WO2012074075A1 - 光学活性メントールの製造方法 - Google Patents

光学活性メントールの製造方法 Download PDF

Info

Publication number
WO2012074075A1
WO2012074075A1 PCT/JP2011/077857 JP2011077857W WO2012074075A1 WO 2012074075 A1 WO2012074075 A1 WO 2012074075A1 JP 2011077857 W JP2011077857 W JP 2011077857W WO 2012074075 A1 WO2012074075 A1 WO 2012074075A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituent
optically active
carbon atoms
isopulegol
Prior art date
Application number
PCT/JP2011/077857
Other languages
English (en)
French (fr)
Inventor
裕徳 前田
央徳 伊藤
伸也 山田
容嗣 堀
Original Assignee
高砂香料工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 高砂香料工業株式会社 filed Critical 高砂香料工業株式会社
Priority to US13/990,872 priority Critical patent/US9061959B2/en
Priority to EP11844547.7A priority patent/EP2647616A4/en
Publication of WO2012074075A1 publication Critical patent/WO2012074075A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/132Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B53/00Asymmetric syntheses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/17Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by hydrogenation of carbon-to-carbon double or triple bonds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/56Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by isomerisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/07Optical isomers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated

Definitions

  • the present invention particularly relates to a method for producing optically active menthol in a short process which is economically advantageous.
  • optically active citronellal by selectively asymmetric hydrogenation of ⁇ , ⁇ -unsaturated carbon-carbon double bond of geranial, neral or citral (mixture of geranial and neral in any proportion)
  • the obtained optically active citronellal is converted into an optically active isopulegol using an aluminum catalyst, and the obtained optically active isopulegol is hydrogenated as it is or after deep crystallization and is then hydrogenated.
  • Menthol is one of the most important scenting fragrance materials, but most of it is still isolated from natural sources by crystallization.
  • l-menthol ((1R, 2S, 5R) -menthol) on an industrial scale
  • L-Menthol can be synthesized according to two policies.
  • racemic menthol obtained by hydrogenation of thymol is produced by esterification followed by racemic resolution (crystallization or enzymatic resolution) (see Patent Documents 1 and 2).
  • a) citral (a mixture of geranial and neral) is subjected to precision distillation to obtain geranial or neral, b) asymmetric hydrogenation of geranial or neral to obtain optically active citronellal, and c) the obtained optically active citronellal
  • a mixture containing optically active isopulegol taking out the optically active isopulegol from the obtained mixture, and d) hydrogenating this to obtain optically active menthol, thereby obtaining geranial, neral or geranial and neral
  • Patent Document 5 A method for producing optically active menthol from a mixture of these is disclosed (see Patent Document 5).
  • isopulegol which is usually produced by cyclization of citronellal oxo-ene reaction in the presence of a Lewis acid catalyst, and is usually classified into four types. And a mixture of isopulegol, iso-isopulegol, neo-isopulegol and neoiso-isopulegol.
  • a method for obtaining an important isopulegol with high selectivity a method of cyclizing citronellal with an aluminum catalyst has been disclosed (see Patent Documents 6 to 10).
  • geraniol, nerol or a mixture of geraniol and nerol is asymmetrically hydrogenated to obtain optically active citronellol
  • the obtained optically active citronellol is oxidized to obtain optically active citronellal as described in Patent Document 4.
  • the method of producing optically active menthol from geraniol, nerol or a mixture of geraniol and nerol by the method to be obtained actually requires separation of geraniol and nerol by precision distillation. to obtain d-citronellol ((R) -citronellol).
  • geraniol and nerol are expensive homogeneous catalysts for asymmetric hydrogenation is separately would have to adjust the number of steps is increased to.
  • Patent Document 5 describes: a) citral (a mixture of geranial and neral) is subjected to precision distillation to obtain geranial or neral, b) asymmetric hydrogenation of geranial or neral to obtain optically active citronellal, c) In the method of ring-closing the obtained optically active citronellal to obtain a mixture containing optically active isopulegol, taking out the optically active isopulegol from the obtained mixture, and d) hydrogenating this to obtain optically active menthol. From geranial, neral or a mixture of geranial and neral, high-purity neral or geranial must be removed by precision distillation.
  • the object of the present invention is to produce an optically active menthol that has a shorter production process and that all processes are catalyzed, so that there is less waste that pollutes the environment, and manufacturing costs can be saved. Is to provide a method.
  • the present invention includes the following inventions.
  • the manufacturing method of the optically active menthol including the following processes.
  • A-1) Optically active citronellal is obtained by asymmetric hydrogenation of at least one of geranial and neral.
  • B-1) Optically active isopulegol is obtained by ring-closing reaction of optically active citronellal with an acidic catalyst.
  • optically active menthol including the following processes.
  • A-2) Optically active citronellal is obtained by asymmetric hydrogenation of citral containing geranial and neral in a molar ratio of 90:10 to 10:90.
  • B-2) Optically active isopulegol is obtained by a ring-closing reaction of optically active citronellal with an acidic catalyst.
  • the manufacturing method of the optically active menthol including the following processes.
  • A-3) Optically active citronellal is obtained by asymmetric hydrogenation of at least one of geranial and neral.
  • B-3) Optically active isopulegol is obtained by ring-closing reaction of optically active citronellal with an acidic catalyst.
  • D-3) Optically active isopulegol is recrystallized by deep cooling to obtain isopulegol of higher purity.
  • E-3) The optically active isopulegol obtained in Step D-3 is hydrogenated to obtain optically active menthol.
  • the manufacturing method of the optically active menthol including the following processes.
  • A-4) Optically active citronellal is obtained by asymmetric hydrogenation of citral containing geranial and neral in a molar ratio of 90:10 to 10:90.
  • B-4) Optically active isopulegol is obtained by ring-closing reaction of optically active citronellal with an acidic catalyst.
  • D-4) Optically active isopulegol is recrystallized by deep cooling to obtain isopulegol of higher purity.
  • E-4) The optically active isopulegol obtained in Step D-4 is hydrogenated to obtain optically active menthol.
  • [5] The method for producing optically active menthol according to [1], comprising the following steps.
  • A-5) Optical purity of 70-99% e.e. by asymmetric hydrogenation of at least one of geranial and neral. e. Obtain an optically active citronellal.
  • B-5) Optically active isopulegol is obtained by a ring-closing reaction of optically active citronellal with an acidic catalyst.
  • C-5) Hydrogenate optically active isopulegol to obtain optically active menthol.
  • [6] The method for producing optically active menthol according to [2], comprising the following steps.
  • A-6) Optical purity of 70 to 99% e.g. by asymmetric hydrogenation of citral containing geranial and neral in a molar ratio of 90:10 to 10:90. e. Obtain an optically active citronellal.
  • B-6) Optically active isopulegol is obtained by a ring-closing reaction of optically active citronellal with an acidic catalyst.
  • C-6) Hydrogenate optically active isopulegol to obtain optically active menthol.
  • [7] The method for producing optically active menthol according to [3], including the following steps.
  • A-7) Optical purity of 70-99% e.e. by asymmetric hydrogenation of at least one of geranial and neral e. Obtain an optically active citronellal.
  • B-7) Optically active isopulegol is obtained by ring-closing reaction of optically active citronellal with an acidic catalyst.
  • D-7) The optically active isopulegol is recrystallized by deep cooling to obtain a higher purity isopulegol.
  • E-7) The optically active isopulegol obtained in Step D-7 is hydrogenated to obtain optically active menthol.
  • A-9) d-citronellal is obtained by asymmetric hydrogenation of at least one of geranial and neral.
  • B-9) l-Isopulegol is obtained by ring-closing reaction of d-citronellal with an acidic catalyst.
  • [10] The method for producing optically active menthol according to [2], comprising the following steps.
  • A-10) d-citronellal is obtained by asymmetric hydrogenation of citral containing geranial and neral in a molar ratio of 90:10 to 10:90.
  • B-10) l-Isopulegol is obtained by ring-closing reaction of d-citronellal with an acidic catalyst.
  • [11] The method for producing optically active menthol according to [3], including the following steps.
  • A-11) d-citronellal is obtained by asymmetric hydrogenation of at least one of geranial and neral.
  • B-11) l-Isopulegol is obtained by ring-closing reaction of d-citronellal with an acidic catalyst.
  • D-11) l-isopulegol is recrystallized by deep cooling to obtain l-isopulegol with higher purity.
  • E-11) The 1-isopulegol obtained in Step D-11 is hydrogenated to obtain 1-menthol.
  • [12] The method for producing optically active menthol according to [4], comprising the following steps.
  • A-12) d-citronellal is obtained by asymmetric hydrogenation of citral containing geranial and neral in a molar ratio of 90:10 to 10:90.
  • B-12) l-Isopulegol is obtained by ring-closing reaction of d-citronellal with an acidic catalyst.
  • D-12) l-Isopulegol is recrystallized by deep cooling to obtain l-isopulegol of higher purity.
  • E-12) The 1-isopulegol obtained in step D-12) is hydrogenated to give 1-menthol.
  • [14] The method for producing optically active menthol according to [2], comprising the following steps.
  • A-14) Optical purity of 70 to 99% e.e. by asymmetric hydrogenation of citral containing geranial and neral in a molar ratio of 90:10 to 10:90. e. To obtain d-citronellal.
  • B-14) 1-Isopulegol having an optical purity of 70 to 99% is obtained by ring-closing reaction of d-citronellal with an acidic catalyst.
  • any one of [1] to [16], wherein a catalyst containing hydrogen gas and at least one transition metal, an optically active cyclic nitrogen-containing compound and an acid is used.
  • a method for producing optically active menthol is used.
  • Ring A is a 3- to 7-membered ring which may have a substituent and contains at least one atom selected from the group consisting of carbon, nitrogen, sulfur, oxygen, and phosphorus. Ring A may have a condensed ring structure.
  • R 1 and R 2 are each independently a hydrogen atom, an alkyl group that may have a substituent, a cycloalkyl group that may have a substituent, an alkenyl group that may have a substituent, or a substituent.
  • An aryl group which may have a group, an aralkyl group which may have a substituent, an alkoxy group which may have a substituent, a carboxyl group which may have a substituent, and a substituent A good alkoxycarbonyl group, an amide group that may have a substituent, a siloxy group that may have a substituent, an aromatic heterocyclic group that may have a substituent, or a substituent.
