WO2012086425A1 - 受信装置及び方法 - Google Patents

受信装置及び方法 Download PDF

Info

Publication number
WO2012086425A1
WO2012086425A1 PCT/JP2011/078441 JP2011078441W WO2012086425A1 WO 2012086425 A1 WO2012086425 A1 WO 2012086425A1 JP 2011078441 W JP2011078441 W JP 2011078441W WO 2012086425 A1 WO2012086425 A1 WO 2012086425A1
Authority
WO
WIPO (PCT)
Prior art keywords
nth
transmission path
fourier transform
reliability information
output
Prior art date
Application number
PCT/JP2011/078441
Other languages
English (en)
French (fr)
Inventor
井戸 純
卓 藤原
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to KR1020137016318A priority Critical patent/KR101411086B1/ko
Priority to US13/823,085 priority patent/US8811465B2/en
Priority to JP2012549719A priority patent/JP5466311B2/ja
Priority to CN201180058626.2A priority patent/CN103250384B/zh
Publication of WO2012086425A1 publication Critical patent/WO2012086425A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • H04L1/0054Maximum-likelihood or sequential decoding, e.g. Viterbi, Fano, ZJ algorithms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/01Equalisers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/37Decoding methods or techniques, not specific to the particular type of coding provided for in groups H03M13/03 - H03M13/35
    • H03M13/39Sequence estimation, i.e. using statistical methods for the reconstruction of the original codes
    • H03M13/41Sequence estimation, i.e. using statistical methods for the reconstruction of the original codes using the Viterbi algorithm or Viterbi processors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/37Decoding methods or techniques, not specific to the particular type of coding provided for in groups H03M13/03 - H03M13/35
    • H03M13/39Sequence estimation, i.e. using statistical methods for the reconstruction of the original codes
    • H03M13/41Sequence estimation, i.e. using statistical methods for the reconstruction of the original codes using the Viterbi algorithm or Viterbi processors
    • H03M13/4107Sequence estimation, i.e. using statistical methods for the reconstruction of the original codes using the Viterbi algorithm or Viterbi processors implementing add, compare, select [ACS] operations
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/63Joint error correction and other techniques
    • H03M13/6331Error control coding in combination with equalisation
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/65Purpose and implementation aspects
    • H03M13/6577Representation or format of variables, register sizes or word-lengths and quantization
    • H03M13/658Scaling by multiplication or division
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/0848Joint weighting
    • H04B7/0857Joint weighting using maximum ratio combining techniques, e.g. signal-to- interference ratio [SIR], received signal strenght indication [RSS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03178Arrangements involving sequence estimation techniques
    • H04L25/03248Arrangements for operating in conjunction with other apparatus
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03178Arrangements involving sequence estimation techniques
    • H04L25/03312Arrangements specific to the provision of output signals
    • H04L25/03318Provision of soft decisions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/22Demodulator circuits; Receiver circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/38Demodulator circuits; Receiver circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/04Arrangements for detecting or preventing errors in the information received by diversity reception using frequency diversity

