率为 99.0 % , TDA收率为加入废渣量的 41%。
实施例 6
将 TDI焦油固体废渣颗粒、 1,2-丙二醇、氢氧化钾和水以 20:60:15:5 的重量比进行混合。 搅拌下, 通入氮气赶尽空气后, 于 140°C在密闭的 反应釜(0.3MPa ) 中反应 12小时。 其余步骤同实施例 1。 其中 1,2-丙 二醇的回收率为 99.2 % , TDA收率为加入废渣量的 42%。
实施例 7
将 TDI焦油固体废渣颗粒、 1,2-丙二醇和氢氧化钟以 20:60:20的 重量比进行混合。搅拌下, 通入氮气赶尽空气后, 于 130°C回流(常压) 反应 10小时。 其余步骤类似于实施例 1。 其中 1,2-丙二醇的回收率为 98.7 % , TDA收率为加入废渣量的 39%。
实施例 8
将 TDI焦油固体废渣颗粒、 1,2-丙二醇和氢氧化钟以 20:60:20的 重量比进行混合。 搅拌下, 通入氮气赶尽空气后, 于 130°C在密闭的反 应釜(0.15MPa )中反应 10小时。 其余步骤类似于实施例 1。 其中 1,2- 丙二醇的回收率为 98.9 % , TDA收率为加入废渣量的 38%。
实施例 9
将 TDI焦油固体废渣颗粒、 1,3-丙二醇、氢氧化钠和水以 15:45:15: 25的重量比进行混合。 搅拌下, 通入氮气赶尽空气后, 于 160°C下回 流, 水解 8小时。 其余步骤同实施例 1。 其中 1,3-丙二醇回收率为 98.3 % , TDA收率为加入废渣量的 38%。
实施例 10
将 TDI焦油固体废渣颗粒、 1,3-丙二醇、氢氧化钟和水以 15:45:15: 25的重量比进行混合。 搅拌下, 通入氮气赶尽空气后, 于 160°C下在 密闭的反应釜(0.55MPa ) 中反应 12小时。 其余步骤同实施例 1。 其 中 1,3-丙二醇回收率为 98.9 % , TDA收率为加入废渣量的 44%。
实施例 11
将 TDI焦油固体废渣颗粒、 1,3-丙二醇和氢氧化钠以 25:50:25的 重量比进行混合。 搅拌下, 通入氮气赶尽空气后, 于 160°C下回流(常 压)反应 8小时。 其余步骤类似于实施例 1。 其中 1,3-丙二醇回收率为 98.1 % , TDA收率为加入废渣量的 37%。
实施例 12
将 TDI焦油固体废渣颗粒、 1,3-丙二醇和氢氧化钟以 25:50:25的 重量比进行混合。 搅拌下, 通入氮气赶尽空气后, 于 160°C在密闭的反 应釜(0.15MPa ) 中反应 12小时。 其余步骤类似于实施例 1。 其中 1,3- 丙二醇回收率为 98.8 % , TDA收率为加入废渣量的 43%。
实施例 13
将 TDI焦油固体废渣颗粒、 乙二醇、 氢氧化钠和水以 15:65:10:10 的重量比进行混合。搅拌下,通入氮气赶尽空气后,于 150°C下回流(常 压)水解 15小时。其余步骤同实施例 1。其中乙二醇的回收率为 99.3% , TDA收率为加入废渣量的 57%。
实施例 14
将 TDI焦油固体废渣颗粒、 乙二醇、 氢氧化钠和水以 15:65:10:10 的重量比进行混合。 搅拌下, 通入氮气赶尽空气后, 于 120°C下在密闭 的反应釜(0.15MPa ) 中反应 13小时。 其余步骤同实施例 1。 其中乙 二醇的回收率为 99.6% , TDA收率为加入废渣量的 49%。
实施例 15
