WO2020079871A1 - ポリマレイミド組成物、その製造方法及びそれを用いた硬化性組成物、並びに硬化物の製造方法 - Google Patents

ポリマレイミド組成物、その製造方法及びそれを用いた硬化性組成物、並びに硬化物の製造方法 Download PDF

Info

Publication number
WO2020079871A1
WO2020079871A1 PCT/JP2019/015718 JP2019015718W WO2020079871A1 WO 2020079871 A1 WO2020079871 A1 WO 2020079871A1 JP 2019015718 W JP2019015718 W JP 2019015718W WO 2020079871 A1 WO2020079871 A1 WO 2020079871A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
integer
polymaleimide
carbon atoms
independently
Prior art date
Application number
PCT/JP2019/015718
Other languages
English (en)
French (fr)
Inventor
祐基 袴田
薫 金山
Original Assignee
ケイ・アイ化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ケイ・アイ化成株式会社 filed Critical ケイ・アイ化成株式会社
Priority to JP2020552503A priority Critical patent/JP7083587B2/ja
Priority to CN201980067195.2A priority patent/CN112888718B/zh
Publication of WO2020079871A1 publication Critical patent/WO2020079871A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/36Amides or imides
    • C08F222/40Imides, e.g. cyclic imides

Definitions

  • the present invention relates to a polymaleimide composition showing an amorphous solid state, a method for producing the same, a curable composition using the same, and a method for producing a cured product.
  • the polymaleimide compound having two or more maleimide groups can be obtained by radical polymerization of double bonds contained in the maleimide group, homopolymerization such as ionic polymerization, addition reaction of aromatic amine with hydrogen, and copolymerization with allylphenol. It is known to give a cured product having excellent heat resistance. In particular, a cured product obtained by reacting a polymaleimide compound with an aromatic amine or allylphenol is excellent in toughness, and is therefore used as a matrix resin for advanced composite materials centered on carbon fiber composite materials in the aerospace field. ing.
  • the polymaleimide compound is used in combination with an epoxy resin as a heat resistance improver for an epoxy resin widely used in the electronic field, and has been put to practical use in the fields of printed wiring boards, insulating powder coatings, resist inks and the like.
  • a typical compound as a polymaleimide compound there is a bismaleimide having two maleimide groups, but in the present invention, a compound having a plurality of maleimide groups is mentioned, starting with such a bismaleimide compound. It is called a polymaleimide compound.
  • the term “polyamine compound” is also used in the present invention as a compound having two or more amino groups, including a diamine compound having two amino groups.
  • Various curable compositions containing such a polymaleimide compound have been proposed, including, for example, Patent Document 1.
  • a polymaleimide compound typified by diaminodiphenylmethane bismaleimide is synthesized by reacting maleic anhydride with a polyamine compound having two or more amino groups.
  • the polyamine compound used at this time is not particularly limited and various ones such as an aliphatic diamine, an alicyclic diamine, and an aromatic diamine can be used, and thus have various skeletons according to various purposes.
  • a polymaleimide compound can be selected as a raw material.
  • Patent Document 2 proposes a bismaleimide compound having enhanced solubility in a low-boiling point organic solvent and enhanced removability of the solvent from the prepared curable composition.
  • the polymaleimide compound has poor solubility in a low boiling point solvent and has a high melting point of about 150 ° C., which is close to 170 to 180 ° C., which is a standard for initiating a self-reaction. It can be said that it is difficult to prepare an impregnated varnish, impregnate it and dry it, or melt-mix with an epoxy resin, a curing agent, a filler and the like to prepare a molding material.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a polymaleimide composition having good solubility in a solvent and capable of being melted at a lower temperature.
  • the present inventors have conducted simultaneous maleimidization reaction of a plurality of polyamine compounds with maleic anhydride, or mixed or dissolved a plurality of polymaleimide compounds. Since then, it has been found that not only does the solid exhibit good solubility in a solvent, but also an amorphous solid can be melted at about 90 to 100 ° C.
  • the polymaleimide composition which is an amorphous solid may be cured alone, or may be cured in combination with a curing agent such as an aromatic amine, allylphenol, or a cyanate ester as in the case of conventional polymaleimide. Further, since the compatibility with the epoxy resin is excellent, it is possible to dissolve an arbitrary amount in the epoxy resin so as to improve the heat resistance.
  • the present invention has been made based on the above findings, and provides the following.
  • the present invention is a polymaleimide composition comprising two or more compounds selected from the group of compounds represented by the following general formula (1) and being an amorphous solid.
  • each R is independently a hydrogen atom or an optionally branched alkyl group having 1 to 9 carbon atoms
  • each X is independently a single bond
  • each Y is independently a single bond, and a Y
  • An alkylene group having 1 to 15 carbon atoms which may have a branch or ring structure, a sulfonyl group (—SO 2 —), a sulfur atom or an oxygen atom
  • m is an integer of 0 to 3
  • n is 0. Is an integer of 3 to 3
  • j is an integer of 0 to 4
  • k is an integer of 0
  • the present invention is the polymaleimide composition according to the item (1), wherein the two or more compounds include two or more compounds selected from the following compound group.
  • the present invention is also a curable composition characterized by containing the polymaleimide composition according to item (1) or (2).
  • the present invention is also a method for producing a cured product, which comprises a step of curing the curable composition described in (3).
  • the present invention includes a reaction step in which two or more compounds selected from the group consisting of polyamine compounds having two or more amino groups and maleic anhydride are simultaneously reacted in the presence of a solvent, and the reaction step. And a solidifying step for obtaining an amorphous solid composed of a mixture of two or more polymaleimide compounds by distilling off the solvent from the reaction mixture having undergone the step of producing a polymaleimide composition.
  • the present invention is also the method for producing a polymaleimide composition according to the item (5), wherein the polyamine compound is a compound represented by the following general formula (1a).
  • each R is independently a hydrogen atom or an alkyl group having 1 to 9 carbon atoms which may have a branch, and each X is independently a single bond or an intermediate group.
  • each Y is independently a single bond, and a branch is present in the middle.
  • an alkylene group having 1 to 15 carbon atoms which may have a ring structure, a sulfonyl group (—SO 2 —), a sulfur atom, or an oxygen atom, m is an integer of 0 to 3, and n is 0 to Is an integer of 3, j is an integer of 0 to 4, k is an integer of 0 to 4, p is an integer of 0 to 4, and q is an integer of 0 to 4.
  • the present invention is an amorphous material containing the above mixture by melting a mixture of two or more compounds selected from the group of compounds represented by the following general formula (1) to form a melt, and then cooling the melt. It is also a method for producing a polymaleimide composition, which is characterized in that it is solid.
  • each R is independently a hydrogen atom or an alkyl group having 1 to 9 carbon atoms which may have a branch, and each X is independently a single bond or an intermediate group.
  • An alkylene group having 1 to 15 carbon atoms which may have a branch or ring structure, a sulfonyl group (—SO 2 —), a sulfur atom, or an oxygen atom, each Y is independently a single bond, and a branch is present in the middle.
  • an alkylene group having 1 to 15 carbon atoms which may have a ring structure, a sulfonyl group (—SO 2 —), a sulfur atom, or an oxygen atom
  • m is an integer of 0 to 3
  • n is 0 to Is an integer of 3
  • j is an integer of 0 to 4
  • k is an integer of 0 to 4
  • p is an integer of 0 to 4
  • q is an integer of 0 to 4.
  • the present invention comprises dissolving a mixture of two or more compounds selected from the group of compounds represented by the following general formula (1) in a solvent to form a solution, and then distilling the solvent from the solution to obtain the above mixture. It is also a method for producing a polymaleimide composition, characterized in that it is an amorphous solid containing.
  • each R is independently a hydrogen atom or an alkyl group having 1 to 9 carbon atoms which may have a branch
  • each X is independently a single bond or an intermediate group.
  • An alkylene group having 1 to 15 carbon atoms which may have a branch or ring structure, a sulfonyl group (—SO 2 —), a sulfur atom, or an oxygen atom, each Y is independently a single bond, and a branch is present in the middle.
  • an alkylene group having 1 to 15 carbon atoms which may have a ring structure, a sulfonyl group (—SO 2 —), a sulfur atom, or an oxygen atom
  • m is an integer of 0 to 3
  • n is 0 to Is an integer of 3
  • j is an integer of 0 to 4
  • k is an integer of 0 to 4
  • p is an integer of 0 to 4
  • q is an integer of 0 to 4.
  • a polymaleimide composition having good solubility in a solvent and capable of being melted at a lower temperature is provided.
  • FIG. 1 is a DSC chart for the polymaleimide compositions of Examples 1 to 6 of the present invention.
  • FIG. 2 is a DSC chart of the polymaleimide compositions of Examples 1 and 2 of the present invention and the crystals of the bismaleimide compounds of Comparative Examples 1 to 3.
  • polymaleimide composition of the present invention one embodiment of a curable composition, one embodiment of a method for producing a cured product, and three embodiments of a method for producing a polymaleimide composition will be described. It should be noted that the present invention is not limited to the following embodiments and modes, and can be implemented with appropriate modifications within the scope of the present invention.
  • the polymaleimide composition of the present invention is characterized by being an amorphous solid containing two or more polymaleimide compounds selected from the group of compounds represented by the following general formula (1).
  • a polymaleimide compound having a plurality of maleimide groups has high crystallinity and is generally marketed as a chemical raw material in a crystalline state. is there.
  • the polymaleimide compound traded in this way becomes a cured product having high heat resistance by reacting with a curing agent such as a polyamine compound, and thus is important as a raw material for a curable composition.
  • the crystal of the polymaleimide compound has a problem that it is difficult to melt or dissolve it in order to ensure moldability when used as a curable composition, because of its high melting point and low solubility in an organic solvent.
  • the polymaleimide composition of the present invention is an amorphous solid composed of a mixture containing two or more polymaleimide compounds. Since it is in an amorphous state, the polymaleimide compound has a lower melting point than the crystalline polymaleimide compound and is significantly soluble in a solvent. On the other hand, while the difference between the melting temperature and the polymerization temperature is large, melt kneading with a curing agent or a filler is facilitated because of the large difference, and as described above, a crystal of a polymaleimide compound is used in the preparation of the curable composition. Various problems that occur in some cases can be solved.
  • the term "polymaleimide composition” shows that it is a mixture of 2 or more types of polymaleimide compounds, and in addition to this, the polymaleimide composition of this invention WHEREIN: Epoxy resin And a compound other than the polymaleimide compound such as a polymerizable compound such as a compound having an ethylenically unsaturated bond, or a curing agent such as a polyamine compound or an allylphenol compound.
  • a compound other than the polymaleimide compound such as a polymerizable compound such as a compound having an ethylenically unsaturated bond, or a curing agent such as a polyamine compound or an allylphenol compound.
  • the polymaleimide composition of the present invention contains two or more polymaleimide compounds selected from the group of compounds represented by the following general formula (1), and more preferably the compound represented by the following general formula (1). It comprises two compounds selected from the group. A method of mixing these compounds to prepare the polymaleimide composition of the present invention which is an amorphous solid will be described later.
  • each R is independently a hydrogen atom or an optionally branched alkyl group having 1 to 9 carbon atoms.
  • alkyl group examples include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a tert-butyl group, a pentyl group, a hexyl group, and a 2-ethylhexyl group.
  • "independently” means that when there are a plurality of target substituents (R in this case), each substituent is arbitrarily selected from the group shown. In this case, the mutual substituents may be the same or different.
