WO2012096003A1 - はんだ付け検査方法、および基板検査システムならびにはんだ付け検査機 - Google Patents

はんだ付け検査方法、および基板検査システムならびにはんだ付け検査機 Download PDF

Info

Publication number
WO2012096003A1
WO2012096003A1 PCT/JP2011/056436 JP2011056436W WO2012096003A1 WO 2012096003 A1 WO2012096003 A1 WO 2012096003A1 JP 2011056436 W JP2011056436 W JP 2011056436W WO 2012096003 A1 WO2012096003 A1 WO 2012096003A1
Authority
WO
WIPO (PCT)
Prior art keywords
inspection
soldering
solder
standard
reflow process
Prior art date
Application number
PCT/JP2011/056436
Other languages
English (en)
French (fr)
Inventor
心平 藤井
森 弘之
中島 克起
昌伸 谷上
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Priority to CN201180064870.XA priority Critical patent/CN103299177B/zh
Priority to DE112011104725.8T priority patent/DE112011104725B9/de
Publication of WO2012096003A1 publication Critical patent/WO2012096003A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • G01N21/95684Patterns showing highly reflecting parts, e.g. metallic elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0266Marks, test patterns or identification means
    • H05K1/0269Marks, test patterns or identification means for visual or optical inspection
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/08Monitoring manufacture of assemblages
    • H05K13/081Integration of optical monitoring devices in assembly lines; Processes using optical monitoring devices specially adapted for controlling devices or machines in assembly lines
    • H05K13/0817Monitoring of soldering processes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/08Monitoring manufacture of assemblages
    • H05K13/083Quality monitoring using results from monitoring devices, e.g. feedback loops
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/3457Solder materials or compositions; Methods of application thereof
    • H05K3/3485Applying solder paste, slurry or powder
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • G01N2021/95638Inspecting patterns on the surface of objects for PCB's
    • G01N2021/95661Inspecting patterns on the surface of objects for PCB's for leads, e.g. position, curvature
    • G01N2021/95669Inspecting patterns on the surface of objects for PCB's for leads, e.g. position, curvature for solder coating, coverage
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10613Details of electrical connections of non-printed components, e.g. special leads
    • H05K2201/10621Components characterised by their electrical contacts
    • H05K2201/10636Leadless chip, e.g. chip capacitor or resistor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/04Soldering or other types of metallurgic bonding
    • H05K2203/0465Shape of solder, e.g. differing from spherical shape, different shapes due to different solder pads
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/341Surface mounted components
    • H05K3/3421Leaded components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/341Surface mounted components
    • H05K3/3431Leadless components
    • H05K3/3442Leadless components having edge contacts, e.g. leadless chip capacitors, chip carriers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention confirms the suitability of the soldering state of various components mounted on the board by visual inspection for the board that has been completed up to the reflow process among a plurality of processes carried out for the production of the component mounting board.
  • the present invention relates to a determination method, an inspection system to which the method is applied, and a soldering inspection machine.
  • the component mounting board is generally produced by a cream solder printing process, a component mounting process, and a reflow process.
  • a board inspection system has been introduced in which inspection machines are provided for each of these processes, and inspection results from each inspection machine are accumulated in an information processing device so that they can be checked against each other. (For example, refer to Patent Document 1).
  • the substrate to be inspected is illuminated from diagonally above, and the substrate is imaged from directly above, and the reflection in the generated image is reflected.
  • Inspection machines that analyze optical image patterns are widely used. For example, in Patent Document 2, by irradiating a substrate with red, green, and blue color lights from different directions of incident angles, the state of solder inclination is determined by a color distribution pattern corresponding to these illumination lights. Is generated, and this color distribution pattern is processed based on an inspection standard registered in advance (see paragraphs 0003 and 0034 to 0040 of Patent Document 2).
  • an inspection machine that measures the area of the solder paste, the printing position, etc. in each land on the board by imaging the board from directly above and performing two-dimensional image processing. Is used. There is also an inspection machine that obtains a three-dimensional shape and volume of a region to be inspected by a phase shift method (see, for example, Patent Document 3).
  • the inspection standard defines various information necessary for the inspection, such as the setting of the inspection region, the detection method of the measurement target part, the calculation method for measurement, the determination reference value for determining the suitability of the measurement value, Embodied by a program.
  • Patent Document 2 describes that the inspection standard is set to be different depending on the shape of the fillet formed even for the same component type.
  • the inspection machine described in Patent Document 2 corresponds to a plurality of inspection standard data corresponding to a plurality of fillet shapes that can be formed on a part of each component type. Is registered in association with the height range of the fillet of the shape to be.
  • the height of the fillet of the component is calculated from the shape data of the component and the size of the land corresponding to the component, and an inspection standard corresponding to the height is calculated. Read out and link to the inspection area of the part to be processed. Thereby, the inspection standard suitable for the shape of the fillet formed in the part is applied to each part.
  • the conventional inspection standards in the inspection after the reflow process including those described in Patent Document 2 are based on the premise that the soldering state is good, in other words, appropriate processes have been performed in all processes including the reflow process. It is determined as However, in reality, the amount of solder paste printed and the printing position in the solder printing process vary and changes over time, the component mounting position in the component mounting process and the amount of push against the cream solder fluctuate, etc. In some cases, the shape of the solder after reflow varies, and although it is a non-defective product, the shape is determined by the inspection machine if it does not meet the inspection standard.
  • FIGS. Each figure shows that the shape of the solder after the reflow process of the soldering portion with respect to one electrode of the lead component varies depending on the state before the reflow process.
  • 300 is a land
  • 301 is a component electrode.
  • Reference numeral 302 denotes cream solder before reflow
  • 303 denotes solder that is solidified after being melted in the reflow process (hereinafter referred to as “solder after reflow”).
  • FIG. 12 shows a case where the electrode 301 is lifted and a case where the electrode 301 is not lifted up and down compared to each other.
  • a standard amount of cream solder 302 is printed.
  • the electrode 301 does not float
  • the melted solder is blocked by the electrode 302.
  • 303 rises and a moderately inclined surface (fillet) is formed in a portion from the edge of the land 300 to the tip of the electrode 301 (hereinafter, this portion is referred to as a “land protrusion”).
  • the molten solder spreads thinly on the land 300, and the post-reflow solder 303 has a flatter shape than the lower example.
  • the height and inclination state of the solder 303 after reflow varies depending on whether the electrode 301 is floating or not.
  • the amount of cream solder 302 is smaller than the standard, but the electrode 301 and the land 300 may be satisfactorily connected via the solder 303 after reflow.
  • the height and inclination state of the solder 303 after reflow are approximately the same as when the electrode 301 is floating with the amount of the cream solder 302 as a standard (the upper example in FIG. 13).
  • FIG. 14 shows an example in which the shape of the solder 303 after reflow varies depending on the height of the electrode 301 of the component mounted in the component mounting process.
  • the solder 303 may be lowered after reflow.
  • the substrate is imaged from almost directly above, it is not possible to confirm the state of the electrode floating or the solder under the electrode, and it is based on the state of the solder 303 after the reflow of the land protruding portion. There is no choice but to make a decision.
  • the present invention pays attention to the above problems, and in the inspection after the reflow process, by applying different inspection standards depending on the state of the inspection target part before the reflow process, it is possible to accurately distinguish the suitability of the soldering state. This is the issue.
  • the present invention illuminates a substrate, which has been processed up to the reflow step among a plurality of steps carried out for the production of a component mounting substrate, from a predetermined direction, and is a specularly reflected light with respect to illumination light from a soldered portion of the substrate
  • a method of inspecting the soldering state of the part by imaging the board with a camera arranged at a position where the light can be incident and analyzing the reflected light image appearing at the soldering part in the generated image Applied.
  • the reflected light image is mainly generated by specularly reflected light from the soldering part with respect to the illumination light, but an image of light reflected in a direction substantially close to regular reflection may be included.
  • the inspection method on the premise that the configuration added to the substrate in at least one of the plurality of steps performed before the reflow step is measured before the next step is started, after the reflow step
  • the rule of the inspection standard is determined so that the inspection standard for this inspection varies depending on the result of the measurement process performed before the reflow process for the part corresponding to the soldered part to be inspected.
  • the rule of the inspection standard is applied to the result of the measurement process performed on the part corresponding to the soldered part in the measurement process performed before the reflow process. To determine the inspection standard.
  • the measurement process of the process before the reflow process for example, in the solder printing process, the area, volume and height of the cream solder printed on the land, the relative position of the cream solder with respect to the land, and the like can be measured.
  • the position of the center of the component, the position of the edge of the component electrode with respect to the land, the amount of displacement of the component with respect to a predetermined reference position, the rotational displacement angle of the component, the height of the component or component electrode, etc. are measured. can do.
  • different inspection standards may be applied to each. There is. Therefore, for each part, it is possible to carry out an inspection in consideration of the state of the part before the reflow process, and it is possible to increase the accuracy of distinguishing a good product from a defective product.
  • the rule of the inspection standard is that the determination reference value for determining the suitability of the measurement value obtained by the measurement process for the soldering part to be inspected is the soldering before the reflow process. It is set so as to vary depending on the result of the measurement process for the part corresponding to the part. According to this embodiment, the measurement procedure for the soldered part is the same, but the determination reference value for determining the suitability of the measurement value obtained by measurement depends on the state of the cream solder or component before the reflow process. Can be changed.
  • the inspection standard rules include a plurality of types of inspection standards that are defined differently depending on the result of the measurement process before the reflow process for the part corresponding to the soldering part.
  • the inspection standard that matches the result of the measurement process before the reflow process for the part corresponding to the soldered part to be inspected is selected. According to this embodiment, in the inspection after the reflow process, inspections with different contents can be performed depending on the state of the cream solder and the parts before the reflow process.
  • the inspection standard may be selected before the inspection after the reflow process is started, and the inspection based on the selected inspection standard may be performed. Then, the inspection standard may be selected and the result of the inspection based on the selected inspection standard may be adopted.
  • the inspection standard rule is that the soldered part is determined by a combination of measurement values obtained by a plurality of types of measurement processes performed on the part corresponding to the soldered part before the reflow process.
  • the inspection standard is set so as to fluctuate.
  • the inspection standard can be finely divided according to the measurement values obtained by a plurality of measurement processes, and the accuracy of the inspection after the reflow process can be further improved.
  • the inspection standard rule is such that the inspection standard for the soldered part varies depending on the measurement value obtained by the measurement process in the solder printing process for the land corresponding to the soldered part to be inspected. Is set. Thereby, it becomes possible to vary the inspection standard according to the difference in the volume, area, height of the cream solder, the printing range of the cream solder with respect to the land, and the like.
  • the inspection standard rule includes the measurement value obtained by the measurement process in the solder printing process for the land corresponding to the soldering part to be inspected, and the part for the part corresponding to the soldering part to be inspected.
  • the inspection standard for the soldered part is set so as to vary depending on the measurement value obtained by the measurement process in the mounting process. In this way, it is possible to vary the inspection standard according to the difference in the pattern of the relationship between the cream solder state and the component mounting state.
  • the amount of cream solder printed on each land on the substrate by the solder printing process is measured as a measurement process in the process before the reflow process.
  • a parameter indicating at least one of the area, volume, and height of the cream solder can be obtained as the “amount of cream solder”.
  • the height of the solder after the reflow process is measured based on the relationship between the reflected light image that appears in the image to be inspected and the inclination angle represented by the reflected light image.
  • the suitability of the measured value is determined.
  • the rule of the inspection standard is set so that the determination standard value for determining the suitability of the solder height after the reflow process becomes a lower value as the measured value of the amount of cream solder becomes smaller.
  • the amount of cream solder is small, and thus the solder height after the reflow process is low, but there is no defect in the soldering state. Can be determined as non-defective products.
  • the electrodes are floated.
  • a board inspection system includes an inspection machine that is arranged in a reflow process among a plurality of processes performed for production of a component mounting board and inspects a board after the reflow process; It is possible to read the inspection result information for each inspection machine by board and inspection target part by inspecting the board after the process deployed in at least one process and the inspection result information from each inspection machine via communication And an information management device for managing.
  • the inspection machine for the reflow process has a function of executing inspections based on a plurality of different inspection standards with respect to the soldered parts to be inspected. Further, the reflow process inspection machine or information management apparatus of this system is provided with the following rule storage means, measurement value acquisition means, and inspection standard determination means.
  • the rule storage means may be configured to inspect the soldering site after the reflow process according to the result of the measurement process performed when the inspection machine in the process prior to the reflow process performs the inspection on the location corresponding to the soldering site to be inspected.
  • An inspection standard rule that defines which inspection standard to select is stored.
  • the measurement value acquisition means uses the inspection machine of the previous process from the inspection result information transmitted from the inspection machine of the process before the reflow process to the information management device for the soldering part to be inspected after the reflow process.
  • the measurement value obtained by the measurement process performed on the part corresponding to the soldering part is acquired.
  • the inspection standard determination means determines the inspection standard that matches the measurement value by applying the above-described inspection standard rule to the measurement value acquired by the measurement value acquisition means for the soldered part to be inspected.
  • the rule storage unit, the measurement value acquisition unit, and the inspection standard determination unit may be provided in any of the inspection machine and the information management device in the reflow process.
  • the measurement value acquisition means is a part of the inspection result information transmitted from the inspection machine in the process prior to the reflow process to the information management apparatus by communication with the information management apparatus. From the above, it is possible to configure as means for inputting the measurement value corresponding to the soldered part to be inspected.
  • the measurement value acquisition means can select the solder to be inspected from the inspection result information received and stored from the inspection machine in the process prior to the reflow process. It can comprise as a means to read the thing containing the measured value corresponding to an attachment site
  • the measurement value acquisition means has a function of extracting the measurement value from the inspection result information.
  • the inspection standard for the inspection target part may be determined prior to the inspection.