将 TDI焦油固体废渣颗粒、 乙二醇和氢氧化钠以 20:65:15的重量 比进行混合。 搅拌下, 通入氮气赶尽空气后, 于 140°C下回流(常压) 反应 15小时。其余步骤类似于实施例 1。其中乙二醇的回收率为 99.0% , TDA收率为加入废渣量的 55%。
实施例 16
将 TDI焦油固体废渣颗粒、 乙二醇和氢氧化钠以 20:65:15的重量 比进行混合。 搅拌下, 通入氮气赶尽空气后, 于 140°C在密闭的反应釜 ( 0.15MPa ) 中反应 13小时。 其余步骤类似于实施例 1。 其中乙二醇 的回收率为 99.1% , TDA收率为加入废渣量的 50%。
实施例 17
将 TDI焦油固体废渣颗粒、 1,4-丁二醇、氢氧化钠和水以 30:40:25:5 的重量比进行混合。 搅拌下, 通入氮气赶尽空气后, 于 150°C回流水解 15小时。其余步骤同实施例 1。其中 1,4-丁二醇的回收率为 99 % , TDA 收率为加入废渣量的 42%。
实施例 18
将 TDI焦油固体废渣颗粒、 1,4-丁二醇、氢氧化钟和水以 30:40:25:5 的重量比进行混合。 搅拌下, 通入氮气赶尽空气后, 于 150°C在密闭的 反应釜(0.4MPa ) 中反应 10小时。 其余步骤同实施例 1。 其中 1,4-丁 二醇的回收率为 99.2 % , TDA收率为加入废渣量的 38%。
实施例 19
将 TDI焦油固体废渣颗粒、 1,4-丁二醇和氢氧化钠以 30:40:30的 重量比进行混合。搅拌下, 通入氮气赶尽空气后, 于 150°C回流(常压) 反应 15小时。 其余步骤类似于实施例 1。 其中 1,4-丁二醇的回收率为 98.7 % , TDA收率为加入废渣量的 41%。
实施例 20
将 TDI焦油固体废渣颗粒、 1,4-丁二醇和氢氧化钟以 30:40:30的 重量比进行混合。 搅拌下, 通入氮气赶尽空气后, 于 150°C在密闭的反 应釜(0.15MPa ) 中反应 14小时。 其余步骤类似于实施例 1。 其中 1,4- 丁二醇的回收率为 98.8 % , TDA收率为加入废渣量的 40%。
实施例 21
将 TDI焦油固体废渣颗粒、 己二醇、 氢氧化钠和水以 10:45:10:25 的重量比进行混合。 搅拌下, 通入氮气赶尽空气后, 于 130°C回流水解 11小时。 其余步骤同实施例 1。 其中己二醇的回收率为 99 % , TDA收 率为加入废渣量的 42%。
实施例 22 将 TDI焦油固体废渣颗粒、 己二醇、 氢氧化钠和水以 10:45:10:25 的重量比进行混合。 搅拌下, 通入氮气赶尽空气后, 于 130°C在密闭的 反应釜(0.2MPa ) 中反应 9小时。 其余步骤同实施例 1。 其中己二醇 的回收率为 99.1 % , TDA收率为加入废渣量的 37%。
实施例 23
将 TDI焦油固体废渣颗粒、 己二醇和氢氧化钠以 25: 50:25的重量 比进行混合。 搅拌下, 通入氮气赶尽空气后, 于 130°C回流(常压)反 应 11小时。 其余步骤类似于实施例 1。 其中己二醇的回收率为 98.7 % , TDA收率为加入废渣量的 41%。
实施例 24
将 TDI焦油固体废渣颗粒、 己二醇和碳酸钟以 20:50:30的重量比 进行混合。 搅拌下, 通入氮气赶尽空气后, 于 130°C在密闭的反应釜 ( 0.15MPa ) 中反应 9小时。 其余步骤类似于实施例 1。 其中己二醇的 回收率为 98.8 % , TDA收率为加入废渣量的 36%。