  • each X is independently a single bond, an alkylene group having 1 to 15 carbon atoms which may have a branched or ring structure in the middle, a sulfonyl group (—SO 2 —), It is a sulfur atom or an oxygen atom.
  • alkylene group examples include methylene group, 1,1-ethylene group, 1,2-ethylene group, 1,1-propylene group, 1,2-propylene group, 1,3-propylene group, 2,2- Propylene group, 1,1-butylene group, 1,2-butylene group, 1,3-butylene group, 1,4-butylene group, 2,2-butylene group, 2,3-butylene group, 1,1-pentylene group Group, 1,2-pentylene group, 1,3-pentylene group, 1,4-pentylene group, 1,5-pentylene group, 1,1-hexylene group, 1,2-hexylene group, 1,3-hexylene group 1,4-hexylene group, 1,5-hexylene group, 1,6-hexylene group, 1,7-heptylene group, 1,8-octylene group, 1,9-nonylene group, 1,10-decylene group 1,2-cyclohexylene group, 1,3-cyclohexyl Ren group, a
  • the “ring structure” that can be included in X includes an alicyclic ring and an aromatic ring.
  • X may not be what is generally called an alkylene group, but even in this case, X is treated as an alkylene group in the present invention. That is, X, which is a divalent substituent, may have an alkylene group (methylene group) at a position where it is bonded to another structure. This also applies to Y described later.
  • each Y is independently a single bond, an alkylene group having 1 to 15 carbon atoms which may have a branched or cyclic structure in the middle, a sulfonyl group (—SO 2 —), It is a sulfur atom or an oxygen atom.
  • a sulfonyl group —SO 2 —
  • It is a sulfur atom or an oxygen atom.
  • m is an integer of 0 to 3
  • n is an integer of 0 to 3
  • j is an integer of 0 to 4
  • k is an integer of 0 to 4
  • p is It is an integer of 0 to 4 and q is an integer of 0 to 4.
  • the compound group represented by the following general formula (2) can be preferably exemplified.
  • R, X, Y, m and n are the same as those in the general formula (1).
  • R 1 , R 2 , R 3 and R 4 are each independently a hydrogen atom or an optionally branched alkyl group having 1 to 9 carbon atoms. Examples of such an alkyl group include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a tert-butyl group, a pentyl group, a hexyl group, and a 2-ethylhexyl group.
  • All of these polymaleimide compounds are commercially available, and the symbol below the chemical formula is the product number of the compound commercially available from KI Kasei Co., Ltd.
  • two or three kinds of arbitrary polymaleimide compounds of BMI, BMI-70, BMI-80 and BMI-50P may be mixed and used at an arbitrary ratio.
  • the polymaleimide composition of the present invention is an amorphous solid, it has both a low melting point and high solubility. Therefore, it is possible to perform melt molding without using a polar solvent, suppress the generation of voids due to residual solvent in applications such as CFRP and printed wiring boards, and eliminate the need for solvent recovery, improving reliability and reducing costs. Will be possible.
  • the semiconductor encapsulation field and insulating powder encapsulation field where it is necessary to melt-knead the curing agent, filler, catalyst, and various auxiliary materials before molding, it is possible to perform melt-kneading at low temperature, so molding with stable quality A compound for use can be prepared.
  • a curing agent, an epoxy resin, or the like may be added to the polymaleimide composition of the present invention to form an amorphous solid, and such an amorphous solid is also one form of the polymaleimide composition of the present invention.
  • the curing agent, epoxy resin and the like will be described in the section of the curable composition of the present invention.
  • the polymaleimide composition of the present invention can be confirmed to be an amorphous solid by analyzing the solid by DSC (differential scanning calorimeter) or XRD (X-ray diffraction).
  • the curable composition of the present invention contains the polymaleimide composition described above, and the polymaleimide compound is polymerized and cured by heating.
  • This curable composition may contain components such as a curing agent and an epoxy resin in addition to the polymaleimide composition.
  • the curable composition of the present invention may be a solid mixture obtained by adding components such as a solid state curing agent to the solid state polymaleimide composition of the present invention, or the polymaleimide composition of the present invention. It may be the one in which the component of the curing agent is added to the product to be liquefied and then made into a solid state again, or it may be a liquid mixture as it is.
  • the polymaleimide composition is as described above in the section of the polymaleimide composition of the present invention, the details are omitted.
  • the polymaleimide compound alone becomes a cured product having high heat resistance by radical polymerization or ionic polymerization, and a known curing agent can be used in combination with the polymaleimide compound.
  • a curing agent specifically, an amine compound having active hydrogen capable of addition-reacting with a polymaleimide compound, or an allylphenol or cyan which is an unsaturated compound copolymerizable with a maleimide double bond. Examples thereof include acid esters and acrylates. It is also possible to use a curing catalyst to accelerate the curing reaction.
  • the polymaleimide composition does not directly react with the polymaleimide composition, but each independently forms a network structure, and is intended to form a tough structure in combination with another curable resin that forms an inter-network penetration structure (IPN structure).
  • IPN structure inter-network penetration structure
  • an epoxy resin, an acrylic resin, a phenol resin or the like may be used in combination.
  • a curable composition is formed by using a curing agent in addition to a polymaleimide compound, it is common to add a maleimide group and an equivalent amount of the curing agent, but when the amount of the curing agent is less than the equivalent amount.
  • the compounding amount of the curing agent is preferably 1.5 to 0.5 equivalents, and 1.2 to 0.7 equivalents with respect to the maleimide group. An equivalent amount is more preferable. Further, it is possible to use a catalyst for the purpose of improving the curability of the curable composition.
  • Examples of amine compounds that can be used as a curing agent include compounds having a primary amino group (—NH 2 ).
  • the amine compound preferably has two or more primary amino groups from the viewpoint that it can itself serve as a crosslinking agent.
  • Examples of amines include p-phenylenediamine, m-phenylenediamine, o-phenylenediamine, 3-methyl-1,4-diaminobenzene, 2,5-dimethyl-1,4-diaminobenzene and 4,4′-diamino.
  • the amount of the amine compound compounded is preferably about 1.5 to 0.5 active hydrogen equivalents, and more preferably about 1.2 to 0.7 active hydrogen equivalents, based on 1 equivalent of the maleimide group.
  • allylphenol o, o'-diallylbisphenol A, o, o'-diallylbisphenol F, o, o'-diallylbisphenol S, 2,2'-diallyl-4,4'-biphenol, 3,3 ' -Diallyl-4,4'-dihydroxydiphenyl ether, 3,3'-diallyl-4,4'-dihydroxydiphenyl sulfide, o, o'-dimethacrylbisphenol A, o, o'-dimethacrylbisphenol F, etc. .
  • These allylphenols can be used alone or in combination of two or more.
  • the compounding amount of allylphenols in the curable composition is preferably about 1.5 to 0.5 equivalents of allyl groups to 1 equivalent of maleimide groups, and about 1.2 to 0.7 equivalents of allyl groups is more preferable. It is preferably exemplified. Propenylphenol obtained by isomerizing the double bond of these allylphenols can also be used in the same manner as allylphenol. If propenylphenol is used instead of or together with allylphenol, the overall dose is similar to that for allylphenol above.
  • Imidazoles, tertiary amines, salts of tertiary amines, phosphorus compounds, peroxides, etc. can be added as catalysts for promoting the reaction between the maleimide compound and the curing agent.
  • the addition amount of these is preferably about 0.01 to 10 parts by mass, more preferably about 0.1 to 5 parts by mass, relative to 100 parts by mass of the curable composition.
  • Imidazoles are compounds with an imidazole skeleton.
  • Examples of imidazoles include imidazole, 1-methylimidazole, 1-ethylimidazole, 1-vinylimidazole, carbonyldiimidazole, 1-methyl-2-methylimidazole, 1-isobutyl-2-methylimidazole, 1-benzyl-2- Methylimidazole, 1-benzyl-2-phenylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazole, 2-undecylimidazole, 2-methylimidazole , 2-phenylimidazole, 2-heptadecylimidazole, 2-ethyl-4-methylimidazole, 2-phenyl-4-methylimidazole, 1-cyanoethyl-2-ethyl-4-methylimid
  • tertiary amines examples include 1,8 diazabicyclo (5,4,0) -undecene-7 (DBU) and 1,5 diazabicyclo (4,3,0) -nonene-5 (DBN).
  • DBU 1,8 diazabicyclo
  • DBU-undecene-7 examples include 1,8 diazabicyclo (5,4,0) -undecene-7 (DBU) and 1,5 diazabicyclo (4,3,0) -nonene-5 (DBN).
  • salts of tertiary amines examples include DBU-phenol salt, DBU-octylate salt, DBU-p-toluenesulfonate salt, tris (dimethylaminomethyl) phenol (DMP-30) and the like.
  • DMP-30 examples of the phosphorus compound include triphenylphosphine, tetraphenylphosphonium / tetraphenylborate and the like.
  • -Peroxide decomposes by heating to generate radicals.
  • the radical polymerizes the polymaleimide compound or the compound having an ethylenically unsaturated bond contained in the curable composition.
  • peroxides include methyl ethyl ketone peroxide, cyclohexane peroxide, 3,3,5-trimethylcyclohexanone peroxide, methyl cyclohexanone peroxide, methyl acetoacetate peroxide, acetylacetone peroxide, and 1,1-bis (t-butylperoxy).
  • the curable composition of the present invention contains the polymaleimide composition of the present invention and has both a low melting point and a high solubility. Therefore, it can be easily liquefied during molding and is preferably used. Examples of these applications include production of heat-resistant resins, sealing materials for electronic parts, impregnating varnishes, laminated plates and the like.
  • the method for producing a cured product of the present invention is characterized by comprising a step of curing the curable composition of the present invention.
  • the curable composition of the present invention is dissolved in a solvent or heated to about 100 to 150 ° C to melt and liquefy.
  • the liquefied curable composition is molded into a desired shape, or a base material such as carbon fiber or glass fiber is impregnated and molded into a desired shape.
  • the curable composition molded into a desired shape is heated to cure the curable composition.
  • the heating temperature may be about 180 to 250 ° C. This work corresponds to the step of "curing the curable composition" in the present invention.
  • the cured product obtained by the method for producing a cured product of the present invention has high heat resistance and, at the same time, has excellent characteristics as an electronic material in that it has a low dielectric loss tangent.
  • two or more compounds selected from the group consisting of polyamine compounds having two or more amino groups and maleic anhydride are simultaneously reacted in the presence of a solvent.
  • each step will be described.
  • reaction process First, the reaction process will be described. This is a step of simultaneously reacting two or more compounds selected from the group consisting of polyamine compounds having two or more amino groups and maleic anhydride in the presence of a solvent.
  • two or more polyamine compounds are used as one of the raw materials. That is, a mixture of two or more polyamine compounds having different structures is used.
  • the amino group contained in this polyamine compound is converted into a maleimide group by reacting with another raw material, maleic anhydride. Therefore, since the skeleton portion of the polyamine compound will be the skeleton portion of the future polymaleimide compound, the polyamine compound is selected according to the desired structure of the polymaleimide compound.
  • the polyamine compound includes two or more compounds selected from the group of compounds represented by the following general formula (1a).
  • the following general formula (1a) is obtained by changing the maleimide group of the polymaleimide compound of the above general formula (1) into an amino group, and reacting the compound represented by the following general formula (1a) with maleic anhydride.
  • the polymaleimide compound represented by the general formula (1) is obtained.
  • each R is independently a hydrogen atom or an optionally branched alkyl group having 1 to 9 carbon atoms.
  • alkyl group examples include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a tert-butyl group, a pentyl group, a hexyl group, and a 2-ethylhexyl group.
  • each X is independently a single bond, an alkylene group having 1 to 15 carbon atoms which may have a branched or cyclic structure in the middle, a sulfonyl group (—SO 2 —), It is a sulfur atom or an oxygen atom.
  • alkylene group examples include methylene group, 1,1-ethylene group, 1,2-ethylene group, 1,1-propylene group, 1,2-propylene group, 1,3-propylene group, 2,2- Propylene group, 1,1-butylene group, 1,2-butylene group, 1,3-butylene group, 1,4-butylene group, 2,2-butylene group, 2,3-butylene group, 1,1-pentylene group Group, 1,2-pentylene group, 1,3-pentylene group, 1,4-pentylene group, 1,5-pentylene group, 1,1-hexylene group, 1,2-hexylene group, 1,3-hexylene group 1,4-hexylene group, 1,5-hexylene group, 1,6-hexylene group, 1,7-heptylene group, 1,8-octylene group, 1,9-nonylene group, 1,10-decylene group 1,2-cyclohexylene group, 1,3-cyclohexyl Ren group, a