Definitions

  • the present invention relates to a signal receiving apparatus and method for modulating convolutionally encoded transmission data, and in particular, multilevel VSB (Vestigial Sideband) modulation, QPSK (Quadrature Phase Shift Keying) modulation, or multilevel QAM (Quadrature Amplitude Modulation) modulation.
  • the present invention relates to a receiving apparatus and a receiving method for received signals.
  • the error probability at the time of reception is reduced while using a plurality of antennas while increasing the amount of information that can be transmitted by combining multi-level digital modulation technology and error correction technology.
  • Technologies for improving system reliability such as reducing the required CNR (Carrier to Noise Power Ratio) by diversity combining technology, are applied.
  • digital terrestrial broadcasting in the U.S. employs multilevel VSB modulation as a modulation method.
  • Viterbi decoding and Reed-Solomon code that are effective when decoding a trellis-coded signal are decoded.
  • the transmission data is reproduced using the Reed-Solomon decoding technique (see, for example, Patent Document 1, Patent Document 2, and Patent Document 3).
  • a Viterbi decoder In general, in a Viterbi decoder, the likelihood between the reception point arrangement of a signal whose phase and amplitude are corrected (hereinafter also referred to as “equalization”) and the signal point arrangement that is uniquely determined depending on the modulation scheme. A branch metric indicating Then, all surviving paths of the possible trellis are obtained, the branch metrics of each path are cumulatively added, and the path with the smallest cumulative addition result is selected. The state of the selected path is output as a Viterbi decoding result, and the transmission data is reproduced.
  • Patent Document 6 and Non-Patent Document 1 describe methods for improving reception performance by diversity combining technology.
  • a signal obtained by modulating data subjected to convolutional coding or trellis coding modulation for example, multilevel VSB (Vestigial Sideband) modulation, QPSK (Quadrature Phase Shift Keying) modulation, or multilevel QAM (Quadrature Amplitude Modulation Modulation signal).
  • VSB Vertical Sideband
  • QPSK Quadrature Phase Shift Keying
  • QAM Quadrature Amplitude Modulation Modulation signal
  • the branch metric obtained by the conventional receiver considers the Euclidean distance between signal point arrangements, but the average power of noise included in the demodulated signal (hereinafter also referred to as “noise average power”), Or the ratio of noise power to desired signal power (for example, received signal power) (hereinafter also referred to as “signal power to noise power ratio”), frequency characteristics of transmission path, influence of time fluctuation of radio wave environment, etc. It has not been.
  • the Euclidean distance calculated from the equalized signal includes the noise average power and the absolute amount of the signal-to-noise power ratio included in the demodulated signal, and the frequency of the transmission path.
  • a modulated signal for example, a multi-level VSB (Vestigial Sideband) modulation, a QPSK (Quadrature Phase Shift Keying) modulation or a multi-level QAM (Quadrature Amplitude Modulation) modulated signal is combined with a reception signal corresponding to a diversity signal. It is generally known that the diversity gain is maximized by determining the combination ratio.
  • the synthesis ratio is calculated based on the envelope ratio
  • the diversity gain is maximized because the carrier power to noise power ratio (hereinafter also referred to as “C / N”) of the signal received by each antenna.
  • C / N carrier power to noise power ratio
  • the present invention has been made to solve the above-mentioned problems, such as an average amount of noise average power and a signal-to-noise power ratio included in a demodulated signal, a frequency characteristic of a transmission path, a time variation of a radio wave environment, and the like.
  • An object is to improve reception performance by generating corresponding reliability information and performing Viterbi decoding or diversity combining based on the generated reliability information.
  • a receiving apparatus provides: A transmission signal obtained by modulating transmission data encoded by convolution coding, receiving a transmission signal on which a predetermined known signal is superimposed, and reproducing transmission data from the received signal, Frequency converting means for converting the received signal into a signal of a predetermined frequency band; Fourier transform means for Fourier transforming and outputting the signal of the predetermined frequency band; Frequency axis equalization means for performing equalization in the frequency domain by correcting in the frequency domain the distortion received in the transmission path by the signal received by the antenna, using the output of the Fourier transform means; An inverse Fourier transform unit that outputs an equalized signal in the time domain by performing an inverse Fourier transform on the output of the frequency axis equalizing unit; Known signal generation means for generating a known signal superimposed on the transmission signal; A transmission path estimating means for estimating a transmission path of the received signal and outputting a Fourier transform of a coefficient representing a frequency characteristic of the
  • the receiving apparatus is: A signal obtained by modulating transmission data that has been subjected to convolutional coding, which is obtained by superimposing a predetermined known signal, is received by first to Nth antennas (N is an integer equal to or greater than 2), and diversity-combined to transmit the signal.
  • a receiving device for reproducing data First to Nth frequency converting means for converting signals received by the first to Nth antennas into signals of first to Nth predetermined frequency bands, respectively.
  • First to Nth Fourier transform means for Fourier transforming signals of the first to Nth predetermined frequency bands, respectively; Frequency axis diversity combining means for diversity combining the outputs of the first to Nth Fourier transform means; An inverse Fourier transform unit that outputs an equalized signal in the time domain by performing an inverse Fourier transform on the output of the frequency axis diversity combining unit; Known signal generation means for generating a known signal superimposed on the transmission signal; The signals of the first to Nth predetermined frequency bands and the known signal generated by the known signal generating means are input, respectively, and the transmission paths of the signals received by the first to Nth antennas are estimated, respectively.
  • First to Nth transmission path estimation means for outputting a Fourier transform of a coefficient representing the frequency characteristic of the transmission path; First to generate first to Nth reliability information representing the reliability of the outputs of the first to Nth Fourier transform means based on the outputs of the first to Nth transmission path estimation means, respectively.
  • Thru Nth reliability information generating means Frequency axis combining ratio calculating means for calculating a combining ratio of diversity based on the outputs of the first to Nth reliability information and the first to Nth transmission path estimating means,
  • the frequency axis diversity combining unit combines the outputs of the first to N-th Fourier transform units according to the output of the frequency axis combining ratio calculating unit.
  • the receiving apparatus is: A signal obtained by modulating transmission data that has been subjected to convolutional coding, which is obtained by superimposing a predetermined known signal, is received by first to Nth antennas (N is an integer equal to or greater than 2), and diversity-combined to transmit the signal.
  • a receiving device for reproducing data First to Nth frequency converting means for converting signals received by the first to Nth antennas into signals of first to Nth predetermined frequency bands, respectively.
  • First to Nth Fourier transform means for Fourier transforming signals of the first to Nth predetermined frequency bands, respectively;
  • Each of the outputs of the first to Nth Fourier transform means is used as an input, and the distortion received in the transmission path by the signals received by the first to Nth antennas is corrected in the frequency domain.
  • First to Nth frequency axis equalization means for performing equalization;
  • Equalized frequency axis diversity combining means for combining and outputting the outputs of the first to Nth frequency axis equalizing means; and
  • An inverse Fourier transform unit that outputs an equalized signal in the time domain by performing an inverse Fourier transform on the output of the equalized frequency axis diversity combining unit;
  • Known signal generation means for generating a known signal superimposed on the transmission signal;
  • the first to Nth predetermined frequency band signals and the known signal generated by the known signal generating means are input, respectively, and the signal transmission path is received by the first to Nth antennas, respectively.
  • Transmission path estimation means for outputting a Fourier transform of a coefficient representing the frequency characteristics of the transmission path;
  • First to Nth reliability information representing the reliability of the outputs of the first to Nth Fourier transform means is generated based on the outputs of the first to Nth transmission path estimation means, respectively.
  • Nth reliability information generating means A frequency-axis combining ratio calculating means after equalization for calculating a combining ratio of diversity based on the outputs of the first to Nth reliability information and the first to Nth transmission path estimating means,
  • the equalized frequency axis diversity combining unit combines the outputs of the first to Nth frequency axis equalizing units according to the output of the post-equalized frequency axis combining ratio calculating unit,
  • the first to Nth frequency axis equalization means also receives the outputs of the first to Nth transmission path estimation means, respectively, and based on these outputs, the first to Nth Fourier transform means It is characterized by correction.
  • the reliability information of the equalized output is generated based on the filter coefficient obtained in the transmission path estimation process of the received signal, and the reliability information is used, for example, the reliability Since branch metrics are calculated and Viterbi decoded based on information and Euclidean distance, error correction capability can be improved in various transmission path environments, and errors in transmission data reproduced on the receiving side can be reduced. .
  • the reliability information about the signal received by each receiving antenna is generated based on the filter coefficient obtained in the transmission path estimation process of the signal received by each antenna. Since diversity combining is performed based on these, diversity gain is improved in various transmission path environments, and errors in transmission data reproduced on the receiving side can be reduced.
  • FIG. 10 is a block diagram illustrating a configuration example of an equalized frequency axis synthesis ratio calculation unit 33 in FIG.
  • FIG. 1 is a block diagram showing a receiving apparatus according to Embodiment 1 of the present invention.
  • the receiving apparatus shown in FIG. 1 is a transmission signal obtained by modulating transmission data that has been subjected to convolutional coding by a convolutional encoder in a transmission apparatus (not shown), for example, a multilevel VSB (Vestinal Sideband) modulation scheme, A signal received by an antenna 11 for receiving a transmission signal obtained by modulating with a QPSK (Quadrature Phase Shift Keying) modulation method or a multilevel QAM (Quadrature Amplitude Modulation) modulation method, and reproducing transmission data.
  • Receiving frequency conversion unit 12, Fourier transform unit 13, frequency axis equalization unit 14, inverse Fourier transform unit 15, known signal generation unit 16, transmission path estimation unit 17, reliability information generation unit 22, A Viterbi decoding unit 23 is provided.
  • the antenna 11 receives a transmission signal obtained by modulating transmission data encoded by convolution coding, for example, a multilevel VSB modulation, QPSK modulation, or multilevel QAM modulated signal.
  • the frequency converter 12 converts the signal Sa received by the antenna 11 into a signal Sb in a predetermined frequency band.
  • the Fourier transform unit 13 receives the signal (a signal in a predetermined frequency band) Sb output from the frequency conversion unit 12, performs a Fourier transform of a predetermined number of points on the input signal Sb, and outputs it.
  • the frequency axis equalization unit 14 receives the output of the Fourier transform unit 13 and the output of the transmission channel estimation unit 17 as input, and based on the transmission channel estimation signal (Fourier transform of the identification filter coefficient) output from the transmission channel estimation unit 17.
  • the signal received by the antenna 11 is equalized in the frequency domain (equalization in the frequency axis) to the output of the Fourier transform unit 13 by correcting the distortion received in the transmission path in the frequency domain (in the frequency axis). )I do.
  • the inverse Fourier transform unit 15 receives the output Q of the frequency axis equalization unit 14 and performs an inverse Fourier transform on the output Q of the frequency axis equalization unit 14 to perform equalization in the time domain (in the time axis). Convert to signal and output.
  • the output Q of the inverse Fourier transform unit 14 is an equalized output obtained by correcting the distortion that the received signal has received on the transmission path. Since the technique for converting the received signal into the frequency axis and equalizing is a known technique, a detailed description thereof is omitted here.
  • the Viterbi decoding unit 23 receives the output of the inverse Fourier transform unit 15 and the output R of the reliability information generation unit 22 described later, and performs Viterbi decoding processing based on these information to reproduce the transmission data.
  • the Viterbi decoding unit 23 uses the reliability information R output from the reliability information generation unit 22 as a weighting factor for the branch metric. That is, in decoding, the Euclidean distance itself or the branch metric defined by its square is weighted by the reliability information R so that the higher the reliability, the smaller the weighted branch metric. And a surviving path is selected based on the weighted branch metric.
  • the known signal generation unit 16 generates a known signal superimposed on the transmission signal.
  • a known signal For example, in the US terrestrial digital broadcasting system, pseudo-random signals are embedded in a transmission data sequence at a constant period, and these are known signals and can be generated on the receiver side.
  • the transmission path estimation unit 17 receives the output of the frequency conversion unit 12 and the output of the known signal generation unit 16 as inputs, estimates the transmission path of the reception signal (transmission path from the transmission apparatus to the antenna 11 of the reception apparatus), and performs the transmission. This outputs the Fourier transform of the coefficient representing the frequency characteristic of the road, and is configured as shown in FIG. 2, for example.
  • 2 includes a transmission channel identification filter unit 18, an error signal generation unit 19, an identification filter coefficient calculation unit 20, and an identification filter coefficient Fourier transform unit 21.
  • the transmission path identification filter unit 18 receives an output of an identification filter coefficient calculation unit 20 and an output of a known signal generation unit 16 described later as inputs, and uses an output of the identification filter coefficient calculation unit 20 as a coefficient, and outputs an output of the known signal generation unit 16. Output after filtering.
  • the error signal generation unit 19 receives a signal Sb of a predetermined frequency band output from the frequency conversion unit 12 and an output of the transmission path identification filter unit 18 as input, and outputs a signal of a predetermined frequency band output from the frequency conversion unit 12. An error of the output of the transmission path identification filter unit 18 with respect to the signal Sb is calculated and output.
  • the identification filter coefficient calculation unit 20 is a filter used in the transmission line identification filter unit 18 so that the output of the error signal generation unit 19 becomes zero, that is, the output of the transmission line identification filter unit 18 matches the signal Sb. Determine the coefficient.
  • the portion constituted by the transmission path identification filter section 18 and the identification filter coefficient calculation section 20 has the same transfer function as that of the transmission path through which the received signal has passed.
  • the output of the filter coefficient calculation unit 20 represents the impulse response of the transmission path.
  • the identification filter coefficient calculation unit 20 uses a sequential update algorithm such as a LMS (Least Mean Square Error) algorithm or a CMA (Constant Modulus Algorithm) so that the output of the error signal generation unit 19 becomes zero.
  • the filter coefficient of the filter unit 7 is sequentially updated and generated.
  • the identification filter coefficient calculation unit 20 uses the known signal from the known signal generation unit 16 and the output of the error signal generation unit 19.
  • the identification filter coefficient calculation unit 20 includes not only the known signal from the known signal generation unit 16 and the output of the error signal generation unit 19 but also a transmission path identification filter as indicated by a dotted line in FIG.
  • the output of unit 18 is also used.
  • an algorithm and means for allowing the output of the identification filter coefficient calculation unit 20 to represent the impulse response of the transmission path are arbitrary, and are well-known techniques. Omitted.
  • the identification filter coefficient Fourier transform unit 21 receives the output of the identification filter coefficient calculation unit 20 as input, performs a Fourier transform of a predetermined number of points, and outputs the result. At this time, the output of the identification filter coefficient Fourier transform unit 21 represents the frequency characteristic of the transmission path, that is, the transmission path estimation value. The output of the identification filter coefficient Fourier transform unit 21 constitutes the output of the transmission path estimation unit 17.
  • the frequency axis equalization unit 14 performs equalization by multiplying the output X of the Fourier transform unit 13 by a transfer function that represents the reverse characteristic of the transmission line characteristic estimated by the transmission line estimation unit 17.
  • the reliability information generation unit 22 receives the output of the transmission path estimation unit 17 as an input, and represents the reliability of the equalization result by the frequency axis equalization unit 14 (accordingly, the reliability of the output of the inverse Fourier transform unit 15). Generate and output information.
  • the reliability information generation unit 22 includes an in-band variance calculating unit 41, an in-band average gain calculating unit 42, and a reliability information converting unit 43, and the output of the reliability information converting unit 43 is reliability information. It is the output of the generation unit 22.
  • the input to the reliability information generation unit 22 (Fourier transform result indicating the frequency characteristic calculated by the identification filter coefficient Fourier transform unit 21 is supplied to the in-band dispersion calculation unit 41 and the in-band average gain calculation unit 42.
  • the in-band variance calculation unit 41 receives the output of the transmission path estimation unit 17 input to the reliability information generation unit 22 and uses the output of the transmission path estimation unit 17 as the component in the transmission frequency band (signal band) and the band. Separated into outer components, variation in amplitude characteristics of components in the transmission frequency band is calculated and output as a variance value. Specifically, a value obtained by subtracting the square of the average value of the output of the identification filter coefficient Fourier transform unit 21 from the average of the square value of the output of the identification filter coefficient Fourier transform unit 21 is obtained as a variance value.
  • the in-band average gain calculation unit 42 receives the output of the transmission path estimation unit 17 input to the reliability information generation unit 22 as an input, and the average gain of the transmission frequency band component (over the entire transmission frequency band of the transmission path gain). (Average value) is calculated and output.
  • the reliability information conversion unit 43 receives the output of the in-band variance calculation unit 41 and the output of the in-band average gain calculation unit 42 as input, and generates and outputs the reliability information R based on these and a predetermined reference value. .
  • Such generation of the reliability information R is based on a combination of the dispersion value obtained by the in-band dispersion calculating unit 41 and the average gain obtained by the in-band average gain calculating unit 42 based on a predetermined reference value. It can also be said that it is a process of converting into sex information.
  • the frequency characteristic indicated by the Fourier transform result output from the identification filter coefficient Fourier transform unit 21 has a constant amplitude over the entire transmission frequency band. And has a thick solid line S1 in FIG. If the amplitude value at this time is used as the reference value, the output of the in-band average gain calculation unit 42 (average gain of the transmission frequency band component) is constant and equal to the reference value, and the in-band dispersion calculation unit The output (dispersion value) 41 is zero.
  • the output of the in-band average gain calculation unit 42 (average gain of the component in the transmission frequency band) is almost the same as the reference value, but the output (dispersion value) of the in-band dispersion calculation unit 41 varies greatly. .
  • the output of the in-band dispersion calculating unit 41 is further increased. Further, when the amplitude of the equalization output (the output Q of the frequency axis equalization unit 14) is small in a multipath transmission line, the output is as shown by a thick broken line S4 in FIG. Becomes smaller than the reference value, and the output of the in-band dispersion calculating unit 41 also increases.
  • the thick solid line S1 has the highest reliability in the equalization output (the output Q of the frequency axis equalization unit 14), and the reliability is in the order of the thin solid line S2, the thick dotted line S3, and the thick broken line S4. Is expected to become lower.
  • the second and subsequent orders are switched depending on the average gain of the components in the transmission frequency band and the magnitude relationship of dispersion. In any case, it is possible to generate equalization output reliability information based on these pieces of information.
  • the output of the in-band average gain calculation unit 42 is A
  • the output of the in-band dispersion calculation unit 41 is B
  • the reference value is C
  • the following formula (1) is used using predetermined positive coefficients a and b.
  • the obtained positive real number R may be used as reliability information.
  • the present invention is not limited to the equation (1), and any conversion equation may be used as long as the average gain A is smaller than the reference value C and the reliability decreases, and the reliability decreases as the dispersion value B increases. Further, instead of the conversion formula, reliability information may be generated using a conversion table.
  • reliability information may be generated based only on the variance value B without using the average gain.
  • a conversion formula or conversion table is used such that the reliability decreases as the variance value B increases.
  • the reliability information generation unit 22 in the above example is configured to generate reliability information by calculating the dispersion of transmission path amplitude characteristics within the transmission frequency band as a dispersion value. It is not limited to the signal to represent, but should just be a signal corresponding to the distortion of a transmission line.
  • the reliability information generation unit 22 shown in FIG. 5 is similar to the in-band maximum gain calculation unit 44 that receives the output of the identification filter coefficient Fourier transform unit 21 input to the reliability information generation unit 22, and also generates reliability information.
  • a weighting calculation unit 48 is the output of the reliability information generation unit 22.
  • the in-band average gain calculation unit 42 is the same as that shown in the configuration example of FIG.
  • the in-band maximum gain calculating unit 44 separates the Fourier transform result (indicating frequency characteristics) output from the identification filter coefficient Fourier transform unit 21 into a transmission frequency band (signal band) component and an out-of-band component, and transmits the transmission frequency band. Outputs the maximum value (maximum gain) of the amplitude characteristics of the inner component.
  • the in-band minimum gain calculating unit 45 separates the Fourier transform result (indicating frequency characteristics) output from the identification filter coefficient Fourier transform unit 21 into a transmission frequency band (signal band) component and an out-of-band component, and transmits the transmission frequency band. Outputs the minimum value (minimum gain) of the amplitude characteristic of the inner component.
  • the difference absolute value calculation unit 46 calculates the absolute value of the difference between the output of the in-band maximum gain calculation unit 44 and the output of the in-band minimum gain calculation unit 45.
  • the weight coefficient generation unit 47 receives the output of the difference absolute value calculation unit 46 as an input, converts the absolute value of the difference output from the difference absolute value calculation unit 46 into a positive coefficient corresponding thereto, and outputs it. For example, when the difference absolute value is 0, the coefficient is set to 1, and a value that gradually decreases from 1 as the difference absolute value increases is output.