  • R 1 and R 2 are not the same substituent.
  • One of R 1 and R 2 may be bonded to ring A to further form a ring.
  • R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 and R 12 each independently have a hydrogen atom or a substituent.
  • R 3 and R 4 are different from each other.
  • R 5 and R 6 are different substituents.
  • h, i, j, k, l, and m represent an integer of 0 or 1.
  • alkylene group or an cycloalkylene group that may have a substituent.
  • R 7 and R 8 , R 7 and A, or R 8 and A may be bonded to each other to form a ring.
  • X 1 , X 2 , X 3 , X 4 , X 5 and X 6 each independently represent an oxygen atom, a nitrogen atom, a phosphorus atom or a sulfur atom.
  • Y 1 and Y 2 each independently represent a carbon atom, a silicon atom, or a sulfur atom.
  • [20] The method for producing optically active menthol according to any one of [17] to [19], wherein the metal is selected from the group consisting of nickel, ruthenium, rhodium, iridium, palladium, and platinum.
  • the Lewis acidic aluminum catalyst is A trialkylaluminum represented by the following general formula (3); 2,6-diphenylphenol represented by the following general formula (4), 2,6,2 ′, 6′-tetraphenyl-biphenyl-4,4′-diol represented by the following general formula (5), 1,1′-binaphthyl-2,2′-diol, which may be optically active represented by the general formula (6), and optical activity represented by the following general formula (7) (2) , 2-dimethyl-1,3-dioxolane-4,5-diyl) bis (diphenylmethanol), an optically active menthol according to [21], which is an organoaluminum compound obtained by reacting with at least one compound selected from the group consisting of Manufacturing method.
  • R 13 represents an alkyl group having 1 to 8 carbon atoms.
  • the Lewis acidic aluminum catalyst is At least selected from a chain aluminoxane represented by the following general formula (8), a cyclic aluminoxane represented by the following general formula (9), and a bis (dialkylaluminumoxy) alkylborane represented by the formula (10).
  • a kind of organoaluminum oxy compound Diarylphenols represented by the following general formula (11), bis (diarylphenol) s represented by the following general formula (12), biaryldiols represented by the following general formula (13), and the following general formula (14 ) And an optical activity as described in [21], which is an organoaluminum catalyst obtained by reacting at least one hydroxy compound selected from dimethanols represented by the following general formula (15): A method for producing menthol.
  • R 14 is an alkyl group having 1 to 6 carbon atoms, an alicyclic group having 5 to 8 carbon atoms, or an aralkyl group having 7 to 12 carbon atoms which may have a substituent.
  • a plurality of R 14 may be the same or different; o is an integer of 0 to 40.
  • R 15 is an alkyl group having 1 to 6 carbon atoms, an alicyclic group having 5 to 8 carbon atoms, or an aralkyl group having 7 to 12 carbon atoms which may have a substituent. ; o is an integer of 0 to 40. ]
  • R 16 is an alkyl group having 1 to 6 carbon atoms, an alicyclic group having 5 to 8 carbon atoms, or an aralkyl group having 7 to 12 carbon atoms which may have a substituent.
  • a plurality of R 16 may be the same or different;
  • R 17 is an alkyl group having 1 to 6 carbon atoms, an alicyclic group having 5 to 8 carbon atoms, or an aralkyl group having 7 to 12 carbon atoms which may have a substituent.
  • Ar 1 and Ar 2 are each independently an aryl group having 6 to 15 carbon atoms which may have a substituent, or a carbon which may have a substituent.
  • a heteroaryl group of 2 to 15; R 18 , R 19 and R 20 are each independently a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, an alicyclic group having 5 to 8 carbon atoms, or a perfluoro having 1 to 4 carbon atoms.
  • a condensed benzene ring a condensed substituted benzene ring, a trimethylene group, a tetramethylene group, a pentamethylene group, a methylenedioxy group, an ethylenedioxy group, or a trimethylenedioxy group may be formed.
  • Ar 3 , Ar 4 , Ar 5 and Ar 6 are each independently an aryl group having 6 to 15 carbon atoms which may have a substituent, or a substituent.
  • a heteroaryl group having 2 to 15 carbon atoms, which may be R 21 , R 22 , R 23 and R 24 are each independently a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, an alicyclic group having 5 to 8 carbon atoms, or 1 to 4 carbon atoms.
  • Perfluoroalkyl group an alkoxy group having 1 to 8 carbon atoms, an aralkyl group having 7 to 12 carbon atoms which may have a substituent, a halogen atom, an organosilyl group, and 6 carbon atoms which may have a substituent.
  • aryl group having 15 to 15 carbon atoms dialkylamino group having 2 to 8 carbon atoms, thioalkoxy group having 1 to 4 carbon atoms, nitro group or polymer chain, and R 21 and R 22 or R 23 and R 24 are bonded to each other.
  • Each may independently form a condensed benzene ring, a condensed substituted benzene ring, a trimethylene group, a tetramethylene group, a pentamethylene group, a methylenedioxy group, an ethylenedioxy group, or a trimethylenedioxy group.
  • R 21 or R 22 and / or R 23 or R 24 may combine with A ′ to form an aromatic ring or a non-aromatic ring;
  • a ′ represents (1) a linear or branched and / or cyclic hydrocarbon group having 1 to 25 carbon atoms which may have at least one of a substituent and an unsaturated bond;
  • R 28 , R 29 , R 30 , R 31 , R 32 , R 33 , R 34 and R 35 are each independently a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, a perfluoroalkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, or an oil having 5 to 8 carbon atoms.
  • R 36 , R 37 , R 38 and R 39 are each independently a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, or an alicyclic ring having 5 to 8 carbon atoms.
  • a group, a nitro group or a polymer chain, and R 36 and R 37 and R 38 and R 39 may be bonded to each other to form a 3- to 9-membered ring which may independently have a hetero element;
  • Ring B is a 3- to 8-membered ring which may have a hetero element.
  • R 40 , R 41 , and R 42 are each independently an alkyl group having 1 to 10 carbon atoms, an alicyclic group having 5 to 8 carbon atoms, or 7 carbon atoms. Or an aralkyl group having 12 to 12 carbon atoms, an aryl group having 6 to 10 carbon atoms which may have a substituent, a heteroaryl group having 2 to 15 carbon atoms which may have a substituent, or a polymer chain.
  • the Lewis acidic aluminum catalyst is A chain aluminoxane represented by the following general formula (8); 2,6-diphenylphenols represented by the following general formula (4), 2,6,2 ′, 6′-tetraphenyl-biphenyl-4,4′-diol represented by the following general formula (5), And an organoaluminum catalyst obtained by reacting with at least one compound selected from 1,1′-binaphthyl-2,2′-diol, which may have an optical activity represented by the following general formula (6): [21] The method for producing an optically active menthol according to [21].
  • R 14 is an alkyl group having 1 to 6 carbon atoms, an alicyclic group having 5 to 8 carbon atoms, or an aralkyl group having 7 to 12 carbon atoms which may have a substituent.
  • the plurality of R 14 may be the same or different; o is an integer of 0 to 40.
  • an optically active menthol as a first step, as a catalyst in an asymmetric hydrogenation reaction of geranial, neral or citral, as an additive contributing to enantioselectivity together with a metal powder or a metal support. It is preferable to use an optically active cyclic nitrogen-containing compound and an acid.
  • the asymmetric hydrogenation catalyst in the present invention does not require a reaction step for preparing the catalyst unlike conventional asymmetric hydrogenation catalysts. Simply, a raw material compound, an optically active cyclic nitrogen-containing compound, a metal powder or a metal support, and an acid are mixed and asymmetric hydrogenated. In this way, the operation is simple, and the metal powder or metal support and the optically active cyclic nitrogen-containing compound can be recovered and reused, which is industrially advantageous.
  • optically active citronellal is obtained by asymmetric hydrogenation of citral, which is geranial, neral or a mixture thereof, as a first step, but a double bond between ⁇ -position and ⁇ -position of citral.
  • the configuration of the optically active citronellal produced depends on the configuration of the optically active cyclic nitrogen-containing compound used as a catalyst, regardless of whether a Z configuration (Neral) or E configuration compound (Geranial) is used as a substrate. To do.
  • optically active citronellal having the same configuration is produced not only when geranial alone or only neral is used as a substrate, but also when a mixture of any ratio of neral and geranial is used as a substrate. be able to.
  • the asymmetric hydrogenation reaction in the present invention requires separation of citral into geranial and neral by precision distillation and subjecting geranial or neral to asymmetric hydrogenation. Therefore, the process can be shortened.
  • the optically active isopulegol can be produced with high selectivity from the four isomers by ring-closing the optically active citronellal obtained in the first step with an aluminum catalyst.
  • optically active citronellal can be produced with higher chemical purity and optical purity by crystallization of the optically active isopulegol obtained in the second stage step at low temperature.
  • optically active menthol is produced by hydrogenating the optically active citronellal obtained in the second step or the optically active citronellal obtained in the third step using a general hydrogenation catalyst. be able to.
  • optically active menthol can be produced from the raw material in the shortest process as a method for producing chemically active optically active menthol.
  • all the manufacturing processes other than the cryogenic crystallization are processes using a catalyst, so that there are few wastes that pollute the environment, and manufacturing costs can be saved.
  • FIG. 3 is a diagram showing a 1 H-NMR spectrum of a reaction product of 2,6-diphenylphenol and methylaluminoxane.
  • FIG. 4 is an enlarged view of the low magnetic field side of the 1 H-NMR spectrum of a reaction product of 2,6-diphenylphenol and methylaluminoxane.
  • FIG. 3 is a diagram showing a 1 H-NMR spectrum of 2,6-diphenylphenol.
  • FIG. 3 is an enlarged view of the low magnetic field side of the 1 H-NMR spectrum of 2,6-diphenylphenol.
  • Step A shown in Scheme 1 of the present invention comprises optically active citronellal by asymmetric hydrogenation of citral (a mixture of geranial and neral), geranial or neral using an asymmetric hydrogenation catalyst. .