  • the “ring structure” that can be included in X includes an alicyclic ring and an aromatic ring.
  • X may not be what is generally called an alkylene group, but even in this case, X is treated as an alkylene group in the present invention. That is, X, which is a divalent substituent, may have an alkylene group (methylene group) at a position where it is bonded to another structure. This also applies to Y described later.
  • each Y is independently a single bond, an alkylene group having 1 to 15 carbon atoms which may have a branched or ring structure in the middle, a sulfonyl group (—SO 2 —), It is a sulfur atom or an oxygen atom.
  • a sulfonyl group —SO 2 —
  • It is a sulfur atom or an oxygen atom.
  • m is an integer of 0 to 3
  • n is an integer of 0 to 3
  • j is an integer of 0 to 4
  • k is an integer of 0 to 4
  • p is It is an integer of 0 to 4 and q is an integer of 0 to 4.
  • polyamine compound represented by the above general formula (1a) more specifically, a compound represented by the following general formula (2a) can be preferably exemplified.
  • R, X, Y, m and n are the same as those in the general formula (1a).
  • R 1 , R 2 , R 3 and R 4 are each independently a hydrogen atom or an optionally branched alkyl group having 1 to 9 carbon atoms. Examples of such an alkyl group include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a tert-butyl group, a pentyl group, a hexyl group, and a 2-ethylhexyl group.
  • the amount of maleic anhydride used in this embodiment is not particularly limited, but is preferably about 1 to 5 equivalents, more preferably about 1 to 2 equivalents, relative to the amino group contained in the polyamine compound. 1 to 1.5 equivalents are more preferable.
  • a solvent that does not inhibit the reaction, is insoluble in water, and is azeotropic with water is preferably used.
  • maleic anhydride reacts with an amino group of a polyamine compound to form a maleamide compound, which is then dehydrated and condensed to form a maleimide compound by imidization, so that condensation water generated in the reaction system is removed from the system.
  • a solvent that is azeotropic with water is preferably used.
  • Such a solvent include aromatic hydrocarbon solvents such as toluene and xylene; halogen-containing solvents such as chlorobenzene and dichloromethane; and aliphatic hydrocarbon solvents such as n-hexane, cyclohexane and n-decane.
  • aromatic hydrocarbon solvents such as toluene and xylene are more preferable because they are likely to be homogeneous reaction systems.
  • a solvent that does not inhibit this reaction is soluble in water and does not azeotrope with water may be added if necessary.
  • a solvent include aprotic polar solvents such as N, N-dimethylformamide, N, N-dimethylacetamide and N-methyl-2-pyrrolidone.
  • an acid catalyst may be added to the reaction system.
  • an acid catalyst include aliphatic sulfonic acids such as methanesulfonic acid, and sulfonic acids including aromatic sulfonic acids such as p-toluenesulfonic acid, benzenesulfonic acid and xylenesulfonic acid; sulfuric acid, fuming sulfuric acid, phosphorus.
  • Mineral acids such as acids; carboxylic acids such as formic acid, acetic acid, propionic acid, trifluoroacetic acid; Lewis acids such as boron trifluoride-tetrahydrofuran (THF) complex, aluminum chloride, zinc chloride; montmorillonite K-10, sulfated zirconia And the like.
  • sulfonic acids organic sulfonic acids
  • p-toluenesulfonic acid, sulfuric acid and the like are more preferable from the viewpoint of availability and easy handling.
  • the amount of the acid catalyst used is not particularly limited, but is preferably about 0.01 to 1 equivalents, more preferably about 0.1 to 0.9 equivalents, relative to the amino groups contained in the polyamine compound. However, 0.2 to 0.8 equivalents are more preferable.
  • a maleic anhydride and a solvent are added to a reaction vessel, a polyamine compound dissolved in a solvent while heating the reaction solution to about 80 to 100 ° C., and a necessary According to the above, the acid catalyst is added dropwise to the reaction vessel. Then, the reaction mixture may be heated to reflux while removing azeotropic water out of the reaction system.
  • reaction mixture is subjected to a solidification step.
  • the solidification step is a step of distilling the solvent from the reaction mixture that has undergone the above reaction step to obtain an amorphous solid composed of a mixture of two or more polymaleimide compounds.
  • the means for distilling off the solvent known ones can be cited without any particular limitation.
  • An example of such means is a method of heating the reaction mixture under reduced pressure to evaporate the solvent.
  • the polymaleimide compounds present in two or more kinds become impurities with each other, and in some cases, solvent molecules are incorporated in the molecule or between the molecules of the polymaleimide compound. As a result, it becomes a solid in an amorphous state without being crystallized.
  • the amorphous solid thus obtained corresponds to the polymaleimide composition of the present invention.
  • each R is independently a hydrogen atom or an alkyl group having 1 to 9 carbon atoms which may have a branch, and each X is independently a single bond or an intermediate group.
  • an alkylene group having 1 to 15 carbon atoms which may have a ring structure, a sulfonyl group (—SO 2 —), a sulfur atom, or an oxygen atom, m is an integer of 0 to 3, and n is 0 to Is an integer of 3, j is an integer of 0 to 4, k is an integer of 0 to 4, p is an integer of 0 to 4, and q is an integer of 0 to 4.
  • the compound group represented by the above general formula (1) is the same as that described in the polymaleimide composition of the present invention, and therefore the description thereof is omitted here.
  • each R is independently a hydrogen atom or an alkyl group having 1 to 9 carbon atoms which may have a branch, and each X is independently a single bond or an intermediate group.
  • an alkylene group having 1 to 15 carbon atoms which may have a ring structure, a sulfonyl group (—SO 2 —), a sulfur atom, or an oxygen atom, m is an integer of 0 to 3, and n is 0 to Is an integer of 3, j is an integer of 0 to 4, k is an integer of 0 to 4, p is an integer of 0 to 4, and q is an integer of 0 to 4.
  • the compound group represented by the above general formula (1) is the same as that described in the polymaleimide composition of the present invention, and therefore the description thereof is omitted here.
  • the solvent used to dissolve the two or more compounds represented by the general formula (1) is not particularly limited as long as it can dissolve the compounds.
  • examples of such a solvent include polar solvents such as dimethylformamide and N-methylpyrrolidone.
  • the solvent is distilled off.
  • known ones can be mentioned without particular limitation.
  • An example of such means is a method of heating the solution under reduced pressure to evaporate the solvent.
  • the two or more polymaleimide compounds contained in the solution are crystallized by the presence of two or more polymaleimide compounds as impurities, and in some cases, the incorporation of solvent molecules intramolecularly or intermolecularly. It does not solidify and becomes solid in the amorphous state.
  • the amorphous solid thus obtained corresponds to the polymaleimide composition of the present invention.
  • Example 1 A 500 mL four-necked glass flask equipped with a stirrer, a cooling condenser, a thermometer, a nitrogen gas introduction tube and a dropping funnel was charged with 50.0 g of maleic anhydride and 250.0 g of chlorobenzene. Next, 14.7 g of 4,4′-diaminodiphenylmethane (manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.), methylenebis (2-ethyl-6-methylaniline) (manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd., the same applies hereinafter) 17.
  • Example 2 A 500 mL four-necked glass flask equipped with a stirrer, a cooling condenser, a thermometer, a nitrogen gas introducing tube and a dropping funnel was charged with 50.0 g of maleic anhydride and 200.0 g of toluene. Next, 29.7 g of methylenebis (2-ethyl-6-methylaniline), 33.4 g of 2,2-bis [4- (4-aminophenoxy) phenyl] propane and 5.0 g of N-methyl-2-pyrrolidone were added. A solution dissolved in 100.0 g of toluene was dropped into the reaction system over 2 hours while maintaining the temperature in the reaction system at 85 to 95 ° C.
  • the reaction was carried out for 2 hours at the same temperature, 2.4 g of p-toluenesulfonic acid was added into the reaction system, and the condensed water and chlorobenzene that were azeotroped under the reflux condition were cooled and separated. Only toluene, which is an organic layer, was returned to the system and allowed to react for 2 hours while dehydrating. After completion of the reaction, washing with water was repeated to remove p-toluenesulfonic acid, N-methyl-2-pyrrolidone and excess maleic anhydride. Then, the reaction solution was concentrated to obtain 91.1 g of an amorphous solid bismaleimide composition.
  • This polymaleimide composition will contain two types of bismaleimide compounds (BMI-70 and BMI-80 described above).
  • Example 3 Into a 500 mL glass separable flask equipped with a stirrer, a cooling condenser, a thermometer, a nitrogen gas introducing tube and a dropping funnel, 50.0 g of the above BMI-80 (manufactured by KAI Kasei Co., Ltd.) was charged. Heated at 180 ° C. After confirming that the charged BMI-80 was melted, 50.0 g of the above BMI-70 (manufactured by KAI Kasei Co., Ltd., the same hereinafter) was gradually added and mixed and melted.
  • BMI-80 manufactured by KAI Kasei Co., Ltd.
  • Example 4 Into a 500 mL glass separable flask equipped with a stirrer, a cooling condenser, a thermometer, a nitrogen gas introducing tube and a dropping funnel, 75.0 g of the above BMI-80 was charged and heated at 180 ° C. After confirming that the charged BMI-80 was melted, 75.0 g of the above BMI was gradually added and mixed and melted. The melt was poured into a stainless steel vat in a water bath and quenched. After cooling to 50 ° C., the solidified product was removed from the vat to obtain 143.0 g of an amorphous solid polymaleimide composition.
  • Example 5 Into a 500 mL glass separable flask equipped with a stirrer, a cooling condenser, a thermometer, a nitrogen gas introducing tube and a dropping funnel, 75.0 g of the above BMI-80 was charged and heated at 180 ° C. It was confirmed that the charged BMI-80 was melted, and 75.0 g of the above BMI-70 was gradually added and mixed and melted. The melt was poured into a stainless steel vat in a water bath and quenched. After cooling to 50 ° C., the solidified product was removed from the vat to obtain 141.4 g of an amorphous solid polymaleimide composition.
  • Example 6 Into a 500 mL glass separable flask equipped with a stirrer, a cooling condenser, a thermometer, a nitrogen gas introducing tube and a dropping funnel, 50.0 g of the above BMI-80 was charged and heated at 180 ° C. The above BMI-70 (50.0 g) was gradually added and mixed and melted. Next, 50.0 g of the above BMI-50P was gradually added and mixed and melted. The melt was poured into a stainless steel vat in a water bath and quenched. After cooling to 50 ° C., the solidified product was removed from the vat to obtain 139.4 g of an amorphous solid polymaleimide composition.
  • Example 7 75.0 g of the above BMI-70 was charged into a 500 mL glass separable flask equipped with a stirrer, a cooling condenser, a thermometer, a nitrogen gas introducing tube, and a dropping funnel, and heated at 180 ° C. After confirming that the charged BMI-70 was melted, 75.0 g of the above BMI-50P was gradually added and mixed and melted. The melt was poured into a stainless steel vat in a water bath and quenched. After cooling to 50 ° C., the solidified product was removed from the vat to obtain 140.5 g of an amorphous solid polymaleimide composition.
  • Example 8 Into a 500 mL glass separable flask equipped with a stirrer, a cooling condenser, a thermometer, a nitrogen gas introducing tube and a dropping funnel, 75.0 g of the above BMI-80 was charged and heated at 180 ° C. After confirming that the charged BMI-80 was melted, 75.0 g of the above BMI-50P was gradually added and mixed and melted. The melt was poured into a stainless steel vat in a water bath and quenched. After cooling to 50 ° C., the solidified product was removed from the vat to obtain 139.8 g of an amorphous solid polymaleimide composition.
  • FIGS. 1 and 2 are DSC charts for the polymaleimide compositions of Examples 1 to 6 of the present invention.
  • FIG. 2 is a DSC chart of the polymaleimide compositions of Examples 1 and 2 of the present invention and the crystals of the bismaleimide compounds of Comparative Examples 1 to 3.
  • the polymaleimide compositions of the present invention all have a lower melting point than the crystals of the bismaleimide compounds (Comparative Examples 1 to 3) which are the sole components contained therein. . Further, the polymaleimide compositions of the present invention each had a higher solubility in a low-boiling point solvent (methyl ethyl ketone, toluene, etc.) than the crystals of the bis (or poly) maleimide compound as a single component contained therein. From the above, it was confirmed that the polymaleimide composition of the present invention has low melting point and high solubility, which are characteristics required for preparation of a curable composition.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