  • the inspection machine for the reflow process performs all of the inspections based on the plurality of inspection standards for the soldered part to be inspected, and also provides information management apparatus for the inspection result information for each inspection. Send to.
  • the information management apparatus includes a rule storage unit, a measurement value acquisition unit, and an inspection standard determination unit, and the inspection standard determined by the inspection standard determination unit from the inspection result information received from the inspection machine in the reflow process. Select the one corresponding to and save it. According to this configuration, after the reflow process inspector performs all of the inspections according to the inspection standard, the information management apparatus uses the inspection standard that matches the state of the cream solder and the parts before the reflow process from each inspection result. The result of the inspection by will be adopted.
  • the reflow process inspection machine includes a rule storage unit, a measurement value acquisition unit, and an inspection standard determination unit. Further, the inspection machine includes an inspection execution unit that performs an inspection based on the inspection standard determined by the inspection standard determination unit with respect to a soldered part to be inspected, and transmits inspection result information of the inspection to the information management apparatus. It has. According to this structure, in the inspection machine in the reflow process, the inspection based on the inspection standard suitable for the state of the cream solder and the parts before the reflow process is executed.
  • a rule storage unit, a measurement value acquisition unit, and an inspection standard determination unit are provided in the information management apparatus, and the inspection standard determined by the inspection standard determination unit is transmitted from the information management apparatus to the inspection machine in the reflow process, and the reflow process An inspection based on this inspection standard may be executed by an inspection machine.
  • the soldering inspection machine to which the present invention is applied is intended to illuminate the board from a predetermined direction for a board that has been subjected to a reflow process among a plurality of processes carried out for the production of a component mounting board.
  • the board is imaged by a camera placed at a position where specular reflected light from the soldering part of the board can be incident, and the reflected light image that appears at the soldering part in the generated image is analyzed.
  • the soldering state of the part is inspected, and includes the following input means, rule storage means, and inspection execution means.
  • the input means starts the next step with respect to the soldering site to be inspected, the configuration added to the location corresponding to the soldering site in at least one of the plurality of processes performed before the reflow process.
  • Input the measured value obtained by measuring before.
  • This input can be performed by, for example, communication with the above-described information management apparatus or an inspection machine that has performed measurement, but is not limited thereto.
  • the rule storage means stores an inspection standard rule that is defined so as to vary the inspection standard for the soldered part to be inspected according to the measurement value input by the input means.
  • the inspection execution means determines the inspection standard suitable for the measurement value by applying the inspection standard rule to the measurement value input by the input means for the soldered portion of the substrate after the reflow process. Based on this, the inspection for the soldering part is executed.
  • the judgment reference value, the measurement target, the measurement method, etc. for determining good / bad based on the measurement values performed on the soldered part to be inspected in the process before the reflow process It is possible to perform inspection while varying.
  • the inspection standard of the soldering inspection after the reflow process is changed depending on the state of the cream solder and the state of the parts before the reflow process, it becomes possible to distinguish between a good product and a defective product with high accuracy.
  • substrate It is a block diagram which shows the structure of a soldering inspection machine. It is a block diagram which shows the structure of a solder printing inspection machine. It is a figure which shows the flow of the information between the apparatuses in connection with a soldering test
  • FIG. 1 shows a configuration of an embodiment of a board inspection system in association with an overall configuration of a production line for a component mounting board.
  • the illustrated production line includes a solder printing process, a component mounting process, and a reflow process.
  • solder printing process a solder printing apparatus 11 for applying cream solder to each land on the substrate and a solder printing inspection machine 10 for inspecting a processing result by the apparatus 11 are provided.
  • component mounting process a mounter 21 that mounts components on a board after solder printing and a component inspection machine 20 that inspects the mounting state of the components are provided.
  • a reflow furnace 31 for melting the cream solder on the substrate after mounting the components and a soldering inspection machine 30 for inspecting the substrate after reflow are provided.
  • the substrate is sent to each device in order and processed, thereby completing a component mounting board in accordance with a predetermined standard.
  • the inspection machines 10, 20, and 30 in each process are connected to each other via the LAN line 100.
  • An inspection program management apparatus 101 and an inspection data management apparatus 102 are further connected to the LAN line 100.
  • a database in which an inspection program for executing an inspection based on a predetermined inspection standard is collected as library data for each part type is registered for each of the inspection machines 10, 20, and 30. Yes.
  • the inspection data management apparatus 102 stores the results of the inspections performed by the inspection machines 10, 20, and 30.
  • This inspection result information includes a determination result of pass / fail for each inspection target part and a measurement result performed for the determination.
  • the inspection result information is configured to be able to be read for each inspection machine 10, 20, 30 and for each board and for each individual component on the board.
  • the inspection program management apparatus 101 and the inspection data management apparatus 102 are not necessarily separate from each other, and the functions of the management apparatuses 101 and 102 may be provided in one computer. On the contrary, it is possible to configure each management apparatus 101, 102 by a plurality of computers.
  • the inspection machines 10, 20, and 30 Prior to the inspection, the inspection machines 10, 20, and 30 input data (for example, CAD data) indicating the configuration of the inspection target board, and inspect library data suitable for the component type information of each component indicated by the input data. A process of fetching from the program management apparatus 101 and associating the position information of each component with the library data is performed. As a result, an environment necessary for the inspection of the inspection target substrate is set in each of the inspection machines 10, 20, and 30. Note that the contents of the program based on the library data can be appropriately changed according to the setting operation by the user.
  • FIG. 2 shows the configuration of the soldering inspection machine 30.
  • the soldering inspection machine 30 of this embodiment includes a control processing unit 1, a camera 2, an illumination device 3, a substrate stage 4, and the like.
  • the substrate stage 4 moves the substrate S in the direction along each side while supporting the substrate S to be inspected in a horizontal posture.
  • the camera 2 generates a color image, and is disposed above the substrate stage 4 in a state where the optical axis is oriented in a substantially vertical direction (a state where the substrate S on the stage 4 is viewed from the front).
  • the illumination device 3 is arranged between the camera 2 and the substrate stage 4.
  • the illumination device 3 includes annular light sources 3R, 3G, and 3B that emit red light, green light, and blue light, respectively.
  • Each of the light sources 3R, 3G, 3B is arranged in a state in which each central portion is aligned with the optical axis of the camera 2.
  • the light sources 3R, 3G, and 3B have different diameters, the red light source 3R having the smallest diameter is disposed at the top, and the blue light source 3B having the largest diameter is disposed at the bottom.
  • a green light source 3G is disposed between them. This arrangement aims to make the range of the incident angle with respect to the substrate S different for each color.
  • the control processing unit 1 includes a computer control unit 110, an image input unit 111, an imaging control unit 112, an illumination control unit 113, a stage control unit 114, a memory 115, a hard disk device 116, a communication interface 117, an input unit 118, a display. Part 119 and the like are included.
  • the control unit 110 controls operations of the camera 2, the illumination device 3, and the substrate stage 4 via the imaging control unit 112, the illumination control unit 113, and the stage control unit 114.
  • An image generated by the camera 2 is digitally converted by the image input unit 111 and then input to the control unit 110.
  • the memory 115 stores a program related to the above control, and temporarily stores image data to be processed, calculation results, and the like.
  • the hard disk device 116 includes an inspection program group (representing inspection criteria) based on library data provided from the inspection program management device 101, measurement data and inspection results obtained in the course of the inspection, images used for the inspection, and the like. Saved.
  • the communication interface 117 is for communicating with other devices via the LAN line 100 described above.
  • the input unit 118 is used for an operation for designating the start and end of inspection and for inputting various setting data.
  • the display unit 119 is for displaying an inspection result and an image used for the inspection.
  • FIG. 3 shows a configuration of the solder printing inspection machine 10.
  • the configuration corresponding to FIG. 2 is indicated by the same reference numerals as those in FIG.
  • This solder printing inspection machine 10 measures the height of cream solder printed on the land of the substrate S based on the principle of the phase shift method, and controls the control processing unit 1A, camera 2A, illumination device 3A, and substrate stage 4A. In addition, it has a projector 5 for projecting a striped pattern image onto the substrate.
  • the illumination device 3A of the inspection machine 10 includes an annular light source 3M that emits white light.
  • the control processing unit 1A is provided with a projector control unit 120.
  • the light source of the illumination device 3 may be a white light source.
  • the component inspection machine 20 detects a component on the substrate from the image of the substrate S to be inspected, measures its position, inclination, and the like, and determines whether the component mounting state is appropriate based on the measurement result.
  • the component inspection machine 20 an apparatus having the same configuration as that of the solder printing inspection machine 10 shown in FIG. 3 can be used. In this case, in addition to the inspection of the mounting position and orientation of the component, it is also possible to inspect the height of the component and the component electrode, the inclination of the component with respect to the vertical direction, and the like.
  • the solder printing inspection machine 10 and the parts inspection machine 20 perform inspections in an intermediate process. In some cases, the quality may be improved by this process. Therefore, in many sites, it is allowed to flow the board determined to be defective by the solder printing inspection machine 10 or the parts inspection machine 20 to the subsequent stage without removing it from the line.
  • the inspection standard for the soldered part to be inspected is measured by the other inspection machines 10 and 20 for the part corresponding to the part. Adjustments are made based on the processing results. Specifically, in this embodiment, a plurality of determination reference values for distinguishing good / bad soldering are set, and the determination reference value is selected according to the measurement results of the other inspection machines 10 and 20 to perform inspection. The content of the standard is changed. Thereby, even if the components are mounted on the same place on the same standard board, if the state of each component before the reflow process is different, the inspection standard may be different.
  • FIG. 4 shows a device related to the inspection of the soldering inspection machine 30 together with a flow of information between the devices.
  • the inspection program management device 101, the inspection data management device 102, and the solder printing inspection machine 10 are involved in the inspection of the soldering inspection machine 30.
  • the inspection program management apparatus 101 of this embodiment provides the solder printing inspection machine 10 with an inspection program for inspecting the volume of cream solder printed on the land ((a) of FIG. 4).
  • the inspection program management apparatus 101 provides a program for performing an inspection of the solder wetting height after reflow of the soldering site, and a determination to be used in this inspection.
  • a program that defines a method for changing the reference value according to the volume of cream solder corresponding to the soldering site to be inspected (hereinafter, this program is referred to as “selection rule”) is provided (FIG. 4B). (C)).
  • the above inspection program and selection rules are included in the library data for each part type and provided for each part.
  • the solder printing inspection machine 10 measures the volume of the cream solder printed on each land of the substrate S to be inspected based on the provided inspection program, and determines whether the measured value is good or bad. Then, the inspection result information including the measurement value for each land is transmitted to the inspection data management apparatus 102 ((d) in FIG. 4). The inspection data management apparatus 102 stores this.
  • the soldering inspection machine 30 also measures the wetting height of the solder after reflow in each land of the board S to be inspected based on the provided inspection program, determines whether the measured value is good or bad, and determines the measured value.
  • the included inspection result information is transmitted to the inspection data management apparatus 102 ((e) in FIG. 4).
  • the determination reference value for the determination is not constant, and is selected from a plurality of determination reference values based on the selection rule.
  • the soldering inspection machine 30 accesses the inspection data management device 102 and the volume of the cream solder obtained when the solder printing inspection machine 10 inspects the land that is currently being processed on the substrate S. Is read ((f) of FIG. 4), and the determination reference value is selected by applying this volume to the selection rule.
  • the solder printing inspection machine 10 calculates the volume of cream solder by a process based on three-dimensional measurement based on the principle of the phase shift method.
  • a process of projecting a striped pattern image from the projector 5 onto the substrate S while moving the stripes by a predetermined amount is performed as a plurality of projections as one cycle, and in accordance with the timing of each projection.
  • Imaging is performed by the camera 2A. When projection and imaging for one cycle are completed, a change in luminance in each imaging is performed for each pixel in the inspection area (set for each land) in the image obtained by each imaging.
  • the phase of the sine wave is obtained by detecting this change as a sine wave for one period. Further, by applying triangulation based on the phase calculated for the pixel to be processed, the projection surface of the pattern image, and the relationship between the camera 2A and a predetermined reference surface (for example, a height corresponding to the substrate), The distance from the surface to the point corresponding to the pixel to be processed is calculated. This distance indicates the height of the point corresponding to the pixel to be processed.
  • the solder printing inspection machine 10 performs imaging under white illumination of the illumination unit 3 and detects the color of the cream solder from the inspection area in the generated image. Then, the volume of the cream solder is obtained by integrating the height data calculated for the pixel in which the color of the solder is detected.
  • the solder printing inspection machine 10 determines good / bad by comparing this volume with the determination reference value registered for each inspection area.
  • the substrate on which the cream solder determined to be mounted is also passed to the subsequent process.
  • each of the red, green, and blue color lights is applied to the substrate S from different directions of incident angles.
  • an image can be generated in which the tilted state of the solder after reflow is represented by a distribution pattern of each color of red, green, and blue.
  • Each color region in the image expresses an inclination angle substantially the same as the incident angle of the corresponding illumination light.
  • a red region caused by red light having the smallest incident angle range among the three colors exhibits a gentle inclination (8 to 15 degrees in this embodiment), and blue having the largest incident angle among the three colors.
  • the blue region caused by the light shows a fairly steep slope (25-38 degrees in this example). Further, the green region generated by the green light irradiated from the range between the red light and the blue light indicates an angle range (15 to 25 degrees in this embodiment) between the angle ranges indicated by the red region and the blue region. .
  • FIG. 5 shows a method for determining the wetting height of the solder after reflow based on the relationship between each color region and the inclination angle indicated by these color regions.
  • FIG. 5 taking the chip component 200 as an example, a schematic diagram showing a post-reflow solder fillet 202 that connects the electrode 201 and the land 203 of the chip component 200, and a schematic diagram of an image obtained by imaging the fillet 202 The figure is associated with the top and bottom. In the schematic diagram of the image, each color region is indicated by a different paint pattern.
  • a part inspection area (not shown) is set in a range including the whole part 200 in the image to detect the part 200, and an inspection area F is set for each land 203.