  • the mixing ratio of geranial and neral in citral is arbitrary and is not particularly limited, but it is preferable that the molar ratio of geranial to neral is in the range of 90:10 to 10:90.
  • the catalyst for asymmetric hydrogenation in the present invention is a metal in which at least one metal selected from Group 8 to 10 metal powder in the periodic table or at least one metal selected from Group 8 to 10 metal is supported on a carrier.
  • a catalyst for asymmetric hydrogenation of an ⁇ , ⁇ -unsaturated carbonyl compound comprising a support, an optically active cyclic nitrogen-containing compound, and an acid.
  • a metal support in which at least one metal powder selected from Group 8 to 10 metal in the periodic table or at least one metal selected from Group 8 to 10 metal is supported on a carrier will be described.
  • Preferred metals of Groups 8 to 10 in the periodic table are Ni (nickel), Ru (ruthenium), Rh (rhodium), Ir (iridium), Pd (palladium) and Pt (platinum), and particularly preferred metals are Pd. It is.
  • Examples of the metal powder include Pd black and Pt black.
  • metal support those in which the above metals are supported on a carrier are used, and these metals are carbon, silica, alumina, silica-alumina, zeolite, metal oxide, metal halide, metal sulfide, metal sulfone.
  • Those supported on a carrier such as acid salts, metal nitrates, metal carbonates, and metal phosphates are preferably used.
  • those in which palladium or platinum is supported on a carrier are preferable.
  • Specific metal supports include Raney nickel, Ru / C, Rh / C, Pd / C, Ir / C, Pt / C, Pd / C (en) (palladium carbon-ethylenediamine complex), Pd / Fib ( palladium - fibroin), Pd / PEI (palladium - polyethyleneimine), Pd / Al 2 O 3 , Pd / SiO 2, Pd / TiO 2, Pd / ZrO 2, Pd / CeO 2, Pd / ZnO, Pd / CdO, Pd / TiO 2 , Pd / SnO 2 , Pd / PbO, Pd / As 2 O 3 , Pd / Bi 2 O 3 , Pd / Sb 2 O 5 , Pd / V 2 O 5 , Pd / Nb 2 O 5 , Pd / Cr 2 O 3 , Pd / MoO 3 , Pd / WO 3 , Pd
  • optically active cyclic nitrogen-containing compound (Optically active cyclic nitrogen-containing compound) Subsequently, the optically active cyclic nitrogen-containing compound represented by the general formula (1) and the general formula (2) will be described.
  • optically active cyclic nitrogen-containing compound examples include an optically active cyclic nitrogen-containing compound represented by the general formula (1).
  • ring A is a 3- to 7-membered ring which may have a substituent, and contains at least one atom selected from the group consisting of carbon, nitrogen, sulfur, oxygen and phosphorus, It is preferable that it is comprised. Ring A may have a condensed ring structure.
  • R 1 and R 2 are each independently a hydrogen atom, an alkyl group that may have a substituent, a cycloalkyl group that may have a substituent, an alkenyl group that may have a substituent, or a substituent.
  • An aryl group which may have a group, an aralkyl group which may have a substituent, an alkoxy group which may have a substituent, a carboxyl group which may have a substituent, and a substituent A good alkoxycarbonyl group, an amide group that may have a substituent, a siloxy group that may have a substituent, an aromatic heterocyclic group that may have a substituent, or a substituent.
  • R 1 and R 2 are not the same substituent.
  • One of R 1 and R 2 may be bonded to ring A to further form a ring. * Represents an asymmetric carbon atom.
  • Ring A is, for example, an aziridine skeleton, azetidine skeleton, pyrrolidine skeleton, pyrroline skeleton, pyrazolidine skeleton, imidazolidine skeleton, imidazolidinone skeleton, pyrazoline skeleton, thiazolidine skeleton, piperidine skeleton, piperazine skeleton, morpholine skeleton, Examples include a thiomorpholine skeleton. Substituents may be present in these basic skeletons.
  • Examples of the basic skeleton when ring A has a condensed ring structure such as a benzene ring include an indoline skeleton, a dihydroquinoxaline skeleton, a tetrahydroisoquinoline skeleton, and a dihydroquinoxalinone skeleton. Substituents may be present in these basic skeletons.
  • Examples of the substituent include a hydroxyl group, an oxo group, a halogen group, an alkyl group, an alkoxy group, an amino group, an alkoxycarbonyl group, an acyl group, an aryl group, an aralkyl group, an aromatic heterocyclic group, and an aliphatic heterocyclic group.
  • Examples of the alkyl group, alkoxy group, alkoxycarbonyl group, aryl group, aralkyl group, aromatic heterocyclic group, and aliphatic heterocyclic group include groups listed in the description of R 1 and R 2 .
  • Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
  • acyl group examples include an acetyl group, a propanoyl group, a butanoyl group, an octanoyl group, a benzoyl group, a toluoyl group, a xyloyl group, a naphthoyl group, a phenanthroyl group, and an anthranoyl group.
  • the ring A and the condensed ring A include a pyrrolidine skeleton that may have a substituent, an imidazolidinone skeleton that may have a substituent, and a dihydroquino that may have a substituent.
  • Xalinone skeletons are preferred.
  • Preferred examples of the substituent of ring A and condensed ring A include an alkyl group which may have a substituent, an aralkyl group which may have a substituent, and an aromatic which may have a substituent. Group heterocyclic group.
  • the groups represented by R 1 and R 2 are an alkyl group, a cycloalkyl group, an alkenyl group, an aryl group, an aralkyl group, an alkoxy group, a carboxyl group, an alkoxycarbonyl group, an amide group, a siloxy group, and an aromatic group.
  • a heterocyclic group and an aliphatic heterocyclic group are demonstrated. Any of these groups may have a substituent.
  • alkyl group examples include linear or branched alkyl groups having 1 to 30 carbon atoms, preferably 1 to 10 carbon atoms, and specifically include methyl groups, ethyl groups, n-propyl groups, isopropyl groups, n-butyl group, 2-butyl group, isobutyl group, tert-butyl group, n-pentyl group, 2-pentyl group, 3-pentyl group, tert-pentyl group, 2-methylbutyl group, 3-methylbutyl group, 2, 2-dimethylpropyl group, 1,2-dimethylpropyl group, n-hexyl group, 2-hexyl group, 3-hexyl group, 2-methylpentyl group, 3-methylpentyl group, 4-methylpentyl group, 1,1 -Dimethylbutyl group, 1,2-dimethylbutyl group, 1,3-dimethylbutyl group, 2,2-dimethylbutyl group, 2,3-
  • alkyl groups may have a substituent.
  • substituent of the alkyl group include an alkenyl group, an alkynyl group, an aryl group, an aliphatic heterocyclic group, an aromatic heterocyclic group, an alkoxy group, Examples thereof include an alkylsiloxy group, an alkylenedioxy group, an aryloxy group, an aralkyloxy group, a heteroaryloxy group, a substituted amino group, a halogenated alkyl group, a cycloalkyl group, a hydroxyl group and a halogen atom.
  • the alkenyl group as a substituent of the alkyl group may be linear or branched, and examples thereof include alkenyl groups having 2 to 20 carbon atoms, preferably 2 to 10 carbon atoms, and more preferably 2 to 6 carbon atoms. Specific examples include a vinyl group, a propenyl group, a 1-butenyl group, a pentenyl group, and a hexenyl group.
  • the alkynyl group substituted on the alkyl group may be linear or branched, and examples thereof include alkynyl groups having 2 to 15 carbon atoms, preferably 2 to 10 carbon atoms, more preferably 2 to 6 carbon atoms. Specific examples include ethynyl group, 1-propynyl group, 2-propynyl group, 1-butynyl group, 3-butynyl group, pentynyl group, hexynyl group and the like.
  • aryl group as the substituent of the alkyl group examples include an aryl group having 6 to 20 carbon atoms, and specifically include a phenyl group, a tolyl group, an isopropylphenyl group, a xylyl group, a t-butylphenyl group, a cyclohexyl group.
  • the aliphatic heterocyclic group as a substituent of the alkyl group has, for example, 2 to 14 carbon atoms, and has at least 1, preferably 1 to 3 hetero atoms such as a nitrogen atom, an oxygen atom, or a sulfur atom.
  • Examples include groups containing heteroatoms.
  • a 5- or 6-membered monocyclic aliphatic heterocyclic group and a polycyclic or condensed aliphatic heterocyclic group are exemplified.
  • aliphatic heterocyclic group examples include a 2-oxo-1-pyrrolidinyl group, piperidino group, piperazinyl group, morpholino group, tetrahydrofuryl group, tetrahydropyranyl group, and tetrahydrothienyl group.
  • the aromatic heterocyclic group as a substituent of the alkyl group has, for example, 2 to 15 carbon atoms, and is a hetero atom such as at least 1, preferably 1 to 3 nitrogen atoms, oxygen atoms, or sulfur atoms. Examples include groups containing atoms.
  • a 5- or 6-membered monocyclic aromatic heterocyclic group and a polycyclic or condensed aromatic heterocyclic group are used.
  • aromatic heterocyclic group examples include, for example, furyl group, methylfuryl group, thienyl group, pyridyl group, pyrimidinyl group, pyrazinyl group, pyridazinyl group, pyrazolinyl group, imidazolyl group, oxazolinyl group, thiazolinyl group, benzofuryl group, Examples thereof include benzothienyl group, quinolyl group, isoquinolyl group, quinoxalinyl group, phthalazinyl group, quinazolinyl group, naphthyridinyl group, cinnolinyl group, benzoimidazolyl group, benzoxazolyl group, and benzothiazolyl group.
  • alkoxy group as a substituent of the alkyl group examples include linear or branched alkoxy groups having 1 to 8 carbon atoms, such as methoxy group, ethoxy group, n-propoxy group, isopropoxy group.
  • trialkylsiloxy group as a substituent of the alkyl group include a trimethylsiloxy group, a triethylsiloxy group, a dimethyl tert-butylsiloxy group, and the like.
  • alkylenedioxy group examples include an alkylenedioxy group having 1 to 3 carbon atoms, and specifically include a methylenedioxy group, an ethylenedioxy group, a propylenedioxy group, and an isopropylidene group. Dendioxy group and the like can be mentioned.