【課題】溶媒に対する溶解性が良好で、より低い温度で溶融させることも可能なポリマレイミド組成物を提供すること。 【解決手段】下記一般式(1)で表す化合物群から選択される2種以上の化合物を含み、アモルファス固体であることを特徴とするポリマレイミド組成物を用いる。下記一般式において、各Rはそれぞれ独立に、水素原子、又は分枝を有してもよい炭素数1~9のアルキル基であり、各X及びYはそれぞれ独立に単結合、途中に分枝又は環構造を有してもよい炭素数1~15のアルキレン基、スルホニル基(-SO-)、硫黄原子、又は酸素原子であり、mは0~3の整数であり、nは0~3の整数であり、jは0~4の整数であり、kは0~4の整数であり、pは0~4の整数であり、qは0~4の整数である。

Description

ポリマレイミド組成物、その製造方法及びそれを用いた硬化性組成物、並びに硬化物の製造方法
 本発明は、アモルファス固体状を示すポリマレイミド組成物及びその製造方法、並びにそれを用いた硬化性組成物、及び硬化物の製造方法に関する。
 マレイミド基を2つ以上備えたポリマレイミド化合物は、マレイミド基に含まれる二重結合のラジカル重合、イオン重合等の単独重合や、芳香族アミンの水素との付加反応、アリルフェノールとの共重合により耐熱性に優れた硬化物を与えることが知られている。特にポリマレイミド化合物と芳香族アミンやアリルフェノールとの反応で得られる硬化物は強靭性に優れているために宇宙・航空分野の炭素繊維複合材料を中心とした先端複合材料のマトリックス樹脂として用いられている。また、ポリマレイミド化合物は、電子分野で幅広く用いられているエポキシ樹脂の耐熱性向上剤としてエポキシ樹脂と併用され、プリント配線基板、絶縁粉体塗料、レジストインキなどの分野で実用化されている。ここで、ポリマレイミド化合物として代表的な化合物としては、マレイミド基を2つ備えたビスマレイミドが挙げられるが、本発明では、こうしたビスマレイミド化合物を初めとして、マレイミド基を複数備えた化合物のことをポリマレイミド化合物と呼ぶ。また、ポリアミン化合物という用語についても、本発明では、2つのアミノ基を有するジアミン化合物を初めとして、2以上のアミノ基を有する化合物として用いる。こうしたポリマレイミド化合物を含んだ硬化性組成物は、例えば特許文献1を初めとして各種のものが提案されている。
 ジアミノジフェニルメタンビスマレイミドに代表されるポリマレイミド化合物は、無水マレイン酸とアミノ基を2以上備えたポリアミン化合物との反応により合成される。このとき用いられるポリアミン化合物としては、特段の制約はなく、脂肪族ジアミン、脂環式ジアミン、芳香族ジアミン等様々なものを用いることができるので、各種の目的に応じて、様々な骨格を有するポリマレイミド化合物を原料として選択することができる。このような例として特許文献2には、低沸点有機溶媒に対する溶解性を高めて、調製された硬化性組成物からの溶剤の除去性を高めたビスマレイミド化合物が提案されている。
特開2015-193628号公報 特開2018-12671号公報
 上記特許文献2でも指摘されるように、ポリマレイミド化合物は、低沸点溶媒に対する溶解性が乏しく、また、融点も自己反応を開始する目安となる170~180℃に近い150℃程度と高いので、含浸ワニスを調製し、それを含浸させて乾燥させたり、エポキシ樹脂、硬化剤、フィラー等と溶融混合して成形材料を作製したりするには難しい材料といえる。
 本発明は、以上の状況に鑑みてなされたものであり、溶媒に対する溶解性が良好で、より低い温度で溶融させることも可能なポリマレイミド組成物を提供することを目的とする。
 本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、複数種のポリアミン化合物を無水マレイン酸で同時マレイミド化反応を行うか、複数種のポリマレイミド化合物を混合して溶解又は溶融してからアモルファス固体とすると、その固体が溶媒に対して良好な溶解性を示すだけでなく、90~100℃程度で溶融できることを見出した。このアモルファス固体であるポリマレイミド組成物は、単独で硬化させてもよいし、従来のポリマレイミドと同様に芳香族アミンやアリルフェノール、シアン酸エステル等の硬化剤と組み合わせて硬化させることもできる。また、エポキシ樹脂との相溶性も優れるために任意の量をエポキシ樹脂に溶解させて耐熱性の向上を付与することもできる。本発明は、以上の知見に基づいてなされものであり、以下のようなものを提供する。
 (1)本発明は、下記一般式(1)で表す化合物群から選択される2種以上の化合物を含み、アモルファス固体であることを特徴とするポリマレイミド組成物である。
Figure JPOXMLDOC01-appb-C000007
(上記一般式(1)中、各Rはそれぞれ独立に、水素原子、又は分枝を有してもよい炭素数1~9のアルキル基であり、各Xはそれぞれ独立に単結合、途中に分枝又は環構造を有してもよい炭素数1~15のアルキレン基、スルホニル基(-SO-)、硫黄原子、又は酸素原子であり、各Yはそれぞれ独立に単結合、途中に分枝又は環構造を有してもよい炭素数1~15のアルキレン基、スルホニル基(-SO-)、硫黄原子、又は酸素原子であり、mは0~3の整数であり、nは0~3の整数であり、jは0~4の整数であり、kは0~4の整数であり、pは0~4の整数であり、qは0~4の整数である。)
 (2)また本発明は、上記2種以上の化合物として、下記化合物群より選択される2種以上の化合物を含む(1)項記載のポリマレイミド組成物である。
Figure JPOXMLDOC01-appb-C000008
 (3)本発明は、(1)項又は(2)項記載のポリマレイミド組成物を含むことを特徴とする硬化性組成物でもある。
 (4)本発明は、(3)項記載の硬化性組成物を硬化させる工程を備えることを特徴とする硬化物の製造方法でもある。
 (5)本発明は、2以上のアミノ基を備えたポリアミン化合物からなる群より選択される2種以上の化合物、及び無水マレイン酸を溶媒の存在下で同時に反応させる反応工程と、当該反応工程を経た反応混合物から溶媒を留去して2種以上のポリマレイミド化合物の混合物からなるアモルファス固体を得る固形化工程と、を備えることを特徴とするポリマレイミド組成物の製造方法でもある。
 (6)また本発明は、上記ポリアミン化合物が、下記一般式(1a)で表す化合物である(5)項記載のポリマレイミド組成物の製造方法である。
Figure JPOXMLDOC01-appb-C000009
(上記一般式(1a)中、各Rはそれぞれ独立に水素原子、又は分枝を有してもよい炭素数1~9のアルキル基であり、各Xはそれぞれ独立に単結合、途中に分枝又は環構造を有してもよい炭素数1~15のアルキレン基、スルホニル基(-SO-)、硫黄原子、又は酸素原子であり、各Yはそれぞれ独立に単結合、途中に分枝又は環構造を有してもよい炭素数1~15のアルキレン基、スルホニル基(-SO-)、硫黄原子、又は酸素原子であり、mは0~3の整数であり、nは0~3の整数であり、jは0~4の整数であり、kは0~4の整数であり、pは0~4の整数であり、qは0~4の整数である。)
 (7)また本発明は、上記ポリアミン化合物からなる群より選択される2種以上の化合物が下記化合物群より選択される2種以上の化合物である(5)項又は(6)項記載のポリマレイミド組成物の製造方法である。
Figure JPOXMLDOC01-appb-C000010
 (8)本発明は、下記一般式(1)で表す化合物群から選択される2種以上の化合物の混合物を溶融させて溶融物とし、次いでその溶融物を冷却することにより上記混合物を含むアモルファス固体とすることを特徴とするポリマレイミド組成物の製造方法でもある。
Figure JPOXMLDOC01-appb-C000011
(上記一般式(1)中、各Rはそれぞれ独立に水素原子、又は分枝を有してもよい炭素数1~9のアルキル基であり、各Xはそれぞれ独立に単結合、途中に分枝又は環構造を有してもよい炭素数1~15のアルキレン基、スルホニル基(-SO-)、硫黄原子、又は酸素原子であり、各Yはそれぞれ独立に単結合、途中に分枝又は環構造を有してもよい炭素数1~15のアルキレン基、スルホニル基(-SO-)、硫黄原子、又は酸素原子であり、mは0~3の整数であり、nは0~3の整数であり、jは0~4の整数であり、kは0~4の整数であり、pは0~4の整数であり、qは0~4の整数である。)
 (9)本発明は、下記一般式(1)で表す化合物群から選択される2種以上の化合物の混合物を溶媒に溶解させて溶液とし、次いでその溶液から溶媒を留去することにより上記混合物を含むアモルファス固体とすることを特徴とするポリマレイミド組成物の製造方法でもある。
Figure JPOXMLDOC01-appb-C000012
(上記一般式(1)中、各Rはそれぞれ独立に水素原子、又は分枝を有してもよい炭素数1~9のアルキル基であり、各Xはそれぞれ独立に単結合、途中に分枝又は環構造を有してもよい炭素数1~15のアルキレン基、スルホニル基(-SO-)、硫黄原子、又は酸素原子であり、各Yはそれぞれ独立に単結合、途中に分枝又は環構造を有してもよい炭素数1~15のアルキレン基、スルホニル基(-SO-)、硫黄原子、又は酸素原子であり、mは0~3の整数であり、nは0~3の整数であり、jは0~4の整数であり、kは0~4の整数であり、pは0~4の整数であり、qは0~4の整数である。)
 本発明によれば、溶媒に対する溶解性が良好で、より低い温度で溶融させることも可能なポリマレイミド組成物が提供される。
図1は、本発明の実施例1~6のポリマレイミド組成物についてのDSCチャートである。 図2は、本発明の実施例1及び2のポリマレイミド組成物、並びに比較例1~3のビスマレイミド化合物の結晶についてのDSCチャートである。
 以下、本発明のポリマレイミド組成物の一実施形態、硬化性組成物の一実施形態、硬化物の製造方法の一実施態様、ポリマレイミド組成物の製造方法の三実施態様について説明する。なお、本発明は、以下の実施形態及び実施態様に限定されるものではなく、本発明の範囲において適宜変更を加えて実施することができる。
<ポリマレイミド組成物>
 まずは、本発明のポリマレイミド組成物の一実施形態について説明する。本発明のポリマレイミド組成物は、下記一般式(1)で表す化合物群から選択される2種以上のポリマレイミド化合物を含み、アモルファス固体であることを特徴とする。マレイミド基を2つ備えたビスマレイミド化合物を初めとして、マレイミド基を複数備えたポリマレイミド化合物は結晶性が高く、結晶状態となった状態で化学品原料として市場で取引されるのが一般的である。こうして取引されるポリマレイミド化合物は、上記の通り、ポリアミン化合物等の硬化剤と反応することにより高い耐熱性を備えた硬化物となるので、硬化性組成物の原料として重要である。しかしながら、ポリマレイミド化合物の結晶は、高い融点と有機溶媒に対する溶解性の低さから、硬化性組成物として用いる際の成形性を確保するために溶融や溶解を行うのが難しいという問題を有する。
 本発明のポリマレイミド組成物は、2種以上のポリマレイミド化合物を含んだ混合物からなるアモルファス固体であり、アモルファス状態なので結晶状態のポリマレイミド化合物に比べて融点が低くなるとともに溶媒に対する溶解性が著しく向上する一方で、溶融温度と重合温度との差が大きいために硬化剤やフィラー等との溶融混練が容易となり、上記のような、硬化性組成物の調製に際してポリマレイミド化合物の結晶を用いた場合に生じる各種の問題を解消することができる。なお、本発明において、「ポリマレイミド組成物」という用語は、2種以上のポリマレイミド化合物の混合物であることを示すものであり、本発明のポリマレイミド組成物は、これに加えて、エポキシ樹脂やエチレン性不飽和結合を有する化合物等のような重合性化合物や、ポリアミン化合物やアリルフェノール化合物等といった硬化剤等といったポリマレイミド化合物以外の化合物を含んでもよい。
 本発明のポリマレイミド組成物は、上記のように下記一般式(1)で表す化合物群から選択される2種以上のポリマレイミド化合物を含み、より好ましくは、下記一般式(1)で表す化合物群から選択される2種の化合物を含む。これらの化合物を混合し、アモルファス固体である本発明のポリマレイミド組成物を調製する方法については後述する。
Figure JPOXMLDOC01-appb-C000013