  • the in-band maximum gain calculation unit 44, the in-band minimum gain calculation unit 45, the difference absolute value calculation unit 46, and the weight coefficient generation unit 47 receive the output of the transmission path estimation unit 17, that is, the transmission path estimation result.
  • a weighting factor generating unit 49 is provided that obtains a weighting factor corresponding to the absolute difference between the maximum gain and the minimum gain in the transmission frequency band.
  • the weighting calculation unit 48 receives the output of the weighting factor determination unit 49 and the output of the in-band average gain calculation unit 42 as input, and generates and outputs reliability information R based on these and a predetermined reference value. Such generation of the reliability information R is based on a combination of the weighting factor determined by the weighting factor determination unit 49 and the average gain obtained by the in-band average gain calculation unit 42 based on a predetermined reference value. It can be said that it is a process of converting to information.
  • the output of the in-band average gain calculation unit 42 is A
  • the reference value is C
  • the output of the weight coefficient generation unit 47 is D
  • the following equation (2) is obtained using predetermined positive coefficients c and d.
  • a positive real number R may be used as the reliability information.
  • the conversion formula is not limited to the formula (2), and if the average gain A is smaller than the reference value C, the reliability decreases, and the conversion formula increases as the weighting coefficient D increases.
  • reliability information may be generated using a conversion table instead of a conversion formula. Further, without obtaining the weight coefficient D as described above, the reliability may be lowered as the difference absolute value between the in-band maximum gain and the in-band minimum gain increases.
  • the reliability information generation unit 22 shown in FIG. 5 When the reliability information generation unit 22 shown in FIG. 5 is used, the reliability information is generated based on the absolute value of the difference between the maximum gain and the minimum gain in the transmission frequency band (signal band). There is an effect that the reliability information can be obtained with a small circuit or an operation amount.
  • the signal R generated by the reliability information generation unit 22 is supplied to the Viterbi decoding unit 23 together with the output of the inverse Fourier transform unit 15 as a branch metric weight coefficient, and the Viterbi decoding unit 23 performs Viterbi decoding using them. Correct the error.
  • the Viterbi decoding unit 23 illustrated in FIG. 6 includes a branch metric calculation unit 51 that receives the output of the inverse Fourier transform unit 15, and the branch metric weights that are the output of the branch metric calculation unit 51 and the output of the reliability information generation unit 22.
  • a metric weight coefficient multiplication unit 52 that receives a coefficient
  • an addition / comparison / selection unit 53 that receives an output of the metric weight coefficient multiplication unit 52
  • a path memory unit that receives an output of the addition / comparison / selection unit 53 54.
  • the output of the path memory unit 54 is the output of the Viterbi decoding unit 23.
  • the output of the inverse Fourier transform unit 15 is input to the branch metric calculation unit 51.
  • the branch metric calculation unit 51 obtains the Euclidean distance between the signal point of the equalized output and the signal point corresponding to each symbol uniquely determined by the modulation scheme corresponding to the received signal, and from this Euclidean distance, A predetermined number of branch metrics determined by the configuration of the convolutional encoder are calculated.
  • the branch metric calculated by the branch metric calculation unit 51 is input to the metric weight coefficient multiplication unit 52.
  • the metric weight coefficient multiplier 52 multiplies each branch metric input from the branch metric calculator 51 by the reliability information calculated by the reliability information generator 22 as a branch metric weight coefficient.
  • Each branch metric (weighted branch metric) multiplied by the branch metric weighting coefficient is cumulatively added in the addition / comparison / selection unit 53 to calculate a plurality of paths.
  • the addition / comparison / selection unit 53 compares the calculated paths and selects the path having the smallest value.
  • the cumulative addition result of the branch metrics of the selected path is stored in the path memory unit 54 as a surviving path metric.
  • the path memory unit 54 stores the surviving path metric and outputs an information sequence corresponding to the path metric as a decoded signal.
  • the reliability information of the equalized output is generated based on the filter coefficient obtained in the transmission path identification process, and is determined based on the Euclidean distance. Since the branch metric is weighted with reliability information and Viterbi decoding is performed using the weighted branch metric, the error correction capability can be improved in various transmission path environments. Transmission data errors can be reduced.
  • Embodiment 2 FIG. In the first embodiment, the configuration in which the reliability information is used in the Viterbi decoding unit 23 to improve the reception performance has been described. Next, the embodiment in which the reliability information is used in diversity combining to improve the reception performance. Indicates.
  • FIG. 7 is a block diagram showing a receiving apparatus according to Embodiment 2 of the present invention.
  • FIG. 7 shows a case where a signal is received using a plurality of antennas, that is, the first to Nth antennas 11-1 to 11-N (N is an integer of 2 or more), and the signals are decoded by diversity combining. ing.
  • the receiving apparatus shown in FIG. 7 includes first to Nth frequency conversion units 12-1 to 12-N, first to Nth Fourier transform units 13-1 to 13-N, and a known signal generation unit 16.
  • the output of the inverse Fourier transform unit 15 is a demodulated output.
  • the first to Nth frequency converters 12-1 to 12-N are provided corresponding to the first to Nth antennas 11-1 to 11-N, respectively, and the first to Nth antennas 11-
  • the signals (first to Nth received signals) Sa1 to SaN received at 1 to 11-N are converted into signals Sb1 to SbN in a predetermined frequency band.
  • the n-th frequency converter 12-n (n is any one of 1 to N) receives the n-th received signal San obtained by receiving the corresponding signal with the n-th antenna 11-n.
  • Sbn in the frequency band To a signal Sbn in the frequency band.
  • the configuration and operation of each of the first to Nth frequency converters 12-1 to 12-N is the same as that of the frequency converter 12 shown in the first embodiment.
  • the first to Nth Fourier transform units 13-1 to 13-N are provided corresponding to the first to Nth frequency transform units 12-1 to 12-N, respectively, and the first to Nth frequencies are respectively provided.
  • the outputs Sb1 to SbN of the converters 12-1 to 12-N are input and subjected to Fourier transform and output.
  • the n-th Fourier transform unit 13-n takes the output Sbn of the corresponding n-th frequency transform unit 12-n as an input, and performs a Fourier transform to output.
  • the configurations and operations of the first to Nth Fourier transform units 13-1 to 13-N are the same as those of the Fourier transform unit 13 shown in the first embodiment.
  • the known signal generation unit 16 generates a known signal superimposed on the transmission signal, similar to the known signal generation unit 16 described in the first embodiment.
  • the first to Nth transmission line estimation units 17-1 to 17-N are provided corresponding to the first to Nth frequency conversion units 12-1 to 12-N, respectively.
  • the signals Sb1 to SbN of a predetermined frequency band output from the frequency converters 12-1 to 12-N are input, and the signals received by the first to Nth frequency converters 12-1 to 12-N, respectively.
  • the n-th transmission line estimation unit 17-n receives the signal Sbn in a predetermined frequency band output from the corresponding n-th frequency conversion unit 12-n as an input, and receives the n-th frequency conversion unit 12-n. Estimate the transmission path of the signal received by n.
  • N-th transmission path estimation units 17-1 to 17-N include a transmission path identification filter unit 18, an error signal generation unit 19, an identification filter coefficient calculation unit 20, an identification filter coefficient Fourier transform unit 21, and the like.
  • the transmission path identification filter section 18 in each transmission path estimation section 17-n is connected to the input of the transmission path estimation section 17-n, that is, the output of the known signal generation section 16 and the identification in the transmission path estimation section 17-n.
  • the output of the filter coefficient calculation unit 20 is used as an input, and the output of the known signal generation unit 16 is filtered and output using the output of the identification filter coefficient calculation unit 20 as a coefficient.
  • the error signal generation unit 19 inputs the transmission line estimation unit 17-n, that is, the output of the corresponding frequency conversion unit 12-n, and the output of the transmission line filter unit 18 (within the same transmission line estimation unit 17-n). Is input, and a signal indicating the latter error with respect to the former is output.
  • the identification filter coefficient calculation unit 20 receives the known signal from the known signal generation unit 16 and the output of the error signal generation unit 19 (in the same transmission path estimation unit 17-n) as inputs, The filter coefficient used in the transmission path identification filter unit 17 is calculated so that the output of the error signal generation unit 19 becomes zero.
  • the identification filter coefficient calculation unit 20 displays not only the known signal from the known signal generation unit 16 and the output of the error signal generation unit 19 (in the same transmission path estimation unit 17-n), As indicated by a dotted line in FIG. 2, the output of the transmission line identification filter unit 18 (within the same transmission line estimation unit 17-n) is also used.
  • the identification filter coefficient Fourier transform unit 21 uses the output of the identification filter coefficient calculation unit 20 as input, and performs Fourier transform to output.
  • the output of the identification filter coefficient Fourier transform unit 21 of each transmission path estimation unit 17-n becomes the output of the transmission path estimation unit 17-n.
  • the first to Nth reliability information generation units 22-1 to 22-N are provided corresponding to the first to Nth transmission path estimation units 17-1 to 17-N, respectively.
  • N Fourier transform units 13-1 to 13-N are provided corresponding to the outputs of the first to Nth transmission path estimation units 17-1 to 17-N, respectively.
  • First to Nth reliability information R1 to RN representing the reliability of the outputs X1 to XN of the Fourier transform units 13-1 to 13-N are generated.
  • the n-th reliability information generation unit 22-n takes the output of the corresponding n-th transmission path estimation unit 17-n as an input, and determines the reliability of the output Xn of the n-th Fourier transform unit 13-n.
  • the nth reliability information Rn to represent is generated.
  • Each of the first to N-th reliability information generation units 22-1 to 22-N may be configured as shown in FIG. 3, similarly to the reliability information generation unit 22 described in the first embodiment. 5 may be configured as shown in FIG.
  • each of the first to Nth reliability information generation units 22-1 to 22-N that is, the in-band dispersion in the nth reliability information generation unit 22-n.
  • the calculation unit 41 and the in-band average gain calculation unit 42 are the variance values of the signals in the band of the transmission path estimation result Fn input from the corresponding transmission path estimation unit 17-n to the reliability information generation unit 22-n. And the average gain are respectively calculated, and the reliability information conversion unit 43 receives the output of the in-band dispersion calculation unit 41 and the output of the in-band average gain calculation unit 42 as input, and generates the reliability information Rn.
  • each of the first to Nth reliability information generation units 22-1 to 22-N that is, the weight coefficient determination in the nth reliability information generation unit 22-n is determined.
  • the unit 49 and the in-band average gain calculation unit 42 determine and transmit the weighting factor D based on the transmission path estimation result Fn input from the corresponding transmission path estimation unit 17-n to the reliability information generation unit 22-n.
  • the average gain A of the signal in the frequency band is calculated, and the weighting calculation unit 48 receives the output D of the weight coefficient determination unit 47 and the output A of the in-band average gain calculation unit 42 as input, and reliability information Rn Is generated.
  • the frequency axis synthesis ratio calculation unit 31 outputs the outputs of the first to Nth reliability information generation units 22-1 to 22-N and the outputs of the first to Nth transmission path estimation units 17-1 to 17-N. Based on this, diversity combining ratios W1 to WN are calculated. Specifically, the reliability information R1 to R corresponding to the first to Nth antennas 11-1 to 11-N output from the first to Nth reliability information generation units 22-1 to 22-N are output.
  • the frequency axis composition ratio calculation unit 31 shown in FIG. 8 includes first to Nth complex conjugate units 61-1 to 61-N, first to Nth power calculation units 62-1 to 62-N, 1st to Nth power value weighting units 63-1 to 63-N, a power sum calculation unit 64, and 1st to Nth synthesis ratio generation units 65-1 to 65-N.
  • the outputs of the N synthesis ratio generation units 65-1 to 65-N represent the synthesis ratios W1 to WN with respect to the outputs of the first to Nth Fourier transform units 13-1 to 13-N, respectively.
  • the output F1 of the first transmission path estimation unit 17-1 is input to the first complex conjugate unit 61-1 and the first power calculation unit 62-1.
  • the first complex conjugate section 61-1 generates a complex conjugate signal H1 of the output F1 of the first transmission path estimation section 17-1.
  • the first power calculator 62-1 calculates and outputs the square value P1 of the amplitude of the output of the first transmission path estimator 17-1 as a power value.
  • the first power value weighting unit 63-1 applies the first reliability information R1 that is the output of the first reliability information generation unit 22-1 to the output P1 of the first power calculation unit 62-1. A corresponding weighting, that is, an operation for obtaining the product of the two is performed and output.
  • This weighting is performed by obtaining the product (P1 ⁇ R1) of the output P1 of the first power calculator 62-1 and the first reliability signal information R1.
  • the operation of -N is the same as that of the first complex conjugate unit 61-1, the first power calculation unit 62-1, and the first power value weighting unit 63-1.
  • the first to Nth complex conjugate units 61-1 to 61-N receive the outputs F1 to FN of the first to Nth transmission path estimation units 17-1 to 17-N, respectively, and input the inputs.
  • the complex conjugate signals H1 to HN are converted and output.
  • the first to Nth power calculation units 62-1 to 62-N receive the outputs F1 to FN of the first to Nth transmission path estimation units 17-1 to 17-N, respectively, and square their amplitudes. The value is calculated and output as power values P1 to PN.
  • the first to Nth power value weighting units 63-1 to 63-N respectively output the outputs P1 to PN of the first to Nth power calculation units 62-1 to 62-N, respectively. Weighted with reliability information R1 to RN and output.
  • the power sum calculation unit 64 calculates and outputs the sum Pt of the outputs (R1 ⁇ P1) to (RN ⁇ PN) of the first to Nth power value weighting units 63-1 to 63-N.
  • j is a variable from 1 to N
  • the calculation for obtaining the total power Pt in the power sum calculation unit 64 is expressed by the following equation (3).
  • the output Pt of the power sum calculation unit 64 is input to the first to Nth synthesis ratio generation units 65-1 to 65-N.
  • the first synthesis ratio generation unit 65-1 A synthesis ratio W1 for the output X1 of the Fourier transform unit 13-1 is generated and output.
  • the configurations and operations of the second to Nth synthesis ratio generation units 65-2 to 65-N are the same as those of the first synthesis ratio generation unit 65-1.
  • the first to Nth synthesis ratio generating units 65-1 to 65-N respectively output the outputs H1 to HN and the first to Nth complex conjugate units 61-1 to 61-N, respectively.
  • the diversity combining ratios W1 to WN for the outputs X1 to XN of the first to Nth Fourier transform units 13-1 to 13-N are calculated. And output.
  • Expression (4) represents the synthesis ratio Wi with respect to the output of the i-th Fourier transform unit 13-i, and Hi represents the i-th complex conjugate unit.
  • Output 61-i, Ri means the i-th reliability information.
  • each Fourier transform unit (13-i) corresponds to the complex conjugate (Hi) calculated by the corresponding complex conjugate unit (61-i).
  • the weight is proportional to the product with the reliability (Ri) generated by the reliability information generation unit (22-i) and is synthesized.
  • the synthesis ratio calculation method in the frequency axis synthesis ratio calculation unit 31 may be such that the synthesis ratio changes according to the magnitude of the reliability information, and the higher the reliability of the Fourier transform unit output, the greater the synthesis ratio.
  • the method is not limited to the above method.
  • the frequency axis diversity combining unit 32 receives the outputs W1 to WN of the frequency axis combining ratio calculation unit 31 and the outputs X1 to XN of the first to Nth Fourier transform units 13-1 to 13-N as inputs, and the frequency axis combining ratio
  • the outputs X1 to XN of the first to Nth Fourier transform units 13-1 to 13-N are synthesized and output according to the outputs W1 to WN of the calculation unit 31.
  • the outputs X1 to XN of the Fourier transform units 13-1 to 13-N are weighted and added based on the synthesis ratios W1 to WN.
  • Xi represents the output of the i-th Fourier transform unit 13-i
  • Y represents the combined output.
  • reliability information is generated based on the coefficient of the transmission path identification filter obtained in the transmission path estimation process, and diversity combining of signals received by each receiving antenna is performed using the information. Diversity gain is improved in the transmission path environment, and errors in transmission data reproduced on the receiving side can be reduced.
  • Embodiment 3 In the second embodiment, the configuration in which the reliability information is used in the case of diversity combining for the outputs of the first to Nth Fourier transform units 13-1 to 13-N has been described. Next, equalization is performed in the frequency domain. An embodiment in which the results are configured to be diversity-combined is shown.
  • FIG. 9 is a block diagram showing a receiving apparatus according to Embodiment 3 of the present invention.
  • the receiving apparatus shown in FIG. 9 is generally the same as the receiving apparatus of the first or second embodiment, but first to Nth frequency axis equalization units 14-1 to 14-N are added, Furthermore, instead of the frequency axis combining ratio calculating unit 31 and the frequency axis diversity combining unit 32 of the second embodiment, an equalized frequency axis combining ratio calculating unit 33 and an equalized frequency axis diversity combining unit 34 are provided. Different.
  • First to Nth Fourier transform units 13-1 to 13-N, known signal generation unit 16, first to Nth transmission path estimation units 17-1 to 17-N, and first to Nth reliability The configuration and operation of the information generation units 22-1 to 22-N are the same as those of the members having the same reference numerals shown in the second embodiment.
  • the first to Nth frequency axis equalization units 14-1 to 14-N are provided corresponding to the first to Nth Fourier transform units 13-1 to 13-N, respectively.
  • N corresponding to the N transmission path estimators 17-1 to 17-N, outputs X1 to XN and first to Nth transmissions of the first to Nth Fourier transform units 13-1 to 13-N, respectively.
  • Outputs F1 to FN of the path estimators 17-1 to 17-N are input, and transmission path estimation signals (identification filter coefficient values) output from the first to Nth transmission path estimators 17-1 to 17-N, respectively.
  • the first to Nth antennas 11-1 to 11-N correct the distortion received in the transmission path by the signals received by the first to Nth antennas 11-1 to 11-N in the frequency domain.
  • the outputs X1 to XN of the Nth Fourier transform units 13-1 to 13-N It is corrected in a few areas. Specifically, transfer functions representing characteristics opposite to the characteristics of the transmission paths estimated by the first to Nth transmission path estimators 17-1 to 17-N, respectively, are expressed as first to Nth Fourier transform sections. Equalization is performed by multiplying the outputs X1 to XN of 13-1 to 13-N.
  • the n-th frequency axis equalization unit 14-n is based on the transmission path estimation signal (Fourier transform of the identification filter coefficient) Fn output from the n-th transmission path estimation unit 17-n.
  • the output Xn of 13-1n is equalized, whereby the distortion received by the signal received by the nth antenna 11-n in the transmission path is corrected in the frequency domain and output.
  • the output function Xn of the nth Fourier transform unit 13-n is multiplied by a transfer function representing the reverse characteristic of the transmission path characteristic estimated by the nth transmission path estimation unit 17-n. Then, equalization is performed.
  • the configurations and operations of the first to Nth frequency axis equalization units 14-1 to 14-N are the same as those of the frequency equalization unit 14 shown in the first embodiment.
  • the post-equalization frequency axis diversity combining unit 34 outputs the output of the post-equalization frequency axis combining ratio calculation unit 33 described later and the outputs Q1 to QN of the first to Nth frequency axis equalization units 14-1 to 14-N.
  • the outputs Q1 to QN of the first to Nth frequency axis equalization units 14-1 to 14-N are synthesized and output according to the output of the after-equalized frequency axis synthesis ratio calculation unit 33.
  • the inverse Fourier transform unit 15 receives the output of the post-equalization frequency axis diversity combining unit 34 and performs an inverse Fourier transform on the output of the post-equalization frequency axis diversity combining unit 34 to obtain an equalized signal in the time domain. Convert and output.
  • the configuration and operation of the inverse Fourier transform unit 15 are the same as those of the inverse Fourier transform unit 15 of the second embodiment.
  • the equalized frequency axis synthesis ratio calculation unit 33 outputs the outputs R1 to RN of the first to Nth reliability information generation units 22-1 to 22-N and the first to Nth transmission path estimation units 17-1. Based on the outputs F1 to FN of ⁇ 17-N, diversity combining ratios W1 to WN with respect to the signal after frequency axis equalization are calculated.
  • the equalized frequency axis composition ratio calculation unit 33 shown in FIG. 10 has the same power calculation units 62-1 to 62-N, power value weighting units 63-1 to 63-N, as shown in FIG.
  • first to Nth post-equalization synthesis ratio generation units 67-1 to 67-N are provided, and the first to Nth post-equalization synthesis ratio generation units 67-1 to 67-N are provided.
  • the output of 67-N represents the combination ratios W1 to WN with respect to the outputs of the first to Nth frequency axis equalization units 14-1 to 14-N, respectively.
  • the complex conjugate units 61-1 to 61-N are not provided, and the first to Nth post-equalization synthesis ratio generation units 67-1 to 67-N are Based on the outputs of the first to Nth power value weighting units 63-1 to 63-N, the equalized combined ratio is generated.
  • the operations of the power calculation units 62-1 to 62-N, the power value weighting units 63-1 to 63-N, and the power sum calculation unit 64 are the same as those shown in FIG.
  • the output of the first frequency axis equalization unit 14-1 based on the outputs of the first power value weighting unit 63-1 and the power sum calculation unit 64 A composite ratio W1 with respect to the output is generated and output.
  • the configurations and operations of the second to Nth post-equalization synthesis ratio generation units 67-2 to 67-N are the same as those of the first post-equalization synthesis ratio generation unit 67-1.
  • the first to Nth post-equalization synthesis ratio generation units 67-1 to 67-N respectively output the outputs of the first to Nth power value weighting units 63-1 to 63-N and power sum calculation means. Based on the output Pt, the diversity combining ratio with respect to the outputs Q1 to QN of the first to Nth frequency axis equalization units 14-1 to 14-N is calculated and output.
  • the synthesis ratio calculation method in the equalized frequency axis synthesis ratio calculation unit 33 is such that the synthesis ratio changes according to the size of the reliability information, and the higher the reliability of the Fourier transform unit output, the greater the synthesis ratio. What is necessary is just to restrict
  • the post-equalization frequency axis diversity combining unit 34 performs first to Nth frequency axis equalization based on the combination ratio obtained by the post-equalization frequency axis combination ratio calculating unit 33 as shown in the following equation (7).
  • the output of the part is weighted and added.
  • Qi represents the output of the i-th frequency axis equalization unit 14-i
  • Y represents the combined output.
  • reliability information is generated based on the coefficient of the transmission path identification filter obtained in the transmission path estimation process, and diversity combining of signals received by each receiving antenna is performed using the information. Diversity gain is improved in the transmission path environment, and errors in transmission data reproduced on the receiving side can be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Theoretical Computer Science (AREA)
  • Power Engineering (AREA)
  • Artificial Intelligence (AREA)
  • Radio Transmission System (AREA)
  • Error Detection And Correction (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