  • a red area, a green area, and a blue area in the inspection area F are detected.
  • colors are generally distributed in the order of red, green, and blue along the direction from the location near the outer edge of the land 202 to the component electrode 201 in the image.
  • a dark region representing a steeply inclined surface exceeding the range that can be represented by the blue region may occur near the component 200.
  • a direction in which four color regions including a dark region are distributed in the inspection region F is found, and a measurement line L is set along this direction.
  • the points A2, A3, A4 located at the boundary of each color region and the intersection A1 with the outer edge of the red region are extracted. Further, based on the component detection result, an intersection A5 between the measurement line L and the edge of the component electrode 201 is extracted.
  • an inclination angle corresponding to the point is applied to each point excluding the point A5 among the extracted points.
  • the inclination angle indicated by each color area has a certain width, but the boundary position between adjacent color areas is considered to indicate an angle near the boundary value of the inclination angle range indicated by each color area. Therefore, in this embodiment, 8 degrees is applied to the point A1, 15 degrees to the point A2, 25 degrees to the point A3, and 38 degrees to the point A4 based on the tilt angle range exemplified above.
  • an approximate curve M representing a change in the inclination angle along the measurement line L is derived from the relationship between the coordinates of the points A1 to A4 and the angles applied to the points A1 to A4.
  • the height of the solder corresponding to the point A5 is calculated by integrating each point included in the range from the point A1 to the point A5 of the approximate curve M, and this is the wetting height of the solder after the reflow. .
  • the inclination angle indicated by each color area has a predetermined width. However, since a highly reliable inclination angle is obtained for the boundary position between the color areas, the coordinates and inclination angles of the points A1 to A4 are obtained. It is considered that the approximate curve obtained from the above relationship appropriately represents the change in inclination along the measurement line. Further, the inclination angle of each point in the dark region where the inclination state is unknown can be estimated, and based on this estimation, the height of the solder nearest to the component 200 can be obtained.
  • solder wetting height after reflow is obtained by such a method, and the measured value is compared with the determination reference value.
  • the solder solder measured when the solder printing inspection machine 10 inspects the land 203 of interest. Is obtained, and the value of the determination reference value is determined according to this volume.
  • one that matches the acquired volume of cream solder is selected from the following three judgment reference values U0, U1, and U2 shown in FIG.
  • the distribution of the measured value of the solder wetting height after reflow of a part is within the range of “appropriate” (in the vicinity of a predetermined standard value), “excess solder”. This is divided into three types: those in the range of “under-solder”.
  • the standard value is 100%
  • the measured value from 70% to less than 130% is “solder appropriate”
  • the measured value of 130% or more is “solder excessive”
  • the measured value is less than 70%. Is “undersolder”, but the classification is not limited to this.
  • the letters “OK” are associated with the distribution curve (indicated by the alternate long and short dash line) of the measurement values obtained from the soldered parts that are good, and there is a defect such as a floating component electrode.
  • the character “NG” is associated with the distribution curve (indicated by the dotted line) of the measured value obtained from the soldering site that is generated.
  • the distribution of solder wetting height after reflow and the soldering state when the soldering state is good for each type of cream solder volume The distribution of the wetting height of the solder after reflow in the case of a defect is obtained, and the value U0, U1, U2 from which the distribution of the defect group is excluded is set as a criterion value for each type.
  • the above three types of determination reference values U0, U1, U2 and a program for selecting them are provided as selection rules.
  • the soldering inspection machine 30 is a cream measured by the solder printing inspection machine 10 with respect to a land corresponding to each soldering part to be inspected based on an inspection program and selection rules based on library data of each part.
  • the volume of solder is acquired, and a criterion value suitable for this volume is selected. Then, with this determination reference value, it is determined whether the wetting height of the solder after reflow measured by the own apparatus is good or not.
  • the setting of the judgment reference value is not limited to the above method.
  • the measured values obtained from a considerable number of samples are plotted separately for good samples and defective samples on a plane where the X-axis is the volume of cream solder and the Y-axis is the wetting height of the solder after reflow.
  • a straight line E indicating the determination reference value for each volume of cream solder is set.
  • a measured value in the range above the straight line E is determined as a non-defective product, and a measured value in the range below the straight line E is determined as defective.
  • the volume of the cream solder measured by the solder printing inspection machine 10 is obtained for each land to be inspected with respect to the land corresponding to the part, and this volume is used.
  • a determination reference value is calculated by calculation.
  • the volume of the cream solder used for determining the determination reference value is limited to the volume of the land protruding portion where the fillet is formed, a more appropriate determination reference value can be set.
  • the inspection data management device 102 uses the solder solder height data obtained by the solder printing inspection machine 10 for each pixel in the above-described areas N1, N2 to solder in the areas N1, N2. Re-measure the volume. Although the reliability of the measured value is slightly inferior, when the solder printing inspection machine 30 performs the inspection, the measurement area is set in a range based on the standard size of the land protruding portion, and the cream solder in the measurement area is set. You may obtain
  • the determination reference value is set based on the cream solder volume obtained by the solder printing inspection machine 10.
  • the inspection parameter to be changed is not limited to the wetting height.
  • a specific color region blue or red
  • the determination reference value used for these determinations also varies. Can be the target of.
  • the measurement value of the previous process used to determine the determination reference value is not limited to the volume of the cream solder, and the average value of the cream solder height, the position and area of the cream solder printing range with respect to the land, and the like may be used. . Further, the determination reference value may be determined using a combination of a plurality of measurement values.
  • the state of parts before the reflow process may affect soldering.
  • the determination reference value may be determined by a combination of the measurement result obtained by the solder printing inspection machine 10 and the measurement result obtained by the component mounting inspection machine 20. Since the soldering inspection machine 30 also inspects the position and inclination of the part, the land protrusion may be measured from the measurement result obtained at the time of the inspection, but depending on the part, the solder may be reflowed. In some cases, the top of the electrode wets and it is difficult to identify the edge of the component electrode. For such parts, there is a case where the value of the land protruding portion can be accurately calculated by using measurement data at the time of part inspection before the reflow process.
  • step S1 and step S2 indicate a setting process before inspection.
  • board design data registered for the selected board is read in response to an operation for selecting a board to be inspected from a board list or the like.
  • step S2 library data corresponding to various parts included in the board design data is read from the inspection program management apparatus 101, and this is associated with the mounting positions of the parts in the board design data. As a result, a group of inspection programs necessary for the inspection of each component is registered in the soldering inspection machine 30.
  • processing for correcting the inspection program in accordance with the user's setting operation processing for assigning the imaging target area to the substrate (none of which are shown), etc. are performed, and the process proceeds to inspection.
  • step S3 a part that performs an inspection using the measurement value obtained by the inspection machine in the previous process and the type of the measurement value to be used are specified. Then, while appropriately performing imaging while switching the imaging target area, the examination area is set in the examination target part in the image, and the loop LP is executed for each examination area.
  • step S4 feature extraction processing and measurement processing are executed based on the inspection program set in the inspection area being processed (step S4). Further, when it is necessary to determine the determination reference value based on the measurement value in the previous process (“YES” in step S5), the necessary measurement value is read from the inspection data management apparatus 102 (step S6), and the read measurement is performed. The criterion value is determined by applying the value to the selection rule (step S7). Then, by comparing the measurement value obtained in step S4 with the determination reference value determined in step 7, the quality is determined to be good (step S8).
  • step S5 when it is not necessary to determine the determination reference value based on the measurement value of the previous process (step S5 is “NO”), the determination reference value uniquely registered in the inspection region is read (step S9), The determination process of step S8 is executed using the same.
  • step S10 the determination results are collected to determine whether the entire substrate is good or defective, and the results are output to the inspection data management apparatus 102 or the like.
  • the processing is executed from the loop LP for that substrate.
  • the determination reference value is based on the measurement values acquired by the inspection machines 10 and 20 in the previous process for the portion corresponding to the soldering part to be inspected. Can be variably set. Therefore, even if the measurement values obtained by the device itself are the same, if the cream solder state or the component mounting state before the reflow process is different, the judgment reference value will also be different. It can be different.
  • the following embodiment shown in FIG. 10 sets a plurality of inspection standards with different inspection programs executed for a specific inspection performed by the soldering inspection machine 30. From these inspection standards, the one suitable for the measurement value obtained in the inspection of the process prior to the reflow process is selected.
  • FIG. 10 shows the main flow of information exchanged between the inspection machines 10, 20, and 30, the inspection program management apparatus 101, and the inspection data management apparatus 102.
  • a causal relationship between a measurement parameter in the solder printing inspection machine 10 or the component inspection machine 20 and a measurement parameter in the soldering inspection machine is previously determined for each component type.
  • a plurality of inspection standards are set, and a program defining each inspection standard is edited into individual library data and registered in the inspection program management apparatus 101.
  • a selection rule for selecting one of the plurality of inspection standards is also registered. This selection rule is also transferred to the inspection data management apparatus 102 ((c) in FIG. 10) and registered in the apparatus.
  • the soldering inspection machine 30 reads, from the inspection program management apparatus 101, a plurality of library data including an inspection program that implements inspection standards with different contents for each component of the board to be inspected (see FIG. 10 (b)), it registers with its own device.
  • the solder printing inspection machine 10 and the parts inspection machine 20 read library data based on one inspection standard for each part ((A) in FIG. 10), and execute inspection based on these, as in the past.
  • the inspection result including the measurement value acquired in the process is transmitted to the inspection data management apparatus 102 ((D) in FIG. 10).
  • the inspection data management apparatus 102 stores these pieces of transmission information as usual.
  • the soldering inspection machine 30 executes inspections for each inspection standard in parallel, and transmits all inspection results (including measurement values obtained in the respective inspection processes) to the inspection data management apparatus 102 (FIG. 10). (E)). Before receiving this transmission, the inspection data management apparatus 102 selects the solder print inspection machine 10 or the like from the various inspection standards performed by the soldering inspection machine 30 based on the selection rules provided from the inspection program management apparatus 101. An inspection standard that matches the measurement value received from the component inspection machine 20 is selected. When the inspection result for each inspection standard is received from the soldering inspection machine 30, the inspection result corresponding to the inspection standard selected for the inspection target part is selected and only this inspection result is stored. Further, the inspection data management apparatus 102 feeds back the selected inspection result to the soldering inspection machine 30 ((f) in FIG. 10). As a result, the soldering inspection machine 30 also validates the fed back inspection results and discards or invalidates other inspection results.
  • the soldering inspection machine 30 performs all the inspections based on a plurality of inspection standards, and those suitable for the pattern of measurement values obtained before the reflow process from the respective inspection results.
  • the inspection method is not limited to this.
  • the inspection data management device 102 before the inspection by the soldering inspection machine 30 is started, the inspection data management device 102 notifies the selection result of the inspection standard, and the soldering inspection machine 30 only performs the inspection based on the selected inspection standard according to the notification. And the result may be transmitted to the inspection data management apparatus 102.
  • the selection rule of the inspection standard is registered in the soldering inspection machine 30, and the soldering inspection machine 30 reads the measurement data from the other inspection machines 10 and 20 from the inspection data management device 102, and uses these measurement data as the selection rule. By applying, the inspection standard may be selected by the soldering inspection machine 30 itself.
  • the measurement value used for the selection is not limited to the input from the inspection data management apparatus 102, but from the inspection machine that has performed the measurement. You may enter directly. This is the same in the embodiment in which the previous criterion value is changed.
  • FIG. 11 shows an example of selecting one of two inspection standards using a combination of measurement values obtained by solder printing inspection and component inspection, taking a soldering inspection for a lead component as an example.
  • the selection rule used is shown using a flowchart and a schematic diagram.
  • the inspection standard R1 “inspecting the wet-up height of the solder after reflow” and “the red region near the tip of the component electrode is detected and
  • the inspection standard R2 “inspect the area” is set.
  • the selection rule of this example is demonstrated using the flowchart in FIG.
  • the average value h1 of the height of the cream solder 303 is measured by the solder printing inspection machine 10
  • the height of the upper surface of the component electrode 301 is measured by the component inspection machine 20. It is assumed that the length h2 is measured.
  • a difference ⁇ h in height between the component electrode 301 and the cream solder 303 is calculated (step S101), and ⁇ h is compared with the two threshold values T1 and T2. (Steps S102 and S103).
  • the schematic diagram (C) shows an example of setting the threshold values T1 and T2 by enlarging a part of the electrode 301 of the lead component shown in the schematic diagram (B) and the cream solder 303 in the vicinity thereof.
  • a value corresponding to the difference between the two when the electrode 301 is appropriately buried in the cream solder 303 is defined as a threshold value T2.
  • the threshold value T1 corresponds to the difference between the heights of the electrodes 301 when they are about to float (indicated by a one-dot chain line in the schematic diagram), and is slightly smaller than the thickness of the electrodes 301.
  • inspection standard R1 is selected (step S104).
  • ⁇ h takes a value between threshold values T2 and T1 (both steps S102 and 103 are “NO”)
  • inspection standard R2 is selected (step S105).
  • the component electrode 301 does not float, but when the component electrode 301 is located at a relatively high place with respect to the cream solder 303, ⁇ h is larger than the threshold value T2, and the threshold is reached. It becomes smaller than the value T1. Therefore, in this case, since the inspection result based on the inspection standard R2 becomes effective, there is almost no fillet after the reflow process, but there is no problem in the connection between the component electrode 301 and the land 300 (the lower case in FIG. 15) ) Can be inspected.
  • the inspection result based on the inspection standard R1 that is, the inspection result based on the wetting height of the solder after reflow is employed.
  • the determination reference values set in the inspection standards R1 and R2 may be changed according to the measured value of the cream solder volume.
  • the three types of determination standard values U0, U1, and U2 in the example of FIG. 6 are set, and a component electrode 301 that can be selected from these suitable for the volume of cream solder can be selected.
  • the strict standard prevents the failure from being overlooked, while the post-reflow solder wetting height is low, but the connection between the component electrode 301 and the land 300 is good (see the lower part of FIG. 13). Example) can be prevented from being judged as defective.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Operations Research (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