  • Examples of the aralkyloxy group as a substituent of the alkyl group include an aralkyloxy group having 7 to 12 carbon atoms, and specifically include a benzyloxy group, a 2-phenylethoxy group, a 1-phenylpropoxy group, and a 2-phenylpropoxy group.
  • heteroaryloxy group as a substituent of the alkyl group include, for example, at least one hetero atom, preferably 1 to 3 hetero atoms such as nitrogen atom, oxygen atom, sulfur atom, etc.
  • heteroaryloxy groups include 2-pyridyloxy group, 2-pyrazyloxy group, 2-pyrimidyloxy group, 2-quinolyloxy group and the like.
  • substituted amino group as the substituent of the alkyl group examples include N-methylamino group, N, N-dimethylamino group, N, N-diethylamino group, N, N-diisopropylamino group, N-cyclohexylamino group, Mono- or dialkylamino groups such as pyrrolidyl, piperidyl and morpholyl groups; mono- or diaryls such as N-phenylamino, N, N-diphenylamino, N-naphthylamino, N-naphthyl-N-phenylamino Examples thereof include mono- or diaralkylamino groups such as an amino group, N-benzylamino group, and N, N-dibenzylamino group.
  • the halogenated alkyl group substituted for the alkyl group is preferably a perhalogenoalkyl group, such as a trifluoromethyl group, a pentafluoroethyl group, a heptafluoropropyl group, an undecafluoropentyl group, a heptadecafluorooctyl group, an undeca group.
  • a perhalogenoalkyl group such as a trifluoromethyl group, a pentafluoroethyl group, a heptafluoropropyl group, an undecafluoropentyl group, a heptadecafluorooctyl group, an undeca group.
  • Examples include a fluorocyclohexyl group and a dichloromethyl group.
  • Examples of the cycloalkyl group substituted on the alkyl group include a cyclopropyl group, a cyclobutyl group
  • halogen atom substituted for the alkyl group examples include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
  • cycloalkyl group examples include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, and a cyclohexyl group. These cycloalkyl groups may have a substituent, and examples of the substituent include the substituents described in the description of the substituent of the alkyl group.
  • alkenyl group examples include chain, branched or cyclic alkenyl groups having, for example, 2 to 20 carbon atoms, preferably 2 to 10 carbon atoms.
  • Specific examples of the alkenyl group include a vinyl group, 1-propenyl group, 2-propenyl group, 1-butenyl group, 2-butenyl group, 3-butenyl group, 1-pentenyl group, 2-pentenyl group, and 3-pentenyl.
  • alkenyl groups may have a substituent, and examples of the substituent include the groups described in the description of the substituent of the alkyl group.
  • aryl group examples include an aryl group having 6 to 20 carbon atoms. Specifically, a phenyl group, a tolyl group, an isopropylphenyl group, a xylyl group, a t-butylphenyl group, a cyclohexyl group, a 1-methylcyclohexyl group, Adamantylphenyl group, trifluoromethylphenyl group, naphthyl group, anthranyl group, phenanthryl group, biphenyl group, 4- (2′-p-tolylpropyl) phenyl group, mesityl group, methoxyphenyl group, dimethoxyphenyl group, 4- ( 3 ′, 4 ′, 5 ′, 6 ′, 7 ′, 8 ′, 9 ′, 10′-heptadecafluorodecyl) phenyl group, fluorophenyl group and the like. These aryl groups may have
  • aralkyl group for example, an aralkyl group having 7 to 45 carbon atoms is preferable, and specifically, benzyl group, tolylmethyl group, xylylmethyl group, mesitylmethyl group, 4-phenylphenylmethyl group, 3-phenylphenylmethyl group, 2-phenyl group.
  • Phenylmethyl group 4-mesitylphenylmethyl group, 1-naphthylmethyl group, 2-naphthylmethyl group, 9-anthranylmethyl group, 9-phenanthrylmethyl group, 3,5-diphenylphenylmethyl group, 2-phenyl Ethyl group, 1-phenylpropyl group, 3-naphthylpropyl group, diphenylmethyl group, ditolylmethyl group, dixylylmethyl group, dimesitylmethyl group, di (4-phenylphenyl) methyl group, di (3-phenylphenyl) methyl group, Di (2-phenylphenyl) methyl group, di (4-mesity) Phenyl) methyl group, di (1-naphthyl) methyl group, di (2-naphthyl) methyl group, di (9-anthranyl) methyl group, di (9-phenanthryl) methyl group, bis (3,5-diphenylphenyl)
  • an alkoxy group having 1 to 30 carbon atoms is preferable.
  • carboxyl group for example, a carboxyl group having 1 to 30 carbon atoms is preferable, and specifically, an acetoxy group, an n-propanoyloxy group, an isopropanoyloxy group, an n-butanoyloxy group, a 2-butanoyloxy group, an isobutanoyloxy group.
  • Tert-butanoyloxy group n-pentanoyloxy group, 2-methylbutanoyloxy group, 3-methylbutanoyloxy group, 2,2-dimethylpropanoyloxy group, n-hexanoyloxy group, 2-methylpentanoyloxy group, 3-methylpentanoyloxy group, 4-methylpentanoyloxy group, 5-methylpentanoyloxy group, cyclopentanoyloxy group, cyclohexanoyloxy group, dicyclopentylacetoxy group, dicyclohexylacetoxy group, tricyclopentylacetoxy group, Tricyclohexylacetate Shi group, phenylacetoxy group, diphenyl acetoxy group, triphenyl acetoxy group, benzoyloxy group, Nafutoirokishi group and the like.
  • These carboxy groups may have a substituent, and examples of the substituent include the groups described in the description of the alky
  • an alkoxycarbonyl group having 1 to 30 carbon atoms is preferable.
  • an amide group having 1 to 30 carbon atoms is preferable.
  • Specific examples include an acetamido group, an n-propionamide group, an isopropionamide group, an n-butanamide group, a 2-butanamide group, an isobutanamide group, and a tert-butanamide.
  • amide groups may have a substituent, and examples of the substituent include the groups described in the description of the alkyl group.
  • siloxy group examples include trimethylsiloxy group, triethylsiloxy group, dimethyl tert-butylsiloxy group and the like. These siloxy groups may have a substituent, and examples of the substituent include groups described in the description of the alkyl group.
  • aromatic heterocyclic group for example, a group having 2 to 15 carbon atoms and containing at least one, preferably 1 to 3 hetero atoms such as nitrogen atom, oxygen atom or sulfur atom as hetero atoms.
  • a 5- or 6-membered monocyclic aromatic heterocyclic group and a polycyclic or condensed aromatic heterocyclic group are used.
  • aromatic heterocyclic group examples include, for example, furyl group, methylfuryl group, thienyl group, pyridyl group, pyrimidinyl group, pyrazinyl group, pyridazinyl group, pyrazolinyl group, imidazolyl group, oxazolinyl group, thiazolinyl group, benzofuryl group, Examples thereof include benzothienyl group, quinolyl group, isoquinolyl group, quinoxalinyl group, phthalazinyl group, quinazolinyl group, naphthyridinyl group, cinnolinyl group, benzoimidazolyl group, benzoxazolyl group, and benzothiazolyl group.
  • aromatic heterocyclic groups may have a substituent, and examples of the substituent include groups described in the description of the alkyl group.
  • aliphatic heterocyclic group for example, a group having 2 to 14 carbon atoms and containing at least one hetero atom such as a nitrogen atom, an oxygen atom or a sulfur atom, preferably 1 to 3 hetero atoms.
  • a 5- or 6-membered monocyclic aliphatic heterocyclic group and a polycyclic or condensed aliphatic heterocyclic group are exemplified.
  • aliphatic heterocyclic group examples include a 2-oxo-1-pyrrolidinyl group, piperidino group, piperazinyl group, morpholino group, tetrahydrofuryl group, tetrahydropyranyl group, and tetrahydrothienyl group.
  • These aliphatic heterocyclic groups may have a substituent, and examples of the substituent include groups described in the description of the alkyl group.
  • R 1 and R 2 include hydrogen, an alkyl group that may have a substituent, and an aralkyl group that may have a substituent.
  • an amino acid does not correspond as an optically active cyclic nitrogen compound of the present invention.
  • optically active cyclic nitrogen-containing compound examples include an optically active cyclic nitrogen-containing compound represented by the general formula (2).
  • R 3, R 4, R 5, R 6, R 7, R 8, R 9, R 10, R 11 and R 12 have each independently a hydrogen atom, a substituent
  • R 3 and R 4 are different from each other.
  • R 5 and R 6 are different substituents.
  • h, i, j, k, l, and m represent an integer of 0 or 1.
  • alkylene group or an cycloalkylene group that may have a substituent.
  • R 7 and R 8 , R 7 and A, or R 8 and A may be bonded to each other to form a ring.
  • X 1 , X 2 , X 3 , X 4 , X 5 and X 6 each independently represent an oxygen atom, a nitrogen atom, a phosphorus atom or a sulfur atom.
  • Y 1 and Y 2 each independently represent a carbon atom, a silicon atom, or a sulfur atom.
  • R 3 to R 6 are preferably a hydrogen atom or an aryl group which may have a substituent, and particularly preferably a hydrogen atom or a phenyl group which may have a substituent.
  • R 7 to R 12 a hydrogen atom, an alkyl group which may have a substituent, a cycloalkyl group which may have a substituent, and an aryl group which may have a substituent
  • a hydrogen atom, a phenyl group which may have a substituent, and a cyclohexyl group which may have a substituent are preferable.
  • A has a hydrogen atom, a hetero atom that may have a substituent, an alkyl group that may have a substituent, a cycloalkyl group that may have a substituent, or a substituent.
  • hetero atom examples include an oxygen atom, a nitrogen atom, and a silicon atom. These heteroatoms may have a substituent, and examples of the substituent include a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group, an aliphatic heterocyclic group, and an aromatic heterocyclic group. examples of these include the groups listed in the substituent of the alkyl groups mentioned in the description of R 1, radicals or R 1 listed in the description of R 2, R 2.
  • Examples of the aromatic heterocyclic group which may have a substituent and the aliphatic heterocyclic group which may have a substituent include the groups described in the description of R 1 and R 2 .
