JP5370366B2 - 無線受信装置 - Google Patents

無線受信装置 Download PDF

Info

Publication number
JP5370366B2
JP5370366B2 JP2010523752A JP2010523752A JP5370366B2 JP 5370366 B2 JP5370366 B2 JP 5370366B2 JP 2010523752 A JP2010523752 A JP 2010523752A JP 2010523752 A JP2010523752 A JP 2010523752A JP 5370366 B2 JP5370366 B2 JP 5370366B2
Authority
JP
Japan
Prior art keywords
unit
wave
signal
noise
antenna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010523752A
Other languages
English (en)
Other versions
JPWO2010016232A1 (ja
Inventor
康男 濱本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2010523752A priority Critical patent/JP5370366B2/ja
Publication of JPWO2010016232A1 publication Critical patent/JPWO2010016232A1/ja
Application granted granted Critical
Publication of JP5370366B2 publication Critical patent/JP5370366B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/0848Joint weighting
    • H04B7/0854Joint weighting using error minimizing algorithms, e.g. minimum mean squared error [MMSE], "cross-correlation" or matrix inversion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • H04L1/0618Space-time coding
    • H04L1/0631Receiver arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0667Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of delayed versions of same signal
    • H04B7/0669Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of delayed versions of same signal using different channel coding between antennas

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Radio Transmission System (AREA)
  • Noise Elimination (AREA)

