WO2020133826A1 - 从盐湖卤水中提取锂同时制备氢氧化铝的方法 - Google Patents

从盐湖卤水中提取锂同时制备氢氧化铝的方法 Download PDF

Info

Publication number
WO2020133826A1
WO2020133826A1 PCT/CN2019/083422 CN2019083422W WO2020133826A1 WO 2020133826 A1 WO2020133826 A1 WO 2020133826A1 CN 2019083422 W CN2019083422 W CN 2019083422W WO 2020133826 A1 WO2020133826 A1 WO 2020133826A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
aluminum hydroxide
brine
salt lake
reaction
Prior art date
Application number
PCT/CN2019/083422
Other languages
English (en)
French (fr)
Inventor
项顼
段雪
Original Assignee
北京化工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京化工大学 filed Critical 北京化工大学
Priority to US16/648,660 priority Critical patent/US11414324B2/en
Publication of WO2020133826A1 publication Critical patent/WO2020133826A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D9/00Crystallisation
    • B01D9/005Selection of auxiliary, e.g. for control of crystallisation nuclei, of crystal growth, of adherence to walls; Arrangements for introduction thereof
    • B01D9/0054Use of anti-solvent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D9/00Crystallisation
    • B01D9/0018Evaporation of components of the mixture to be separated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D9/00Crystallisation
    • B01D9/004Fractional crystallisation; Fractionating or rectifying columns
    • B01D9/0045Washing of crystals, e.g. in wash columns
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • C01D15/08Carbonates; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/34Preparation of aluminium hydroxide by precipitation from solutions containing aluminium salts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/78Compounds containing aluminium and two or more other elements, with the exception of oxygen and hydrogen
    • C01F7/784Layered double hydroxide, e.g. comprising nitrate, sulfate or carbonate ions as intercalating anions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/78Compounds containing aluminium and two or more other elements, with the exception of oxygen and hydrogen
    • C01F7/784Layered double hydroxide, e.g. comprising nitrate, sulfate or carbonate ions as intercalating anions
    • C01F7/785Hydrotalcite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D9/00Crystallisation
    • B01D2009/0086Processes or apparatus therefor
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/01Crystal-structural characteristics depicted by a TEM-image
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/20Two-dimensional structures
    • C01P2002/22Two-dimensional structures layered hydroxide-type, e.g. of the hydrotalcite-type
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • C01P2006/82Compositional purity water content