 はんだ印刷検査機(10)は基板上のランドのクリームはんだの体積を検査し、はんだ付け検査機(30)はリフロー後はんだのぬれ上がり高さを検査する。またはんだ付け検査機(30)には、ぬれ上がり高さの計測値を判定するための複数とおりの判定基準値を含む検査プログラムと、これらの判定基準値を選択するための選択ルールとが登録される。この選択ルールには、検査対象のはんだ付け部位をはんだ印刷検査機(10)が計測したときに求めたクリームはんだの体積によっていずれの判定基準値を選択するかが定義されている。はんだ印刷検査機(10)は、検査データ管理装置(102)から検査対象のはんだ付け部位に対応するクリームはんだの体積を読み込み、これに基づき判定基準値を決定する。

Description

はんだ付け検査方法、および基板検査システムならびにはんだ付け検査機
 本発明は、部品実装基板の生産のために実施される複数の工程のうちのリフロー工程までを終了した基板を対象にした外観検査により、基板に実装された各種部品のはんだ付け状態の適否を判別する方法、およびこの方法が適用された検査システムならびにはんだ付け検査機に関する。
 部品実装基板は、一般に、クリームはんだの印刷工程、部品実装工程、およびリフロー工程の各工程により生産される。近年の生産ラインには、これらの工程毎に検査機を配備し、各検査機による検査結果を情報処理装置に集積して、同一対象毎に突き合わせて確認できるようにした基板検査システムが導入されたラインがある(たとえば、特許文献1を参照。)。
 リフロー工程後のはんだ付け部位の検査に関しては、はんだの鏡面反射性を利用して、検査対象の基板を斜め上方から照明しながら当該基板をほぼ真上から撮像し、生成された画像中の反射光像のパターンを解析する検査機が広く用いられている。たとえば、特許文献2には、赤、緑、青の各色彩光をそれぞれ入射角の範囲が異なる方向から基板に照射することにより、これらの照明光に対応する色彩の分布パターンによりはんだの傾斜状態が表された画像を生成し、この色彩の分布パターンをあらかじめ登録された検査基準に基づき処理することが記載されている(特許文献2の段落0003,0034~0040を参照。)。
 はんだ印刷工程後の検査にも、同様に、基板をほぼ真上から撮像して2次元の画像処理を行うことにより、基板上の各ランドにおけるクリームはんだの面積や印刷位置などを計測する検査機が用いられる。また位相シフト法により検査対象部位の三次元形状や体積を求める検査機もある(たとえば特許文献3を参照。)。
 いずれの工程でも、自動で検査を行うには、あらかじめ各検査対象部位に適した検査基準を検査機に登録する必要がある。検査基準は、検査領域の設定、計測対象部位の検出方法や計測のための演算方法、計測値の適否を判別するための判定基準値など、検査に必要な種々の情報を定義するもので、プログラムにより具現化される。
 検査の精度を向上するには、部品毎に適切な検査基準を設定する必要がある。さらに最終のリフロー工程後の検査に関しては、不良を見逃すことのない検査基準を設定することも必要となる。
 上記の課題に関して、特許文献2には、同一の部品種であっても、形成されるフィレットの形状によって検査基準を異なる内容に設定することが記載されている。その記載を要約すると、特許文献2に記載された検査機には、部品種毎に、その部品種の部品に形成され得る複数とおりのフィレット形状に対応する複数とおりの検査基準データが、それぞれ対応する形状のフィレットの高さ範囲に対応づけて登録される。またティーチング処理において、基板に実装される部品毎に、その部品の形状データやその部品に対応するランドの大きさから当該部品のフィレットの高さを算出し、その高さに対応する検査基準を読み出して、処理対象の部品の検査領域に紐付ける。これにより、部品毎に、その部品に形成されるフィレットの形状に適した検査基準が適用される。
特許第3966336号公報 特許第4103921号公報 特開2010-91569号公報
 特許文献2に記載されたものを含め、リフロー工程後の検査における従来の検査基準ははんだ付け状態が良好であること、言い換えればリフロー工程を含む全工程で適切な処理が実施されたことを前提として定められる。しかし、実際には、はんだ印刷工程でのクリームはんだの印刷量や印刷位置にばらつきや経時変化が生じたり、部品実装工程での部品の実装位置やクリームはんだに対する押し込み量が変動するなどして、リフロー後のはんだの形状が変動し、良品であるにも関わらず、検査基準に適合しないと検査機に判別される形状になる場合がある。
 以下、図12~図15を用いて上記の問題を説明する。各図は、リード部品の一電極に対するはんだ付け部位のリフロー工程後のはんだの形状が、リフロー工程前の状態によって変動することを示すものである。各図において、300はランドであり、301は部品の電極である。また、302はリフロー前のクリームはんだであり、303はリフロー工程により溶融した後に固化したはんだ(以下、「リフロー後はんだ」という。)である。
 図12では、電極301に浮きが生じていた場合の事例と浮きが生じていない場合の事例とを上下に対比させて示している。はんだ印刷工程では、いずれの例でも、標準の量のクリームはんだ302が印刷されているが、電極301に浮きのない下の例では、溶けたはんだが電極302によりせき止められたために、リフロー後はんだ303が高く盛り上がり、ランド300の端縁から電極301の先端までの部分(以下、この部分を「ランド突き出し部」という。)に適度な傾斜面(フィレット)が形成されている。これに対し、電極301が浮いた上の例では、溶融したはんだがランド300に薄く広がり、リフロー後はんだ303は下の例より平坦な形状となっている。
 このように、はんだの印刷量が同じであっても、電極301が浮いている場合と浮いていない場合とでは、リフロー後はんだ303の高さや傾斜状態が変動する。
 ところが、図13の下の例に示すように、クリームはんだ302の量は標準より少ないが、リフロー後はんだ303を介して電極301とランド300とが良好に接続される場合がある。このケースでのリフロー後はんだ303の高さや傾斜状態は、クリームはんだ302の量が標準で電極301が浮いている場合(図13の上の例)と同じ程度になる。
 図14は、部品実装工程で装着された部品の電極301の高さによってリフロー後はんだ303の形状が変動する例を示す。
 図14の上の例では、クリームはんだ302の中に電極301が適度に埋め込まれているため、リフロー工程では、溶融したはんだが電極301にせき止められて、ランド突き出し部に適度な傾斜面が形成される。これに対し、図14の下の例では、電極301が高い位置に設置されたために、リフロー工程で溶けたはんだが電極301の下方に吸い込まれる。この結果、リフロー後はんだ303は、ランド突き出し部では非常に緩やかになり、電極301の端縁の近傍のみの傾斜が急峻になる。この状態でも、電極301とランド300との電気的接続に支障はないが、図15の点線枠内に示すように、ランド突き出し部のリフロー後はんだ303の高さは、電極301が浮いた場合よりも低くなる場合がある。
 上記の各例に示すように、電極301とランド300との電気接続には問題はないが、リフロー後はんだ303の外観形状が接続不良のものと似た状態になったり、接続不良のものよりもリフロー後はんだ303が低くなる場合がある。リフロー工程後の外観検査では、基板をほぼ真上から撮像するため、電極の浮きや電極の下方のはんだの状態を確認することはできず、ランド突き出し部のリフロー後はんだ303の状態に基づいた判定をするしかない。このため従来の検査では、不良の見逃しを防ぐために、画像に現れた反射光像のパターンが不良を表す可能性がある場合には、全て不良と判定するような検査基準を設定するが、これは多くの見過ぎ(良品を不良と判定すること)を生み、生産効率の低下を招く。
 本発明は上記の問題に着目し、リフロー工程後の検査において、リフロー工程を実施する前の検査対象部位の状態の違いによって異なる検査基準を適用することにより、はんだ付け状態の適否を精度良く見分けることを課題とする。
 本発明は、部品実装基板の生産のために実施される複数の工程のうちのリフロー工程までを終了した基板を所定の方向から照明しながら、基板のはんだ付け部位からの照明光に対する正反射光を入射させることが可能な位置に配置されたカメラにより当該基板を撮像し、生成された画像中のはんだ付け部位に現れる反射光像を解析することによって当該部位のはんだ付け状態を検査する方法に適用される。なお、反射光像は、主として照明光に対するはんだ付け部位からの正反射光により生成されるが、概ね正反射に近い方向に反射した光による像が含まれてもかまわない。
 本発明による検査方法では、リフロー工程より前に実施される複数の工程のうちの少なくとも一工程において基板に付加された構成を次の工程を開始する前に計測することを前提として、リフロー工程後の検査にかかる検査基準が、検査対象のはんだ付け部位に対応する箇所に対してリフロー工程より前に実施された計測処理の結果によって変動するように検査基準のルールを定める。そして、リフロー工程後の基板のはんだ付け部位に対し、リフロー工程より前に実施された計測処理で当該はんだ付け部位に対応する箇所に対して実施された計測処理の結果に検査基準のルールを適用して検査基準を決定する。
 リフロー工程より前の工程の計測処理として、たとえば、はんだ印刷工程では、ランドに印刷されたクリームはんだの面積、体積、高さ、ランドに対するクリームはんだの相対位置などを計測することができる。また、部品実装工程では、部品の中心の位置、ランドに対する部品電極の端縁の位置、あらかじめ定めた規準位置に対する部品のずれ量、部品の回転ずれ角度、部品や部品電極の高さなどを計測することができる。本発明によれば、同一規格の基板の同じ場所に実装される部品であっても、リフロー工程前のクリームはんだや部品の状態が異なる場合には、それぞれに異なる検査基準が適用される可能性がある。したがって、部品毎に、その部品のリフロー工程前の状態を考慮した検査を実施することができ、良品と不良品とを見分ける精度を高めることが可能になる。
 上記の検査方法の好ましい実施形態では、検査基準のルールは、検査対象のはんだ付け部位に対する計測処理により得られた計測値の適否を判別するための判定基準値が、リフロー工程前の当該はんだ付け部位に対応する箇所に対する計測処理の結果によって変動するように設定される。この実施形態によれば、はんだ付け部位に対する計測の手順は同じであるが、計測により得られた計測値の適否を判別するための判定基準値をリフロー工程前のクリームはんだや部品の状態に応じて変更することができる。
 上記の検査方法の他の好ましい実施形態では、検査基準のルールは、はんだ付け部位に対応する箇所に対するリフロー工程前の計測処理の結果に応じてそれぞれ異なる内容に定められた複数とおりの検査基準の中から、検査対象のはんだ付け部位に対応する箇所に対するリフロー工程前の計測処理の結果に適合する検査基準を選択するように設定される。この実施形態によれば、リフロー工程後の検査では、リフロー工程前のクリームはんだや部品の状態によって異なる内容の検査を実施することができる。
 なお、リフロー工程後の検査を開始する前に検査基準を選択して、その選択された検査基準による検査を実行してもよいが、これに限らず、たとえば、全ての検査基準による検査を並列して実行した後に、検査基準を選択し、その選択された検査基準による検査の結果を採用してもよい。
 他の好ましい実施形態では、検査基準のルールは、リフロー工程より前にはんだ付け部位に対応する箇所に対して実施される複数種の計測処理により得られた計測値の組み合わせによって、当該はんだ付け部位に対する検査基準が変動するように設定されている。
 この実施形態によれば、複数の計測処理により得られた計測値に応じて検査基準を細かく分けることができ、リフロー工程後の検査の精度をより一層高めることができる。
 他の好ましい実施形態では、検査基準のルールは、検査対象のはんだ付け部位に対応するランドに対するはんだ印刷工程における計測処理により得られた計測値によって、当該はんだ付け部位に対する検査基準が変動するように設定される。これにより、クリームはんだの体積、面積、高さ、ランドに対するクリームはんだの印刷範囲などの違いに応じて検査基準を変動させることが可能になる。
 他の好ましい実施形態では、検査基準のルールは、検査対象のはんだ付け部位に対応するランドに対するはんだ印刷工程における計測処理により得られた計測値と、検査対象のはんだ付け部位に対応する部品に対する部品実装工程における計測処理により得られた計測値とによって、当該はんだ付け部位に対する検査基準が変動するように設定される。このようにすれば、クリームはんだの状態と部品の実装状態との関係のパターンの違いに応じて検査基準を変動させることが可能になる。
 他の好ましい実施形態では、リフロー工程前の工程における計測処理として、はんだ印刷工程により基板上の各ランドに印刷されたクリームはんだの量を計測する。この場合には、「クリームはんだの量」として、クリームはんだの面積、体積、高さの少なくとも1つを示すパラメータを求めることができる。
 また、この実施形態では、リフロー工程後の検査において、検査対象の画像に現れた反射光像とこの反射光像が表す傾斜角度の関係とに基づきリフロー工程後のはんだの高さを計測して、その計測値の適否を判別する。さらに、検査基準のルールは、リフロー工程後のはんだの高さの適否を判定するための判定基準値を、クリームはんだの量の計測値が小さくなるにつれて低い値にするように設定される。
 上記の実施形態によれば、図13の下段に示した事例のように、クリームはんだの量が少なかったためにリフロー工程後のはんだの高さが低くなったが、はんだ付け状態に不備がない部品を、良品として判定することが可能になる。一方、図13の上段に示した事例のように、電極に浮きが生じているためにリフロー工程後のはんだの高さが低くなった部品には、不良の判定をすることができる。
 つぎに、本発明による基板検査システムは、部品実装基板の生産のために実施される複数の工程のうちのリフロー工程に配備されてリフロー工程後の基板を検査する検査機と、リフロー工程より前の少なくとも一工程に配備されて当該工程後の基板を検査する検査機と、各検査機から通信により検査結果情報を取り込んで、検査機毎の検査結果情報を基板別および検査対象部位別に読出可能に管理する情報管理装置とを具備する。
 リフロー工程の検査機は、検査対象のはんだ付け部位に対して内容がそれぞれ異なる複数とおりの検査基準による検査を実行する機能を具備する。さらに、このシステムのリフロー工程の検査機または情報管理装置には、以下のルール記憶手段、計測値取得手段、および検査基準決定手段が設けられる。
 ルール記憶手段は、リフロー工程後のはんだ付け部位に対する検査について、リフロー工程より前の工程の検査機が検査対象のはんだ付け部位に対応する箇所に対する検査の際に実施した計測処理の結果によって前記複数とおりの検査基準のいずれを選択するかが定義された検査基準のルールを記憶する。
 計測値取得手段は、リフロー工程後の検査対象のはんだ付け部位について、リフロー工程より前の工程の検査機から情報管理装置に送信された検査結果情報の中から、当該前の工程の検査機がはんだ付け部位に対応する箇所に対して実施した計測処理により得た計測値を取得する。
 検査基準決定手段は、検査対象のはんだ付け部位につき計測値取得手段が取得した計測値に上記の検査基準のルールを適用することにより、当該計測値に適合する検査基準を決定する。
 ルール記憶手段、計測値取得手段、および検査基準決定手段は、リフロー工程の検査機および情報管理装置のいずれに設けられてもよい。これらがリフロー工程の検査機に設けられる場合には、計測値取得手段は、情報管理装置との通信により、リフロー工程より前の工程の検査機から情報管理装置に送信された検査結果情報の中から、検査対象のはんだ付け部位に対応する計測値を含むものを入力する手段として構成することができる。
 また、これらの手段が情報管理装置に設けられる場合には、計測値取得手段は、リフロー工程より前の工程の検査機から受信して保存している検査結果情報の中から、検査対象のはんだ付け部位に対応する計測値を含むものを読み出す手段として構成することができる。または、リフロー工程より前の工程の検査機からの検査結果情報の送信を受けたときに、その中から計測値を取り出す機能を計測値取得手段とし、検査基準決定手段により、リフロー工程の検査機の検査対象部位に対する検査基準をその検査に先立ち決定してもよい。
 上記のシステムの一実施形態では、リフロー工程の検査機は、検査対象のはんだ付け部位に対し、複数とおりの検査基準による検査の全てを実行すると共に、各検査毎の検査結果情報を情報管理装置に送信する。また情報管理装置は、ルール記憶手段、計測値取得手段、および検査基準決定手段を具備すると共に、リフロー工程の検査機から受信した検査結果情報の中から、検査基準決定手段により決定された検査基準に対応するものを選択して保存する。この構成によれば、リフロー工程の検査機が複数とおり検査基準による検査を全て実行した後に、情報管理装置において、各検査結果の中からリフロー工程前のクリームはんだや部品の状態に適合する検査基準による検査の結果が採用されることになる。
 上記のシステムの他の実施形態では、リフロー工程の検査機が、ルール記憶手段、計測値取得手段、および検査基準決定手段を具備する。さらに、この検査機は、検査対象のはんだ付け部位に対し、検査基準決定手段により決定された検査基準による検査を実行して、当該検査による検査結果情報を情報管理装置に送信する検査実行手段を具備する。この構成によれば、リフロー工程の検査機において、リフロー工程前のクリームはんだや部品の状態に適合する検査基準による検査が実行されることになる。
 このほか、ルール記憶手段、計測値取得手段、および検査基準決定手段を情報管理装置に設け、検査基準決定手段により決定された検査基準を情報管理装置からリフロー工程の検査機に伝送し、リフロー工程の検査機でこの検査基準に基づく検査を実行してもよい。
 本発明が適用されたはんだ付け検査機は、部品実装基板の生産のために実施される複数の工程のうちのリフロー工程までを終了した基板を対象に、この基板を所定の方向から照明しながら、基板のはんだ付け部位からの照明光に対する正反射光を入射させることが可能な位置に配置されたカメラにより当該基板を撮像し、生成された画像中のはんだ付け部位に現れる反射光像を解析することによって当該部位のはんだ付け状態を検査するもので、以下の入力手段、ルール記憶手段、検査実行手段を具備する。
