WO2012090452A1 - 角速度センサ - Google Patents
角速度センサ Download PDFInfo
- Publication number
- WO2012090452A1 WO2012090452A1 PCT/JP2011/007190 JP2011007190W WO2012090452A1 WO 2012090452 A1 WO2012090452 A1 WO 2012090452A1 JP 2011007190 W JP2011007190 W JP 2011007190W WO 2012090452 A1 WO2012090452 A1 WO 2012090452A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- arm
- axis direction
- corner
- axis
- weight
- Prior art date
Links
- 238000001514 detection method Methods 0.000 claims abstract description 144
- 230000035945 sensitivity Effects 0.000 abstract description 12
- 230000002093 peripheral effect Effects 0.000 description 9
- 239000000463 material Substances 0.000 description 7
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 6
- 238000000034 method Methods 0.000 description 5
- 229910052451 lead zirconate titanate Inorganic materials 0.000 description 3
- 230000001360 synchronised effect Effects 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 239000012141 concentrate Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 229910013641 LiNbO 3 Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 239000005350 fused silica glass Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- HFGPZNIAWCZYJU-UHFFFAOYSA-N lead zirconate titanate Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ti+4].[Zr+4].[Pb+2] HFGPZNIAWCZYJU-UHFFFAOYSA-N 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C19/00—Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
- G01C19/56—Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
- G01C19/5719—Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using planar vibrating masses driven in a translation vibration along an axis
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C19/00—Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
- G01C19/56—Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C19/00—Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
- G01C19/56—Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
- G01C19/5607—Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using vibrating tuning forks
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C19/00—Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
- G01C19/56—Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
- G01C19/5719—Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using planar vibrating masses driven in a translation vibration along an axis
- G01C19/5733—Structural details or topology
- G01C19/574—Structural details or topology the devices having two sensing masses in anti-phase motion
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P3/00—Measuring linear or angular speed; Measuring differences of linear or angular speeds
- G01P3/42—Devices characterised by the use of electric or magnetic means
- G01P3/44—Devices characterised by the use of electric or magnetic means for measuring angular speed
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/20—Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/30—Piezoelectric or electrostrictive devices with mechanical input and electrical output, e.g. functioning as generators or sensors
- H10N30/302—Sensors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/80—Constructional details
- H10N30/85—Piezoelectric or electrostrictive active materials
- H10N30/853—Ceramic compositions
Definitions
- the present invention relates to an angular velocity sensor used for a mobile terminal or a vehicle.
- FIG. 11 is a top view of the detection element 101 of the conventional angular velocity sensor.
- the detection element 101 includes a support body 102 extending in the X-axis direction in the XYZ space, an arm 103 having one end 103A connected to the support body 102, and a weight 199 connected to the other end 103D of the arm 103.
- One end 103 ⁇ / b> A of the arm 103 is connected to the side surface of the support 102.
- the arm 103 has a J shape having corner portions 103B and 103C.
- the weight 199 is driven and vibrated in the XY plane.
- Patent Document 1 A conventional angular velocity sensor similar to the angular velocity sensor provided with the detection element 101 is disclosed in Patent Document 1, for example.
- the detection element 101 It is difficult for the detection element 101 to improve the detection sensitivity of the angular velocity around the Z axis.
- the angular velocity sensor has a shape defined in the XYZ space and includes a detection element that can detect an angular velocity around the Z axis.
- the detection element has a support extending in the X-axis direction, an arm connected to the support, and a weight connected to the arm.
- the arm has a first end connected to the support and a second end connected to the arm.
- the arm includes a first arm portion extending from the first end to the first corner portion in the Y-axis direction, and a second arm portion extending from the first corner portion to the second corner portion in the X-axis direction. And a third arm portion extending substantially from the second corner portion to the second end in the Y-axis direction.
- the length of the arm in the X-axis direction is larger than the length of the weight in the X-axis direction.
- This angular velocity sensor can improve the sensitivity to the angular velocity around the Z axis.
- FIG. 1 is a top view of a detection element of the angular velocity sensor according to Embodiment 1 of the present invention.
- 2 is a cross-sectional view of the detection element shown in FIG. 1 taken along line 2-2.
- FIG. 3 is a top view showing drive vibration and detection vibration of the detection element in the first embodiment.
- FIG. 4 is a top view of the detection element of the angular velocity sensor according to the second embodiment.
- FIG. 5 is a top view showing drive vibration of the detection element in the second embodiment.
- FIG. 6 is a top view of the detection element of the angular velocity sensor according to the third embodiment.
- FIG. 7 is a top view of another detection element of another angular velocity sensor according to the third embodiment.
- FIG. 8 is a top view of the detection element of the angular velocity sensor according to the fourth embodiment.
- FIG. 9 is a top view of another detection element of the angular velocity sensor according to the fourth embodiment.
- FIG. 10 is a top view of still another detection element of the angular velocity sensor according to the fourth embodiment.
- FIG. 11 is a top view of a detection element of a conventional angular velocity sensor.
- FIG. 1 is a top view of the detection element 1 of the angular velocity sensor in the first embodiment.
- the angular velocity sensor includes a detection element 1 that detects an angular velocity around the Z axis.
- the detection element 1 has a shape defined in the XYZ space.
- the detection element 1 includes a support body 8 extending in the X-axis direction, an arm 3 having an end 3A connected to a side surface of the support body 8, and a weight 4 connected to an end 3D of the arm 3 opposite to the end 3A.
- the arm 3 substantially has a J shape having corner portions 3B and 3C.
- the length W1 of the arm 3 in the X-axis direction is larger than the length W2 of the weight 4 in the X-axis direction.
- the resonance frequency of the driving vibration of the detection element 1 and the resonance frequency of the angular velocity detection vibration around the Z axis can be made closer, so that the detection sensitivity of the angular velocity around the Z axis of the detection element 1 is improved. Can be made.
- the length W101 of the arm 103 in the X-axis direction is smaller than the length W102 of the weight 199 in the X-axis direction.
- the resonance frequency of the detection vibration when the resonance frequency of the driving vibration of the detection element 101 and the angular velocity around the Z axis are added is separated, the detection of the angular velocity of the detection element 101 around the Z axis is detected.
- the inventors have found that it is difficult to improve the sensitivity.
- the support 8 is a fixing member that supports the detection element 1.
- the support 8 is fixed to a package that stores the detection element 1 by using another support member, an adhesive, or the like.
- the arm 3 extends from the end 3A on the side surface of the support 8 to the end 3D connected to the weight 4.
- the arm 3 includes an arm 3E extending from the end 3A to the corner 3B in the positive Y direction of the Y axis, an arm 3F extending from the corner 3B to the corner 3C in the positive X direction of the X axis, In the negative direction Y2 of the Y-axis, it substantially has a J shape including an arm portion 3G extending from the corner 3C to the end 3D.