Description

本発明は、無線通信を受信する無線受信装置に関し、特に、無線送信局から空間伝送された信号を複数のアンテナを用いて受信する無線受信装置に関する。
従来の無線受信技術としては複数の送信アンテナで空間多重送信された信号を複数の受信アンテナで受信し、伝送路推定技術を利用して高速伝送安定受信を行うものがある。この方式は「MIMO」(Multi Input Multi Out)と呼ばれている。このような従来の無線受信技術は、例えば、特許文献1に開示されている。
図17は、特許文献1に開示されている従来の無線送信装置と無線受信装置を示す。図17において、無線送信装置は、信号入力端子800、空間時間符号化器(図17では「STE1」と記載する)801、空間時間符号化器(図17では「STE2」と記載する)802、逆高速フーリエ変換(図17では「IFFT1」と記載する)803、逆高速フーリエ変換(図17では「IFFT2」と記載する)804、逆高速フーリエ変換(図17では「IFFT3」と記載する)805、逆高速フーリエ変換(図17では「IFFT4」と記載する)806、送信アンテナ(図17では「TA1」と記載する)807、送信アンテナ(図17では「TA2」と記載する)808、送信アンテナ(図17では「TA3」と記載する)809、送信アンテナ(図17では「TA4」と記載する)810で構成されている。
また、無線受信機は、受信アンテナ(図17では「RA1」と記載する)811、受信アンテナ(図17では「RA2」と記載する)812、受信アンテナ(図17では「RAp」と記載する)813、高速フーリエ変換サブシステム(図17では「FFT1」と記載する)814、高速フーリエ変換サブシステム(図17では「FFT2」と記載する)815、高速フーリエ変換サブシステム(図17では「FFTp」と記載する)816、空間時間プロセッサ(図17では「STP」と記載する)817、空間時間復号化器(図17では「STD1」と記載する)818、空間時間復号化器(図17では「STD2」と記載する)819、チャネルパラメータ推定器(図17では「CPE」と記載する)820、出力端子821、出力端子822で構成されている。
無線送信装置において、入力端子800に入力されたデータブロックは、データブロックb1[n,k]とデータブロックb2[n,k]に分離される。データブロックb1[n,k]は空間時間符号化器801に入力され、データブロックb2[n,k]は空間時間符号化器802に入力される。空間時間符号化器801と空間時間符号化器802はそれぞれ2つのデータペアを生成し、データブロックb1[n,k]とデータブロックb2[n,k]は合計で4つのデータ(tm1[n、k]からtm4[n、k])に変換される。逆高速フーリエ変換803から逆高速フーリエ変換806は、この変換された4つのデータ(tm1[n、k]からtm4[n、k])を変調し、それぞれOFDM信号として出力する。送信アンテナ807から送信アンテナ810は、これらのOFDM信号を無線送信する。無線送信されたOFDM信号は、空間伝送された後に受信アンテナ811から受信アンテナ813で受信される。図17に示されるように、送信アンテナ807から送信アンテナ810で送信されたOFDM信号は伝送空間においてお互いに重ね合せた状態で受信アンテナ811から受信アンテナ813が受信する。
高速フーリエ変換サブシステム814は受信アンテナ811で受信された信号r1[n,k]を周波数空間信号に変換して、空間時間プロセッサ817に供給する。高速フーリエ変換サブシステム815は受信アンテナ812で受信された信号r2[n,k]を周波数空間信号に変換して、空間時間プロセッサ817に供給する。同様にして、高速フーリエ変換サブシステム816は受信アンテナ813で受信された信号rp[n,k]を周波数空間信号に変換して、空間時間プロセッサ817に供給する。チャネルパラメータ推定器820は、高速フーリエ変換サブシステム814から高速フーリエ変換サブシステム816で変換された信号を受け、それらの変換された信号からチャネルパラメータ情報を判定する。そうして、チャネルパラメータ推定器820は、復号化する際に用いるために判定結果を空間時間復号化器818および空間時間復号化器819に供給する。空間時間プロセッサ817と、空間時間復号化器818および空間時間復号化器819と、チャネルパラメータ情報により、空間多重伝送された送信信号が分離復号され、出力端子821および出力端子822に出力される。
更に特許文献1に記載の空間多重復調技術の応用として、IEICE2005で技術発表された干渉抑圧受信技術が非特許文献1に開示されている。図18は非特許文献1に記載された無線送信装置と無線受信装置を示す。
図18において、無線送信装置500は、通信制御部501、第1のIFFT部502、第2のIFFT部504、送信アンテナ503、送信アンテナ505で構成されている。原理と動作は前述の特許文献1に記載の無線送信装置と同一である。図18では簡略化のため、2本の送信アンテナで2つのOFDMデータストリームを送信する構成としている。無線受信装置は、受信アンテナ601、受信アンテナ603、第1のFFT部602、第2のFFT部604、デマッピング部611、ビタビ復号部612、干渉抑圧部600で構成されている。干渉抑圧部600は、重み付け合成部605、伝送路推定部606、不要信号測定部607、信頼度評価部610で構成されている。
図18において、干渉局700は、無線送信装置500により無線送信された電波に対して、フェージング伝送路900内で妨害を与える無線干渉波を送信する。
無線受信装置では、受信アンテナ601と受信アンテナ603が上述の無線干渉波が混信したOFDM信号を受信する。第1のFFT部602と第2のFFT部604は、受信したOFDM信号にそれぞれ高速フーリエ変換を施してOFDMのサブキャリヤ単位で出力する。そうして、サブキャリヤの数だけ用意された干渉抑圧部600は無線送信装置500から送信された信号の復調と同時に妨害波を除去する処理を行なう。干渉抑圧部600では、伝送路推定部606がパケットのプリアンブルシンボルを用いてフェージング伝送路900の伝送状態を表す伝送路係数行列Hを算出する。なお、伝送路係数行列Hは通常のMIMO復調と同一の演算で求められる。不要信号測定部607は、希望波パケットが送信されてから次の希望波パケットが送信されるまでの間の希望波パケットが送信されていない時間で干渉波信号を検出し、さらにそのアンテナ間共分散行列Ruuを求める。
重み付け合成部605は、まず、OFDM信号を構成する各サブキャリヤ成分毎に算出されたアンテナ間共分散行列Ruuと伝送路係数行列Hを用いて、受信アンテナ601のアンテナ入力信号と受信アンテナ603のアンテナ入力信号を合成する重み係数Wを算出する。そして、重み付け合成部605は、受信アンテナ601と受信アンテナ603からの受信信号ベクトルrに対して重み係数Wを用いた重み付け合成演算を施し、信号ベクトルs=W*rを算出する。この演算により、干渉波を抑圧した復調が可能になる。また干渉波がない場合、アンテナ間共分散行列Ruuは干渉波雑音成分のみとなるため、最大比合成による受信と等価となり、適応的に常に受信誤りを小さく抑えることが可能になる。
図19Aは重み付け合成部605で重み付け合成される前のOFDMサブキャリヤ701と雑音成分702の関係を表している。図19Bは重み付け合成部605で重み付け合成された後に正規化されたOFDMサブキャリヤ703と残留誤差704を図示している。これより雑音除去後にも残留する干渉波信号はサブキャリヤ単位で異なり、残留誤差が大きいほど信頼性が低く、残留誤差が小さいほど信頼性が高いと考えられる。そのため、信頼度評価部610は重み付け合成後の各サブキャリヤ振幅が正規化された時点での残留誤差e(残留干渉波信号)の逆数を信号の確からしさを表す尤度κとして算出する。
デマッピング部611は、干渉抑圧部600から出力される各サブキャリヤ単位の信号のマッピングを元に戻す。ビタビ復号手段612は、マッピングが元に戻された信号を上述の尤度κを利用して誤り訂正処理を行い、復調信号を出力する。
図20は重み付け合成による干渉抑圧と尤度を用いたビタビ復号の2つの処理により、同一PER(パケットエラーレート)を得るための所要SIR(信号対干渉比)が約10dB+5dB改善されることを示したシミュレーション結果である。図20において、横軸は所要SIRを示し、縦軸はPERを示している。図20が示す通り、重み付け合成効果212は約10デシベル、ビタビ尤度を考慮した効果211は更に約5デシベルある。
しかしながら従来の無線受信装置では、希望波の伝送路推定を行う場合に、希望波パケットのプリアンブルを用いるため、プリアンブルを持たない連続波伝送では伝送路推定が出来ないという課題を有している。
特開2002−44051号公報
細川修也、他4名、「B−5−189 他局干渉を抑圧する無線OFDM受信方式の検討(B−5.無線通信システムB(ワイヤレスアクセス)、通信1)」、電子情報通信学会ソサイエティ大会講演論文集、社団法人電子情報通信学会、2005年、2005年通信(1)
本発明は、希望波がデジタル放送波などの連続波であっても伝送路推定と干渉波信号の検出を行い、ノイズによる受信感度劣化を小さくした無線受信装置を提供する。
無線受信装置は、マルチキャリア送信波を受信する複数の受信アンテナと、受信アンテナの個々に個別に接続されて受信アンテナで受信した信号を周波数空間信号に変換する複数の周波数空間変換部と、周波数空間変換部の個々に個別に接続されて、複数の周波数空間変換部で変換された周波数空間信号に対して少なくともマルチキャリア送信波の伝送路係数行列の算出と、複数の受信アンテナ間のアンテナ間共分散行列の算出とを行う複数のノイズ波除去部と、ノイズ波除去部の出力に関連した信号に対してバックエンド処理を行うバックエンド信号処理部と、受信アンテナで受信した信号から特定のデータを検出するパターン検出部と、マルチキャリア送信波の停止状況を判断する放送停波検出部と、放送停波検出部がマルチキャリア送信波の停止を検出した際にバックエンド信号処理部の動作を実行させるバックエンド動作制御部とを備える。複数のノイズ波除去部は放送停波検出部がマルチキャリア放送波の停止を検出した際にアンテナ間共分散行列の算出を実行する。
図1は本発明における放送局、空間伝送路、無線受信装置を表わす概念図である。 図2Aは受信信号を表わすタイムチャートである。 図2Bは雑音波形の例を示す。 図2Cは受信信号を表わすタイムチャートである。 図3は本発明の実施の形態1における無線受信装置の機能ブロック図である。 図4は本発明の実施の形態1におけるノイズ波除去部の機能ブロック図である。 図5は本発明の実施の形態1における伝送路推定部の機能ブロック図である。 図6は本発明の実施の形態1における不要信号測定部の機能ブロック図である。 図7は本発明の実施の形態1における重み付け合成部の機能ブロック図である。 図8は本発明の実施の形態1における放送停波検出部の機能ブロック図である。 図9は本発明の実施の形態1から実施の形態4におけるシンクパターン検出部の機能ブロック図である。 図10は本発明の実施の形態2から実施の形態4における無線受信装置の機能ブロック図である。 図11は本発明の実施の形態2における第1の補償バッファ部の機能ブロック図である。 図12は本発明の実施の形態2における制御信号タイムチャートである。 図13は本発明の実施の形態3における第2の補償バッファ部の機能ブロック図である。 図14は本発明の実施の形態3における制御信号タイムチャートである。 図15は本発明の実施の形態4における第3の補償バッファ部の機能ブロック図である。 図16は本発明の実施の形態4における制御信号タイムチャートである。 図17は従来の無線受信装置および送信装置の機能ブロック図である。 図18は従来の無線受信装置および送信装置の機能ブロック図である。 図19Aはサブキャリヤと尤度を表わす説明図である。 図19Bはサブキャリヤと尤度を表わす説明図である。 図20は干渉除去技術の効果を示す図である。