 入力手段は、検査対象のはんだ付け部位について、リフロー工程より前に実施される複数の工程のうちの少なくとも一工程において当該はんだ付け部位に対応する箇所に付加された構成を次の工程を開始する前に計測することにより得られた計測値を入力する。この入力は、たとえば、前出の情報管理装置や計測を実施した検査機との通信により行うことができるが、これに限定されるものではない。
 ルール記憶手段は、検査対象のはんだ付け部位に対する検査基準を入力手段により入力した計測値によって変動させるように定義された検査基準のルールを記憶する。検査実行手段は、リフロー工程後の基板のはんだ付け部位に対し、入力手段により入力した計測値に検査基準のルールを適用することにより当該計測値に適合する検査基準を決定し、この検査基準に基づきはんだ付け部位に対する検査を実行する。
 上記のはんだ付け検査機によれば、リフロー工程前の工程で検査対象のはんだ付け部位に対して実施された計測値によって、良・不良を判定するための判定基準値、計測対象、計測手法などを変動させて検査を行うことができる。
 本発明によれば、リフロー工程後のはんだ付け検査の検査基準を、リフロー工程前のクリームはんだの状態や部品の状態によって変動させるので、良品と不良品とを高い精度で見分けることが可能になる。
基板検査システムの構成を部品実装基板の生産ラインの全体構成に対応づけて示す図である。 はんだ付け検査機の構成を示すブロック図である。 はんだ印刷検査機の構成を示すブロック図である。 はんだ付け検査に関わる装置間における情報の流れを示す図である。 リフロー後はんだのぬれ上がり高さを計測する方法を説明する図である。 リフロー後はんだのぬれ上がり高さを判定するための判定基準値の設定方法を説明する図である。 リフロー後はんだのぬれ上がり高さを判定するための判定基準値の他の設定方法を説明する図である。 クリームはんだに対する計測領域を限定する方法を説明する図である。 はんだ付け検査機における処理の手順を示すフローチャートである。 複数とおりの検査基準による検査を実行する場合の各装置間における情報の流れを示す図である。 検査基準の設定ルールの具体例を示すフローチャートおよび選択に用いるしきい値の意味を示す図である。 部品電極が浮いている場合と浮きがなかった場合とでのリフロー後の結果を対比させて示す図である。 部品電極が浮いている場合とクリームはんだの量が少なかった場合とでのリフロー後の結果を対比させて示す図である。 部品電極の高さが正常な場合と部品電極が高めに配置された場合とでのリフロー後の結果を対比させて示す図である。 部品電極が浮いている場合と部品電極が高めに配置された場合とでのリフロー後の結果を対比させて示す図である。
 図1は、基板検査システムの一実施形態の構成を部品実装基板の生産ラインの全体構成に対応づけて示す。
 図示の生産ラインには、はんだ印刷工程、部品実装工程、およびリフロー工程が含まれる。はんだ印刷工程には、基板上の各ランドにクリームはんだを塗布するはんだ印刷装置11とこの装置11による処理結果を検査するはんだ印刷検査機10が設けられる。部品実装工程には、はんだ印刷後の基板に部品を実装するマウンタ21や部品の実装状態を検査する部品検査機20が設けられる。リフロー工程には、部品実装後の基板のクリームはんだを溶かすリフロー炉31やリフロー後の基板を検査するはんだ付け検査機30が設けられる。図中の太矢印に示すように、基板が各装置に順に送り込まれて処理されることにより、所定の規格に応じた部品実装基板が完成する。
 各工程の検査機10,20,30は、それぞれLAN回線100を介して相互に接続される。LAN回線100には、さらに検査プログラム管理装置101および検査データ管理装置102が接続されている。検査プログラム管理装置101には、検査機10,20,30毎に、あらかじめ定められた検査基準に基づく検査を実行するための検査プログラムを部品の種毎のライブラリデータとしてまとめたデータベースが登録されている。
 検査データ管理装置102には、各検査機10,20,30で実施された検査の結果が保存される。この検査結果情報には、検査対象部位毎の良否の判定結果や、その判定のために実施された計測結果が含まれている。検査結果情報は、検査機10,20,30毎に、また基板別および基板上の個々の部品別に読み出すことができるように構成される。
 なお、検査プログラム管理装置101と検査データ管理装置102とは必ずしも別体にする必要はなく、1つのコンピュータに各管理装置101,102の機能を持たせてもよい。反対に、各管理装置101,102を複数のコンピュータにより構成することも可能である。
 各検査機10,20,30では、検査に先立ち、検査対象基板の構成を示すデータ(たとえばCADデータ)を入力し、この入力データに示される各部品の部品種情報に適したライブラリデータを検査プログラム管理装置101から取り込んで、各部品の位置情報とライブラリデータとを紐付ける処理を実施する。これにより各検査機10,20,30に検査対象基板の検査に必要な環境が設定される。なお、ライブラリデータに基づくプログラムの内容は、適宜、ユーザによる設定操作に応じて変更することができる。
 図2は、はんだ付け検査機30の構成を示す。
 この実施例のはんだ付け検査機30は、制御処理部1,カメラ2、照明装置3,基板ステージ4などを有する。基板ステージ4は、検査対象の基板Sを水平な姿勢で支持しながら、この基板Sを各辺に沿う方向に移動させる。カメラ2は、カラー画像を生成するもので、基板ステージ4の上方に、光軸をほぼ鉛直方向に向けた状態(ステージ4上の基板Sを正面視する状態)で配備される。照明装置3は、カメラ2と基板ステージ4との間に配備される。
 照明装置3には、赤色光、緑色光、青色光をそれぞれ発する環状光源3R,3G,3Bが含まれる。各光源3R,3G,3Bは、それぞれの中心部をカメラ2の光軸に位置合わせした状態で配置される。また、各光源3R,3G,3Bは互いに異なる大きさの径を有し、最も径の小さい赤色光源3Rが一番上に配置され、最も径の大きい青色光源3Bが一番下に配置され、これらの間に緑色光源3Gが配置される。この配置は、基板Sに対する入射角度の範囲を色彩毎に異なるものにすることを目的とする。
 制御処理部1には、コンピュータによる制御部110、画像入力部111、撮像制御部112、照明制御部113、ステージ制御部114、メモリ115、ハードディスク装置116、通信用インターフェース117、入力部118、表示部119などが含まれる。制御部110は、撮像制御部112、照明制御部113、ステージ制御部114を介して、カメラ2、照明装置3、基板ステージ4の動作を制御する。カメラ2により生成された画像は、画像入力部111においてディジタル変換された後に、制御部110に入力される。
 メモリ115には、上記の制御に関するプログラムが保存されるほか、処理対象の画像データや演算結果などが一時的に保存される。ハードディスク装置116には、検査プログラム管理装置101から提供されたライブラリデータに基づく検査プログラム群(検査基準を表すもの)、検査の過程で得た計測データおよび検査結果、検査に使用された画像などが保存される。
 通信用インターフェース117は、前出のLAN回線100を介して他の装置と通信を行うためのものである。入力部118は、検査の開始や終了を指定する操作や種々の設定データの入力に用いられる。表示部119は、検査結果や検査に用いられた画像を表示するためのものである。
 つぎに図3は、はんだ印刷検査機10の構成を示す。なお、この図3では、図2に対応する構成を、図2と同じ符号にAを付けた符号により示す。
 このはんだ印刷検査機10は、位相シフト法の原理に基づき基板Sのランドに印刷されたクリームはんだの高さを計測するもので、制御処理部1A,カメラ2A,照明装置3A,基板ステージ4Aのほか、縞状のパターン画像を基板に投影するためのプロジェクタ5を有する。また、この検査機10の照明装置3Aは、白色光を発する環状光源3Mにより構成される。制御処理部1Aには、はんだ付け検査機30の制御処理部1と同様の構成のに加え、プロジェクタ制御部120が設けられる。
 部品検査機20に関しては、はんだ付け検査機30とほぼ同じ構成を有するので、図示を省略する。ただし、部品検査機10では、照明装置3の光源を白色光源にしてもよい。
 部品検査機20では、検査対象の基板Sの画像から基板上の部品を検出し、その位置や傾きなどを計測して、その計測結果に基づき部品の実装状態の適否を判定する。
 また部品検査機20として、図3に示したはんだ印刷検査機10と同様の構成の装置を使用することもできる。この場合には、部品の実装位置や姿勢の検査に加えて、部品および部品電極の高さや垂直方向に対する部品の傾きなどを検査することもできる。
 上記3種類の検査機10,20,30のうち、はんだ印刷検査機10と部品検査機20とは、中間工程における検査を行うものであるが、これらで不良と判定されても、その後の工程の処理によって品質が改善される場合もある。したがって、多くの現場では、はんだ印刷検査機10や部品検査機20で不良と判定された基板をラインから取り除かずに後段に流すことを許容している。
 一方、最終のリフロー工程に置かれるはんだ付け検査機30では、不良を見逃さないように厳密な判定を行う必要があるが、図12~図15を用いて説明したように、リフロー工程後はんだの形状は、クリームはんだの印刷状態や部品の状態によって変動し、リフロー後はんだが不良の状態に似た形状を示しても、部品電極とランドとの接続が良好である場合も多い。
 そこで上記の基板検査システムでは、はんだ付け検査機30で検査を行う際に、検査対象のはんだ付け部位に対する検査基準を当該部位に対応する箇所に対して他の検査機10,20が実施した計測処理の結果に基づき調整するようにしている。具体的にこの実施例では、はんだ付けの良・不良を見分けるための判定基準値を複数とおり設定し、他の検査機10,20の計測結果に応じて判定基準値を選択する方法により、検査基準の内容を変動させるようにしている。これにより、同じ規格の基板の同じ場所に実装される部品であっても、それぞれの部品のリフロー工程前の状態が異なると、検査基準も異なる内容になる場合がある。
 図4は、はんだ付け検査機30の検査に関わる装置を、装置間における情報の流れと共に示す。この例では、検査プログラム管理装置101、検査データ管理装置102、およびはんだ印刷検査機10が、はんだ付け検査機30の検査に関与する。
 この実施例の検査プログラム管理装置101は、はんだ印刷検査機10に対し、ランドに印刷されたクリームはんだの体積の検査を実施するための検査プログラムを提供する(図4の(a))。一方、はんだ付け検査機30に対しては、検査プログラム管理装置101は、はんだ付け部位のリフロー後はんだのぬれ上がり高さの検査を実施するためのプログラムを提供すると共に、この検査で使用する判定基準値を検査対象のはんだ付け部位に対応するクリームはんだの体積に応じて変更するための方法を定めたプログラム(以下、このプログラムを「選択ルール」という。)を提供する(図4の(b)(c))。
 上記の検査プログラムおよび選択ルールは、部品種単位のライブラリデータに含められて部品毎に提供される。
 はんだ印刷検査機10は、提供された検査プログラムに基づき、検査対象の基板Sの各ランドに印刷されたクリームはんだの体積を計測して、計測値の良・不良を判定する。そして、ランド毎の計測値を含む検査結果情報を検査データ管理装置102に送信する(図4の(d))。検査データ管理装置102は、これを保存する。
 はんだ付け検査機30も、提供された検査プログラムに基づき、検査対象の基板Sの各ランドにおけるリフロー後はんだのぬれ上がり高さを計測して、計測値の良・不良を判定し、計測値を含む検査結果情報を検査データ管理装置102に送信する(図4の(e))。ただし、その判定のための判定基準値は一定ではなく、選択ルールに基づき、複数とおりの判定基準値の中から選択される。この選択のために、はんだ付け検査機30は検査データ管理装置102にアクセスして、現在受け付けている基板Sの処理中のランドをはんだ印刷検査機10が検査したときに求めたクリームはんだの体積を読み込み(図4の(f))、この体積を選択ルールに適用することにより判定基準値を選択する。
 ここで、各検査機10,30において実施される検査の具体的な内容を説明する。
 まず、はんだ印刷検査機10における検査であるが、はんだ印刷検査機10では、位相シフト法の原理に基づく三次元計測をベースとする処理により、クリームはんだの体積を算出する。三次元計測では、縞状のパターン画像を、縞を所定量ずつ動かしながらプロジェクタ5から基板Sに投影する処理を、複数回の投影を1サイクルとして実行すると共に、毎回の投影のタイミングに合わせてカメラ2Aによる撮像を行う。1サイクル分の投影および撮像が完了すると、各回の撮像により得た画像中の検査領域(ランド毎に設定される。)内の各画素を1つずつ対象として、毎回の撮像における輝度の変化を検出し、この変化を一周期分の正弦波として、正弦波の位相を求める。さらに、処理対象の画素につき算出された位相やパターン画像の投影面およびカメラ2Aとあらかじめ定めた基準面(たとえば基板に対応する高さの面)との関係に基づく三角測量を適用して、基準面から処理対象の画素に対応する点までの距離を算出する。この距離は、処理対象の画素に対応する点の高さを示すことになる。
 また、上記の処理とは別に、はんだ印刷検査機10では、照明部3の白色照明下での撮像を行って、生成された画像中の検査領域からクリームはんだの色彩を検出する。そしてこのはんだの色彩が検出された画素に対して算出された高さデータを積分することによりクリームはんだの体積を求める。
 上記の方法によりクリームはんだの体積が算出されると、はんだ印刷検査機10では、この体積を検査領域毎に登録されている判定基準値と照合して良・不良を判定するが、「不良」と判定されたクリームはんだが搭載された基板も、後工程へと流される。
 つぎに、はんだ付け検査機30における検査のための計測処理について説明する。
 この実施例のはんだ付け検査機30では、赤、緑、青の各色彩光をそれぞれ入射角度の異なる方向から基板Sに照射するので、リフロー後はんだの傾斜面に照射された各色彩光の正反射光のうちカメラ2に入射した光によって、リフロー後はんだの傾斜状態を赤、緑、青の各色彩の分布パターンにより表した画像を生成することができる。画像中の各色領域は、それぞれ対応する照明光の入射角度とほぼ同じ傾斜角度を表現する。この実施例では、三色の中で入射角度範囲が最も小さい赤色光により生じる赤色領域は緩やかな傾斜(この実施例では8~15度)を示し、三色の中で入射角度が最も大きい青色光により生じる青色領域はかなり急な傾斜(この実施例では25~38度)を示す。また、赤色光と青色光との間の範囲から照射される緑色光により生じる緑色領域は、赤色領域および青色領域が示す角度範囲の間の角度範囲(この実施例では15~25度)を示す。
 図5は、各色領域とこれらが示す傾斜角度との関係に基づき、リフロー後はんだのぬれ上がり高さを求めるための方法を示す。
 この図5では、チップ部品200を例に、このチップ部品200の電極201とランド203とを接続するリフロー後はんだのフィレット202を示す模式図と、このフィレット202を撮像して得られる画像の模式図とを上下に対応づけている。画像の模式図では、各色領域をそれぞれ異なる塗りパターンにより示す。
 この実施例では、画像中の部品200の全体を含む範囲に部品用の検査領域(図示せず。)を設定して部品200を検出すると共に、ランド203毎に検査領域Fを設定して、その検査領域F内の赤領域、緑領域、青領域を検出する。図5に示すような形状のフィレットの画像では、一般に、画像中のランド202の外側端縁に近い場所から部品電極201に向かう方向に沿って、赤、緑、青の順に色彩が分布する。また部品200に近い場所に、青領域で表すことができる範囲を超える急峻な傾斜面を表す暗領域が生じることがある。
 上記の画像の特徴を利用して、この実施例では、検査領域F内において暗領域を含む4つの色領域が分布する方向を見つけて、この方向に沿って計測ラインLを設定し、この計測ラインLにおいて、各色領域の境界に位置する点A2,A3,A4、および赤領域の外側の端縁との交点A1を抽出する。さらに部品の検出結果に基づき、計測ラインLと部品電極201の端縁との交点A5を抽出する。
 つぎに、抽出された点のうち点A5を除く各点に、その点に対応する傾斜角度をあてはめる。各色領域が示す傾斜角度にはそれぞれある程度の幅があるが、隣り合う色領域間の境界位置は、それぞれの色領域が示す傾斜角度範囲の境界値付近の角度を示すと考えられる。よって、この実施例では、先に例示した傾斜角度範囲に基づき、点A1に8度を、点A2に15度を、点A3に25度を、点A4に38度を、それぞれあてはめる。そして図5の右手のグラフに示すように、各点A1~A4の座標と各点A1~A4にあてはめた角度との関係から、計測ラインLに沿う傾斜角度の変化を表す近似曲線Mを導出する。さらに、この近似曲線Mの点A1から点A5までの範囲に含まれる各点を積分することによって、点A5に対応するはんだの高さを算出し、これをリフロー後はんだのぬれ上がり高さとする。
 各色領域が示す傾斜角度にはそれぞれ所定大きさの幅があるが、色領域の間の境界位置に関しては、信頼度の高い傾斜角度が得られるので、各点A1~A4の座標と傾斜角度との関係から求めた近似曲線は、計測ラインに沿う傾斜の変化を適切に表現していると考えられる。また、傾斜状態が不明な暗領域内の各点の傾斜角度を推定することもでき、この推定に基づき、部品200の直近のはんだの高さを求めることができる。
 このような方法でリフロー後はんだのぬれ上がり高さを求め、その計測値を判定基準値と比較するが、このとき着目中のランド203をはんだ印刷検査機10が検査したときに計測したクリームはんだの体積を取得し、この体積に応じて判定基準値の値を決定する。一実施例では、次の図6に示す3通りの判定基準値U0,U1,U2の中から、取得したクリームはんだの体積に適合するものを選択する。