- the arm 3 and the weight 4 can be driven and oscillated in the XY plane including the X axis and the Y axis, and can be bent in the Z axis direction.
- the support 8, the arm 3 and the weight 4 may be formed using a piezoelectric material such as quartz, LiTaO 3 or LiNbO 3 , or using a non-piezoelectric material such as silicon, diamond, fused quartz, alumina or GaAs. It may be formed.
- a piezoelectric material such as quartz, LiTaO 3 or LiNbO 3
- a non-piezoelectric material such as silicon, diamond, fused quartz, alumina or GaAs. It may be formed.
- silicon it is possible to form the detection element 1 in a very small size using a fine processing technique, and it is also possible to form it integrally with an IC such as a circuit.
- the support 8, the arm 3, and the weight 4 may be formed by being assembled from different materials or the same material, or may be integrally formed using the same material. In the case where the same material is integrally formed, the support 8, the arm 3 and the weight 4 can be formed by the same process by using dry etching or wet etching. Can be manufactured.
- the arm part 3E of the arm 3 is provided with two drive parts 5 located on the inner and outer peripheral sides of the J shape.
- the drive unit 5 employs a piezoelectric system using a piezoelectric element made of lead zirconate titanate (PZT), but uses an electrostatic system that utilizes the capacitance between the electrodes. You can also
- FIG. 2 is a cross-sectional view taken along line 2-2 of the detection element 1 shown in FIG.
- the drive unit 5 includes a lower electrode 11A provided on the arm 3, a piezo element 11B provided on the lower electrode 11A, and an upper electrode 11C provided on the piezo element 11B.
- the piezo element 11B includes: It is sandwiched between the lower electrode 11A and the upper electrode 11C.
- platinum (Pt) platinum
- Au gold
- Al aluminum
- an alloy or oxide containing these as main components can be used as the lower electrode 11A.
- PZT can be oriented in one direction.
- a reference potential is applied to the lower electrode 11A.
- the arm 3 By applying alternating drive voltages having opposite phases to the upper electrode 11C, the arm 3 can be vibrated in the XY plane.
- an AC driving voltage may be applied to both the lower electrode 11A and the upper electrode 11C without applying the reference potential to the lower electrode 11A. Thereby, the arm 3 and the weight 4 can be vibrated with a large amplitude, and the driving efficiency can be improved.
- the arm part 3F of the arm 3 is provided with two detection parts 6 located on the inner peripheral side and the outer peripheral side of the J-shape.
- the detection unit 6 detects the vibration of the weight 4 by detecting deformation when an angular velocity is applied to the arm 3.
- the detection unit 6 employs a piezoelectric method using a piezoelectric element, but an electrostatic method using capacitance between electrodes can also be used.
- the piezoelectric element having the same structure as that of the drive unit 5 can be formed by sandwiching the lower electrode and the upper electrode.
- FIG. 3 is a top view showing drive vibration and detection vibration of the detection element 1.
- an AC voltage having a resonance frequency of driving vibration is applied to the driving unit 5 from an external driving circuit
- the arm 3 and the weight 4 are driven to vibrate in the XY plane along the driving vibration direction D1.
- a Coriolis force is generated in a direction orthogonal to the drive vibration direction D1.
- Due to this Coriolis force a detection vibration synchronized with the drive vibration in the detection vibration direction D2 is generated in the weight 4.
- the angular velocity is detected by detecting the distortion of the arm 3 caused by the detected vibration as the deformation of the arm 3 by the detection unit 6.
- the detection vibration resonance frequency in the detection vibration direction D2 is desirably set in the vicinity of the drive vibration resonance frequency in the drive vibration direction D1. This is because the detected vibration generated when the angular velocity is applied is synchronized with the drive vibration, and therefore, if the resonance frequency of the detection vibration is close to the resonance frequency of the drive vibration, the detection vibration is easily excited to a greater extent.
- the drive vibration direction D1 and the detection vibration direction D2 are different, it is generally difficult to bring the drive vibration resonance frequency and the detection vibration resonance frequency close to each other.
- the driving vibration resonance frequency of the conventional detection element 101 shown in FIG. 11 is designed to be about 40 kHz, the detection vibration resonance frequency is around 65 kHz, and the resonance frequencies are separated by 25 kHz.
- the conventional detection element 101 has low sensitivity to angular velocity around the Z axis.
- the length W1 of the arm 3 in the X-axis direction is larger than the length W2 of the weight in the X-axis direction.
- the rigidity in the vicinity of the corner 3C of the arm 3 is reduced. Since stress is easily concentrated on the corner portion 3C during detection resonance vibration when the angular velocity around the Z axis is applied, the rigidity of the corner portion 3C is reduced to reduce the resonance of the detection resonance vibration when the angular velocity around the Z axis is applied. It becomes possible to lower the frequency.
- the detection vibration resonance frequency can be designed to be about 45 kHz with respect to the drive vibration resonance frequency of 40 kHz, and the difference between the resonance frequencies can be kept within 5 kHz.
- the sensitivity of the angular velocity around the Z axis is about five times that of the conventional detection element 1.
- the width WF of the arm portion 3F in the Y-axis direction is smaller than the width WE of the arm portion 3E in the X-axis direction.
- the rigidity in the vicinity of the corner portion 3C can be lowered, so that the drive vibration resonance frequency and the detected vibration resonance frequency can be brought close to each other.
- the rigidity in the vicinity of the corner 3C can be lowered by making the width WG in the X-axis direction of the arm 3G smaller than the width WF in the Y-axis of the arm 3F. The vibration resonance frequency can be brought close to.
- the radius of curvature of the inner periphery of the corner portion 3B may be larger than the radius of curvature of the inner periphery of the corner portion 3C, and this can also reduce the rigidity in the vicinity of the corner portion 3C.
- the detected vibration resonance frequency can be brought close to.
- the end 3D of the arm 3 is connected to substantially the center of the width of the weight 4 in the Y-axis direction.
- the end 3D of the arm 3 is connected to the end of the weight 4 in the positive direction X1 of the X axis.
- the weight 4 is accommodated inside the J-shape of the arm 3, so that a small detection element 1 can be obtained.
- FIG. 4 is a top view of the detection element 10 of the angular velocity sensor according to the second embodiment.
- the same reference numerals are assigned to the same portions as those of the detection element 1 shown in FIGS.
- the angular velocity sensor in the second embodiment includes a detection element 10 that detects the angular velocity.
- the detection element 10 includes two vertical beams 7 extending in the Y-axis direction, a support body 8 that is a horizontal beam extending in the X-axis direction, and a vibrating unit 9A positioned in the positive direction Y1 of the Y-axis from the support body 8. 9B and vibration parts 9C and 9D located in the negative direction Y2 of the Y axis from the support 8 are provided. Both end portions 8A and 8B of the support body 8 are connected to substantially central portions of the two vertical beams 7, respectively.
- the vibration unit 9B includes the arm 3 connected to the side surface of the support 8 and the weight 4 connected to the end 3D of the arm 3 in the same manner as the detection element 1 in the first embodiment shown in FIGS. Prepare. Similar to the first embodiment, the length of the arm 3 in the X-axis direction is larger than the length of the weight 4 in the X-axis direction.
- the vibration unit 9 ⁇ / b> A includes an arm 53 connected to the support 8 and a weight 54 connected to the arm 53.
- the vibration unit 9 ⁇ / b> C includes an arm 63 connected to the support 8 and a weight 64 connected to the arm 63.
- the vibration unit 9 ⁇ / b> D includes an arm 73 connected to the support 8 and a weight 74 connected to the arm 73.
- Arms 53, 63 and 73 have the same shape as arm 3 in the first embodiment shown in FIG.
- the arms 3, 53, 63 and 73 are connected to an intermediate portion 8 ⁇ / b> C located at the center of the support 8.
- the weights 54, 64, and 74 have the same shape as the weight 4 in the first embodiment shown in FIG.
- the arm 53 has an end 53A connected to the intermediate portion 8C of the support 8 and an end 53D opposite to the end 53A.
- the weight 54 is connected to the end 53D of the arm 53.
- the arm 53 includes an arm portion 53E extending from the end 53A to the corner portion 53B in the positive direction Y1 of the Y axis, an arm portion 53F extending from the corner portion 53B to the corner portion 53C in the negative direction X2 of the X axis, and the Y portion from the corner portions 53C to Y. It substantially has a J-shape consisting of an arm portion 53G extending to the end 53D in the negative direction Y2 of the shaft.
- the length of the arm 53 in the X-axis direction is larger than the length of the weight 54 in the X-axis direction.
- the width of the arm portion 53F in the Y-axis direction is smaller than the width of the arm portion 53E in the X-axis direction.
- the width of the arm portion 53G in the X-axis direction is smaller than the width of the Y-axis of the arm portion 53F.
- the radius of curvature of the inner periphery of the corner portion 53B is larger than the radius of curvature of the inner periphery of the corner portion 53C.
- the arm 63 has an end 63A connected to the intermediate portion 8C of the support 8 and an end 63D opposite to the end 63A.
- the weight 64 is connected to the end 63D of the arm 63.
- the arm 63 includes an arm portion 63E extending from the end 63A to the corner portion 63B in the negative Y-axis direction Y2, an arm portion 63F extending from the corner portion 63B to the corner portion 63C in the negative X-axis direction X2, and the corner portion 63C to Y It substantially has a J-shape consisting of an arm portion 63G extending to the end 63D in the positive direction Y1 of the shaft.
- the length of the arm 63 in the X-axis direction is larger than the length of the weight 64 in the X-axis direction.
- the width of the arm part 63F in the Y-axis direction is smaller than the width of the arm part 63E in the X-axis direction.
- the width of the arm part 63G in the X-axis direction is smaller than the width of the Y-axis of the arm part 63F.
- the radius of curvature of the inner periphery of the corner portion 63B is larger than the radius of curvature of the inner periphery of the corner portion 63C.
- the arm 73 has an end 73A connected to the intermediate portion 8C of the support 8 and an end 73D opposite to the end 73A.
- the weight 74 is connected to the end 73 ⁇ / b> D of the arm 73.
- the arm 73 includes an arm portion 73E extending from the end 73A to the corner portion 73B in the negative Y-axis direction Y2, an arm portion 73F extending from the corner portion 73B to the corner portion 73C in the positive X-axis direction X1, and the corner portions 73C to Y It substantially has a J-shape consisting of an arm portion 73G extending to the end 73D in the positive direction Y1 of the shaft.
- the length of the arm 73 in the X-axis direction is larger than the length of the weight 74 in the X-axis direction.
- the width of the arm portion 73F in the Y-axis direction is smaller than the width of the arm portion 73E in the X-axis direction.
- the width of the arm portion 73G in the X-axis direction is smaller than the width of the Y-axis of the arm portion 73F.
- the radius of curvature of the inner periphery of the corner portion 73B is larger than the radius of curvature of the inner periphery of the corner portion 73C.
- the end 3D of the arm 3 is connected to substantially the center of the width of the weight 4 in the Y-axis direction.
- the arms 53, 63, 73 are connected to substantially the centers of the weights 54, 64, 74 in the Y-axis direction, respectively.
- the arm part 53E and the arm part 53F of the arm 53 are respectively provided with a drive part 55 and a detection part 56 similar to the drive part 5 and the detection part 6 in the first embodiment shown in FIGS.
- the drive unit 55 drives the arm 53 to vibrate the arm 53 and the weight 54 in the XY plane.
- the detection unit 56 detects the vibration of the arm 53 by detecting the vibration of the arm 53.
- the arm part 63E and the arm part 63F of the arm 63 are respectively provided with a drive part 65 and a detection part 66 similar to the drive part 5 and the detection part 6 in the first embodiment shown in FIGS.
- the drive unit 65 drives the arm 63 to vibrate the arm 63 and the weight 64 in the XY plane.
- the detection unit 66 detects the vibration of the arm 63 by detecting the vibration of the arm 63.
- the arm part 73E and the arm part 73F of the arm 73 are respectively provided with a drive part 75 and a detection part 76 similar to the drive part 5 and the detection part 6 in the first embodiment shown in FIGS.
- the drive unit 75 drives the arm 73 to vibrate the arm 73 and the weight 74 in the XY plane.
- the detecting unit 76 detects the vibration of the arm 73 by detecting the vibration of the arm 73.
- the four vibrating parts 9A, 9B, 9C, 9D are made symmetrical about the X axis and the Y axis. That is, the vibrating portions 9A and 9B are provided symmetrically with respect to the central axis AY that passes through the intermediate portion 8C of the support 8 and is parallel to the Y axis. The vibrating portions 9C and 9D are provided symmetrically with respect to the central axis AY. The vibrating portions 9A and 9C are provided symmetrically with respect to a central axis AX that passes through the intermediate portion 8C of the support 8 and is parallel to the X axis. The vibrating portions 9B and 9D are provided symmetrically with respect to the central axis AX.
- the two vertical beams 7 are fixing members that support the detection element 10, and are fixed to a package that stores the detection element 10 by using another support member, an adhesive, or the like.
- the detection element 10 may have two transverse beams 57 connected to the ends of the two longitudinal beams 7.
- the two vertical beams 7 and the two horizontal beams 57 constitute a frame-shaped fixing member.
- the arms 3 and 73 are connected to the ends of the weights 4 and 74 in the positive direction X1 of the X axis.
- the arms 53 and 63 are connected to ends of the weights 54 and 64 in the negative direction X2 of the X axis.
- the support 8 connects the vertical beam 7 and the vibrating portions 9A to 9D, and is preferably connected to the central portion of the vertical beam 7 from the viewpoint of symmetry.
- the vertical beam 7 and the support 8 can be efficiently manufactured if they are integrally formed using the same material as that of the vibrating portions 9A to 9D.
- FIG. 5 is a top view showing drive vibration of the detection element 10.
- the vibration units 9A to 9D of the detection element 10 by applying an AC signal to the drive units 5, 55, 65, 75, the arms 3, 53, 63, 73 are driven to vibrate in the drive vibration direction D1, thereby the weight 4, 54, 64, and 74 can be vibrated in the driving vibration direction D1 in the XY plane.
- the vibrations of the four vibration parts 9A to 9D cancel each other in the XY plane, and the vibrations leaking outside the detection element 10 can be reduced.
- the detection element 10 having the four vibration portions 9A to 9D can prevent a reduction in the Q value of vibration, and thus realizes an angular velocity sensor with high driving efficiency and high accuracy that is difficult to pick up unnecessary signals. can do.
- FIG. 6 is a top view of the detection element 110 of the angular velocity sensor according to the third embodiment.
- the same reference numerals are assigned to the same parts as those of the detection element 1 in the first embodiment shown in FIG.
- the end 3D of the arm 3 is connected to substantially the center of the width of the weight 4 in the Y-axis direction.
- the end 3D of the arm 3 is connected to the end of the weight 4 in the negative direction Y2 of the Y axis.
- the length of the arm portion 3G extending from the corner portion 3C to the end 3D in the Y-axis direction can be made 1 ⁇ 2 or more of the width of the weight 4 in the Y-axis direction.
- FIG. 7 is a top view of another detection element 210 of the angular velocity sensor in the third embodiment.
- a detection element 210 shown in FIG. 7 includes drive units 185, 285, 385, and 485 and detection units 186, 286, and 486 instead of the drive unit 5 and the detection unit 6 of the detection element 110 shown in FIG. Is further provided.
- Drive units 185, 285, 385, and 485, detection units 186, 286, and 486, and monitor unit 386 have the same structure as drive unit 5 in the first embodiment shown in FIG.
- the driving portions 185 and 285 extend along the arm 3 from the vicinity of the end 3A of the arm 3 through the arm portion 3E, beyond the corner portion 3B to the arm portion 3F.
- the drive unit 185 is provided on the outer peripheral side of the J-shape of the arm 3. Compared with the drive part 185, the drive part 285 is located on the inner peripheral side of the J-shape.
- the detection portions 186 and 286 extend along the arm 3 from the vicinity of the end 3D of the arm 3 through the arm portion 3G, beyond the corner portion 3C to the arm portion 3F.
- the detection unit 186 is provided on the outer peripheral side of the J-shape of the arm 3. Compared to the detection unit 186, the detection unit 286 is located on the inner periphery side of the J-shape.
- the driving parts 385 and 485 are provided on the arm part 3F along the arm part 3F.
- the drive unit 385 is provided on the outer peripheral side of the J-shape of the arm 3. Compared with the drive unit 385, the drive unit 485 is located on the inner peripheral side of the J-shape.
- the monitor unit 386 and the detection unit 486 are provided on the arm unit 3F along the arm unit 3F.
- the monitor unit 386 is provided on the outer peripheral side of the J-shape of the arm 3. Compared with the monitor unit 386, the detection unit 486 is located on the inner periphery side of the J shape.
- the drive unit 385 and the monitor unit 386 are located between the drive unit 185 and the detection unit 186, and the drive unit 485 and the detection unit 486 are located between the drive unit 285 and the detection unit 286.
- the monitor unit 386 is located between the drive unit 185 and the drive unit 385, and the detection unit 486 is located between the drive unit 285 and the drive unit 485.
- the drive units 185, 285, 385, and 485 operate in the same manner as the drive unit 5 shown in FIG.
- the detection units 186, 286, and 486 operate in the same manner as the detection unit 6 shown in FIG.
- the monitor unit 386 outputs a signal synchronized with the driving vibration of the weight 4.
- the drive circuit controls the AC voltage applied to the drive units 185, 285, 385, and 485 according to the signal so that the weight 4 is driven and vibrated with a constant amplitude and frequency.
- the detection element 210 can detect the angular velocity around the Z axis with higher sensitivity and stability.
- FIG. 8 is a top view of the detection element 310 of the angular velocity sensor according to the fourth embodiment.
- the same reference numerals are assigned to the same parts as those of the detection element 10 in the second embodiment shown in FIG.
- the weights 104, 154, 164, and 174 instead of the weights 4, 54, 64, and 74 of the detection element 10 in the second embodiment shown in FIG.
- the weights 104, 154, 164, 174 are respectively connected to the ends 3D, 53D, 63D, 73D of the arms 3, 53, 63, 73 at the center of the weights 104, 154, 164, 174 in the X-axis direction. .
- the length W1 of the arm 3 (53, 63, 73) in the X-axis direction is larger than the length W102 of the weight 104 (154, 164, 174) in the X-axis direction.
- the arms 53, 3, 63, 73 and the weights 154, 104, 164, 174 constitute the vibrating portions 109A, 109B, 109C, 109D, respectively.
- the four vibrating portions 109A, 109B, 109C, 109D are made symmetrical about the X axis and the Y axis. That is, the vibrating portions 109A and 109B pass through the intermediate portion 8C of the support 8 and are provided symmetrically with respect to the central axis AY parallel to the Y axis.
- the vibrating portions 109C and 109D are provided symmetrically with respect to the central axis AY.
- the vibrating portions 109A and 109C are provided symmetrically with respect to a central axis AX that passes through the intermediate portion 8C of the support 8 and is parallel to the X axis.
- the vibrating portions 109B and 109D are provided symmetrically with respect to the central axis AX.
- the detection element 310 has the same effect as the detection element in the second embodiment with respect to the sensitivity to the angular velocity around the Z axis.
- FIG. 9 is a top view of the detection element 410 of another angular velocity sensor according to the fourth embodiment. 9, the same reference numerals are assigned to the same parts as those of the detection element 10 in the second embodiment shown in FIG.
- a detection element 410 shown in FIG. 9 includes a support 208 instead of the support 8 of the detection element 10 shown in FIG. 4, and includes two vertical beams 7 and two horizontal beams 57 of the detection element 10 shown in FIG. Not equipped.