 上記一般式(1)中、各Rは、それぞれ独立に、水素原子、又は分枝を有してもよい炭素数1~9のアルキル基である。このようなアルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、ペンチル基、ヘキシル基、2-エチルヘキシル基等を挙げることができる。なお、本明細書において「それぞれ独立に」とは、対象となる置換基(この場合はR)が複数存在する場合、それぞれの置換基は示された群から任意に選択されるという意味であり、この場合、互いの置換基は同一であっても異なってもよい。なお、m、n、j、p、q及びkの値によっては、対象となる置換基が一つだけとなることもあるが、この場合、「それぞれ独立に」の文言は無視され、対象となる置換基に付された「各」の語も無視される。
 上記一般式(1)中、各Xは、それぞれ独立に、単結合、途中に分枝又は環構造を有してもよい炭素数1~15のアルキレン基、スルホニル基(-SO-)、硫黄原子、又は酸素原子である。このようなアルキレン基としては、メチレン基、1,1-エチレン基、1,2-エチレン基、1,1-プロピレン基、1,2-プロピレン基、1,3-プロピレン基、2,2-プロピレン基、1,1-ブチレン基、1,2-ブチレン基、1,3-ブチレン基、1,4-ブチレン基、2,2-ブチレン基、2,3-ブチレン基、1,1-ペンチレン基、1,2-ペンチレン基、1,3-ペンチレン基、1,4-ペンチレン基、1,5-ペンチレン基、1,1-ヘキシレン基、1,2-ヘキシレン基、1,3-ヘキシレン基、1,4-ヘキシレン基、1,5-ヘキシレン基、1,6-ヘキシレン基、1,7-へプチレン基、1,8-オクチレン基、1,9-ノニレン基、1,10-デシレン基、1,2-シクロへキシレン基、1,3-シクロへキシレン基、1,4-シクロへキシレン基、1,2-シクロヘキサンジメチレン基、1,3-シクロヘキサンジメチレン基、1,4-シクロヘキサンジメチレン基等を挙げることができる。なお、Xに含まれ得る「環構造」には脂肪環や芳香環が含まれる。Xが芳香環を含む場合、Xは一般的にアルキレン基と呼ばれるものにならないかもしれないが、この場合であっても本発明ではXをアルキレン基として扱う。すなわち、2価の置換基であるXは、他の構造と結合する箇所においてアルキレン基(メチレン基)を備えていればよい。このことは後述するYについても同様である。
 上記一般式(1)中、各Yは、それぞれ独立に、単結合、途中に分枝又は環構造を有してもよい炭素数1~15のアルキレン基、スルホニル基(-SO-)、硫黄原子、又は酸素原子である。このようなアルキレン基としては、上記Xで挙げたものと同様のものを挙げることができる。
 上記一般式(1)中、mは0~3の整数であり、nは0~3の整数であり、jは0~4の整数であり、kは0~4の整数であり、pは0~4の整数であり、qは0~4の整数である。
 上記一般式(1)で表すポリマレイミド化合物群として、より具体的には下記一般式(2)で表す化合物群を好ましく挙げることができる。
Figure JPOXMLDOC01-appb-C000014
 上記一般式(2)において、R、X、Y、m及びnは、上記一般式(1)におけるものと同様である。上記一般式(2)において、R、R、R及びRは、それぞれ独立に水素原子、又は分枝を有してもよい炭素数1~9のアルキル基である。このようなアルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、ペンチル基、ヘキシル基、2-エチルヘキシル基等を挙げることができる。
 上記一般式(1)で表すポリマレイミド化合物群から選択される2種以上のポリマレイミド化合物として、さらに具体的には、下記化合物群より選択される2種以上のポリマレイミド化合物の混合物を挙げることができる。
Figure JPOXMLDOC01-appb-C000015
 これらのポリマレイミド化合物はいずれも市販されており、化学式の下に付した記号は、ケイ・アイ化成株式会社から市販されている当該化合物の製品番号である。これらのポリマレイミド化合物を混合して本発明のポリマレイミド組成物とする場合、その混合比率としては、BMI:BMI-70:BMI-80:BMI-50P=1:1:1:1程度を例示できるが、特に限定されない。また、BMI、BMI-70、BMI-80、BMI-50Pの任意のポリマレイミド化合物を2種若しくは3種を任意の比率で混合して用いてもよい。
 本発明のポリマレイミド組成物は、アモルファス固体であることから、低い融点と高い溶解性とを併せ持つ。このため、極性溶媒を用いることなく溶融成型可能となり、CFRPやプリント配線基板等の用途で残存溶媒によるボイドの発生を抑制でき、溶剤回収の必要も無くなり、信頼性の向上とコストダウンを図ることが可能になる。また、成型前に硬化剤、充填剤、触媒、各種副資材等を溶融混練する必要のある半導体封止分野、絶縁粉体封止分野等でも低温で溶融混練ができるため、品質の安定した成形用コンパウンドを調製することができる。なお、本発明のポリマレイミド組成物に硬化剤やエポキシ樹脂等を添加してアモルファス固体としてもよく、そのようなアモルファス固体もまた本発明のポリマレイミド組成物の一形態である。硬化剤やエポキシ樹脂等については、本発明の硬化性組成物の項にて説明する。なお、本発明のポリマレイミド組成物がアモルファス固体であることの確認は、当該固体をDSC(示差走査熱量計)やXRD(X線回折)による分析で行うことができる。当該固体をDSCにより分析すれば、ガラス転移に基づく、60~80℃付近における小吸熱ピークとともにDSCベースシフトが観察され、アモルファス状態であることが確認できる。また、当該固体をXRDにより分析すれば、ブロードなパターンのチャートとなり、アモルファス状態であることが確認できる。
<硬化性組成物>
 次に、本発明の硬化性組成物の一実施形態について説明する。本発明の硬化性組成物は、上記ポリマレイミド組成物を含み、加熱によりポリマレイミド化合物が重合して硬化する。この硬化性組成物は、上記ポリマレイミド組成物に加えて硬化剤やエポキシ樹脂等の成分を含んでもよい。この場合、本発明の硬化性組成物は、上記本発明の固体状態のポリマレイミド組成物に固体状態の硬化剤等の成分を加えた固体混合物であってもよいし、本発明のポリマレイミド組成物に硬化剤の成分を加えて一旦液状化してから再度固体状態にしたものであってもよいし、液状の混合物のままであってもよい。
 ポリマレイミド組成物は、上記本発明のポリマレイミド組成物の項で既に説明した通りであるので、詳細については省略する。ポリマレイミド化合物は、単独でラジカル重合、イオン重合して耐熱性の高い硬化物となるが、ポリマレイミド化合物に公知の硬化剤を組み合わせて用いることができる。このような硬化剤として、具体的には、ポリマレイミド化合物と付加反応することのできる活性水素を有するアミン系化合物や、マレイミドの二重結合と共重合可能な不飽和化合物であるアリルフェノール、シアン酸エステル、アクリレート等が挙げられる。また、硬化反応を促進するために、硬化触媒を用いることも可能である。さらに、ポリマレイミド組成物とは直接反応はしないがそれぞれが独自に網目構造を形成し、相互網目貫通構造(IPN構造)となる他の硬化性樹脂を併用し強靭な構造を形成させることを目的として、エポキシ樹脂、アクリル樹脂、フェノール樹脂等を組み合わせて用いてもよい。ポリマレイミド化合物に加えて、硬化剤を用いて硬化性組成物を構成する場合、マレイミド基と当量の硬化剤を配合するのが一般的であるが、硬化剤の配合量が当量よりも少ない場合は耐熱性が向上するが、得られる硬化物は脆弱となるので、硬化剤の配合量は、マレイミド基に対して1.5当量から0.5当量が好ましく、1.2当量から0.7当量がより好ましい。また、硬化性組成物の硬化性を向上する目的で触媒を用いることも可能である。
 硬化剤として用いることができるアミン系化合物としては、1級アミノ基(-NH)を備える化合物が挙げられる。アミン系化合物としては、それ自体が架橋剤となることができるという観点から、2個以上の1級アミノ基を備えることが好ましい。アミン類としては、p-フェニレンジアミン、m-フェニレンジアミン、o-フェニレンジアミン、3-メチル-1,4-ジアミノベンゼン、2,5-ジメチル-1,4-ジアミノベンゼン、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノ-3,3’-ジメチルジフェニルメタン、4,4’-ジアミノ-3,3’-ジエチルジフェニルメタン、4,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルケトン、ベンジジン、3,3’-ジメチル-4,4’-ジアミノビフェニル、2,2’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジヒドロキシベンジジン、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)プロパン、3,3-ジメチル5,5-ジエチル-4,4-ジフェニルメタンジアミン、2,2-ビス(4-アミノフェニル)プロパン、2,2-ビス(4-(4-アミノフェノキシ)フェニル)プロパン、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、ビス(4-(4-アミノフェノキシ)フェニル)スルホン、ビス(4-(3-アミノフェノキシ)フェニル)スルホン、9,9-ビス(4-アミノフェニル)フルオレン等が挙げられる。これらのアミン類は、単独で、又は2種以上を組み合わせて用いることができる。アミン系化合物の配合量としては、マレイミド基1当量に対して1.5~0.5活性水素当量程度が好ましく例示され、1.2~0.7活性水素当量程度がより好ましく例示される。
 アリルフェノールとしては、o,o’-ジアリルビスフェノールA、o,o’-ジアリルビスフェノールF、o,o’-ジアリルビスフェノールS、2,2’-ジアリル-4,4’-ビフェノール、3,3’-ジアリル-4,4’-ジヒドロキシジフェニルエーテル、3,3’-ジアリル-4,4’-ジヒドロキシジフェニルスルフィド、o,o’-ジメタクリルビスフェノールA、o,o’-ジメタクリルビスフェノールF等が挙げられる。これらのアリルフェノールは、単独で、又は2種以上を組み合わせて用いることができる。硬化性組成物中におけるアリルフェノール類の配合量としては、マレイミド基1当量に対しアリル基1.5~0.5当量程度が好ましく例示され、アリル基1.2~0.7当量程度がより好ましく例示される。また、これらアリルフェノールの二重結合を異性化したプロペニルフェノールもまた、アリルフェノールと同様に用いることができる。アリルフェノールに代えて、又はアリルフェノールとともにプロペニルフェノールを用いる場合、その全体の用量は、上記アリルフェノールについての場合と同様である。
 マレイミド化合物と硬化剤との反応を促進するための触媒として、イミダゾール類、3級アミン類、3級アミン類の塩、リン系化合物、パーオキサイド等を添加することもできる。これらの添加量としては、硬化性組成物100質量部に対して0.01~10質量部程度が好ましく例示され、0.1~5質量部程度がより好ましく例示される。
 イミダゾール類は、イミダゾール骨格を備える化合物である。イミダゾール類としては、イミダゾール、1-メチルイミダゾール、1-エチルイミダゾール、1-ビニルイミダゾール、カルボニルジイミダゾール、1-メチル-2-メチルイミダゾール、1-イソブチル-2-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、2-ウンデシルイミダゾール、2-メチルイミダゾール、2-フェニルイミダゾール、2-ヘプタデシルイミダゾール、2-エチル-4―メチルイミダゾール、2-フェニル-4-メチルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール、TBZ(2,3-ジヒドロ-1H-ピロロ[1,2-a]ベンズイミダゾール)1-シアノエチル-2-ウンデシルイミダゾリウムトリメリテイト、1-シアノエチル-2-フェニルイミダゾリウムトリメリテイト、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール、1-ドデシル-2-メチル-3-ベンジルイミダゾリウムクロライド等が挙げられる。
 3級アミン類としては、1、8ジアザビシクロ(5,4,0)-ウンデセン‐7(DBU)、1、5ジアザビシクロ(4,3,0)-ノネン-5(DBN)等が挙げられる。3級アミン類の塩としては、DBU-フェノール塩、DBU-オクチル酸塩、DBU-p-トルエンスルホン酸塩、トリス(ジメチルアミノメチル)フェノール(DMP-30)等が挙げられる。リン系化合物としては、トリフェニルホスフィン、テトラフェニルフォスフォニウム・テトラフェニルボレート等が挙げられる。