 図6では、ある部品のリフロー後はんだのぬれ上がり高さの計測値の分布を、クリームはんだの体積が「適正」(あらかじめ定めた標準値付近にある)もの、「はんだ過多」の範囲にあるもの、「はんだ過少」の範囲にあるものの3タイプに分けて表している。なお、この例では、標準値を100%として、70%以上から130%未満までの計測値を「はんだ適正」とし、130%以上の計測値を「はんだ過多」とし、70%未満の計測値を「はんだ過少」とするが、分類はこれに限定されるものではない。
 図6では、いずれのタイプとも、はんだ付け部位が良好であるものから得た計測値の分布曲線(一点鎖線で示す。)に「OK」の文字を対応づけ、部品電極の浮きなどの不良が発生しているはんだ付け部位から得た計測値の分布曲線(点線で示す。)に「NG」の文字を対応づけている。
 各グラフに示すように、リフロー後はんだのぬれ上がり高さと良・不良との関係は、クリームはんだの体積によって大きく異なる。発生する全ての不良を見逃さないようにするには、クリームはんだが「はんだ過多」のときの不良のグループよりも高い値を判定基準値にする必要があるが、図6の例においてそのような設定にすると、多くの良品が不良と判定され、生産性が低下する。
 そこでこの実施例では、部品の種毎に、相当数のサンプルを用いて、クリームはんだの体積のタイプ別に、はんだ付け状態が良好な場合のリフロー後はんだのぬれ上がり高さの分布とはんだ付け状態が不良の場合のリフロー後はんだのぬれ上がり高さの分布とを求め、各タイプ毎に、不良のグループの分布が除外される値U0,U1,U2を判定基準値として設定する。
 上記3タイプの判定基準値U0,U1,U2およびこれらを選択するためのプログラムは、選択ルールとして提供される。はんだ付け検査機30は、各部品のライブラリデータに基づく検査プログラムおよび選択ルールに基づき、検査対象のはんだ付け部位毎に、その部位に対応するランドに対してはんだ印刷検査機10により計測されたクリームはんだの体積を取得し、この体積に適した判定基準値を選択する。そして、この判定基準値をもって、自装置で計測したリフロー後はんだのぬれ上がり高さの良・不良を判定する。
 判定基準値の設定は、上記の方法に限定されるものではない。たとえば、図7に示すような方法により、クリームはんだの体積の計測値と判定基準値との関係を示す関数を設定することも可能である。
 図7の例では、X軸をクリームはんだの体積とし、Y軸をリフロー後はんだのぬれ上がり高さとする平面に、相当数のサンプルから得た計測値を、良サンプル、不良サンプルの別にプロットし、これらの計測値の分布範囲に基づき、クリームはんだの体積毎の判定基準値を示す直線Eを設定する。各計測値のうち、直線Eより上の範囲にある計測値は良品と判定され、直線Eより下の範囲にある計測値は不良と判定される。
 直線Eは、不良サンプルのグループGNGの計測値が全て直線Eの下に位置し、良サンプルのグループGOK内の計測値ができるだけ多く直線Eの上に位置するように設定される。よって、求められた直線Eの式Y=αX+βを登録し、この式にクリームはんだの体積の計測値Xをあてはめることにより、クリームはんだの体積によってリフロー後はんだのぬれ上がり高さに対する判定基準値を変動させることができる。これにより、判定基準値をきめ細かく調整することが可能になる。
 図7の方法を採用する場合には、上記直線Eの式Y=αX+βを特定し、この直線の式とこの式を用いて判定基準値を算出する旨を定義したプログラムとを含む選択ルールとを作成し、これらをはんだ付け検査機30に提供する。これにより、はんだ付け検査機30では、検査対象のはんだ付け部位毎に、その部位に対応するランドに対してはんだ印刷検査機10で計測されたクリームはんだの体積を取得し、この体積を用いた演算により判定基準値を算出する。
 図6,図7のいずれの方法を採用する場合でも、適切な判定基準値を設定するには、クリームはんだの体積とリフロー後はんだのぬれ上がり高さとの因果関係を示す相当数のサンプルを分析する必要がある。これらのサンプルは実物の基板から得たデータに限らず、たとえば流体シミュレーションの手法により、様々な体積のクリームはんだから得られるフィレット形状を求め、このフィレットのぬれ上がり高さを計測することにより、多数のサンプルを作成してもよい。
 つぎに、判定基準値の決定に用いるクリームはんだの体積を、フィレットが形成されるランド突き出し部分の体積に限定すれば、より適切な判定基準値を設定することが可能になる。
 ランド突き出し部分に限定してクリームはんだの体積を求めるには、たとえば、図8に示すように、はんだ付け検査機30において、画像中のランドの色彩の分布に基づきフィレットが形成されている領域N1,N2を特定し、検査データ管理装置102において、上記の領域N1,N2内の各画素に対してはんだ印刷検査機10が求めたクリームはんだの高さデータを用いて領域N1,N2内のはんだの体積を再計測する。また計測値の信頼度は少し劣るが、はんだ印刷検査機30が検査を行う際に、ランド突き出し部分の標準的な大きさに基づく範囲に計測領域を設定して、その計測領域内のクリームはんだの体積を求めてもよい。
 ここまでに説明した実施例では、はんだ付け検査機30でリフロー後はんだのぬれ上がり高さを計測することを前提に、はんだ印刷検査機10で求めたクリームはんだの体積に基づいて判定基準値を決定しているが、判定基準値を変動させる対象の検査パラメータはぬれ上がり高さに限定されるものではない。たとえば、部品種によっては、検査領域で特定の色領域(青または赤)を検出して、その位置や面積の適否を判定する場合もあるが、これらの判定に用いられる判定基準値も変動設定の対象にすることができる。
 判定基準値の決定に用いられる前工程の計測値も、クリームはんだの体積に限らず、クリームはんだの高さの平均値、ランドに対するクリームはんだの印刷範囲の位置および面積などを使用してもよい。また、複数の計測値の組み合わせを用いて、判定基準値を決定してもよい。
 また、リフロー工程前の部品の状態がはんだ付けに影響を及ぼす可能性もある。たとえば、部品の実装位置がずれてランド突き出し部の面積が変わると、リフロー後はんだの傾斜角度も変動する。したがって、はんだ印刷検査機10による計測結果と部品実装検査機20による計測結果との組み合わせにより判定基準値を決定するようにしてもよい。はんだ付け検査機30でも部品の位置や傾きなどの検査をしているので、その検査のときに得た計測結果からランド突き出し部を計測してもよいが、部品によっては、リフローによりはんだが部品電極の上部までぬれ上がり、部品電極の端縁を特定しにくい場合がある。このような部品に対しては、リフロー工程前の部品検査のときの計測データを利用した方が、ランド突き出し部の値を正確に算出できる場合がある。
 以下、図9を用いて、判定基準値を変動させる対象の検査や判定基準値の決定に用いられる計測パラメータを任意のものとして、はんだ付け検査機30において実施される処理の概略手順を説明する。なお、この説明では、自装置に登録されている情報を取得することを「読み出し」といい、他の装置との通信により当該他の装置に登録されている情報を取得することを「読み込み」という。
 この手順のうち、ステップS1およびステップS2は、検査前の設定処理を示す。まず最初のステップS1では、基板のリストなどから検査対象の基板を選択する操作が行われたことに応じて、選択された基板につき登録されている基板設計データを読み出す。ステップS2では、検査プログラム管理装置101から基板設計データに含まれる各種部品に対応するライブラリデータを読み込み、これを基板設計データ中の部品の実装位置に対応づける。これにより、各部品の検査に必要な検査プログラム群がはんだ付け検査機30に登録される。
 この後は、ユーザの設定操作に応じて検査プログラムを修正する処理や、基板に対する撮像対象領域の割り付け処理(いずれも図示せず。)などを実施して、検査に移行する。
 検査では、まず、前工程の検査機が求めた計測値を使用した検査を実行する部品や使用する計測値の種類を特定する(ステップS3)。そして、適宜、撮像対象領域を切り替えて撮像を行いながら、画像中の検査対象部位に検査領域を設定して、検査領域毎にループLPを実行する。
 ループLPでは、処理中の検査領域に設定されている検査プログラムに基づき、特徴抽出処理や計測処理を実行する(ステップS4)。さらに、前工程での計測値に基づき判定基準値を決める必要がある場合(ステップS5が「YES」)には、検査データ管理装置102から必要な計測値を読み込み(ステップS6)、読み込んだ計測値を選択ルールに適用して判定基準値を決定する(ステップS7)。そして、ステップS4で求めた計測値をステップ7で決定した判定基準値により照合することにより、良・不良を判定する(ステップS8)。一方、前工程の計測値に基づき判定基準値を決める必要がない場合(ステップS5が「NO」)には、検査領域に一意に登録されている判定基準値を読み出し(ステップS9)、これを用いてステップS8の判定処理を実行する。
 全ての検査領域に対してループLPを実行すると、ステップS10において、各判定結果をまとめて基板全体の良・不良を判定し、結果を検査データ管理装置102などに出力する。以下、後続の基板が存在する場合(ステップS11が「YES」)には、その基板を対象に、ループLPより処理を実行する。
 上記の手順に示すように、本実施形態のはんだ付け検査機30では、検査対象のはんだ付け部位に対応する箇所に対して前工程の検査機10,20が取得した計測値に基づき判定基準値を可変設定することができる。したがって、自装置で求めた計測値が同様であっても、リフロー工程前のクリームはんだの状態や部品の実装状態が異なると、判定基準値も異なる値になるので、それぞれの状態によって検査結果が異なるものになる可能性がある。
 つぎに、はんだ付け検査機30で実行される検査の種類によっては、判定基準値を可変設定することで検査基準の内容を変動させる方法に限らず、処理内容自体を変更するなど検査基準を大幅に変更した方が良い場合もある。このようなケースを含めて対応するために、次の図10に示す実施例では、はんだ付け検査機30で実施される特定の検査に対して実行する検査プログラムが異なる複数とおりの検査基準を設定し、これらの検査基準の中から、リフロー工程より前の工程の検査で求められた計測値に適したものを選択するようにしている。
 図10では、各検査機10,20,30、および検査プログラム管理装置101ならびに検査データ管理装置102の間でやりとりされる情報の主要な流れを示す。
 この実施例では、はんだ付け検査機30が行う特定の検査について、あらかじめ、部品種毎に、はんだ印刷検査機10や部品検査機20における計測パラメータとはんだ付け検査機における計測パラメータとの因果関係に基づいて複数とおりの検査基準を設定し、各検査基準を定義したプログラムをそれぞれ個別のライブラリデータに編集して検査プログラム管理装置101に登録する。検査プログラム管理装置101には、これら複数とおりの検査基準の中の1つを選択するための選択ルールも登録される。この選択ルールは、検査データ管理装置102にも転送されて(図10の(ハ))、当該装置内に登録される。
 はんだ付け検査機30は、検査プログラム管理装置101から、検査対象の基板の部品毎に、当該部品に対してそれぞれ異なる内容の検査基準を具現化した検査プログラムを含む複数のライブラリデータを読み込み(図10の(ロ))、自装置に登録する。一方、はんだ印刷検査機10や部品検査機20では、従来と同様に、部品毎に1つの検査基準によるライブラリデータを読み込み(図10の(イ))、これらに基づき検査を実行すると共に、この処理の過程で取得した計測値を含む検査結果を検査データ管理装置102に送信する(図10の(ニ))。検査データ管理装置102では、これらの送信情報を従来どおり保存する。
 はんだ付け検査機30は、検査基準毎の検査を並列して実行し、全ての検査結果(それぞれの検査の過程で得た計測値を含む。)を検査データ管理装置102に送信する(図10の(ホ))。検査データ管理装置102では、この送信を受けるより前に、検査プログラム管理装置101から提供された選択ルールに基づき、はんだ付け検査機30が実施する各種検査基準の中から、はんだ印刷検査機10や部品検査機20から受信した計測値に適合する検査基準を選択する。そして、はんだ付け検査機30から検査基準毎の検査結果を受信すると、これらの検査の対象部位に対して選択していた検査基準に対応する検査結果を選択し、この検査結果のみを保存する。さらに検査データ管理装置102は、選択した検査結果をはんだ付け検査機30にフィードバックする(図10の(ヘ))。これによりはんだ付け検査機30でも、フィードバックされた検査結果を有効にし、他の検査結果を破棄または無効にする。
 上記の図10の実施例によれば、検査領域の設定、検査領域で抽出する特徴の種類や計測の演算などの処理の内容が異なる複数とおりの検査基準による検査結果の中から、リフロー工程より前の工程で得た計測値が示すリフロー工程前のクリームはんだや部品の状態に最も適したものを選択して、これを検査結果として確定することができる。したがって、リフロー工程前のクリームはんだや部品の状態の違いによって、実質的に実施される検査の内容を変動させることが可能になる。
 なお、図10の例では、はんだ付け検査機30に複数とおりの検査基準による検査を全て実行させて、それぞれの検査結果の中からリフロー工程より前に得た計測値のパターンに適したものを有効にしたが、検査の方法はこれに限定されるものではない。たとえば、はんだ付け検査機30での検査が開始される前に、検査データ管理装置102から検査基準の選択結果を通知し、その通知に従って、はんだ付け検査機30が選択された検査基準による検査のみを実行し、その結果を検査データ管理装置102に送信してもよい。また検査基準の選択ルールをはんだ付け検査機30に登録し、はんだ付け検査機30において、検査データ管理装置102から他の検査機10,20による計測データを読み込み、これらの計測データを選択ルールに適用することにより、はんだ付け検査機30自身で検査基準を選択してもよい。
 また、上記のようにはんだ付け検査機30で検査基準を選択する場合には、その選択に用いられる計測値は、検査データ管理装置102からの入力に限らず、その計測を実施した検査機から直接入力してもよい。これは、先の判定基準値を変動させる実施例においても同様である。
 ここで、図10の例において使用される検査基準の選択ルールの具体例を説明する。
 図11は、リード部品を対象としたはんだ付け検査を例に、はんだ印刷検査および部品検査で得られた計測値の組み合わせを用いて2とおりの検査基準のうちのいずれか一方を選択する場合に用いられる選択ルールを、フローチャートおよび模式図を用いて示す。この例では、図15に示した2つの事例を見分けるために、「リフロー後はんだのぬれ上がり高さを検査する」という検査基準R1と、「部品電極の先端近くの赤領域を検出してその面積を検査する」という検査基準R2とを設定するものとする。
 図11中のフローチャートを用いて、この例の選択ルールを説明する。
 この選択ルールでは、模式図(A)(B)に示すように、はんだ印刷検査機10においてクリームはんだ303の高さの平均値h1が計測され、部品検査機20において部品電極301の上面の高さh2が計測されていることを前提とする。選択ルールによる処理では、まずこれらの計測値h1,h2を用いて部品電極301とクリームはんだ303の高さの差Δhを算出し(ステップS101)、Δhを2つのしきい値T1,T2と比較する(ステップS102,S103)。
 模式図(C)は、模式図(B)に示したリード部品の電極301の一部とその近傍のクリームはんだ303とを拡大したものにより、上記のしきい値T1,T2の設定例を示す。この図では、クリームはんだ303の中に電極301が適度に埋まっている状態にあるときの両者の差に相当する値をしきい値T2とする。一方、しきい値T1は、電極301が浮く寸前の状態にあるとき(模式図中に一点鎖線で示す。)の両者の高さの差に相当するもので、電極301の厚みより若干小さい値に設定される。
 フローチャートの説明に戻る。この例では、Δhがしきい値T1以上の場合(ステップS102が「YES」)およびΔhがしきい値T2以下である場合(ステップS103が「YES」)には、検査基準R1を選択する(ステップS104)。一方、Δhがしきい値T2からT1までの値をとる場合(ステップS102,103が共に「NO」)には検査基準R2を選択する(ステップS105)。
 上記の選択ルールによれば、部品電極301に浮きはないが、部品電極301がクリームはんだ303に対して相対的に高い場所に位置する場合には、Δhはしきい値T2より大きく、しきい値T1より小さくなる。よって、この場合には検査基準R2による検査結果が有効になるので、リフロー工程後に殆どフィレットが生じていないが、部品電極301とランド300の接続には問題がないもの(図15の下段の事例)に適した検査をすることができる。
 一方、リフロー工程前に部品電極301に浮きが生じていた場合には、Δhはしきい値T1より大きくなり、部品電極301が適切に装着されていた場合には、Δhはしきい値T2以下となるので、これらの場合には検査基準R1による検査結果、すなわちリフロー後はんだのぬれ上がり高さによる検査の結果が採用される。このような検査基準の切り分けによって、部品電極301の浮きを見逃すことなく、図15の下段の事例のようなはんだ付け状態には良判定をすることが可能になる。
 さらに、上記の例においても、各検査基準R1,R2に設定されている判定基準値を、クリームはんだの体積の計測値などに応じて変動させてもよい。たとえば、検査基準R1に関して、図6の例の3種類の判定基準値U0,U1,U2を設定し、これらの中からクリームはんだの体積に適したものを選択できるようにすれば、部品電極301に浮きが生じているときは厳しい基準により不良の見逃しを防ぐ一方で、リフロー後はんだのぬれ上がり高さが低くとも、部品電極301とランド300との接続が良好なもの(図13の下段の事例)が不良と判定されるのを防ぐことができる。
 S  基板、 1  制御処理部、 2  カメラ、 3  照明部、 4  基板ステージ、 10 はんだ印刷検査機、 11 はんだ印刷装置、 20 部品検査機z、 21 マウンタ、 30 はんだ付け検査機、 31 リフロー炉、 102 検査データ管理装置