(実施の形態1)
図1は、実施の形態1における放送局と伝送路と無線受信装置を表す構成図である。図1において、放送局1はマルチキャリアOFDM変調されたデジタル放送波を送信する。放送局1からの放送波2は、フェージング伝送路3を介して空間伝送される。フェージング伝送路3は放送波2が反射や減衰を伴う伝達特性を持った伝送路である。無線受信装置9は、受信アンテナ4と受信アンテナ5とフロントエンド部6とバックエンド部7で構成されている。ここで、フロントエンド部6とは、無線受信に係わる処理を主として行う部分である。バックエンド部7とは、無線処理に係わらない処理を主として行う部分である。例えば、バックエンド部7は圧縮画像をデコードするデジタルLSI群8で構成されている。デジタルLSI群8は動作時にデジタル動作に伴うノイズ信号16を発するため、フロントエンド部6の前段にある受信アンテナ4と受信アンテナ5にノイズ信号16が飛び込むと受信品質が劣化することになる。このような無線受信装置9の内部もしくは近傍から受信アンテナ4、5に飛び込む不要なノイズ信号16をキャンセルし受信品質を向上させる構成について図面を用いて詳細を説明する。なお、上述のマルチキャリアOFDM変調されたデジタル放送波は、マルチキャリア送信波の一例である。以降の本発明の説明では、マルチキャリア送信波としてマルチキャリアOFDM変調されたデジタル放送波を例に挙げて説明する。
図3は、本発明の実施の形態1における無線受信装置のブロック構成図である。図3において無線受信装置9は、受信アンテナ4、受信アンテナ5、第1のFFT(周波数空間変換)部26、第2のFFT(周波数空間変換)部27、ノイズ波除去部28、デマッピング部29、ビタビ復号部100、バックエンド信号処理部32、バックエンド動作制御部33、放送停波検出部30、シンクパターン検出部31で構成されている。なお、受信アンテナ4や受信アンテナ5は複数の受信アンテナの一例である。以降の本発明の説明では、複数の受信アンテナとして受信アンテナ4と受信アンテナ5を例に挙げて説明する。
受信アンテナ4が受信した放送波であるマルチキャリア送信波のOFDM信号は第1のFFT部26入力される。受信アンテナ5が受信した放送波であるマルチキャリア送信波のOFDM信号は第2のFFT部27に入力される。これら2つのFFT部(第1のFFT部26と第2のFFT部27)は、アンテナ単位で受信した信号(受信アンテナ4と受信アンテナ5が受信した個々の信号)を時間空間信号から周波数空間信号にフーリエ変換する周波数空間変換部の一例である。第1のFFT部26と第2のFFT部27はOFDM信号を構成するサブキャリヤ数と同一数の出力を出す。それらの出力はサブキャリヤ毎に準備されたノイズ波除去部28に入力される。ノイズ波除去部28は、バックエンド信号処理部32から発せられて受信アンテナ4や受信アンテナ5が受信する本来の信号に混信したノイズ信号16をサブキャリヤ毎に除去する。デマッピング部29は、サブキャリヤ単位でノイズが除去された信号を、各サブキャリヤにマッピングした処理と逆の処理を行いデータの並べ直しを実行して出力する。デマッピング部29の出力は、ビタビ復号部100を経て、バックエンド信号処理部32に入力される。バックエンド信号処理部32は、例えば圧縮AVストリームのシステムデコード、エレメンタリデコードなどの画像音声を復元する処理や表示に関する処理を行う。すなわち、バックエンド信号処理部32は、少なくともMPEGデータの復号処理を含む処理を実行する。バックエンド信号処理部32は、図1のバックエンド部7に含まれる。
放送停波検出部30は、所望の放送波が送信中か停波中かを検出し、検出結果をノイズ波除去部28及びバックエンド動作制御部33に出力する。こうして、放送停波検出部30はノイズ波除去部28を制御し、バックエンド動作制御部33を介してバックエンド信号処理部32の動作を制御する。こうすることで、後述するノイズのアンテナ間の相関を表すアンテナ間共分散行列Ruuを算出するための動作が行なわれる。
シンクパターン検出部31は、放送波の伝送路推定を行うために、放送波のような連続波内から特定のパターンを検出し、特定パターンを用いて伝送路係数行列Hを求めるための制御信号をノイズ波除去部28に入力する。なお、シンクパターン検出部31は、受信アンテナ4や5で受信したマルチキャリア送信波から特定のデータを検出するパターン検出部の一例である。
バックエンド動作制御部33は、内部に放送波受信状態と同等の動作をさせるためのデータROM等を持つ。そうして、放送停波検出部30が放送停波検出信号を出力中にノイズ信号16を測定しアンテナ間の相関を表すアンテナ間共分散行列Ruuを求めるため、バックエンド動作制御部33はバックエンド信号処理部32を動作させる。すなわち、ノイズ信号16を強制的に発生させる動作が行なわれる。デジタル放送の場合は、ROM等の内部にデコード可能なMPEG2TSデータを持つことなどで、上述の動作は実現可能である。
図2Aから図2Cは、従来例のパケット伝送と実施の形態1の連続波伝送の相違を図示したものである。図2Aは従来のパケット伝送を表すタイムチャートであり、横軸は時間tである。無線パケット10は、プリアンブル11とデータボディー12から成り、無線パケット13は、プリアンブル14とデータボディー15から成る。各無線パケット10、13の先頭にあるプリアンブル11、14で固定パターンのシンボルが送信される。パケット通信時の伝送路推定は、通常はプリアンブル11、14信号を用いて行われる。また、パケット通信では送信パケット間に時間的な隙間の時間t0が存在するため、このt0期間に妨害となるノイズ信号16を測定可能である。図2Bはノイズ信号16を示している。図2Bにおいて、ノイズ信号16は連続的に妨害となっていても、パケットのある期間はノイズのみを測定することは不可能なため、図2Aの期間t0でノイズ測定が可能となる。図2Cはデジタル放送波を図示したタイムチャートである。図2Cにおいて、横軸は時間tを示す。MPEG2TSのパケット17は、MPEG2TSの先頭(ヘッダー)18を表す部分とデータボディー19を表す部分で構成されている。同様に、MPEG2TSのパケット20は、MPEG2TSの先頭(ヘッダー)21を表す部分とデータボディー22を表す部分で構成されている。MPEG2TSのパケット23は、MPEG2TSの先頭(ヘッダー)24を表す部分とデータボディー25を表す部分で構成されている。MPEG2TSの先頭(ヘッダー)18、21、24を表わす部分は、この部分の定められた位置にシンクバイトがある。MPEG2TSのシンクバイトは「0x47」であって固定値であるので、データ列の中からシンクバイトを見つけ出すことが出来れば、図2Aのプリアンブルパターン11、14の代わりに伝送路推定に用いることができる。なお、「0x47」での「0x」は16進数表示であることを示し、「0x47」は16進数表示で「47」であることを示す。シンクバイト検出は、通常のMPEGシステムデコーダでは、パターンマッチングと周期性検出の併用により実現される。ところで、図2Cの連続波の場合は、期間t0が存在しないため、放送中は図2Bのノイズ信号16を単独で測定することは困難である。
以下、図3に記載されている各々の構成について詳細構成と動作を図4から図8を用いて説明する。図4はノイズ波除去部28の詳細を表すブロック構成図である。ノイズ波除去部28は、第1のFFT部26からの信号入力端子34、第2のFFT部27からの信号入力端子35、シンクパターン検出部31からの制御信号入力端子36、放送停波検出部30からの制御信号入力端子37、デマッピング部29への出力端子38、はビタビ復号部100への出力端子39、重み付け合成部40、伝送路推定部41、不要信号測定部42、信頼度評価部43で構成されている。
ノイズ波除去部28では、伝送路推定部41がMPEG2TSのシンクバイトパターン「0x47」を用いて、フェージング伝送路の伝送状態を表す伝送路係数行列Hを算出する。シンクバイトパターン「0x47」は、前述のシンクパターン検出部31が検出し、制御信号入力端子36を介して伝送路推定部41に入力される。なお、シンクパターン検出部31が検出するのは、シンクバイトパターン「0x47」に限られるものではない。シンクパターン検出部31はMPEG規格の同期符号、もしくは、MPEG規格のスタートコードを検出するものであれば良い。すなわち、パターン検出部であるシンクパターン検出部31は、MPEG規格の同期符号、もしくは、MPEG規格のスタートコードを検出するものであれば良い。
図5は伝送路推定部41のブロック構成例を示す図である。伝送路推定部41は、シンクパターン検出部31からの入力端子44、第1のFFT部26及び第2のFFT部27からの入力端子45、重み付け合成部40への出力端子46、信頼度評価部43への出力端子47、伝送路係数算出部48、伝送路係数記憶部49で構成されている。入力端子44は図4の入力端子36と接続され、入力端子45は図4の入力端子34および入力端子35と接続されている。伝送路係数算出部48に入力端子45を介してFFT後のサブキャリヤがそれぞれ入力され、伝送路係数算出部48はシンクパターン検出部31の検出結果を用いて、サブキャリヤのシンクバイトパターンに該当する信号に基づき、伝送路係数行列Hの算出を行う。伝送路係数算出部48は、シンクバイトパターンに該当する信号を特定するために、入力端子44から入力されたパターン検出信号を用いる。シンクバイトパターンに該当する信号から伝送路係数行列Hを求める演算原理は従来例の該当ブロックと同一である。伝送路係数算出部48が求めた伝送路係数行列Hは、伝送路係数記憶部49に入力されて伝送路係数記憶部49は伝送路係数行列Hの値を記憶する。そうして、伝送路係数記憶部49は伝送路係数行列Hの値を次の演算ブロック(重み付け合成部40や信頼度評価部43)に出力端子46、47を介して出力する。伝送路係数記憶部49が伝送路係数行列Hを記憶するタイミングは伝送路係数算出部48と同期して行う。そのために、入力端子44から入力されたシンクパターン検出信号は、同期をとるために伝送路係数記憶部49にも与えられている。
不要信号測定部42は、制御信号入力端子37を介して入力された放送停波検出部30の出力信号により、放送停波を判断する。そうして、不要信号測定部42は、放送波が送信されていない時間にノイズ信号(以降、干渉波信号とも記載する)u1、u2を検出し、さらにそのアンテナ間共分散行列Ruuを(式1)を用いて求める。ノイズ信号u1は第1の受信アンテナ4で受信した信号であり、列ベクトルUで表す。ノイズ信号u2は第2の受信アンテナ5で受信した信号であり、列ベクトルUで表す。
Figure 0005370366
図6は不要信号測定部42を表すブロック構成図である。図6において、不要信号測定部42は、第1のFFT部26及び第2のFFT部27からの入力端子91、放送停波検出部30からの入力端子92、重み付け合成部40への出力端子50、信頼度評価部43への出力端子51、アンテナ間共分散算出部52、記憶部53はで構成されている。入力端子92は図4の入力端子37と接続されている。入力端子92から上述のノイズ信号(干渉波信号)u1、u2がアンテナ間共分散算出部52へ入力され、アンテナ間共分散算出部52は式1に準じてアンテナ間共分散行列Ruuを求める。アンテナ間共分散行列Ruuは、入力端子91より入力された放送停波検出部30の出力信号を基に放送波停波が判断された後に、ノイズ信号を測定して算出され、記憶部53は算出されたアンテナ間共分散行列Ruuを記憶する。記憶されたアンテナ間共分散行列Ruuは、出力端子50、51を経由して重み付け合成部40と信頼度評価部43へ出力される。