 パーオキサイドは、加熱により分解してラジカルを発生させる。このラジカルが、硬化性組成物に含まれるポリマレイミド化合物やエチレン性不飽和結合を備えた化合物を重合させる。パーオキサイドとしては、メチルエチルケトンパーオキサイド、シクロヘキサンパーオキサイド、3,3,5-トリメチルシクロヘキサノンパーオキサイド、メチルシクロヘキサノンパーオキサイド、メチルアセトアセテートパーオキサイド、アセチルアセトンパーオキサイド、1,1-ビス(t-ブチルパーオキシ)-3,3,5-トリメチルヘキサン、1,1-ビス(t-ブチルパーオキシ)シクロヘキサン、2,2-ビス(t-ブチルパーオキシ)オクタン、n-ブチル-4,4-ビス(t-ブチルパーオキシ)バレート、2,2-ビス(t-ブチルパーオキシ)ブタン、t-ブチルハイドロパーオキサイド、クメンハイドロパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイド、p-メンタンハイドロパーオキサイド、2,5-ジメチルヘキサン-2,5-ジハイドロパーオキサイド、1,1,3,3-テトラメチルブチルハイドロパーオキサイド、ジ-t-ブチルパーオキサイド、t-ブチルクミルパーオキサイド、ジクミルパーオキサイド、α,α’-ビス(t-ブチルパーオキシ-m-イソプロピル)ベンゼン、2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)ヘキサン、2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)ヘキシン、アセチルパーオキサイド、イソブチルパーオキサイド、オクタノイルパーオキサイド、デカノイルパーオキサイド、ベンゾイルパーオキサイド、ラウロイルパーオキサイド、3,5,5-トリメチルヘキサノイルパーオキサイド、スクシニックアシッドパーオキサイド、2,4-ジクロロベンゾイルパーオキサイド、m-トルオイルパーオキサイド、ジイソプロピルパーオキシジカーボネート、ジ-2-エチルヘキシルパーオキシジカーボネート、ジ-n-プロピルパーオキシジカーボネート、ビス(4-t-ブチルシクロヘキシル)パーオキシジカーボネート、ジミリスティルパーオキシジカーボネート、ジ-2-エトキシエチルパーオキシジカーボネート、ジメトキシイソプロピルパーオキシジカーボネート、ジ(3-メチル-3-メトキシブチル)パーオキシジカーボネート、ジアリルパーオキシジカーボネート、t-ブチルパーオキシアセテート、t-ブチルパーオキシイソブチレート、t-ブチルパーオキシピバレート、t-ブチルパーオキシネオデカネート、クミルパーオキシネオデカネート、t-ブチルパーオキシ-2-エチルヘキサネート、t-ブチルパーオキシ-3,5,5-トリメチルヘキサネート、t-ブチルパーオキシラウレート、t-ブチルパーオキシベンゾエート、ジ-t-ブチルパーオキシイソフタレート、2,5-ジメチル-2,5-ジ(ベンゾイルパーオキシ)ヘキサン、t-ブチルパーオキシマレイン酸、t-ブチルパーオキシイソプロピルカーボネート、クミルパーオキシオクテート、t-ヘキシルパーオキシネオデカネート、t-ヘキシルパーオキシピバレート、t-ブチルパーオキシネオヘキサネート、アセチルシクロヘキシルスルフォニルパーオキサイド、t-ブチルパーオキシアリルカーボネート等が挙げられる。
 本発明の硬化性組成物は、上記本発明のポリマレイミド組成物を含み、低い融点と高い溶解性とを併せ持つ。このため、成形時に容易に液状化することができ、好ましく用いられる。これらの用途の一例としては、耐熱性樹脂の製造、電子部品の封止材、含浸ワニス、積層板等が挙げられる。
<硬化物の製造方法>
 次に、本発明の硬化物の製造方法の一実施態様について説明する。本発明の硬化物の製造方法は、上記本発明の硬化性組成物を硬化させる工程を備えることを特徴とする。
 本発明の硬化物の製造方法を実施するにあたり、上記本発明の硬化性組成物を溶媒に溶解、又は100~150℃程度に加熱して溶融させて液状化する。次いで、液状化した硬化性組成物を所望の形状に成型し、又は炭素繊維やガラス繊維等の基材に含浸させて所望の形状に成型する。
 その後、所望の形状に成型した硬化性組成物に対して加熱を行い、硬化性組成物を硬化させる。加熱温度としては、180~250℃程度が挙げられる。この作業が、本発明における「硬化性組成物を硬化させる」工程に該当する。
 本発明の硬化物の製造方法で得られる硬化物は、高い耐熱性を持つと同時に、誘電正接が低いという点で電子材料としても優れた特性を備える。
<ポリマレイミド組成物の製造方法の第一実施態様>
 次に、本発明のポリマレイミド組成物の製造方法の第一実施態様について説明する。本実施態様では、溶媒中で2種以上のポリマレイミド化合物を合成し、その後、その溶媒を留去してアモルファス固体であるポリマレイミド組成物を得る。
 すなわち本実施態様のポリマレイミド組成物の製造方法は、2以上のアミノ基を備えたポリアミン化合物からなる群より選択される2種以上の化合物、及び無水マレイン酸を溶媒の存在下で同時に反応させる反応工程と、当該反応工程を経た反応混合物から溶媒を留去して2種以上のポリマレイミド化合物の混合物からなるアモルファス固体を得る固形化工程と、を備える。以下、各工程について説明する。
[反応工程]
 まずは、反応工程について説明する。これは、2以上のアミノ基を備えたポリアミン化合物からなる群より選択される2種以上の化合物、及び無水マレイン酸を溶媒の存在下で同時に反応させる工程である。
 本工程では、2種以上のポリアミン化合物を原料の一つとして用いる。つまり、構造の異なる2種以上のポリアミン化合物の混合物が用いられる。このポリアミン化合物に含まれるアミノ基が、もう一つの原料である無水マレイン酸と反応することでマレイミド基に変換される。したがって、ポリアミン化合物の骨格部分が将来のポリマレイミド化合物の骨格部分となるので、所望するポリマレイミド化合物の構造に応じてポリアミン化合物が選択される。
 ポリアミン化合物としては、下記一般式(1a)で表す化合物群から選択される2種以上の化合物が挙げられる。下記一般式(1a)は、上記一般式(1)のポリマレイミド化合物のマレイミド基をアミノ基に変更したものであり、下記一般式(1a)で表す化合物に無水マレイン酸を作用させることにより上記一般式(1)で表すポリマレイミド化合物が得られることになる。
Figure JPOXMLDOC01-appb-C000016
 上記一般式(1a)中、各Rは、それぞれ独立に、水素原子、又は分枝を有してもよい炭素数1~9のアルキル基である。このようなアルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、ペンチル基、ヘキシル基、2-エチルヘキシル基等を挙げることができる。
 上記一般式(1a)中、各Xは、それぞれ独立に、単結合、途中に分枝又は環構造を有してもよい炭素数1~15のアルキレン基、スルホニル基(-SO-)、硫黄原子、又は酸素原子である。このようなアルキレン基としては、メチレン基、1,1-エチレン基、1,2-エチレン基、1,1-プロピレン基、1,2-プロピレン基、1,3-プロピレン基、2,2-プロピレン基、1,1-ブチレン基、1,2-ブチレン基、1,3-ブチレン基、1,4-ブチレン基、2,2-ブチレン基、2,3-ブチレン基、1,1-ペンチレン基、1,2-ペンチレン基、1,3-ペンチレン基、1,4-ペンチレン基、1,5-ペンチレン基、1,1-ヘキシレン基、1,2-ヘキシレン基、1,3-ヘキシレン基、1,4-ヘキシレン基、1,5-ヘキシレン基、1,6-ヘキシレン基、1,7-へプチレン基、1,8-オクチレン基、1,9-ノニレン基、1,10-デシレン基、1,2-シクロへキシレン基、1,3-シクロへキシレン基、1,4-シクロへキシレン基、1,2-シクロヘキサンジメチレン基、1,3-シクロヘキサンジメチレン基、1,4-シクロヘキサンジメチレン基等を挙げることができる。なお、Xに含まれ得る「環構造」には脂肪環や芳香環が含まれる。Xが芳香環を含む場合、Xは一般的にアルキレン基と呼ばれるものにならないかもしれないが、この場合であっても本発明ではXをアルキレン基として扱う。すなわち、2価の置換基であるXは、他の構造と結合する箇所においてアルキレン基(メチレン基)を備えていればよい。このことは後述するYについても同様である。
 上記一般式(1a)中、各Yは、それぞれ独立に、単結合、途中に分枝又は環構造を有してもよい炭素数1~15のアルキレン基、スルホニル基(-SO-)、硫黄原子、又は酸素原子である。このようなアルキレン基としては、上記Xで挙げたものと同様のものを挙げることができる。
 上記一般式(1a)中、mは0~3の整数であり、nは0~3の整数であり、jは0~4の整数であり、kは0~4の整数であり、pは0~4の整数であり、qは0~4の整数である。
 上記一般式(1a)で表すポリアミン化合物として、より具体的には下記一般式(2a)で表す化合物を好ましく挙げることができる。
Figure JPOXMLDOC01-appb-C000017
 上記一般式(2a)において、R、X、Y、m及びnは、上記一般式(1a)におけるものと同様である。上記一般式(2a)において、R、R、R及びRは、それぞれ独立に水素原子、又は分枝を有してもよい炭素数1~9のアルキル基である。このようなアルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、ペンチル基、ヘキシル基、2-エチルヘキシル基等を挙げることができる。
 上記一般式(1a)で表すポリアミン化合物群から選択される2種以上のポリアミン化合物として、さらに具体的には、下記化合物群より選択される2種以上のポリアミン化合物の混合物を挙げることができる。
Figure JPOXMLDOC01-appb-C000018
 本実施態様における無水マレイン酸の使用量としては、特に限定されないが、上記ポリアミン化合物に含まれるアミノ基に対して、1~5当量程度が好ましく挙げられ、1~2当量程度がより好ましく挙げられ、1~1.5当量がさらに好ましく挙げられる。
 本実施態様における溶媒としては、反応を阻害せず、水に不溶かつ水と共沸可能な溶媒が好ましく用いられる。本反応は、ポリアミン化合物のアミノ基に無水マレイン酸が反応してマレアミド化合物となり、次いでこれが脱水縮合してイミド化することでマレイミド化合物を生成させるので、反応系内に生じる縮合水を系外に除去するために、溶媒は水と共沸するものが好ましく用いられる。このような溶媒としては、トルエン、キシレン等の芳香族炭化水素溶媒;クロロベンゼン、ジクロロメタン等の含ハロゲン溶媒;n-ヘキサン、シクロヘキサン、n-デカン等の脂肪族炭化水素溶媒が好ましく挙げられ、反応系が均一反応系となりやすい点から、トルエン、キシレン等の芳香族炭化水素溶媒がより好ましく挙げられる。
 なお、上記の溶媒に加え、本反応を阻害せず、水に可溶かつ水と共沸しない溶媒を必要に応じて添加しても構わない。このような溶媒としては、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドンなどの非プロトン性極性溶媒が挙げられる。
 また、上記ポリアミン化合物、無水マレイン酸及び溶媒に加えて、反応系内に酸触媒を加えてもよい。このような酸触媒としては、メタンスルホン酸等の脂肪族スルホン酸、並びにp-トルエンスルホン酸、ベンゼンスルホン酸およびキシレンスルホン酸等の芳香族スルホン酸を包含するスルホン酸;硫酸、発煙硫酸、リン酸等の鉱酸;ギ酸、酢酸、プロピオン酸、トリフルオロ酢酸等のカルボン酸;三フッ化ホウ素-テトラヒドロフラン(THF)錯体、塩化アルミニウム、塩化亜鉛等のルイス酸;モンモリロナイトK-10、硫酸化ジルコニア等の固体酸等を挙げることができ、入手性や取り扱いの容易さ等の観点からは、これらの中でも、p-トルエンスルホン酸等のスルホン酸(有機のスルホン酸)、硫酸等がより好ましく挙げられる。
 酸触媒の使用量としては、特に限定されないが、上記ポリアミン化合物に含まれるアミノ基に対して、0.01~1当量程度が好ましく挙げられ、0.1~0.9当量程度がより好ましく挙げられ、0.2~0.8当量程度がさらに好ましく挙げられる。
 これらの化合物を反応させてポリマレイミド化合物とするには、無水マレイン酸及び溶媒を反応容器に加えて、反応溶液を80~100℃程度に加熱しながら、溶媒に溶解させたポリアミン化合物、及び必要に応じて酸触媒を反応容器に滴下しながら添加する。その後、共沸する水を反応系外に除去しながら反応混合物を加熱還流させればよい。
 反応終了後、水洗を繰り返して酸触媒、水に可溶な溶媒、及び未反応の無水マレイン酸を除去する。こうして得られた反応混合物は、固形化工程に付される。
[固形化工程]
 固形化工程は、上記反応工程を経た反応混合物から溶媒を留去して2以上のポリマレイミド化合物の混合物からなるアモルファス固体を得る工程である。
 溶媒を留去する手段としては、公知のものを特に制限無く挙げることができる。このような手段の一例としては、減圧下で反応混合物を加熱し、溶媒を蒸発させる方法が挙げられる。この工程において、反応混合物に含まれる2種以上のポリマレイミド化合物は、2種以上存在するポリマレイミド化合物が互いに不純物となり、また、場合によってはポリマレイミド化合物の分子内又は分子間に溶媒分子が取り込まれることで、結晶化せずにアモルファス状態で固体となる。このようにして得られたアモルファス固体は、本発明のポリマレイミド組成物に相当する。
<ポリマレイミド組成物の製造方法の第二実施態様>
 次に、本発明のポリマレイミド組成物の製造方法の第二実施態様について説明する。本実施態様では、下記一般式(1)で表す化合物群から選択される2種以上の化合物の混合物を溶融させて溶融物とし、次いでその溶融物を冷却することにより上記混合物を含むアモルファス固体であるポリマレイミド組成物を得る。
Figure JPOXMLDOC01-appb-C000019
(上記一般式(1)中、各Rはそれぞれ独立に水素原子、又は分枝を有してもよい炭素数1~9のアルキル基であり、各Xはそれぞれ独立に単結合、途中に分枝又は環構造を有してもよい炭素数1~15のアルキレン基、スルホニル基(-SO-)、硫黄原子、又は酸素原子であり、各Yはそれぞれ独立に単結合、途中に分枝又は環構造を有してもよい炭素数1~15のアルキレン基、スルホニル基(-SO-)、硫黄原子、又は酸素原子であり、mは0~3の整数であり、nは0~3の整数であり、jは0~4の整数であり、kは0~4の整数であり、pは0~4の整数であり、qは0~4の整数である。)
 上記一般式(1)で表す化合物群については、上記本発明のポリマレイミド組成物で述べたものと同じなので、ここでの説明を省略する。
 2種以上の上記一般式(1)で表す化合物群を溶融させるに際しては、まず、1種のみの化合物をその化合物の融点付近で溶融させ、次いでこれを撹拌しながら残りの化合物を順次加えてこれも溶融させればよい。その後、得られた溶融混合物を急冷するとアモルファス固体が得られる。このようにして得られたアモルファス固体は、本発明のポリマレイミド組成物に相当する。
<ポリマレイミド組成物の製造方法の第三実施態様>
 次に、本発明のポリマレイミド組成物の製造方法の第三実施態様について説明する。本実施態様では、下記一般式(1)で表す化合物群から選択される2種以上の化合物の混合物を溶媒に溶解させて溶液とし、次いでその溶液から溶媒を留去することにより上記混合物を含むアモルファス固体であるポリマレイミド組成物を得る。
Figure JPOXMLDOC01-appb-C000020
(上記一般式(1)中、各Rはそれぞれ独立に水素原子、又は分枝を有してもよい炭素数1~9のアルキル基であり、各Xはそれぞれ独立に単結合、途中に分枝又は環構造を有してもよい炭素数1~15のアルキレン基、スルホニル基(-SO-)、硫黄原子、又は酸素原子であり、各Yはそれぞれ独立に単結合、途中に分枝又は環構造を有してもよい炭素数1~15のアルキレン基、スルホニル基(-SO-)、硫黄原子、又は酸素原子であり、mは0~3の整数であり、nは0~3の整数であり、jは0~4の整数であり、kは0~4の整数であり、pは0~4の整数であり、qは0~4の整数である。)
 上記一般式(1)で表す化合物群については、上記本発明のポリマレイミド組成物で述べたものと同じなので、ここでの説明を省略する。
 2種以上の上記一般式(1)で表す化合物群を溶解させるのに用いる溶媒としては、当該化合物群を溶解させることにできるものであれば特に限定されない。このような溶媒の一例としては、ジメチルホルムアミド、N-メチルピロリドン等の極性溶媒が挙げられる。
 2種以上の上記一般式(1)で表す化合物群を溶媒に溶解させた後、溶媒を留去する。溶媒を留去する手段としては、公知のものを特に制限無く挙げることができる。このような手段の一例としては、減圧下で溶液を加熱し、溶媒を蒸発させる方法が挙げられる。この工程において、溶液に含まれる2種以上のポリマレイミド化合物は、2種以上存在するポリマレイミド化合物が互いに不純物となり、また、場合によっては分子内又は分子間に溶媒分子が取り込まれることで、結晶化せずにアモルファス状態で固体となる。このようにして得られたアモルファス固体は、本発明のポリマレイミド組成物に相当する。
 以下、実施例を示すことにより本発明をさらに具体的に説明するが、本発明は以下の実施例に何ら限定されるものではない。
[実施例1]
 撹拌機、冷却コンデンサー、温度計、窒素ガス導入管及び滴下ロートを備えた500mLのガラス製四つ口フラスコに、無水マレイン酸50.0g及びクロロベンゼン250.0gを仕込んだ。次に、4,4’-ジアミノジフェニルメタン(富士フイルム和光純薬株式会社製)14.7g、メチレンビス(2-エチル-6-メチルアニリン)(富士フイルム和光純薬株式会社製、以下同様)17.0g、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン(日本純良薬品株式会社製、以下同様)18.9g及びN-メチル-2-ピロリドン5.2gをクロロベンゼン120.0gに溶解させた溶液を、反応系内の温度を85~95℃に保ちながら反応系内へ2時間かけて滴下した。滴下終了後、同温度で2時間反応を行い、p-トルエンスルホン酸2.4gを反応系内へ加えて、還流条件で共沸してくる縮合水とクロロベンゼンとを冷却及び分液した後、有機層であるクロロベンゼンだけを系内に戻して脱水を行いながら2時間反応させた。反応終了後、水洗を繰り返してp-トルエンスルホン酸、N-メチル-2-ピロリドン及び過剰の無水マレイン酸を除去した。次いで、反応溶液を濃縮することでアモルファス固体のビスマレイミド組成物77.5gを得た。このポリマレイミド組成物には、3種のビスマレイミド化合物(上記BMI、BMI-70及びBMI-80)が含まれることになる。
[実施例2]
 撹拌機、冷却コンデンサー、温度計、窒素ガス導入管及び滴下ロートを備えた500mLのガラス製四つ口フラスコに、無水マレイン酸50.0g及びトルエン200.0gを仕込んだ。次に、メチレンビス(2-エチル-6-メチルアニリン)29.7g、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン33.4g及びN-メチル-2-ピロリドン5.0gをトルエン100.0gに溶解させた溶液を、反応系内の温度を85~95℃に保ちながら反応系内へ2時間かけて滴下した。滴下終了後、同温度で2時間反応を行い、p-トルエンスルホン酸2.4gを反応系内へ加えて、還流条件で共沸してくる縮合水とクロロベンゼンとを冷却及び分液した後、有機層であるトルエンだけを系内に戻して脱水を行いながら2時間反応させた。反応終了後、水洗を繰り返してp-トルエンスルホン酸、N-メチル-2-ピロリドン及び過剰の無水マレイン酸を除去した。次いで、反応溶液を濃縮することでアモルファス固体のビスマレイミド組成物91.1gを得た。このポリマレイミド組成物には、2種のビスマレイミド化合物(上記BMI-70及びBMI-80)が含まれることになる。
[実施例3]
 撹拌機、冷却コンデンサー、温度計、窒素ガス導入管及び滴下ロートを備えた500mLのガラス製セパラブルフラスコに、上記BMI-80(ケイ・アイ化成株式会社製、以下同様)を50.0g投入し、180℃で加熱した。投入したBMI-80が溶融したことを確認し、上記BMI-70(ケイ・アイ化成株式会社製、以下同様)50.0gを徐々に加え、混合溶融させた。次に、上記BMI(ケイ・アイ化成株式会社製、以下同様)50.0gを徐々に加え、混合溶融させた。溶融液を水浴中のステンレス製バットにあけ、急冷した。50℃まで冷却後、バットから固化物を取り外し、アモルファス固体のポリマレイミド組成物140.3gを得た。
[実施例4]
 撹拌機、冷却コンデンサー、温度計、窒素ガス導入管及び滴下ロートを備えた500mLのガラス製セパラブルフラスコに、上記BMI-80を75.0g投入し、180℃で加熱した。投入したBMI-80が溶融したことを確認し、上記BMI 75.0gを徐々に加え、混合溶融させた。溶融液を水浴中のステンレス製バットにあけ、急冷した。50℃まで冷却後、バットから固化物を取り外し、アモルファス固体のポリマレイミド組成物143.0gを得た。
[実施例5]
 撹拌機、冷却コンデンサー、温度計、窒素ガス導入管及び滴下ロートを備えた500mLのガラス製セパラブルフラスコに、上記BMI-80を75.0g投入し、180℃で加熱した。投入したBMI-80が溶融したことを確認し、上記BMI-70 75.0gを徐々に加え、混合溶融させた。溶融液を水浴中のステンレス製バットにあけ、急冷した。50℃まで冷却後、バットから固化物を取り外し、アモルファス固体のポリマレイミド組成物141.4gを得た。
[実施例6]
 撹拌機、冷却コンデンサー、温度計、窒素ガス導入管及び滴下ロートを備えた500mLのガラス製セパラブルフラスコに、上記BMI-80を50.0g投入し、180℃で加熱した。上記BMI-70 50.0gを徐々に加え、混合溶融させた。次に、上記BMI-50P 50.0gを徐々に加え、混合溶融させた。溶融液を水浴中のステンレス製バットにあけ、急冷した。50℃まで冷却後、バットから固化物を取り外し、アモルファス固体のポリマレイミド組成物139.4gを得た。
[実施例7]
 撹拌機、冷却コンデンサー、温度計、窒素ガス導入管及び滴下ロートを備えた500mLのガラス製セパラブルフラスコに、上記BMI-70を75.0g投入し、180℃で加熱した。投入したBMI-70が溶融したことを確認し、上記BMI-50P 75.0gを徐々に加え、混合溶融させた。溶融液を水浴中のステンレス製バットにあけ、急冷した。50℃まで冷却後、バットから固化物を取り外し、アモルファス固体のポリマレイミド組成物140.5gを得た。
[実施例8]
 撹拌機、冷却コンデンサー、温度計、窒素ガス導入管及び滴下ロートを備えた500mLのガラス製セパラブルフラスコに、上記BMI-80を75.0g投入し、180℃で加熱した。投入したBMI-80が溶融したことを確認し、上記BMI-50P 75.0gを徐々に加え、混合溶融させた。溶融液を水浴中のステンレス製バットにあけ、急冷した。50℃まで冷却後、バットから固化物を取り外し、アモルファス固体のポリマレイミド組成物139.8gを得た。
[DSC分析]
 実施例1~8で得たポリマレイミド組成物、BMIの結晶(比較例1)、BMI-70の結晶(比較例2)、及びBMI-80の結晶(比較例3)のそれぞれについて、DSC(示差走査熱量計)による分析を行った。その結果を図1及び図2に示す。図1は、本発明の実施例1~6のポリマレイミド組成物についてのDSCチャートである。図2は、本発明の実施例1及び2のポリマレイミド組成物、並びに比較例1~3のビスマレイミド化合物の結晶についてのDSCチャートである。
 図1及び図2に示すように、実施例1~8のポリマレイミド組成物では、60~80℃付近にて小吸熱ピークとともにDSCベースシフトが観察された。その結果、実施例1~8のポリマレイミド組成物は、この温度帯でガラス転移を示し、アモルファス固体であることが確認された。これに対して、図2に示すように、比較例1~3のビスマレイミド結晶では、160℃付近に融点を示す大吸熱ピークが観察された。
[融点測定]
 実施例1~8で得たポリマレイミド組成物、BMIの結晶(比較例1)、BMI-70の結晶(比較例2)、及びBMI-80の結晶(比較例3)のそれぞれについて、融点測定用毛細管内に少量の固体を入れ、融点測定機により融点(又は溶融点)を測定した。融点の測定に際しては、融け始めの温度と融け終わりの温度を記録し、その範囲を融点として評価した。その結果を表1に示す。
Figure JPOXMLDOC01-appb-T000021
 表1より明らかなように、本発明のポリマレイミド組成物は、いずれもそれに含まれる単独成分であるビスマレイミド化合物の結晶(比較例1~3)に比べて溶融点が低いことが理解される。また、本発明のポリマレイミド組成物は、いずれもそれに含まれる単独成分であるビス(又はポリ)マレイミド化合物の結晶に比べて、低沸点の溶媒(メチルエチルケトン、トルエン等)に対する溶解性が高かった。以上のことから、本発明のポリマレイミド組成物が低融点・高溶解性という硬化性組成物の調製に求められる特性を備えることが確認された。

Claims (9)

  1.  下記一般式(1)で表す化合物群から選択される2種以上の化合物を含み、アモルファス固体であることを特徴とするポリマレイミド組成物。
    Figure JPOXMLDOC01-appb-C000001
    (上記一般式(1)中、各Rはそれぞれ独立に水素原子、又は分枝を有してもよい炭素数1~9のアルキル基であり、各Xはそれぞれ独立に単結合、途中に分枝又は環構造を有してもよい炭素数1~15のアルキレン基、スルホニル基(-SO-)、硫黄原子、又は酸素原子であり、各Yはそれぞれ独立に単結合、途中に分枝又は環構造を有してもよい炭素数1~15のアルキレン基、スルホニル基(-SO-)、硫黄原子、又は酸素原子であり、mは0~3の整数であり、nは0~3の整数であり、jは0~4の整数であり、kは0~4の整数であり、pは0~4の整数であり、qは0~4の整数である。)
  2.  前記2種以上の化合物として、下記化合物群より選択される2種以上の化合物を含む請求項1記載のポリマレイミド組成物。
    Figure JPOXMLDOC01-appb-C000002
  3.  請求項1又は2記載のポリマレイミド組成物を含むことを特徴とする硬化性組成物。
  4.  請求項3記載の硬化性組成物を硬化させる工程を備えることを特徴とする硬化物の製造方法。
  5.  2以上のアミノ基を備えたポリアミン化合物からなる群より選択される2種以上の化合物、及び無水マレイン酸を溶媒の存在下で同時に反応させる反応工程と、
     前記反応工程を経た反応混合物から溶媒を留去して2種以上のポリマレイミド化合物の混合物からなるアモルファス固体を得る固形化工程と、を備えることを特徴とするポリマレイミド組成物の製造方法。
  6.  前記ポリアミン化合物が、下記一般式(1a)で表す化合物である請求項5記載のポリマレイミド組成物の製造方法。
    Figure JPOXMLDOC01-appb-C000003
    (上記一般式(1a)中、各Rはそれぞれ独立に水素原子、又は分枝を有してもよい炭素数1~9のアルキル基であり、各Xはそれぞれ独立に単結合、途中に分枝又は環構造を有してもよい炭素数1~15のアルキレン基、スルホニル基(-SO-)、硫黄原子、又は酸素原子であり、各Yはそれぞれ独立に単結合、途中に分枝又は環構造を有してもよい炭素数1~15のアルキレン基、スルホニル基(-SO-)、硫黄原子、又は酸素原子であり、mは0~3の整数であり、nは0~3の整数であり、jは0~4の整数であり、kは0~4の整数であり、pは0~4の整数であり、qは0~4の整数である。)
  7.  前記ポリアミン化合物からなる群より選択される2種以上の化合物が下記化合物群より選択される2種以上の化合物である請求項5又は6記載のポリマレイミド組成物の製造方法。
    Figure JPOXMLDOC01-appb-C000004
  8.  下記一般式(1)で表す化合物群から選択される2種以上の化合物の混合物を溶融させて溶融物とし、次いでその溶融物を冷却することにより前記混合物を含むアモルファス固体とすることを特徴とするポリマレイミド組成物の製造方法。
    Figure JPOXMLDOC01-appb-C000005
    (上記一般式(1)中、各Rはそれぞれ独立に水素原子、又は分枝を有してもよい炭素数1~9のアルキル基であり、各Xはそれぞれ独立に単結合、途中に分枝又は環構造を有してもよい炭素数1~15のアルキレン基、スルホニル基(-SO-)、硫黄原子、又は酸素原子であり、各Yはそれぞれ独立に単結合、途中に分枝又は環構造を有してもよい炭素数1~15のアルキレン基、スルホニル基(-SO-)、硫黄原子、又は酸素原子であり、mは0~3の整数であり、nは0~3の整数であり、jは0~4の整数であり、kは0~4の整数であり、pは0~4の整数であり、qは0~4の整数である。)
  9.  下記一般式(1)で表す化合物群から選択される2種以上の化合物の混合物を溶媒に溶解させて溶液とし、次いでその溶液から溶媒を留去することにより前記混合物を含むアモルファス固体とすることを特徴とするポリマレイミド組成物の製造方法。
    Figure JPOXMLDOC01-appb-C000006
    (上記一般式(1)中、各Rはそれぞれ独立に水素原子、又は分枝を有してもよい炭素数1~9のアルキル基であり、各Xはそれぞれ独立に単結合、途中に分枝又は環構造を有してもよい炭素数1~15のアルキレン基、スルホニル基(-SO-)、硫黄原子、又は酸素原子であり、各Yはそれぞれ独立に単結合、途中に分枝又は環構造を有してもよい炭素数1~15のアルキレン基、スルホニル基(-SO-)、硫黄原子、又は酸素原子であり、mは0~3の整数であり、nは0~3の整数であり、jは0~4の整数であり、kは0~4の整数であり、pは0~4の整数であり、qは0~4の整数である。)
PCT/JP2019/015718 2018-10-19 2019-04-10 ポリマレイミド組成物、その製造方法及びそれを用いた硬化性組成物、並びに硬化物の製造方法 WO2020079871A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020552503A JP7083587B2 (ja) 2018-10-19 2019-04-10 ポリマレイミド組成物、その製造方法及びそれを用いた硬化性組成物、並びに硬化物の製造方法
CN201980067195.2A CN112888718B (zh) 2018-10-19 2019-04-10 聚马来酰亚胺组合物及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018197994 2018-10-19
JP2018-197994 2018-10-19

Publications (1)

Publication Number Publication Date
WO2020079871A1 true WO2020079871A1 (ja) 2020-04-23

Family

ID=70283818

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/015718 WO2020079871A1 (ja) 2018-10-19 2019-04-10 ポリマレイミド組成物、その製造方法及びそれを用いた硬化性組成物、並びに硬化物の製造方法

Country Status (4)

Country Link
JP (1) JP7083587B2 (ja)
CN (1) CN112888718B (ja)
TW (1) TWI776051B (ja)
WO (1) WO2020079871A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02269716A (ja) * 1989-02-28 1990-11-05 Ciba Geigy Ag 芳香族ビスマレイミドに基づいた硬化性組成物
JPH04226526A (ja) * 1990-06-29 1992-08-17 Shell Internatl Res Maatschappij Bv 改変ビスイミド組成物
JPH061806A (ja) * 1992-06-18 1994-01-11 Mitsubishi Petrochem Co Ltd 非晶性ビスマレイミド樹脂組成物
JPH06128225A (ja) * 1992-10-19 1994-05-10 Mitsubishi Petrochem Co Ltd 非晶性ビスマレイミドの製造方法
US20070134480A1 (en) * 2005-12-14 2007-06-14 Hexcel Corporation Bismaleimide prepreg systems
US20120049106A1 (en) * 2010-08-25 2012-03-01 Designer Molecules, Inc. Maleimide-functional monomers in amorphous form
JP2015193628A (ja) * 2014-03-28 2015-11-05 新日鉄住金化学株式会社 ビスマレイミド化合物、それを含む組成物、及び硬化物

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02269716A (ja) * 1989-02-28 1990-11-05 Ciba Geigy Ag 芳香族ビスマレイミドに基づいた硬化性組成物
JPH04226526A (ja) * 1990-06-29 1992-08-17 Shell Internatl Res Maatschappij Bv 改変ビスイミド組成物
JPH061806A (ja) * 1992-06-18 1994-01-11 Mitsubishi Petrochem Co Ltd 非晶性ビスマレイミド樹脂組成物
JPH06128225A (ja) * 1992-10-19 1994-05-10 Mitsubishi Petrochem Co Ltd 非晶性ビスマレイミドの製造方法
US20070134480A1 (en) * 2005-12-14 2007-06-14 Hexcel Corporation Bismaleimide prepreg systems
US20120049106A1 (en) * 2010-08-25 2012-03-01 Designer Molecules, Inc. Maleimide-functional monomers in amorphous form
JP2015193628A (ja) * 2014-03-28 2015-11-05 新日鉄住金化学株式会社 ビスマレイミド化合物、それを含む組成物、及び硬化物

Also Published As

Publication number Publication date
TW202016175A (zh) 2020-05-01
JPWO2020079871A1 (ja) 2021-09-02
CN112888718B (zh) 2023-01-31
CN112888718A (zh) 2021-06-01
TWI776051B (zh) 2022-09-01
JP7083587B2 (ja) 2022-06-13

Similar Documents

Publication Publication Date Title
TW575636B (en) Heat-resistant composition
US20220169791A1 (en) Polyamic Acid Resin, Polyimide Resin, and Resin Composition Including These
TW202012486A (zh) 馬來醯亞胺樹脂、硬化性樹脂組成物及其硬化物
TW201136971A (en) Epoxy resin compositions
KR102314333B1 (ko) 열경화성 수지 조성물, 프리프레그, 및 그 경화물
JP6602016B2 (ja) シアン酸エステル化合物、該化合物を含む硬化性樹脂組成物及びその硬化物
TWI739816B (zh) 氰酸酯化合物與其製造方法、樹脂組成物、硬化物、預浸體、密封用材料、纖維強化複合材料、黏著劑、覆金屬箔疊層板、樹脂片及印刷電路板
US20170327476A1 (en) Polybenzoxazine precursor and method for preparing same
JP5812297B2 (ja) 熱硬化性樹脂組成物
TW201638068A (zh) 氰酸酯化合物、包含該化合物的硬化性樹脂組成物及其硬化物
CN112105695A (zh) 树脂成型体
TW202219116A (zh) 異氰酸酯改質聚醯亞胺樹脂、樹脂組成物及其硬化物
JP2020045446A (ja) 熱硬化性樹脂組成物
TWI432487B (zh) Flammable polyimide silicone resin composition
WO2020079871A1 (ja) ポリマレイミド組成物、その製造方法及びそれを用いた硬化性組成物、並びに硬化物の製造方法
TW201833163A (zh) 含烯基之樹脂、硬化性樹脂組成物及其硬化物
JP2010077245A (ja) 低温硬化性組成物
JP6544713B2 (ja) シアン酸エステル化合物、該化合物を含む硬化性樹脂組成物及びその硬化物
JP2015145487A (ja) シアン酸エステル化合物、該化合物を含む硬化性樹脂組成物及びその硬化物
JP2021102566A (ja) 化合物、それを含む硬化性組成物、及び硬化性組成物用の架橋剤
WO2019088122A1 (ja) 熱硬化性樹脂組成物及びその製造方法
WO2022075325A1 (ja) 硬化性化合物製品
WO2022075324A1 (ja) 硬化性化合物製品
WO2024106523A1 (ja) ベンゾオキサジン化合物、それを含有する樹脂原料組成物、硬化性樹脂組成物及びその硬化物
JP6935402B2 (ja) マレイミド樹脂組成物、プリプレグ、その硬化物及び半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19874590

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020552503

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19874590

Country of ref document: EP

Kind code of ref document: A1