- the detection element 10 shown in FIG. 4 is supported by a frame-shaped fixing member including two vertical beams 7 and two horizontal beams 57.
- the detection element 410 shown in FIG. 9 supports the detection element 410 by supporting the support body 208 with a fixing member.
- the arms 3, 53, 63, 73 are connected to the intermediate portion 208 ⁇ / b> C of the support 208.
- the width of the support 208 shown in FIG. 9 in the Y-axis direction is larger than that of the support 8 shown in FIG. Thereby, the detection element 410 provided with the four arms 3, 53, 63, 73 and the four weights 4, 54, 64, 74 can be firmly supported.
- FIG. 10 is a top view of a detection element 510 of still another angular velocity sensor according to the fourth embodiment. 10, the same reference numerals are assigned to the same parts as those of the detection element 10 in the second embodiment shown in FIG.
- the ends 3A, 53A, 63A, 73A of the arms 3, 53, 63, 73 are connected to the intermediate portion 8C of the support 8.
- the ends 53A and 63A of the arm portions 53 and 63 are connected to the end portion 8A connected to the longitudinal beam 7 of the support 8, and the ends 3A and 73A of the arm portions 3 and 73 are connected to each other.
- the support 8 is connected to an end 8B connected to the longitudinal beam 7.
- the J-shapes of the arms 3, 53, 63, 73 are reversed from those of the detection element 10 shown in FIG. That is, the arm 53 includes an arm 53E extending from the end 53A to the corner 53B in the positive Y direction of the Y axis, an arm 53F extending from the corner 53B to the corner 53C in the positive X direction of the X axis, and a corner 53C. Substantially in the negative direction Y2 of the Y-axis and an arm portion 53G extending to the end 53D.
- the arm 3 includes an arm portion 3E extending from the end 3A to the corner portion 3B in the positive direction Y1 of the Y axis, an arm portion 3F extending from the corner portion 3B to the corner portion 53C in the negative direction X2 of the X axis, and the arm portions 3C to Y It substantially has a J-shape consisting of an arm portion 3G extending to the end 3D in the negative direction Y2 of the shaft.
- the arm 63 includes an arm 63E extending from the end 63A to the corner 63B in the negative Y direction Y2 of the Y axis, an arm 63F extending from the corner 63B to the corner 63C in the positive X direction X1, and the corners 63C to Y It substantially has a J-shape consisting of an arm portion 63G extending to the end 63D in the positive direction Y1 of the shaft.
- the arm 73 includes an arm portion 73E extending from the end 73A in the negative Y-axis direction Y2 to the corner 73B, an arm portion 73F extending from the corner 73B to the corner 73C in the X-axis negative direction X2, and the corner 73C to Y It substantially has a J-shape consisting of an arm portion 73G extending to the end 73D in the positive direction Y1 of the shaft.
- the AC is applied to the drive unit to drive and vibrate the arms 3, 53, 63, and 73 in the drive vibration direction D301, thereby moving the weights 4, 54, 64, and 74 to XY. It can be vibrated in the driving vibration direction D1 in a plane. As shown in FIG. 10, the vibrations of the four vibration parts 9A to 9D cancel each other in the XY plane, and the vibrations leaking outside the detection element 10 can be reduced.
- the vibrating portions 9A to 9D, the vertical beam 7 and the support body 8 symmetrically with respect to the central axes AX and AY, in principle, leakage vibration can be completely eliminated. As a result, it is possible to prevent the Q value of the drive vibration due to the leakage vibration from being reduced, and it is possible to prevent the detection unit from picking up unnecessary signals.
- the detection element 510 shown in FIG. 10 can prevent a reduction in the Q value of vibration similarly to the detection element 10 shown in FIG. 4, so that the driving efficiency is high and it is difficult to pick up unnecessary signals.
- a high angular velocity sensor can be realized.
- the angular velocity sensor according to the present invention can detect the angular velocity with high sensitivity, it can be applied from portable terminal use to vehicle control use.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Gyroscopes (AREA)
Abstract
Description
図1は実施の形態1における角速度センサの検出素子1の上面図である。図1において互いに直角のX軸とY軸とZ軸とを定義する。角速度センサは、Z軸の周りの角速度を検出する検出素子1を備える。検出素子1はXYZ空間で定義される形状を有する。検出素子1は、X軸方向に延伸した支持体8と、支持体8の側面に接続された端3Aを有するアーム3と、端3Aの反対側のアーム3の端3Dに接続された錘4とを備える。アーム3は角部3B、3Cを有するJ字形状を実質的に有する。アーム3のX軸の方向の長さW1は錘4のX軸の方向の長さW2よりも大きい。
図4は実施の形態2における角速度センサの検出素子10の上面図である。図4において図1から図3に示す検出素子1と同じ部分には同じ参照番号を付す。
図6は実施の形態3における角速度センサの検出素子110の上面図である。図6において、図1に示す実施の形態1における検出素子1と同じ部分には同じ参照番号を付す。
図8は実施の形態4における角速度センサの検出素子310の上面図である。図8において、図4に示す実施の形態2における検出素子10と同じ部分には同じ参照番号を付す。
3 アーム(第1のアーム)
3A 端(第1の端)
3B 角部(第1の角部)
3C 角部(第2の角部)
3D 端(第2の端)
3E アーム部(第1のアーム部)
3F アーム部(第2のアーム部)
3G アーム部(第3のアーム部)
4 錘(第1の錘)
5 駆動部(第1の駆動部)
6 検出部(第1の検出部)
7 縦梁(第1の縦梁、第2の縦梁)
8 支持体
9A 振動部(第2の振動部)
9B 振動部(第1の振動部)
9C 振動部(第4の振動部)
9D 振動部(第3の振動部)
53 アーム(第2のアーム)
53A 端(第3の端)
53B 角部(第3の角部)
53C 角部(第4の角部)
53D 端(第4の端)
53E アーム部(第4のアーム部)
53F アーム部(第5のアーム部)
53G アーム部(第6のアーム部)
54 錘(第2の錘)
55 駆動部(第2の駆動部)
56 検出部(第2の検出部)
63 アーム(第4のアーム)
63A 端(第7の端)
63B 角部(第7の角部)
63C 角部(第8の角部)
63D 端(第8の端)
63E アーム部(第10のアーム部)
63F アーム部(第11のアーム部)
63G アーム部(第12のアーム部)
64 錘(第4の錘)
65 駆動部(第4の駆動部)
66 検出部(第4の検出部)
73 アーム(第3のアーム)
73A 端(第5の端)
73B 角部(第5の角部)
73C 角部(第6の角部)
73D 端(第6の端)
73E アーム部(第7のアーム部)
73F アーム部(第8のアーム部)
73G アーム部(第9のアーム部)
74 錘(第3の錘)
75 駆動部(第3の駆動部)
76 検出部(第3の検出部)
AX 中心軸(第2の中心軸)
AY 中心軸(第1の中心軸)
Claims (14)
- 互いに直角のX軸とY軸とZ軸とを有するXYZ空間で定義される形状を有してかつ前記Z軸の周りの角速度を検出できる検出素子を備え、
前記検出素子は、
前記X軸の方向に延びる支持体と、
前記支持体に接続された第1の端と、前記第1の端の反対側の第2の端とを有する第1のアームと、
前記第1のアームの前記第2の端に接続された第1の錘と、
を有し、
前記第1のアームは、
前記第1の端から前記Y軸の方向に第1の角部まで延びる第1のアーム部と、
前記第1の角部から前記X軸の方向に第2の角部まで延びる第2のアーム部と、
前記第2の角部から前記Y軸の方向に前記第2の端まで延びる第3のアーム部と、
からなるJ字形状を実質的に有し、
前記第1のアームの前記X軸の方向の長さは前記第1の錘の前記X軸の方向の長さよりも大きい、角速度センサ。 - 前記第2のアーム部の前記Y軸の方向の幅は前記第1のアーム部の前記X軸の方向の幅よりも小さい、請求項1に記載の角速度センサ。
- 前記第3のアーム部の前記X軸の方向の幅は前記第2のアーム部の前記Y軸の方向の幅よりも小さい、請求項1に記載の角速度センサ。
- 前記第1の角部の曲率半径は前記第2の角部の曲率半径よりも大きい、請求項1に記載の角速度センサ。
- 前記第1のアーム部に設けられて前記第1の錘を振動させる駆動部と、
前記第2のアーム部に設けられて前記第1の錘の振動を検出する検出部と、
をさらに備えた、請求項1に記載の角速度センサ。 - 前記検出素子は、
前記支持体に接続された第3の端と、前記第3の端の反対側の第4の端とを有する第2のアームと、
前記第2のアームの前記第4の端に接続された第2の錘と、
前記支持体に接続された第5の端と、前記第5の端の反対側の第6の端とを有する第3のアームと、
前記第3のアームの前記第6の端に接続された第3の錘と、
前記支持体に接続された第7の端と、前記第7の端の反対側の第8の端とを有する第4のアームと、
前記第4のアームの前記第8の端に接続された第4の錘と、
をさらに有し、
前記第2のアームは、
前記第3の端から前記Y軸の方向に第3の角部まで延びる第4のアーム部と、
前記第3の角部から前記X軸の方向に第4の角部まで延びる第5のアーム部と、
前記第4の角部から前記Y軸の方向に前記第4の端まで延びる第6のアーム部と、
からなるJ字形状を実質的に有し、
前記第3のアームは、
前記第5の端から前記Y軸の方向に第5の角部まで延びる第7のアーム部と、
前記第5の角部から前記X軸の方向に第6の角部まで延びる第8のアーム部と、
前記第6の角部から前記Y軸の方向に前記第6の端まで延びる第9のアーム部と、
からなるJ字形状を実質的に有し、
前記第4のアームは、
前記第7の端から前記Y軸の方向に第7の角部まで延びる第10のアーム部と、
前記第7の角部から前記X軸の方向に第8の角部まで延びる第11のアーム部と、
前記第8の角部から前記Y軸の方向に前記第8の端まで延びる第12のアーム部と、
からなるJ字形状を実質的に有し、
前記第2のアームの前記X軸の方向の長さは前記第2の錘の前記X軸の方向の長さよりも大きく、
前記第3のアームの前記X軸の方向の長さは前記第3の錘の前記X軸の方向の長さよりも大きく、
前記第4のアームの前記X軸の方向の長さは前記第4の錘の前記X軸の方向の長さよりも大きい、請求項1に記載の角速度センサ。 - 前記Y軸の方向に延びる第1と第2の縦梁をさらに備え、
前記支持体は前記X軸の方向に延びて、かつ前記第1と第2の縦梁の略中央部にそれぞれ接続された両端部を有する、請求項6に記載の角速度センサ。 - 前記第1のアームと前記第1の錘とは第1の振動部を構成し、
前記第2のアームと前記第2の錘とは第2の振動部を構成し、
前記第1の振動部と前記第2の振動部は、前記支持体を通りかつ前記Y軸に平行な第1の中心軸に関して対称に設けられている、請求項6に記載の角速度センサ。 - 前記第3のアームと前記第3の錘とは第3の振動部を構成し、
前記第1の振動部と前記第3の振動部は、前記支持体を通りかつ前記X軸に平行な第2の中心軸に関して対称に設けられている、
請求項8に記載の角速度センサ。 - 前記第1のアームと前記第1の錘とは第1の振動部を構成し、
前記第2のアームと前記第2の錘とは第2の振動部を構成し、
前記第3のアームと前記第3の錘とは第3の振動部を構成し、
前記第1の振動部と前記第3の振動部は、前記支持体を通りかつ前記X軸に平行な第2の中心軸に関して対称に設けられている、
請求項6に記載の角速度センサ。 - 前記第1のアームの前記第2のアーム部の前記Y軸の方向の幅は前記第1のアーム部の前記X軸の方向の幅よりも小さく、
前記第2のアームの前記第5のアーム部の前記Y軸の方向の幅は前記第4のアーム部の前記X軸の方向の幅よりも小さく、
前記第3のアームの前記第8のアーム部の前記Y軸の方向の幅は前記第7のアーム部の前記X軸の方向の幅よりも小さく、
前記第4のアームの前記第11のアーム部の前記Y軸の方向の幅は前記第10のアーム部の前記X軸の方向の幅よりも小さい、
請求項6に記載の角速度センサ。 - 前記第1のアームの前記第3のアーム部の前記X軸の方向の幅は前記第2のアーム部の前記Y軸の幅よりも小さく、
前記第2のアームの前記第6のアーム部の前記X軸の方向の幅は前記第5のアーム部の前記Y軸の幅よりも小さく、
前記第3のアームの前記第9のアーム部の前記X軸の方向の幅は前記第8のアーム部の前記Y軸の幅よりも小さく、
前記第4のアームの前記第12のアーム部の前記X軸の方向の幅は前記第11のアーム部の前記Y軸の幅よりも小さい、
請求項6に記載の角速度センサ。 - 前記第1のアームの前記第1の角部の曲率半径は前記第2の角部の曲率半径よりも大きく、
前記第2のアームの前記第3の角部の曲率半径は前記第4の角部の曲率半径よりも大きく、
前記第3のアームの前記第5の角部の曲率半径は前記第6の角部の曲率半径よりも大きく、
前記第4のアームの前記第7の角部の曲率半径は前記第8の角部の曲率半径よりも大きい、
請求項6に記載の角速度センサ。 - 前記第1のアームの前記第1のアーム部に設けられて前記第1の錘を振動させる第1の駆動部と、
前記第1のアームの前記第2のアーム部に設けられて前記第1の錘の振動を検出する第1の検出部と、
前記第2のアームの前記第4のアーム部に設けられて前記第2の錘を振動させる第2の駆動部と、
前記第2のアームの前記第5のアーム部に設けられて前記第2の錘の振動を検出する第2の検出部と、
前記第3のアームの前記第7のアーム部に設けられて前記第3の錘を振動させる第3の駆動部と、
前記第3のアームの前記第8のアーム部に設けられて前記第3の錘の振動を検出する第3の検出部と、
前記第4のアームの前記第10のアーム部に設けられて前記第4の錘を振動させる第4の駆動部と、
前記第4のアームの前記第11のアーム部に設けられて前記第4の錘の振動を検出する第4の検出部と、
をさらに備えた、請求項6に記載の角速度センサ。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011800573741A CN103250028A (zh) | 2010-12-28 | 2011-12-22 | 角速度传感器 |
KR1020137013867A KR20140001223A (ko) | 2010-12-28 | 2011-12-22 | 각속도 센서 |
US13/989,644 US9303993B2 (en) | 2010-12-28 | 2011-12-22 | Angular velocity sensor |
JP2012550717A JP6078901B2 (ja) | 2010-12-28 | 2011-12-22 | 検出素子及びこの検出素子を用いた角速度センサ |
US15/058,374 US10119821B2 (en) | 2010-12-28 | 2016-03-02 | Angular velocity sensor |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010291931 | 2010-12-28 | ||
JP2010-291931 | 2010-12-28 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/989,644 A-371-Of-International US9303993B2 (en) | 2010-12-28 | 2011-12-22 | Angular velocity sensor |
US15/058,374 Continuation US10119821B2 (en) | 2010-12-28 | 2016-03-02 | Angular velocity sensor |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012090452A1 true WO2012090452A1 (ja) | 2012-07-05 |
Family
ID=46382593
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/007190 WO2012090452A1 (ja) | 2010-12-28 | 2011-12-22 | 角速度センサ |
Country Status (5)
Country | Link |
---|---|
US (2) | US9303993B2 (ja) |
JP (1) | JP6078901B2 (ja) |
KR (1) | KR20140001223A (ja) |
CN (1) | CN103250028A (ja) |
WO (1) | WO2012090452A1 (ja) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5631515B1 (ja) * | 2013-10-04 | 2014-11-26 | 株式会社トライフォース・マネジメント | 角速度検出装置 |
JP5674973B1 (ja) * | 2014-04-16 | 2015-02-25 | 株式会社トライフォース・マネジメント | 発電素子 |
JP2015050935A (ja) * | 2014-09-18 | 2015-03-16 | 株式会社トライフォース・マネジメント | 発電素子 |
JP2015195721A (ja) * | 2015-07-03 | 2015-11-05 | 株式会社トライフォース・マネジメント | 発電素子 |
JP6010700B2 (ja) * | 2013-09-04 | 2016-10-19 | 株式会社トライフォース・マネジメント | 発電素子 |
JP2017005994A (ja) * | 2016-09-16 | 2017-01-05 | 株式会社トライフォース・マネジメント | 発電素子 |
JP2017098580A (ja) * | 2017-02-02 | 2017-06-01 | 株式会社トライフォース・マネジメント | 発電素子 |
JP2017205011A (ja) * | 2017-07-31 | 2017-11-16 | 株式会社トライフォース・マネジメント | 発電素子 |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5906394B2 (ja) * | 2010-06-25 | 2016-04-20 | パナソニックIpマネジメント株式会社 | 慣性力検出素子とそれを用いた慣性力センサ |
KR20140001223A (ko) * | 2010-12-28 | 2014-01-06 | 파나소닉 주식회사 | 각속도 센서 |
JP2014240789A (ja) * | 2013-06-12 | 2014-12-25 | ソニー株式会社 | 圧電デバイス及び電子機器 |
WO2015075908A1 (ja) * | 2013-11-19 | 2015-05-28 | パナソニックIpマネジメント株式会社 | 角速度センサ素子およびそれを用いた角速度センサ |
WO2015075899A1 (ja) * | 2013-11-22 | 2015-05-28 | パナソニックIpマネジメント株式会社 | 角速度センサ素子および角速度センサ |
DE102017211444A1 (de) * | 2017-07-05 | 2019-01-10 | Robert Bosch Gmbh | Mikromechanischer Sensor |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001082963A (ja) * | 1999-09-13 | 2001-03-30 | Yoshiaki Kato | 運動センサ振動体および振動ジャイロスコープ |
WO2007111289A1 (ja) * | 2006-03-27 | 2007-10-04 | Matsushita Electric Industrial Co., Ltd. | 慣性力センサ |
WO2008023653A1 (fr) * | 2006-08-21 | 2008-02-28 | Panasonic Corporation | Capteur de force d'inertie |
WO2010092806A1 (ja) * | 2009-02-13 | 2010-08-19 | パナソニック株式会社 | 慣性力センサとそれに用いる検出素子 |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0914972A (ja) | 1995-07-03 | 1997-01-17 | Tdk Corp | 音片形振動ジャイロ |
JP2003344442A (ja) | 2002-05-24 | 2003-12-03 | Matsushita Electric Ind Co Ltd | 衝撃センサ |
JP4702942B2 (ja) | 2005-10-14 | 2011-06-15 | Necトーキン株式会社 | 振動ジャイロ用素子及び振動ジャイロ |
EP1947420B1 (en) * | 2006-01-24 | 2018-03-07 | Panasonic Intellectual Property Management Co., Ltd. | Inertial force sensor |
JP2008076265A (ja) * | 2006-09-22 | 2008-04-03 | Matsushita Electric Ind Co Ltd | 慣性力センサ |
US8201449B2 (en) * | 2006-11-14 | 2012-06-19 | Panasonic Corporation | Sensor |
US8117914B2 (en) * | 2007-02-20 | 2012-02-21 | Panasonic Corporation | Inertia force sensor and composite sensor for detecting inertia force |
US20100126270A1 (en) * | 2007-04-13 | 2010-05-27 | Panasonic Corporation | Inertia force sensor |
JP5287722B2 (ja) * | 2007-09-13 | 2013-09-11 | パナソニック株式会社 | 角速度センサ |
JP2009128020A (ja) | 2007-11-20 | 2009-06-11 | Nec Tokin Corp | 音叉型圧電単結晶振動子を用いた圧電振動ジャイロ |
JP4561820B2 (ja) | 2007-12-21 | 2010-10-13 | 株式会社豊田中央研究所 | 角速度センサ |
JP2009175511A (ja) | 2008-01-25 | 2009-08-06 | Panasonic Corp | 振動ミラーの製造方法 |
USRE46514E1 (en) * | 2008-10-07 | 2017-08-15 | Panasonic Corporation | Angular velocity sensor element, angular velocity sensor and angular velocity sensor unit both using angular velocity sensor element, and signal detecting method for angular velocity sensor unit |
WO2011093077A1 (ja) * | 2010-01-29 | 2011-08-04 | パナソニック株式会社 | 角速度センサ |
JP5906394B2 (ja) * | 2010-06-25 | 2016-04-20 | パナソニックIpマネジメント株式会社 | 慣性力検出素子とそれを用いた慣性力センサ |
KR20140001223A (ko) * | 2010-12-28 | 2014-01-06 | 파나소닉 주식회사 | 각속도 센서 |
EP2784443B1 (en) * | 2011-11-22 | 2016-07-27 | Panasonic Intellectual Property Management Co., Ltd. | Angular velocity sensor and detection element used therein |
-
2011
- 2011-12-22 KR KR1020137013867A patent/KR20140001223A/ko not_active Application Discontinuation
- 2011-12-22 CN CN2011800573741A patent/CN103250028A/zh active Pending
- 2011-12-22 JP JP2012550717A patent/JP6078901B2/ja not_active Expired - Fee Related
- 2011-12-22 US US13/989,644 patent/US9303993B2/en not_active Expired - Fee Related
- 2011-12-22 WO PCT/JP2011/007190 patent/WO2012090452A1/ja active Application Filing
-
2016
- 2016-03-02 US US15/058,374 patent/US10119821B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001082963A (ja) * | 1999-09-13 | 2001-03-30 | Yoshiaki Kato | 運動センサ振動体および振動ジャイロスコープ |
WO2007111289A1 (ja) * | 2006-03-27 | 2007-10-04 | Matsushita Electric Industrial Co., Ltd. | 慣性力センサ |
WO2008023653A1 (fr) * | 2006-08-21 | 2008-02-28 | Panasonic Corporation | Capteur de force d'inertie |
WO2010092806A1 (ja) * | 2009-02-13 | 2010-08-19 | パナソニック株式会社 | 慣性力センサとそれに用いる検出素子 |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6010700B2 (ja) * | 2013-09-04 | 2016-10-19 | 株式会社トライフォース・マネジメント | 発電素子 |
US10177689B2 (en) | 2013-09-04 | 2019-01-08 | Tri-Force Management Corporation | Power generating element |
US11088637B2 (en) | 2013-09-04 | 2021-08-10 | Tri-Force Management Corporation | Power generating element |
JP5631515B1 (ja) * | 2013-10-04 | 2014-11-26 | 株式会社トライフォース・マネジメント | 角速度検出装置 |
JP5674973B1 (ja) * | 2014-04-16 | 2015-02-25 | 株式会社トライフォース・マネジメント | 発電素子 |
JP2015050935A (ja) * | 2014-09-18 | 2015-03-16 | 株式会社トライフォース・マネジメント | 発電素子 |
JP2015195721A (ja) * | 2015-07-03 | 2015-11-05 | 株式会社トライフォース・マネジメント | 発電素子 |
JP2017005994A (ja) * | 2016-09-16 | 2017-01-05 | 株式会社トライフォース・マネジメント | 発電素子 |
JP2017098580A (ja) * | 2017-02-02 | 2017-06-01 | 株式会社トライフォース・マネジメント | 発電素子 |
JP2017205011A (ja) * | 2017-07-31 | 2017-11-16 | 株式会社トライフォース・マネジメント | 発電素子 |
Also Published As
Publication number | Publication date |
---|---|
CN103250028A (zh) | 2013-08-14 |
US9303993B2 (en) | 2016-04-05 |
US10119821B2 (en) | 2018-11-06 |
US20130239681A1 (en) | 2013-09-19 |
JPWO2012090452A1 (ja) | 2014-06-05 |
KR20140001223A (ko) | 2014-01-06 |
US20160195395A1 (en) | 2016-07-07 |
JP6078901B2 (ja) | 2017-02-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6078901B2 (ja) | 検出素子及びこの検出素子を用いた角速度センサ | |
US9835641B2 (en) | Angular velocity detection device and angular velocity sensor including the same | |
KR100764257B1 (ko) | 진동 자이로 소자, 진동 자이로 소자의 지지 구조 및자이로 센서 | |
EP2012087B1 (en) | Vibration gyro | |
JP2006201053A (ja) | 圧電振動ジャイロ素子、圧電振動ジャイロ素子の支持構造およびジャイロセンサ | |
JP2010256332A (ja) | 振動片、振動子および物理量検出装置 | |
JP6031682B2 (ja) | 角速度センサとそれに用いられる検出素子 | |
US8991248B2 (en) | Angular velocity sensor | |
JP2006201117A (ja) | 振動ジャイロ素子、振動ジャイロ素子の支持構造およびジャイロセンサ | |
JP2005233706A (ja) | 角速度センサ | |
JP5353616B2 (ja) | 振動ジャイロ素子、振動ジャイロ素子の支持構造およびジャイロセンサ | |
WO2010041422A1 (ja) | 角速度センサ素子およびこれを用いた角速度センサと角速度センサユニット及びその信号検出方法 | |
JP5942097B2 (ja) | 角速度センサとそれに用いられる検出素子 | |
JP5407259B2 (ja) | 角速度センサ素子 | |
JPH11271065A (ja) | 角速度センサ | |
JP5824492B2 (ja) | 振動ジャイロ素子およびジャイロセンサ | |
JP4600590B2 (ja) | 角速度センサ | |
JP2015064387A (ja) | 振動ジャイロ素子およびジャイロセンサ | |
JP2012252013A (ja) | 振動ジャイロ素子およびジャイロセンサ | |
JPH05231870A (ja) | 半導体振動ジャイロ | |
JP2010223762A (ja) | 物理量検出デバイス | |
JP2003214855A (ja) | 角速度センサ | |
JP2012163386A (ja) | 角速度センサユニットおよびその信号検出方法 | |
JPWO2005103619A1 (ja) | 振動ジャイロおよび振動ジャイロの角速度検出方法 | |
JP2010266298A (ja) | 圧電素子 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11853982 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2012550717 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13989644 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 20137013867 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11853982 Country of ref document: EP Kind code of ref document: A1 |