WO2012083678A1 - 高纯碳酸锂的制备方法 - Google Patents

高纯碳酸锂的制备方法 Download PDF

Info

Publication number
WO2012083678A1
WO2012083678A1 PCT/CN2011/076978 CN2011076978W WO2012083678A1 WO 2012083678 A1 WO2012083678 A1 WO 2012083678A1 CN 2011076978 W CN2011076978 W CN 2011076978W WO 2012083678 A1 WO2012083678 A1 WO 2012083678A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium carbonate
lithium
solution
concentration
purity
Prior art date
Application number
PCT/CN2011/076978
Other languages
English (en)
French (fr)
Inventor
姚开林
金鹏
霍立明
涂明江
梁平武
严新星
江虎成
Original Assignee
四川天齐锂业股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 四川天齐锂业股份有限公司 filed Critical 四川天齐锂业股份有限公司
Priority to CA2820112A priority Critical patent/CA2820112C/en
Publication of WO2012083678A1 publication Critical patent/WO2012083678A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • C01D15/08Carbonates; Bicarbonates

Definitions

  • the present invention relates to a method for preparing high-purity lithium carbonate, which belongs to the technical field of high-purity lithium carbonate preparation.
  • Li 2 C0 3 is widely used in ceramics, glass, atomic energy, aerospace and lithium batteries, lithium alloys, pharmaceuticals, etc. It is also a raw material for the preparation of various lithium compounds.
  • 99.9% of high-purity lithium carbonate is used as a positive electrode material for lithium ion batteries; 99.99% of high-purity lithium carbonate is used for electrolytes of lithium ion batteries; 99.999% of high-purity lithium carbonate is used for medical and surface acoustic wave device materials.
  • the demand for lithium salts at home and abroad is also increasing, and the purity requirements for products are becoming higher and higher. Therefore, the development of high-value-added high-purity lithium salt products has become a trend. It is imperative.
  • the existing preparation methods of high-purity lithium carbonate mainly include:
  • LiOH ammonium ammonium precipitation method it is expected to obtain a product having a purity of 99.5 % or more after purifying LiOH and H 4 HC0 3 by a usual recrystallization method.
  • the standard GB10576_89 requirements the main components of more than 99.9%.
  • the disadvantage of this method is that ammonia gas is released and is not environmentally friendly; the lithium content in the mother liquor is high and the direct yield of lithium is low.
  • Industrial lithium carbonate can produce high-purity lithium carbonate by electrolysis, Li 2 C0 3 recrystallization, carbonic acid decomposition, carbonation precipitation, sodium carbonate chemical precipitation, and the like.
  • the impurity content of Li 2 C0 3 produced by these methods is still high, and the process is complicated.
  • Chinese invention patent 200710019052.3 "A process for preparing high-purity lithium carbonate by using salt lake lithium resources” is to use crude lithium carbonate extracted from salt lake brine as raw material, pass C0 2 hydrogenation, and then carry out various impurity removal processes. Lithium hydrogencarbonate was decomposed under a negative pressure condition and rinsed several times to obtain a lithium carbonate having a purity of 99.9%.
  • LiOH solution C0 2 precipitation method Xinjiang Yunxin Lithium Salt Development Co., Ltd. Wang Yunqi's "How to Prepare High Purity Lithium Carbonate” is introduced. From the LiOH ammonium carbonate precipitation method, it can be known that LiOH can be obtained by introducing carbonate. 2 C0 3 , and C0 2 is a widely used gas, so that a large amount of impurities are not present in the reaction system as follows. 2LiOH + C0 2 ⁇ Li 2 C0 3 + H 2 0
  • the technical problem to be solved by the present invention is to provide a method for directly preparing 99.99% lithium carbonate by using lithium hydroxide in a simple production process.
  • the battery-grade lithium hydroxide monohydrate is formulated into a solution having a Li 2 0 concentration of 50 to 90 g / L;
  • step b Passing C0 2 gas with a flow rate of 3 ⁇ 5L/s into the lithium hydroxide solution of step a, when the concentration of Li 2 0 in the solution drops to 40g/L, the flow rate of C0 2 is reduced to 2 ⁇ 3L/s.
  • the flow rate of C0 2 decreases to 0.8 to 1.2 L/s; when a large amount of solids appear in the solution, the aeration is stopped to obtain a lithium carbonate slurry.
  • step b Separation, the lithium carbonate slurry obtained in step b is separated, washed and dried to a moisture content of less than 0.1%.
  • the lithium hydroxide solution in the a step is removed by conventional methods to remove Ca 2+ and Mg 2+ , usually adding lithium phosphate, lithium dihydrogen phosphate, oxalic acid or It is EDTA to remove Ca 2+ and Mg 2+ , and the insoluble impurities are filtered by pressure filtration, so that the concentration of Ca 2+ in the product is less than 3 ppm, so that the concentration of Mg 2+ in the product is less than 1 ppm.
  • the stirring speed is maintained at 60-80 rpm during the aeration process.
  • the stirring speed is maintained at 60-80 rpm during the aeration process.
  • the rotation speed is too slow, which is not conducive to the collision between ions and affects the reaction speed. If the rotation speed is too fast, it is easy to break the generated lithium carbonate particles and affect the product quality.
  • the reaction temperature reported in the prior art document of step b is 50 ° C, and the present invention carries out the reaction at a normal temperature of 10-30 ° C. No additional energy is required, and too high a temperature will result in low CO 2 gas utilization; if the temperature is too low, the reaction rate will decrease and the agglomeration will be severe.
  • step b is stopped and the temperature is raised to 80-120 ° C, and the temperature is kept for 20-50 minutes to allow the crystal grains to grow.
  • step c is important for water washing in order to thoroughly remove water-soluble impurities.
  • the impurity ions are dissolved in the pulverized water and separated from the lithium carbonate.
  • One embodiment of the invention is:
  • the battery-grade lithium hydroxide monohydrate is formulated into a solution having a Li 2 0 concentration of 50-90 g/L;
  • step b Passing C0 2 gas with a flow rate of 3 ⁇ 5L/s into the lithium hydroxide solution of step a, when the concentration of Li 2 0 in the solution drops to 40g/L, the flow rate of C0 2 is reduced to 2 ⁇ 3L/s.
  • the flow rate of C0 2 decreases to 0.8 to 1.2 L/s; when a large amount of solids appear in the solution, the aeration is stopped to obtain a lithium carbonate slurry.
  • step b Separation, the lithium carbonate slurry obtained in step b is separated, washed and dried to a moisture content of less than 0.1% (drying at 105 ° C).
  • the battery-grade lithium hydroxide monohydrate is formulated into a solution having a Li 2 0 concentration of 50-90 g/L, and the Ca 2+ and Mg 2+ are removed by a conventional method, usually adding lithium phosphate, lithium dihydrogen phosphate, oxalic acid or EDTA removes Ca 2+ and Mg 2+ and filters out insoluble impurities by pressure filtration;
  • step b Passing C0 2 gas with a flow rate of 3 ⁇ 5L/s into the lithium hydroxide solution of step a, when the concentration of Li 2 0 in the solution drops to 40g/L, the flow rate of C0 2 is reduced to 2 ⁇ 3L/s.
  • the flow rate of C0 2 decreases to 0.8 to 1.2 L/s; when a large amount of solids appear in the solution, the aeration is stopped to obtain a lithium carbonate slurry.
  • step b Separation, the lithium carbonate slurry obtained in step b is separated, washed and dried to a moisture content of less than 0.1%.
  • the battery-grade lithium hydroxide monohydrate is formulated into a solution having a Li 2 0 concentration of 50-90 g/L; and the conventional method is used to remove Ca 2+ and Mg 2+ , usually adding lithium phosphate, lithium dihydrogen phosphate, oxalic acid or EDTA removes Ca 2+ and Mg 2+ .
  • Insoluble impurities are filtered by pressure filtration:
  • step b Passing C0 2 gas with a flow rate of 3 ⁇ 5L/s into the lithium hydroxide solution of step a, when the concentration of Li 2 0 in the solution drops to 40g/L, the flow rate of C0 2 is reduced to 2 ⁇ 3L/s.