重み付け合成部40は、まず、OFDM信号を構成する各サブキャリヤ成分毎に、式1で算出したアンテナ間共分散行列Ruuと伝送路係数行列Hを用いて、2つの入力信号を合成する重み係数Wを式2で算出する。式2の導出は以下である。
Figure 0005370366
平均二乗誤差は、
Figure 0005370366
となり、平均二乗誤差を最小にするため、重み係数Wの各要素で偏微分した値がゼロという式を立てると、
Figure 0005370366
これを用いて下記の式3で示されるよう、2つのアンテナからの受信信号ベクトルrに対して重み係数Wを用いた重み付け合成演算を施し、信号ベクトルsが算出される。
Figure 0005370366
式3は、重み付け合成後の信号ベクトルsと希望局からの送信信号との平均二乗誤差が最小となるように2つのアンテナ(アンテナ4とアンテナ5)からの受信信号ベクトルrを合成することを意味している。アンテナ間共分散行列Ruuがノイズ信号16のアンテナ間相関成分を反映するためノイズ波を抑圧した復調が可能となる。またノイズ波がない場合、アンテナ間共分散行列Ruuはノイズ波雑音成分のみとなるため、最大比合成による受信と等価になる。したがって、本発明では適応的に常に受信誤りを小さく抑えることが可能になる。
図7は、重み付け合成部40を表すブロック構成図である。重み付け合成部40は、第1のFFT部26からの入力端子54、第2のFFT部27からの入力端子55、伝送路推定部41からの入力端子56、不要信号測定部42からの入力端子57、デマッピング部29への出力端子58、合成部59、重み付け係数算出部60で構成されている。入力端子54は図4の入力端子34に接続され、入力端子55は図4の入力端子35に接続され、出力端子58は図4の出力端子38に接続され、入力端子57は図6の出力端子50に接続されている。入力端子56より入力される伝送路係数行列Hと、入力端子57より入力されるアンテナ間共分散行列Ruuは重み付け係数算出部60に入力される。重み付け係数算出部60は、式2に準じて重み付け係数Wを算出し、合成部59へ出力する。
合成部59は、入力端子54、55から入力された2つのアンテナ(アンテナ4、5)からの信号が周波数空間変換された受信信号ベクトルrと重み付け係数算出部60からの重み付け係数Wとを数式3に従って合成演算し、出力信号sを得る。出力信号sは出力端子58から出力され、デマッピング部29に各サブキャリヤ分入力される。
図4において伝送路係数行列Hとアンテナ間共分散行列Ruuは、重み付け合成部40以外に信頼度評価部43にも入力されており、信頼度評価部43は確からしさを表す尤度κを演算し出力端子39から出力する。
既に説明した通り、図19Aは重み付け合成前のOFDMサブキャリヤ701と雑音成分702の関係を表しており、図19Bは重み付け合成後に正規化されたOFDMサブキャリヤ703と残留誤差704を図示している。図19Aおよび図19Bに示す通り、重み付け合成後に残留する残留誤差信号704はサブキャリヤ単位で異なる。残留誤差が大きいほど信頼性が低く、残留誤差が小さいほど信頼性が高いと考えられる。そのため、信頼度評価部43は重み付け合成後の各サブキャリヤ振幅が正規化された時点での残留誤差eの逆数を信号の確からしさを表す尤度κ(式5)として算出する。なお、残留誤差eは残留干渉波信号とも呼び、残留誤差eは式4で表される。残留誤差eと尤度κは上記のように式4、式5で表わされるので、信頼度評価部43は、これに準じて尤度κを演算する。
Figure 0005370366
Figure 0005370366
デマッピング部29は、ノイズ波除去部28から出力される各サブキャリヤ単位の信号のマッピングを元に戻して出力する。ビタビ復号部100は、デマッピング部29から出力されているマッピングを元に戻した信号に対して誤り訂正処理を実施して、復調信号を出力する。
図8は放送停波検出部30を表すブロック構成図である。図8において、放送停波検出部30は、ビタビ復号部100からの入力端子61、受信アンテナ4からの入力端子62、受信アンテナ5からの入力端子63、ノイズ波除去部28およびバックエンド動作制御部33への出力端子64、第1のローノイズアンプ65、第2のローノイズアンプ66、第1の検波部67a、第2の検波部68a、加算部69、閾値判定部70、判定部71、第1のパターン検出部72a、第1のパターン発生部73aで構成されている。第1のローノイズアンプ65は、入力端子62を介して入力される受信アンテナ4で受信した信号を所望の振幅まで増幅する。第2のローノイズアンプ66は、入力端子63を介して入力される受信アンテナ5で受信した信号を所望の振幅まで増幅して出力する。第1の検波部67aは第1のローノイズアンプ65の出力を検波し、電波の強度を表わす電力信号に変換して出力する。第2の検波部68aは第2のローノイズアンプ66の出力を検波し、電波の強度を表わす電力信号に変換して出力する。第1の検波部67aおよび第2の検波部68aから出力される電力変換後の信号は、例えば、加算部69で加算される。閾値判定部70は、加算部69の出力信号が所定の閾値以上であれば信号有りと判定し、放送中か停波中かを判断する。
入力端子61は、例えば復調後のデータが送信されたデータであるか否かなど、上記の電波を検波し電力を直接測定する方法とは異なる方法でも放送チェックを行い、判断の信頼度を高める為に設けられている。例えば、バックエンド信号処理部32に入力されるMPEG2TSを入力し、パターン検出部72がMPEG2TSのパターンと比較し判断する。MPEG2TSのパターンは第1のパターン発生部73aに記憶されている。この記憶されているパターンは前述のシンクバイトパターンやシステム/エレメンタリの特殊なヘッダーパターンなどでよい。第1のパターン検出部72aで判断された結果は、閾値判定部70の結果と同時に判定部71へ入力される。判定部71は複数の判定結果を基にして判断するため信頼度の高い判断結果を出力端子64に出力する。
図9はシンクパターン検出部31を表すブロック構成図である。図9において、シンクパターン検出部31は、ビタビ復号部100からの入力端子74、受信アンテナ4からの入力端子75、受信アンテナ5からの入力端子76、ノイズ波除去部28への出力端子77、第1のローノイズアンプ65、第2のローノイズアンプ66、第3の検波部67b、第4の検波部68b、第2のパターン発生部73b、第2のパターン検出部72b、第1の波形検出部78、第2の波形検出部79、第1の周期性検出部80、第2の周期性検出部81、第3の周期性検出部82、補間部83、で構成されている。
バックエンド信号処理部32に入力されるMPEG2TSは入力端子74を経由して第2のパターン検出部72bにも入力され、第2のパターン検出部72bは入力されたMPEG2TSシンクバイトとパターン「0x47」とを比較し判断する。シンクバイトパターン「0x47」は第2のパターン発生部73bに記憶されている。第2のパターン検出部72bでシンクパターン検出が終わった後、第1の周期性検出部80はパターンの周期性を確認し、偽シンクパターンの除外を行う。入力端子75、76に繋がる系は、さらにシンク検出精度を向上させるために電波状態でのパターンの直接判定を行う系である。入力端子75を経由して受信アンテナ4で受信した信号が第1のローノイズアンプ65に入力され、第1のローノイズアンプ65は入力された信号を所望の振幅まで増幅し出力する。入力端子76を経由して受信アンテナ5で受信した信号が第2のローノイズアンプ66に入力され、第2のローノイズアンプ66は入力された信号を所望の振幅まで増幅し出力する。第3の検波部67bは第1のローノイズアンプ65の出力信号を検波し、信号波形を出力する。第4の検波部68bは第2のローノイズアンプ66の出力信号を検波し、信号波形を出力する。第3の検波部67bおよび第4の検波部68bは図8の第1の検波部67aおよび第2の検波部68aとは異なり、波形を出力する。そして第1の波形検出部78は第3の検波部67bからの出力を波形検波する。第2の波形検出部79は第4の検波部68bからの出力を波形検波する。第2の周期性検出部81は第1の波形検出部78の出力波形の周期性を判断し、その判断結果を補間部83に入力する。第3の周期性検出部82は第2の波形検出部79の出力波形の周期性を判断し、その判断結果を補間部83に入力する。補間部83は、周期性があるはずのシンクが欠落したか否かを判断し、欠落した場合はシンク位置のシンクを補間する動作を行う。このようにしてシンク検出ミスをした場合でも、取りこぼしの無いシンクを出力できる。
これらの構成により、放送停波検出部30は上述の信号を出力するよう動作し、ノイズ波除去部28の動作を制御し、バックエンド動作制御部33を介してバックエンド信号処理部32の動作を制御する。また、シンクパターン検出部31は上述の信号を出力するよう動作し、ノイズ波除去部28の動作を制御する。
かかる構成によれば、無線受信装置9は、伝送路推定及びアンテナ間共分散から求めた重み付け係数を用いて複数アンテナ受信信号を重み付け合成し、シンクパターン「0x47」を用いた放送波の伝送路推定し、放送停波を判断する手段により放送停波中にバックエンドを動作させバックエンドからの飛び込みノイズを検出する。こうすることにより、従来方式では出来ない連続放送波、特に、MPEG2TS放送受信時のノイズ波などの妨害波を除去し、デジタル受信TVなどにおいて受信感度を向上させることが出来る。
(実施の形態2)
次に、本発明の実施の形態2における無線受信装置について説明する。図10は、本発明の実施の形態2における無線受信装置のブロック構成図である。図10に示す本発明の実施の形態2における無線受信装置のブロック構成図と図3に示す本発明の実施の形態1における無線受信装置のブロック構成図との相違点は、第1の補償バッファ部84aとバックエンド動作停止部85である。その他は同一であり、実施の形態1と同一の構成要素については同じ符号を用い、それらの詳細な説明は一部省略する。図10において、第1の補償バッファ部84aとバックエンド動作停止部85は実施の形態1の無線受信装置に追加されて、ノイズ除去性能を更に向上させる。なお、第1の補償バッファ部84aは、受信データを記憶し、記憶した受信データをバックエンド信号処理部に間欠的に入力する補償バッファ部の一例である。
図10において、受信アンテナ4が受信したマルチキャリア送信波のOFDM信号は第1のFFT部26に入力される。受信アンテナ5が受信したマルチキャリア送信波のOFDM信号は第2のFFT部27に入力される。第1のFFT部26と第2のFFT部27はアンテナ単位で受信した信号を時間空間信号から周波数空間信号にフーリエ変換する周波数空間変換手段である。第1のFFT部26と第2のFFT部27は、OFDM信号を構成するサブキャリヤ数と同一数の出力を出し、それらの出力はサブキャリヤ毎に準備されたノイズ波除去部28に入力される。ノイズ波除去部28は、バックエンド信号処理部32から受信アンテナ4、5に混信したノイズ信号16をサブキャリヤ毎に除去する。デマッピング部29は、サブキャリヤ単位でノイズが除去された信号を各サブキャリヤにマッピングされた処理と逆の処理を行い、データの並べ直しを行い、ビタビ復号部100へ入力する。ビタビ復号部100は、入力された信号に対してビタビ復号処理を行った後に、第1の補償バッファ部84aに一旦入力する。第1の補償バッファ部84aは、第1の補償バッファ部84aに入力されたデータをバックエンド信号処理部32に間欠的に入力する。バックエンド信号処理部32は、圧縮AVストリームのシステムデコード、エレメンタリデコードなどの画像音声を復元する処理や表示に関する処理を行うが、実施の形態2では間欠的なデータ入力に合わせて処理を行えるように構成されている。