实施例 25
将 TDI焦油固体废渣颗粒、 正庚醇与氢氧化钠和水以 15:60:15:10 的重量比进行混合。 搅拌下, 通入氮气赶尽空气后, 于 120°C回流水解 16小时。 其余步骤同实施例 1。 其中正庚醇的回收率为 98.0 % , TDA 收率为加入废渣量的 35%。
实施例 26
将 TDI焦油固体废渣颗粒、 正庚醇与氢氧化钟和水以 15:60:15:10 的重量比进行混合。 搅拌下, 通入氮气赶尽空气后, 于 120°C在密闭的 反应釜(0.15MPa ) 中反应 16小时。 其余步骤同实施例 1。 其中正庚 醇的回收率为 98.5 % , TDA收率为加入废渣量的 36%。
实施例 27
将 TDI焦油固体废渣颗粒、丁二醇与己二醇的等比混合物、碳酸钠 和水以 10:60:30:10的重量比进行混合。搅拌下,通入氮气赶尽空气后, 于 140°C在密闭的反应釜 0.3MPa )中反应 10小时。 其余步骤同实施例 1。 其中混合醇的回收率为 99.2 % , TDA收率为加入废渣量的 43%。
实施例 28
将 TDI焦油固体废渣颗粒、 二甘醇与乙二醇的等比混合物以及氢 氧化钠以 20:65:15的重量比进行混合。 搅拌下, 通入氮气赶尽空气后, 于 140°C下回流(常压)反应 14小时。 其余步骤类似于实施例 1。 其 中混合醇的回收率为 99.0 % , TDA收率为加入废渣量的 55%。
实施例 29
将 TDI焦油固体废渣颗粒、 二甘醇与正庚醇的等比混合物以及氢 氧化钟以 28:50:22的重量比进行混合。 搅拌下, 通入氮气赶尽空气后, 于 130°C在密闭的反应釜(0.15MPa ) 中反应 14小时。 其余步骤类似 于实施例 1。 其中混合醇的回收率为 98.9 % , TDA收率为加入废渣量 的 46%。
实施例 30
将 TDI焦油固体废渣颗粒、 1,2-丙二醇与正庚醇的等比混合物以及 氢氧化钾和水以 15:60:15:10的重量比进行混合。 搅拌下, 通入氮气赶 尽空气后, 于 130°C在密闭的反应釜(0.2MPa ) 中反应 14小时。 其余 步骤同实施例 1。 其中混合醇的回收率为 98.0 % , TDA收率为加入废 渣量的 41%。
实施例 31
将 TDI焦油固体废渣颗粒、 二甘醇、 正庚醇与乙二醇的等比混合 物以及氢氧化钠和水以 15:60:15:10的重量比进行混合。 搅拌下, 通入 氮气赶尽空气后, 于 140°C下回流(常压)反应 14小时。 其余步骤同 实施例 1。 其中混合醇的回收率为 98.6 % , TDA收率为加入废渣量的 45%。
由于本发明采用了上述相转移催化剂用于 TDI焦油废渣的水解反 应, 使得能在比较温和的条件下实现工业化生产, 并回收 TDA, 实现 了资源再利用的目的。 本发明曱苯二胺的回收率约为用于水解的 TDI 高沸点焦油废渣固体用量的 35-60重量%,从而使其最后焚烧的固体废 料量减少 35-60重量%。本发明水解反应之后残余的废水和用过的相转 移催化剂可以得到循环利用, 不仅提高了方法的经济性, 而且其最终 固体废料也不会加重对环境的负面影响。
综上所述, 本发明实现了在温和条件下高效回收 TDA, 并通过对 废水和用过的相转移催化剂进行循环使用, 使其具有工业生产实用性 的同时, 兼具经济效益和环境友好性。