 多値VSB、QPSK又は多値QAM変調された信号の受信装置及び受信方法において、受信した信号の伝送路の推定結果に基づいて、受信した信頼性情報(R)を生成し(22)、信頼性情報(R)をもとにビタビ復号処理を行う。伝送路推定手段(17)の出力の送信周波数帯域内の最大ゲインと最小ゲインの差分絶対値が小さいほど、前記信頼性情報としてより高い信頼性を示すものを出力することとしても良い。様々な伝送路環境で誤り訂正能力を向上させることができ、受信側で再生した送信データの誤りを低減することができる。

Description

受信装置及び方法
 この発明は、畳み込み符号化された送信データを変調した信号の受信装置及び方法に関し、特に多値VSB(Vestigial Sideband)変調、QPSK(Quadrature Phase Shift Keying)変調又は多値QAM(Quadrature Amplitude Modulation)変調された信号の受信装置及び受信方法に関するものである。
 デジタル伝送システムでは、所望の伝送速度を実現するため、多値デジタル変調技術と誤り訂正技術の併用によって伝送可能な情報量を増やしつつ受信時の誤り確率を低減したり、複数のアンテナを用いたダイバーシチ合成技術によって所要CNR(Carrier to Noise Power Ratio)を小さくするなど、システムの信頼性を向上するための技術が適用される。
 例えば、米国の地上デジタル放送では、変調方式として多値VSB変調が採用されており、誤り訂正技術としてはトレリス符号化変調された信号を復号する場合に有効となるビタビ復号及びリードソロモン符号を復号するためのリードソロモン復号技術を用いて送信データを再生する(例えば、特許文献1、特許文献2、特許文献3参照)。
 一般に、ビタビ復号器では、位相及び振幅の補正(以下、「等化」とも言う)をした信号の受信点配置と、変調方式に依存して一義的に定まる信号点配置との間の尤度を示すブランチメトリックを求める。そして、可能性のあるトレリスの全ての生き残りパスを求め、それぞれのパスのブランチメトリックを累積加算し、累積加算結果が最も小さいパスを選択する。この選択されたパスのステートをビタビ復号結果として出力し、送信データを再生する。
 ビタビ復号結果の誤り率を低減する方法として、ブランチメトリックの求め方に関する技術について提案されている(例えば、特許文献4、特許文献5参照)。
 また、ダイバーシチ合成技術によって受信性能を向上する方法については、特許文献6及び非特許文献1に記載がある。
米国特許第6081301号明細書(第1頁~第3頁、第1図~第3図) 米国特許出願公開第2003/0115540号明細書(第2頁、第2図) 米国特許出願公開第2010/0142608号明細書(第41頁、第45図) 米国特許出願公開第2001/0029596号明細書(第7頁、第7図) 特許第3344969号明細書(第16頁、第1図、第2図) 特許第3377361号明細書(第8頁、第1図、第2図)
奥村、進士監修「移動通信の基礎」電子情報通信学会、(第163頁~第167頁)
 畳み込み符号化またはトレリス符号化変調されたデータを変調した信号、例えば多値VSB(Vestigial Sideband)変調、QPSK(Quadrature Phase Shift Keying)変調又は多値QAM(Quadrature Amplitude Modulation)変調した信号に対する従来のビタビ復号技術では、等化した信号の信号点配置と、変調方式に依存して一義的に定まる信号点配置との尤度であるユークリッド距離を演算し、その結果に基づいてブランチメトリックを算出している。そのため、従来の受信装置で求められたブランチメトリックには、信号点配置間のユークリッド距離は考慮されているが、復調信号に含まれる雑音の平均電力(以下、「雑音平均電力」ともいう)、又は雑音電力と所望の信号電力(例えば、受信信号の電力)の比(以下、「信号電力対雑音電力比」ともいう)や、伝送路の周波数特性、電波環境の時間変動の影響などは考慮されていない。
 しかし、例えば送信信号を移動しながら受信する場合には、受信信号の電力が時間的に大きく変化するため、雑音電力比又は信号対雑音電力比もまた時間変動する。また、伝送路の周波数特性や電波環境の時間変動も移動環境や移動速度に応じて変化する。これに対し、等化した信号(以下、「復調信号」ともいう)から算出されるユークリッド距離には、復調信号に含まれる雑音平均電力や信号対雑音電力比の絶対量、及び伝送路の周波数特性や電波環境の時間変動に起因する性能劣化要因が考慮されていないため、復調信号の復号においてこれら劣化要因の変化の影響を抑えることができず、当該復調信号を復号した後の信号における誤り確率を十分に小さくできないという問題点があった。
 また、変調した信号、例えば多値VSB(Vestigial Sideband)変調、QPSK(Quadrature Phase Shift Keying)変調又は多値QAM(Quadrature Amplitude Modulation)変調した信号をダイバーシチ合成する場合、受信信号の包絡線比に応じて合成比を定めることで、ダイバーシチ利得が最も大きくなることが一般に知られている。
 しかし、包絡線比をもとに合成比を算出する場合にダイバーシチ利得が最大になるのは、各アンテナで受信される信号の搬送波電力対雑音電力比(以下、「C/N」ともいう)が等しい場合であり、C/Nが異なる信号に対して包絡線比をもとに合成比を算出すると、復号結果における誤り確率が十分に小さくできなくなるばかりか、かえって増大する場合があるという問題点があった。
 この発明は、上述のような課題を解消するためになされたもので、復調信号に含まれる雑音平均電力や信号対雑音電力比の絶対量、及び伝送路の周波数特性や電波環境の時間変動等対応した信頼性情報を生成し、これをもとにビタビ復号又はダイバーシチ合成を行うことで受信性能を向上することを目的とする。
 上述の目的を達成するため、この発明の第1の態様の受信装置は、
 畳み込み符号化された送信データを変調した送信信号であって、所定の既知信号を重畳した送信信号を受信し、該受信した信号から送信データを再生する受信装置であって、
 前記受信した信号を所定の周波数帯域の信号に変換する周波数変換手段と、
 前記所定の周波数帯域の信号をフーリエ変換して出力するフーリエ変換手段と、
 前記フーリエ変換手段の出力を入力とし、該前記アンテナで受信した信号が伝送路で受けた歪みを周波数領域で補正することにより周波数領域での等化を行う周波数軸等化手段と、
 前記周波数軸等化手段の出力を逆フーリエ変換して時間領域での等化信号を出力する逆フーリエ変換手段と、
 前記送信信号に重畳されている既知信号を生成する既知信号生成手段と、
 前記受信した信号の伝送路を推定し、該伝送路の周波数特性を表す係数のフーリエ変換を出力する伝送路推定手段と、
 前記伝送路推定手段の出力の送信周波数帯域内の伝送路振幅特性のばらつきから前記逆フーリエ変換手段の出力信号の信頼性を表す信頼性情報を生成する信頼性情報生成手段と、
 前記逆フーリエ変換手段の出力及び前記信頼性情報をもとにビタビ復号処理を行って前記送信データを再生するビタビ復号手段とを備え、
 前記周波数軸等化手段は、前記伝送路推定手段の出力に基づいて前記フーリエ変換手段の出力に対する前記補正を行う
 ことを特徴とする。
 この発明の第2の態様の受信装置は、
 畳み込み符号化された送信データを変調した信号であって、所定の既知信号を重畳した送信信号を第1乃至第Nのアンテナ(Nは2以上の整数)で受信し、ダイバーシチ合成して前記送信データを再生する受信装置であって、
 それぞれ前記第1乃至第Nのアンテナで受信した信号を第1乃至第Nの所定の周波数帯域の信号に変換する第1乃至第Nの周波数変換手段と、
 それぞれ前記第1乃至第Nの所定の周波数帯域の信号をフーリエ変換する第1乃至第Nのフーリエ変換手段と、
 前記第1乃至第Nのフーリエ変換手段の出力をダイバーシチ合成して出力する周波数軸ダイバーシチ合成手段と、
 前記周波数軸ダイバーシチ合成手段の出力を逆フーリエ変換して時間領域での等化信号を出力する逆フーリエ変換手段と、
 前記送信信号に重畳されている既知信号を生成する既知信号生成手段と、
 それぞれ前記第1乃至第Nの所定の周波数帯域の信号、及び前記既知信号生成手段で生成された前記既知信号を入力とし、それぞれ前記第1乃至第Nのアンテナにより受信した信号の伝送路を推定し、該伝送路の周波数特性を表す係数のフーリエ変換を出力する第1乃至第Nの伝送路推定手段と、
 それぞれ前記第1乃至第Nの伝送路推定手段の出力に基づいて、それぞれ前記第1乃至第Nのフーリエ変換手段の出力の信頼性を表す第1乃至第Nの信頼性情報を生成する第1乃至第Nの信頼性情報生成手段と、
 それぞれ前記第1乃至第Nの信頼性情報及び前記第1乃至第Nの伝送路推定手段の出力をもとにダイバーシチの合成比を算出する周波数軸合成比算出手段とを備え、
 前記周波数軸ダイバーシチ合成手段は、前記周波数軸合成比算出手段の出力に応じて前記第1乃至第Nのフーリエ変換手段の出力を合成する
 ことを特徴とする。
 この発明の第3の態様の受信装置は、
 畳み込み符号化された送信データを変調した信号であって、所定の既知信号を重畳した送信信号を第1乃至第Nのアンテナ(Nは2以上の整数)で受信し、ダイバーシチ合成して前記送信データを再生する受信装置であって、
 それぞれ前記第1乃至第Nのアンテナで受信した信号を第1乃至第Nの所定の周波数帯域の信号に変換する第1乃至第Nの周波数変換手段と、
 それぞれ前記第1乃至第Nの所定の周波数帯域の信号をフーリエ変換する第1乃至第Nのフーリエ変換手段と、
 それぞれ前記第1乃至第Nのフーリエ変換手段の出力を入力とし、それぞれ前記第1乃至第Nのアンテナで受信した信号が伝送路で受けた歪みを周波数領域で補正することにより周波数領域での等化を行う第1乃至第Nの周波数軸等化手段と、
 前記第1乃至第Nの周波数軸等化手段の出力をダイバーシチ合成して出力する等化後周波数軸ダイバーシチ合成手段と、
 前記等化後周波数軸ダイバーシチ合成手段の出力を逆フーリエ変換して時間領域での等化信号を出力する逆フーリエ変換手段と、
 前記送信信号に重畳されている既知信号を生成する既知信号生成手段と、
 それぞれ前記第1乃至第Nの所定の周波数帯域の信号及び前記既知信号生成手段で生成された前記既知信号を入力とし、それぞれ前記第1乃至第Nのアンテナにより受信し信号の伝送路を推定し、該伝送路の周波数特性を表す係数のフーリエ変換を出力する伝送路推定手段と、
 それぞれ前記第1乃至第Nの伝送路推定手段の出力に基づいて、それぞれ第1乃至第Nのフーリエ変換手段の出力の信頼性を表す第1乃至第Nの信頼性情報を生成する第1乃至第Nの信頼性情報生成手段と、
 それぞれ前記第1乃至第Nの信頼性情報及び前記第1乃至第Nの伝送路推定手段の出力をもとにダイバーシチの合成比を算出する等化後周波数軸合成比算出手段とを備え、
 前記等化後周波数軸ダイバーシチ合成手段は、前記等化後周波数軸合成比算出手段の出力に応じて前記第1乃至第Nの周波数軸等化手段の出力を合成し、
 前記第1乃至第Nの周波数軸等化手段は、それぞれ前記第1乃至第Nの伝送路推定手段の出力をも入力とし、これらに基づいて、前記第1乃至第Nのフーリエ変換手段に対する前記補正を行う
 ことを特徴とする。
 本発明の第1の態様によれば、受信した信号の伝送路推定過程で得られるフィルタ係数をもとに等化出力の信頼性情報を生成し、信頼性情報を用いて、例えば該信頼性情報とユークリッド距離をもとにブランチメトリックを算出してビタビ復号するため、様々な伝送路環境で誤り訂正能力を向上させることができ、受信側で再生した送信データの誤りを低減することができる。
 この発明の第2の態様及び第3の態様によれば、各アンテナで受信した信号の伝送路推定過程で得られるフィルタ係数をもとに各受信アンテナで受信した信号についての信頼性情報を生成し、それらをもとにダイバーシチ合成するため、様々な伝送路環境でダイバーシチ利得が向上し、受信側で再生した送信データの誤りを低減することができる。
この発明の実施の形態1の受信装置を示すブロック図である。 図1の伝送路推定部17の構成例を示すブロック図である。 図1の信頼性情報生成部22の構成例を示すブロック図である。 図1の同定フィルタ係数フーリエ変換部21の出力の例を表す概念図である。 図1の信頼性情報生成部22の他の構成例を表すブロック図である。 図1のビタビ復号部23の構成例を表すブロック図である。 この発明の実施の形態2の受信装置を示すブロック図である。 図7の周波数軸合成比算出部31の構成例を示すブロック図である。 この発明の実施の形態3の受信装置を示すブロック図である。 図9の等化後周波数軸合成比算出部33の構成例を示すブロック図である。
実施の形態1.
 図1はこの発明の実施の形態1による受信装置を示すブロック図である。図1に示される受信装置は、図示しない送信装置における畳み込み符号化器により、畳み込み符号化された送信データを変調することで得られた送信信号、例えば、多値VSB(Vestigial Sideband)変調方式、QPSK(Quadrature Phase Shift Keying)変調方式又は多値QAM(Quadrature Amplitude Modulation)変調方式で変調することで得られた送信信号を受信し、送信データを再生するものであって、アンテナ11で受信した信号を受ける周波数変換部12と、フーリエ変換部13と、周波数軸等化部14と、逆フーリエ変換部15と、既知信号生成部16、伝送路推定部17と、信頼性情報生成部22と、ビタビ復号部23を備える。
 アンテナ11は、畳み込み符号化された送信データを変調した送信信号、例えば多値VSB変調、QPSK変調又は多値QAM変調された信号を受信するものである。
 周波数変換部12は、アンテナ11で受信した信号Saを所定の周波数帯域の信号Sbに変換する。
 フーリエ変換部13は、周波数変換部12から出力された信号(所定周波数帯域の信号)Sbを入力とし、入力された信号Sbに対して、所定ポイント数のフーリエ変換を行って出力する。
 周波数軸等化部14は、フーリエ変換部13の出力及び伝送路推定部17の出力を入力とし、伝送路推定部17から出力される伝送路推定信号(同定フィルタ係数のフーリエ変換)をもとに、アンテナ11で受信された信号が、伝送路で受けた歪みを周波数領域で(周波数軸で)補正することによりフーリエ変換部13の出力に対する周波数領域での等化(周波数軸での等化)を行う。
 逆フーリエ変換部15は、周波数軸等化部14の出力Qを入力とし、周波数軸等化部14の出力Qに対して逆フーリエ変換を行って時間領域での(時間軸での)等化信号に変換して出力する。逆フーリエ変換部14の出力Qは、受信信号が伝送路で受けた歪みを補正した等化出力である。受信信号を周波数軸に変換して等化する技術は公知技術であるため、ここでの詳細な説明は省略する。
 ビタビ復号部23は、逆フーリエ変換部15の出力と、後述の信頼性情報生成部22の出力Rとを入力とし、これらの情報をもとにビタビ復号処理を行って送信データを再生する。ビタビ復号処理に当たり、ビタビ復号部23は、信頼性情報生成部22から出力された信頼性情報Rをブランチメトリックに対する重み係数として利用する。即ち、復号に当たり、ユークリッド距離自体、又はその2乗で定義されるブランチメトリックに対し信頼性情報Rによる重み付けを行うことで、信頼性が高いほど、重み付け後のブランチメトリックがより小さな値となるように重み付けを行い、重み付けされたブランチメトリックに基づいて生き残りパスの選択を行う。
 既知信号生成部16は、送信信号に重畳されている既知信号を生成する。例えば、米国の地上デジタル放送方式では、擬似ランダム信号が一定周期で送信データ系列に埋め込まれており、これらは既知信号であるため、受信機側で生成することができる。
 伝送路推定部17は、周波数変換手段12の出力及び既知信号生成部16の出力を入力とし、受信信号の伝送路(送信装置から受信装置のアンテナ11までの伝送路)を推定し、該伝送路の周波数特性を表す係数のフーリエ変換を出力するものであり、例えば図2に示されるように構成されている。
 図2に示される伝送路推定部17は、伝送路同定フィルタ部18、誤差信号生成部19、同定フィルタ係数算出部20、及び同定フィルタ係数フーリエ変換部21を備える。
 伝送路同定フィルタ部18は、後述の同定フィルタ係数算出部20の出力及び既知信号生成部16の出力を入力とし、同定フィルタ係数算出部20の出力を係数として、既知信号生成部16の出力をフィルタリングして出力する。