  • the flow rate of C0 2 decreases to 0.8 to 1.2 L/s; when a large amount of solids appear in the solution, the aeration is stopped to obtain a lithium carbonate slurry.
  • the agitation speed was maintained at 60-80 rpm during aeration.
  • the stirring speed was controlled at 60-80 rpm during aeration.
  • the rotation speed is too slow, which is not conducive to the collision between ions and affects the reaction speed. If the rotation speed is too fast, it is easy to break the generated lithium carbonate particles and affect the product quality.
  • the battery-grade lithium hydroxide monohydrate is formulated into a solution having a Li 2 0 concentration of 50-90 g/L; and the conventional method is used to remove Ca 2+ and Mg 2+ , usually adding lithium phosphate, lithium dihydrogen phosphate, oxalic acid or EDTA removes Ca 2+ and Mg 2+ and filters out insoluble impurities by pressure filtration;
  • step b Separation, the lithium carbonate slurry obtained in step b is separated, washed and dried to a moisture content of less than 0.1%.
  • the battery-grade lithium hydroxide monohydrate is formulated into a solution having a Li 2 0 concentration of 50-90 g/L; and the Ca 2+ and Mg 2+ are removed by a conventional method, usually adding lithium phosphate, lithium dihydrogen phosphate, oxalic acid or It is EDTA to remove Ca 2+ and Mg 2+ , and the insoluble impurities are filtered by pressure filtration;
  • step b Separation, after separating the lithium carbonate slurry obtained in step b, add water according to the ratio of solid-liquid ratio (weight ratio) 1: 2 ⁇ 4, stir once, stir the temperature at 90-98 °C, and centrifuge. The solid is dried with lithium carbonate wet to a moisture content of less than 0.1%.
  • the mother liquor obtained by centrifuging in the c step of all the above embodiments of the present invention can be used in the a step to prepare a LiOH solution for recycling.
  • lithium-purity lithium carbonate having a purity of 99.99% can be easily and conveniently prepared by using battery-grade lithium hydroxide monohydrate as a raw material, without further purification.
  • FIG. 1 is a process flow diagram of a method for preparing high-purity lithium carbonate according to the present invention. detailed description One embodiment of the invention is:
  • the battery-grade lithium hydroxide monohydrate is formulated into a solution having a Li 2 0 concentration of 50-90 g/L;
  • step b Passing C0 2 gas with a flow rate of 3 ⁇ 5L/s into the lithium hydroxide solution of step a, when the concentration of Li 2 0 in the solution drops to 40g/L, the flow rate of C0 2 is reduced to 2 ⁇ 3L/s.
  • the flow rate of C0 2 decreases to 0.8 to 1.2 L/s; when a large amount of solids appear in the solution, the aeration is stopped to obtain a lithium carbonate slurry.
  • step b Separation, the lithium carbonate slurry obtained in step b is separated, washed and dried to a moisture content of less than 0.1% (drying at 105 ° C).
  • the battery-grade lithium hydroxide monohydrate is formulated into a solution having a Li 2 0 concentration of 50-90 g/L, and the Ca 2+ and Mg 2+ are removed by a conventional method, usually adding lithium phosphate, lithium dihydrogen phosphate, oxalic acid or EDTA removes Ca 2+ and Mg 2+ and filters out insoluble impurities by pressure filtration;
  • step b Passing C0 2 gas with a flow rate of 3 ⁇ 5L/s into the lithium hydroxide solution of step a, when the concentration of Li 2 0 in the solution drops to 40g/L, the flow rate of C0 2 is reduced to 2 ⁇ 3L/s.
  • the flow rate of C0 2 decreases to 0.8 to 1.2 L/s; when a large amount of solids appear in the solution, the aeration is stopped to obtain a lithium carbonate slurry.
  • step b Separation, the lithium carbonate slurry obtained in step b is separated, washed and dried to a moisture content of less than 0.1%.
  • the battery-grade lithium hydroxide monohydrate is formulated into a solution having a Li 2 0 concentration of 50-90 g/L; and the conventional method is used to remove Ca 2+ and Mg 2+ , usually adding lithium phosphate, lithium dihydrogen phosphate, oxalic acid or EDTA removes Ca 2+ and Mg 2+ .
  • Insoluble impurities are filtered by pressure filtration:
  • step b Passing C0 2 gas with a flow rate of 3 ⁇ 5L/s into the lithium hydroxide solution of step a, when the concentration of Li 2 0 in the solution drops to 40g/L, the flow rate of C0 2 is reduced to 2 ⁇ 3L/s.
  • the flow rate of C0 2 decreases to 0.8 to 1.2 L/s; when a large amount of solids appear in the solution, the aeration is stopped to obtain a lithium carbonate slurry.
  • the agitation speed was maintained at 60-80 rpm during aeration.
  • the stirring speed was controlled at 60-80 rpm during aeration.
  • the rotation speed is too slow, which is not conducive to the collision between ions and affects the reaction speed. If the rotation speed is too fast, it is easy to break the generated lithium carbonate particles and affect the product quality.
  • the battery-grade lithium hydroxide monohydrate is formulated into a solution having a Li 2 0 concentration of 50-90 g/L; and the conventional method is used to remove Ca 2+ and Mg 2+ , usually adding lithium phosphate, lithium dihydrogen phosphate, oxalic acid or EDTA removes Ca 2+ and Mg 2+ and filters out insoluble impurities by pressure filtration;
  • step b Separation, the lithium carbonate slurry obtained in step b is separated, washed and dried to a moisture content of less than 0.1%.
  • the battery-grade lithium hydroxide monohydrate is formulated into a solution having a Li 2 0 concentration of 50-90 g/L; and the Ca 2+ and Mg 2+ are removed by a conventional method, usually adding lithium phosphate, lithium dihydrogen phosphate, oxalic acid or It is EDTA to remove Ca 2+ and Mg 2+ , and the insoluble impurities are filtered by pressure filtration;
  • the method comprises the following steps (see FIG. 1 ): adding about 600 kg of battery-grade lithium hydroxide monohydrate in distilled water in a reaction vessel to prepare a lithium hydroxide solution having a Li 2 0 concentration of 80 g/L, and stirring the reaction for a period of time, According to the concentration of Ca 2+ and Mg 2+ in the lithium hydroxide solution, an excess of 3% of EDTA is added to complex the Ca 2+ and Mg 2+ in the solution to obtain a lithium hydroxide purification solution, which is then insoluble by pressure filtration. Impurities, a lithium hydroxide filtrate is obtained; the Ca 2+ concentration in the product is less than 3 ppm, so that the Mg 2+ concentration in the product is less than 1 ppm.
  • the flow rate of C0 2 is 3L/s.
  • the concentration of Li 2 0 in the solution drops to 40g/L
  • the flow rate of C0 2 is 2L/s.
  • the concentration of Li 2 0 in the solution drops to 20g/L
  • C0 2 The flow rate is lL/s, stirring while aeration, the stirring speed is 70 rpm, when a large amount of solids appear in the solution, the ventilation is stopped, the temperature is raised to 100 ⁇ , and the mixture is centrifuged for 30 minutes to obtain a crude lithium carbonate;
  • Examples 2-8 are the same as those of Example 1, except that the flow rate of C0 2 is shown in Table 1.
  • Table 2 shows that, in the present invention 2 into C0, C0 2 by controlling the flow rate, can be further achieved carbonate content of 99.99% purity lithium carbonate without further purification.
  • the inventors of the present invention can obtain high-purity lithium carbonate having a lithium carbonate content of 99.99% by adjusting the concentration of the lithium hydroxide solution in the range of Li 20 concentration of 50 to 90 g/L.
  • concentration of the lithium hydroxide solution is too low, at 45 g L, the lithium yield is lowered and the equipment utilization rate is lowered due to an increase in the amount of the mother liquid.
  • concentration of the lithium hydroxide solution is too low, at 45 g L, the lithium yield is lowered and the equipment utilization rate is lowered due to an increase in the amount of the mother liquid.
  • 90 g/L lithium hydroxide cannot be completely dissolved, and the impurity concentration is high, and the quality requirement of 99.99% high-purity lithium carbonate cannot be achieved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Secondary Cells (AREA)