Claims

权 利 要 求
1. 一种从曱苯二异氰酸酯 (TDI )合成过程排放的焦油废渣回收 曱苯二胺(TDA ) 的方法, 包括步骤:
a )将所述焦油废渣粉碎成颗粒;
b )将所述焦油废渣的颗粒分散在相转移催化剂、 碱和水中以获得 浆料,所述相转移催化剂选自沸点范围在 120-280°C的高级醇、多元醇、 聚醚类化合物及其组合;
c )保护性气体保护下, 在温度 120-180°C和表测压力 0-0.95MPa 下, 使所述浆料发生水解反应以产生曱苯二胺; 以及
d )从水解反应溶液中回收所得到的曱苯二胺。
2. 根据权利要求 1所述的方法, 其中所述焦油废渣粉碎成 100目以 下的颗粒。
3. 根据权利要求 1所述的方法, 其中所述保护性气体为氮气。
4. 根据权利要求 1所述的方法,其中所述水解反应的时间为 8-16小 时。
5. 根据权利要求 1所述的方法, 其中所述碱为氢氧化钠、氢氧化钾 或碳酸钠、 碳酸钾。
6. 根据权利要求 1所述的方法, 其中所述浆料的 pH值不低于 10。
7. 根据权利要求 1所述的方法, 其中在所述浆料中, 所述焦油废渣 颗粒的重量百分比为 10-30 %、 相转移催化剂的重量百分比为 40-75 %、 碱的重量百分比为 10-30 %、 水的重量百分比为 0-25 %。
8. 根据权利要求 1所述的方法, 其中相转移催化剂选自正庚醇、二 甘醇、 乙二醇、 1,2-丙二醇、 1,3-丙二醇、 1,4-丁二醇、 己二醇及其组合。
9. 根据权利要求 1所述的方法, 其中水解反应在串联或并联的两 个或更多个反应器中进行。
10. 根据权利要求 1所述的方法,其中水解反应在可控温加热的反 应器中进行, 在可搅拌的反应器中进行, 和 /或在密闭或者带有回流装 置的反应器中进行。
PCT/CN2011/084196 2011-01-27 2011-12-19 从甲苯二异氰酸酯合成过程排放的焦油废渣回收甲苯二胺 WO2012100609A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP11856910.2A EP2671867B1 (en) 2011-01-27 2011-12-19 Reclaiming toluenediamine from tar waste residue discharged from synthesis of toluene diisocynate
JP2013550741A JP6144204B2 (ja) 2011-01-27 2011-12-19 トルエンジイソシアネートの合成工程から排出されるタール廃棄物残渣からのトルエンジアミンの回収
KR1020127026702A KR101823448B1 (ko) 2011-01-27 2011-12-19 톨루엔 디이소시아네이트(tdi) 합성과정에서 배출되는 타르 폐기물로부터 톨루엔디아민(tda)을 회수하는 방법
US13/639,768 US8658828B2 (en) 2011-01-27 2011-12-19 Recovery of toluene diamine from tar waste residue discharged from synthesis process of toluene diisocyanate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110029377.6 2011-01-27
CN2011100293776A CN102633651B (zh) 2011-01-27 2011-01-27 从甲苯二异氰酸酯合成过程排放的焦油废渣回收甲苯二胺

Publications (1)

Publication Number Publication Date
WO2012100609A1 true WO2012100609A1 (zh) 2012-08-02

Family

ID=46580220

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/084196 WO2012100609A1 (zh) 2011-01-27 2011-12-19 从甲苯二异氰酸酯合成过程排放的焦油废渣回收甲苯二胺

Country Status (8)