Definitions

  • the method of extracting lithium and preparing aluminum hydroxide at the same time belongs to the technical field of lithium resource separation and extraction.
  • Lithium ion secondary batteries have been widely used in mobile phones, notebook computers, new energy vehicles, and energy storage due to their advantages of large capacity, long life, no environmental pollution, and safe use. Especially as the global energy crisis is getting worse, the development of new energy vehicles has become an important part of the national strategy. Benefiting from the comprehensive outbreak of the new energy vehicle market, global lithium demand is gradually increasing.
  • the methods of extracting and separating lithium in salt lake brine mainly include precipitation method, extraction method, adsorption method, calcination method, and membrane method (electrodialysis method, nanofiltration method, etc.).
  • the calcination method is a more mature method in the lithium extraction technology of salt lake brine, but the method has high energy consumption and acid mist discharge will cause serious air pollution
  • the adsorption method is a more promising method, the process is simple, and the recovery rate is high, but Existing problems include difficult recovery of the adsorbent, blocking of the adsorbent's ion channel will lead to reduced adsorption capacity, acid treatment process will lead to the dissolution of the adsorbent, etc.
  • the extraction method is the use of organic solvents to extract lithium ions in brine technology, this method Lithium ions have good selectivity, but there are problems such as large equipment, serious corrosion, and difficulty in extractant recovery
  • membrane method is a new technology for extracting lithium from brine, mainly including electro
  • Chinese patent application CN107043116A discloses a method for preparing lithium aluminum composite metal hydroxide solids from salt lake brine after magnesium removal. This method dissolves acid to obtain a solution containing lithium ions and aluminum ions, and then uses electrodialysis to concentrate lithium, and The battery grade lithium carbonate is obtained from the precipitation reaction. In this process, strong acids need to be used, which causes serious corrosion to the equipment.
  • CiAl-LDH magnesium aluminum hydrotalcite
  • LiAl-LDH lithium aluminum hydrotalcite
  • the object of the present invention is to provide a method for extracting lithium from salt lake brine while preparing aluminum hydroxide.
  • the present invention provides a method for extracting lithium from salt lake brine while preparing aluminum hydroxide, wherein the method includes:
  • step a Add aluminum salt to brine to obtain mixed salt solution A, add alkaline solution to the mixed salt solution A for co-precipitation reaction, and then carry out crystallization reaction. After the reaction, solid-liquid separation is performed to obtain magnesium aluminum hydrotalcite solid product And lithium-containing brine; in step a, the alkaline solution is a carbonate-free alkaline solution;
  • step b Evaporating and concentrating the lithium-containing brine to obtain a lithium-rich brine, adding aluminum salt to the lithium-rich brine to obtain a mixed salt solution B, and then adding an alkaline solution dropwise to the mixed salt solution B to perform a co-precipitation reaction, and the reaction ends After solid-liquid separation, a lithium-containing liquid and a lithium-containing layered material filter cake are obtained; in step b, the alkaline liquid is a carbonate-free alkaline liquid;
  • the aluminum hydroxide filter cake is washed with deionized water and dried to obtain aluminum hydroxide solid.
  • the brine in step a is a sulfate or chloride salt lake brine, which is rich in Li + , Mg 2+ , K + and Na + , based on the total volume of the brine, the concentration of Li + is 1-3 g/L, the concentration of Mg 2+ is 10-30 g/L, and the concentration of K + is 5 -7g/L, Na + concentration is 70-90g/L.
  • the brine described in step a needs to be filtered of insoluble impurities before use.
  • step a in the method for extracting lithium from salt lake brine and preparing aluminum hydroxide at the same time, step a can be operated according to the method disclosed in Chinese Patent Application CN 105105193A, however, in step a of this application
  • the alkaline solution is a carbonate-free alkaline solution
  • the alkaline solution may be, for example, an aqueous solution of sodium hydroxide and/or an aqueous solution of potassium hydroxide;
  • step a the volume of the lye is the same as the volume of the mixed salt solution A, and the number of moles of sodium hydroxide and/or potassium hydroxide in the lye is 1.5- 2.5 times.
  • the alkaline solution used in step a of this application is carbonate-free alkaline solution, such as sodium hydroxide aqueous solution or potassium hydroxide aqueous solution, no carbonate is introduced in this method; and there are a large amount of chloride ions in lithium-rich brine, so
  • the magnesium-aluminum hydrotalcite solid product obtained in step a of this application and the lithium-containing layered material obtained in subsequent step b are completely different from the products obtained in Chinese patent application CN105152193A.
  • step a of the present application based on the total volume of the mixed salt solution A, the total concentration of metal ions in the mixed salt solution A is 0.9-1.5 mol/L.
  • the molar ratio of magnesium salt to aluminum salt is 2-4:1.
  • the aluminum salt is one of aluminum nitrate, aluminum sulfate, and aluminum chloride.
  • step a of the present application the co-precipitation reaction is carried out according to the following steps: mixing the mixed salt solution A with the alkaline solution, rotating at a speed of 1000-5000 rpm for 1-10 minutes to obtain MgAl- LDH crystal nucleus.
  • step a of the present application the crystallization reaction is carried out according to the following steps: the co-precipitation reaction in step a is used to obtain MgAl-LDH crystal nuclei and the reaction is stirred at 60-90°C for 6-24 hours, and the solid-liquid separation is performed after the reaction A MgAl-LDH filter cake is obtained.
  • step a of the present application after obtaining the MgAl-LDH filter cake, the filter cake is dried to obtain a MgAl-LDH solid product; the drying is drying at 60-80°C for 6-12h.
  • the The lithium ion concentration is 0.1-0.5g/L.
  • the molar concentration of lithium ions in the mixed salt solution B is the molar concentration of aluminum ions 1-6 times.
  • the aluminum salt is aluminum nitrate and/or aluminum chloride.
  • step b in the method for extracting lithium from salt lake brine and preparing aluminum hydroxide at the same time, preferably, in step b, based on the total volume of the alkaline solution, its molar concentration is 2-4 mol /L; the dropping speed of the lye is 1-2mL/min.
  • the alkaline solution is an aqueous solution of sodium hydroxide and/or an aqueous solution of potassium hydroxide .
  • the temperature of the co-precipitation reaction is 40°C-100°C, and the reaction time is 6h-24h, the pH value is controlled to 7-8 during the reaction.
  • the solid content of the lithium-containing layered material filter cake is 60%-95 %.
  • the Li/Al molar ratio in the lithium-containing layered material can be measured by ICP, and then the x value in the formula can be obtained ; Water content m measured by TG-DTA.
  • the x and m values can be integers or decimals, but they are usually approximate integers.
  • step b in the method for extracting lithium from salt lake brine while preparing aluminum hydroxide, preferably, in step b, based on the total volume of the lithium-containing liquid, in the lithium-containing liquid, li + concentration of 0.01-0.05g / L, K + concentration of 0.5-1g / L, Na + concentration of 40-60g / L, Cl - concentration of 50-70g / L, SO 4 2- of The concentration is 1-5g/L.
  • the method for extracting lithium from salt lake brine while preparing aluminum hydroxide further includes evaporating and concentrating the lithium-containing liquid obtained in step b to a lithium ion concentration of 0.1-0.5 g/L (the concentration is The total volume of the lithium-containing liquid after evaporation and concentration is calculated as a reference), which is then used as a lithium-containing brine for recycling.
  • the solid content is 5-50 g/ L.
  • the pH value of the suspension slurry is adjusted to the pH value of the suspension slurry Adjust to 5-8.
  • a molar concentration of 2-4 mol/L (the concentration is hydrochloric acid or sodium hydroxide)
  • the total volume of the aqueous solution is calculated on the basis of) hydrochloric acid or sodium hydroxide aqueous solution to adjust the pH value of the suspension slurry to 5-8.
  • step c of the method for extracting lithium from salt lake brine and preparing aluminum hydroxide at the same time peracid or overbase will cause the aluminum hydroxide product obtained after delithiation to dissolve, resulting in product loss; in addition , Excessive acid or alkali will cause equipment corrosion, increase equipment cost and shorten equipment life. Therefore, in step c of the present application, the pH value of the suspension slurry is adjusted to an aqueous solution of hydrochloric acid or sodium hydroxide with a molar concentration of 2-4 mol/L (the concentration is calculated based on the total volume of hydrochloric acid or sodium hydroxide aqueous solution). 5-8.
  • the temperature of the delithiation reaction is 60°C-100°C, and the reaction time is 30min-180min.
  • the stirring rate during the delithiation reaction is 30-200 r/min.
  • the suspension slurry after adjusting the pH value may be added to a kettle reactor for delithiation reaction.
  • the method for extracting lithium from salt lake brine while preparing aluminum hydroxide further includes evaporating and concentrating the lithium-containing solution obtained in step d to a lithium ion concentration of 20-25 g/L (the concentration is evaporated After the total volume of the concentrated lithium-containing solution is calculated as a reference), it is used as an operation for preparing a lithium liquid of battery-grade lithium carbonate.
  • the deionized water washing is washing 3-5 times.
  • the drying is 60°C-80°C for 3h-12h.
  • the method for extracting lithium from salt lake brine while preparing aluminum hydroxide specifically includes the following steps:
  • Evaporate and concentrate the above lithium-containing brine to a lithium ion concentration of 0.1-0.5g/L, add solid aluminum chloride to prepare a mixed salt solution, in which the molar concentration of lithium ions is 1-6 times the molar concentration of aluminum ions, and the molar concentration is added dropwise It is 2-4mol/L sodium hydroxide solution, the drop rate is 1-2mL/min, to pH 7-8, the temperature is raised to 40°C-100°C, the reaction is 6h-24h, centrifugal filtration, in which the filter cake is lithium-containing layered
  • the lithium-containing solution the concentration of Li + 0.01-0.05g / L, which further contains K +, at a concentration of 0.5-1g / L, Na +, at a concentration of 40-60g / L, Cl -, in a concentration It is 50-70g/L, SO 4 2- , and its concentration is 1-5g/L.
  • the filtrate is concentrated by evaporation to a lithium ion concentration of 0.1-0.5g/L, and then returned to lithium-containing brine for recycling.
  • step C The slurry after the delithiation reaction in step B is filtered, the filter cake is A1(OH) 3 , and the filtrate is a lithium-containing solution; the lithium-containing solution is pumped into the mother liquor storage tank, and concentrated by evaporation to a lithium ion concentration of 20-25g/ L, to meet the lithium concentration requirements for battery-grade lithium carbonate.
  • step D Wash the filter cake of step C with deionized water 3-5 times, dry explosion at 60°C-80°C for 3-12h to obtain A1(OH) 3 product as a white solid.
  • the obtained A1(OH) 3 product is detected by conventional methods in the art.
  • the main indicators of the detection include loss on ignition (burn-off) and moisture (adhesion water).