 誤差信号生成部19は、周波数変換部12から出力される所定の周波数帯域の信号Sbと、伝送路同定フィルタ部18の出力とを入力とし、周波数変換部12から出力される所定の周波数帯域の信号Sbに対する伝送路同定フィルタ部18の出力の誤差を算出して出力する。
 同定フィルタ係数算出部20は、誤差信号生成部19の出力がゼロとなるように、即ち伝送路同定フィルタ手段18の出力が信号Sbに一致するように、伝送路同定フィルタ部18で使用するフィルタ係数を定める。伝送路同定フィルタ手段18の出力が信号Sbに一致したとき、伝送路同定フィルタ部18と同定フィルタ係数算出部20で構成される部分は受信信号が経た伝送路と同じ伝達関数を有し、同定フィルタ係数算出部20の出力は伝送路のインパルスレスポンスを表す。
 一般に、同定フィルタ係数算出部20は、誤差信号生成部19の出力がゼロになるよう、例えばLMS(Least Mean Square Error)アルゴリズムやCMA(Constant Modulus Algorithm)などの逐次更新アルゴリズムを使って伝送路道程フィルタ部7のフィルタ係数を逐次更新して生成する。LMSアルゴリズムを用いる場合には、同定フィルタ係数算出部20は、既知信号生成部16からの既知信号及び誤差信号生成部19の出力を用いる。CMAを用いる場合には、同定フィルタ係数算出部20は、既知信号生成部16からの既知信号、及び誤差信号生成部19の出力のみならず、図2に点線で示すように、伝送路同定フィルタ部18の出力をも用いる。本発明においては、同定フィルタ係数算出部20の出力が伝送路のインパルスレスポンスを表すものとなるようにするためのアルゴリズム及び手段は任意であり、公知技術であるため、ここでの詳細な説明は省略する。
 同定フィルタ係数フーリエ変換部21は、同定フィルタ係数算出部20の出力を入力とし、所定ポイント数のフーリエ変換を行い、その結果を出力する。このとき、同定フィルタ係数フーリエ変換部21の出力は伝送路の周波数特性、すなわち伝送路推定値を表す。同定フィルタ係数フーリエ変換部21の出力が伝送路推定部17の出力を構成する。
 周波数軸等化部14は、伝送路推定部17で推定された伝送路の特性の逆の特性を表す伝達関数を、フーリエ変換部13の出力Xに乗算することで、等化を行う。
 信頼性情報生成部22は、伝送路推定部17の出力を入力とし、周波数軸等化部14による等化結果の信頼性(従って、逆フーリエ変換部15の出力の信頼性)を表す信頼性情報を生成して出力する。
 ここで、信頼性情報生成部22の具体的な構成例について図3を用いて説明する。
 図3に示される信頼性情報生成部22は、帯域内分散算出部41、帯域内平均ゲイン算出部42、及び信頼性情報変換部43を備え、信頼性情報変換部43の出力が信頼性情報生成部22の出力である。
 信頼性情報生成部22の入力(同定フィルタ係数フーリエ変換部21で算出された周波数特性を示すフーリエ変換結果は、帯域内分散算出部41と、帯域内平均ゲイン算出部42に供給される。
 帯域内分散算出部41は、信頼性情報生成部22に入力される、伝送路推定部17の出力を入力とし、伝送路推定部17の出力を、送信周波数帯域(信号帯域)内成分と帯域外成分に分離し、送信周波数帯域内成分の振幅特性のばらつきを分散値として算出して出力する。具体的には、同定フィルタ係数フーリエ変換部21の出力の2乗値の平均から、同定フィルタ係数フーリエ変換部21の出力の平均値の2乗を引いた値を分散値として求める。
 帯域内平均ゲイン算出部42は、信頼性情報生成部22に入力される伝送路推定部17の出力を入力とし、その送信周波数帯域内成分の平均ゲイン(伝送路のゲインの送信周波数帯域全体にわたる平均値)を算出して出力する。
 信頼性情報変換部43は、帯域内分散算出部41の出力及び帯域内平均ゲイン算出部42の出力を入力とし、これらと所定の基準値をもとに信頼性情報Rを生成して出力する。このような信頼性情報Rの生成は、帯域内分散算出部41によって得られた分散値と帯域内平均ゲイン算出部42によって得られた平均ゲインの組合せを、所定の基準値をもとに信頼性情報に変換する処理であるとも言える。
 ここで、信頼性情報変換部43における信号変換方法について図4を用いて説明する。
 伝送路において反射波が無く、所望のC/Nが得られる伝送路の場合、同定フィルタ係数フーリエ変換部21から出力されるフーリエ変換結果で示される周波数特性は送信周波数帯域全体に亘り一定の振幅を有する特性となり、図4の太い実線S1のようになる。このときの振幅値を上記基準値として用いることとすれば、帯域内平均ゲイン算出部42の出力(送信周波数帯域内成分の平均ゲイン)は一定で上記基準値と同値となり、帯域内分散算出部41の出力(分散値)はゼロとなる。
 一方、同じく反射波が無いが、C/Nが小さい場合は、図4の細い実線S2のようにばらつきが大きくなる。この場合、帯域内平均ゲイン算出部42の出力(送信周波数帯域内成分の平均ゲイン)はほぼ基準値と同程度になるが、帯域内分散算出部41の出力(分散値)はばらつきが大きくなる。
 更に、マルチパス伝送路の場合は、図4の太い点線S3のように分散がさらに大きくなるため、帯域内分散算出部41の出力はさらに大きくなる。
 また、マルチパス伝送路であって等化出力(周波数軸等化部14の出力Q)の振幅が小さい場合は、図4の太い破線S4のようになり、帯域内平均ゲイン算出部42の出力は基準値よりも小さくなり、帯域内分散算出部41の出力も大きくなる。
 上記の4つの例では、等化出力(周波数軸等化部14の出力Q)において太い実線S1の場合が最も信頼性が高く、細い実線S2、太い点線S3、太い破線S4の順で信頼性が低くなっていくと考えられる。ただし、送信周波数帯域内成分の平均ゲインや分散の大小関係によっては、2番目以降の順番は入れ替わる。いずれにしても、これらの情報をもとに等化出力の信頼性情報を生成することが可能である。
 一例として、帯域内平均ゲイン算出部42の出力をA、帯域内分散算出部41の出力をB、基準値をCとし、所定の正の係数a、bを使って下記の式(1)で得られる正の実数Rを信頼性情報としても良い。
Figure JPOXMLDOC01-appb-M000001
 なお、式(1)に限定されず、基準値Cよりも平均ゲインAの方が小さい場合は信頼性が下がり、分散値Bが大きくなるにつれて信頼性が下がるような変換式であれば良く、また変換式の代りに、変換テーブルを用いていて信頼性情報を生成しても良い。
 なおまた、平均ゲインを用いず、分散値Bのみに基づいて信頼性情報を生成するようにしても良い。この場合、分散値Bが大きくなるにつれて信頼性が下がるような変換式又は変換テーブルを用いる。
 また、以上の例の信頼性情報生成部22は、送信周波数帯域内の伝送路振幅特性のばらつきを分散値として算出することで信頼性情報を生成するように構成されているが、分散値を表す信号に限定されず、伝送路の歪みに対応した信号であればよい。
 信頼性情報生成部22の他の構成例を図5に示す。
 図5に示される信頼性情報生成部22は、信頼性情報生成部22に入力される同定フィルタ係数フーリエ変換部21の出力を入力とする帯域内最大ゲイン算出部44と、同じく信頼性情報生成部22に入力される同定フィルタ係数フーリエ変換部21の出力を入力とする帯域内最小ゲイン算出部45と、差分絶対値算出部46と、重み係数生成部47と、帯域内平均ゲイン算出部42と、重み付け演算部48とを有する。重み付け演算部48の出力が信頼性情報生成部22の出力である。帯域内平均ゲイン算出部42は図3の構成例で示したものと同じである。
 帯域内最大ゲイン算出部44は、同定フィルタ係数フーリエ変換部21から出力されるフーリエ変換結果(周波数特性を示す)を送信周波数帯域(信号帯域)内成分と帯域外成分に分離し、送信周波数帯域内成分の振幅特性の最大値(最大ゲイン)を出力する。
 帯域内最小ゲイン算出部45は、同定フィルタ係数フーリエ変換部21から出力されるフーリエ変換結果(周波数特性を示す)を送信周波数帯域(信号帯域)内成分と帯域外成分に分離し、送信周波数帯域内成分の振幅特性の最小値(最小ゲイン)を出力する。
 差分絶対値算出部46は、帯域内最大ゲイン算出部44の出力と帯域内最小ゲイン算出部45の出力の差分の絶対値を算出する。
 重み係数生成部47は、差分絶対値算出部46の出力を入力とし、差分絶対値算出部46から出力される差分の絶対値を、それに対応した正の係数に変換し出力する。例えば、差分絶対値が0の場合は係数を1とし、差分絶対値が大きくなるにつれて1から次第に小さくなるような値を出力する。
 帯域内最大ゲイン算出部44と、帯域内最小ゲイン算出部45と、差分絶対値算出部46と、重み係数生成部47とにより、伝送路推定部17の出力、即ち伝送路推定結果を入力とし、送信周波数帯域内の最大ゲインと最小ゲインとの差分絶対値に応じた重み係数を求める重み係数生成部49が構成されている。
 重み付け演算部48は、重み係数決定部49の出力と、帯域内平均ゲイン算出部42の出力を入力とし、これらと所定の基準値をもとに信頼性情報Rを生成して出力する。このような信頼性情報Rの生成は、重み係数決定部49によって決定された重み係数と帯域内平均ゲイン算出部42によって得られた平均ゲインの組合せを、所定の基準値をもとに信頼性情報に変換する処理であるとも言える。
 一例として、帯域内平均ゲイン算出部42の出力をA、基準値をC、重み係数生成部47の出力をDとし、所定の正の係数c、dを使って下記の式(2)で得られる正の実数Rを信頼性情報としても良い。
Figure JPOXMLDOC01-appb-M000002
 なお、式(2)に限定されず、基準値Cよりも平均ゲインAの方が小さい場合は信頼性が下がり、また、重み係数Dが大きくなるにつれて信頼性が上がるような変換式であれば良く、また、変換式の代わりに変換テーブルを用いて信頼性情報を生成しても良い。さらに、上記のように重み係数Dを求めることなく、帯域内最大ゲインと帯域内最小ゲインの差分絶対値が大きいほど、信頼性が下がるようにすれば良い。
 図5に示される信頼性情報生成部22を用いる場合には、送信周波数帯域(信号帯域)内の最大ゲインと最小ゲインの差分の絶対値をもとに信頼性情報を生成するため、比較的小規模な回路又は演算量で信頼性情報を得ることができるという効果がある。
 信頼性情報生成部22で生成された信号Rは、ブランチメトリック重み係数として逆フーリエ変換部15の出力とともにビタビ復号部23に供給され、ビタビ復号部23ではそれらを利用してビタビ復号を行って誤りを訂正する。
 ここで、ビタビ復号部23の構成例について図6を用いて説明する。
 図6に示されるビタビ復号部23は、逆フーリエ変換部15の出力を入力とするブランチメトリック演算部51と、ブランチメトリック演算部51の出力及び信頼性情報生成部22の出力であるブランチメトリック重み係数を入力とするメトリック重み係数乗算部52と、メトリック重み係数乗算部52の出力を入力とする加算・比較・選択部53と、加算・比較・選択部53の出力を入力とするパスメモリ部54とを含む。パスメモリ部54の出力がビタビ復号部23の出力である。
 図6において、逆フーリエ変換部15の出力はブランチメトリック演算部51に入力される。ブランチメトリック演算部51では、等化出力の信号点と、受信した信号に対応する変調方式によって一義的に定まる各シンボルに対応する信号点とのユークリッド距離を求め、このユークリッド距離から、送信装置における畳み込み符号化器の構成によって決まるブランチメトリックを所定の個数分算出する。ブランチメトリック演算部51で算出されたブランチメトリックは、メトリック重み係数乗算部52に入力される。
 メトリック重み係数乗算部52では、ブランチメトリック演算部51から入力された各ブランチメトリックに対して、信頼性情報生成部22で算出した信頼性情報をブランチメトリック重み係数として乗算する。
 ブランチメトリック重み係数が乗算された各ブランチメトリック(重み付けされたブランチメトリック)は、加算・比較・選択部53において累積加算され、複数のパスが算出される。また、加算・比較・選択部53では、算出されたそれぞれのパスを比較し、最も値が小さくなるパスを選択する。
 この選択したパスのブランチメトリックの累積加算結果を、生き残りパスメトリックとしてパスメモリ部54に記憶する。
 パスメモリ部54では、生き残りパスメトリックを記憶し、このパスメトリックに対応する情報系列を復号信号として出力する。
 以上に示したように、本発明の実施の形態1によれば、伝送路同定過程で得られるフィルタ係数をもとに等化出力の信頼性情報を生成し、ユークリッド距離に基づいて定められたブランチメトリックに対して、信頼性情報による重み付けを行い、重み付けされたブランチメトリックを用いてビタビ復号するため、様々な伝送路環境で誤り訂正能力を向上させることができ、従って、受信側で再生した送信データの誤りを低減することができる。
実施の形態2.
 実施の形態1では、信頼性情報をビタビ復号部23で活用して受信性能を向上する構成を示したが、次に、信頼性情報をダイバーシチ合成で使用して受信性能を向上する実施の形態を示す。
 図7はこの発明の実施の形態2による受信装置を示すブロック図である。図7は、複数のアンテナ、即ち第1乃至第Nのアンテナ11-1~11-N(Nは2以上の整数)を用いて信号を受信し、ダイバーシチ合成して信号を復号する場合を示している。
 図7に示される受信装置は、第1乃至第Nの周波数変換部12-1~12-Nと、第1乃至第Nのフーリエ変換部13-1~13-Nと、既知信号生成部16と、第1乃至第Nの伝送路推定部17-1~17-Nと、第1乃至第Nの信頼性情報生成部22-1~22-Nと、周波数軸合成比算出部31と、周波数軸ダイバーシチ合成部32と、逆フーリエ変換部15とを有する。逆フーリエ変換部15の出力は復調出力となる。
 第1乃至第Nの周波数変換部12-1~12-Nは、それぞれ第1乃至第Nのアンテナ11-1~11-Nに対応して設けられ、それぞれ第1乃至第Nのアンテナ11-1~11-Nで受信された信号(第1乃至第Nの受信信号)Sa1~SaNを所定の周波数帯域の信号Sb1~SbNに変換する。言い換えると、第nの周波数変換部12-n(nは1~Nのいずれか)は、対応する、第nのアンテナ11-nで受信することで得られた第nの受信信号Sanを所定の周波数帯域の信号Sbnに変換する。第1乃至第Nの周波数変換部12-1~12-Nの各々の構成及び動作は、実施の形態1で示した周波数変換部12と同じである。
 第1乃至第Nのフーリエ変換部13-1~13-Nは、それぞれ第1乃至第Nの周波数変換部12-1~12-Nに対応して設けられ、それぞれ第1乃至第Nの周波数変換部12-1~12-Nの出力Sb1~SbNを入力とし、フーリエ変換して出力する。言い換えると、第nのフーリエ変換部13-nは、対応する、第nの周波数変換部12-nの出力Sbnを入力とし、フーリエ変換して出力する。第1乃至第Nのフーリエ変換部13-1~13-Nの各々の構成及び動作は、実施の形態1で示したフーリエ変換部13と同じである。
 既知信号生成部16は、実施の形態1で示した既知信号生成部16と同じく、送信信号に重畳されている既知信号を生成する。
 第1乃至第Nの伝送路推定部17-1~17-Nは、それぞれ第1乃至第Nの周波数変換部12-1~12-Nに対応して設けられ、それぞれ第1乃至第Nの周波数変換部12-1~12-Nから出力される所定の周波数帯域の信号Sb1~SbNを入力とし、それぞれ第1乃至第Nの周波数変換部12-1~12-Nにより受信された信号の伝送路を推定する。言い換えると、第nの伝送路推定部17-nは、対応する、第nの周波数変換部12-nから出力される所定の周波数帯域の信号Sbnを入力とし、第nの周波数変換部12-nにより受信された信号の伝送路を推定する。
 第1乃至第Nの伝送路推定部17-1~17-Nの各々の構成及び動作は、実施の形態1に関し図2を参照して説明した伝送路推定部17と同じであり、第1乃至第Nの伝送路推定部17-1~17-Nの各々は、伝送路同定フィルタ部18と、誤差信号生成部19と、同定フィルタ係数算出部20と、同定フィルタ係数フーリエ変換部21とを有する。
 各伝送路推定部17-n内の伝送路同定フィルタ部18は、当該伝送路推定部17-nの入力、即ち、既知信号生成部16の出力及び当該伝送路推定部17-n内の同定フィルタ係数算出部20の出力を入力とし、該同定フィルタ係数算出部20の出力を係数として既知信号生成部16の出力をフィルタリングして出力する。
 誤差信号生成部19は、当該伝送路推定部17-nの入力、即ち対応する周波数変換部12-nの出力と、(同じ伝送路推定部17-n内の)伝送路フィルタ部18の出力を入力とし、前者に対する後者の誤差を示す信号を出力する。
 LMSアルゴリズムを用いる場合には、同定フィルタ係数算出部20は、既知信号生成部16からの既知信号、及び(同じ伝送路推定部17-n内の)誤差信号生成部19の出力を入力とし、誤差信号生成部19の出力がゼロになるように、伝送路同定フィルタ部17で使用するフィルタ係数を算出する。CMAを用いる場合には、同定フィルタ係数算出部20は、既知信号生成部16からの既知信号、及び(同じ伝送路推定部17-n内の)誤差信号生成部19の出力のみならず、図2に点線で示すように、(同じ伝送路推定部17-n内の)伝送路同定フィルタ部18の出力をも用いる。
 同定フィルタ係数フーリエ変換部21は、同定フィルタ係数算出部20の出力を入力とし、フーリエ変換して出力する。
 各伝送路推定部17-nの同定フィルタ係数フーリエ変換部21の出力が、当該伝送路推定部17-nの出力となる。
 第1乃至第Nの信頼性情報生成部22-1~22-Nは、それぞれ第1乃至第Nの伝送路推定部17-1~17-Nに対応して設けられ、また第1乃至第Nのフーリエ変換部13-1~13-Nに対応して設けられ、それぞれ第1乃至第Nの伝送路推定部17-1~17-Nの出力を入力とし、それぞれ第1乃至第Nのフーリエ変換部13-1~13-Nの出力X1~XNの信頼性を表す第1乃至第Nの信頼性情報R1~RNを生成する。言い換えると、第n信頼性情報生成部22-nは、対応する、第nの伝送路推定部17-nの出力を入力とし、第nのフーリエ変換部13-nの出力Xnの信頼性を表す第nの信頼性情報Rnを生成する。第1乃至第Nの信頼性情報生成部22-1~22-Nの各々は、実施の形態1で示した信頼性情報生成部22と同様に、図3に示すように構成しても良く、図5に示すように構成しても良い。
 図3に示すように構成する場合には、第1乃至第Nの信頼性情報生成部22-1~22-Nの各々、即ち第nの信頼性情報生成部22-n内の帯域内分散算出部41及び帯域内平均ゲイン算出部42は、対応する伝送路推定部17-nから当該信頼性情報生成部22-nに入力された、伝送路推定結果Fnの帯域内の信号の分散値、及び平均ゲインをそれぞれ算出し、信頼性情報変換部43は、帯域内分散算出部41の出力及び帯域内平均ゲイン算出部42の出力を入力として、信頼性情報Rnを生成する。
 図5に示すように構成する場合には、第1乃至第Nの信頼性情報生成部22-1~22-Nの各々、即ち第nの信頼性情報生成部22-n内の重み係数決定部49及び帯域内平均ゲイン算出部42は、対応する伝送路推定部17-nから当該信頼性情報生成部22-nに入力された、伝送路推定結果Fnに基く重み係数Dの決定及び送信周波数帯域内の信号の平均ゲインAの算出を行い、重み付け演算部48は、重み係数決定部47の出力D及び、帯域内平均ゲイン算出部42の出力Aを入力として、これらから信頼性情報Rnを生成する。
 周波数軸合成比算出部31は、第1乃至第Nの信頼性情報生成部22-1~22-Nの出力及び第1乃至第Nの伝送路推定部17-1~17-Nの出力に基づいて、ダイバーシチ合成比W1~WNを算出する。具体的には、第1乃至第Nの信頼性情報生成部22-1~22-Nから出力される、第1乃至第Nのアンテナ11-1~11-Nに対応する信頼性情報R1~RNと、第1乃至第Nの伝送路推定部17-1~17-Nから出力される同定フィルタ係数のフーリエ変換の結果)F1~FNを入力とし、これらに基づいて、第1乃至第Nのフーリエ変換部13-1~13-Nの出力X1~XNの合成比(ダイバーシチ合成比)W1~WNを算出して出力する。
 ここで、周波数軸合成比算出部31の構成例について図8を用いて説明する。図8に示される周波数軸合成比算出部31は、第1乃至第Nの複素共役部61-1~61-N、第1乃至第Nの電力算出部62-1~62-Nと、第1乃至第Nの電力値重み付け部63-1~63-Nと、電力和算出部64と、第1乃至第Nの合成比生成部65-1~65-Nとを備え、第1乃至第Nの合成比生成部65-1~65-Nの出力がそれぞれ第1乃至第Nのフーリエ変換部13-1~13-Nの出力に対する合成比W1~WNを表す。
 第1の伝送路推定部17-1の出力F1は、第1の複素共役部61-1及び第1の電力算出部62-1に入力される。第1の複素共役部61-1は、第1の伝送路推定部17-1の出力F1の複素共役信号H1を生成する。第1の電力算出部62-1は第1の伝送路推定部17-1の出力の振幅の2乗値P1を電力値として計算して出力する。
 第1の電力値重み付け部63-1は、第1の電力算出部62-1の出力P1に対し、第1の信頼性情報生成部22-1の出力である第1の信頼性情報R1に応じた重み付け、即ち両者の積を求める演算を行って出力する。この重み付けは、第1の電力算出部62-1の出力P1と第1の信頼信号情報R1の積(P1×R1)を求めることで行われる。
 第2~第Nの複素共役部61-2~61-N、第1乃至第Nの電力算出部62-2~62-N、及び第2~第Nの電力値重み付け部63-2~63-Nの動作は、第1の複素共役部61-1、第1の電力算出部62-1、及び第1の電力値重み付け部63-1とそれぞれ同様である。
 従って、第1乃至第Nの複素共役部61-1~61-Nは、それぞれ第1乃至第Nの伝送路推定部17-1~17-Nの出力F1~FNを入力とし、該入力をその複素共役信号H1~HNに変換して出力する。第1乃至第Nの電力算出部62-1~62-Nは、それぞれ第1乃至第Nの伝送路推定部17-1~17-Nの出力F1~FNを入力とし、その振幅の2乗値を算出して電力値P1~PNとして出力する。
 第1乃至第Nの電力値重み付け部63-1~63-Nは、それぞれ第1乃至第Nの電力算出部62-1~62-Nの出力P1~PNを、それぞれ第1乃至第Nの信頼性情報R1~RNで重み付けして出力する。
 電力和算出部64は、第1乃至第Nの電力値重み付け部63-1~63-Nの出力(R1×P1)~(RN×PN)の総和Ptを求めて出力する。jを1からNまでの変数とするとき、電力和算出部64における電力の総和Ptを求める演算は下記の式(3)で表される。
Figure JPOXMLDOC01-appb-M000003
 電力和算出部64の出力Ptは、第1乃至第Nの合成比生成部65-1~65-Nに入力される。
 第1の合成比生成部65-1は、第1の複素共役部61-1の出力H1、第1の信頼性情報の出力R1及び電力和算出部64の出力Ptをもとに、第1のフーリエ変換部13-1の出力X1に対する合成比W1を生成して出力する。
 第2~第Nの合成比生成部65-2~65-Nの各々の構成及び動作は第1の合成比生成部65-1と同様である。
 従って、第1乃至第Nの合成比生成部65-1~65-Nは、それぞれ第1乃至第Nの複素共役部61-1~61-Nの出力H1~HN、第1乃至第Nの信頼性情報R1~RN、及び電力和算出部64の出力Ptをもとに第1乃至第Nのフーリエ変換部13-1~13-Nの出力X1~XNに対するダイバーシチ合成比W1~WNを算出して出力する。
 図8の構成例で得られるダイバーシチ合成比は、例えば、下記の式(4)で与えられる。但し、iを1~Nのうちの任意のものとしたとき、式(4)は第iのフーリエ変換部13-iの出力に対する合成比Wiを表しており、Hiは第iの複素共役部61-iの出力、Riは第iの信頼性情報を意味する。
Figure JPOXMLDOC01-appb-M000004
 式(4)によって求めた合成比を用いることで、各フーリエ変換部(13-i)の出力は、対応する複素共役部(61-i)で算出された複素共役(Hi)と、対応する信頼性情報生成部(22-i)で生成された信頼性(Ri)との積に比例した重みを付けて合成されることになる。
 尚、周波数軸合成比算出部31における合成比算出方法は、信頼性情報の大きさに応じて合成比が変わり、信頼性が高いフーリエ変換部出力ほど合成比が大きくなるようにすればよく、上記の方法に制限されるものではない。
 周波数軸ダイバーシチ合成部32は、周波数軸合成比算出部31の出力W1~WN及び第1乃至第Nのフーリエ変換部13-1~13-Nの出力X1~XNを入力とし、周波数軸合成比算出部31の出力W1~WNに応じて、第1乃至第Nのフーリエ変換部13-1~13-Nの出力X1~XNを合成して出力する。例えば、下記の式(5)に示すとおり、合成比W1~WNに基づいてフーリエ変換部13-1~13-Nの出力X1~XNを重み付けて加算する。但し、式(5)において、Xiは第iのフーリエ変換部13-iの出力、Yは合成出力を表す。
Figure JPOXMLDOC01-appb-M000005
 以上のように、伝送路推定過程で得られる伝送路同定フィルタの係数をもとに信頼性情報を生成し、その情報を用いて各受信アンテナで受信した信号のダイバーシチ合成を行うため、様々な伝送路環境でダイバーシチ利得が向上し、受信側で再生した送信データの誤りを低減することができる。
実施の形態3.
 実施の形態2では、第1乃至第Nのフーリエ変換部13-1~13-Nの出力に対するダイバーシチ合成の場合に信頼性情報を利用する構成について示したが、次に、周波数領域で等化した結果をダイバーシチ合成する構成にした実施の形態を示す。
 図9はこの発明の実施の形態3による受信装置を示すブロック図である。図9に示される受信装置は、概して実施の形態1又は実施の形態2の受信装置と同じであるが、第1乃至第Nの周波数軸等化部14-1~14-Nが付加され、さらに実施の形態2の周波数軸合成比算出部31、及び周波数軸ダイバーシチ合成部32の代わりに、等化後周波数軸合成比算出部33、及び等化後周波数軸ダイバーシチ合成部34を備える点で異なる。
 第1乃至第Nのフーリエ変換部13-1~13-N、既知信号生成部16、第1乃至第Nの伝送路推定部17-1~17-N、及び第1乃至第Nの信頼性情報生成部22-1~22-Nの構成及び動作は実施の形態2で示した同じ符号の部材と同じである。
 第1乃至第Nの周波数軸等化部14-1~14-Nは、それぞれ第1乃至第Nのフーリエ変換部13-1~13-Nに対応して設けられ、さらに、第1乃至第Nの伝送路推定部17-1~17-Nに対応して設けられ、それぞれ第1乃至第Nのフーリエ変換部13-1~13-Nの出力X1~XN及び第1乃至第Nの伝送路推定部17-1~17-Nの出力F1~FNを入力とし、それぞれ第1乃至第Nの伝送路推定部17-1~17-Nから出力される伝送路推定信号(同定フィルタ係数のフーリエ変換)F1~FNをもとに、第1乃至第Nのアンテナ11-1~11-Nで受信された信号が伝送路で受けた歪みを周波数領域で補正することにより、それぞれ第1乃至第Nのフーリエ変換部13-1~13-Nの出力X1~XNに対して周波数領域での補正を行う。具体的には、それぞれ第1乃至第Nの伝送路推定部17-1~17-Nで推定された伝送路の特性の逆の特性を表す伝達関数を、第1乃至第Nのフーリエ変換部13-1~13-Nの出力X1~XNに乗算することで、等化を行う。言い換えると、第nの周波数軸等化部14-nは、第nの伝送路推定部17-nから出力される伝送路推定信号(同定フィルタ係数のフーリエ変換)Fnをもとにフーリエ変換部13-1nの出力Xnを等化し、これにより、第nのアンテナ11-nで受信された信号が伝送路で受けた歪みを周波数領域で補正して出力する。具体的には、それぞれ第nの伝送路推定部17-nで推定された伝送路の特性の逆の特性を表す伝達関数を、第nのフーリエ変換部13-nの出力Xnに乗算することで、等化を行う。
 第1乃至第Nの周波数軸等化部14-1~14-Nの各々の構成及び動作は、実施の形態1で示した周波数等化部14と同じである。
 等化後周波数軸ダイバーシチ合成部34は、後述の等化後周波数軸合成比算出部33の出力及び第1乃至第Nの周波数軸等化部14-1~14-Nの出力Q1~QNを入力とし、後述の等化後周波数軸合成比算出部33の出力に応じて第1乃至第Nの周波数軸等化部14-1~14-Nの出力Q1~QNを合成して出力する。
 逆フーリエ変換部15は、等化後周波数軸ダイバーシチ合成部34の出力を入力とし、等化後周波数軸ダイバーシチ合成部34の出力に対して逆フーリエ変換を行って時間領域での等化信号に変換して出力する。逆フーリエ変換部15の構成及び動作は、実施の形態2の逆フーリエ変換部15と同じである。
 等化後周波数軸合成比算出部33は、第1乃至第Nの信頼性情報生成部22-1~22-Nの出力R1~RN、及び第1乃至第Nの伝送路推定部17-1~17-Nの出力F1~FNをもとに、周波数軸等化後の信号に対するダイバーシチ合成比W1~WNを算出する。
 等化後周波数軸合成比算出部33の構成例について図10を用いて説明する。図10に示される等化後周波数軸合成比算出部33は、図8に示されるのと同様の、電力算出部62-1~62-N、電力値重み付け部63-1~63-N、及び電力和算出部64のほか、第1乃至第Nの等化後合成比生成部67-1~67-Nを備え、第1乃至第Nの等化後ブランチ合成比生成部67-1~67-Nの出力がそれぞれ第1乃至第Nの周波数軸等化部14-1~14-Nの出力に対する合成比W1~WNを表す。
 図10においては、図8とは異なり、複素共役部61-1~61-Nは設けられておらず、第1乃至第Nの等化後合成比生成部67-1~67-Nは、それぞれ第1乃至第Nの電力値重み付け部63-1~63-Nの出力に基づいて等化後合成比を生成する。
 電力算出部62-1~62-N、電力値重み付け部63-1~63-N、及び電力和算出部64の動作は図8で示したものと同じである。
 第1の等化後合成比生成部67-1では、第1の電力値重み付け部63-1及び電力和算出部64の出力をもとに、第1の周波数軸等化部14-1の出力に対する合成比W1を生成して出力する。
 第2~第Nの等化後合成比生成部67-2~67-Nの構成及び動作は、第1の等化後合成比生成部67-1と同様である。
 従って、第1乃至第Nの等化後合成比生成部67-1~67-Nは、それぞれ第1乃至第Nの電力値重み付け部63-1~63-Nの出力と、電力和算出手段の出力Ptをもとに第1乃至第Nの周波数軸等化部14-1~14-Nの出力Q1~QNに対するダイバーシチ合成比を算出して出力する。
 図10の構成例で得られるダイバーシチ合成比は、下記の式(6)で与えられる。但し、式(6)は第iの周波数軸等化部14-iの出力に対する合成比Ziを表しており、Piは第iの電力算出部62-iの出力、Riは第iの信頼性情報を意味する。
Figure JPOXMLDOC01-appb-M000006
 尚、等化後周波数軸合成比算出部33における合成比算出方法は、信頼性情報の大きさに応じて合成比が変わり、信頼性が高いフーリエ変換部出力ほど合成比が大きくなるようにすればよく、上記の方法に制限されるものではない。
 等化後周波数軸ダイバーシチ合成部34は、下記の式(7)に示すとおり、等化後周波数軸合成比算出部33で得られた合成比に基づいて第1乃至第Nの周波数軸等化部の出力を重み付けて加算する。但し、式(7)において、Qiは第iの周波数軸等化部14-iの出力、Yは合成出力を表す。
Figure JPOXMLDOC01-appb-M000007
 以上のように、伝送路推定過程で得られる伝送路同定フィルタの係数をもとに信頼性情報を生成し、その情報を用いて各受信アンテナで受信した信号のダイバーシチ合成を行うため、様々な伝送路環境でダイバーシチ利得が向上し、受信側で再生した送信データの誤りを低減することができる。
 以上本発明を装置に係る発明として説明したが、上記の装置により実施される方法もまた本発明の一部を成す。
 11、11-1、11-N アンテナ、 12、12-1~12-N 周波数変換部、 13、13-1~13-N フーリエ変換部、 14、14-1~14-N 周波数軸等化部、 15 逆フーリエ変換部、 16 既知信号生成部、 17、17-1~17-N 伝送路推定部、 18、18-1~18-N 伝送路同定フィルタ部、 19、19-1~19-N 誤差信号生成部、 20、20-1~20-N 同定フィルタ係数算出部、 21、21-1~21-N 同定フィルタ係数フーリエ変換部、 22、22-1~22-N 信頼性情報生成部、 23 ビタビ復号部、 31 周波数軸合成比算出部、 32 周波数軸ダイバーシチ合成部、 33 等化後周波数軸合成比算出部、 34 等化後周波数軸ダイバーシチ合成部、 41 帯域内分散算出部、 42 帯域内平均ゲイン算出部、 43 信頼性情報変換部、 44 帯域内最大ゲイン算出部、 45 帯域内最小ゲイン算出部、 46 差分絶対値算出部、 47 重み係数生成部、 48 重み付け演算部、 49 重み係数決定部、 51 ブランチメトリック演算部、 52 メトリック重み係数乗算部、 53 加算・比較・選択部、 54 パスメモリ部、 61-1~61-N 複素共役部、 62-1~62-N 電力算出部、 63-1~63-N 電力値重み付け部、 64 電力和算出部、 65-1~65-N 合成比生成部、 67-1~67-N 等化後合成比生成部。

Claims (26)

  1.  畳み込み符号化された送信データを変調した送信信号であって、所定の既知信号を重畳した送信信号を受信し、該受信した信号から送信データを再生する受信装置であって、
     前記受信した信号を所定の周波数帯域の信号に変換する周波数変換手段と、
     前記所定の周波数帯域の信号をフーリエ変換して出力するフーリエ変換手段と、
     前記フーリエ変換手段の出力を入力とし、該前記アンテナで受信した信号が伝送路で受けた歪みを周波数領域で補正することにより周波数領域で等化を行う周波数軸等化手段と、
     前記周波数軸等化手段の出力を逆フーリエ変換して時間領域での等化信号を出力する逆フーリエ変換手段と、
     前記送信信号に重畳されている既知信号を生成する既知信号生成手段と、
     前記受信した信号の伝送路を推定し、該伝送路の周波数特性を表す係数のフーリエ変換を出力する伝送路推定手段と、
     前記伝送路推定手段の出力の送信周波数帯域内の伝送路振幅特性のばらつきから前記逆フーリエ変換手段の出力信号の信頼性を表す信頼性情報を生成する信頼性情報生成手段と、
     前記逆フーリエ変換手段の出力及び前記信頼性情報をもとにビタビ復号処理を行って前記送信データを再生するビタビ復号手段とを備え、
     前記周波数軸等化手段は、前記伝送路推定手段の出力に基づいて前記フーリエ変換手段の出力に対する前記補正を行う
     ことを特徴とする受信装置。
  2.  前記信頼性情報生成手段は、
     前記伝送路推定手段の出力の前記送信周波数帯域内の最大ゲインと最小ゲインの差分絶対値に応じた重み係数を求める重み係数決定手段と、
     前記伝送路推定手段の出力の前記送信周波数帯域内の平均ゲインを求める帯域内平均ゲイン算出手段と、
     前記帯域内平均ゲイン算出手段で求められた前記平均ゲインと、前記重み係数決定手段で求められた前記重み係数と、所定の基準値をもとに、前記信頼性情報を生成する重み付け演算手段と
     を備え、
     前記伝送路推定手段の出力の送信周波数帯域内の最大ゲインと最小ゲインの差分絶対値が小さいほど、前記信頼性情報としてより高い信頼性を示すものを出力する
     ことを特徴とする請求項1に記載の受信装置。
  3.  前記信頼性情報生成手段は、
     前記伝送路推定手段の出力の送信周波数帯域内成分の分散値を算出する帯域内分散算出手段と、
     所定の基準値をもとに前記帯域内分散算出手段で算出された前記分散値を前記信頼性情報に変換する信頼性情報変換手段とを備え、
     前記信頼性情報変換手段は、前記分散値が小さいほど、前記信頼性情報としてより高い信頼性を示すものを出力する
     ことを特徴とする請求項1に記載の受信装置。
  4.  前記伝送路推定手段は、
     前記既知信号生成手段の出力をフィルタリングして出力する伝送路同定フィルタ手段と、
     前記周波数変換手段から出力される前記所定の周波数帯域の信号に対する前記伝送路同定フィルタ手段の出力の誤差を求める誤差信号生成手段と、
     前記誤差信号生成手段の出力を入力とし、前記誤差信号生成手段の出力がゼロとなるように、前記伝送路同定フィルタ手段で使用するフィルタ係数を算出する同定フィルタ係数算出手段と、
     前記同定フィルタ係数算出手段で算出されたフィルタ係数をフーリエ変換し、フーリエ変換の結果を出力する同定フィルタ係数フーリエ変換手段とを備え、
     前記伝送路同定フィルタ手段は、前記同定フィルタ係数算出手段で算出されたフィルタ係数を用いて前記既知信号生成手段の出力をフィルタリングして出力し、
     前記同定フィルタ係数フーリエ変換手段の出力を前記伝送路推定手段の出力とする
     ことを特徴とする請求項1乃至3のいずれかに記載の受信装置。
  5.  畳み込み符号化された送信データを変調した信号であって、所定の既知信号を重畳した送信信号を第1乃至第Nのアンテナ(Nは2以上の整数)で受信し、ダイバーシチ合成して前記送信データを再生する受信装置であって、
     それぞれ前記第1乃至第Nのアンテナで受信した信号を第1乃至第Nの所定の周波数帯域の信号に変換する第1乃至第Nの周波数変換手段と、
     それぞれ前記第1乃至第Nの所定の周波数帯域の信号をフーリエ変換する第1乃至第Nのフーリエ変換手段と、
     前記第1乃至第Nのフーリエ変換手段の出力をダイバーシチ合成して出力する周波数軸ダイバーシチ合成手段と、
     前記周波数軸ダイバーシチ合成手段の出力を逆フーリエ変換して時間領域での等化信号を出力する逆フーリエ変換手段と、
     前記送信信号に重畳されている既知信号を生成する既知信号生成手段と、
     それぞれ前記第1乃至第Nの所定の周波数帯域の信号、及び前記既知信号生成手段で生成された前記既知信号を入力とし、それぞれ前記第1乃至第Nのアンテナにより受信した信号の伝送路を推定し、該伝送路の周波数特性を表す係数のフーリエ変換を出力する第1乃至第Nの伝送路推定手段と、
     それぞれ前記第1乃至第Nの伝送路推定手段の出力に基づいて、それぞれ前記第1乃至第Nのフーリエ変換手段の出力の信頼性を表す第1乃至第Nの信頼性情報を生成する第1乃至第Nの信頼性情報生成手段と、
     それぞれ前記第1乃至第Nの信頼性情報及び前記第1乃至第Nの伝送路推定手段の出力をもとにダイバーシチの合成比を算出する周波数軸合成比算出手段とを備え、
     前記周波数軸ダイバーシチ合成手段は、前記周波数軸合成比算出手段の出力に応じて前記第1乃至第Nのフーリエ変換手段の出力を合成する
     ことを特徴とする受信装置。
  6.  前記周波数軸合成比算出手段は、
     前記第1乃至第Nの伝送路推定手段の出力を、その複素共役信号に変換して出力する第1乃至第Nの複素共役手段と、
     前記第1乃至第Nの伝送路推定手段の出力の振幅の2乗値を算出して電力値として出力する第1乃至第Nの電力算出手段と、
     前記第1乃至第Nの電力算出手段の出力を前記第1乃至第Nの信頼性情報でそれぞれ重み付けして出力する第1乃至第Nの電力値重み付け手段と、
     前記第1乃至第Nの電力値重み付け手段の出力の総和を算出する電力和算出手段と、
     前記第1乃至第Nの複素共役手段の出力、前記第1乃至第Nの信頼性情報及び前記電力和算出手段の出力をもとに、それぞれ前記第1乃至第Nのフーリエ変換手段の出力に対するダイバーシチ合成比を算出して出力する第1乃至第Nの合成比生成手段と
     を備えることを特徴とする請求項5に記載の受信装置。
  7.  畳み込み符号化された送信データを変調した信号であって、所定の既知信号を重畳した送信信号を第1乃至第Nのアンテナ(Nは2以上の整数)で受信し、ダイバーシチ合成して前記送信データを再生する受信装置であって、
     それぞれ前記第1乃至第Nのアンテナで受信した信号を第1乃至第Nの所定の周波数帯域の信号に変換する第1乃至第Nの周波数変換手段と、
     それぞれ前記第1乃至第Nの所定の周波数帯域の信号をフーリエ変換する第1乃至第Nのフーリエ変換手段と、
     それぞれ前記第1乃至第Nのフーリエ変換手段の出力を入力とし、それぞれ前記第1乃至第Nのアンテナで受信した信号が伝送路で受けた歪みを周波数領域で補正することにより周波数領域での等化を行う第1乃至第Nの周波数軸等化手段と、
     前記第1乃至第Nの周波数軸等化手段の出力をダイバーシチ合成して出力する等化後周波数軸ダイバーシチ合成手段と、
     前記等化後周波数軸ダイバーシチ合成手段の出力を逆フーリエ変換して時間領域での等化信号を出力する逆フーリエ変換手段と、
     前記送信信号に重畳されている既知信号を生成する既知信号生成手段と、
     それぞれ前記第1乃至第Nの所定の周波数帯域の信号及び前記既知信号生成手段で生成された前記既知信号を入力とし、それぞれ前記第1乃至第Nのアンテナにより受信し信号の伝送路を推定し、該伝送路の周波数特性を表す係数のフーリエ変換を出力する伝送路推定手段と、
     それぞれ前記第1乃至第Nの伝送路推定手段の出力に基づいて、それぞれ第1乃至第Nのフーリエ変換手段の出力の信頼性を表す第1乃至第Nの信頼性情報を生成する第1乃至第Nの信頼性情報生成手段と、
     それぞれ前記第1乃至第Nの信頼性情報及び前記第1乃至第Nの伝送路推定手段の出力をもとにダイバーシチの合成比を算出する等化後周波数軸合成比算出手段とを備え、
     前記等化後周波数軸ダイバーシチ合成手段は、前記等化後周波数軸合成比算出手段の出力に応じて前記第1乃至第Nの周波数軸等化手段の出力を合成し、
     前記第1乃至第Nの周波数軸等化手段は、それぞれ前記第1乃至第Nの伝送路推定手段の出力をも入力とし、これらに基づいて、前記第1乃至第Nのフーリエ変換手段に対する前記補正を行う
     ことを特徴とする受信装置。
  8.  前記等化後周波数軸合成比算出手段は、
     前記第1乃至第Nの伝送路推定手段の出力の振幅の2乗値を算出して電力値として出力する第1乃至第Nの電力算出手段と、
     前記第1乃至第Nの電力算出手段の出力を前記第1乃至第Nの信頼性情報でそれぞれ重み付けして出力する第1乃至第Nの電力値重み付け手段と、
     前記第1乃至第Nの電力値重み付け手段の出力の総和を算出する電力和算出手段と、
     前記第1乃至第Nの電力値重み付け手段の出力及び前記電力和算出手段の出力をもとにそれぞれ前記第1乃至第Nの周波数軸等化手段の出力に対するダイバーシチ合成比を算出して出力する第1乃至第Nの等化後合成比生成手段と
     を備えることを特徴とする請求項7に記載の受信装置。
  9.  前記第1乃至第Nの伝送路推定手段は、それぞれ前記第1乃至第Nの周波数変換手段に対応して設けられ、前記第1乃至第Nの伝送路推定手段の各々は、
     前記既知信号生成手段の出力をフィルタリングして出力する伝送路同定フィルタ手段と、
     対応する前記周波数変換手段から出力される前記所定の周波数帯域の信号に対する前記伝送路同定フィルタ手段の出力の誤差を求める誤差信号生成手段と、
     前記誤差信号生成手段の出力を入力とし、前記誤差信号生成手段の出力がゼロとなるように、前記伝送路同定フィルタ手段で使用するフィルタ係数を算出する同定フィルタ係数算出手段と、
     前記同定フィルタ係数算出手段で算出されたフィルタ係数をフーリエ変換し、フーリエ変換の結果を出力する同定フィルタ係数フーリエ変換手段とを備え、
     前記伝送路同定フィルタ手段は、前記同定フィルタ係数算出手段で算出されたフィルタ係数を用いて前記既知信号生成手段の出力をフィルタリングして出力し、
     前記同定フィルタ係数フーリエ変換手段の出力を当該伝送路推定手段の出力とする
     ことを特徴とする請求項5乃至8のいずれかに記載の受信装置。
  10.  前記第1乃至第Nの信頼性情報生成手段は、それぞれ前記第1乃至第Nの伝送路推定手段に対応して設けられ、前記第1乃至第Nの信頼性情報生成手段の各々は、
     当該信頼性情報生成手段に対応する前記伝送路推定手段の出力の、送信周波数帯域内成分の分散値を算出する帯域内分散算出手段と、
     前記帯域内分散算出手段で算出された前記分散値を、所定の基準値をもとに前記分散値を信頼性情報に変換する信頼性情報変換手段とを備え、
     前記信頼性情報変換手段は、前記分散値が小さいほど、前記信頼性情報としてより高い信頼性を示すものを出力する
     ことを特徴とする請求項5乃至9のいずれかに記載の受信装置。
  11.  前記第1乃至第Nの信頼性情報生成手段は、それぞれ前記第1乃至第Nの伝送路推定手段に対応して設けられ、前記第1乃至第Nの信頼性情報生成手段の各々は、
     当該信頼性情報生成手段に対応する前記伝送路推定手段の出力の、送信周波数帯域内の最大ゲインと最小ゲインの差分絶対値が
    小さいほど、前記信頼性情報としてより高い信頼性を示すものを出力する
     ことを特徴とする請求項5乃至9のいずれかに記載の受信装置。
  12.  前記第1乃至第Nの信頼性情報生成手段の各々は、
     当該信頼性情報生成手段に対応する前記伝送路推定手段の出力の、前記送信周波数帯域内の最大ゲインと最小ゲインの差分絶対値に応じた重み係数を求める重み係数決定手段と、
     対応する前記伝送路推定手段の出力の、前記送信周波数帯域内の平均ゲインを求める帯域内平均ゲイン算出手段と、
     前記帯域内平均ゲイン算出手段で求められた前記平均ゲインと前記重み係数決定手段で求められた前記重み係数及び所定の基準値をもとに、信頼性情報を生成して出力する重み付け演算手段と
     を備えることを特徴とする請求項11に記載の受信装置。
  13.  前記送信信号が、多値VSB(Vestigial Sideband)変調方式、QPSK(Quadrature Phase Shift Keying)変調方式又は多値QAM(Quadrature Amplitude Modulation)変調方式で変調されたものであることを特徴とする請求項1乃至12のいずれかに記載の受信装置。
  14.  畳み込み符号化された送信データを変調した送信信号であって、所定の既知信号を重畳した送信信号を受信し、該受信した信号から送信データを再生する受信方法であって、
     前記受信した信号を所定の周波数帯域の信号に変換する周波数変換ステップと、
     前記所定の周波数帯域の信号をフーリエ変換するフーリエ変換ステップと、
     前記フーリエ変換ステップによるフーリエ変換の結果に基づいて、該前記アンテナで受信した信号が伝送路で受けた歪みを周波数領域で補正することにより周波数領域での等化を行う周波数軸等化ステップと、
     前記周波数軸等化ステップによる等化結果を逆フーリエ変換して時間領域での等化信号を生成する逆フーリエ変換ステップと、
     前記送信信号に重畳されている既知信号を生成する既知信号生成ステップと、
     前記受信した信号の伝送路を推定し、該伝送路の周波数特性を表す係数をフーリエ変換する伝送路推定ステップと、
     前記伝送路推定ステップによる推定結果の送信周波数帯域内の伝送路振幅特性のばらつきから前記逆フーリエ変換ステップによる逆フーリエ変換の結果の信頼性を表す信頼性情報を生成する信頼性情報生成ステップと、
     前記逆フーリエ変換ステップによる逆フーリエ変換の結果及び前記信頼性情報をもとにビタビ復号処理を行って前記送信データを再生するビタビ復号ステップとを備え、
     前記周波数軸等化ステップは、前記伝送路推定ステップによる推定結果に基づいて前記フーリエ変換ステップによるフーリエの変換結果に対する前記補正を行う
     ことを特徴とする受信方法。
  15.  前記信頼性情報生成ステップは、
     前記伝送路推定ステップによる推定結果の前記送信周波数帯域内の最大ゲインと最小ゲインの差分絶対値に応じた重み係数を求める重み係数決定ステップと、
     前記伝送路推定ステップによる推定結果の前記送信周波数帯域内の平均ゲインを求める帯域内平均ゲイン算出ステップと、
     前記帯域内平均ゲイン算出ステップで求められた前記平均ゲインと、前記重み係数決定ステップで求められた前記重み係数と、所定の基準値をもとに、前記信頼性情報を生成する重み付け演算ステップと
     を備え、
     前記伝送路推定ステップによる推定結果の送信周波数帯域内の最大ゲインと最小ゲインの差分絶対値が小さいほど、前記信頼性情報としてより高い信頼性を示すものを生成する
     ことを特徴とする請求項14に記載の受信方法。
  16.  前記信頼性情報生成ステップは、
     前記伝送路推定ステップによる推定結果の送信周波数帯域内成分の分散値を算出する帯域内分散算出ステップと、
     所定の基準値をもとに前記帯域内分散算出ステップで算出された前記分散値を前記信頼性情報に変換する信頼性情報変換ステップとを備え、
     前記信頼性情報変換ステップは、前記分散値が小さいほど、前記信頼性情報としてより高い信頼性を示すものを生成する
     ことを特徴とする請求項14に記載の受信方法。
  17.  前記伝送路推定ステップは、
     前記既知信号生成ステップで生成された前記既知信号をフィルタリングする伝送路同定フィルタステップと、
     前記所定の周波数帯域の信号に対する前記伝送路同定フィルタステップによるフィルタリングの結果の誤差を求める誤差信号生成ステップと、
     前記誤差信号生成ステップにより生成された前記誤差信号がゼロとなるように、前記伝送路同定フィルタステップで使用するフィルタ係数を算出する同定フィルタ係数算出ステップと、
     前記同定フィルタ係数算出ステップで算出された前記フィルタ係数をフーリエ変換する同定フィルタ係数フーリエ変換ステップとを備え、
     前記伝送路同定フィルタステップは、前記同定フィルタ係数算出ステップで算出された前記フィルタ係数を用いて前記既知信号生成ステップにより生成された前記既知信号をフィルタリングし、
     前記同定フィルタ係数フーリエ変換ステップによるフーリエ変換の結果を前記伝送路推定ステップによる推定結果として用いる
     ことを特徴とする請求項14乃至16のいずれかに記載の受信方法。
  18.  畳み込み符号化された送信データを変調した信号であって、所定の既知信号を重畳した送信信号を第1乃至第Nのアンテナ(Nは2以上の整数)で受信し、ダイバーシチ合成して前記送信データを再生する受信方法であって、
     それぞれ前記第1乃至第Nのアンテナで受信した信号を第1乃至第Nの所定の周波数帯域の信号に変換する第1乃至第Nの周波数変換ステップと、
     それぞれ前記第1乃至第Nの所定の周波数帯域の信号をフーリエ変換する第1乃至第Nのフーリエ変換ステップと、
     前記第1乃至第Nのフーリエ変換ステップによるフーリエ変換の結果をダイバーシチ合成する周波数軸ダイバーシチ合成ステップと、
     前記周波数軸ダイバーシチ合成ステップによる合成の結果を逆フーリエ変換して時間領域での等化信号を生成する逆フーリエ変換ステップと、
     前記送信信号に重畳されている既知信号を生成する既知信号生成ステップと、
     それぞれ前記第1乃至第Nの所定の周波数帯域の信号、及び前記既知信号生成ステップで生成された前記既知信号に基づいて、それぞれ前記第1乃至第Nのアンテナにより受信した信号の伝送路を推定し、該伝送路の周波数特性を表す係数をフーリエ変換する第1乃至第Nの伝送路推定ステップと、
     それぞれ前記第1乃至第Nの伝送路推定ステップによる推定結果に基づいて、それぞれ前記第1乃至第Nのフーリエ変換ステップによるフーリエ変換の結果の信頼性を表す第1乃至第Nの信頼性情報を生成する第1乃至第Nの信頼性情報生成ステップと、
     それぞれ前記第1乃至第Nの信頼性情報及び前記第1乃至第Nの伝送路推定ステップによる推定結果をもとにダイバーシチの合成比を算出する周波数軸合成比算出ステップとを備え、
     前記周波数軸ダイバーシチ合成ステップは、前記周波数軸合成比算出ステップで算出された前記合成比に応じて前記第1乃至第Nのフーリエ変換ステップによるフーリエ変換の結果を合成する
     ことを特徴とする受信方法。
  19.  前記周波数軸合成比算出ステップは、
     前記第1乃至第Nの伝送路推定ステップによる推定結果を、その複素数共役信号に変換する第1乃至第Nの複素共役ステップと、
     前記第1乃至第Nの伝送路推定ステップによる推定結果の振幅の2乗値を電力値として算出する第1乃至第Nの電力算出ステップと、
     前記第1乃至第Nの電力算出ステップにより算出された前記電力値を前記第1乃至第Nの信頼性情報でそれぞれ重み付けする第1乃至第Nの電力値重み付けステップと、
     前記第1乃至第Nの電力値重み付けステップによる重み付けの結果の総和を算出する電力和算出ステップと、
     前記第1乃至第Nの複素共役ステップにより生成された前記複素共役信号、前記第1乃至第Nの信頼性情報及び前記電力和算出ステップで算出された総和をもとに、それぞれ前記第1乃至第Nのフーリエ変換ステップによるフーリエ変換の結果に対するダイバーシチ合成比を算出する第1乃至第Nの合成比生成ステップと
     を備えることを特徴とする請求項18に記載の受信方法。
  20.  畳み込み符号化された送信データを変調した信号であって、所定の既知信号を重畳した送信信号を第1乃至第Nのアンテナ(Nは2以上の整数)で受信し、ダイバーシチ合成して前記送信データを再生する受信方法であって、
     それぞれ前記第1乃至第Nのアンテナで受信した信号を第1乃至第Nの所定の周波数帯域の信号に変換する第1乃至第Nの周波数変換ステップと、
     それぞれ前記第1乃至第Nの所定の周波数帯域の信号をフーリエ変換する第1乃至第Nのフーリエ変換ステップと、
     それぞれ前記第1乃至第Nのフーリエ変換ステップによるフーリエ変換の結果に基づいて、それぞれ前記第1乃至第Nのアンテナで受信した信号が伝送路で受けた歪みを周波数領域で補正することにより周波数領域での等化を行う第1乃至第Nの周波数軸等化ステップと、
     前記第1乃至第Nの周波数軸等化ステップによる等化結果をダイバーシチ合成する等化後周波数軸ダイバーシチ合成ステップと、
     前記等化後周波数軸ダイバーシチ合成ステップによる合成結果を逆フーリエ変換して時間領域での等化信号を生成する逆フーリエ変換ステップと、
     前記送信信号に重畳されている既知信号を生成する既知信号生成ステップと、
     それぞれ前記第1乃至第Nの所定の周波数帯域の信号及び前記既知信号生成ステップで生成された前記既知信号に基づいて、それぞれ前記第1乃至第Nのアンテナにより受信し信号の伝送路を推定し、該伝送路の周波数特性を表す係数をフーリエ変換する伝送路推定ステップと、
     それぞれ前記第1乃至第Nの伝送路推定ステップによる推定結果に基づいて、それぞれ第1乃至第Nのフーリエ変換ステップによるフーリエ変換の結果の信頼性を表す第1乃至第Nの信頼性情報を生成する第1乃至第Nの信頼性情報生成ステップと、
     それぞれ前記第1乃至第Nの信頼性情報及び前記第1乃至第Nの伝送路推定ステップによる推定結果をもとにダイバーシチの合成比を算出する等化後周波数軸合成比算出ステップとを備え、
     前記等化後周波数軸ダイバーシチ合成ステップは、前記等化後周波数軸合成比算出ステップにより算出された前記合成比に応じて前記第1乃至第Nの周波数軸等化ステップによる等化結果を合成し、
     前記第1乃至第Nの周波数軸等化ステップは、それぞれ前記第1乃至第Nの伝送路推定ステップによる推定結果にも基づいて、前記第1乃至第Nのフーリエ変換ステップに対する前記補正を行う
     ことを特徴とする受信方法。
  21.  前記等化後周波数軸合成比算出ステップは、
     前記第1乃至第Nの伝送路推定ステップによる推定結果の振幅の2乗値を電力値として算出する第1乃至第Nの電力算出ステップと、
     前記第1乃至第Nの電力算出ステップにより算出された前記電力値を前記第1乃至第Nの信頼性情報でそれぞれ重み付けする第1乃至第Nの電力値重み付けステップと、
     前記第1乃至第Nの電力値重み付けステップによる重み付けの結果の総和を算出する電力和算出ステップと、
     前記第1乃至第Nの電力値重み付けステップによる重み付けの結果及び前記電力和算出ステップにより算出された前記総和をもとにそれぞれ前記第1乃至第Nの周波数軸等化ステップによる等化結果に対するダイバーシチ合成比を算出する第1乃至第Nの等化後合成比生成ステップと
     を備えることを特徴とする請求項20に記載の受信方法。
  22.  前記第1乃至第Nの伝送路推定ステップは、それぞれ前記第1乃至第Nの周波数変換ステップに対応し、前記第1乃至第Nの伝送路推定ステップの各々は、
     前記既知信号生成ステップにより生成された前記既知信号をフィルタリングする伝送路同定フィルタステップと、
     対応する前記周波数変換ステップにより生成された前記所定の周波数帯域の信号に対する前記伝送路同定フィルタステップによるフィルタリング結果の誤差を求める誤差信号生成ステップと、
     前記誤差信号生成ステップで生成された前記誤差信号がゼロとなるように、前記伝送路同定フィルタステップで使用するフィルタ係数を算出する同定フィルタ係数算出ステップと、
     前記同定フィルタ係数算出ステップで算出されたフィルタ係数をフーリエ変換する同定フィルタ係数フーリエ変換ステップとを備え、
     前記伝送路同定フィルタステップは、前記同定フィルタ係数算出ステップで算出されたフィルタ係数を用いて前記既知信号生成ステップにより生成された前記既知信号をフィルタリングし、
     前記同定フィルタ係数フーリエ変換ステップによるフーリエ変換の結果を当該伝送路推定ステップによる推定結果として用いる
     ことを特徴とする請求項18乃至21のいずれかに記載の受信方法。
  23.  前記第1乃至第Nの信頼性情報生成ステップは、それぞれ前記第1乃至第Nの伝送路推定ステップに対応し、前記第1乃至第Nの信頼性情報生成ステップの各々は、
     当該信頼性情報生成ステップに対応する前記伝送路推定ステップによる推定結果の、送信周波数帯域内成分の分散値を算出する帯域内分散算出ステップと、
     前記帯域内分散算出ステップで算出された前記分散値を、所定の基準値をもとに前記分散値を信頼性情報に変換する信頼性情報変換ステップとを備え、
     前記信頼性情報変換ステップは、前記分散値が小さいほど、前記信頼性情報としてより高い信頼性を示すものを生成する
     ことを特徴とする請求項18乃至22のいずれかに記載の受信方法。
  24.  前記第1乃至第Nの信頼性情報生成ステップは、それぞれ前記第1乃至第Nの伝送路推定ステップに対応し、前記第1乃至第Nの信頼性情報生成ステップの各々は、
     当該信頼性情報生成ステップに対応する前記伝送路推定ステップによる推定結果の、送信周波数帯域内の最大ゲインと最小ゲインの差分絶対値が小さいほど、前記信頼性情報としてより高い信頼性を示すものを生成する
     ことを特徴とする請求項18乃至22のいずれかに記載の受信方法。
  25.  前記第1乃至第Nの信頼性情報生成ステップの各々は、
     当該信頼性情報生成ステップに対応する前記伝送路推定ステップによる推定結果の、前記送信周波数帯域内の最大ゲインと最小ゲインの差分絶対値に応じた重み係数を求める重み係数決定ステップと、
     対応する前記伝送路推定ステップによる推定結果の、前記送信周波数帯域内の平均ゲインを求める帯域内平均ゲイン算出ステップと、
     前記帯域内平均ゲイン算出ステップで求められた前記平均ゲインと前記重み係数決定ステップで求められた前記重み係数及び所定の基準値をもとに、信頼性情報を生成する重み付け演算ステップと
     を備えることを特徴とする請求項24に記載の受信方法。
  26.  前記送信信号が、多値VSB(Vestigial Sideband)変調方式、QPSK(Quadrature Phase Shift Keying)変調方式又は多値QAM(Quadrature Amplitude Modulation)変調方式で変調されたものであることを特徴とする請求項14乃至25のいずれかに記載の受信方法。
PCT/JP2011/078441 2010-12-24 2011-12-08 受信装置及び方法 WO2012086425A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020137016318A KR101411086B1 (ko) 2010-12-24 2011-12-08 수신 장치 및 방법
US13/823,085 US8811465B2 (en) 2010-12-24 2011-12-08 Reception device and method
JP2012549719A JP5466311B2 (ja) 2010-12-24 2011-12-08 受信装置及び方法
CN201180058626.2A CN103250384B (zh) 2010-12-24 2011-12-08 接收装置和方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010288057 2010-12-24
JP2010-288057 2010-12-24

Publications (1)

Publication Number Publication Date
WO2012086425A1 true WO2012086425A1 (ja) 2012-06-28

Family

ID=46313705

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/078441 WO2012086425A1 (ja) 2010-12-24 2011-12-08 受信装置及び方法

Country Status (5)

Country Link
US (1) US8811465B2 (ja)
JP (2) JP5466311B2 (ja)
KR (1) KR101411086B1 (ja)
CN (1) CN103250384B (ja)
WO (1) WO2012086425A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012138662A (ja) * 2010-12-24 2012-07-19 Mitsubishi Electric Corp 受信装置及び方法
US9059765B2 (en) 2012-03-01 2015-06-16 Mitsubishi Electric Corporation Reception device and reception method

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9191131B2 (en) * 2012-07-06 2015-11-17 Intel Deutschland Gmbh Method for control channel detection in wireless communications systems
US8976910B1 (en) * 2013-05-07 2015-03-10 Ixia Methods, systems, and computer readable media for smart decoding of downlink signals in the presence of interference caused by reference signals of different generation air interface equipment
US9503290B2 (en) * 2013-05-21 2016-11-22 Pioneer Corporation Diversity reception device, diversity reception method, reception program, and recording medium
TWI575901B (zh) * 2015-06-17 2017-03-21 晨星半導體股份有限公司 通道效應消除裝置及通道效應消除方法
TWI627846B (zh) * 2016-03-30 2018-06-21 晨星半導體股份有限公司 等化增強模組、解調變系統以及等化增強方法
EP3474029B1 (en) * 2016-06-21 2022-03-30 Mitsubishi Electric Corporation Load abnormality detection device
JP7180514B2 (ja) * 2019-04-11 2022-11-30 日本電信電話株式会社 無線通信システム、無線通信方法、送信局装置および受信局装置
JP7107271B2 (ja) * 2019-04-11 2022-07-27 日本電信電話株式会社 無線通信システム、無線通信方法、送信局装置および受信局装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06334692A (ja) * 1993-05-26 1994-12-02 Sony Corp ビタビ等化器
JP2004172699A (ja) * 2002-11-18 2004-06-17 Matsushita Electric Ind Co Ltd ダイバーシティ受信装置及びダイバーシティ受信方法
JP2006041980A (ja) * 2004-07-28 2006-02-09 Matsushita Electric Ind Co Ltd ダイバーシティ型受信装置、ダイバーシティ型受信装置を用いた受信方法および受信プログラム、ダイバーシティ型受信装置を用いた受信プログラムを格納した記録媒体
JP2008311868A (ja) * 2007-06-13 2008-12-25 Toshiba Corp 受信装置および受信方法

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3256646B2 (ja) 1995-06-05 2002-02-12 株式会社エヌ・ティ・ティ・ドコモ 適応干渉キャンセル受信機
JP3377361B2 (ja) 1996-04-12 2003-02-17 日本放送協会 ダイバーシチ受信装置
JP3745502B2 (ja) * 1997-06-24 2006-02-15 ソニー株式会社 受信装置及び送受信装置並びに通信方法
JPH11266192A (ja) 1998-03-16 1999-09-28 Matsushita Electric Ind Co Ltd 適応等化方法及び適応等化回路
US6738949B2 (en) 1998-05-13 2004-05-18 Matsushita Electric Industrial Co., Ltd. Error correction circuit and error correction method
JP2000013128A (ja) 1998-06-23 2000-01-14 Ntt Mobil Communication Network Inc アダプティブアレイ送受信機
US6081301A (en) 1999-01-13 2000-06-27 Samsung Electronics Co., Ltd. DTV circuitry for measuring multipath distortion based on ghosting of data segment synchronizing signals
JP2001069117A (ja) 1999-08-31 2001-03-16 Matsushita Electric Ind Co Ltd Ofdm通信装置及び伝搬路推定方法
KR20010094694A (ko) 2000-04-06 2001-11-01 윤종용 티시엠 복호장치 및 방법
DE60201162T2 (de) 2001-11-15 2005-11-03 Matsushita Electric Industrial Co., Ltd., Kadoma Verfahren und Vorrichtung zur OFDM- (orthogonale Frequenzmultiplexierung) Demodulation
JP2004096703A (ja) 2001-11-15 2004-03-25 Matsushita Electric Ind Co Ltd Ofdm復調方法及びofdm復調装置
KR20030049302A (ko) 2001-12-14 2003-06-25 한국전자통신연구원 디지털 방송 시스템에서의 기저대역 부호화 장치 및 그를이용한 주파수 변조 방법
JP3538187B2 (ja) 2002-03-26 2004-06-14 株式会社東芝 Ofdm受信装置およびofdm受信装置におけるデータ復調方法
EP1408625A3 (en) 2002-10-11 2006-09-06 Matsushita Electric Industrial Co., Ltd. Diversity receiver and diversity receiving method for FDM signals
CN1497867A (zh) * 2002-10-11 2004-05-19 松下电器产业株式会社 分集接收装置及分集接收方法
JP4218414B2 (ja) * 2003-05-19 2009-02-04 ソニー株式会社 受信装置および方法
US7583737B2 (en) 2003-05-30 2009-09-01 Mitsubishi Electric Corporation OFDM signal receiver device and OFDM signal receiving method
JP2006067123A (ja) 2004-08-25 2006-03-09 Matsushita Electric Ind Co Ltd Ofdm中継装置
JP3724501B1 (ja) 2004-11-30 2005-12-07 三菱電機株式会社 復調装置、ダイバーシチ受信装置および復調方法
JP4364820B2 (ja) * 2005-03-09 2009-11-18 株式会社メガチップス Ofdmダイバーシティ受信装置
FR2893433B1 (fr) * 2005-11-16 2008-06-27 Commissariat Energie Atomique Procedes et dispositifs de demodulation souple dans un systeme ofdm-cdma.
CN1968239A (zh) 2005-11-17 2007-05-23 松下电器产业株式会社 用于多小区正交频分多址系统的载波分配方法
WO2007100186A1 (en) * 2006-03-02 2007-09-07 Lg Electronics Inc. Digital broadcasting system and method of processing data
JP2007258794A (ja) 2006-03-20 2007-10-04 Hitachi Kokusai Electric Inc Ofdm受信機における雑音低減方法及びその装置
JP2009130486A (ja) 2007-11-21 2009-06-11 Sharp Corp 無線通信システムおよび受信装置
JP5370366B2 (ja) * 2008-08-06 2013-12-18 パナソニック株式会社 無線受信装置
WO2010062047A2 (en) 2008-11-02 2010-06-03 Lg Electronics Inc. Transmitting/receiving system and method of processing broadcast signal in transmitting/receiving system
JPWO2010070884A1 (ja) * 2008-12-15 2012-05-24 パナソニック株式会社 受信装置および受信方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06334692A (ja) * 1993-05-26 1994-12-02 Sony Corp ビタビ等化器
JP2004172699A (ja) * 2002-11-18 2004-06-17 Matsushita Electric Ind Co Ltd ダイバーシティ受信装置及びダイバーシティ受信方法
JP2006041980A (ja) * 2004-07-28 2006-02-09 Matsushita Electric Ind Co Ltd ダイバーシティ型受信装置、ダイバーシティ型受信装置を用いた受信方法および受信プログラム、ダイバーシティ型受信装置を用いた受信プログラムを格納した記録媒体
JP2008311868A (ja) * 2007-06-13 2008-12-25 Toshiba Corp 受信装置および受信方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012138662A (ja) * 2010-12-24 2012-07-19 Mitsubishi Electric Corp 受信装置及び方法
US9059765B2 (en) 2012-03-01 2015-06-16 Mitsubishi Electric Corporation Reception device and reception method

Also Published As

Publication number Publication date
JPWO2012086425A1 (ja) 2014-05-22
KR20130112051A (ko) 2013-10-11
KR101411086B1 (ko) 2014-06-27
JP5466311B2 (ja) 2014-04-09
US20130177064A1 (en) 2013-07-11
JP2014082788A (ja) 2014-05-08
CN103250384B (zh) 2015-10-21
US8811465B2 (en) 2014-08-19
CN103250384A (zh) 2013-08-14
JP5627805B2 (ja) 2014-11-19

Similar Documents

Publication Publication Date Title
JP5627805B2 (ja) 受信装置及び方法
JP5030279B2 (ja) 無線通信装置及び無線通信方法
JP4854094B2 (ja) 無線受信機、無線通信システムおよび無線受信方法
EP1551120A1 (en) Receiving device, receiving method, and device for measuring transmission channel characteristic
US9130787B2 (en) Adaptive frequency-domain equalization for wireless receivers
JP3715282B2 (ja) Ofdm受信装置及びofdm信号の補正方法
RU2650179C2 (ru) Устройство связи, устройство демодуляции, устройство восстановления несущей, устройство компенсации фазовой ошибки, способ компенсации фазовой ошибки и запоминающий носитель, на котором сохранена программа компенсации фазовой ошибки
KR100606790B1 (ko) 다중 안테나를 이용한 채널 등화기
JPWO2017183631A1 (ja) Los−mimo復調装置、通信装置、los−mimo伝送システム、los−mimo復調方法及びプログラム
JP5278173B2 (ja) 受信装置および方法、プログラム、並びに受信システム
JP2008048092A (ja) Ofdmを用いる無線送信方法、送信機及び受信機
JP5178632B2 (ja) Ofdmアレー受信装置
JP4915347B2 (ja) ダイバーシティ合成方法およびダイバーシティ型受信装置
WO2014188508A1 (ja) ダイバーシティ受信装置、ダイバーシティ受信方法、受信プログラム及び記録媒体
JP2000183844A (ja) 受信機及び受信方法
JP2009060177A (ja) 無線通信装置および無線受信方法
JP5656617B2 (ja) 受信装置及び方法
JP2007081504A (ja) Ofdm受信機における伝送路特性補間方法及びその装置
JP2005286362A (ja) デジタル受信機
JP4222960B2 (ja) デジタル受信機
JP5627817B2 (ja) 受信装置及び受信方法
JP2020141173A (ja) 無線通信システム、無線通信方法、送信局装置および受信局装置
JP6209087B2 (ja) 受信装置及びプログラム
JP5881453B2 (ja) 等化装置、受信装置及び等化方法
JP5337746B2 (ja) Ofdm信号合成用受信装置及び中継装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11852005

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13823085

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2012549719

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137016318

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11852005

Country of ref document: EP

Kind code of ref document: A1