Country Link
US (1) US8658828B2 (zh)
EP (1) EP2671867B1 (zh)
JP (1) JP6144204B2 (zh)
KR (1) KR101823448B1 (zh)
CN (1) CN102633651B (zh)
HU (1) HUE051314T2 (zh)
PT (1) PT2671867T (zh)
WO (1) WO2012100609A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103787894B (zh) * 2014-02-08 2015-09-16 济南大学 从甲苯二异氰酸酯制备过程中形成的残渣废料中回收甲苯二胺的方法
CN103804198B (zh) * 2014-02-28 2015-05-20 济南大学 从甲苯二异氰酸酯生产排放的废渣中回收甲苯二胺的方法
KR101551600B1 (ko) * 2015-03-17 2015-09-08 김종연 고비점 톨루엔디이소시아네이트 타르 폐기물로부터 톨루엔디아민을 회수하는 방법
CN105384644A (zh) * 2015-11-20 2016-03-09 联化科技(德州)有限公司 异氰酸酯残渣的处理方法
CN106699572A (zh) * 2017-01-16 2017-05-24 河北丰源环保科技股份有限公司 采用反应结晶法分离2,6‑二氨基甲苯的工艺
CN111183131B (zh) * 2017-12-27 2022-06-28 旭化成株式会社 有机胺的回收方法
CN109678760A (zh) * 2019-01-31 2019-04-26 甘肃利亨新材料有限公司 一种回收利用tdi生产废渣的方法
KR20230000139U (ko) 2021-07-08 2023-01-17 장옥남 튀김방지 뚜껑 거치대
CN113996280B (zh) * 2021-10-25 2022-12-27 厦门大学 一种水解tdi焦油渣的固体碱催化剂及其应用
CN113999519B (zh) * 2021-11-16 2023-05-26 万华化学集团股份有限公司 一种聚氨酯改性天然橡胶及其制备方法
KR20230151230A (ko) 2022-04-25 2023-11-01 주식회사 아이앤오코리아 패킹 밀착력이 향상된 프라이팬 덮개

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3128310A (en) 1955-09-09 1964-04-07 Bayer Ag Recovery of amines
US3331876A (en) 1964-03-23 1967-07-18 Mobay Chemical Corp Recovery of tolylenediamines
US3499021A (en) 1966-10-19 1970-03-03 Olin Mathieson Toluene diisocyanate process
DE1962598A1 (de) 1968-12-16 1970-07-16 Du Pont Rueckgewinnung aromatischer Duesocyanate
US3694323A (en) 1968-08-05 1972-09-26 Du Pont Separation of distillable isocyanates from their phosgenation masses
US4000099A (en) 1972-11-15 1976-12-28 Sumitomo Chemical Company, Limited Tar urethane composition
US4143008A (en) 1975-01-16 1979-03-06 Allied Chemical Corporation Novel adhesive, molding and filler composition incorporating toluene diisocyanate residue
DE2942678A1 (de) 1979-10-23 1981-05-07 Bayer Ag, 5090 Leverkusen Verfahren zur aufarbeitung von vernetzten, harnstoffgruppenhaltigen isocyanatdestillationsrueckstaenden und verwendung der verfahrensprodukte als ausgangskomponenten bei der herstellung von kunststoffen
JPS58201751A (ja) 1982-05-17 1983-11-24 Mitsui Toatsu Chem Inc アミン化合物を回収する方法
DD257827A1 (de) 1987-02-20 1988-06-29 Schwarzheide Synthesewerk Veb Verfahren zur gewinnung von isocyanatkomponenten aus verfahrensprodukten der toluylendiisocyanatherstellung
DD296088A5 (de) 1986-07-18 1991-11-21 Basf Schwarzheide Gmbh,De Verfahren zur herstellung von hartschaumstoffsystemen
DE4211774A1 (de) 1992-04-08 1993-10-14 Bayer Ag Modifizierte aromatische Polyisocyanate und ihre Verwendung zur Herstellung von harten Urethangruppen aufweisenden Schaumstoffen
US5804648A (en) * 1996-12-27 1998-09-08 Bayer Corporation Toluene diisocyanate residue-based compositions and the use of such compositions as fillers for hydroxyl compounds
KR200152948Y1 (ko) 1994-12-26 1999-08-02 류정열 커넥팅로드의 윤활구조
WO1999065868A1 (de) * 1998-06-18 1999-12-23 Basf Aktiengesellschaft Verfahren zur aufarbeitung von destillationsrückständen aus der synthese von toluylendiisocyanat
WO2000068180A1 (en) * 1999-05-05 2000-11-16 The Dow Chemical Company A process for recovering toluene diamine from toluene diisocyanate distillation residues
KR20010001488A (ko) 1999-06-04 2001-01-05 김충섭 톨루엔디아민의 제조 회수방법
WO2004108656A1 (en) * 2003-06-09 2004-12-16 Hanwha Chemical Corporation Method for recovering toluene diamine from high boiling tar residue discharged from toluene diisocyanate preparation process