  • oligomer chain any generally used one can be used. Examples thereof include oligomer chains such as polystyrene, polyethylene glycol, polyacrylate, polymethacrylate, polyester, polyamide, polyethylene, polypropylene, polycarbonate, polyurethane, and polypeptide, and copolymers thereof.
  • any polymer chain can be used.
  • examples thereof include polymer chains such as polystyrene, polyethylene glycol, polyacrylate, polymethacrylate, polyester, polyamide, polyethylene, polypropylene, polycarbonate, polyurethane and polypeptide, and copolymers thereof.
  • a hydrogen atom, an alkyl group which may have a substituent, a cycloalkyl group which may have a substituent, and an aryl group which may have a substituent are preferable.
  • the alkyl group which may have is preferable.
  • a divalent aliphatic heterocyclic group, a divalent aromatic hydrocarbon ring group, a divalent aromatic heterocyclic group, an oligomer chain or a polymer chain will be described. These groups may have a substituent.
  • hetero atom examples include an oxygen atom, a nitrogen atom, and a silicon atom. These heteroatoms may have a substituent, and examples of the substituent include a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group, an aliphatic heterocyclic group, and an aromatic heterocyclic group. examples of these include the groups listed in the substituent of the alkyl groups mentioned in the description of R 1, radicals or R 1 listed in the description of R 2, R 2.
  • alkylene group examples include linear or branched alkyl groups having 1 to 30 carbon atoms, preferably 1 to 10 carbon atoms, in which one hydrogen atom is removed. Specific examples include those obtained by removing one hydrogen atom from the alkyl group described in the description of R 1 and R 2 .
  • These alkylene groups may have a substituent, and examples of the substituent include the substituents of the alkyl group described in the description of R 1 and R 2 .
  • Examples of the alkylene group containing an arylene group include those in which an arylene group is contained in the above-described alkylene group.
  • the arylene group mentioned here includes a divalent aromatic hydrocarbon ring group described later.
  • the arylene group may have a substituent, and examples of the substituent include the substituents of the alkyl group described in the description of R 1 and R 2 .
  • the alkylene group containing these arylene groups may have a substituent, and examples of the substituent include the substituents of the alkyl group described in the description of R 1 and R 2 .
  • alkylene group containing a cycloalkylene group examples include those in which a cycloalkylene group is contained in the above-described alkylene group.
  • the cycloalkylene group includes a divalent aliphatic hydrocarbon ring group described later.
  • the cycloalkylene group may have a substituent, and examples of the substituent include the substituents of the alkyl group described in the description of R 1 and R 2 .
  • These alkylene groups including a cycloalkylene group may have a substituent, and examples of the substituent include the substituents of the alkyl group described in the description of R 3 to R 12 .
  • Examples of the alkylene group containing a hetero atom include those in which the above-described alkylene group contains a hetero atom.
  • examples of the hetero atom include an oxygen atom, a nitrogen atom, and a silicon atom.
  • the alkylene group containing these hetero atoms may have a substituent, and examples of the substituent include the substituents of the alkyl group described in the description of R 1 and R 2 .
  • divalent aliphatic hydrocarbon ring group examples include divalent groups derived from the cycloalkyl groups described in the description of R 1 and R 2 . These divalent aliphatic hydrocarbon ring groups may have a substituent, and examples of the substituent include the substituents of the alkyl group described in the description of R 1 and R 2 .
  • divalent aliphatic heterocyclic group examples include divalent groups derived from the aliphatic heterocyclic group described in the description of R 1 and R 2 . These divalent aliphatic heterocyclic groups may have a substituent, and examples of the substituent include the substituents of the alkyl group described in the description of R 1 and R 2 .
  • divalent aromatic hydrocarbon ring group examples include divalent groups derived from the aryl group described in the description of R 1 and R 2 . These divalent aromatic hydrocarbon groups may have a substituent, and examples of the substituent include the substituents of the alkyl group described in the description of R 1 and R 2 .
  • divalent aromatic heterocyclic group examples include divalent groups derived from the aromatic heterocyclic group described in the description of R 1 and R 2 . These divalent aromatic heterocyclic groups may have a substituent, and examples of the substituent include the substituents of the alkyl group described in the description of R 1 and R 2 .
  • the divalent aliphatic hydrocarbon ring group, the divalent aliphatic heterocyclic group, the divalent aromatic hydrocarbon ring group, and the divalent aromatic heterocyclic group may have a polycyclic structure.
  • A represents an alkylene group, an alkylene group containing an arylene group, an alkylene group containing a cycloalkylene group, an alkylene group containing a hetero atom, a divalent aliphatic hydrocarbon ring group, a divalent aliphatic heterocyclic group, a divalent An aromatic hydrocarbon ring group and a divalent aromatic heterocyclic group may be linked.
  • A is an alkylene group, an alkylene group containing an arylene group, an alkylene group containing a cycloalkylene group, a divalent aliphatic hydrocarbon ring group, or a divalent aromatic hydrocarbon.
  • a cyclic group is preferred.
  • an alkylene group an alkylene group containing a cyclohexylene group, an alkylene group containing a phenylene group, a phenylene group, a naphthylene group, a polycyclic phenylene group, a group in which a phenylene group is linked by an alkylene group, a cyclohexylene group Is particularly preferably a group in which are linked by an alkylene group.
  • Any oligomer chain that is generally used can be used.
  • examples thereof include oligomer chains such as polystyrene, polyethylene glycol, polyacrylate, polymethacrylate, polyester, polyamide, polyethylene, polypropylene, polycarbonate, polyurethane, and polypeptide, and copolymers thereof.
  • Any polymer chain that is generally used can be used. Examples thereof include polymer chains such as polystyrene, polyethylene glycol, polyacrylate, polymethacrylate, polyester, polyamide, polyethylene, polypropylene, polycarbonate, polyurethane and polypeptide, and copolymers thereof.
  • X 1 , X 2 , X 3 , X 4 , X 5 and X 6 each independently represent an oxygen atom, a nitrogen atom, a phosphorus atom or a sulfur atom.
  • Y 1 and Y 2 each independently represent a carbon atom, a silicon atom, or a sulfur atom.
  • Preferable combinations of X 1 , Y 1 , X 5 , and X 3 include those shown in Table 1 below, for example.
  • Examples 1, 2, 5, 6, 7, 8, 11, and 12 are more preferable, and Example 1 is more preferable.
  • Preferable combinations of X 2 , Y 2 , X 6 and X 4 include those shown in Table 2 below, for example.
  • optically active cyclic nitrogen-containing compound examples include the following compounds.
  • a commercially available product can be used as the optically active cyclic nitrogen-containing compound used in the present invention, and it can also be synthesized.
  • a method for producing an optically active diarylmethylpyrrolidine compound among optically active cyclic nitrogen-containing compounds will be described.
  • Optically active diarylmethylpyrrolidine compounds can be synthesized, for example, according to the methods described in Tetrahedron 1993, 49, 5127-5132 and Tetrahedron: Asymmetry 1997, 8, 149-153. The method can be represented by the following Schemes 2 and 3.
  • compound 17 can be synthesized according to the method described in Tetrahedron 1993, 49, 5127-5132.
  • (R)-or (S) -proline (compound 16) and an alkali metal compound represented by the general formula M 2 CO 3 were dissolved in an alcohol compound represented by the general formula R 44 OH.
  • a chlorocarbonate compound represented by the general formula ClCO 2 R 43 can be dropped into the solution in the range of 0 to 30 ° C.
  • the amount (L) of the solvent used is, for example, 1 to 30 times the volume [L / kg], preferably 5 to 20 times the volume [kg] of the substrate (R)-or (S) -proline. L / kg].
  • the compound 17 obtained as described above can be isolated and purified by commonly used operations such as extraction, recrystallization and various chromatography.
  • the synthesis of compound 21 involves dissolving (R)-or (S) -hydroxyproline (compound 20) and an alkali metal compound represented by the general formula M 2 CO 3 in an alcohol compound represented by the general formula R 44 OH.
  • the chlorocarbonate compound represented by the general formula ClCO 2 R 43 can be added dropwise to the solution in the range of 0 to 30 ° C.
  • the amount (L) of the solvent used is, for example, 1 to 30 times volume [L / kg], preferably 5 to 20 times the volume (kg) of the substrate (R)-or (S) -hydroxyproline. [L / kg].
  • the compound 21 obtained as described above can be isolated and purified by commonly used operations such as extraction, recrystallization and various chromatography.
  • the group represented by R 43 includes a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, An alkyl group having 1 to 8 carbon atoms such as an octyl group; a cyclic alkyl group having 1 to 8 carbon atoms such as a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cycloheptyl group and a cyclooctyl group; a benzyl group and a p-methylbenzyl group And an aralkyl group having 7 to 10 carbon atoms such as
  • examples of the metal represented by M include lithium, sodium, potassium, cesium and the like.
  • examples of the group represented by R 44 include the alkyl groups listed in the description of R 43 .
  • Compound 18 can be synthesized according to the method described in Tetrahedron: Asymmetry 1997, 8, 149-153.
  • Compound 18 was synthesized by adding an ether solution of compound 17 represented by the general formula ArMg (halogen), such as THF, to an ether solution of compound 17 in tetrahydrofuran (hereinafter abbreviated as THF) under an inert gas atmosphere.
  • THF tetrahydrofuran
  • the reaction is performed dropwise at 20 ° C., and the reaction temperature is finally raised to about 70 ° C. and maintained for 3 to 6 hours.
  • the amount (L) of the solvent used is, for example, 1 to 40 times volume [L / kg], preferably 5 to 25 times volume [L / kg], relative to the weight (kg) of compound 17 as the substrate.
  • the compound 18 obtained as described above can be isolated and purified by commonly used operations such as extraction, recrystallization and various chromatography.
  • Compound 22 can be synthesized according to the method described in Tetrahedron: Asymmetry 1997, 8, 149-153.
  • Compound 22 was synthesized by adding an ether solution of a Grignard compound represented by the general formula ArMg (halogen) such as THF to an ether solution of Compound 21 such as THF at ⁇ 5 to 20 ° C. in an inert gas atmosphere.
  • the reaction temperature is finally raised to about 70 ° C. and maintained for 3 to 6 hours.