Description

高纯碳酸锂的制备方法 技术领域 本发明涉及一种高纯碳酸锂的制备方法, 属于高纯碳酸锂制备技术领域。 技术背景
Li2C03广泛应用于陶瓷、 玻璃、 原子能、 航空航天和锂电池、 锂合金、 医药等领 域, 也是制备各种锂化合物的原料。 但由于用途不同, 对碳酸锂的纯度及粒度也会有 不同的要求。 99.9 %的高纯碳酸锂用于锂离子电池的正极材料; 99.99 %的高纯碳酸锂 用于锂离子电池的电解质; 99. 999 %的高纯碳酸锂用于医药和表面弹性波元件材料。随 着锂产品在高科技领域的应用范围不断扩大, 国内外对锂盐的需求量也日益增长, 对 产品的纯度要求也越来越高,因此开发高附加值的高纯锂盐产品已经势在必行。
现有高纯碳酸锂制备方法主要有:
1 ) Zintl Harder Dauth法, 该方法引入的试剂较多, 要使产品达到当今用户要求 的纯度, 显然是很困难的。
2) LiOH碳铵沉淀法, 用通常重结晶的方法, 提纯 LiOH和 H4HC03后得到 99.5 % 以上纯度的产品是可以预期的。 石油化工应用 《高纯碳酸锂的制备工艺研究》 (2008 年) 一文中介绍了以工业氢氧化锂和分析纯碳酸铵为原料, 采用复分解法合成高纯碳 酸锂, 该方法生产的产品超过国家标准 GB10576_89的要求, 主要成分达 99.9%以上。 此法的缺点是有氨气放出, 不环保; 母液中锂含量高, 锂直收率低。
3 )工业碳酸锂通过电解法、 Li2C03重结晶法、碳酸氢化分解法、碳酸氢化沉淀法、 碳酸钠化学沉淀法等方法可生产高纯碳酸锂。 这些方法所制得的 Li2 C03的杂质含量仍 然较高, 而且工艺复杂。 比如中国发明专利 200710019052.3 《一种利用盐湖锂资源制 取高纯碳酸锂的工艺方法》是利用盐湖卤水中提取的粗碳酸锂为原料, 通入 C02氢化, 再进行各种除杂过程后,在负压条件下分解碳酸氫锂,淋洗多次得到纯度为 99.9%碳酸 锂。
对于 LiOH溶液 C02沉淀法, 新疆昊鑫锂盐开发有限公司王运其的 《浅谈高纯碳酸 锂的制备方法》 介绍, 从 LiOH碳铵沉淀法可知道, LiOH中只要引入碳酸根就能得到 Li2C03, 而 C02是广泛使用的气体, 这样可按如下反应, 就不会有大量杂质存在于反 应体系中。 2LiOH + C02→Li2C03 + H20
C02气体经洗涤后, 可达到相当纯净的标准, 就是说产品纯度仅取决于 LiOH, 制 备高纯碳酸锂该方法是最直接的,也是应用最广泛的,通常用工业 LiOH与之直接反应, 就能得到 99%的产品。 但是, 目前该方法还无法直接得到 99.99%的碳酸锂。 发明内容
本发明所要解决的技术问题是提供一种生产工艺简单, 采用氢氧化锂直接制备 99.99%的碳酸锂的方法。
本发明的技术方案是:
a、 将电池级单水氢氧化锂配制成 Li20浓度 50〜90g/L的溶液;
b、 向 a步骤的氢氧化锂溶液中通入流速为 3〜5L/s的 C02气体, 当溶液中 Li20浓度 降到 40g/L时, C02的流速降为 2〜3L/s; 当溶液中 Li20浓度降到 20g/L时, C02的流速降 为 0.8〜1.2L/s; 当溶液中有大量固体出现时, 停止通气得到碳酸锂浆料。
这样既节约了 C02气体的用量, 又能保证已经沉淀了的 Li2C03不会被氢化生成 LiHC03, 影响锂的一次收率, 同时避免了碳酸锂夹杂。
c、 分离, b步骤所得碳酸锂浆料分离、 洗涤、 干燥至水分小于 0.1%即得。
其中, 为了进一歩降低产品中的 Ca2+、 Mg2+, a歩骤中的氢氧化锂溶液采用常规方 法除去 Ca2+、 Mg2+, 通常加入磷酸锂、 磷酸二氢锂、 草酸或是 EDTA除去 Ca2+、 Mg2+, 通过压滤滤去不溶杂质, 使得产品中 Ca2+浓度低于 3ppm、 使得产品中 Mg2+浓度低于 lppm。
b步骤通气过程中保持搅拌速度为 60-80转 /分。 通过控制搅拌速度, 得到的 Li2C03 粒度大, 不易发生二次聚集。 转速过慢, 不利于离子之间的碰撞, 影响反应速度; 转 速过快, 容易把生成好的碳酸锂颗粒打碎, 影响产品品质。
其中, b步骤现有技术文献报道的反应温度是 50°C, 本发明采用常温 10-30 °C进行 反应。 不需要额外提供能源, 且温度过高会导致 C02气体利用率低; 温度过低, 导致 反应速率降低, 结块严重。
其中, b步骤停止通气后升温至 80-120°C, 保温 20-50分钟使得晶粒成长。
另外, c步骤为了彻底洗涤除去水溶性杂质, 水洗涤很重要。 按固液比 (重量比) 1: 2〜4的比例加水, 搅洗 1次, 搅洗温度控制在 90-98 °C, 离心分离, 固体为碳酸锂湿 品, 而钠、 钾、 硫酸根等杂质离子溶解在搅洗水中与碳酸锂分离。 本发明的一个实施方式是:
a、 将电池级单水氢氧化锂配制成 Li20浓度 50~90g/L的溶液;
b、 向 a步骤的氢氧化锂溶液中通入流速为 3〜5L/s的 C02气体, 当溶液中 Li20浓度 降到 40g/L时, C02的流速降为 2〜3L/s; 当溶液中 Li20浓度降到 20g/L时, C02的流速降 为 0.8〜1.2L/s; 当溶液中有大量固体出现时, 停止通气得到碳酸锂浆料。
这样既节约了 C02气体的用量, 又能保证已经沉淀了的 Li2C03不会被氢化生成 LiHC03, 影响锂的一次收率, 同时避免了碳酸锂夹杂。
c、分离, b步骤所得碳酸锂浆料分离、洗涤、干燥至水分小于 0.1% ( 105 °C下烘干) 即得。