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS588380B2 (ja) * 1974-05-09 1983-02-15 武田薬品工業株式会社 有機アミン類の製造法
DE3223398A1 (de) * 1982-06-23 1983-12-29 Bayer Ag, 5090 Leverkusen Polyamine, verfahren zur herstellung von polyaminen und deren verwendung zur herstellung von polyurethanen
JPS60193951A (ja) * 1984-03-15 1985-10-02 Japan Synthetic Rubber Co Ltd 芳香族ジアミンの製造方法
JPH05287210A (ja) * 1992-04-03 1993-11-02 Fuji Photo Film Co Ltd アゾメチン色素及びインドアニリン色素の製造方法
JPH06184439A (ja) * 1992-12-18 1994-07-05 Sumitomo Bakelite Co Ltd 高密着性ポリイミド樹脂組成物
US5693862A (en) * 1996-12-18 1997-12-02 Arco Chemical Technology, L.P. Process for transport of toluenediamine
JP2001348477A (ja) * 2000-06-08 2001-12-18 Mitsui Chemicals Inc 高屈折率材料組成物

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3128310A (en) 1955-09-09 1964-04-07 Bayer Ag Recovery of amines
US3331876A (en) 1964-03-23 1967-07-18 Mobay Chemical Corp Recovery of tolylenediamines
US3499021A (en) 1966-10-19 1970-03-03 Olin Mathieson Toluene diisocyanate process
US3694323A (en) 1968-08-05 1972-09-26 Du Pont Separation of distillable isocyanates from their phosgenation masses
DE1962598A1 (de) 1968-12-16 1970-07-16 Du Pont Rueckgewinnung aromatischer Duesocyanate
US4000099A (en) 1972-11-15 1976-12-28 Sumitomo Chemical Company, Limited Tar urethane composition
US4143008A (en) 1975-01-16 1979-03-06 Allied Chemical Corporation Novel adhesive, molding and filler composition incorporating toluene diisocyanate residue
US4311800A (en) 1979-10-23 1982-01-19 Bayer Aktiengesellschaft Process for working up cross-linked isocyanate distillation residues containing urea groups and use of the products of the process as starting components for the production of synthetic resins
DE2942678A1 (de) 1979-10-23 1981-05-07 Bayer Ag, 5090 Leverkusen Verfahren zur aufarbeitung von vernetzten, harnstoffgruppenhaltigen isocyanatdestillationsrueckstaenden und verwendung der verfahrensprodukte als ausgangskomponenten bei der herstellung von kunststoffen
JPS58201751A (ja) 1982-05-17 1983-11-24 Mitsui Toatsu Chem Inc アミン化合物を回収する方法
DD296088A5 (de) 1986-07-18 1991-11-21 Basf Schwarzheide Gmbh,De Verfahren zur herstellung von hartschaumstoffsystemen
DD257827A1 (de) 1987-02-20 1988-06-29 Schwarzheide Synthesewerk Veb Verfahren zur gewinnung von isocyanatkomponenten aus verfahrensprodukten der toluylendiisocyanatherstellung
DE4211774A1 (de) 1992-04-08 1993-10-14 Bayer Ag Modifizierte aromatische Polyisocyanate und ihre Verwendung zur Herstellung von harten Urethangruppen aufweisenden Schaumstoffen
KR200152948Y1 (ko) 1994-12-26 1999-08-02 류정열 커넥팅로드의 윤활구조
US5804648A (en) * 1996-12-27 1998-09-08 Bayer Corporation Toluene diisocyanate residue-based compositions and the use of such compositions as fillers for hydroxyl compounds
WO1999065868A1 (de) * 1998-06-18 1999-12-23 Basf Aktiengesellschaft Verfahren zur aufarbeitung von destillationsrückständen aus der synthese von toluylendiisocyanat
WO2000068180A1 (en) * 1999-05-05 2000-11-16 The Dow Chemical Company A process for recovering toluene diamine from toluene diisocyanate distillation residues
KR20010001488A (ko) 1999-06-04 2001-01-05 김충섭 톨루엔디아민의 제조 회수방법
WO2004108656A1 (en) * 2003-06-09 2004-12-16 Hanwha Chemical Corporation Method for recovering toluene diamine from high boiling tar residue discharged from toluene diisocyanate preparation process