  • the amount (L) of the solvent used is, for example, 1 to 40 times volume [L / kg], preferably 5 to 25 times volume [L / kg], relative to the weight (kg) of compound 21 as a substrate.
  • the compound 22 obtained as described above can be isolated and purified by commonly used operations such as extraction, recrystallization and various chromatography.
  • examples of the aryl group represented by Ar include an aryl group which may have a substituent having 6 to 20 carbon atoms.
  • Specific examples of the aryl group include aryl groups listed in the description of R 1 to R 12 of the optically active cyclic nitrogen-containing compound represented by the general formula (1) and the general formula (2).
  • aryl group examples include phenyl group, tolyl group, isopropylphenyl group, xylyl group, t-butylphenyl group, cyclohexyl group, 1-methylcyclohexyl group, adamantylphenyl group, trifluoromethylphenyl group, naphthyl group, anthryl group, A phenanthryl group, a biphenyl group, a 4- (2′-p-tolylpropyl) phenyl group and the like can be mentioned.
  • examples of the halogen atom represented by halogen include chlorine, bromine and iodine.
  • the compound represented by Compound 23 can be easily synthesized by a general method, for example, a method of adding Compound 22 to an isocyanate represented by RNCO.
  • the synthesis of compound 23 is represented by the general formula RNCO in the presence of a Lewis acid catalyst such as copper (I) chloride in an aprotic polar solution of compound 22, such as N, N-dimethylformamide (hereinafter abbreviated as DMF).
  • a Lewis acid catalyst such as copper (I) chloride
  • DMF aprotic polar solution of compound 22, such as N, N-dimethylformamide
  • the amount (L) of the solvent used is, for example, 1 to 20 times the volume [L / kg], preferably 3 to 10 times the volume [L / kg] with respect to the weight (kg) of the compound 6 as the substrate.
  • the compound 23 obtained as described above can be isolated and purified by commonly used operations such as extraction, recrystallization and various chromatography.
  • examples of the substituent represented by R include R 1 to R 12 of the optically active cyclic nitrogen-containing compound represented by the general formula (1) and the general formula (2). And the substituents and polymer chains listed in the description.
  • examples of the substituent include an alkyl group, a cycloalkyl group, an alkenyl group, an aryl group, an aralkyl group, a carboxyl group, an alkoxycarbonyl group, an amide group, an aromatic heterocyclic group, and an aliphatic heterocyclic group. Any of these groups may have a substituent.
  • optically active diarylmethylpyrrolidine compound represented by Compound 19 can be synthesized according to the method described in Tetrahedron: Asymmetry 1997, 8, 149-153.
  • Synthesis of Compound 19 is carried out in the presence of 0.1 to 40% by weight of a palladium catalyst with respect to Compound 18 in the alcohol solvent represented by R 44 OH, THF, or a mixed solvent thereof, 20 to It is carried out by debenzylation at 80 ° C. under a hydrogen atmosphere of about 0.1 MPa to 1 MPa for 1 to 10 days.
  • the amount (L) of the solvent used is, for example, 1 to 50 times volume [L / kg], preferably 5 to 40 times volume [L / kg], relative to the weight (kg) of compound 7 as a substrate.
  • the optically active diarylmethylpyrrolidine compound of Compound 19 obtained as described above can be isolated and purified by commonly used operations such as extraction, recrystallization and various chromatography.
  • the compound 24 was synthesized in the presence of 0.1 to 40% by weight of a palladium catalyst based on the compound 23 in an alcohol solvent represented by R 44 OH, THF, or a mixed solvent thereof. It is carried out by debenzylation at 1 ° C. for 10 days in a hydrogen atmosphere of about 0.1 MPa to 1 MPa at 0 ° C.
  • the amount (L) of the solvent used is, for example, 5 to 50 times the capacity [L / kg], preferably 20 to 40 times the capacity [L / kg] with respect to the weight (kg) of the compound 7 as the substrate.
  • the optically active diarylmethylpyrrolidine compound of Compound 24 obtained as described above can be isolated and purified by commonly used operations such as extraction, recrystallization and various chromatography.
  • the palladium catalyst represented by is selected from debenzylation catalysts such as Pd / C.
  • * represents an asymmetric carbon atom.
  • citral asymmetric hydrogenation catalyst of the present invention an acid is included as another catalyst component.
  • An organic acid or an inorganic acid can be used as the acid, but an organic acid is preferable.
  • organic acids include acetic acid, chloroacetic acid, difluoroacetic acid, trifluoroacetic acid, trichloroacetic acid, tribromoacetic acid, benzoic acid, 2,4-dinitrobenzoic acid, p-toluenesulfonic acid, methanesulfonic acid, and L-lactic acid.
  • DL-tropic acid DL-malic acid, L-malic acid, D-malic acid, DL-tartaric acid, D-tartaric acid, L-tartaric acid, L-dibenzoyltartaric acid, D-dibenzoyltartaric acid, DL-mandelic acid, L- Examples include mandelic acid, D-mandelic acid and trifluoromethanesulfonic acid.
  • the inorganic acid include hydrofluoric acid, hydrochloric acid, odorous acid, iodic acid, sulfuric acid, perchloric acid, phosphoric acid, and nitric acid.
  • optically active citronellal can be obtained by asymmetric hydrogenation reaction of geranial, neral or citral in the presence of the above-mentioned catalyst.
  • the amount of metal powder and metal support used as components of the asymmetric hydrogenation catalyst of the present invention varies depending on various reaction conditions, but the total amount of metal powder is based on the weight of the substrate geranial, neral or citral.
  • the weight and the total weight of the metal support are, for example, 0.01 to 10% by weight, preferably 0.02 to 5% by weight.
  • the amount of the optically active cyclic nitrogen-containing compound used as a component of the catalyst of the present invention varies depending on various reaction conditions, but is, for example, 0.01 to 20% by weight with respect to the substrate geranial, neral or citral. Preferably, 0.04 to 10% by weight can be used.
  • the amount of the acid used as a component of the catalyst of the present invention varies depending on various reaction conditions, but is, for example, 0.01 to 10 times mol, preferably 0.2, with respect to the optically active cyclic nitrogen-containing compound. Up to 4 times mol can be used.
  • an optically active carbonyl compound is produced by asymmetric hydrogenation of geranial, neral or citral using the catalyst of the present invention, it can be carried out in the presence or absence of a solvent. preferable.
  • solvents used include aliphatic hydrocarbon organic solvents such as hexane, heptane and octane; alicyclic hydrocarbon organic solvents such as cyclohexane and methylcyclohexane; aromatic carbonization such as benzene, toluene and xylene.
  • Hydrogen-based organic solvents such as diethyl ether, diisopropyl ether, dimethoxyethane, tetrahydrofuran, dioxane, dioxolane; water; alcohol-based organic solvents such as methanol, ethanol, propanol, isopropanol, and tertiary butanol; dichloromethane, dichloroethane, Halogenated hydrocarbon organic solvents such as chlorobenzene and bromotoluene; dimethylformamide, acetonitrile and the like are preferable, and a mixed solvent of these solvents can be used as necessary.
  • ether-based organic solvents such as diethyl ether, diisopropyl ether, dimethoxyethane, tetrahydrofuran, dioxane, dioxolane
  • water alcohol-based organic solvents such as methanol, ethanol, propanol, isopropanol, and tertiary
  • the amount of the solvent used (L) can be appropriately selected depending on the reaction conditions and the like, but for example 0 to 20 times the volume (kg) of the substrate geranial, neral or citral [(L / kg)]
  • the capacity is preferably 0 to 5 times the capacity [(L / kg)].
  • the method of the present invention is carried out using hydrogen gas as a hydrogen source, and the hydrogen pressure is 0.01 MPa to 10 MPa, preferably 0.1 MPa to 1 MPa. Further, as the hydrogen gas, a mixed gas with an inert gas such as nitrogen, helium and argon can be used.
  • the reaction temperature is -78 to 100 ° C, preferably 10 to 70 ° C.
  • the reaction time varies depending on the reaction conditions, but is usually 1 to 30 hours.
  • optically active citronellal obtained as described above can be isolated and purified by a commonly used operation such as distillation. Moreover, the steric configuration of the obtained optically active citronellal can produce d-form or l-form (R-form or S-form) by appropriately selecting the steric configuration of the optically active cyclic nitrogen-containing compound.
  • Step B shown in Scheme 1 of the present invention is achieved by producing an optically active isopulegol by ring-closing the optically active citronellal obtained in Step A.
  • Step B in Scheme 1 As the citronellal ring closure catalyst, an aluminum catalyst is preferably used. This aluminum catalyst is obtained by reacting an organoaluminum compound and a hydroxy compound.
  • the organoaluminum compound used for producing the aluminum catalyst is a trialkylaluminum represented by the general formula (3) or a branched aluminoxane represented by the general formula (8). Selected from at least one organoaluminum oxy compound selected from the optionally branched cyclic aluminoxanes represented by the general formula (9) and bis (dialkylaluminumoxy) alkylboranes represented by the general formula (10). It is preferable that
  • R 13 represents an alkyl group having 1 to 8 carbon atoms.
  • alkyl group having 1 to 8 carbon atoms examples include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, a pentyl group, and a hexyl group. And an octyl group.
  • R 14 is an alkyl group having 1 to 6 carbon atoms, an alicyclic group having 5 to 8 carbon atoms, or an aralkyl group having 7 to 12 carbon atoms which may have a substituent.
  • the plurality of R 14 may be the same or different; o is an integer of 0 to 40.
  • R 15 is an alkyl group having 1 to 6 carbon atoms, an alicyclic group having 5 to 8 carbon atoms, or an aralkyl group having 7 to 12 carbon atoms which may have a substituent.
  • O is an integer of 0 to 40.
  • R 16 is an alkyl group having 1 to 6 carbon atoms, an alicyclic group having 5 to 8 carbon atoms, or an aralkyl group having 7 to 12 carbon atoms which may have a substituent.
  • a plurality of R 16 may be the same or different; and R 17 has an alkyl group having 1 to 6 carbon atoms, an alicyclic group having 5 to 8 carbon atoms, or a substituent. Or an aralkyl group having 7 to 12 carbon atoms.