間欠的なデータ入力時にも正しいシステムクロックを生成するためには、PCR(Program Clock Reference)を含むパケットを、遅延によるジッターをシステムPLL(Phase Locked Loop)のクロック生成引き込み許容範囲内にする必要が有る。放送停波検出部30は、所望の放送波が送信中か停波中かを検出し、検出結果をノイズ波除去部28及びバックエンド動作制御部33に対して出力する。放送停波検出部30はノイズ波除去部28の動作を制御し、バックエンド動作制御部33を介してバックエンド信号処理部32の動作も制御する。こうして、後述するノイズ信号16のアンテナ間の相関を表すアンテナ間共分散行列Ruuを巧く測定演算するための動作が行われる。
シンクパターン検出部31は、放送波の伝送路推定を行うために、放送波のような連続波内から特定のパターンを検出し、パターン検出結果をバックエンド動作停止部85に入力する動作を行う。バックエンド動作停止部85は、定期的にバックエンド信号処理部32の動作を停止させる処理と同時に停止時のデータの欠落を補償する第1の補償バッファ部84aへ制御タイミング信号を出力する。
図12はバックエンド動作停止部85と第1の補償バッファ部84a内のFIFOメモリの制御信号などを示すタイムチャートである。バックエンド動作停止部85は、シンクパターン検出部31の出力信号である図12の「SYNC」121のパルスを間欠的に間引き、周期の長い「CTRL」122のパルスを生成し、ノイズ波除去部28、バックエンド信号処理部32及び、第1の補償バッファ部84aに入力する。
図11は、第1の補償バッファ部84aのブロック構成図である。第1の補償バッファ部84aは、バックエンド動作停止部85からの入力端子86、ビタビ復号部100からの入力端子87、バックエンド信号処理部32への出力端子88、第1の制御信号生成部89a、FIFO記憶部90で構成されている。FIFO記憶部90は、受信データを記憶する記憶部の一例である。
第1の制御信号生成部89aは、入力端子86から入力されたCTRL信号(図12の「CTRL」122であり、以降「CTRL」122と記載する)を基準にFIFO記憶部90の制御信号であるライトイネーブル(図12の「WEN」123であり、以降「WEN」123と記載する)、ライトリセット(図12の「WRST」124であり、以降「WRST」124と記載する)、リードイネーブル(図12の「REN」125であり、以降「REN」125と記載する)、リードリセット(図12の「RRST」126であり、以降「RRST」126と記載する)を生成する。
図12はこれらの信号のタイミング関係を示している。図12は、「SYNC」121、「CTRL」122、「WEN」123、「WRST」124、「REN」125、「RRST」126、「WP」127、「RP」128のそれぞれの信号波形を示している。なお、横軸は時間である。「WEN」123は放送波が連続的に来るため、常にハイ(High、イネイブルに相当)である。「WRST」124は、「CTRL」122の立ち上がりエッジを時間微分した信号であって、「CTRL」122の立ち上がりエッジでのみHigh(イネイブルに相当)となり、この瞬間にFIFO記憶部90の書き込みポインタがリセットされる。書き込みポインタは「WP」127であり、以降「WP」127と記載する。「REN」125は、後段のバックエンド信号処理部32を停止させる時間だけロー(Low、ディスイネイブルに相当)期間とし、FIFO記憶部90からのデータ読み出しが周期的に禁止される。「RRST」126は、「REN」125のLow(ディスイネイブルに相当)期間後High(イネイブルに相当)となった瞬間のみHigh(イネイブルに相当)となるパルスである。この「RRST」126は、FIFO記憶部90の「RP」128(読み出しポインタ)をリセットする。これにより、FIFO記憶部90への書き込みポインタリセットより所望時間遅れて読み出しポインタリセットが掛かる。
図12において、「WP」127、「RP」128はそれぞれ書き込みポインタと読み出しポインタの変化を表わしている。どちらも「CTRL」122の周期で周期性を持つが、「RP」128の方が上昇の傾きが大きく、FIFO読み出し時間が短くなった分、読み出し速度を速く設定されている。これにより、書き込み時よりも早い時間でデータを読み出せるため、間欠的な読み出しを行ってもデータの欠落は無い。この読み出し周期に同期してFIFO読み出しを停止している期間は動作しないようにバックエンド信号処理部32を間欠動作させると、バックエンド信号処理部32が動作していない期間は、バックエンド信号処理部32からのアンテナへの飛び込みノイズ信号16が発生しない。そのため、放送波の伝送路推定を高精度で行うことが出来る。
かかる構成によれば、無線受信装置9は、伝送路推定及びアンテナ間共分散から求めた重み付け係数を用いて複数アンテナ受信信号を重み付け合成と、シンクパターン「0x47」を用いた放送波の伝送路推定と、放送停波を判断する手段により放送停波中にバックエンドを動作させ、バックエンドからの飛び込みノイズを検出することが可能である。こうすることにより、従来方式では出来ない連続放送波、特に、MPEG2TS放送受信時のノイズ波などの妨害波を除去し、デジタル受信TVなどにおいて受信感度を向上させることが出来る。さらに、バックエンドの動作を間欠的に行うことにより、ノイズの影響の無い放送波の伝送路推定が実施できるため、伝送路推定精度が向上しノイズ除去性能を向上することが出来る。
(実施の形態3)
次に、本発明の実施の形態3について説明する。実施の形態3における無線受信装置は、本発明の実施の形態2の無線受信装置における第1の補償バッファ部84a内にPCRジッターの除去を行う手段を実装した第2の補償バッファ部84bを備えている。第2の補償バッファ部84b以外は実施の形態2の無線受信装置と同様である。実施の形態2同じの部分は詳しい説明は省略する。第2の補償バッファ部84bの動作が実施の形態2での第1の補償バッファ部84aの動作とは異なるため、その動作を中心に説明する。なお、第2の補償バッファ部84bは、受信データを記憶し、記憶した受信データをバックエンド信号処理部に間欠的に入力する補償バッファ部の一例である。
図13は実施の形態3の第2の補償バッファ部84bのブロック構成図を示している。図13において、第2の補償バッファ部84bは、バックエンド動作停止部85からの入力端子86、ビタビ復号部100からの入力端子87、バックエンド信号処理部32への出力端子88、第2の制御信号生成部89b、FIFO記憶部90、PCR抽出部101、PCRオフセット加算部102、PCR挿げ替え部103で構成されている。
図14はバックエンド動作停止部85と第2の補償バッファ部84b内のFIFO記憶部90などの制御信号および、PCR抽出部101よるPCR検出パルスなどを示すためのタイムチャートである。具体的には、図14は、「SYNC」141、「CTRL」142、「WEN」143、「WRST」144、「REN」145、「RRST」146、「WP」147、「RP」148、「PCR」149のそれぞれの信号波形を示している。なお、横軸は時間である。
バックエンド動作停止部85は、シンクパターン検出部31の出力信号である図14の「SYNC」141のパルスを間欠的に間引き、周期の長い「CTRL」142を生成する。そうして、バックエンド動作停止部85は、「SYNC」141と「CTRL」142をバックエンド信号処理部32及び第2の補償バッファ部84bにも入力する。
図13において、第2の制御信号生成部89bは、入力端子86から入力された「SYNC」141および「CTRL」142と、PCR抽出部101が検出したPCR(クロック情報等)を含むパケットを表わす「PCR」149のパルスを基にしてFIFO記憶部90の制御信号である「WEN」143、「WRST」144、「REN」145、「RRST」146を生成する。
図14は、これらの信号の関係を示している。「WEN」143は放送波が連続的に来るため、常にHigh(イネイブルに相当)である。「WRST」144は「CTRL」142の立ち上がりエッジを時間微分した信号で、「CTRL」142の立ち上がりエッジでのみHigh(イネイブルに相当)となり、この瞬間にFIFO記憶部90の「WP」(書き込みポインタ)147をリセットする。「REN」145は、後段のバックエンド信号処理部32を停止させる時間だけLow(ディスエイブルに相当)期間となり、周期的にデータのFIFO記憶部90からの読み出しが禁止される。「RRST」146は、少なくとも「REN」145のLow(ディスエイブルに相当)期間中にHigh(イネイブルに相当)になるパルスでFIFO記憶部90の「RP」(読み出しポインタ)148をリセットする。これにより、FIFO記憶部90への書き込みポインタリセットより所望時間遅れて読み出しポインタリセットが掛かる。
図14において、「WP」147、「RP」148はそれぞれ書き込みポインタと読み出しポインタの変化を表わしている。どちらも「CTRL」142の周期で周期性を持つ。しかし、「RP」148の方が上昇の傾きが大きく、FIFO読み出し時間の減少に応じて読み出し速度を速く設定される。これにより、書き込み時よりも早い時間でFIFO記憶部90からデータを読み出せる。そのため、周期的な読み出しを行ってもデータの欠落は無いが、「REN」145がLow(ディスエイブルに相当)期間が長ければ長いほどバックエンドに渡されるパケットの遅延ジッターが増える。パケットの中でも、特に、システムクロックを生成するリファレンスデータであるPCRを含むパケットは、遅延ジッターが増大すると正しいシステムクロック生成が出来なくなる弊害が出る。そのため、実施の形態3ではPCRを含むパケットを検出し、遅延時間分だけPCRの値を補正する。
図13において入力端子87から入力されたデータは、FIFO記憶部90に入力されると同時にPCR抽出部101にも入力され、PCR抽出部101はPCRを含むパケットを検出し、PCR検出パルスを出力する。このPCR検出パルスは図14の「PCR」149であり、以降PCR検出パルスを「PCR」149と記載する。PCR抽出部101は「PCR」149を第2の制御信号生成部89bに渡す。「PCR」149を受けた第2の制御信号生成部89は、図14に示される時間tdをPCRオフセット加算部102に返す。この時間tdは、PCRを含むパケットがFIFO記憶部90に書き込まれてから読み出されるまでの時間である。PCRオフセット加算部102はPCRの値に対して時間tdだけオフセットを加算してPCR値を補正し、PCR挿げ替え部103に入力する。PCR挿げ替え部103は、元のPCRをPCRオフセット加算部102から供給されたPCRと置き換えた後に出力端子88に出力する。この動作により正しいクロックリファレンスを持つPCRが伝送できる。このように、PCR挿げ替え部103は、記憶部であるFIFO記憶部90に記憶された受信データに含まれるクロック情報をPCR抽出部101が検出したクロック情報で補正する。