  • the test results indicate that the A1(OH) 3 prepared by the present invention
  • the product meets the requirements of the national standard GB/T 4294-2010 for aluminum hydroxide.
  • the main indicators and data specified in the national standard GB/T 4294-2010 are the loss on ignition (burndown) of 34.5 ⁇ 0.5%, moisture ( Attached water) is not more than 12%.
  • the method for extracting lithium from salt lake brine while preparing aluminum hydroxide provided by the present invention first prepares the brine into a lithium-containing layered material LiAl x (OH) 3x Cl ⁇ mH 2 O, and then disperses the lithium-containing layered material In water, the resulting aqueous solution is heated to remove lithium ions from the lithium-containing layered material solid and enter the aqueous solution to obtain an aqueous solution containing only lithium ions. The aqueous solution is concentrated to reach the concentration for preparing lithium carbonate; while aluminum remains in the solid The aluminum hydroxide solids which are widely used in the phase are obtained. In this process, lithium is efficiently extracted from brine to prepare battery-grade lithium carbonate, while aluminum resources can be obtained from aluminum resources. The resulting aluminum hydroxide product meets the requirements of the national standard GB/T 4294-2010 for aluminum hydroxide. In addition, a neutral or weak acid or alkaline aqueous solution is used in this process, which will not cause corrosion to the equipment.
  • the present invention extracts lithium from a layered structure material containing lithium.
  • the reaction is gentle, the equipment is simple, the operation is simple, the amount of lithium loss is small, and large-scale production is easy, which provides an important way for lithium resource extraction.
  • FIG. 1 is an XRD chart of the lithium-containing layered material prepared in Example 1 of the present invention.
  • Example 2 is a transmission electron micrograph of the lithium-containing layered material prepared in Example 1 of the present invention.
  • This embodiment provides a method for extracting lithium from salt lake brine while preparing aluminum hydroxide, wherein the method includes the following steps:
  • the LiAl-LDH filter cake is a filter cake of a layered material containing lithium
  • the molecular formula of the layered material containing lithium is LiAl 2 (OH) 6 Cl ⁇ 3H 2 O, with a solid content of 85%.
  • the XRD pattern and transmission electron micrograph of the lithium-containing layered material are shown in Figures 1-2, respectively.
  • step d The slurry obtained after the delithiation reaction in step c is filtered to obtain a lithium-containing solution and an aluminum hydroxide filter cake. After the lithium-containing solution is evaporated and concentrated to a lithium ion concentration of 23 g/L, it can be used to prepare battery-grade carbonic acid Lithium liquid. Lithium ions in the filtrate (lithium-containing solution) were detected by ICP, and the resulting lithium ion concentration was 272 mg/L.
  • the delithiation rate is calculated to be 99.8%. It can be seen from this that in this embodiment, the amount of lithium loss (which is equal to 1-R) is small, only 0.2%.
  • R is the rate of delithiation, %
  • C is the concentration of lithium ions in the filtrate.
  • the concentration is 272 mg/L;
  • V is the volume of the filtrate.
  • the volume of the filtrate is 2.582L;
  • p is the mass percentage of lithium in the lithium-containing layered material.
  • the mass percentage of lithium is 2.76%, which is calculated by the following formula 2);
  • c(Li + ) LDH is the lithium ion concentration in the lithium-containing layered material measured by ICP.
  • the concentration value is 13.8 mg/L
  • V LDH is the nitric acid solution used in the ICP test Volume, 10mL
  • m LDHs is the mass of the lithium-containing layered material used for ICP testing, 0.005g.
  • step d Wash the filter cake obtained in step d with deionized water 5 times, and dry in a drying cabinet at 60°C for 12h to obtain 18.5g of white solid aluminum hydroxide product.
  • the white solid aluminum hydroxide product has a loss on ignition (burndown) of 34.48% and a water content (adhesion water) of 6.92% measured by conventional methods in the art. It can be seen that the A1(OH prepared in Example 1 of the present invention 3 ) The product meets the requirements of the national standard GB/T 4294-2010 for aluminum hydroxide. Among them, the main indicators and data specified in the national standard GB/T 4294-2010 are the loss on ignition (burndown) of 34.5 ⁇ 0.5%. Moisture (adhesion water) is not more than 12%.
  • This embodiment provides a method for extracting lithium from salt lake brine while preparing aluminum hydroxide, wherein the method includes the following steps:
  • the LiAl-LDH filter cake is a filter cake of a layered material containing lithium, the molecular formula of the layered material containing lithium is LiAl 3 (OH) 9 Cl ⁇ 5H 2 O, and the solid content is 85%.
  • step d The slurry obtained after the delithiation reaction in step c is filtered to obtain a lithium-containing solution and an aluminum hydroxide filter cake. After the lithium-containing solution is evaporated and concentrated to a lithium ion concentration of 22 g/L, it can be used to prepare battery-grade carbonic acid Lithium liquid. The lithium ion in the filtrate (lithium-containing solution) was detected by ICP, and the resulting lithium ion concentration was 188 mg/L.
  • the delithiation rate is calculated to be 99%. It can be seen that in this embodiment, the amount of lithium loss (which is equal to 1-R) is small, only 1%.
  • R is the rate of delithiation, %
  • C is the lithium ion concentration in the filtrate.
  • the concentration is 188 mg/L;
  • V is the volume of the filtrate.
  • the volume of the filtrate is 2.552L;
  • p is the mass percentage of lithium in the lithium-containing layered material.
  • the mass percentage of lithium is 1.9%, which is calculated by the following formula 2);
  • c(Li + ) LDH is the concentration of lithium ions in the lithium-containing layered material measured by ICP.
  • the concentration value is 9.5 mg/L
  • V LDH is the nitric acid solution used for ICP testing Volume, 10mL
  • m LDHs is the mass of the lithium-containing layered material used for ICP testing, 0.005g.
  • step d Wash the filter cake obtained in step d with deionized water 5 times, and dry in a drying oven at 70°C for 10 h to obtain 13.8 g of white solid aluminum hydroxide product.
  • the ignition loss (burn-off) of the white solid aluminum hydroxide product is 34.5% and the moisture (adhesion water) is 7.69% measured by conventional methods in the art. It can be seen that the A1(OH prepared in Example 2 of the present invention 3 )
  • the product meets the requirements of the national standard GB/T 4294-2010 for aluminum hydroxide. Among them, the main indicators and data specified in the national standard GB/T 4294-2010 are the loss on ignition (burndown) of 34.5 ⁇ 0.5%. Moisture (adhesion water) is not more than 12%.
  • This embodiment provides a method for extracting lithium from salt lake brine while preparing aluminum hydroxide, wherein the method includes the following steps:
  • the LiAl-LDH filter cake is a filter cake of a layered material containing lithium, the molecular formula of the layered material containing lithium is LiAl 4 (OH) 12 Cl ⁇ 7H 2 O, and the solid content is 85%.
  • step d The slurry obtained after the delithiation reaction in step c is filtered to obtain a lithium-containing solution and an aluminum hydroxide filter cake. After the lithium-containing solution is evaporated and concentrated to a lithium ion concentration of 21 g/L, it can be used to prepare battery-grade carbonic acid Lithium liquid. Lithium ions in the filtrate were detected by ICP, and the resulting lithium ion concentration was 142 mg/L.
  • R is the rate of delithiation, %
  • C is the concentration of lithium ions in the filtrate.
  • the concentration is 142 mg/L;
  • V is the volume of the filtrate. In this embodiment, the volume of the filtrate is 2.546L;
  • p is the mass percentage of lithium in the lithium-containing layered material.
  • the mass percentage of lithium is 1.44%, which is calculated by the following formula 2);
  • c(Li + ) LDH is the lithium ion concentration in the lithium-containing layered material measured by ICP.
  • the concentration value is 7.2 mg/L
  • V LDH is the nitric acid solution used for ICP test Volume, 10mL
  • m LDHs is the mass of the lithium-containing layered material used for ICP testing, 0.005g.
  • step d Wash the filter cake obtained in step d with deionized water 5 times, and dry in a drying cabinet at 80° C. for 8 hours to obtain 9.74 g of white solid aluminum hydroxide product.
  • the ignition loss (burn-off) of the white solid aluminum hydroxide product is 34.55% and the moisture (adhesion water) is 8.08% measured by conventional methods in the art. It can be seen that the A1(OH prepared in Example 3 of the present invention 3 ) The product meets the requirements of the national standard GB/T 4294-2010 for aluminum hydroxide. Among them, the main indicators and data specified in the national standard GB/T 4294-2010 are the loss on ignition (burndown) of 34.5 ⁇ 0.5%. Moisture (adhesion water) is not more than 12%.
  • This embodiment provides a method for extracting lithium from salt lake brine while preparing aluminum hydroxide, wherein the method includes the following steps:
  • the LiAl-LDH filter cake is a filter cake of a layered material containing lithium.
  • the molecular formula of the layered material containing lithium is LiAl 5 (OH) 15 Cl ⁇ 9H 2 O, and the solid content is 85%.
  • step d The slurry obtained after the delithiation reaction in step c is filtered to obtain a lithium-containing solution and an aluminum hydroxide filter cake. After the lithium-containing solution is evaporated and concentrated to a lithium ion concentration of 25 g/L, it can be used to prepare battery-grade carbonic acid Lithium liquid. The lithium ion in the filtrate was detected by ICP, and the resulting lithium ion concentration was 346 mg/L.
  • the delithiation rate is calculated to be 98.8%. It can be seen from this that in this example, the amount of lithium loss (which is equal to 1-R) is small, only 1.2%.
  • R is the rate of delithiation, %
  • C is the concentration of lithium ions in the filtrate.
  • the concentration is 346 mg/L;
  • V is the volume of the filtrate.
  • the volume of the filtrate is 0.845L;
  • p is the mass percentage of lithium in the lithium-containing layered material.
  • the mass percentage of lithium is 1.16%, which is calculated by the following formula 2);
  • c(Li + ) LDH is the concentration of lithium ions in the lithium-containing layered material measured by ICP.
  • the concentration value is 5.8 mg/L
  • V LDH is the nitric acid solution used for ICP testing Volume, 10mL
  • m LDHs is the mass of the lithium-containing layered material used for ICP testing, 0.005g.
  • step d Wash the filter cake obtained in step d with deionized water 5 times, and dry in a drying cabinet at 80°C for 6h to obtain 7.9g of white solid aluminum hydroxide product.
  • the ignition loss (burn-off) of the white solid aluminum hydroxide product is 34.58% and the moisture (adhesion water) is 8.31% measured by conventional methods in the art. It can be seen that the A1(OH prepared in Example 4 of the present invention 3 )
  • the product meets the requirements of the national standard GB/T 4294-2010 for aluminum hydroxide. Among them, the main indicators and data specified in the national standard GB/T 4294-2010 are the loss on ignition (burndown) of 34.5 ⁇ 0.5%. Moisture (adhesion water) is not more than 12%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明涉及一种从盐湖卤水中提取锂同时制备氢氧化铝的方法。该方法包括a、向卤水中加入铝盐,得到混合盐溶液A,向该混合盐溶液A中加入碱液进行共沉淀反应,然后进行晶化反应,反应结束后固液分离,得到镁铝水滑石固体产物和含锂卤水;步骤a中,碱液为不含碳酸根的碱液;b、将含锂卤水蒸发浓缩得到富锂卤水,向该富锂卤水中加入铝盐得到混合盐溶液B,再向该混合盐溶液B中滴加碱液以进行共沉淀反应,反应结束后固液分离,得到含锂液及含锂层状材料滤饼;步骤b中,碱液为不含碳酸根的碱液;c、将含锂层状材料滤饼分散于去离子水中配成悬浮浆液,再调整该悬浮浆液的pH值后使其进行脱锂反应;d、将脱锂反应后所得的浆液过滤,得到含锂溶液及氢氧化铝滤饼;e、氢氧化铝滤饼经去离子水洗涤后干燥,得到氢氧化铝固体。