本发明的另一个实施方式是:
a、将电池级单水氢氧化锂配制成 Li20浓度 50~90g/L的溶液, 并采用常规方法除去 Ca2+、 Mg2+, 通常加入磷酸锂、 磷酸二氢锂、 草酸或是 EDTA除去 Ca2+、 Mg2+, 通过压 滤滤去不溶杂质;
b、 向 a步骤的氢氧化锂溶液中通入流速为 3〜5L/s的 C02气体, 当溶液中 Li20浓度 降到 40g/L时, C02的流速降为 2〜3L/s; 当溶液中 Li20浓度降到 20g/L时, C02的流速降 为 0.8〜1.2L/s; 当溶液中有大量固体出现时, 停止通气得到碳酸锂浆料。
这样既节约了 C02气体的用量, 又能保证已经沉淀了的 Li2C03不会被氢化生成 LiHC03, 影响锂的一次收率, 同时避免了碳酸锂夹杂。
c、 分离, b步骤所得碳酸锂浆料分离、 洗涤、 干燥至水分小于 0.1%即得。
本发明的另一个实施方式是:
a、将电池级单水氢氧化锂配制成 Li20浓度 50~90g/L的溶液; 并采用常规方法除去 Ca2+、 Mg2+, 通常加入磷酸锂、 磷酸二氢锂、 草酸或是 EDTA除去 Ca2+、 Mg2+。 通过压 滤滤去不溶杂质:
b、 向 a步骤的氢氧化锂溶液中通入流速为 3〜5L/s的 C02气体, 当溶液中 Li20浓度 降到 40g/L时, C02的流速降为 2〜3L/s; 当溶液中 Li20浓度降到 20g/L时, C02的流速降 为 0.8〜1.2L/s; 当溶液中有大量固体出现时, 停止通气得到碳酸锂浆料。
通气过程中保持搅拌速度为 60-80转 /分。通过控制搅拌速度,得到的 Li2C03粒度大, 不易发生二次聚集。 转速过慢, 不利于离子之间的碰撞, 影响反应速度; 转速过快, 容易把生成好的碳酸锂颗粒打碎, 影响产品品质。
c、 分离, b歩骤所得碳酸锂浆料分离、 洗涤、 干燥至水分小于 0.1%即得。 本发明又一个实施方式是:
a、将电池级单水氢氧化锂配制成 Li20浓度 50~90g/L的溶液; 并采用常规方法除去 Ca2+、 Mg2+, 通常加入磷酸锂、 磷酸二氢锂、 草酸或是 EDTA除去 Ca2+、 Mg2+, 通过压 滤滤去不溶杂质;
b、 向 a歩骤的氢氧化锂溶液中通入流速为 3〜5L/s的 C02气体, 当溶液中 Li20浓度 降到 40g/L时, C02的流速降为 2〜3L/s; 当溶液中 Li20浓度降到 20g/L时, C02的流速降 为 0.8〜1.2L/s; 当溶液中有大量固体出现时, 停止通气得到碳酸锂浆料; 通气过程中 保持搅拌速度为 60-80转 /分; 停止通气后升温至 80-12CTC, 保温 20-50分钟使得晶粒成 长。
c、 分离, b步骤所得碳酸锂浆料分离、 洗涤、 干燥至水分小于 0.1%即得。
本发明的又一个实施方式是:
a、将电池级单水氢氧化锂配制成 Li20浓度 50~90g/L的溶液; 并釆用常规方法除去 Ca2+、 Mg2+, 通常加入磷酸锂、 磷酸二氢锂、 草酸或是 EDTA除去 Ca2+、 Mg2+, 通过压 滤滤去不溶杂质;
b、 向 a步骤的氢氧化锂溶液中通入流速为 3〜5L/s的 C02气体, 当溶液中 Li20浓度 降到 40g/L时, C02的流速降为 2〜3L/s; 当溶液中 Li20浓度降到 20g/L时, C02的流速降 为 0.8〜1.2L/s; 当溶液中有大量固体出现时, 停止通气得到碳酸锂浆料; 通气过程中 保持搅拌速度为 60-80转 /分; 停止通气后升温至 80-120 °C, 保温 20-50分钟使得晶粒成 长。
c、分离, b步骤所得碳酸锂浆料分离后, 按固液比(重量比) 1 : 2〜4的比例加水, 搅洗 1次,搅洗温度控制在 90-98 °C,离心分离,固体为碳酸锂湿品干燥至水分小于 0.1% 即得。
本发明上述所有实施方式中 c步骤离心分离得到的母液可以用于 a步骤配制 LiOH 溶液, 循环使用。
本发明的有益效果: 采用本发明方法可以采用电池级单水氢氧化锂为原料, 简单 方便地制备得到纯度达 99.99%的高纯碳酸锂, 不需要进一步纯化。 附图说明
图 1为本发明的一种高纯碳酸锂的制备方法的工艺流程图。 具体实施方式 本发明的一个实施方式是:
a、 将电池级单水氢氧化锂配制成 Li20浓度 50~90g/L的溶液;
b、 向 a步骤的氢氧化锂溶液中通入流速为 3〜5L/s的 C02气体, 当溶液中 Li20浓度 降到 40g/L时, C02的流速降为 2〜3L/s; 当溶液中 Li20浓度降到 20g/L时, C02的流速降 为 0.8〜1.2L/s; 当溶液中有大量固体出现时, 停止通气得到碳酸锂浆料。
这样既节约了 C02气体的用量, 又能保证已经沉淀了的 Li2C03不会被氢化生成 LiHC03, 影响锂的一次收率, 同时避免了碳酸锂夹杂。
c、分离, b步骤所得碳酸锂浆料分离、洗涤、干燥至水分小于 0.1% ( 105 °C下烘干) 即得。
本发明的另一个实施方式是:
a、将电池级单水氢氧化锂配制成 Li20浓度 50~90g/L的溶液, 并采用常规方法除去 Ca2+、 Mg2+, 通常加入磷酸锂、 磷酸二氢锂、 草酸或是 EDTA除去 Ca2+、 Mg2+, 通过压 滤滤去不溶杂质;
b、 向 a步骤的氢氧化锂溶液中通入流速为 3〜5L/s的 C02气体, 当溶液中 Li20浓度 降到 40g/L时, C02的流速降为 2〜3L/s; 当溶液中 Li20浓度降到 20g/L时, C02的流速降 为 0.8〜1.2L/s; 当溶液中有大量固体出现时, 停止通气得到碳酸锂浆料。
这样既节约了 C02气体的用量, 又能保证已经沉淀了的 Li2C03不会被氢化生成 LiHC03, 影响锂的一次收率, 同时避免了碳酸锂夹杂。
c、 分离, b步骤所得碳酸锂浆料分离、 洗涤、 干燥至水分小于 0.1%即得。
本发明的另一个实施方式是:
a、将电池级单水氢氧化锂配制成 Li20浓度 50~90g/L的溶液; 并采用常规方法除去 Ca2+、 Mg2+, 通常加入磷酸锂、 磷酸二氢锂、 草酸或是 EDTA除去 Ca2+、 Mg2+。 通过压 滤滤去不溶杂质:
b、 向 a步骤的氢氧化锂溶液中通入流速为 3〜5L/s的 C02气体, 当溶液中 Li20浓度 降到 40g/L时, C02的流速降为 2〜3L/s; 当溶液中 Li20浓度降到 20g/L时, C02的流速降 为 0.8〜1.2L/s; 当溶液中有大量固体出现时, 停止通气得到碳酸锂浆料。
通气过程中保持搅拌速度为 60-80转 /分。通过控制搅拌速度,得到的 Li2C03粒度大, 不易发生二次聚集。 转速过慢, 不利于离子之间的碰撞, 影响反应速度; 转速过快, 容易把生成好的碳酸锂颗粒打碎, 影响产品品质。
c、 分离, b歩骤所得碳酸锂浆料分离、 洗涤、 干燥至水分小于 0.1%即得。 本发明又一个实施方式是:
a、将电池级单水氢氧化锂配制成 Li20浓度 50~90g/L的溶液; 并采用常规方法除去 Ca2+、 Mg2+, 通常加入磷酸锂、 磷酸二氢锂、 草酸或是 EDTA除去 Ca2+、 Mg2+, 通过压 滤滤去不溶杂质;
b、 向 a歩骤的氢氧化锂溶液中通入流速为 3〜5L/s的 C02气体, 当溶液中 Li20浓度 降到 40g/L时, C02的流速降为 2〜3L/s; 当溶液中 Li20浓度降到 20g/L时, C02的流速降 为 0.8〜1.2L/s; 当溶液中有大量固体出现时, 停止通气得到碳酸锂浆料; 通气过程中 保持搅拌速度为 60-80转 /分; 停止通气后升温至 80-12CTC, 保温 20-50分钟使得晶粒成 长。
c、 分离, b步骤所得碳酸锂浆料分离、 洗涤、 干燥至水分小于 0.1%即得。
本发明的又一个实施方式是:
a、将电池级单水氢氧化锂配制成 Li20浓度 50~90g/L的溶液; 并釆用常规方法除去 Ca2+、 Mg2+, 通常加入磷酸锂、 磷酸二氢锂、 草酸或是 EDTA除去 Ca2+、 Mg2+, 通过压 滤滤去不溶杂质;
b、 向 a步骤的氢氧化锂溶液中通入流速为 3〜5L/s的 C02气体, 当溶液中 Li20浓度 降到 40g/L时, C02的流速降为 2〜3L/s; 当溶液中 Li20浓度降到 20g/L时, C02的流速降 为 0.8〜1.2L/s; 当溶液中有大量固体出现时, 停止通气得到碳酸锂浆料; 通气过程中 保持搅拌速度为 60-80转 /分; 停止通气后升温至 80-120 °C, 保温 20-50分钟使得晶粒成 长。
c、分离, b步骤所得碳酸锂浆料分离后, 按固液比(重量比) 1 : 2〜4的比例加水, 搅洗 1次,搅洗温度控制在 90-98 °C,离心分离,固体为碳酸锂湿品干燥至水分小于 0.1% 即得。 实施例 1 采用本发明方法制备高纯碳酸锂
方法包括以下步骤(参见图 1 ): 在反应釜中加入 600kg左右的电池级单水氢氧化 锂溶于蒸馏水中, 配制 Li20浓度为 80g/L的氢氧化锂溶液, 搅拌反应一段时间,, 根 据氢氧化锂溶液中 Ca2+、 Mg2+浓度,加入过量 3%的 EDTA,络合溶液中的 Ca2+、 Mg2+, 得氢氧化锂净化液,然后通过压滤滤去不溶杂质,得到氢氧化锂滤液;使得产品中 Ca2+ 浓度低于 3ppm、 使得产品中 Mg2+浓度低于 lppm。
向反应容器中先加入氢氧化锂滤液, 再向氢氧化锂滤液通入 C02气体, 开始通气 的时候, C02的流速为 3L/s, 当溶液中 Li20浓度降到 40g/L时, C02的流速为 2L/s, 当溶液中 Li20浓度降到 20g/L时, C02的流速为 lL/s, 边通气边搅拌, 搅拌速度为 70 转 /分, 当溶液中有大量固体出现时, 停止通气, 升温至 100Ό , 保温 30分钟后离心分 离得到碳酸锂的粗品;
按照固液比 1 : 3的比例向碳酸锂中加水, 搅拌升温至 95 °C后, 趁热离心分离, 得碳酸锂湿品,将碳酸锂湿品放置于双锥回转真空干燥机中干燥,当水分小于 0.1%时, 停止干燥, 得高纯碳酸锂, 再用气流粉碎机粉碎至平均粒径 <6μηι,洁净真空包装, 生 产出合格的高纯碳酸锂产品。 其产品的主含量为 99.991%。
实施例 2-8采用本发明方法制备高纯碳酸锂
实施例 2-8方法同实施例 1, 唯不同的是 C02的流速, 具体结果见表 1。
Figure imgf000009_0001
由表 2可见, 本发明在通入 C02时, 通过控制 C02流速, 可以一步实现碳酸锂含 量 99.99%的高纯碳酸锂而不必进一步提纯。
本发明的发明人通过调整氢氧化锂溶液浓度, 在 Li20浓度 50~90g/L的范围内, 均可以得到碳酸锂含量 99.99%的高纯碳酸锂。而氢氧化锂溶液浓度过低,在 45g L时, 由于母液量增加, 锂收率降低、 设备利用率降低。 而高于 90 g/L时, 由于氢氧化锂不 能完全溶解, 且杂质浓度高, 无法达到 99.99%高纯碳酸锂的质量要求。

Claims

权利要求书
1、 高纯碳酸锂的制备方法, 其特征在于由以下歩骤完成:
a、 将电池级单水氢氧化锂配制成 Li20浓度为 50~90g L的氢氧化锂溶液; b、 向 a步骤的氢氧化锂溶液中通入流速为 3〜5L/s的 C02气体, 当溶液中 Li20浓度 降到 40g/L时, C02的流速降为 2〜3L/s; 当溶液中 Li20浓度降到 20g/L时, C02的流速降 为 0.8〜1.2L/s; 当溶液中有大量固体出现时, 停止通气得到碳酸锂浆料;
c、 b步骤所得碳酸锂浆料分离, 固体用水洗涤后干燥至水分小于 0.1%即得。
2、根据权利要求 1所述的高纯碳酸锂的制备方法, 其特征在于: a步骤配置的氢氧 化锂溶液中加入磷酸锂、 磷酸二氢锂、 草酸或是 EDTA除去 Ca2+、 Mg2+
3、根据权利要求 2所述的高纯碳酸锂的制备方法, 其特征在于: a歩骤中的氢氧化 锂溶液通过压滤滤去不溶杂质。
4、 根据权利要求 1〜3任一项所述的高纯碳酸锂的制备方法, 其特征在于: b步骤 通气过程中保持搅拌速度为 60-80转 /分。
5、 根据权利要求 1〜4任一项所述的高纯碳酸锂的制备方法, 其特征在于: b步骤 停止通气后升温至 80-120°C, 保温 20-50分钟使得晶粒成长。
6、 根据权利要求 1〜5任一项所述的高纯碳酸锂的制备方法, 其特征在于: c步 骤分离得到的母液用于 a步骤配制 LiOH溶液, 循环使用。
7、 根据权利要求 1〜6任一项所述的高纯碳酸锂的制备方法, 其特征在于: c步 骤所述固体用水洗涤是按固液重量比 1: 2〜4的比例加水, 温度控制在 90-98 °C搅拌。
PCT/CN2011/076978 2010-12-22 2011-07-08 高纯碳酸锂的制备方法 WO2012083678A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA2820112A CA2820112C (en) 2010-12-22 2011-07-08 Method for preparing high-purity lithium carbonate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2010106008028A CN102020295B (zh) 2010-12-22 2010-12-22 高纯碳酸锂的制备方法
CN201010600802.8 2010-12-22

Publications (1)

Publication Number Publication Date
WO2012083678A1 true WO2012083678A1 (zh) 2012-06-28

Family

ID=43862125

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/076978 WO2012083678A1 (zh) 2010-12-22 2011-07-08 高纯碳酸锂的制备方法

Country Status (3)

Country Link
CN (1) CN102020295B (zh)
CA (1) CA2820112C (zh)
WO (1) WO2012083678A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111547748A (zh) * 2020-06-17 2020-08-18 赣州有色冶金研究所 一种碳酸氢锂溶液高效脱碳制备电池级碳酸锂的方法
CN113636577A (zh) * 2021-08-25 2021-11-12 金川集团股份有限公司 一种低磁性球形高纯碳酸锂制备方法
CN114291831A (zh) * 2021-12-20 2022-04-08 江西永兴特钢新能源科技有限公司 一种锂云母提锂连续沉锂生产电池级碳酸锂的方法
CN114361431A (zh) * 2021-08-20 2022-04-15 山东瑞福锂业有限公司 一种锂离子电池中三元正极材料用规整微米片的碳酸锂材料的结构调控的工艺与方法

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102020295B (zh) * 2010-12-22 2012-07-25 四川天齐锂业股份有限公司 高纯碳酸锂的制备方法
CN102807237B (zh) * 2011-06-01 2014-11-05 上海中锂实业有限公司 无水硝酸锂的制取方法
CN102267707B (zh) * 2011-07-01 2013-06-12 清华大学 一种沉淀法制备碳酸锂纳米颗粒的方法
CN202438320U (zh) * 2011-08-31 2012-09-19 四川长和华锂科技有限公司 一种工业化生产高纯碳酸锂的反应釜
CN102515212A (zh) * 2011-11-14 2012-06-27 山东瑞福锂业有限公司 一种电池级碳酸锂的制备方法
EP2841623B1 (en) 2012-04-23 2020-10-28 Nemaska Lithium Inc. Processes for preparing lithium hydroxide
CA3109808A1 (en) 2012-05-30 2013-12-05 Nemaska Lithium Inc. System for preparing lithium carbonate from lithium hydroxide
EP2971252B1 (en) 2013-03-15 2020-12-30 Nemaska Lithium Inc. Processes for preparing lithium hydroxide
CN103351010B (zh) * 2013-06-29 2015-10-28 西北矿冶研究院 一种电池级碳酸锂的制备工艺
KR102099714B1 (ko) 2013-10-23 2020-04-13 네마스카 리튬 인코포레이션 리튬 하이드록사이드 제조 공정 및 시스템
JP6335316B2 (ja) 2013-10-23 2018-05-30 ネマスカ リチウム インコーポレイテッド 炭酸リチウムの調製のためのプロセス
CN103708508B (zh) * 2014-01-17 2015-12-30 长沙有色冶金设计研究院有限公司 一种从锂精矿生产电池级碳酸锂的方法
KR102153976B1 (ko) 2014-02-24 2020-09-10 네마스카 리튬 인코포레이션 리튬 함유 물질을 처리하기 위한 방법