かかる構成によれば、正しいクロックリファレンスを持つPCRが伝送できるため、バックエンド停止処理保証用のFIFO記憶部90で遅延ジッターが大きくなってもシステムクロックを正しく生成出来る。正確な伝送路推定のためにFIFO記憶部90で長時間データを遅延させ、バックエンド信号処理部32を長時間停止する必要が有る場合でも、正しいシステムクロックによりバックエンド信号処理部32を正常に動作可能である。そうして、伝送路推定及びアンテナ間共分散から求めた重み付け係数を用いて複数アンテナ受信信号を重み付け合成する手段と、シンクパターン「0x47」を用いた放送波の伝送路推定と放送停波を判断する手段により放送停波中にバックエンドを動作させ、バックエンドからの飛び込みノイズを検出することができる。こうすることにより、従来の方式では出来ない連続放送波、特に、MPEG2TS放送受信時のノイズ波などの妨害波を除去し、デジタル受信TVなどにおいて受信感度を向上させることが出来る。さらに、バックエンド信号処理部32の動作を間欠的に行うことにより、ノイズの影響の無い放送波の伝送路推定が実施できるため、伝送路推定精度が向上しノイズ除去性能を向上することが出来る。
(実施の形態4)
次に、本発明の実施の形態4について説明する。実施の形態4における無線受信装置は、本発明の実施の形態2での無線受信装置における第1の補償バッファ部84a内に、PCRジッターの補償を行う手段を実施の形態3とは異なる手段で実装をしたものである。第3の補償バッファ部84c以外は実施の形態3の無線受信装置と同様である。実施の形態3同じの部分は詳しい説明は省略する。第3の補償バッファ部84cの動作が実施の形態での第2の補償バッファ部84bとは異なるため、その動作を中心に説明する。なお、第3の補償バッファ部84cは、受信データを記憶し、記憶した受信データをバックエンド信号処理部に間欠的に入力する補償バッファ部の一例である。
図15は実施の形態4の第3の補償バッファ部84cのブロック構成図を示している。図15において、第3の補償バッファ部84cは、図10におけるバックエンド動作停止部85からの入力端子86、ビタビ復号部100からの入力端子87、バックエンド信号処理部32への出力端子88、第3の制御信号生成部89c、FIFO記憶部90、PCR抽出部101、切り替え部104で構成されている。
図16はバックエンド動作停止部85と第3の補償バッファ部84c内のFIFOメモリの制御信号および、PCR抽出部101によるPCR検出信号などを示すタイムチャートである。バックエンド動作停止部85は、シンクパターン検出部31の出力信号である図16の「SYNC」161のパルスを間欠的に間引き、周期の長い「CTRL」162を生成し、「SYNC」161と「CTRL」162をバックエンド信号処理部32及び、第3の補償バッファ部84cにも入力する。
図15において、第3の制御信号生成部89cは、入力端子86から入力された「SYNC」161および「CTRL」162と、PCR抽出部101が検出したPCRを含むパケットを表わす「PCR」169を基にしてFIFO記憶部90の制御信号である「WEN」163、「WRST」164、「REN」165、「RRST」166を生成する。図16は、これらの信号の関係を示している。「WEN」163は、PCRを含むデータをFIFO記憶部90に記憶しないために、PCRが検出されたことを示す「PCR」169が入力されると一定時間Low(ディスエイブルに相当)になり、FIFO記憶部90への書き込みを禁止する。「WRST」164は、「CTRL」162の立ち上がりエッジを時間微分した信号であって、「CTRL」162の立ち上がりエッジでのみHigh(イネイブルに相当)となり、この瞬間にFIFO記憶部90の「WP」(書き込みポインタ)167をリセットする。「REN」165は、後段のバックエンド信号処理部32を停止させる時間だけLow(ディスエイブルに相当)期間に設定され、周期的にデータのFIFO記憶部90からの読み出しを禁止する。しかし、実施の形態4では、PCRが検出されてFIFO記憶部90への書き込みを行わない期間はFIFO記憶部90からの読み出しも行わないため、「WEN」163がLow(ディスエイブルに相当)時には強制的に「REN」165はLow(ディスエイブルに相当)に制御される。「RRST」166は、少なくとも「REN」165のLow(ディスエイブルに相当)期間内にHigh(イネイブルに相当)になるパルスであって、FIFO記憶部90の「RP」(読み出しポインタ)168をリセットする。これにより、FIFO記憶部90への書き込みポインタリセットより所定時間遅れて読み出しポインタリセットが掛かる。
図16において、「WP」167、「RP」168はそれぞれ書き込みポインタと読み出しポインタの変化を表わしている。どちらも通常は「CTRL」162の周期で周期性を持つが、「RP」168の方が上昇の傾きが大きく、FIFO読み出しの周期に応じて読み出し速度は速く設定されている。これにより、書き込み時よりも早い時間でデータを読み出せるため、周期的な読み出しを行ってもデータの欠落は無い。しかし、少なくとも「REN」165がLow(ディスエイブルに相当)期間が長ければ長いほどバックエンド信号処理部32に渡されるパケットの遅延ジッターが増える。特にパケットの中でもシステムクロックを生成するリファレンスデータであるPCRを含むパケットは、遅延ジッターが増大すると正しいシステムクロック生成が出来なくなる弊害が出る。そのため、実施の形態4ではPCRを含むパケットを検出した場合、PCRのみを第3の補償バッファ部84cからリアルタイムに出力するためFIFO記憶部90には記憶しないでそのまま出力する。
図15において入力端子87から入力されたデータは、FIFO記憶部90に入力されると同時にPCR抽出部101にも入力され、PCR抽出部101はPCRを含むパケットを検出し、PCR検出パルスを第3の制御信号生成部89cに渡す。PCR検出パルスは図16の「PCR」169に相当する。PCR検出パルスを受けた第3の制御信号生成部89cは、即座に「WEN」163と「REN」165をLow(ディスエイブルに相当する)にし、PCRパケットのFIFOへの書き込みと読み出しを停止する。図16の期間twは書き込みを行わない期間である。そして、切り替え部104が操作されて、PCR抽出部101が出力するPCRが出力端子88に出力される。これにより、正しいクロックリファレンスを持つPCRが伝送できる。
かかる構成によれば、正しいクロックリファレンスを持つPCRが伝送できるため、バックエンド停止処理保証用のFIFO記憶部90で遅延ジッターが大きくなっても正しくシステムクロックが生成出来る。正確な伝送路推定のためにFIFO記憶部90で長時間データを遅延させ、バックエンド信号処理部32を長時間停止する必要が有る場合でも、正しいシステムクロックによりバックエンド信号処理部32を正常に動作可能である。また、伝送路推定及びアンテナ間共分散から求めた重み付け係数を用いて複数アンテナ受信信号を重み付け合成する手段と、シンクパターン「0x47」を用いた放送波の伝送路推定と、放送停波を判断する手段により放送停波中にバックエンドを動作させ、バックエンドからの飛び込みノイズを検出することが出来る。こうすることにより、従来方式では出来ない連続放送波、特に、MPEG2TS放送受信時のノイズ波などの妨害波を除去し、デジタル受信TVなどにおいて受信感度を向上させることが出来る。さらに、バックエンドの動作を間欠的に行うことにより、ノイズの影響の無い放送波の伝送路推定が実施できるため、伝送路推定精度が向上しノイズ除去性能を向上することが出来る。
実施の形態1、2、3、4で記載した無線受信装置は、MPEG2TS放送以外でも同一の手法が適応でき、本発明の応用はMPEG2TS放送に限るものではない。
また、実施の形態1、2、3、4では、無線受信装置として説明したが、本発明はこれに限定されるものではない。例えば、受信アンテナが受信した後の信号処理等であれば、マイコン上で実装されるソフトウェア処理(プログラム)、又は集積回路によっても実現可能である。
上記の説明で説明した通り、本発明の無線受信装置は、受信送信波の伝送路推定を干渉波信号の検出を行い、ノイズによる受信感度劣化を小さくした無線受信装置を提供することが可能である。
また、本発明の無線受信装置は、バックエンド信号処理部の動作を間欠的に行うことにより、ノイズの影響の無い放送波の伝送路推定が実施できるため、伝送路推定精度が向上しノイズ除去性能を向上することが出来る。
また、本発明の無線受信装置は、受信データがMPEG等の時刻情報を持つデータである場合に、整合性を保ったクロックリファレンスを持つPCRが伝送できる。そのため、バックエンド信号処理部の動作を間欠的に行い、データを補償バッファ手段に保持したとしても、比較的信頼性のあるシステムクロックが生成出来る。したがって、正確な伝送路推定のため補償バッファ手段で長時間データを保持(遅延)させ、長時間バックエンドを停止する必要が有る場合でも、整合性を保ったシステムクロックによりバックエンドを正常に動作させることが可能である。
また、本発明の無線受信装置は、正しいクロックリファレンスを持つPCRが伝送できる。そのため、バックエンド信号処理部の動作を間欠的に行い、データを補償バッファ手段に保持したとしても整合性を保ったシステムクロックを供給することが可能である。
また、本発明の無線受信装置は、受信する送信波にMPEGストリームが含まれる場合に、そのMPEGを構成するデータを利用することでパターンの検出が可能である。
また、本発明の無線受信装置は、無線受信装置内にMPEGデータの復号処理部分(MPEGデコーダ等)を備えた無線受信装置において、復号処理部分等から発生するノイズに対するノイズキャンセルが可能である。
以上のように、本発明の無線受信装置によれば、従来行えなかった希望波がデジタル放送波などの連続波であっても伝送路推定と干渉波信号の検出を行い、ノイズによる受信感度劣化を小さくした受信装置を実現することができる。
本発明にかかる無線受信装置は、パケットのプリアンブルではなくMPEG2TS特有のシンクバイトパターンを用いた伝送路推定により、MPEG2TSをシステムレイヤーとして使用する無線伝送受信方式に使用可能である。また、ノイズ源となる信号処理部の動作停止とバッファ補償とを組み合わせることにより、機器ノイズを発生する多くの回路構成に適応可能である。本発明にかかる無線受信装置は、自装置内部で発生するノイズを効果的に除去し受信感度を向上させる用途であれば全てに応用可能である。
4,5 受信アンテナ
16 ノイズ信号
26,27 FFT部
28 ノイズ波除去部
29 デマッピング部
30 放送停波検出部
31 シンクパターン検出部
32 バックエンド信号処理部
33 バックエンド動作制御部
40 重み付け合成部
41 伝送路推定部
42 不要信号測定部
43 信頼度評価部
48 伝送路係数算出部
49 伝送路係数記憶部
52 アンテナ間共分散算出部
53 記憶部
59 合成部
60 重み付け係数算出部
65 第1のローノイズアンプ
66 第2のローノイズアンプ
67a 第1の検波部
67b 第3の検波部
68a 第2の検波部
68b 第4の検波部
69 加算部
70 閾値判定部
71 判定部
72 パターン検出部
73 パターン発生部
78,79 波形検出部
80,81,82 周期性検出部
83 補間部
84a 第1の補償バッファ部
84b 第2の補償バッファ部
84c 第3の補償バッファ部
85 バックエンド動作停止部
89 制御信号生成部
90 FIFO記憶部
100 ビタビ復号部
101 PCR抽出部
102 PCRオフセット加算部
103 PCR挿げ替え部
104 切り替え部

Claims (8)

  1. マルチキャリア送信波を受信する複数の受信アンテナの個々に個別に接続され、前記受信アンテナで受信したマルチキャリア送信波を周波数空間信号に変換する複数の周波数空間変換部と、
    前記周波数空間変換部の個々に個別に接続され、前記複数の周波数空間変換部で変換された周波数空間信号に対して少なくとも
    前記マルチキャリア送信波の伝送路係数行列の算出と、
    前記複数の受信アンテナ間のアンテナ間共分散行列の算出と
    を行う複数のノイズ波除去部と、
    前記ノイズ波除去部の出力に関連した信号に対してバックエンド処理を行うバックエンド信号処理部と
    記マルチキャリア送信波の停止状況を判断する放送停波検出部と、
    前記放送停波検出部がマルチキャリア送信波の停止を検出した際に、前記バックエンド信号処理部の動作を実行させるバックエンド動作制御部と、
    を備え、
    前記複数のノイズ波除去部は、前記放送停波検出部が前記マルチキャリア送信波の停止を検出した際に前記アンテナ間共分散行列の算出を実行する
    無線受信装置。
  2. 前記受信アンテナで受信したマルチキャリア送信波から特定のデータを検出するパターン検出部
    を更に備え、
    前記複数のノイズ波除去部は、
    前記受信アンテナの出力を重み付け合成する重み付け合成部と、
    前記周波数空間信号を入力して、検出された前記特定のデータに基づいて前記マルチキャリア送信波の前記伝送路係数行列を算出する伝送路推定部と、
    前記アンテナ間共分散行列を算出する不要信号測定部と、
    を備える請求項1に記載の無線受信装置。
  3. 前記バックエンド信号処理部の処理を停止させるバックエンド動作停止部と、
    受信データを記憶し、記憶した前記受信データを前記バックエンド信号処理部に間欠的に入力する補償バッファ部
    を更に備え、
    前記バックエンド動作停止部が前記バックエンド信号処理部の処理を停止させる停止期間中に、前記伝送路推定部は前記伝送路係数行列を算出し、
    前記補償バッファ部は、前記停止期間中の前記受信データを保持する
    請求項2に記載の無線受信装置。
  4. 前記補償バッファ部は、
    前記受信データに含まれるクロック情報を検出するPCR抽出部と、
    前記PCR抽出部が検出したクロック情報をオフセット加算するPCRオフセット加算部と、
    前記受信データを記憶する記憶部と、
    前記記憶部に記憶された受信データに含まれるクロック情報を前記PCR抽出部が検出したクロック情報で補正するPCR挿げ替え部
    を備えた請求項3に記載の無線受信装置。
  5. 前記補償バッファ部は、
    前記受信データを記憶する記憶部と、
    受信データに含まれるクロック情報を検出するPCR抽出部と、
    前記記憶部に記憶された受信データに含まれるクロック情報を前記PCR抽出部が検出したクロック情報に切り替える切り替え部と
    を備えた請求項3に記載の無線受信装置。
  6. 前記パターン検出部は、MPEG規格の同期符号、もしくは、MPEG規格のスタートコードを検出する請求項2から5のいずれか1項に記載の無線受信装置。
  7. 前記バックエンド信号処理部は、少なくともMPEGデータの復号処理を含む処理を実行する請求項1から6のいずれか1項に記載の無線受信装置。
  8. マルチキャリア送信波を受信する複数の受信アンテナの個々に個別に接続され、前記受信アンテナで受信したマルチキャリア送信波を周波数空間信号に変換する複数の周波数空間変換部と、
    前記周波数空間変換部の個々に個別に接続され、前記複数の周波数空間変換部で変換された周波数空間信号に対して少なくとも
    前記マルチキャリア送信波の伝送路係数行列の算出と、
    前記複数の受信アンテナ間のアンテナ間共分散行列の算出と
    を行う複数のノイズ波除去部と、
    前記ノイズ波除去部の出力に関連した信号に対してバックエンド処理を行うバックエンド信号処理部と、
    前記マルチキャリア送信波の停止状況を判断する放送停波検出部と、
    前記放送停波検出部がマルチキャリア送信波の停止を検出した際に、前記バックエンド信号処理部の動作を実行させるバックエンド動作制御部と、
    を備え、
    前記複数のノイズ波除去部は、前記放送停波検出部が前記マルチキャリア送信波の停止を検出した際に前記アンテナ間共分散行列の算出を実行する
    集積回路装置。
JP2010523752A 2008-08-06 2009-08-04 無線受信装置 Active JP5370366B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010523752A JP5370366B2 (ja) 2008-08-06 2009-08-04 無線受信装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008202811 2008-08-06
JP2008202811 2008-08-06
PCT/JP2009/003701 WO2010016232A1 (ja) 2008-08-06 2009-08-04 無線受信装置
JP2010523752A JP5370366B2 (ja) 2008-08-06 2009-08-04 無線受信装置

Publications (2)

Publication Number Publication Date
JPWO2010016232A1 JPWO2010016232A1 (ja) 2012-01-19
JP5370366B2 true JP5370366B2 (ja) 2013-12-18

Family

ID=41663461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010523752A Active JP5370366B2 (ja) 2008-08-06 2009-08-04 無線受信装置

Country Status (3)

Country Link
US (2) US8290101B2 (ja)
JP (1) JP5370366B2 (ja)
WO (1) WO2010016232A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009069730A1 (ja) * 2007-11-29 2009-06-04 Kyocera Corporation 携帯通信機器及び受信抑制方法
CN103250384B (zh) * 2010-12-24 2015-10-21 三菱电机株式会社 接收装置和方法
GB2490191B (en) * 2012-01-23 2014-01-08 Renesas Mobile Corp Method, processing system and computer program for calculating a noise covariance estimate
US9059765B2 (en) * 2012-03-01 2015-06-16 Mitsubishi Electric Corporation Reception device and reception method
JP6029417B2 (ja) * 2012-10-29 2016-11-24 日本放送協会 受信装置及びプログラム
US20160015352A1 (en) * 2014-07-16 2016-01-21 Neocoil, Llc Wireless Physiological Data Acquisition System
US10575267B2 (en) 2017-01-05 2020-02-25 Samsung Electronics Co., Ltd System and method for providing weighted pattern demapper for Bluetooth® low energy long range

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004260428A (ja) * 2003-02-25 2004-09-16 Nec Access Technica Ltd ノイズによる受信感度劣化を防止した無線携帯端末と無線携帯端末のノイズによる受信感度劣化の防止方法およびプログラム
WO2006003776A1 (ja) * 2004-06-04 2006-01-12 Matsushita Electric Industrial Co., Ltd. 無線通信装置
JP2008245000A (ja) * 2007-03-28 2008-10-09 Sony Corp 放送波受信方法及びその装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7068628B2 (en) 2000-05-22 2006-06-27 At&T Corp. MIMO OFDM system
US7418026B2 (en) * 2002-05-09 2008-08-26 Sony United Kingdom Limited Receiver for a multi-carrier modulated symbol
JP4094444B2 (ja) * 2003-01-31 2008-06-04 株式会社エヌ・ティ・ティ・ドコモ 無線通信端末
JP4417765B2 (ja) * 2004-04-14 2010-02-17 株式会社エヌ・ティ・ティ・ドコモ 無線伝送システム、無線中継システム、及び通信装置
JPWO2006011424A1 (ja) * 2004-07-28 2008-05-01 松下電器産業株式会社 ダイバーシティ型受信装置および受信方法
US7558223B2 (en) * 2005-04-04 2009-07-07 Panasonic Corporation OFDM receiving method of OFDM receiver for receiving an OFDM signal via a plurality of space paths
JP4692761B2 (ja) * 2006-03-29 2011-06-01 カシオ計算機株式会社 Ofdm受信装置、ofdm受信方法及び地上波デジタル受信装置
US8085859B2 (en) * 2007-09-28 2011-12-27 Intel Corporation Platform noise mitigation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004260428A (ja) * 2003-02-25 2004-09-16 Nec Access Technica Ltd ノイズによる受信感度劣化を防止した無線携帯端末と無線携帯端末のノイズによる受信感度劣化の防止方法およびプログラム
WO2006003776A1 (ja) * 2004-06-04 2006-01-12 Matsushita Electric Industrial Co., Ltd. 無線通信装置
JP2008245000A (ja) * 2007-03-28 2008-10-09 Sony Corp 放送波受信方法及びその装置

Also Published As

Publication number Publication date
WO2010016232A1 (ja) 2010-02-11
US20130003866A1 (en) 2013-01-03
US8422608B2 (en) 2013-04-16
JPWO2010016232A1 (ja) 2012-01-19
US20110002427A1 (en) 2011-01-06
US8290101B2 (en) 2012-10-16

Similar Documents

Publication Publication Date Title
JP5370366B2 (ja) 無線受信装置
JP4692761B2 (ja) Ofdm受信装置、ofdm受信方法及び地上波デジタル受信装置
JP3748449B2 (ja) Ofdm受信装置
EP1772982A1 (en) Diversity type receiver apparatus and receiving method
RU2439827C1 (ru) Устройство приема, способ приема, программа и система приема
JP6400245B1 (ja) 光通信装置
JP2001339363A (ja) Ofdm信号の伝送方法、送信装置及び受信装置
JP2008072221A (ja) Ofdm信号の受信方法及び受信機
JP4173460B2 (ja) デジタル放送受信装置
US8744016B2 (en) Receiving apparatus and receiving method
JP4875078B2 (ja) ダイバーシティ受信装置およびダイバーシティ受信方法
JP4300204B2 (ja) 無線通信装置
JP4115466B2 (ja) Ofdm受信装置
EP2224610A1 (en) Diversity reception device and diversity reception method
US7822133B2 (en) Orthogonal frequency division multiplexing (OFDM) receiver, OFDM reception method and terrestrial digital receiver
JP4338323B2 (ja) デジタル信号受信装置
JP2013201578A (ja) 伝送路応答推定器、及び放送受信装置
JP2019087921A (ja) 通信装置およびその制御方法、プログラム
JP5159673B2 (ja) 変調方式推定装置
JP2008017124A (ja) デジタル受信装置、その制御方法、デジタル受信装置用プログラム及びそのプログラムを記録した記録媒体
JP6103589B2 (ja) 通信システム、受信装置、半導体装置及び通信システムにおけるジッタ補正方法
JP2023103804A (ja) 無線通信装置及び無線通信方法
JP2005229207A (ja) Ofdm受信装置、および、ofdm受信信号のオフセット補正方法
JP6088211B2 (ja) Mimo−ofdm受信装置
JP2016201743A (ja) 受信装置及び受信方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120525

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120525

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20121218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130902

R151 Written notification of patent or utility model registration

Ref document number: 5370366

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250