Description

从盐湖卤水中提取锂同时制备氢氧化铝的方法 技术领域
本发明涉及一种从盐湖卤水中提取锂同时制备氢氧化铝的方法,具体涉及利用反应/分离耦合技术从盐湖卤水中通过含锂层状结构材料LiAl x(OH) 3xCl·mH 2O(x=1-10,m=1-10)提取锂,同时制备氢氧化铝的方法,属于锂资源分离提取技术领域。
背景技术
锂离子二次电池由于具有容量大、寿命长、无环境污染、使用安全等优点,己广泛应用于移动电话、笔记本电脑、新能源汽车及储能领域。特别是随着全球能源危机的日益严重,新能源汽车的发展成为国家战略的重要组成部分。受益于新能源汽车市场的全面爆发,全球锂需求逐渐增加。
在2018年,美国地质调查报告结果显示,全球锂资源总量超过5300万吨,其中中国锂资源为700万吨。阿根廷、玻利维亚、智利、美国和澳大利亚分别是980万吨,900万吨,840万吨,680万吨和500万吨。根据储量情况,我国是仅次于南美洲三个国家的锂资源大国。锂资源主要赋存于卤水和矿石中。全球有59%的锂资源富含于盐湖卤水中,中国则有高达75%以上的锂资源存在于盐湖卤水。
我国虽然是锂资源大国,但是锂资源的开发利用能力较弱、产量有限。随着锂资源的需求持续增加,国内锂的供需仍存在缺口,需依赖大量进口,锂原料对外依存度高。其中,进口锂辉石占比66%,进口高浓度卤水占比18%。我国锂资源主要赋存于盐湖卤水,所以盐湖提锂是我国发展锂产品的必由之路。
盐湖卤水中提取分离锂的方法主要有沉淀法、萃取法、吸附法、煅烧法、膜法(电渗析法、纳滤法等)。其中,煅烧法是盐湖卤水提锂技术中较成熟的方法,但该方法能耗高、酸雾排放会造成严重空气污染;吸附法是较有前途的方法,工艺简单,回收率较高,但存在的问题包括吸附剂回收困难、吸附剂的离子通道被堵塞会导致吸附能力降低、酸处理过程导致吸附剂溶解等;萃取法是采用有机溶剂对卤水中锂离子进行萃取的技术,该方法对锂离子有很好的选择性,但存在设备体积大、腐蚀严重、萃取剂回收困难等问题;膜法是从卤水提锂的一种新技术,主要有电渗析、纳滤和膜蒸馏,该方法的能量成本相对较低,并且具有良好的阳离子选择性,但目前国内缺乏高效分 离膜材料,需依赖进口。
中国专利申请CN 107043116 A公开了从除镁后盐湖卤水制备锂铝复合金属氢氧化物固体的方法,该方法用酸溶解得到含有锂离子、铝离子的溶液,然后利用电渗析法浓缩锂,并由沉淀反应得到电池级碳酸锂。在该过程中需要使用强酸,对设备腐蚀严重。
中国专利申请CN 105152193 A公开了利用反应/分离耦合技术高效分离盐湖卤水中的镁离子和锂离子,同时生产镁铝水滑石(MgAl-LDH)和锂铝水滑石(LiAl-LDH)的工艺方法,但制备得到的LiAl-LDH不能直接生产碳酸锂、氢氧化锂等锂产品。
发明内容
为解决上述技术问题,本发明的目的在于提供一种从盐湖卤水中提取锂同时制备氢氧化铝的方法。
为实现上述目的,本发明提供了一种从盐湖卤水中提取锂同时制备氢氧化铝的方法,其中,该方法包括:
a、向卤水中加入铝盐,得到混合盐溶液A,向该混合盐溶液A中加入碱液进行共沉淀反应,然后进行晶化反应,反应结束后固液分离,得到镁铝水滑石固体产物和含锂卤水;步骤a中,所述碱液为不含碳酸根的碱液;
b、将所述含锂卤水蒸发浓缩得到富锂卤水,向该富锂卤水中加入铝盐得到混合盐溶液B,再向该混合盐溶液B中滴加碱液以进行共沉淀反应,反应结束后固液分离,得到含锂液及含锂层状材料滤饼;步骤b中,所述碱液为不含碳酸根的碱液;
c、将所述含锂层状材料滤饼分散于去离子水中配成悬浮浆液,再调整该悬浮浆液的pH值后,使其进行脱锂反应;
d、将脱锂反应后所得的浆液过滤,得到含锂溶液及氢氧化铝滤饼;
e、所述氢氧化铝滤饼经去离子水洗涤后干燥,得到氢氧化铝固体。
根据本发明具体实施方案,在所述的从盐湖卤水中提取锂同时制备氢氧化铝的方法中,优选地,步骤a中所述的卤水为硫酸盐型或氯化物型盐湖卤水,其中富含Li +、Mg 2+、K +及Na +,以该卤水的总体积计,Li +的浓度为1-3g/L,Mg 2+的浓度为10-30g/L,K +的浓度为5-7g/L,Na +的浓度为70-90g/L。
根据本发明具体实施方案,在所述的从盐湖卤水中提取锂同时制备氢氧化铝的方法中,步骤a中所述的卤水在使用前需要先将不溶性的杂质滤除。
根据本发明具体实施方案,在所述的从盐湖卤水中提取锂同时制备氢氧化铝的方法中,步骤a可按照中国专利申请CN 105152193 A中公开的方法进行操作,但是,在本申请步骤a中,所述碱液为不含碳酸根的碱液,该碱液例如可以为氢氧化钠水溶液和/或氢氧化钾水溶液;
此外,在步骤a中,该碱液的体积与混合盐溶液A的体积相同,且碱液中的氢氧化钠和/或氢氧化钾的摩尔数是镁和铝元素摩尔数之和的1.5-2.5倍。
其中,本申请步骤a中所用碱液为不含碳酸根的碱液,如氢氧化钠水溶液或者氢氧化钾水溶液,该方法中不引入碳酸根;并且在富锂卤水中存在大量氯离子,因此,本申请步骤a中所得的镁铝水滑石固体产物以及后续步骤b中所得到的含锂层状材料均与中国专利申请CN 105152193 A中所得产物完全不同。
此外,在本申请步骤a中,以混合盐溶液A的总体积计,该混合盐溶液A中的金属离子的总浓度为0.9-1.5mol/L。
在该混合盐溶液A中,镁盐与铝盐的摩尔比为2-4:1。
在本申请步骤a中,所述的铝盐为硝酸铝、硫酸铝、氯化铝中的一种。
在本申请步骤a中,所述的共沉淀反应是按照以下步骤进行的:将所述混合盐溶液A与碱液混合,以1000-5000转/min的转速旋转1-10分钟,得到MgAl-LDH晶核。
在本申请步骤a中,所述的晶化反应是按照以下步骤进行的:将步骤a中共沉淀反应得到MgAl-LDH晶核在60-90℃下搅拌反应6-24h,反应结束后固液分离得到MgAl-LDH滤饼。
在本申请步骤a中,得到MgAl-LDH滤饼后,再对该滤饼进行干燥,得到MgAl-LDH固体产物;所述干燥为在60-80℃干燥6-12h。
在本申请步骤a中,所述的镁铝水滑石固体产物(MgAl-LDH固体产物)的化学式为[Mg 2+ 1-xAl 3+ x(OH) 2](Cl -) x·nH 2O,式中,x=0.2-0.4,n=1-10。
根据本发明具体实施方案,在所述的从盐湖卤水中提取锂同时制备氢氧化铝的方法中,优选地,步骤b中,以所述富锂卤水的总体积计,该富锂卤水中的锂离子浓度为0.1-0.5g/L。
根据本发明具体实施方案,在所述的从盐湖卤水中提取锂同时制备氢氧化铝的方法中,优选地,步骤b中,混合盐溶液B中的锂离子的摩尔浓度是铝离子摩尔浓度的1-6倍。
根据本发明具体实施方案,在所述的从盐湖卤水中提取锂同时制备氢氧化铝的方法中,优选地,步骤b中,所述的铝盐为硝酸铝和/或氯化铝。
根据本发明具体实施方案,在所述的从盐湖卤水中提取锂同时制备氢氧化铝的方法中,优选地,步骤b中,以所述碱液的总体积计,其摩尔浓度为2-4mol/L;该碱液的滴加速度为1-2mL/min。
根据本发明具体实施方案,在所述的从盐湖卤水中提取锂同时制备氢氧化铝的方法中,优选地,步骤b中,所述的碱液为氢氧化钠水溶液和/或氢氧化钾水溶液。
根据本发明具体实施方案,在所述的从盐湖卤水中提取锂同时制备氢氧化铝的方法中,优选地,步骤b中,所述共沉淀反应的温度为40℃-100℃,反应时间为6h-24h,反应过程中控制pH值为7-8。
根据本发明具体实施方案,在所述的从盐湖卤水中提取锂同时制备氢氧化铝的方法中,优选地,步骤b中,所述含锂层状材料滤饼的固含量为60%-95%。
根据本发明具体实施方案,在所述的从盐湖卤水中提取锂同时制备氢氧化铝的方法中,优选地,步骤b中,所述含锂层状材料的化学式为LiAl x(OH) 3xCl·mH 2O,式中,x=1-10,m=1-10。
根据本发明具体实施方案,在所述的从盐湖卤水中提取锂同时制备氢氧化铝的方法中,可以通过ICP测得含锂层状材料中Li/Al摩尔比,进而求得式中x值;通过TG-DTA测得水含量m。式中,x及m值可为整数或是小数,但通常近似为整数。
根据本发明具体实施方案,在所述的从盐湖卤水中提取锂同时制备氢氧化铝的方法中,优选地,步骤b中,以所述含锂液的总体积计,该含锂液中,Li +的浓度为0.01-0.05g/L,K +的浓度为0.5-1g/L,Na +的浓度为40-60g/L,Cl -的浓度为50-70g/L,SO 4 2-的浓度为1-5g/L。
根据本发明具体实施方案,优选地,该从盐湖卤水中提取锂同时制备氢氧化铝的方法还包括将步骤b中所得含锂液蒸发浓缩至锂离子浓度为0.1-0.5g/L(浓度以蒸发浓缩后的含锂液的总体积为基准计算得到)后将其作为含锂卤水以进行循环利用的操作。
根据本发明具体实施方案,在所述的从盐湖卤水中提取锂同时制备氢氧化铝的方法中,优选地,步骤c中,以该悬浮浆液的总体积计,其固含量为5-50g/L。
根据本发明具体实施方案,在所述的从盐湖卤水中提取锂同时制备氢氧化铝的方 法中,优选地,步骤c中,所述调整该悬浮浆液的pH值为将该悬浮浆液的pH值调整至5-8。
根据本发明具体实施方案,在所述的从盐湖卤水中提取锂同时制备氢氧化铝的方法中,优选地,步骤c中,采用摩尔浓度为2-4mol/L(浓度以盐酸或氢氧化钠水溶液的总体积为基准计算得到)的盐酸或氢氧化钠水溶液将该悬浮浆液的pH值调整为5-8。
根据本发明具体实施方案,在所述的从盐湖卤水中提取锂同时制备氢氧化铝的方法步骤c中,过酸或过碱会导致脱锂后所得产物氢氧化铝溶解,造成产物损失;另外,过酸或过碱会导致设备腐蚀,增加设备成本,缩短设备使用寿命。因此,本申请步骤c中,采用摩尔浓度为2-4mol/L(浓度以盐酸或氢氧化钠水溶液的总体积为基准计算得到)的盐酸或氢氧化钠水溶液将该悬浮浆液的pH值调整为5-8。
根据本发明具体实施方案,在所述的从盐湖卤水中提取锂同时制备氢氧化铝的方法中,优选地,步骤c中,所述脱锂反应的温度为60℃-100℃,反应时间为30min-180min。