TWI563716B (en) * 2014-07-16 2016-12-21 Prologium Technology Co Ltd Anode electrode
US10597305B2 (en) 2015-08-27 2020-03-24 Nemaska Lithium Inc. Methods for treating lithium-containing materials
CN106025253A (zh) * 2016-05-12 2016-10-12 天津普兰能源科技有限公司 一种钛酸锂的制备方法
CA2940509A1 (en) 2016-08-26 2018-02-26 Nemaska Lithium Inc. Processes for treating aqueous compositions comprising lithium sulfate and sulfuric acid
CN106365182B (zh) * 2016-08-30 2017-09-29 荆门市格林美新材料有限公司 脉冲式氢化工业级碳酸锂制备电池级碳酸锂的方法
CN106517258B (zh) * 2016-11-23 2017-09-29 荆门市格林美新材料有限公司 电池级碳酸锂的制备方法
CN106830020B (zh) * 2017-03-15 2018-11-13 江苏容汇通用锂业股份有限公司 一种4n高纯碳酸锂的制备方法
CN107902680A (zh) * 2017-11-15 2018-04-13 天元锂电材料河北有限公司 一种工业级碳酸锂精制生产电池级碳酸锂的方法
CA3083136C (en) 2017-11-22 2022-04-12 Nemaska Lithium Inc. Processes for preparing hydroxides and oxides of various metals and derivatives thereof
CN109970085A (zh) * 2019-04-26 2019-07-05 核工业北京化工冶金研究院 一种从锂云母浸出液制备锂产品的新工艺
CN113003588A (zh) * 2019-12-20 2021-06-22 中核北方核燃料元件有限公司 一种核纯级Li2CO3化工转化方法
CN111533144A (zh) * 2020-03-27 2020-08-14 白银中天化工有限责任公司 一种低品位氟化锂提纯的方法
CN113526531A (zh) * 2020-04-17 2021-10-22 中国石油化工股份有限公司 从锂电三元材料洗液中回收高纯亚微米级碳酸锂的方法
CN112299455A (zh) * 2020-11-12 2021-02-02 萍乡市拓源实业有限公司 利用粗制碳酸锂直接制备工业级或电池级碳酸锂的方法
CN113461035A (zh) * 2021-08-03 2021-10-01 四川国理锂材料有限公司 一种高钙粗碳酸锂制备电池级碳酸锂的方法
CN114368765B (zh) * 2021-08-20 2023-09-22 山东泰普锂业科技有限公司 一种锂离子电池中正极补锂用表面光滑的碳酸锂纳米片的形貌控制方法
CN116789153A (zh) * 2023-06-30 2023-09-22 江西金辉锂业有限公司 一种从粗碳酸锂制备高纯碳酸锂的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08217438A (ja) * 1995-02-13 1996-08-27 Nippon Chem Ind Co Ltd 炭酸リチウムの製造方法
JP2004196607A (ja) * 2002-12-19 2004-07-15 Nippon Chem Ind Co Ltd 高純度炭酸リチウムの製造方法
CN101209846A (zh) * 2006-12-31 2008-07-02 比亚迪股份有限公司 一种电池用纳米级碳酸锂的制备方法
CN102020295A (zh) * 2010-12-22 2011-04-20 四川天齐锂业股份有限公司 高纯碳酸锂的制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6048507A (en) * 1997-12-09 2000-04-11 Limtech Process for the purification of lithium carbonate
RU2247695C1 (ru) * 2003-09-11 2005-03-10 Открытое акционерное общество "Новосибирский завод химконцентратов" Способ получения спектрально-чистого карбоната лития
JP4896109B2 (ja) * 2008-10-24 2012-03-14 日本化学工業株式会社 高純度炭酸リチウムの製造方法
JP4896108B2 (ja) * 2008-10-24 2012-03-14 日本化学工業株式会社 高純度炭酸リチウムの製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08217438A (ja) * 1995-02-13 1996-08-27 Nippon Chem Ind Co Ltd 炭酸リチウムの製造方法
JP2004196607A (ja) * 2002-12-19 2004-07-15 Nippon Chem Ind Co Ltd 高純度炭酸リチウムの製造方法
CN101209846A (zh) * 2006-12-31 2008-07-02 比亚迪股份有限公司 一种电池用纳米级碳酸锂的制备方法
CN102020295A (zh) * 2010-12-22 2011-04-20 四川天齐锂业股份有限公司 高纯碳酸锂的制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111547748A (zh) * 2020-06-17 2020-08-18 赣州有色冶金研究所 一种碳酸氢锂溶液高效脱碳制备电池级碳酸锂的方法
CN114361431A (zh) * 2021-08-20 2022-04-15 山东瑞福锂业有限公司 一种锂离子电池中三元正极材料用规整微米片的碳酸锂材料的结构调控的工艺与方法
CN113636577A (zh) * 2021-08-25 2021-11-12 金川集团股份有限公司 一种低磁性球形高纯碳酸锂制备方法
CN114291831A (zh) * 2021-12-20 2022-04-08 江西永兴特钢新能源科技有限公司 一种锂云母提锂连续沉锂生产电池级碳酸锂的方法