Also Published As

Publication number Publication date
EP2671867A4 (en) 2016-05-25
JP2014511357A (ja) 2014-05-15
KR101823448B1 (ko) 2018-01-30
JP6144204B2 (ja) 2017-06-07
EP2671867B1 (en) 2020-08-12
KR20140001083A (ko) 2014-01-06
CN102633651B (zh) 2013-10-02
HUE051314T2 (hu) 2021-03-01
PT2671867T (pt) 2020-10-09
CN102633651A (zh) 2012-08-15
EP2671867A1 (en) 2013-12-11
US20130041182A1 (en) 2013-02-14
US8658828B2 (en) 2014-02-25

Similar Documents

Publication Publication Date Title
WO2012100609A1 (zh) 从甲苯二异氰酸酯合成过程排放的焦油废渣回收甲苯二胺
JP2014511357A5 (zh)
CN103804198B (zh) 从甲苯二异氰酸酯生产排放的废渣中回收甲苯二胺的方法
KR20040105883A (ko) 톨루엔디이소시아네이트 제조공정에서 배출되는 고체폐기물로부터 톨루엔디아민의 회수방법
CN112079725A (zh) 一种生产己二胺的方法
CN111646921A (zh) 一种己内酰胺法制备己二胺关键中间体6-氨基己腈的催化剂再生方法
CN114272871A (zh) 一种以顺酐为原料制备nmp的系统及方法
CN107441669B (zh) 一种非均相催化水解三聚氰胺、三聚氰酸或三聚氰胺oat废渣的方法
CN113880730B (zh) 一种连续式制备六亚甲基二异氰酸酯的工业化方法
CN112679322B (zh) 一种超临界co2催化制备2,6-二羟基甲苯的方法
US11578034B2 (en) Integrated process for production of glycerol carbonate (4-hydroxymethyl-2-oxo-1, 3-dioxolane) and urea
CN109851509B (zh) 一种4,4′-二氨基二苯甲烷的制备方法
JP5529498B2 (ja) ポリエステルからのテレフタル酸ジメチルの製造方法
CN113996280B (zh) 一种水解tdi焦油渣的固体碱催化剂及其应用
CN112341341B (zh) 一种n-乙基苯胺的制备方法
CN114292187B (zh) 从丙烯酸羟烷基酯生产产生的废弃物中提取的有机化合物及其方法
CN112279783B (zh) 一种超临界条件下制备3-羟基丙腈的方法
CN112521265B (zh) 一种连续化生产乙醇酸的方法
JP2008546858A (ja) イソシアネート付加体の後処理方法
CN117550982A (zh) 一种六亚甲基二异氰酸酯轻组分的处理方法和六亚甲基二异氰酸酯的制备方法
CN105237468A (zh) 一种合成2-羟乙基吡啶的新方法
CN101607871A (zh) 一种制备4,4’-二羟甲基联苯的方法
CN115403484A (zh) 采用尿素法合成异佛尔酮二氨基甲酸正丁酯的工业化工艺
CN116143691A (zh) 一种制备防老剂tmq联产均三甲苯的方法
CN114907223A (zh) 一种氢化合成2-氨基-5-氯二苯甲酮的方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2011856910

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11856910

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13639768

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20127026702

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 3104/KOLNP/2012

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2013550741

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE