WO2012090578A1 - 熱硬化性樹脂組成物 - Google Patents

熱硬化性樹脂組成物 Download PDF

Info

Publication number
WO2012090578A1
WO2012090578A1 PCT/JP2011/074381 JP2011074381W WO2012090578A1 WO 2012090578 A1 WO2012090578 A1 WO 2012090578A1 JP 2011074381 W JP2011074381 W JP 2011074381W WO 2012090578 A1 WO2012090578 A1 WO 2012090578A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
compound
thermosetting resin
maleimide
composition according
Prior art date
Application number
PCT/JP2011/074381
Other languages
English (en)
French (fr)
Inventor
磯崎 剛
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to US13/992,869 priority Critical patent/US20130261260A1/en
Priority to EP11854006.1A priority patent/EP2660269A4/en
Priority to JP2012550763A priority patent/JP5812297B2/ja
Priority to KR1020137016479A priority patent/KR20140003453A/ko
Priority to CN2011800631963A priority patent/CN103298854A/zh
Publication of WO2012090578A1 publication Critical patent/WO2012090578A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/16Polyester-imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/0622Polycondensates containing six-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms
    • C08G73/0638Polycondensates containing six-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms with at least three nitrogen atoms in the ring
    • C08G73/065Preparatory processes
    • C08G73/0655Preparatory processes from polycyanurates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/12Unsaturated polyimide precursors
    • C08G73/124Unsaturated polyimide precursors the unsaturated precursors containing oxygen in the form of ether bonds in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/12Unsaturated polyimide precursors
    • C08G73/126Unsaturated polyimide precursors the unsaturated precursors being wholly aromatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0025Crosslinking or vulcanising agents; including accelerators
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/01Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/101Esters; Ether-esters of monocarboxylic acids
    • C08K5/103Esters; Ether-esters of monocarboxylic acids with polyalcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08L79/085Unsaturated polyimide precursors

Definitions

  • the present invention relates to a thermosetting resin composition that can be suitably used as a matrix resin for fiber-reinforced composite materials.
  • fiber reinforced composite materials have been widely used in applications such as aviation materials, machine tool materials, and electrical / electronic materials.
  • An epoxy resin epoxy resin composition
  • a matrix resin used in this type of fiber-reinforced composite material.
  • the use temperature range required for fiber reinforced composite materials has been over 200 ° C., and the strength immediately decreases due to resin degradation under high temperature conditions of 200 ° C. or higher.
  • I cannot meet that request. Therefore, development of the new matrix resin for fiber reinforced composite materials which replaces an epoxy resin is required.
  • a polyimide resin As a matrix resin for fiber reinforced composite resin material that can be used under such high temperature conditions, a polyimide resin, a resin composition obtained by modifying a maleimide resin with an aromatic diamine, or a resin obtained by modifying a maleimide resin with an allyl compound Compositions and the like are known (see, for example, Patent Documents 1 and 2).
  • the polyimide resin has a difficulty in moldability at 200 ° C. or less.
  • a resin composition obtained by modifying a maleimide resin with an aromatic diamine is solid, the fluidity is insufficient without a solvent and cannot be used as a matrix resin for a fiber-reinforced composite material.
  • a resin composition obtained by modifying a maleimide resin with an allyl compound requires post-curing for a long time at a high temperature for complete curing after molding. Therefore, all of these have a defect that the process tolerance at the time of production is poor, and therefore handling and production efficiency (productivity, economy) are remarkably poor.
  • the present invention is not only excellent in fluidity without a solvent, but also can be molded at a relatively low temperature, and is also excellent in curability and heat resistance after curing.
  • An object is to provide a composition.
  • the present inventor can mold and process a thermosetting resin composition having a specific composition at a relatively low temperature even without a solvent, and has excellent curability. Furthermore, by using this, it was found that a cured product having a relatively high heat resistance can be obtained even with a short-time post-curing treatment, and the present invention has been achieved.
  • the present invention provides the following ⁇ 1> to ⁇ 10>.
  • Maleimide compound (A) A compound (B) having two or more polymerizable unsaturated hydrocarbon groups in one molecule, and a cyanate ester compound (C), A thermosetting resin composition containing as an essential component.
  • the content ratio of each compound with respect to the total amount of the maleimide compound (A), the compound (B), and the cyanate ester compound (C) is as follows: 30 to 70% by mass of the maleimide compound (A) 5-30% by mass of the compound (B) Cyanate ester compound (C) 20 to 45% by mass
  • thermosetting resin composition according to the above ⁇ 1> or ⁇ 2>.
  • the compound (B) is a compound having two or more polymerizable unsaturated hydrocarbon groups selected from the group consisting of an acryl group, a methacryl group, a vinyl group, an allyl group, and an isopropenyl group in one molecule. is there,
  • the thermosetting resin composition according to any one of ⁇ 1> to ⁇ 3> above.
  • the maleimide compound (A) is composed of 4,4′-diphenylmethane bismaleimide, polyphenylmethane maleimide, 1,6-bismaleimide- (2,2,4-trimethyl) hexane, and bisphenol A diphenyl ether bismaleimide.
  • thermosetting resin composition according to any one of ⁇ 1> to ⁇ 5> above.
  • the compound (B) is 1,3-diisopropenylbenzene or trimethylolpropane tri (meth) acrylate.
  • the thermosetting resin composition according to any one of ⁇ 1> to ⁇ 6> above.
  • the cyanate ester compound (C) has two or more aromatic rings in one molecule and has a viscosity at 100 ° C. of 100 mPa ⁇ s or less.
  • the thermosetting resin composition according to any one of ⁇ 1> to ⁇ 7> above.
  • ⁇ 9> Further includes a polymerization accelerator (D),
  • the content of the polymerization accelerator (D) is 0.01 to 5 parts by mass with respect to a total of 100 parts by mass of the maleimide compound (A), the compound (B), and the cyanate ester compound (C). is there,
  • the thermosetting resin composition according to any one of ⁇ 1> to ⁇ 8> above.
  • thermosetting resin composition according to any one of the above ⁇ 1> to ⁇ 9>.
  • thermosetting resin composition of the present invention since it can be molded at a relatively low temperature even without a solvent, it becomes easy to produce a thermosetting resin composition for a fiber-reinforced composite material, Moreover, since it is also excellent in curability and heat resistance after curing, a cured product (thermosetting resin molded product) having relatively high heat resistance and strength can be obtained even in a short time post-curing treatment. As a result, a fiber reinforced composite material having excellent heat resistance and strength can be provided. Therefore, by using the thermosetting resin composition of the present invention, the process tolerance at the time of production is increased. As a result, not only is heat resistance and strength excellent, but also handling property and production efficiency (productivity, economic efficiency). ) Can be realized, and a fiber-reinforced composite resin material can be realized.
  • thermosetting resin composition of the present embodiment includes a maleimide compound (A), a compound (B) having two or more polymerizable unsaturated hydrocarbon groups in one molecule, and a cyanate ester compound (C) as essential components. contains.
  • a maleimide compound (A) a compound having two or more polymerizable unsaturated hydrocarbon groups in one molecule
  • C a cyanate ester compound
  • the maleimide compound (A) used in the present embodiment is a compound having a plurality of N-maleimide groups in the molecule (preferably molecular ends or side chains) (so-called polyfunctional maleimide compound).
  • Specific examples of the maleimide compound (A) include those having a plurality of N-maleimide groups in the polymer side chain such as polyphenylmethane maleimide, 4,4′-diphenylmethane bismaleimide, bisphenol A diphenyl ether bismaleimide, m- It has a plurality of N-maleimide groups at the molecular ends such as phenylene bismaleimide, 3,3'-dimethyl-5,5'-diethyl-4,4'-diphenylmethane bismaleimide, 4-methyl-1,3-phenylene bismaleimide, etc.
  • a maleimide compound (A) can be used individually by 1 type or in combination of 2 or more types. From the viewpoint of fluidity, curability, economy, etc. of the resulting thermosetting resin composition, the maleimide compound (A) is 4,4′-diphenylmethane bismaleimide, polyphenylmethane maleimide, 1,6-bismaleimide— (2,2,4-trimethyl) hexane and bisphenol A diphenyl ether bismaleimide are preferable. Among these, polyphenylmethane maleimide, 4,4′-diphenylmethane bismaleimide, and 1,6-bismaleimide- ( More preferred is 2,2,4-trimethyl) hexane.
  • the maleimide compound (A) preferably has a melting point of 205 ° C. or lower from the viewpoint of further improving the handleability by suppressing precipitation during preparation or storage of the thermosetting resin composition.
  • fusing point of a maleimide compound (A) is not specifically limited, When handling property is considered, it is preferable that it is 60 degreeC or more.
  • maleimide compound (A) examples include polyphenylmethane maleimide (melting point: 75 to 145 ° C.), 1,6-bismaleimide- (2,2,4-trimethyl) hexane (melting point: 73 to 110 ° C.), Examples include 4,4′-diphenylmethane bismaleimide (melting point: 147 to 168 ° C.) and m-phenylene bismaleimide (melting point: 194 to 204 ° C.), but are not particularly limited thereto.
  • the content of the maleimide compound (A) in the thermosetting resin composition can be appropriately set according to the type of the compound to be used, and is not particularly limited.
  • the content ratio of the maleimide compound (A) is 30 with respect to the total amount of the compounds (A) to (C). It is preferably ⁇ 70 mass%, more preferably 35 to 60 mass%.
  • the compound (B) having two or more polymerizable unsaturated hydrocarbon groups in one molecule used in this embodiment functions as a so-called crosslinking agent.
  • arbitrary things can be used as a polymerizable unsaturated hydrocarbon group which a compound (B) has, The kind and combination are not specifically limited.
  • Preferred examples of the polymerizable unsaturated hydrocarbon group include an acryl group, a methacryl group, a vinyl group, an allyl group, and an isopropenyl group.
  • the number of polymerizable unsaturated hydrocarbon groups contained in one molecule of compound (B) is not particularly limited as long as it is 2 or more, but it is preferably 2 to 6, more preferably 2 to 4.
  • the molecular weight of the compound (B) is not particularly limited, but is preferably 80 to 2000, and more preferably 100 to 1000.
  • Specific examples of the compound (B) include aliphatic crosslinking agents such as allyl acrylate, allyl methacrylate, triallyl isocyanurate, trimethylolpropane trimethacrylate, and aromatic crosslinking agents such as 1,3-propenylbenzene. Although it is mentioned, it is not specifically limited to these.
  • a compound (B) can be used individually by 1 type or in combination of 2 or more types. From the viewpoint of the curability of the resulting thermosetting resin composition or the heat resistance of the cured product, the compound (B) is preferably trimethylolpropane trimethacrylate or 1,3-diisopropenylbenzene.
  • the content of the compound (B) in the thermosetting resin composition can be appropriately set according to the type of the compound to be used, and is not particularly limited. From the viewpoint of the fluidity of the thermosetting resin composition and the heat resistance of the cured product obtained by curing it, the content ratio of the compound (B) is 5 with respect to the total amount of the components (A) to (C). It is preferably -30% by mass, more preferably 7-25% by mass.
  • thermosetting resin composition having a viscosity capable of low-temperature moldability can be easily obtained, Moreover, it exists in the tendency for the hardened
  • the cyanate ester compound (C) used in the present embodiment is a compound represented by the general formula R—O—CN (wherein R is an organic group).
  • R is an organic group.
  • Examples of the type of cyanate ester compound (C) include those in which a plurality of cyanates are introduced into bisphenols, those in which a plurality of cyanates are introduced into phenol novolacs, and specific examples thereof include, for example, Examples include phenol novolac polycyanate ester, bisphenol A dicyanate ester, bisphenol E dicyanate ester, tetramethylbisphenol F dicyanate ester, bisphenol F dicyanate ester, dicyclopentadiene bisphenol A dicyanate ester Not.
  • the cyanate ester compound (C) can be used alone or in combination of two or more. From the viewpoint of fluidity of the resulting thermosetting resin composition, the cyanate ester compound (C) has a viscosity at 100 ° C. of 100 mPa ⁇ s or less, such as phenol novolac polycyanate ester, bisphenol A dicyanate. Preferred are esters and bisphenol E dicyanate esters.
  • the content of the cyanate ester compound (C) in the thermosetting resin composition can be appropriately set according to the type of the compound to be used, and is not particularly limited. From the viewpoint of the fluidity and curability of the thermosetting resin composition and the heat resistance of the cured product obtained by curing it, the content of the cyanate ester compound (C) is the total amount of the compounds (A) to (C). The content is preferably 20 to 50% by mass, and more preferably 22 to 45% by mass.
  • thermosetting resin composition of the present embodiment may contain other components than the above-described compounds (A) to (C) as necessary.
  • optional components include polymerization accelerators (D) such as imidazole polymerization accelerators, organic peroxide polymerization accelerators, and radical polymerization accelerators.
  • polymerization accelerator (D) examples include, for example, imidazole, 1-methylimidazole, 2-methylimidazole, 2-phenylimidazole, 2-ethylimidazole, 2-butylimidazole, 1,2-dimethylimidazole, 2- Ethyl-4-methylimidazole, 2,4,5-triphenylimidazole, dibenzoyl peroxide, t-butyl hydroperoxide, di-t-butyl peroxide, cumene hydroperoxide, diisopropylbenzene hydroperoxide, azo Although isobutyronitrile etc. are mentioned, it is not specifically limited to these.
  • a polymerization accelerator (D) can be used individually by 1 type or in combination of 2 or more types. From the viewpoint of curability of the resulting thermosetting resin, the polymerization accelerator (D) is preferably an imidazole polymerization accelerator.
  • the content of the polymerization accelerator (D) in the thermosetting resin composition can be appropriately set according to the type of the polymerization accelerator to be used, and is not particularly limited. From the viewpoint of achieving both the polymerization promoting effect and the heat resistance of the cured product, the content ratio of the polymerization accelerator (D) is 100 parts by mass of the thermosetting resin composition comprising the compounds (A), (B), and (C). The amount is preferably 0.01 to 5 parts by weight, more preferably 0.05 to 4 parts by weight, still more preferably 0.1 to 3 parts by weight.
  • the method for preparing the thermosetting resin composition of the present embodiment is not particularly limited, and a known method can be appropriately applied.
  • a preferable preparation method the following method is mentioned, for example.
  • this preparation method first, maleimide compound (A) and cyanate ester compound (C) are melt-mixed at 120 to 160 ° C. for 30 minutes to 6 hours, and then the temperature of the obtained melt mixture is lowered to 100 ° C. or lower. Then, a thermosetting resin composition is prepared by adding a compound (B) and the polymerization accelerator (D) as needed to the mixture, and melt-mixing this uniformly.
  • thermosetting resin molding is obtained by curing the thermosetting resin composition of the present embodiment described above.
  • the method for curing the thermosetting resin composition is not particularly limited.
  • the thermosetting resin composition is heated to 80 ° C. and cast between two glass plates that have been subjected to release treatment using a spacer having a thickness of 1.5 mm, and primary curing is performed at 180 ° C. for 2 hours. Thereafter, the primary cured product is removed from the glass plate and post-cured at 240 ° C. for 2 hours to obtain a cured product (thermosetting resin molded product).
  • thermosetting resin composition of the present embodiment can be applied to various uses, and the use is not particularly limited.
  • the thermosetting resin composition of the present embodiment is excellent in heat resistance and strength, handleability and production efficiency, for example, a matrix resin for fiber-reinforced composite materials, It is particularly useful in the field of electronic component sealants and the like, and is particularly suitable as a matrix resin for fiber-reinforced composite materials.
  • the thermosetting resin composition of the present embodiment is excellent in fluidity, it is particularly useful for use in the absence of a solvent, that is, in the aspect of a solvent-free (solvent-less) thermosetting resin composition. .
  • solvent-free or solvent-free means that the solvent is not substantially contained, and that the solvent is not substantially contained is relative to the total amount of the thermosetting resin composition. It is a concept that allows the inclusion of a very small amount of a solvent of less than 1% by mass, preferably less than 0.1% by mass, more preferably less than 0.01% by mass.
  • the thermosetting resin composition of this embodiment can be used conveniently also in the aspect used by making it melt
  • the thermosetting resin composition of the present embodiment has a viscosity at 80 ° C. measured using a B-type viscometer of 90 to 700 (mPa ⁇ s) from the viewpoint of handleability and moldability. Preferably, it is 100 to 650 (mPa ⁇ s).
  • the viscosity at 80 ° C. of the thermosetting resin composition is in the range of 90 to 700 (mPa ⁇ s)
  • the property becomes a fluid liquid under use conditions of 80 ° C. or higher, and no solvent is used.
  • thermosetting resin composition of the present embodiment has a glass transition temperature (Tg) of 200 to 350 ° C. measured by the DMA method in accordance with JIS C6481 from the viewpoint of handleability and molding processability.
  • the temperature is preferably 250 to 330 ° C.
  • Tg of the thermosetting resin composition is in the range of 200 to 350 ° C., the curability and the heat resistance after curing tend to be improved.
  • part means “part by mass” unless otherwise specified.
  • Example 1 In a vessel equipped with a stirrer, 35 parts of bisphenol A dicyanate ester (Primase (registered trademark) BADCy, cyanate equivalent 139 eq./g, manufactured by LONZA) and polyphenylmethane maleimide (BMI-2300, manufactured by Daiwa Kasei Kogyo Co., Ltd.) 65 parts) (melting point: 75 to 145 ° C.), and then melt mixed at 150 ° C. for 4 hours.
  • Primarymase (registered trademark) BADCy, cyanate equivalent 139 eq./g, manufactured by LONZA) and polyphenylmethane maleimide (BMI-2300, manufactured by Daiwa Kasei Kogyo Co., Ltd.) 65 parts
  • thermosetting resin composition of Example 1 was obtained by mixing for 30 minutes.
  • the thermosetting resin composition of Example 1 obtained in this way had a viscosity of 438 mPa ⁇ s at 80 ° C., and the fiber base material could be impregnated without solvent.
  • thermosetting resin composition of Example 1 was cast between two release-treated glass plates opposed to each other via a 1.5 mm-thick spacer, and then heat-treated at 180 ° C. for 2 hours.
  • a resin plate (primary cured product) of Example 1 having a thickness of 1.5 mm was obtained.
  • the resin plate of Example 1 was removed from the glass plate, and further a heat treatment (post-curing) for 2 hours at 240 ° C. was performed, thereby obtaining a cured product (secondary cured product) of Example 1.
  • Example 2 In a vessel equipped with a stirrer, 40 parts of phenol novolac polycyanate ester (Primase (registered trademark) PT-15, cyanate equivalent 127 eq./g, manufactured by LONZA) and polyphenylmethane maleimide (BMI-, manufactured by Daiwa Kasei Kogyo Co., Ltd.) 2300, melting point 75 to 145 ° C.) 50 parts and 4,4′-diphenylmethane bismaleimide (BMI-1000, Yamato Kasei Kogyo BMI-1000, melting point 147 to 168 ° C.) 10 parts. Melted and mixed for hours.
  • phenol novolac polycyanate ester Primer (registered trademark) PT-15, cyanate equivalent 127 eq./g, manufactured by LONZA)
  • BMI- polyphenylmethane maleimide
  • BMI-1000 4,4′-diphenylmethane bismaleimide
  • thermosetting resin composition of Example 2 After lowering the melt temperature to 80 ° C., 15 parts of 1,3-diisopropenylbenzene (a reagent manufactured by Tokyo Chemical Industry Co., Ltd.) and 1 g of di-t-butyl-peroxide are added to the container, and The thermosetting resin composition of Example 2 was obtained by mixing for 30 minutes.
  • the thermosetting resin composition of Example 2 obtained had a viscosity of 625 mPa ⁇ s at 80 ° C., and the fiber base material could be impregnated without solvent.
  • the thermosetting resin composition of Example 2 it processed like Example 1, the resin board (primary cured material) of Example 2, and the cured material (Example 2) of Example 2. Next cured product) was obtained.
  • Example 3 In a vessel equipped with a stirrer, 45 parts of bisphenol A dicyanate ester (Primase (registered trademark) BADCy, cyanate equivalent 139 eq./g, manufactured by LONZA) and 1,6-bismaleimide- (2,2,4-trimethyl) 30 parts of hexane (BMI-TMH, Daiwa Kasei Kogyo Co., Ltd., melting point 73 to 110 ° C.) and 25 parts of 4,4′-diphenylmethane bismaleimide (BMI-1000, Daiwa Kasei Kogyo Co., melting point 147 to 168 ° C.) And then melt mixed at 150 ° C. for 6 hours.
  • Bisphenol A dicyanate ester Primer (registered trademark) BADCy, cyanate equivalent 139 eq./g, manufactured by LONZA)
  • 1,6-bismaleimide- (2,2,4-trimethyl) 30 parts of hexane (BMI-
  • thermosetting resin composition of Example 3 was obtained by mixing for 30 minutes.
  • the thermosetting resin composition of Example 3 obtained had a viscosity of 80 ° C. of 380 mPa ⁇ s, and the fiber base material could be impregnated without solvent.
  • the same treatment as in Example 1 was performed, and the resin plate (primary cured product) of Example 3 and the cured product of Example 3 (two Next cured product) was obtained.
  • Example 4 In a vessel equipped with a stirrer, 28 parts of bisphenol A dicyanate ester (Primase (registered trademark) BADCy manufactured by LONZA, cyanate equivalent 139 eq./g) and polyphenylmethane maleimide (BMI-2300 manufactured by Daiwa Kasei Kogyo Co., Ltd.) 47 parts) (melting point: 75 to 145 ° C.) was added, and then melt mixed at 150 ° C. for 6 hours.
  • thermosetting resin composition of Example 4 was obtained by mixing for 30 minutes.
  • the thermosetting resin composition of Example 4 obtained had a viscosity of 393 mPa ⁇ s at 80 ° C., and the fiber base material could be impregnated without solvent.
  • the thermosetting resin composition of Example 4 it processed like Example 1, the resin board (primary hardened
  • Example 5 In a vessel equipped with a stirrer, 24 parts of bisphenol A dicyanate ester (Primase (registered trademark) BADCy manufactured by LONZA, cyanate equivalent weight 139 eq./g) and polyphenylmethane maleimide (BMI-2300 manufactured by Daiwa Kasei Kogyo Co., Ltd.) 36 parts), and then melt mixed at 150 ° C. for 6 hours. After the melt temperature was lowered to 80 ° C., 40 parts of trimethylolpropane trimethacrylate (NK ester TMPT manufactured by Shin-Nakamura Chemical Co., Ltd.) and 2 g of 2-ethyl-4-methylimidazole were added to the container.
  • NK ester TMPT manufactured by Shin-Nakamura Chemical Co., Ltd.
  • thermosetting resin composition of Example 5 was obtained by mixing for 30 minutes.
  • the thermosetting resin composition of Example 5 obtained in this way had a viscosity at 80 ° C. of 122 mPa ⁇ s, and the fiber base material could not be impregnated without solvent.
  • the same treatment as in Example 1 was carried out, and the resin plate (primary cured product) of Example 5 and the cured product of Example 5 (two Next cured product) was obtained.
  • Comparative Example 1 In a vessel equipped with a stirrer, 70 parts of bisphenol A dicyanate ester (Primaset (registered trademark) BADCy, cyanate equivalent 139 eq./g, manufactured by LONZA) was charged, and then melt-mixed at 150 ° C. for 6 hours. After the melt temperature was lowered to 80 ° C., 30 parts of trimethylolpropane trimethacrylate (NK ester TMPT manufactured by Shin-Nakamura Chemical Co., Ltd.) and 1 g of di-t-butyl-peroxide were added to the container. The thermosetting resin composition of Comparative Example 1 was obtained by mixing for 30 minutes.
  • NK ester TMPT manufactured by Shin-Nakamura Chemical Co., Ltd.
  • thermosetting resin composition of Comparative Example 1 thus obtained had a viscosity at 80 ° C. of 87 mPa ⁇ s, and the fiber base material could not be impregnated without solvent.
  • the thermosetting resin composition of Comparative Example 1 was cast between two release-treated glass plates opposed to each other via a 1.5 mm-thick spacer, and then heat-treated at 180 ° C. for 2 hours. (Primary curing treatment) was performed.
  • the thermosetting resin composition of Comparative Example 1 was not cured by the above-mentioned primary curing treatment curing, and was not cured by a heat treatment at 200 ° C. for 2 hours, and could not be molded.
  • thermosetting resin composition of Comparative Example 2 After the melt temperature was lowered to 80 ° C., 1 g of 2-ethyl-4-methylimidazole was added to the container and further mixed for 30 minutes to obtain a thermosetting resin composition of Comparative Example 2.
  • the thermosetting resin composition of Comparative Example 3 thus obtained had a viscosity at 80 ° C. of 754 mPa ⁇ s and could be impregnated without solvent into the fiber substrate.
  • the thermosetting resin composition of Comparative Example 2 was cast between two release-treated glass plates opposed to each other through a spacer having a thickness of 1.5 mm, followed by heat treatment at 200 ° C. for 2 hours (primary Curing treatment). However, in the thermosetting resin composition of Comparative Example 2, a gelled product was generated during the primary curing treatment, and molding was impossible.
  • thermosetting resin composition of the comparative example 4 obtained had a viscosity of 670 mPa ⁇ s at 80 ° C., and the fiber base material could be impregnated without solvent. Subsequently, except using the thermosetting resin composition of Comparative Example 4, the same treatment as in Example 1 was performed, and the resin plate (primary cured product) of Comparative Example 4 and the cured product of Comparative Example 4 (two Next cured product) was obtained.
  • thermosetting resin composition of Comparative Example 5 had a viscosity of 415 mPa ⁇ s at 80 ° C., and the fiber base material could be impregnated without solvent.
  • thermosetting resin composition of Comparative Example 5 the same treatment as in Example 1 was performed, and the resin plate (primary cured product) of Comparative Example 5 and the cured product of Comparative Example 5 (two Next cured product) was obtained.
  • thermosetting resin composition Measurement was performed using a B-type viscometer in a constant temperature water bath controlled at 80 ° C.
  • Glass transition temperature (Tg) of thermosetting resin composition The measurement was made by the DMA method according to JIS C6481.
  • Tg Glass transition temperature
  • the bending strength at 25 ° C. was measured using samples obtained by leaving the cured products (secondary cured products after post-curing) of Examples and Comparative Examples in an oven controlled at 250 ° C. for 200 hours.
  • thermosetting resin compositions of Examples 1 to 5 has a viscosity capable of impregnating a fiber base material at 80 ° C. and can be molded at 200 ° C. or less. confirmed. Further, it was confirmed that all the cured products of Examples 1 to 5 had high heat resistance.
  • Comparative Examples 1 to 3 which do not contain all of maleimide compound (A), compound (B) having two or more polymerizable unsaturated hydrocarbon groups in one molecule, and cyanate ester compound (C) as essential components. It was confirmed that all the thermosetting resin compositions of No. 3 were not moldable at 200 ° C. or lower.
  • thermosetting resin composition of Comparative Example 4 using an epoxy resin composition instead of the compound (B) having two or more polymerizable unsaturated hydrocarbon groups in one molecule was subjected to high temperature and after high temperature exposure. It was confirmed that the bending strength was greatly reduced.
  • thermosetting resin composition of Comparative Example 5 which does not contain the cyanate ester compound (C) contains a maleimide resin modified with an allyl compound as the maleimide compound (A), but at 250 ° C. for 6 hours. Even when post-curing was performed, Tg was observed at a low temperature, the curability was insufficient, and it was confirmed that the bending strength was greatly reduced at a high temperature.
  • the present invention can be widely and effectively used in various applications such as aviation materials, machine tool materials, and electric / electronic materials, and in particular, a matrix of fiber-reinforced composite material that requires heat resistance.
  • the present invention can be used particularly effectively in the fields of resins and sealants for electric and electronic parts, and in general fields of thermosetting resins that require solvent-free.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 無溶剤での流動性、低温成形性、硬化性、及び硬化後の耐熱性等に優れる、熱硬化性樹脂組成物等を提供する。本発明の熱硬化性樹脂組成物は、マレイミド化合物(A)、重合性不飽和炭化水素基を1分子中に2以上有する化合物(B)、及びシアン酸エステル化合物(C)を必須成分として含有するものである。

Description

熱硬化性樹脂組成物
 本発明は、繊維強化複合材料用マトリックス樹脂として好適に使用可能な、熱硬化性樹脂組成物に関する。
 従来、繊維強化複合材料は、航空材料、工作機械材料、電気・電子材料等の用途で広く用いられている。この種の繊維強化複合材料において用いられるマトリックス樹脂としては、エポキシ樹脂(エポキシ樹脂組成物)が知られている。ところが近年、繊維強化複合材料に要求される使用温度範囲が200℃を超えるようになってきており、200℃以上の高温条件下では樹脂劣化により強度が直ぐに低下するので、エポキシ樹脂組成物では、その要求に応えられない。そのため、エポキシ樹脂に替わる、新たな繊維強化複合材料用マトリックス樹脂の開発が求められている。
 一方、このような高温条件下でも使用可能な繊維強化複合樹脂材料用マトリックス樹脂としては、ポリイミド樹脂、マレイミド樹脂を芳香族ジアミンで変性させた樹脂組成物やマレイミド樹脂をアリル化合物で変性させた樹脂組成物等が知られている(例えば、特許文献1及び2参照。)。
特開2003-105083号公報 特開2009-263624号公報
 しかしながら、ポリイミド樹脂は、200℃以下の成形性に難点がある。また、マレイミド樹脂を芳香族ジアミンで変性させた樹脂組成物は、固形であるため、無溶剤では流動性が不足し繊維強化複合材料用マトリックス樹脂として使用できない。さらに、マレイミド樹脂をアリル化合物で変性させた樹脂組成物は、成形後の完全硬化に高温長時間の後硬化を要する。したがって、これらはいずれも、製造時のプロセス裕度に乏しく、そのため取扱性及び製造効率(生産性、経済性)が著しく悪いという欠点を有している。
 上記事情に鑑み、本発明は、無溶剤での流動性に優れるのみならず、比較的に低温でも成形加工可能であり、さらには硬化性及び硬化後の耐熱性にも優れる、熱硬化性樹脂組成物を提供することを目的とする。
 本発明者は、鋭意検討した結果、特定の配合組成を有する熱硬化性樹脂組成物が、無溶剤であっても比較的に低温で成形加工することが可能であり、しかも、硬化性に優れ、その上さらに、これを用いることにより短時間の後硬化処理であっても比較的に耐熱性の高い硬化物が得られることを見出し、本発明に到達した。
 すなわち、本発明は、以下<1>~<10>を提供する。
<1> マレイミド化合物(A)、
 重合性不飽和炭化水素基を1分子中に2以上有する化合物(B)、及び
 シアン酸エステル化合物(C)、
を必須成分として含有する、熱硬化性樹脂組成物。
<2> 前記マレイミド化合物(A)、前記化合物(B)、及び前記シアン酸エステル化合物(C)の総量に対する各化合物の含有割合が、以下の関係:
 前記マレイミド化合物(A)    30~70質量%
 前記化合物(B)          5~30質量%
 前記シアン酸エステル化合物(C) 20~45質量%
を満たす、上記<1>に記載の熱硬化性樹脂組成物。
<3> B型粘度計を用いて測定した80℃での粘度が、90~700mPa・sである、
上記<1>又は<2>に記載の熱硬化性樹脂組成物。
<4> 前記化合物(B)が、アクリル基、メタクリル基、ビニル基、アリル基、及びイソプロペニル基よりなる群から選択される重合性不飽和炭化水素基を1分子中に2以上有する化合物である、
上記<1>~<3>のいずれか一項に記載の熱硬化性樹脂組成物。
<5> 前記マレイミド化合物(A)が、4,4’-ジフェニルメタンビスマレイミド、ポリフェニルメタンマレイミド、1,6-ビスマレイミド-(2,2,4-トリメチル)ヘキサン、及びビスフェノールAジフェニルエーテルビスマレイミドからなる群より選択される1種以上である、
上記<1>~<4>のいずれか一項に記載の熱硬化性樹脂組成物。
<6> 前記マレイミド化合物(A)の融点が、205℃以下である、
上記<1>~<5>のいずれか一項に記載の熱硬化性樹脂組成物。
<7> 前記化合物(B)が、1,3-ジイソプロペニルベンゼン、又はトリメチロールプロパントリ(メタ)アクリレートである、
上記<1>~<6>のいずれか一項に記載の熱硬化性樹脂組成物。
<8> 前記シアン酸エステル化合物(C)が、1分子中に芳香環を2以上有し、且つ、100℃における粘度が100mPa・s以下のものである、
上記<1>~<7>のいずれか一項に記載の熱硬化性樹脂組成物。
<9> さらに重合促進剤(D)を含み、
 前記重合促進剤(D)の含有量が、前記マレイミド化合物(A)、前記化合物(B)、及び前記シアン酸エステル化合物(C)の合計100質量部に対して0.01~5質量部である、
上記<1>~<8>のいずれか一項に記載の熱硬化性樹脂組成物。
<10> 溶剤を実質的に含有しない、
上記<1>~<9>のいずれか一項に記載の溶剤非含有熱硬化性樹脂組成物。
 本発明の熱硬化性樹脂組成物によれば、無溶剤であっても比較的に低温で成形加工することができるので、繊維強化複合材料用の熱硬化性樹脂組成物の製造が容易となり、また、硬化性及び硬化後の耐熱性にも優れるので、短時間の後硬化処理であっても比較的に高い耐熱性及び強度を有する硬化物(熱硬化性樹脂成形体)が得られ、その結果、耐熱性及び強度に優れる繊維強化複合材料を提供することができる。したがって、本発明の熱硬化性樹脂組成物を用いることにより、製造時のプロセス裕度が高められ、その結果、耐熱性及び強度に優れるのみならず、取扱性及び製造効率(生産性、経済性)をも高められた、繊維強化複合樹脂材料を実現することができる。
発明を実施するため形態
 以下、本発明の実施の形態について説明する。なお、以下の実施の形態は、本発明を説明するための例示であり、本発明はその実施の形態のみに限定されない。
 本実施形態の熱硬化性樹脂組成物は、マレイミド化合物(A)、重合性不飽和炭化水素基を1分子中に2以上有する化合物(B)、及びシアン酸エステル化合物(C)を必須成分として含有する。
 以下、化合物(A)、化合物(B)、化合物(C)、及びその他の任意成分について詳述する。
 本実施形態で使用するマレイミド化合物(A)は、分子内(好ましくは分子末端或いは側鎖)にN-マレイミド基を複数有する化合物(所謂、多官能マレイミド化合物)である。このマレイミド化合物(A)の具体例としては、例えば、ポリフェニルメタンマレイミド等のポリマー側鎖にN-マレイミド基を複数有するもの、4,4’-ジフェニルメタンビスマレイミド、ビスフェノールAジフェニルエーテルビスマレイミド、m-フェニレンビスマレイミド、3,3’-ジメチル-5,5’-ジエチル-4、4’-ジフェニルメタンビスマレイミド、4-メチル-1,3-フェニレンビスマレイミド等の分子末端にN-マレイミド基を複数有するもの、1,6-ビスマレイミド-(2,2,4-トリメチル)ヘキサン等の脂肪族アルキレンの末端にN-マレイミド基を複数有するもの等が挙げられるが、これらに特に限定されない。マレイミド化合物(A)は、1種を単独で或いは2種以上を組み合わせて使用することができる。得られる熱硬化性樹脂組成物の流動性、硬化性或いは経済性等の観点から、マレイミド化合物(A)は、4,4’-ジフェニルメタンビスマレイミド、ポリフェニルメタンマレイミド、1,6-ビスマレイミド-(2,2,4-トリメチル)ヘキサン、ビスフェノールAジフェニルエーテルビスマレイミドであることが好ましく、これらのなかでも、ポリフェニルメタンマレイミド、4,4’-ジフェニルメタンビスマレイミド、及び1,6-ビスマレイミド-(2,2,4-トリメチル)ヘキサンであることがより好ましい。
 ここで、熱硬化性樹脂組成物の調製時或いは保存時における析出を抑制して取扱性をより一層高める観点から、上記マレイミド化合物(A)は、融点が205℃以下であることが好ましい。マレイミド化合物(A)の融点の下限は、特に限定されないが、取扱性を考慮すると、60℃以上であることが好ましい。このようなマレイミド化合物(A)としては、例えば、ポリフェニルメタンマレイミド(融点75~145℃)、1,6-ビスマレイミド-(2,2,4-トリメチル)ヘキサン(融点73~110℃)、4,4’-ジフェニルメタンビスマレイミド(融点147~168℃)、m-フェニレンビスマレイミド(融点194~204℃)等が挙げられるが、これらに特に限定されない。
 熱硬化性樹脂組成物中におけるマレイミド化合物(A)の含有量は、使用する化合物の種類に応じて適宜設定することができ、特に限定されない。熱硬化性樹脂組成物の流動性及びこれを硬化して得られる硬化物の耐熱性の観点から、化合物(A)~(C)の総量に対して、マレイミド化合物(A)の含有割合は30~70質量%であることが好ましく、35~60質量%であることがより好ましい。マレイミド化合物(A)の含有割合を化合物(A)~(C)の総量に対して30~70質量%とすることで、低温成形性可能な粘度を有する熱硬化性樹脂組成物が得られ易く、また、高い耐熱性を有する硬化物が得られ易い傾向にある。
 本実施形態で使用する重合性不飽和炭化水素基を1分子中に2以上有する化合物(B)は、所謂架橋剤として機能する。また、化合物(B)が有する重合性不飽和炭化水素基としては、任意のものを用いることができ、その種類及び組み合わせは、特に限定されない。好ましい重合性不飽和炭化水素基としては、アクリル基、メタクリル基、ビニル基、アリル基、及びイソプロペニル基等が挙げられる。化合物(B)1分子中に含まれる重合性不飽和炭化水素基の数は、2以上であれば特に限定されないが、2~6であることが好ましく、2~4であることがより好ましい。化合物(B)の分子量は、特に限定されないが、80~2000であることが好ましく、100~1000であることがより好ましい。化合物(B)の具体例としては、例えば、アリルアクリレート、アリルメタクリレート、トリアリルイソシアヌレート、トリメチロールプロパントリメタクリレート等の脂肪族系架橋剤、1,3-プロペニルベンゼン等の芳香族系架橋剤が挙げられるが、これらに特に限定されない。化合物(B)は、1種を単独で或いは2種以上を組み合わせて使用することができる。得られる熱硬化性樹脂組成物の硬化性或いはその硬化物の耐熱性の観点から、化合物(B)は、トリメチロールプロパントリメタクリレート、1,3-ジイソプロペニルベンゼンであることが好ましい。
 熱硬化性樹脂組成物中における化合物(B)の含有量は、使用する化合物の種類に応じて適宜設定することができ、特に限定されない。熱硬化性樹脂組成物の流動性及びこれを硬化して得られる硬化物の耐熱性の観点から、化合物(A)~(C)成分の総量に対して、化合物(B)の含有割合は5~30質量%であることが好ましく、7~25質量%であることがより好ましい。化合物(B)の含有割合を化合物(A)~(C)の総量に対して5~45質量%とすることで、低温成形性可能な粘度を有する熱硬化性樹脂組成物が得られ易く、また、高い耐熱性を有する硬化物が得られ易い傾向にある。
 本実施形態で使用するシアン酸エステル化合物(C)は、一般式R-O-CNで表される化合物(式中、Rは有機基である。)である。シアン酸エステル化合物(C)の類型としては、例えば、ビスフェノール類に複数のシアネートが導入されたもの、フェノールノボラック類に複数のシアネートが導入されたもの等があり、その具体例としては、例えば、フェノールノボラックポリシアネートエステル、ビスフェノールAジシアネートエステル、ビスフェノールEジシアネートエステル、テトラメチルビスフェノールFジシアネートエステル、ビスフェノールFジシアネートエステル、ジシクロペンタジエンビスフェノールAジシアネートエステル等が挙げられるが、これらに特に限定されない。シアン酸エステル化合物(C)は、1種を単独で或いは2種以上を組み合わせて使用することができる。得られる熱硬化性樹脂組成物の流動性の観点から、シアン酸エステル化合物(C)は、100℃での粘度が100mPa・s以下であるもの、例えば、フェノールノボラックポリシアネートエステル、ビスフェノールAジシアネートエステル、ビスフェノールEジシアネートエステルであることが好ましい。
 ここで、熱硬化性樹脂組成物の粘度を好ましい範囲内に調整する、又はこれを硬化して得られる硬化物のTg或いは硬度を好ましい範囲内に調整する観点から、上記シアン酸エステル化合物(C)は、シアネート当量が125~305eq./gであることが好ましい。このようなシアン酸エステル化合物(C)としては、フェノールノボラックポリシアネートエステル(シアネート当量127eq./g)、ビスフェノールAジシアネートエステル(シアネート当量139eq./g)、ビスフェノールEジシアネートエステル(シアネート当量132eq./g)、テトラメチルビスフェノールFジシアネートエステル(シアネート当量153eq./g)、ビスフェノールFジシアネートエステル(シアネート当量125eq./g)、ジシクロペンタジエンビスフェノールAジシアネートエステル(シアネート当量303eq./g)等が挙げられるが、これらに特に限定されない。
 熱硬化性樹脂組成物中におけるシアン酸エステル化合物(C)の含有量は、使用する化合物の種類に応じて適宜設定することができ、特に限定されない。熱硬化性樹脂組成物の流動性及び硬化性並びにこれを硬化して得られる硬化物の耐熱性の観点から、シアン酸エステル化合物(C)の含有割合は化合物(A)~(C)の総量に対して、20~50質量%であることが好ましく、22~45質量%であることがより好ましい。シアン酸エステル化合物(C)の含有割合を化合物(A)~(C)の総量に対して20~50質量%とすることで、低温成形性可能な粘度と硬化速度を有する熱硬化性樹脂組成物が得られ易く、また、高い耐熱性を有する硬化物が得られ易い傾向にある。
 本実施形態の熱硬化性樹脂組成物は、必要に応じて、上述した化合物(A)~(C)以外の他の成分を含んでいてもよい。このような任意成分としては、例えば、イミダゾール重合促進剤、有機過酸化物系重合促進剤、ラジカル系重合促進剤等の重合促進剤(D)が挙げられる。重合促進剤(D)の具体例としては、例えば、イミダゾール、1-メチルイミダゾール、2-メチルイミダゾール、2-フェニルイミダゾール、2-エチルイミダゾール、2-ブチルイミダゾール、1,2-ジメチルイミダゾール、2-エチル-4-メチルイミダゾール、2,4,5-トリフェニルイミダゾール、ジベンゾイルパーオキサイド、t-ブチルハイドロパーオキサイド、ジ-t-ブチル-パーオキサイド、クメンハイドロパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイド、アゾイソブチロニトリル等が挙げられるが、これらに特に限定されない。重合促進剤(D)は、1種を単独で或いは2種以上を組み合わせて使用することができる。得られる熱硬化性樹脂の硬化性の観点から、重合促進剤(D)は、イミダゾール重合促進剤であることが好ましい。
 熱硬化性樹脂組成物中における重合促進剤(D)の含有量は、使用する重合促進剤の種類に応じて適宜設定することができ、特に限定されない。重合促進効果と硬化物の耐熱性とを両立させる観点から、重合促進剤(D)の含有割合は化合物(A)、(B)及び(C)からなる熱硬化性樹脂組成物100質量部に対して0.01~5質量部であることが好ましく、より好ましくは0.05~4重量部、さらに好ましくは0.1~3重量部である。
 本実施形態の熱硬化性樹脂組成物の調製方法は、公知の手法を適宜適用することができ、特に限定されない。好ましい調製方法の一例としては、例えば以下の方法が挙げられる。この調製方法では、先ず、マレイミド化合物(A)とシアン酸エステル化合物(C)とを120~160℃で30分から6時間溶融混合し、次いで、得られた溶融混合物の温度を100℃以下に下げた後、その混合物に化合物(B)及び必要に応じて重合促進剤(D)を加え、これを均一に溶融混合することにより、熱硬化性樹脂組成物を調製する。
 上述した本実施形態の熱硬化性樹脂組成物を硬化させることにより、硬化物(熱硬化性樹脂成形体)が得られる。熱硬化性樹脂組成物の硬化方法は、特に限定されない。例えば、前記熱硬化性樹脂組成物を80℃に加熱して1.5mm厚みのスペーサーを用いて離型処理された2枚のガラス板間にキャスティングし、180℃2時間の一次硬化を行い、その後、ガラス板から一次硬化物を取り外し、240℃で2時間後硬化を行うことで、硬化物(熱硬化性樹脂成形体)を得ることができる。
 本実施形態の熱硬化性樹脂組成物は、種々の用途に適用可能であり、その用途は特に限定されない。とりわけ、本実施形態の熱硬化性樹脂組成物は、耐熱性及び強度並びに取扱性及び製造効率に優れるので、そのような性能が要求される用途、例えば、繊維強化複合材料用マトリックス樹脂や、電気電子部品の封止剤等の分野において、殊に有用であり、特に、繊維強化複合材料用マトリックス樹脂として適している。また、本実施形態の熱硬化性樹脂組成物は、流動性に優れるので、無溶剤下での使用、すなわち溶剤非含有(溶剤レス)熱硬化性樹脂組成物の態様において、殊に有用である。ここで、無溶剤、或いは、溶剤レス(溶剤非含有)とは、溶剤を実質的に含有しないことを意味し、溶剤を実質的に含有しないとは、熱硬化性樹脂組成物の総量に対して1質量%未満、好ましくは0.1質量%未満、より好ましくは0.01質量%未満の、極少量の溶剤の含有を許容する概念である。なお、本実施形態の熱硬化性樹脂組成物は、溶剤、例えば有機溶剤に溶解させて使用する態様においても、好適に使用可能である。
 本実施形態の熱硬化性樹脂組成物は、取扱性及び成形加工性の観点から、B型粘度計を用いて測定した80℃での粘度が、90~700(mPa・s)であることが好ましく、より好ましくは100~650(mPa・s)である。熱硬化性樹脂組成物の80℃での粘度が90~700(mPa・s)の範囲内にあることで、80℃以上の使用条件下においてその性状が流動性のある液状体となり、無溶剤であっても比較的に低温で成形加工することができるようになり、また、製造時の熱硬化性樹脂組成物の取扱性が高められる傾向にある。
 また、本実施形態の熱硬化性樹脂組成物は、取扱性及び成形加工性の観点から、JIS C6481に準拠してDMA法にて測定したガラス転移温度(Tg)が、200~350℃であることが好ましく、より好ましくは250~330℃である。熱硬化性樹脂組成物のTgが200~350℃の範囲内にあることで、硬化性及び硬化後の耐熱性が高められる傾向にある。
 以下、実施例及び比較例を挙げて、本発明を詳細に説明するが、本発明はこれらの実施例によりなんら限定されるものではない。なお、以下において特に断りのない限り、「部」は「質量部」を表す。
(実施例1)
 攪拌機が備え付けられた容器に、ビスフェノールAジシアネートエステル(LONZA社製 Primaset(登録商標) BADCy、シアネート当量139eq./g)35部とポリフェニルメタンマレイミド(大和化成工業(株)製 BMI-2300、融点75~145℃)65部とを投入し、その後、150℃で4時間溶融混合させた。溶融液温度を80℃に下げた後、トリメチロールプロパントリメタクリレート(新中村化学工業(株)製 NKエステルTMPT)10部と2-エチル-4-メチルイミダゾール2.5gとを容器内に添加し、さらに30分間混合することにより、実施例1の熱硬化性樹脂組成物を得た。このようにして得られた実施例1の熱硬化性樹脂組成物は、80℃の粘度が438mPa・sであり、繊維基材への無溶剤含浸が可能であった。
 次いで、実施例1の熱硬化性樹脂組成物を1.5mm厚みのスペーサーを介して対向配置された離型処理済みの2枚のガラス板間にキャスティングし、その後、180℃で2時間の熱処理(一次硬化処理)を行うことで、厚さ1.5mmの実施例1の樹脂板(一次硬化物)を得た。その後、実施例1の樹脂板をガラス板から取り外し、さらに、240℃で2時間の熱処理(後硬化)を行うことで、実施例1の硬化物(二次硬化物)を得た。
(実施例2)
 攪拌機が備え付けられた容器に、フェノールノボラックポリシアネートエステル(LONZA社製 Primaset(登録商標) PT-15、シアネート当量127eq./g)40部とポリフェニルメタンマレイミド(大和化成工業(株)製 BMI-2300、融点75~145℃)50部と4,4’-ジフェニルメタンビスマレイミド(大和化成工業(株)製 BMI-1000、融点147~168℃)10部とを投入し、その後、150℃で3時間溶融混合させた。溶融液温度を80℃に下げた後、1,3-ジイソプロペニルベンゼン(東京化成工業(株)製 試薬)15部とジ-t-ブチル-パーオキサイド1gとを容器内に添加し、さらに30分間混合することにより、実施例2の熱硬化性樹脂組成物を得た。このようにして得られた実施例2の熱硬化性樹脂組成物は、80℃の粘度が625mPa・sであり、繊維基材への無溶剤含浸が可能であった。
 次いで、実施例2の熱硬化性樹脂組成物を用いること以外は、実施例1と同様に処理して、実施例2の樹脂板(一次硬化物)、及び、実施例2の硬化物(二次硬化物)を得た。
(実施例3)
 攪拌機が備え付けられた容器に、ビスフェノールAジシアネートエステル(LONZA社製 Primaset(登録商標) BADCy、シアネート当量139eq./g)45部と1,6-ビスマレイミド-(2,2,4-トリメチル)ヘキサン(大和化成工業(株)製 BMI-TMH、融点73~110℃)30部と4,4’-ジフェニルメタンビスマレイミド(大和化成工業(株)製 BMI-1000、融点147~168℃)25部とを投入し、その後、150℃で6時間溶融混合させた。溶融液温度を80℃に下げた後、トリメチロールプロパントリメタクリレート(新中村化学工業(株)製 NKエステルTMPT)10部と2-エチル-4-メチルイミダゾール3gとを容器内に添加し、さらに30分間混合することにより、実施例3の熱硬化性樹脂組成物を得た。このようにして得られた実施例3の熱硬化性樹脂組成物は、80℃の粘度が380mPa・sであり、繊維基材への無溶剤含浸が可能であった。
 次いで、実施例3の熱硬化性樹脂組成物を用いること以外は、実施例1と同様に処理して、実施例3の樹脂板(一次硬化物)、及び、実施例3の硬化物(二次硬化物)を得た。
(実施例4)
 攪拌機が備え付けられた容器に、ビスフェノールAジシアネートエステル(LONZA社製 Primaset(登録商標) BADCy、シアネート当量139eq./g)28部とポリフェニルメタンマレイミド(大和化成工業(株)製 BMI-2300、融点75~145℃)47部とを投入し、その後、150℃で6時間溶融混合させた。溶融液温度を80℃に下げた後、トリメチロールプロパントリメタクリレート(新中村化学工業(株)製 NKエステルTMPT)20部と2-エチル-4-メチルイミダゾール3gとを容器内に添加し、さらに30分間混合することにより、実施例4の熱硬化性樹脂組成物を得た。このようにして得られた実施例4の熱硬化性樹脂組成物は、80℃の粘度が393mPa・sであり、繊維基材への無溶剤含浸が可能であった。
 次いで、実施例4の熱硬化性樹脂組成物を用いること以外は、実施例1と同様に処理して、実施例4の樹脂板(一次硬化物)、及び、実施例4の硬化物(二次硬化物)を得た。
(実施例5)
 攪拌機が備え付けられた容器に、ビスフェノールAジシアネートエステル(LONZA社製 Primaset(登録商標) BADCy、シアネート当量139eq./g)24部とポリフェニルメタンマレイミド(大和化成工業(株)製 BMI-2300、融点75~145℃)36部とを投入し、その後、150℃で6時間溶融混合させた。溶融液温度を80℃に下げた後、トリメチロールプロパントリメタクリレート(新中村化学工業(株)製 NKエステルTMPT)40部と2-エチル-4-メチルイミダゾール2gとを容器内に添加し、さらに30分間混合することにより、実施例5の熱硬化性樹脂組成物を得た。このようにして得られた実施例5の熱硬化性樹脂組成物は、80℃の粘度が122mPa・sであり、繊維基材への無溶剤含浸が不能であった。
 次いで、実施例5の熱硬化性樹脂組成物を用いること以外は、実施例1と同様に処理して、実施例5の樹脂板(一次硬化物)、及び、実施例5の硬化物(二次硬化物)を得た。
(比較例1)
 攪拌機が備え付けられた容器に、ビスフェノールAジシアネートエステル(LONZA社製 Primaset(登録商標) BADCy、シアネート当量139eq./g)70部を投入し、その後、150℃で6時間溶融混合させた。溶融液温度を80℃に下げた後、トリメチロールプロパントリメタクリレート30部(新中村化学工業(株)製 NKエステルTMPT)とジ-t-ブチル-パーオキサイド1gとを容器内に添加し、さらに30分間混合することにより、比較例1の熱硬化性樹脂組成物を得た。このようにして得られた比較例1の熱硬化性樹脂組成物は、80℃の粘度が87mPa・sであり、繊維基材への無溶剤含浸が不能であった。
 次いで、比較例1の熱硬化性樹脂組成物を1.5mm厚みのスペーサーを介して対向配置された離型処理済みの2枚のガラス板間にキャスティングし、その後、180℃で2時間の熱処理(一次硬化処理)を行った。しかしながら、この比較例1の熱硬化性樹脂組成物は、上記の一次硬化処理硬化では硬化せず、また、200℃2時間の熱処理でも硬化せず、成形不能であった。
(比較例2)
 攪拌機が備え付けられた容器に、フェノールノボラックポリシアネートエステル(LONZA社製 Primaset(登録商標) PT-15、シアネート当量127eq./g)40部とポリフェニルメタンマレイミド(大和化成工業(株)製 BMI-2300、融点75~145℃)40部と4,4’-ジフェニルメタンビスマレイミド(大和化成工業(株)製 BMI-1000、融点147~168℃)20部とを投入し、その後、150℃で2時間溶融混合させた。溶融液温度を80℃に下げた後、2-エチル-4-メチルイミダゾール1gを容器内に添加し、さらに30分間混合することにより、比較例2の熱硬化性樹脂組成物を得た。このようにして得られた比較例3の熱硬化性樹脂組成物は、80℃の粘度が754mPa・sであり、繊維基材への無溶剤含浸が可能であった。
 次いで、比較例2の熱硬化性樹脂組成物を1.5mm厚みのスペーサーを介して対向配置された離型処理済みの2枚のガラス板間にキャスティングし、200℃で2時間の熱処理(一次硬化処理)行った。しかしながら、この比較例2の熱硬化性樹脂組成物は、上記一次硬化処理中にゲル化物が発生し、成形不能であった。
(比較例3)
 攪拌機が備え付けられた容器に、ポリフェニルメタンマレイミド(大和化成工業(株)製 BMI-2300、融点75~145℃)70部と1,3-ジイソプロペニルベンゼン30部(東京化成工業(株)製 試薬)とを投入し、その後、150℃で撹拌しようとしたところ、120℃で重合が開始し、攪拌不能となった。
(比較例4)
 攪拌機が備え付けられた容器に、ビスフェノールAジシアネートエステル(LONZA社製 Primaset(登録商標) BADCy、シアネート当量139eq./g)72部と4,4’-ジフェニルメタンビスマレイミド(大和化成工業(株)製 BMI-1000、融点147~168℃)8部とを投入し、その後、150℃で6時間溶融混合させた。溶融液温度を80℃に下げた後、ビスフェノールA型液状エポキシ樹脂(DIC(株)製 EPICLON 850-S)20部を容器内に添加し、さらに30分間混合することにより、比較例4の熱硬化性樹脂組成物を得た。このようにして得られた比較例4の熱硬化性樹脂組成物は、80℃の粘度が670mPa・sであり、繊維基材への無溶剤含浸が可能であった。
 次いで、比較例4の熱硬化性樹脂組成物を用いること以外は、実施例1と同様に処理して、比較例4の樹脂板(一次硬化物)、及び、比較例4の硬化物(二次硬化物)を得た。
(比較例5)
 攪拌機が備え付けられた容器に、ジアリルビスフェノールA(小西化学工業(株)製 BPA-CA)70部と1,6-ビスマレイミド-(2,2,4-トリメチル)ヘキサン(大和化成工業(株)製 BMI-TMH、融点73~110℃)15部と4,4’-ジフェニルメタンビスマレイミド(大和化成工業(株)製 BMI-1000、融点147~168℃)60部とm-フェニレンビスマレイミド(大和化成工業(株)製 BMI-3000、融点194~204℃)25部とを投入し、その後、120℃で均一溶液となるまで混合した。混合液温度を80℃に下げた後、2-エチル-4-メチルイミダゾール5.1gを容器内に添加し、さらに10分間混合することにより、比較例5の熱硬化性樹脂組成物を得た。このようにして得られた比較例5の熱硬化性樹脂組成物は、80℃の粘度が415mPa・sであり、繊維基材への無溶剤含浸が可能であった。
 次いで、比較例5の熱硬化性樹脂組成物を用いること以外は、実施例1と同様に処理して、比較例5の樹脂板(一次硬化物)、及び、比較例5の硬化物(二次硬化物)を得た。
 実施例及び比較例において行った試験方法の詳細は、以下の通りである。
[熱硬化性樹脂組成物の粘度]
 80℃に制御した恒温水槽中でB型粘度計を用いて測定した。
[熱硬化性樹脂組成物のガラス転移温度(Tg)]
 JIS C6481に準拠しDMA法にて測定した。
[硬化物の曲げ強度]
 JIS K 6911に準拠し、下記(1)及び(2)の条件で3点曲げ強度を測定した。
(1)実施例及び比較例の硬化物(後硬化後の二次硬化物)をサンプルとして用いて、25℃及び150℃の曲げ強度を測定した。
(2)実施例及び比較例の硬化物(後硬化後の二次硬化物)を250℃に制御したオーブン中に200時間放置したものをサンプルとして用いて、25℃の曲げ強度を測定した。
 評価結果を表1及び2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1及び2に示すとおり、実施例1~5の熱硬化性樹脂組成物は、いずれも、80℃において繊維基材に含浸可能な粘度を有し、200℃以下で成形可能であることが確認された。また、実施例1~5の硬化物は、いずれも、高い耐熱性を有することが確認された。
 一方、マレイミド化合物(A)、重合性不飽和炭化水素基を1分子中に2以上有する化合物(B)、及びシアン酸エステル化合物(C)のすべてを必須成分として含有していない比較例1~3の熱硬化性樹脂組成物は、いずれも、200℃以下で成形不能であることが確認された。
 また、重合性不飽和炭化水素基を1分子中に2以上有する化合物(B)の代わりにエポキシ樹脂組成物を用いた比較例4の熱硬化性樹脂組成物は、高温下及び高温暴露後の曲げ強度の低下が大きいことが確認された。
 さらに、シアン酸エステル化合物(C)を含んでいない比較例5の熱硬化性樹脂組成物は、マレイミド化合物(A)としてアリル化合物で変性されたマレイミド樹脂を含んではいるものの、250℃で6時間後硬化を行っても低温にTgが観測されるものであり、硬化性が不十分であり、高温下で曲げ強度の低下が大きいことが確認された。
 なお、上述したとおり、本発明は、上記実施形態及び実施例に限定されるものではなく、その要旨を逸脱しない範囲内において適宜変更を加えることが可能である。
 以上説明した通り、本発明は、航空材料、工作機械材料、電気・電子材料等の種々の用途で、広く且つ有効に利用可能であり、特に、耐熱性が要求される繊維強化複合材料のマトリックス樹脂や電気電子部品の封止剤等の分野において、さらには無溶剤化が求められる熱硬化性樹脂一般分野において、殊に有効に利用可能である。
 なお、本出願は、2010年12月27日に日本国特許庁に出願された日本特許出願(特願2010-289246号)に基づく優先権を主張しており、その内容はここに参照として取り込まれる。