Claims (11)

  1.  部品実装基板の生産のために実施される複数の工程のうちのリフロー工程までを終了した基板を所定の方向から照明しながら、基板のはんだ付け部位からの照明光に対する正反射光を入射させることが可能な位置に配置されたカメラにより当該基板を撮像し、生成された画像中のはんだ付け部位に現れる反射光像を解析することによって当該部位のはんだ付け状態を検査する方法であって、
     前記リフロー工程より前に実施される複数の工程のうちの少なくとも一工程において基板に付加された構成を次の工程を開始する前に計測することを前提として、リフロー工程後の検査にかかる検査基準が、検査対象のはんだ付け部位に対応する箇所に対してリフロー工程より前に実施された計測処理の結果によって変動するように前記検査基準のルールを定め、
     前記リフロー工程後の基板のはんだ付け部位に対し、リフロー工程より前に実施された計測処理で当該はんだ付け部位に対応する箇所に対して実施された計測処理の結果に前記検査基準のルールを適用して検査基準を決定する、
    ことを特徴とするはんだ付け検査方法。
  2.  前記検査基準のルールは、検査対象のはんだ付け部位に対する計測処理により得られた計測値の適否を判別するための判定基準値が、リフロー工程前の当該はんだ付け部位に対応する箇所に対する計測処理の結果によって変動するように設定されている、請求項1に記載されたはんだ付け検査方法。
  3.  前記検査基準のルールは、はんだ付け部位に対応する箇所に対するリフロー工程前の計測処理の結果に応じてそれぞれ異なる内容に定められた複数とおりの検査基準の中から、検査対象のはんだ付け部位に対応する箇所に対するリフロー工程前の計測処理の結果に適合する検査基準を選択するように設定されている、請求項1に記載されたはんだ付け検査方法。
  4.  前記検査基準のルールは、リフロー工程より前にはんだ付け部位に対応する箇所に対して実施される複数種の計測処理により得られた計測値の組み合わせによって、当該はんだ付け部位に対する検査基準が変動するように設定されている、請求項1に記載されたはんだ付け検査方法。
  5.  前記検査基準のルールは、検査対象のはんだ付け部位に対応するランドに対するはんだ印刷工程における計測処理により得られた計測値によって、当該はんだ付け部位に対する検査基準が変動するように設定されている、請求項1に記載されたはんだ付け検査方法。
  6.  前記検査基準のルールは、検査対象のはんだ付け部位に対応するランドに対するはんだ印刷工程における計測処理により得られた計測値と、検査対象のはんだ付け部位に対応する部品に対する部品実装工程における計測処理により得られた計測値とによって、当該はんだ付け部位に対する検査基準が変動するように設定されている、請求項1に記載されたはんだ付け検査方法。
  7.  前記リフロー工程前の計測処理として、前記はんだ印刷工程により基板上の各ランドに印刷されたクリームはんだの量を計測し、
     前記リフロー工程後の検査では、検査対象の基板の画像に現れた反射光像とこの反射光像が表す傾斜角度の関係とに基づきリフロー工程後のはんだの高さを計測して、その計測値の適否を判別し、
     前記検査基準のルールは、リフロー工程後のはんだの高さの適否を判定するための判定基準値を、前記クリームはんだの量の計測値が小さくなるにつれて低い値にするように設定されている、請求項1に記載されたはんだ付け検査方法。
  8.  部品実装基板の生産のために実施される複数の工程のうちのリフロー工程に配備されてリフロー工程後の基板を検査する検査機と、リフロー工程より前の少なくとも一工程に配備されて当該工程後の基板を検査する検査機と、各検査機から通信により検査結果情報を取り込んで、検査機毎の検査結果情報を基板別および検査対象部位別に読出可能に管理する情報管理装置とを具備し、
     前記リフロー工程の検査機は、検査対象のはんだ付け部位に対して内容がそれぞれ異なる複数とおりの検査基準による検査を実行する機能を具備し、
     前記リフロー工程の検査機または情報管理装置に、リフロー工程後のはんだ付け部位に対する検査について、リフロー工程より前の工程の検査機が検査対象のはんだ付け部位に対応する箇所に対する検査の際に実施した計測処理の結果によって前記複数とおりの検査基準のいずれを選択するかが定義された検査基準のルールを記憶するルール記憶手段と、前記リフロー工程後の検査対象のはんだ付け部位について、リフロー工程より前の工程の検査機から情報管理装置に送信された検査結果情報の中から、当該前の工程の検査機がはんだ付け部位に対応する箇所に対して実施した計測処理により得た計測値を取得する計測値取得手段と、前記検査対象のはんだ付け部位につき前記計測値取得手段が取得した計測値に前記検査基準のルールを適用することにより、当該計測値に適合する検査基準を決定する検査基準決定手段とが、設けられている、
    ことを特徴とする基板検査システム。
  9.  前記リフロー工程の検査機は、検査対象のはんだ付け部位に対し、前記複数とおりの検査基準による検査の全てを実行すると共に、各検査毎の検査結果情報を前記情報管理装置に送信し、
     前記情報管理装置は、前記ルール記憶手段、計測値取得手段、および検査基準決定手段を具備すると共に、リフロー工程の検査機から受信した検査結果情報の中から、前記検査基準決定手段により決定された検査基準に対応するものを選択して保存する受信情報処理手段を具備する、請求項8に記載された基板検査システム。
  10.  前記リフロー工程の検査機は、前記ルール記憶手段、計測値取得手段、および検査基準決定手段を具備すると共に、検査対象のはんだ付け部位に対し、検査基準決定手段により決定された検査基準による検査を実行して、当該検査による検査結果情報を前記情報管理装置に送信する検査実行手段を具備する、請求項8に記載された基板検査システム。
  11.  部品実装基板の生産のために実施される複数の工程のうちのリフロー工程までを終了した基板を対象に、この基板を所定の方向から照明しながら、基板のはんだ付け部位からの照明光に対する正反射光を入射させることが可能な位置に配置されたカメラにより当該基板を撮像し、生成された画像中のはんだ付け部位に現れる反射光像を解析することによって当該部位のはんだ付け状態を検査する検査機であって、
     検査対象のはんだ付け部位について、前記リフロー工程より前に実施される複数の工程のうちの少なくとも一工程において当該はんだ付け部位に対応する箇所に付加された構成を次の工程を開始する前に計測することにより得られた計測値を入力する入力手段と、
     前記検査対象のはんだ付け部位に対する検査基準を前記入力手段により入力した計測値によって変動させるように定義された検査基準のルールを記憶するルール記憶手段と、
     前記リフロー工程後の基板のはんだ付け部位に対し、前記入力手段により入力した計測値に前記検査基準のルールを適用することにより当該計測値に適合する検査基準を決定し、この検査基準に基づきはんだ付け部位に対する検査を実行する検査実行手段とを、
    具備するはんだ付け検査機。
PCT/JP2011/056436 2011-01-13 2011-03-17 はんだ付け検査方法、および基板検査システムならびにはんだ付け検査機 WO2012096003A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201180064870.XA CN103299177B (zh) 2011-01-13 2011-03-17 锡焊检查方法和基板检查系统以及锡焊检查机
DE112011104725.8T DE112011104725B9 (de) 2011-01-13 2011-03-17 Lötstelleninspektionsverfahren, Leiterplatteninspektionssystem und Lötstelleninspektionsgerät

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-004769 2011-01-13
JP2011004769A JP5365643B2 (ja) 2011-01-13 2011-01-13 はんだ付け検査方法、および基板検査システムならびにはんだ付け検査機

Publications (1)

Publication Number Publication Date
WO2012096003A1 true WO2012096003A1 (ja) 2012-07-19

Family

ID=46506923

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/056436 WO2012096003A1 (ja) 2011-01-13 2011-03-17 はんだ付け検査方法、および基板検査システムならびにはんだ付け検査機

Country Status (5)

Country Link
JP (1) JP5365643B2 (ja)
CN (1) CN103299177B (ja)
DE (1) DE112011104725B9 (ja)
TW (1) TW201231960A (ja)
WO (1) WO2012096003A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015118997A1 (ja) * 2014-02-06 2015-08-13 オムロン株式会社 品質管理システム
US20150289426A1 (en) * 2012-11-19 2015-10-08 Panasonic Intellectual Property Management Co., Ltd. Electronic component mounting system
US20190254173A1 (en) * 2018-02-09 2019-08-15 Universal Global Technology (Kunshan) Co., Ltd. Circuit board assembly inspection method

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103808276A (zh) * 2012-11-06 2014-05-21 株式会社高永科技 基板检查装置系统及基板检查方法
JP6118353B2 (ja) * 2013-02-03 2017-04-19 名古屋電機工業株式会社 部品実装基板検査方法及びその検査方法を採用する基板製造システム
KR20150022352A (ko) * 2013-08-23 2015-03-04 주식회사 고영테크놀러지 솔더 조인트 검사 방법
JP6349734B2 (ja) * 2014-01-14 2018-07-04 オムロン株式会社 品質管理装置、品質管理方法、およびプログラム
JP6277754B2 (ja) * 2014-02-06 2018-02-14 オムロン株式会社 品質管理システムおよび内部検査装置
JP6264072B2 (ja) * 2014-02-10 2018-01-24 オムロン株式会社 品質管理装置及びその制御方法
WO2016080809A1 (ko) * 2014-11-20 2016-05-26 주식회사 고영테크놀러지 검사 장치 및 이를 갖는 부품 실장 시스템
DE102015212690B3 (de) * 2015-07-07 2016-09-01 Robert Bosch Gmbh Anlage und Verfahren zur Lötstellenüberprüfung
CN106017322A (zh) * 2016-06-20 2016-10-12 无锡兴彦影像科技有限公司 用于电路板锡膏或贴片检测的色彩三维成像装置及方法
JP6832650B2 (ja) * 2016-08-18 2021-02-24 株式会社Screenホールディングス 検査装置および検査方法
JP6988500B2 (ja) 2018-01-16 2022-01-05 オムロン株式会社 検査管理システム、検査管理装置、検査管理方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07321492A (ja) * 1994-05-24 1995-12-08 Matsushita Electric Ind Co Ltd 部品実装装置の品質管理方法
JPH09260898A (ja) * 1996-03-27 1997-10-03 Matsushita Electric Ind Co Ltd 電子部品実装方法とその装置
JP2002134899A (ja) * 2000-10-25 2002-05-10 Matsushita Electric Ind Co Ltd 電子部品実装システムおよび電子部品実装方法
JP2005286309A (ja) * 2004-03-01 2005-10-13 Omron Corp 部品実装基板用の検査方法および検査システム、部品実装基板の製造方法
JP2007287779A (ja) * 2006-04-13 2007-11-01 Matsushita Electric Ind Co Ltd 電子部品実装システムおよび搭載状態検査装置ならびに電子部品実装方法
JP2008045952A (ja) * 2006-08-11 2008-02-28 Omron Corp フィレット検査のための検査基準データの設定方法、およびこの方法を用いた基板外観検査装置
JP2009103648A (ja) * 2007-10-25 2009-05-14 Omron Corp 部品実装検査の検査結果確認方法および検査結果確認システム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04103921A (ja) 1990-08-22 1992-04-06 Sekisui Plastics Co Ltd 電子レンジ加熱用シート
JP3966336B2 (ja) * 2004-03-15 2007-08-29 オムロン株式会社 部品実装基板用の検査方法および検査システム、部品実装基板の製造方法
CN100489508C (zh) * 2004-07-21 2009-05-20 欧姆龙株式会社 基板检查方法及装置
KR101251372B1 (ko) 2008-10-13 2013-04-05 주식회사 고영테크놀러지 3차원형상 측정방법

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07321492A (ja) * 1994-05-24 1995-12-08 Matsushita Electric Ind Co Ltd 部品実装装置の品質管理方法
JPH09260898A (ja) * 1996-03-27 1997-10-03 Matsushita Electric Ind Co Ltd 電子部品実装方法とその装置
JP2002134899A (ja) * 2000-10-25 2002-05-10 Matsushita Electric Ind Co Ltd 電子部品実装システムおよび電子部品実装方法
JP2005286309A (ja) * 2004-03-01 2005-10-13 Omron Corp 部品実装基板用の検査方法および検査システム、部品実装基板の製造方法
JP2007287779A (ja) * 2006-04-13 2007-11-01 Matsushita Electric Ind Co Ltd 電子部品実装システムおよび搭載状態検査装置ならびに電子部品実装方法
JP2008045952A (ja) * 2006-08-11 2008-02-28 Omron Corp フィレット検査のための検査基準データの設定方法、およびこの方法を用いた基板外観検査装置
JP2009103648A (ja) * 2007-10-25 2009-05-14 Omron Corp 部品実装検査の検査結果確認方法および検査結果確認システム

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150289426A1 (en) * 2012-11-19 2015-10-08 Panasonic Intellectual Property Management Co., Ltd. Electronic component mounting system
US9332681B2 (en) * 2012-11-19 2016-05-03 Panasonic Intellectual Property Management Co., Ltd. Electronic component mounting system
WO2015118997A1 (ja) * 2014-02-06 2015-08-13 オムロン株式会社 品質管理システム
JP2015148507A (ja) * 2014-02-06 2015-08-20 オムロン株式会社 品質管理システム
US20190254173A1 (en) * 2018-02-09 2019-08-15 Universal Global Technology (Kunshan) Co., Ltd. Circuit board assembly inspection method
US10736221B2 (en) * 2018-02-09 2020-08-04 Universal Global Technology (Kunshan) Co., Ltd Circuit board assembly inspection method

Also Published As

Publication number Publication date
JP5365643B2 (ja) 2013-12-11
CN103299177B (zh) 2016-04-13
DE112011104725B4 (de) 2016-07-14
DE112011104725T5 (de) 2013-10-17
DE112011104725B9 (de) 2016-09-29
JP2012145483A (ja) 2012-08-02
TW201231960A (en) 2012-08-01
CN103299177A (zh) 2013-09-11

Similar Documents

Publication Publication Date Title
JP5365643B2 (ja) はんだ付け検査方法、および基板検査システムならびにはんだ付け検査機
JP5365644B2 (ja) はんだ付け検査方法、およびはんだ付け検査機ならびに基板検査システム
JP4103921B2 (ja) フィレット検査のための検査基準データの設定方法、およびこの方法を用いた基板外観検査装置
JP5874508B2 (ja) はんだの濡れ上がり状態の検査方法およびこの方法を用いた自動外観検査装置ならびに基板検査システム
US7672501B2 (en) Substrate inspection system including a visual inspection device for inspection by image processing
KR101438157B1 (ko) 기판 검사방법
JP5861462B2 (ja) はんだ検査のための検査基準登録方法およびその方法を用いた基板検査装置
JP2006208362A (ja) 画像処理方法、基板検査方法、基板検査装置、および基板検査用の検査データ作成方法
JP6277754B2 (ja) 品質管理システムおよび内部検査装置
JP6988500B2 (ja) 検査管理システム、検査管理装置、検査管理方法
JP2008300456A (ja) 被検査体の検査システム
EP3104169B1 (en) Quality management system
KR20060094844A (ko) 범프 검사 장치 및 방법
JP4506395B2 (ja) 基板検査装置並びにそのパラメータ設定方法およびパラメータ設定装置
JP2007033126A (ja) 基板検査装置並びにそのパラメータ調整方法およびパラメータ調整装置
JP5172211B2 (ja) 被検査体の検査システム
JP4507785B2 (ja) 基板検査装置並びにそのパラメータ設定方法およびパラメータ設定装置
JP5407755B2 (ja) 基板検査用の検査領域の設定データ作成方法および検査データ作成システム
JP5205224B2 (ja) 部品実装状態検査装置
JP4419778B2 (ja) 基板検査装置並びにそのパラメータ設定方法およびパラメータ設定装置
JP2006078285A (ja) 基板検査装置並びにそのパラメータ設定方法およびパラメータ設定装置
JPH0739997B2 (ja) 半田付け部の外観検査方法
JP2006078282A (ja) 半田外観検査方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11855900

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1120111047258

Country of ref document: DE

Ref document number: 112011104725

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11855900

Country of ref document: EP

Kind code of ref document: A1