  • organoaluminum oxy compounds represented by the general formulas (8) to (10) can be given as the following examples.
  • alkyl group having 1 to 6 carbon atoms examples include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, a pentyl group, and a hexyl group.
  • Examples of the alicyclic group having 5 to 8 carbon atoms include a cyclopentyl group, a cyclohexyl group, a methylcyclohexyl group, a cycloheptyl group, and a cyclooctyl group.
  • Examples of the aralkyl group having 7 to 12 carbon atoms which may have a substituent include a benzyl group, a 1-phenylethyl group, a 2-phenylethyl group, an ⁇ -naphthylmethyl group, and a ⁇ -naphthylmethyl group. Can be mentioned.
  • substituents examples include 1 carbon atom such as methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group and hexyl group.
  • O is an integer of 0 to 40, preferably 2 to 30.
  • the organoaluminum oxy compounds represented by the general formulas (8) and (9) are compounds also referred to as aluminoxanes.
  • aluminoxanes methylaluminoxane, ethylaluminoxane, isobutylaluminoxane and methylisobutylaluminoxane are preferable, and methylaluminoxane is particularly preferable.
  • the above aluminoxanes can be used in combination within a group and between groups. And said aluminoxane can be prepared on well-known various conditions.
  • the organoaluminum oxy compound represented by the general formula (10) includes one type of trialkylaluminum represented by (R 13 ) 3 Al or two or more types of trialkylaluminum, and a general formula R 17 B (OH) 2.
  • R 13 trialkylaluminum
  • R 17 B OH
  • the hydroxy compound used for producing the organoaluminum compound is 2,6-diphenylphenol represented by the general formula (4), 2,6,2 ', 6'- represented by the general formula (5).
  • 1,1′-binaphthyl-2,2′-diol represented by the general formula (6), (2,2-dimethyl-1,3-dioxolane-4,5-diyl represented by the general formula (7) ) Bis (diphenylmethanol) may be optically active.
  • Ar 1 and Ar 2 are each independently an aryl group having 6 to 15 carbon atoms which may have a substituent, or a carbon number which may have a substituent.
  • a condensed benzene ring, a condensed substituted benzene ring, a trimethylene group, a tetramethylene group, a pentamethylene group, a methylenedioxy group, an ethylenedioxy group, or a trimethylenedioxy group may be formed.
  • Ar 3 , Ar 4 , Ar 5 and Ar 6 each independently have a C 6-15 aryl group which may have a substituent, or a substituent.
  • R 21 , R 22 , R 23 and R 24 are each independently a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, an alicyclic group having 5 to 8 carbon atoms, or 1 to 4 carbon atoms.
  • Perfluoroalkyl group an alkoxy group having 1 to 8 carbon atoms, an aralkyl group having 7 to 12 carbon atoms which may have a substituent, a halogen atom, an organosilyl group, and an optionally substituted carbon
  • R 21 or R 22 and / or R 23 or R 24 may combine with A ′ to form an aromatic or non-aromatic ring;
  • a ′ represents (1)
  • R 28 , R 29 , R 30 , R 31 , R 32 , R 33 , R 34 and R 35 are each independently a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, a perfluoroalkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, or an alkyl group having 5 to 8 carbon atoms.
  • R 33 , R 33 and R 34, or R 34 and R 35 are bonded to each other, and are each independently a condensed benzene ring, a condensed substituted benzene ring, a trimethylene group, a tetramethylene group, a pentamethylene group, a methylenedioxy group.
  • An ethylenedioxy group or a trimethylenedioxy group may be formed.
  • R 36 , R 37 , R 38 , and R 39 are each independently a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, or an alicyclic ring having 5 to 8 carbon atoms.
  • a group, a nitro group or a polymer chain, and R 36 and R 37 and R 38 and R 39 may be bonded to each other to form a 3- to 9-membered ring which may each independently have a hetero element.
  • Ring B may have a hetero element There is a 3- to 8-membered ring.
  • R 40 , R 41 , and R 42 are each independently an alkyl group having 1 to 10 carbon atoms, an alicyclic group having 5 to 8 carbon atoms, or 7 carbon atoms. Or an aralkyl group having 12 to 12 carbon atoms, an aryl group having 6 to 10 carbon atoms which may have a substituent, a heteroaryl group having 2 to 15 carbon atoms which may have a substituent, or a polymer chain.
  • Examples of the aryl group having 6 to 15 carbon atoms which may have a substituent include a benzyl group, an ⁇ -naphthyl group and a ⁇ -naphthyl group.
  • substituents examples include carbon number such as methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, and hexyl group.
  • heteroaryl group having 2 to 15 carbon atoms which may have a substituent include a furyl group, a thienyl group, a pyronyl group, a benzofuryl group, an izobenzofuryl group, a benzothienyl group, an indolyl group, an isoindolyl group, a carbazoyl group, Examples include a pyridyl group, a quinolyl group, an isoquinolyl group, a pyrazyl group, and a ferrocenyl group.
  • substituent include the same substituents as those mentioned for the aryl group.
  • alkyl group having 1 to 8 carbon atoms examples include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, a pentyl group, and a hexyl group. , Heptyl group, octyl group and the like.
  • Examples of the alicyclic group having 5 to 8 carbon atoms include a cyclopentyl group, a cyclohexyl group, a methylcyclohexyl group, a cycloheptyl group, and a cyclooctyl group.
  • Examples of the perfluoroalkyl group having 1 to 4 carbon atoms include a trifluoromethyl group, a pentafluoroethyl group, a heptafluoropropyl group, and a nonafluorobutyl group.
  • alkoxy group having 1 to 8 carbon atoms examples include methoxy group, ethoxy group, n-propoxyl group, isopropoxy group, n-butoxy group, isobutoxy group, sec-butoxy group, tert-butoxy group, pentoxy group, hexoxy group , Heptoxy group, octoxy group and the like.
  • Examples of the aralkyl group having 7 to 12 carbon atoms which may have a substituent include a benzyl group, a 1-phenylethyl group, a 2-phenylethyl group, an ⁇ -naphthylmethyl group and a ⁇ -naphthylmethyl group. It is done.
  • examples of the substituent include the same substituents as those mentioned for the aryl group.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • organosilyl group examples include a tri-substituted silyl group.
  • the substituent is three substituents selected from an alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 18 carbon atoms, and an aralkylsilyl group having 7 to 19 carbon atoms, which may be the same or different from each other. May be.
  • Examples of the alkyl group having 1 to 6 carbon atoms include a methyl group, an ethyl group, an isopropyl group, a 2,3-dimethyl-2-butyl group, a hexyl group, and a tert-butyl group.
  • Examples of the aryl group having 6 to 18 carbon atoms include a phenyl group and a naphthyl group.
  • Examples of the aralkyl group having 7 to 19 carbon atoms include a benzyl group and a p-xylyl group.
  • organosilyl group examples include trimethylsilyl group, triethylsilyl group, triisopropylsilyl group, dimethylisopropylsilyl group, diethylisopropylsilyl group, dimethyl (2,3-dimethyl-2-butyl) silyl group, and tert-butyldimethylsilyl group.
  • tri-C1-C6 alkylsilyl group such as dimethylhexylsilyl group, di-C1-C6 alkyl-C6-C18 arylsilyl group such as dimethylcumylsilyl group, tert-butyldiphenylsilyl group And di-carbon number 6-18 aryl such as diphenylmethylsilyl group, alkylsilyl group having 1-6 carbon atoms, tri-carbon number 6-18 arylsilyl group such as triphenylsilyl group, tribenzylsilyl group and tri-p -Tri-carbons such as xylylsilyl groups 7-19 trisubstituted silyl group such as aralkyl silyl group.
  • dialkylamino group having 2 to 8 carbon atoms examples include a dimethylamino group, a diethylamino group, a dipropylamino group, a diisopropylamino group, and a dibutylamino group.
  • Examples of the thioalkyl group having 1 to 4 carbon atoms include methylthio group, ethylthio group, n-propylthio group, isopropylthio group, n-butylthio group, isobutylthio group, sec-butylthio group, and tert-butylthio group. .
  • polymer chain examples include a 6,6-nylon chain, a vinyl polymer chain, and a styrene polymer chain.
  • R 18 and R 19 or R 19 and R 20 are bonded to each other and are each independently a condensed benzene ring, a condensed substituted benzene ring, a trimethylene group, a tetramethylene group, a pentamethylene group, a methylene diene.
  • An oxy group, an ethylenedioxy group or a trimethylenedioxy group may be formed.
  • R 21 and R 22 or R 23 and R 24 are bonded to each other and are each independently a condensed benzene ring, a condensed substituted benzene ring, a trimethylene group, a tetramethylene group, a pentamethylene group, A methylenedioxy group, an ethylenedioxy group or a trimethylenedioxy group may be formed.
  • R 28 and R 29 , R 29 and R 30 , R 30 and R 31 , R 31 and R 35 , R 32 and R 33 , R 33 and R 34, or R 34 and R 35 Are bonded to each other to form a condensed benzene ring, a condensed substituted benzene ring, a trimethylene group, a tetramethylene group, a pentamethylene group, a methylenedioxy group, an ethylenedioxy group, or a trimethylenedioxy group. Also good.
  • the condensed benzene ring, condensed substituted benzene ring, trimethylene group, tetramethylene group, pentamethylene group, methylenedioxy group, ethylenedioxy group or trimethylenedioxy group may be substituted with an inert functional group.
  • the substituent may be preferably in the range of 0 to 4.
  • examples of the substituent include the same substituents as those exemplified for the aryl group.
  • At least one selected from hydroxy compounds represented by general formula (12) and general formula (13) may form a polymer.
  • R 21 or R 22 and / or R 23 or R 24 may form a cyclic aromatic or non-aromatic ring together with A ′.
  • the bis (diarylphenol) s represented by the general formula (12) used in the present invention have a tricyclic basic structure, for example, an anthracene basic structure or a general formula (12b) having the general formula (12a). ).
  • a ′ is (1) a linear or branched and / or cyclic group having 1 to 25 carbon atoms even if it has a substituent and / or an unsaturated bond.