Claims (10)

  1.  マレイミド化合物(A)、
     重合性不飽和炭化水素基を1分子中に2以上有する化合物(B)、及び
     シアン酸エステル化合物(C)、
    を必須成分として含有する、熱硬化性樹脂組成物。
  2.  前記マレイミド化合物(A)、前記化合物(B)、及び前記シアン酸エステル化合物(C)の総量に対する各化合物の含有割合が、以下の関係:
     前記マレイミド化合物(A)    30~70質量%
     前記化合物(B)          5~30質量%
     前記シアン酸エステル化合物(C) 20~45質量%
    を満たす、請求項1に記載の熱硬化性樹脂組成物。
  3.  B型粘度計を用いて測定した80℃での粘度が、90~700mPa・sである、
    請求項1又は2に記載の熱硬化性樹脂組成物。
  4.  前記化合物(B)が、アクリル基、メタクリル基、ビニル基、アリル基、及びイソプロペニル基よりなる群から選択される重合性不飽和炭化水素基を1分子中に2以上有する化合物である、
    請求項1~3のいずれか一項に記載の熱硬化性樹脂組成物。
  5.  前記マレイミド化合物(A)が、4,4’-ジフェニルメタンビスマレイミド、ポリフェニルメタンマレイミド、1,6-ビスマレイミド-(2,2,4-トリメチル)ヘキサン、及びビスフェノールAジフェニルエーテルビスマレイミドからなる群より選択される1種以上である、
    請求項1~4のいずれか一項に記載の熱硬化性樹脂組成物。
  6.  前記マレイミド化合物(A)の融点が、205℃以下である、
    請求項1~5のいずれか一項に記載の熱硬化性樹脂組成物。
  7.  前記化合物(B)が、1,3-ジイソプロペニルベンゼン、又はトリメチロールプロパントリ(メタ)アクリレートである、
    請求項1~6のいずれか一項に記載の熱硬化性樹脂組成物。
  8.  前記シアン酸エステル化合物(C)が、1分子中に芳香環を2以上有し、且つ、100℃における粘度が100mPa・s以下のものである、
    請求項1~7のいずれか一項に記載の熱硬化性樹脂組成物。
  9.  さらに重合促進剤(D)を含み、
     前記重合促進剤(D)の含有量が、前記マレイミド化合物(A)、前記化合物(B)、及び前記シアン酸エステル化合物(C)の合計100質量部に対して0.01~5質量部である、
    請求項1~8のいずれか一項に記載の熱硬化性樹脂組成物。
  10.  溶剤を実質的に含有しない、
    請求項1~9のいずれか一項に記載の溶剤非含有熱硬化性樹脂組成物。
PCT/JP2011/074381 2010-12-27 2011-10-24 熱硬化性樹脂組成物 WO2012090578A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/992,869 US20130261260A1 (en) 2010-12-27 2011-10-24 Thermosetting resin composition
EP11854006.1A EP2660269A4 (en) 2010-12-27 2011-10-24 HEAT-CURABLE RESIN COMPOSITION
JP2012550763A JP5812297B2 (ja) 2010-12-27 2011-10-24 熱硬化性樹脂組成物
KR1020137016479A KR20140003453A (ko) 2010-12-27 2011-10-24 열경화성 수지 조성물
CN2011800631963A CN103298854A (zh) 2010-12-27 2011-10-24 热固性树脂组合物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010289246 2010-12-27
JP2010-289246 2010-12-27

Publications (1)

Publication Number Publication Date
WO2012090578A1 true WO2012090578A1 (ja) 2012-07-05

Family

ID=46382699

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/074381 WO2012090578A1 (ja) 2010-12-27 2011-10-24 熱硬化性樹脂組成物

Country Status (7)

Country Link
US (1) US20130261260A1 (ja)
EP (1) EP2660269A4 (ja)
JP (1) JP5812297B2 (ja)
KR (1) KR20140003453A (ja)
CN (1) CN103298854A (ja)
TW (1) TW201237102A (ja)
WO (1) WO2012090578A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103173012A (zh) * 2013-03-01 2013-06-26 中国科学院深圳先进技术研究院 双马来酰亚胺-三嗪树脂复合材料、有机基板及其制备方法
JP2014037485A (ja) * 2012-08-16 2014-02-27 Mitsubishi Gas Chemical Co Inc 熱硬化性樹脂組成物、プリプレグ、積層板及びプリント配線板
JP2018131541A (ja) * 2017-02-15 2018-08-23 三菱瓦斯化学株式会社 樹脂組成物、プリプレグ、金属箔張積層板、樹脂シート、及びプリント配線板
WO2023063267A1 (ja) * 2021-10-15 2023-04-20 日本化薬株式会社 封止材用マレイミド樹脂混合物、マレイミド樹脂組成物およびその硬化物

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6856317B2 (ja) * 2015-02-20 2021-04-07 株式会社日本触媒 硬化性樹脂組成物及びそれを用いてなる封止材
WO2016132889A1 (ja) 2015-02-20 2016-08-25 株式会社日本触媒 硬化性樹脂組成物及びそれを用いてなる封止材
KR101947029B1 (ko) * 2017-08-11 2019-02-12 임경해 굵기와 길이를 변화시킬 수 있는 스타일러스

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63170419A (ja) * 1986-11-20 1988-07-14 アモコ コーポレーション 芳香族シアネートエステル類とビスフェノールのアリルエーテル類とを含む改良された熱硬化性組成物類
JPH02251518A (ja) * 1989-03-27 1990-10-09 Mitsui Toatsu Chem Inc 熱硬化性樹脂組成物
JPH0892368A (ja) * 1994-09-27 1996-04-09 Fuji Electric Co Ltd 耐熱性樹脂とその処理方法
JP2006124494A (ja) * 2004-10-28 2006-05-18 Mitsubishi Gas Chem Co Inc 樹脂組成物及び銅張積層板
JP2007045968A (ja) * 2005-08-11 2007-02-22 Mitsubishi Gas Chem Co Inc 熱硬化性樹脂組成物
JP2010248473A (ja) * 2009-03-27 2010-11-04 Hitachi Chem Co Ltd 熱硬化性樹脂組成物、並びにこれを用いたプリプレグ、積層板及び多層プリント配線板

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5473900A (en) * 1977-11-25 1979-06-13 Mitsubishi Gas Chem Co Inc Curable resin composition
JPS5626950A (en) * 1979-08-08 1981-03-16 Mitsubishi Gas Chem Co Inc Curable resin composition
JPS56110760A (en) * 1980-02-06 1981-09-02 Mitsubishi Gas Chem Co Inc Curable resin composition
DE3117902C2 (de) * 1980-05-06 1984-11-15 Mitsubishi Gas Chemical Co., Inc., Tokio/Tokyo Härtbare Harzmasse
JPS57145148A (en) * 1981-03-05 1982-09-08 Mitsubishi Gas Chem Co Inc Curable resin composition
US4861823A (en) * 1986-11-20 1989-08-29 Amoco Corporation Thermoset composition comprising aromatic cyanate ester of allyl ether of bisphenol
WO2000071614A1 (en) * 1999-05-21 2000-11-30 Miguel Albert Capote High performance cyanate-bismaleimide-epoxy resin compositions for printed circuits and encapsulants
JP4843944B2 (ja) * 2005-01-13 2011-12-21 三菱瓦斯化学株式会社 樹脂組成物並びにこれを用いたプリプレグ及び積層板
JP5233710B2 (ja) * 2008-02-12 2013-07-10 三菱瓦斯化学株式会社 樹脂組成物、プリプレグおよび金属箔張り積層板

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63170419A (ja) * 1986-11-20 1988-07-14 アモコ コーポレーション 芳香族シアネートエステル類とビスフェノールのアリルエーテル類とを含む改良された熱硬化性組成物類
JPH02251518A (ja) * 1989-03-27 1990-10-09 Mitsui Toatsu Chem Inc 熱硬化性樹脂組成物
JPH0892368A (ja) * 1994-09-27 1996-04-09 Fuji Electric Co Ltd 耐熱性樹脂とその処理方法
JP2006124494A (ja) * 2004-10-28 2006-05-18 Mitsubishi Gas Chem Co Inc 樹脂組成物及び銅張積層板
JP2007045968A (ja) * 2005-08-11 2007-02-22 Mitsubishi Gas Chem Co Inc 熱硬化性樹脂組成物
JP2010248473A (ja) * 2009-03-27 2010-11-04 Hitachi Chem Co Ltd 熱硬化性樹脂組成物、並びにこれを用いたプリプレグ、積層板及び多層プリント配線板

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2660269A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014037485A (ja) * 2012-08-16 2014-02-27 Mitsubishi Gas Chemical Co Inc 熱硬化性樹脂組成物、プリプレグ、積層板及びプリント配線板
CN103173012A (zh) * 2013-03-01 2013-06-26 中国科学院深圳先进技术研究院 双马来酰亚胺-三嗪树脂复合材料、有机基板及其制备方法
CN103173012B (zh) * 2013-03-01 2015-09-16 中国科学院深圳先进技术研究院 双马来酰亚胺-三嗪树脂复合材料、有机基板及其制备方法
JP2018131541A (ja) * 2017-02-15 2018-08-23 三菱瓦斯化学株式会社 樹脂組成物、プリプレグ、金属箔張積層板、樹脂シート、及びプリント配線板
WO2023063267A1 (ja) * 2021-10-15 2023-04-20 日本化薬株式会社 封止材用マレイミド樹脂混合物、マレイミド樹脂組成物およびその硬化物
JP7281246B1 (ja) * 2021-10-15 2023-05-25 日本化薬株式会社 封止材用マレイミド樹脂混合物、マレイミド樹脂組成物およびその硬化物

Also Published As

Publication number Publication date
KR20140003453A (ko) 2014-01-09
US20130261260A1 (en) 2013-10-03
TW201237102A (en) 2012-09-16
JP5812297B2 (ja) 2015-11-11
EP2660269A4 (en) 2014-09-03
EP2660269A1 (en) 2013-11-06
JPWO2012090578A1 (ja) 2014-06-05
CN103298854A (zh) 2013-09-11

Similar Documents

Publication Publication Date Title
JP5812297B2 (ja) 熱硬化性樹脂組成物
KR970010753B1 (ko) 경화성 에폭시 수지 조성물
JPH01158038A (ja) シアネートエステル類用の潜硬化性促進剤
JP2005082628A (ja) 耐熱性樹脂組成物およびその成形品
CA3189331A1 (en) Thermoset resin compositions
JPH02113020A (ja) 硬化性エポキシ樹脂組成物
JP7381778B2 (ja) 改善された特性を有する新規な組成物
JPH01256535A (ja) ヒンダードジアミンから製造したイミド基含有熱硬化性プレポリマーの製造方法
WO2019088122A1 (ja) 熱硬化性樹脂組成物及びその製造方法
JP2007291409A (ja) 成形品
JP2005082626A (ja) 耐熱性樹脂組成物
JPS62184014A (ja) 耐熱性,電気絶縁性にすぐれた硬化物を与える樹脂組成物
JPS6358185B2 (ja)
JPS62277466A (ja) プリプレグ用樹脂組成物
JP2018104609A (ja) 一液型熱硬化性樹脂組成物およびその硬化物
JP3408689B2 (ja) 熱硬化性樹脂組成物
JPH0343287B2 (ja)
WO2020079871A1 (ja) ポリマレイミド組成物、その製造方法及びそれを用いた硬化性組成物、並びに硬化物の製造方法
JPS62246924A (ja) 硬化性樹脂組成物
JP4332952B2 (ja) 硬化性樹脂組成物
JPS62252417A (ja) プリプレグ用樹脂組成物
WO2023079959A1 (ja) 樹脂改質用シリコーン添加剤及びそれを含む硬化性樹脂組成物
JPH0418443A (ja) 熱硬化性樹脂組成物
JPH0160066B2 (ja)
JP2023003713A (ja) 硬化性樹脂組成物及び硬化性樹脂組成物の製造方法並びに粘度調整剤、硬化物、電気・電子部品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11854006

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13992869

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20137016479

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2012550763

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011854006

Country of ref document: EP