根据本发明具体实施方案,在所述的从盐湖卤水中提取锂同时制备氢氧化铝的方法中,优选地,步骤c中,所述脱锂反应过程中的搅拌速率为30-200r/min。
根据本发明具体实施方案,在所述的从盐湖卤水中提取锂同时制备氢氧化铝的方法中,步骤c中,可以将调整pH值后的悬浮浆液加入到釜式反应器中以进行脱锂反应。
根据本发明具体实施方案,优选地,该从盐湖卤水中提取锂同时制备氢氧化铝的方法还包括将步骤d中所得含锂溶液蒸发浓缩至锂离子浓度为20-25g/L(浓度以蒸发浓缩后的含锂溶液的总体积为基准计算得到)后,将其用作制备电池级碳酸锂的锂液的操作。
根据本发明具体实施方案,在所述的从盐湖卤水中提取锂同时制备氢氧化铝的方法中,优选地,步骤e中,所述去离子水洗涤为洗涤3-5次。
根据本发明具体实施方案,在所述的从盐湖卤水中提取锂同时制备氢氧化铝的方法中,优选地,步骤e中,所述干燥为60℃-80℃干燥3h-12h。
根据本发明具体实施方案,该从盐湖卤水中提取锂同时制备氢氧化铝的方法具体包括以下步骤:
A.向卤水中加入铝盐,与碱液进行共沉淀反应,经晶化反应,固液分离后得到镁铝水滑石固体产物和含锂卤水;该步骤按照中国专利申请CN 105152193 A中的方法进行操作;
将上述含锂卤水蒸发浓缩至锂离子浓度为0.1-0.5g/L,加入固体氯化铝配制混合盐溶液,其中锂离子的摩尔浓度是铝离子摩尔浓度的1-6倍,滴加摩尔浓度为2-4mol/L氢氧化钠溶液,滴加速度为1-2mL/min,至pH=7-8,升温至40℃-100℃反应6h-24h,离心过滤,其中滤饼为含锂层状材料,其化学式为:LiAl x(OH) 3xCl·mH 2O,其中x=1-10,m=1-10;其滤饼的固含量为60%-95%;滤液为含锂液;
所述的含锂液中Li +浓度为0.01-0.05g/L,其中还含有K +,其浓度为0.5-1g/L,Na +,其浓度为40-60g/L,Cl -,其浓度为50-70g/L,SO 4 2-,其浓度为1-5g/L。将滤液蒸发浓缩至锂离子浓度为0.1-0.5g/L后返回到含锂卤水进行循环利用。
B.将上述滤饼分散于去离子水中,配成固含量为5-50g/L的悬浮浆液,以2-4mol/L的盐酸或氢氧化钠调节pH值在5-8,将该悬浮液加入釜式反应器中,在30-200r/min下搅拌加热到60℃-100℃,并保持恒温反应30-180分钟,进行脱锂反应。
C.将步骤B脱锂反应后的浆液过滤,滤饼为A1(OH) 3,滤液为含锂溶液;将含锂溶液泵入母液储罐中,经蒸发浓缩至锂离子浓度20-25g/L,达到制备电池级碳酸锂的锂液浓度要求。
D.将步骤C的滤饼用去离子水洗涤3-5次,于60℃-80℃,干爆3-12h,得到白色固体即为A1(OH) 3产品。
采用本领域常规方法对所得A1(OH) 3产品进行检测,检测的主要指标包括烧失量(灼减)以及水分(附着水),检测结果表明本发明所制备得到的该A1(OH) 3产品符合国家标准GB/T 4294-2010对氢氧化铝的要求,其中,国家标准GB/T 4294-2010中规定的主要指标及数据为烧失量(灼减)为34.5±0.5%,水分(附着水)不大于12%。
本发明所提供的该从盐湖卤水中提取锂同时制备氢氧化铝的方法先将卤水制备成含锂层状材料LiAl x(OH) 3xCl·mH 2O,再将该含锂层状材料分散在水中,加热所得水溶液使锂离子从含锂层状材料固体中的脱出,进入水溶液中,得到仅含锂离子的水溶液,浓缩该水溶液使其达到制备碳酸锂的浓度;而铝仍保留在固相中得到应用广泛的氢氧化铝固体。该过程从卤水中高效提取锂以制备电池级碳酸锂,同时又可利用铝资源得到氢氧化铝。所得氢氧化铝产品符合国家标准GB/T 4294-2010对氢氧化铝的要 求。并且该过程中使用中性或弱酸碱性水溶液,对设备不会造成腐蚀。
本发明的显著效果:
(1)本发明所提供的该方法从盐湖卤水中通过制备含锂层状结构材料LiAl x(OH) 3xCl·mH 2O(x=1-10,m=1-10)分离提取锂,并且能够得到氢氧化铝;可以实现锂、铝资源高效综合利用。
(2)本发明由含锂层状结构材料提取锂,反应温和,设备简单,操作简单,锂损失量小,易规模化生产,为锂资源提取提供了重要途径。
附图说明
图1为本发明实施例1制备得到的含锂层状材料的XRD图。
图2为本发明实施例1制备得到的含锂层状材料的透射电镜图。
具体实施方式
为了对本发明的技术特征、目的和有益效果有更加清楚的理解,以下将通过具体的实施例及说明书附图详细地说明本发明的实施过程和产生的有益效果,旨在帮助阅读者更好地理解本发明的实质和特点,但是不作为对本案可实施范围的限定。
实施例1
本实施例提供了一种从盐湖卤水中提取锂同时制备氢氧化铝的方法,其中,该方法包括以下步骤:
a、按照中国专利申请CN 105152193 A中公开的方法,称取26.0325g的MgCl 2·6H 2O,25.7993g的MgSO 4·7H 2O,18.7290g的AlCl 3·6H 2O,3.3873g的KCl,1.8768g的LiCl,8.068g的NaCl,并将上述物质溶解于250mL的去离子水中,得到混合盐溶液A;
称取19.8593g的NaOH,并将其溶解于250mL的去离子水中,得到碱溶液;
将混合盐溶液A和碱溶液同时倒入胶体磨中,以3000r/min的转速旋转3分钟,形成MgAl-LDH晶核;将晶核溶液转移到反应器中,在80℃动态搅拌晶化12h,进行MgAl-LDH生长;过滤,得到MgAl-LDH滤饼,再将MgAl-LDH滤饼在70℃干燥12h,得到白色固体MgAl-LDH产品;收集滤液至容器,滤液即为含锂卤水。
b、将所述含锂卤水蒸发浓缩至锂离子浓度达到0.4432g/L,得到富锂卤水,取1L富锂卤水,向其中加入30.83g固体氯化铝得到混合盐溶液B,再向该混合盐溶液 B中滴加摩尔浓度为4mol/L的氢氧化钠水溶液,滴加速度为1mL/min,至pH值为7,反应在80℃下进行12h,反应结束后固液分离,得到含锂液及LiAl-LDH滤饼。该滤液(含锂液)蒸发浓缩至锂离子浓度为0.3g/L,返回到含锂卤水进行循环利用。
其中,LiAl-LDH滤饼为含锂层状材料滤饼,含锂层状材料的分子式为LiAl 2(OH) 6Cl·3H 2O,固含量为85%。该含锂层状材料的XRD图及透射电镜图分别如图1-图2所示。
c、将30g固含量为85%的滤饼分散于3L的去离子水中配成悬浮浆液(pH值为7),将该悬浮浆液加入到釜式反应器中,在60r/min下搅拌,加热到85℃,并保持恒温反应90min,以进行脱锂反应。
d、将步骤c脱锂反应后所得的浆液过滤,得到含锂溶液及氢氧化铝滤饼,将含锂溶液蒸发浓缩至锂离子浓度为23g/L后,可将其用作制备电池级碳酸锂的锂液。通过ICP对滤液(含锂溶液)中锂离子检测,所得锂离子浓度为272mg/L。
再通过如下公式1)及公式2)计算得到脱锂率为99.8%。由此可见,本实施例中,锂损失量(其等于1-R)较小,仅为0.2%。
R=C·V/(p·m)                        公式1);
公式1)中,R为脱锂率,%;
C为滤液中锂离子浓度,本实施例中,该浓度为272mg/L;
V为滤液体积,本实施例中,该滤液体积为2.582L;
m为用于反应的含锂层状材料的质量,本实施例中,该质量为30g x 85%=25.5g;
p为含锂层状材料中锂的质量百分比,本实施例中该锂的质量百分比为2.76%,其由如下公式2)计算所得;
p=(c(Li +) LDH·V LDH)/m LDHs                        公式2);
公式2)中,c(Li +) LDH是通过ICP测得的含锂层状材料中锂离子浓度,本实施例中,该浓度数值为13.8mg/L;V LDH是ICP测试所用的硝酸溶液体积,10mL;m LDHs是用于ICP测试的含锂层状材料质量,0.005g。
e、将步骤d所得到的滤饼用去离子水洗涤5次,于干燥箱中在60℃下干燥12h,得到18.5g的白色固体氢氧化铝产品。
采用本领域常规方法测得该白色固体氢氧化铝产品的烧失量(灼减)为34.48%,水分(附着水)为6.92%,可见,本发明实施例1所制备得到的该A1(OH) 3产品符合 国家标准GB/T 4294-2010对氢氧化铝的要求,其中,国家标准GB/T 4294-2010中规定的主要指标及数据为烧失量(灼减)为34.5±0.5%,水分(附着水)不大于12%。
实施例2
本实施例提供了一种从盐湖卤水中提取锂同时制备氢氧化铝的方法,其中,该方法包括以下步骤:
a、按照中国专利申请CN 105152193 A中公开的方法,称取26.0325g的MgCl 2·6H 2O,25.7993g的MgSO 4·7H 2O,18.7290g的AlCl 3·6H 2O,3.3873g的KCl,1.8768g的LiCl,8.068g的NaCl,并将上述物质溶解于250mL的去离子水中,得到混合盐溶液A;
称取19.8593g的NaOH,并将其溶解于250mL的去离子水中,得到碱溶液;
将混合盐溶液A和碱溶液同时倒入胶体磨中,以3000r/min的转速旋转3分钟,形成MgAl-LDH晶核;将晶核溶液转移到反应器中,在80℃动态搅拌晶化12h,进行MgAl-LDH生长;过滤,得到MgAl-LDH滤饼,再将MgAl-LDH滤饼在70℃干燥12h,得到白色固体MgAl-LDH产品;收集滤液至容器,滤液即为含锂卤水。
b、将所述含锂卤水蒸发浓缩至锂离子浓度达到0.4385g/L,得到富锂卤水,取1L富锂卤水,向其中加入45.76g固体氯化铝得到混合盐溶液B,再向该混合盐溶液B中滴加摩尔浓度为4mol/L的氢氧化钠水溶液,滴加速度为1mL/min,至pH值为7,反应在80℃下进行12h,反应结束后固液分离,得到含锂液及LiAl-LDH滤饼。该滤液(含锂液)蒸发浓缩至锂离子浓度为0.4g/L,返回到含锂卤水进行循环利用。