Also Published As

Publication number Publication date
CN102020295A (zh) 2011-04-20
CN102020295B (zh) 2012-07-25
CA2820112C (en) 2016-09-06
CA2820112A1 (en) 2012-06-28

Similar Documents

Publication Publication Date Title
WO2012083678A1 (zh) 高纯碳酸锂的制备方法
CN106315625B (zh) 复合生产高纯单水氢氧化锂、高纯碳酸锂和电池级碳酸锂的方法
CN106276988B (zh) 一种以碳酸钾为沉淀剂制备电池级碳酸锂的方法
WO2020133826A1 (zh) 从盐湖卤水中提取锂同时制备氢氧化铝的方法
KR20200090741A (ko) 고-불순도 리튬원으로부터 배터리 등급 및 고순도 등급 리튬 하이드록사이드 및 리튬 카보네이트를 제조하기 위한 방법 및 시스템
WO2011003266A1 (zh) 一种利用氯化锂溶液制备电池级碳酸锂的方法
CN103539169A (zh) 利用工业级碳酸锂制备电池级碳酸锂或高纯碳酸锂的方法
CN102659144A (zh) 高纯级单水氢氧化锂的制备方法
CN109110788B (zh) 一种盐湖卤水中锂镁资源综合利用的方法
WO2012083677A1 (zh) 无尘级单水氢氧化锂及其制备方法
CN105271347A (zh) 一种利用毒重石-钡解石工业废渣制备高纯度钡盐的方法
JP2024514986A (ja) P507ラフィネートからの電池用炭酸リチウムの抽出方法及び抽出装置
CN102408119A (zh) 一种采用溶析-反应结晶制备碳酸锂超细粉体的方法
CN102675082B (zh) 一种利用鸡蛋壳制备丙酸钙的方法
CN110902699A (zh) 从锂云母提锂后的废渣原料中制备高纯硫酸钾的方法
WO2024045515A1 (zh) 磷酸铁锂正极废液的回收方法及其回收生产线
WO2023051728A1 (zh) 从含锂溶液中回收锂的方法
CN115739004B (zh) 利用高镁锂比盐湖卤水制备的锂铝吸附材料及其方法
WO2023169432A1 (zh) 一种制备电池级氢氧化锂和碳酸锂的方法和系统
CN107416871A (zh) 一种基于二氧化碳二次碳化的电池级碳酸锂的制备方法
CN211920886U (zh) 一种利用膜分离技术制备电池级碳酸锂的装置
CN110217806B (zh) 一种盐湖富锂卤水制备大颗粒碳酸锂的方法
CN105566098A (zh) 一种高纯度结晶乙酸钙和无水乙酸钙的联产方法
CN114751433A (zh) 一种锂云母超高效深度提锂的工艺方法
CN109850929B (zh) 一种种分槽稀释原矿矿浆制备氢氧化铝微粉方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11851496

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2820112

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11851496

Country of ref document: EP

Kind code of ref document: A1