LiAl-LDH滤饼为含锂层状材料滤饼,含锂层状材料的分子式为LiAl 3(OH) 9Cl·5H 2O,固含量为85%。
c、将30g固含量为85%的滤饼分散于3L以2mol/L盐酸调节pH=6的水溶液中,配成悬浮浆液,将该悬浮浆液加入到釜式反应器中,在80r/min下搅拌,加热到65℃,并保持恒温反应90min,以进行脱锂反应。
d、将步骤c脱锂反应后所得的浆液过滤,得到含锂溶液及氢氧化铝滤饼,将含锂溶液蒸发浓缩至锂离子浓度为22g/L后,可将其用作制备电池级碳酸锂的锂液。通过ICP对滤液(含锂溶液)中锂离子检测,所得锂离子浓度为188mg/L。
再通过如下公式1)及公式2)计算得到脱锂率为99%。由此可见,本实施例中,锂损失量(其等于1-R)较小,仅为1%。
R=C·V/(p·m)                        公式1);
公式1)中,R为脱锂率,%;
C为滤液中锂离子浓度,本实施例中,该浓度为188mg/L;
V为滤液体积,本实施例中,该滤液体积为2.552L;
m为用于反应的含锂层状材料的质量,本实施例中,该质量为30g x 85%=25.5g;
p为含锂层状材料中锂的质量百分比,本实施例中该锂的质量百分比为1.9%,其由如下公式2)计算所得;
p=(c(Li +) LDH·V LDH)/m LDHs                         公式2);
公式2)中,c(Li +) LDH是通过ICP测得的含锂层状材料中锂离子浓度,本实施例中,该浓度数值为9.5mg/L;V LDH是ICP测试所用的硝酸溶液体积,10mL;m LDHs是用于ICP测试的含锂层状材料质量,0.005g。
e、将步骤d所得到的滤饼用去离子水洗涤5次,于干燥箱中在70℃下干燥10h,得到13.8g的白色固体氢氧化铝产品。
采用本领域常规方法测得该白色固体氢氧化铝产品的烧失量(灼减)为34.5%,水分(附着水)为7.69%,可见,本发明实施例2所制备得到的该A1(OH) 3产品符合国家标准GB/T 4294-2010对氢氧化铝的要求,其中,国家标准GB/T 4294-2010中规定的主要指标及数据为烧失量(灼减)为34.5±0.5%,水分(附着水)不大于12%。
实施例3
本实施例提供了一种从盐湖卤水中提取锂同时制备氢氧化铝的方法,其中,该方法包括以下步骤:
a、按照中国专利申请CN 105152193 A中公开的方法,称取26.0325g的MgCl 2·6H 2O,25.7993g的MgSO 4·7H 2O,18.7290g的AlCl 3·6H 2O,3.3873g的KCl,1.8768g的LiCl,8.068g的NaCl,并将上述物质溶解于250mL的去离子水中,得到混合盐溶液A;
称取19.8593g的NaOH,并将其溶解于250mL的去离子水中,得到碱溶液;
将混合盐溶液A和碱溶液同时倒入胶体磨中,以3000r/min的转速旋转3分钟,形成MgAl-LDH晶核;将晶核溶液转移到反应器中,在80℃动态搅拌晶化12h,进行MgAl-LDH生长;过滤,得到MgAl-LDH滤饼,再将MgAl-LDH滤饼在70℃干燥12h,得到白色固体MgAl-LDH产品;收集滤液至容器,滤液即为含锂卤水。
b、将所述含锂卤水蒸发浓缩至锂离子浓度达到0.4108g/L,得到富锂卤水,取1L富锂卤水,向其中加入57.16g固体氯化铝得到混合盐溶液B,再向该混合盐溶液B中滴加摩尔浓度为4mol/L的氢氧化钠水溶液,滴加速度为1mL/min,至pH值为7,反应在80℃下进行12h,反应结束后固液分离,得到含锂液及LiAl-LDH滤饼。该滤液(含锂液)蒸发浓缩至锂离子浓度为0.2g/L,返回到含锂卤水进行循环利用。
LiAl-LDH滤饼为含锂层状材料滤饼,含锂层状材料的分子式为LiAl 4(OH) 12Cl·7H 2O,固含量为85%。
c、将30g固含量为85%的滤饼分散于3L以2mol/L盐酸调节pH=5.5的水溶液中,配成悬浮浆液,将该悬浮浆液加入到釜式反应器中,在100r/min下搅拌,加热到65℃,并保持恒温反应30min,以进行脱锂反应。
d、将步骤c脱锂反应后所得的浆液过滤,得到含锂溶液及氢氧化铝滤饼,将含锂溶液蒸发浓缩至锂离子浓度为21g/L后,可将其用作制备电池级碳酸锂的锂液。通过ICP对滤液中锂离子检测,所得锂离子浓度为142mg/L。
再通过如下公式1)及公式2)计算得到脱锂率为98.5%。由此可见,本实施例中,锂损失量(其等于1-R)较小,仅为1.5%。
R=C·V/(p·m)                        公式1);
公式1)中,R为脱锂率,%;
C为滤液中锂离子浓度,本实施例中,该浓度为142mg/L;
V为滤液体积,本实施例中,该滤液体积为2.546L;
m为用于反应的含锂层状材料的质量,本实施例中,该质量为30g x 85%=25.5g;
p为含锂层状材料中锂的质量百分比,本实施例中该锂的质量百分比为1.44%,其由如下公式2)计算所得;
p=(c(Li +) LDH·V LDH)/m LDHs                         公式2);
公式2)中,c(Li +) LDH是通过ICP测得的含锂层状材料中锂离子浓度,本实施例中,该浓度数值为7.2mg/L;V LDH是ICP测试所用的硝酸溶液体积,10mL;m LDHs是用于ICP测试的含锂层状材料质量,0.005g。
e、将步骤d所得到的滤饼用去离子水洗涤5次,于干燥箱中在80℃下干燥8h,得到9.74g的白色固体氢氧化铝产品。
采用本领域常规方法测得该白色固体氢氧化铝产品的烧失量(灼减)为34.55%, 水分(附着水)为8.08%,可见,本发明实施例3所制备得到的该A1(OH) 3产品符合国家标准GB/T 4294-2010对氢氧化铝的要求,其中,国家标准GB/T 4294-2010中规定的主要指标及数据为烧失量(灼减)为34.5±0.5%,水分(附着水)不大于12%。
实施例4
本实施例提供了一种从盐湖卤水中提取锂同时制备氢氧化铝的方法,其中,该方法包括以下步骤:
a、按照中国专利申请CN 105152193 A中公开的方法,称取26.0325g的MgCl 2·6H 2O,25.7993g的MgSO 4·7H 2O,18.7290g的AlCl 3·6H 2O,3.3873g的KCl,1.8768g的LiCl,8.068g的NaCl,并将上述物质溶解于250mL的去离子水中,得到混合盐溶液A;
称取19.8593g的NaOH,并将其溶解于250mL的去离子水中,得到碱溶液;
将混合盐溶液A和碱溶液同时倒入胶体磨中,以3000r/min的转速旋转3分钟,形成MgAl-LDH晶核;将晶核溶液转移到反应器中,在80℃动态搅拌晶化12h,进行MgAl-LDH生长;过滤,得到MgAl-LDH滤饼,再将MgAl-LDH滤饼在70℃干燥12h,得到白色固体MgAl-LDH产品;收集滤液至容器,滤液即为含锂卤水。
b、将所述含锂卤水蒸发浓缩至锂离子浓度达到0.4573g/L,得到富锂卤水,取1L富锂卤水,向其中加入79.53g固体氯化铝得到混合盐溶液B,再向该混合盐溶液B中滴加摩尔浓度为4mol/L的氢氧化钠水溶液,滴加速度为1mL/min,至pH值为7,反应在80℃下进行12h,反应结束后固液分离,得到含锂液及LiAl-LDH滤饼。该滤液(含锂液)蒸发浓缩至锂离子浓度为0.4g/L,返回到含锂卤水进行循环利用。
LiAl-LDH滤饼为含锂层状材料滤饼,该含锂层状材料的分子式为LiAl 5(OH) 15Cl·9H 2O,固含量为85%。
c、将30g固含量为85%的滤饼分散于1L以2mol/L氢氧化钠调节pH=7.5的水溶液中,配成悬浮浆液,将该悬浮浆液加入到釜式反应器中,在120r/min下搅拌,加热到85℃,并保持恒温反应90min,以进行脱锂反应。
d、将步骤c脱锂反应后所得的浆液过滤,得到含锂溶液及氢氧化铝滤饼,将含锂溶液蒸发浓缩至锂离子浓度为25g/L后,可将其用作制备电池级碳酸锂的锂液。通过ICP对滤液中锂离子检测,所得锂离子浓度为346mg/L。
再通过如下公式1)及公式2)计算得到脱锂率为98.8%。由此可见,本实施例 中,锂损失量(其等于1-R)较小,仅为1.2%。
R=C·V/(p·m)                        公式1);
公式1)中,R为脱锂率,%;
C为滤液中锂离子浓度,本实施例中,该浓度为346mg/L;
V为滤液体积,本实施例中,该滤液体积为0.845L;
m为用于反应的含锂层状材料的质量,本实施例中,该质量为30g x 85%=25.5g;
p为含锂层状材料中锂的质量百分比,本实施例中该锂的质量百分比为1.16%,其由如下公式2)计算所得;
p=(c(Li +) LDH·V LDH)/m LDHs                         公式2);
公式2)中,c(Li +) LDH是通过ICP测得的含锂层状材料中锂离子浓度,本实施例中,该浓度数值为5.8mg/L;V LDH是ICP测试所用的硝酸溶液体积,10mL;m LDHs是用于ICP测试的含锂层状材料质量,0.005g。
e、将步骤d所得到的滤饼用去离子水洗涤5次,于干燥箱中在80℃下干燥6h,得到7.9g的白色固体氢氧化铝产品。
采用本领域常规方法测得该白色固体氢氧化铝产品的烧失量(灼减)为34.58%,水分(附着水)为8.31%,可见,本发明实施例4所制备得到的该A1(OH) 3产品符合国家标准GB/T 4294-2010对氢氧化铝的要求,其中,国家标准GB/T 4294-2010中规定的主要指标及数据为烧失量(灼减)为34.5±0.5%,水分(附着水)不大于12%。

Claims (20)

  1. 一种从盐湖卤水中提取锂同时制备氢氧化铝的方法,其特征在于,所述从盐湖卤水中提取锂同时制备氢氧化铝的方法包括:
    a、向卤水中加入铝盐,得到混合盐溶液A,向该混合盐溶液A中加入碱液进行共沉淀反应,然后进行晶化反应,反应结束后固液分离,得到镁铝水滑石固体产物和含锂卤水;步骤a中,所述碱液为不含碳酸根的碱液;
    b、将所述含锂卤水蒸发浓缩得到富锂卤水,向该富锂卤水中加入铝盐得到混合盐溶液B,再向该混合盐溶液B中滴加碱液以进行共沉淀反应,反应结束后固液分离,得到含锂液及含锂层状材料滤饼;步骤b中,所述碱液为不含碳酸根的碱液;
    c、将所述含锂层状材料滤饼分散于去离子水中配成悬浮浆液,再调整该悬浮浆液的pH值后,使其进行脱锂反应;
    d、将脱锂反应后所得的浆液过滤,得到含锂溶液及氢氧化铝滤饼;
    e、所述氢氧化铝滤饼经去离子水洗涤后干燥,得到氢氧化铝固体。
  2. 根据权利要求1所述的从盐湖卤水中提取锂同时制备氢氧化铝的方法,其特征在于,步骤a中所述的卤水为硫酸盐型或氯化物型盐湖卤水,其中富含Li +、Mg 2+、K +及Na +,以该卤水的总体积计,Li +的浓度为1-3g/L,Mg 2+的浓度为10-30g/L,K +的浓度为5-7g/L,Na +的浓度为70-90g/L。
  3. 根据权利要求1所述的从盐湖卤水中提取锂同时制备氢氧化铝的方法,其特征在于,步骤b中,以所述富锂卤水的总体积计,该富锂卤水中的锂离子浓度为0.1-0.5g/L。
  4. 根据权利要求1所述的从盐湖卤水中提取锂同时制备氢氧化铝的方法,其特征在于,步骤b中,混合盐溶液B中的锂离子的摩尔浓度是铝离子摩尔浓度的1-6倍。
  5. 根据权利要求1所述的从盐湖卤水中提取锂同时制备氢氧化铝的方法,其特征在于,步骤b中,所述的铝盐为硝酸铝和/或氯化铝。
  6. 根据权利要求1所述的从盐湖卤水中提取锂同时制备氢氧化铝的方法,其特征在于,步骤b中,以所述碱液的总体积计,其摩尔浓度为2-4mol/L;该碱液的滴加速度为1-2mL/min。
  7. 根据权利要求1或6所述的从盐湖卤水中提取锂同时制备氢氧化铝的方法, 其特征在于,步骤b中,所述的碱液为氢氧化钠水溶液和/或氢氧化钾水溶液。
  8. 根据权利要求1所述的从盐湖卤水中提取锂同时制备氢氧化铝的方法,其特征在于,步骤b中,所述共沉淀反应的温度为40℃-100℃,反应时间为6h-24h,反应过程中控制pH值为7-8。
  9. 根据权利要求1所述的从盐湖卤水中提取锂同时制备氢氧化铝的方法,其特征在于,步骤b中,所述含锂层状材料滤饼的固含量为60%-95%。
  10. 根据权利要求1所述的从盐湖卤水中提取锂同时制备氢氧化铝的方法,其特征在于,步骤b中,所述含锂层状材料的化学式为LiAl x(OH) 3xCl·mH 2O,式中,x=1-10,m=1-10。
  11. 根据权利要求1所述的从盐湖卤水中提取锂同时制备氢氧化铝的方法,其特征在于,步骤b中,以所述含锂液的总体积计,该含锂液中,Li +的浓度为0.01-0.05g/L,K +的浓度为0.5-1g/L,Na +的浓度为40-60g/L,Cl -的浓度为50-70g/L,SO 4 2-的浓度为1-5g/L。
  12. 根据权利要求1所述的从盐湖卤水中提取锂同时制备氢氧化铝的方法,其特征在于,该方法还包括将步骤b中所得含锂液蒸发浓缩至锂离子浓度为0.1-0.5g/L后将其作为含锂卤水以进行循环利用的操作。
  13. 根据权利要求1所述的从盐湖卤水中提取锂同时制备氢氧化铝的方法,其特征在于,步骤c中,以该悬浮浆液的总体积计,其固含量为5-50g/L。
  14. 根据权利要求1所述的从盐湖卤水中提取锂同时制备氢氧化铝的方法,其特征在于,步骤c中,所述调整该悬浮浆液的pH值为将该悬浮浆液的pH值调整至5-8。
  15. 根据权利要求1或14所述的从盐湖卤水中提取锂同时制备氢氧化铝的方法,其特征在于,步骤c中,采用摩尔浓度为2-4mol/L的盐酸或氢氧化钠水溶液将该悬浮浆液的pH值调整为5-8。
  16. 根据权利要求1所述的从盐湖卤水中提取锂同时制备氢氧化铝的方法,其特征在于,步骤c中,所述脱锂反应的温度为60℃-100℃,反应时间为30min-180min。
  17. 根据权利要求1或16所述的从盐湖卤水中提取锂同时制备氢氧化铝的方法,其特征在于,步骤c中,所述脱锂反应过程中的搅拌速率为30-200r/min。
  18. 根据权利要求1所述的从盐湖卤水中提取锂同时制备氢氧化铝的方法,其特征在于,该方法还包括将步骤d中所得含锂溶液蒸发浓缩至锂离子浓度为20-25g/L 后,将其用作制备电池级碳酸锂的锂液的操作。
  19. 根据权利要求1所述的从盐湖卤水中提取锂同时制备氢氧化铝的方法,其特征在于,步骤e中,所述去离子水洗涤为洗涤3-5次。
  20. 根据权利要求1所述的从盐湖卤水中提取锂同时制备氢氧化铝的方法,其特征在于,步骤e中,所述干燥为60℃-80℃干燥3h-12h。
PCT/CN2019/083422 2018-12-26 2019-04-19 从盐湖卤水中提取锂同时制备氢氧化铝的方法 WO2020133826A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/648,660 US11414324B2 (en) 2018-12-26 2019-04-19 Method for extracting lithium from salt lake brine and simultaneously preparing aluminum hydroxide

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811597145.9A CN109336142B (zh) 2018-12-26 2018-12-26 从盐湖卤水中提取锂同时制备氢氧化铝的方法
CN201811597145.9 2018-12-26

Publications (1)

Publication Number Publication Date
WO2020133826A1 true WO2020133826A1 (zh) 2020-07-02

Family

ID=65297194

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/083422 WO2020133826A1 (zh) 2018-12-26 2019-04-19 从盐湖卤水中提取锂同时制备氢氧化铝的方法

Country Status (3)

Country Link
US (1) US11414324B2 (zh)
CN (1) CN109336142B (zh)
WO (1) WO2020133826A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114031090A (zh) * 2021-11-18 2022-02-11 中山市清融嘉创能源科技有限责任公司 一种高镁锂比卤水制备β-锂辉石的方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109336142B (zh) * 2018-12-26 2020-06-05 北京化工大学 从盐湖卤水中提取锂同时制备氢氧化铝的方法
CN109825722B (zh) * 2019-02-26 2021-06-18 江西科丰锂业有限公司 一种从高铝锂比氯化物浸出液中提取锂的方法
CN110078102A (zh) * 2019-04-12 2019-08-02 中国科学院青海盐湖研究所 盐湖卤水提锂母液的回收利用方法
CN110092399A (zh) * 2019-04-12 2019-08-06 中国科学院青海盐湖研究所 电池级碳酸锂和镁基功能材料的联产方法
CN110002477B (zh) * 2019-04-12 2021-05-25 中国科学院青海盐湖研究所 电池级碳酸锂的制备方法
CN110028088B (zh) * 2019-04-12 2021-05-28 中国科学院青海盐湖研究所 一种电池级碳酸锂的制备方法
CN110002475B (zh) * 2019-04-12 2021-05-28 中国科学院青海盐湖研究所 氢氧化锂的制备方法
CN110002476B (zh) * 2019-04-12 2021-05-25 中国科学院青海盐湖研究所 一种氢氧化锂的制备方法
CN114620750B (zh) * 2020-12-14 2023-10-27 中蓝长化工程科技有限公司 一种从硫酸钠亚型盐湖卤水提锂的工艺
CN113583296B (zh) * 2021-07-14 2023-01-24 营口理工学院 一种改性氢氧化镁、阻燃剂及其制备和应用
CN113896214B (zh) * 2021-11-29 2023-03-21 福州大学 一种硫酸锂溶液吸附碳化制备高纯碳酸锂的方法
CN114634169B (zh) * 2022-03-14 2023-03-21 浙江志澄环境资源科技有限公司 一种化学沉淀和置换电渗析的藕合提锂方法
CN115028149A (zh) * 2022-03-15 2022-09-09 瑜华科技(上海)有限公司 一种膜法盐湖提锂工艺
CN114751434B (zh) * 2022-04-28 2023-11-24 中国地质科学院郑州矿产综合利用研究所 一种沉积型锂资源的综合回收利用方法
CN115739002A (zh) * 2022-11-25 2023-03-07 中国科学院青海盐湖研究所 由碳酸盐型盐湖原卤制备的锂铝吸附剂及其制法与应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105152193A (zh) * 2015-05-18 2015-12-16 北京化工大学 从卤水中提取镁、锂同时生产水滑石的工艺方法
CN107043116A (zh) * 2017-04-24 2017-08-15 北京化工大学 从除镁卤水中提取锂并制备电池级碳酸锂的方法
CN107473246A (zh) * 2017-09-08 2017-12-15 北京师范大学 一种从Li/Mg混合液中制备层状双金属氢氧化物的方法
CN109336142A (zh) * 2018-12-26 2019-02-15 北京化工大学 从盐湖卤水中提取锂同时制备氢氧化铝的方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101775505B (zh) * 2010-02-08 2011-08-31 中南大学 氯化焙烧法从锂云母中提取锂的方法和设备
CN102070162B (zh) * 2011-01-30 2012-10-03 西安蓝晓科技新材料股份有限公司 一种从盐湖卤水中提取锂的方法
CN103086405B (zh) * 2013-01-05 2013-12-25 阿坝中晟锂业有限公司 一种电池级碳酸锂的清洁化生产方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105152193A (zh) * 2015-05-18 2015-12-16 北京化工大学 从卤水中提取镁、锂同时生产水滑石的工艺方法
CN107043116A (zh) * 2017-04-24 2017-08-15 北京化工大学 从除镁卤水中提取锂并制备电池级碳酸锂的方法
CN107473246A (zh) * 2017-09-08 2017-12-15 北京师范大学 一种从Li/Mg混合液中制备层状双金属氢氧化物的方法
CN109336142A (zh) * 2018-12-26 2019-02-15 北京化工大学 从盐湖卤水中提取锂同时制备氢氧化铝的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114031090A (zh) * 2021-11-18 2022-02-11 中山市清融嘉创能源科技有限责任公司 一种高镁锂比卤水制备β-锂辉石的方法
CN114031090B (zh) * 2021-11-18 2023-07-18 中山市清融嘉创能源科技有限责任公司 一种高镁锂比卤水制备β-锂辉石的方法

Also Published As

Publication number Publication date
CN109336142B (zh) 2020-06-05
US11414324B2 (en) 2022-08-16
US20210221697A1 (en) 2021-07-22
CN109336142A (zh) 2019-02-15

Similar Documents

Publication Publication Date Title
WO2020133826A1 (zh) 从盐湖卤水中提取锂同时制备氢氧化铝的方法
CN101698488B (zh) 利用高镁锂比盐湖卤水制备碳酸锂的方法
CN102491422B (zh) 一种球形四氧化三锰及其制备方法
CN106340692B (zh) 一种清洁回收正极材料中锂的方法
CN100469697C (zh) 硫酸锂溶液生产低镁电池级碳酸锂的方法
WO2016184055A1 (zh) 从卤水中提取镁、锂同时生产水滑石的工艺方法
CN103114211B (zh) 一种从锂矿的一次提锂溶液中提取锂的方法
CN108285156B (zh) 一种从含磷酸锂废渣中提取高纯碳酸锂或氢氧化锂的方法
CN105540619A (zh) 从高镁锂比盐湖卤水中直接制取电池级碳酸锂的方法
CN101916889A (zh) 水系废旧锂离子动力电池回收制备磷酸铁锂的方法
CN105152191A (zh) 一种利用高镁锂比盐湖卤水制备碳酸锂的方法
WO2022227668A1 (zh) 一种磷酸铁锂废料的回收方法及应用
WO2013056543A1 (zh) 一种以锂矿为锂源生产磷酸亚铁锂的成套循环制备方法
CN109110788A (zh) 一种盐湖卤水中锂镁资源综合利用的方法
CN108878837A (zh) 基于废旧锂电池正极材料制备铝酸锂改性的三元正极材料的方法
CN112142080B (zh) 一种沉锂浓缩母液冷冻循环回用制备电池级碳酸锂的方法
CN105217665A (zh) 一种降低高镁锂比盐湖卤水中镁锂比的方法
CN103408046B (zh) 一种从红土镍矿冶炼一次废水中分离钠镁的方法
CN103413990A (zh) 一种回收废旧锂离子电池中的集流体的方法
CN108695512B (zh) 酸洗铁红作为负极材料的用途
CN110028088B (zh) 一种电池级碳酸锂的制备方法
WO2023051728A1 (zh) 从含锂溶液中回收锂的方法
WO2023169432A1 (zh) 一种制备电池级氢氧化锂和碳酸锂的方法和系统
CN115739004B (zh) 利用高镁锂比盐湖卤水制备的锂铝吸附材料及其方法
WO2024066175A1 (zh) 一种沉锂母液去除碳酸根的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19902417

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19902417

Country of ref document: EP

Kind code of ref document: A1