  • a ′ of (1) a linear or branched and / or cyclic hydrocarbon group having 1 to 25 carbon atoms which may have a substituent and / or an unsaturated bond in the general formula (12)
  • the following structures 1 to 44 can be exemplified.
  • the wavy line represents a binding site for the remaining site of the structure of the general formula (12) disclosed in the present specification.
  • Structures 1 to 44 represented above may have a substituent, and examples of the substituent include the same substituents as those exemplified for the aryl group.
  • Examples of A ′ of (2) the arylene group having 6 to 15 carbon atoms that may have a substituent in the general formula (12) include, for example, a phenylene group, a naphthylene group, and an anthracenylene group.
  • Examples of A ′ in the heteroarylene group having 2 to 15 carbon atoms which may have a substituent in the general formula (12) include, for example, a furylene group, a thienylene group, a pyronylene group, a benzofurylene group, Illustrative examples include an izobenzofurylene group, a benzothienylene group, an indolenylene group, an isoindoleylene group, a carbazoylene group, a pyridylene group, a quinolylene group, an isoquinolylene group, a pyrazilene group, and a ferrocenylene group.
  • the arylene group and heteroarylene group may have a substituent, and examples of the substituent include the same substituents as those exemplified for the aryl group.
  • a ′ is (4) —O—, —S—, —N (R 25 ) —, —S (O) —, —C (O) —, —S (O). 2 —, —P (R 25 ) —, — (R 25 ) P (O) — and —Si (R 26 R 27 ) — are functional groups or heteroelements [where R 25 R 27 are each independently an alkyl group having 1 to 6 carbon atoms, an alicyclic group having 5 to 8 carbon atoms, or an aralkyl group having 7 to 12 carbon atoms which may have a substituent. Or an aryl group having 6 to 10 carbon atoms which may have a substituent. ].
  • R 25 R 27 are each independently an alkyl group having 1 to 6 carbon atoms, an alicyclic group having 5 to 8 carbon atoms, or an aralkyl group having 7 to 12 carbon atoms which may have a substituent. Or an aryl
  • R 36 and R 37 and R 38 and R 39 may combine to form a 3- to 9-membered ring which may have a hetero element.
  • the hetero element include oxygen, nitrogen, phosphorus, sulfur, boron, silicon, and a metal element capable of forming a metallocycle.
  • a plurality of hetero elements may be present in the ring B. In that case, the same hetero element or different hetero elements may be used.
  • the ring B may have a substituent, and the hetero element may have a substituent.
  • examples of the substituent include the same substituents as those mentioned for the aryl group.
  • the hydroxy compound represented by the general formula (14) may form a polymer through a substituent or a carbon chain present in the formed 3 to 9-membered ring.
  • the ring B is a 3- to 8-membered ring which may have a hetero element.
  • the hetero element include oxygen, nitrogen, phosphorus, sulfur, boron, silicon, and a metal element that can form a metallocycle.
  • a plurality of hetero elements may be present in the ring B. In this case, the same hetero element or different hetero elements may be used.
  • the ring B may have a substituent, and the hetero element may have a substituent.
  • ring B examples include, for example, cyclopropane ring, cyclobutane ring, cyclopentane ring, cyclohexane ring, cycloheptane ring, cyclooctane ring, benzene ring, naphthalene ring, norbornane ring, norbornene ring, decalin ring, furan ring, Tetrahydrofuran ring, dioxolane ring, dioxane ring, dioxacycloheptane ring, trioxacycloheptane ring, lactone ring, lactam ring, morpholine ring, pyropidine ring, piperidine ring, pyrazine ring, thiophene ring, tetrahydrohyophene ring, etc. It is done.
  • examples of the substituent include the same substituents as those mentioned for the aryl group.
  • the hydroxy compound represented by the general formula (14) may form a polymer via a substituent or a carbon chain present in the ring B.
  • the diarylphenols represented by the general formula (11) are described in Patent Document 7, for example.
  • Preferred diarylphenols of the general formula (11) include, for example, 2,6-diphenylphenol, 2,6-di (4-fluorophenyl) phenol, 2,6-di (3,4-difluorophenyl) phenol.
  • R 21 , R 22 , R 23 and R 24 include a hydrogen atom, a methyl group, an ethyl group, an isopropyl group, a herogen atom (fluorine atom, chlorine). Atom), trifluoromethyl group, phenyl group, methoxy group, nitro group and the like. More preferably, R 21 , R 22 , R 23 and R 24 are the same, and a hydrogen atom is particularly preferable.
  • Preferred Ar 3 , Ar 4 , Ar 5 and Ar 6 are, for example, a phenyl group, a naphthyl group, a 4-fluorophenyl group, a 4-chlorophenyl group, a 3-chlorophenyl group, a 3,5-dichlorophenyl group, a 4- A methylphenyl group, a 3-trifluoromethylphenyl group, and a 4-trifluoromethylphenyl group, more preferably Ar 3 , Ar 4 , Ar 5, and Ar 6 , and particularly preferably a phenyl group.
  • examples of preferable A ′ include a single bond and the structures 1 to 44 described above. More preferred are structures 1 to 5 described above.
  • Biaryl diols of the general formula (13) are described in, for example, Patent Document 8 [incorporated herein by reference. ].
  • Preferred diarylphenols represented by general formula (13) include, for example, the following compounds, but are not limited thereto.
  • the dimethanols of the general formula (14) are described in, for example, US Pat. No. 6,166,260 and Synlett, 1998, pp. 1291-1293; Tetrahedron: Asymmetry, 1991, Vol. 2, no. 12, pp. 1295-1304; CROATIA CHEMICA ACTA, 1996, 69, pp. 459-484; Russian Chemical Bulletin, 2000, 49, pp. 460-465 [incorporated herein by reference. ].
  • Preferred dimethanols of the general formula (14) include, for example, 2,2-dimethyl- ⁇ , ⁇ , ⁇ ′, ⁇ ′-tetraphenyl-1,3-dioxolane-4,5-dimethanol (TADDOL) and 2,2-dimethyl- ⁇ , ⁇ , ⁇ ′, ⁇ ′-tetra (1-naphthyl) -1,3-dioxolane-4,5-dimethanol (NAPHTADDOL), but are not limited thereto. Absent.
  • silanols of the general formula (15) are described in, for example, International Publication No. 2007/039342 and International Publication No. 2007/039376 [incorporated herein by reference. ].
  • silanols of the general formula (15) include, but are not limited to, trimethylsilanol, triethylsilanol, tert-butyldimethylsilanol, triphenylsilanol, and trinaphthylsilanol.
  • the organoaluminum catalyst used in Step B of the present invention is at least one selected from trialkylaluminum represented by the general formula (3) or an organic aluminiumoxy compound represented by the general formulas (8) to (10). And at least one selected from hydroxy compounds represented by the general formulas (4) to (7) and (11) to (15).
  • the above reaction can be carried out in the presence of an inert solvent.
  • the solvent include aliphatic hydrocarbons (such as hexane, heptane, and octane), alicyclic hydrocarbons (such as cyclohexane and methylcyclohexane), aromatic hydrocarbons (such as benzene, toluene, and xylene), and ethers (diethyl ether).
  • Diisopropyl ether dimethoxyethane, methyl tert-butyl ether, tetrahydrofuran, dioxane, and dichiolarane
  • halogenated hydrocarbons halogenated hydrocarbons
  • organic solvents such as toluene, heptane and dichloromethane are preferred. These solvents are preferably dried in advance or an anhydrous solvent.
  • the amount (L) of the solvent used is preferably in the range of 1 to 10000 times capacity [L / kg], more preferably 20 to 400 times capacity [L / kg] with respect to the hydroxy compound (kg). is there.
  • the degree of polymerization of the aluminoxane is preferably 2 or more.
  • the reaction temperature is preferably in the range of about ⁇ 60 to 100 ° C., more preferably in the range of about ⁇ 30 to 50 ° C., and particularly preferably in the range of about ⁇ 5 to 30 ° C.
  • the organoaluminum catalyst can be produced smoothly by reacting for about 0.25 to 30 hours, more preferably about 0.5 to 10 hours while maintaining the above temperature.
  • the organoaluminum catalyst of the present invention has an excellent effect as a catalyst in carrying out a citronellal ring-closing reaction.
  • optically active isopulegol is obtained by ring-closing reaction of optically active citronellal in the presence of the aforementioned catalyst.
  • the optically active citronellal which is a raw material compound, is produced by the process A.
  • the amount of the organoaluminum catalyst used as a catalyst for the ring-closing reaction of the optically active citronellal in Step B is preferably in the range of about 0.05 to 10 mol%, and about 0.1 to 2 mol% relative to citronellal. It is more preferable to set the range.
  • the catalyst used in the citronellal ring-closure reaction in the present invention is a) in advance in the reaction system at least one selected from the organic arnium compounds represented by the general formulas (3) and (8) to (10); After preparing a catalyst (organoaluminum compound) by mixing at least one selected from (4) to (7) among the hydroxy compounds represented by 4) to (7) and (11) to (15) B) a method of charging citronellal, b) a method of previously charging an organoaluminum catalyst prepared by mixing the organic aluminium compound and the hydroxy compound with citronellal alone during the ring-closing reaction; Results are obtained.
  • the temperature of the citronellal ring-closing reaction is preferably in the range of about ⁇ 60 to 100 ° C., more preferably in the range of about ⁇ 30 to 50 ° C., and preferably about ⁇ 5 to 20 ° C. Particularly preferred.
  • the isopulegol represented by Step B in Scheme 1 can be produced smoothly by reacting for about 0.25 to 30 hours, more preferably about 0.5 to 20 hours while maintaining the above temperature.
  • the citronellal ring-closure reaction in the present invention can be carried out under solvent-free conditions or in the presence of an inert solvent.
  • the solvent used is not particularly limited as long as it does not significantly inhibit this reaction, and examples thereof include aliphatic hydrocarbons (hexane, heptane, octane, etc.), alicyclic hydrocarbons (cyclohexane and methyl).
  • Cyclohexane aromatic hydrocarbons (such as benzene, toluene, and xylene), ethers (such as diethyl ether, diisopropyl ether, dimethoxyethane, methyl tert-butyl ether, tetrahydrofuran, dioxane, and dichiaolane) and halogenated hydrocarbons (dichloromethane, dichloroethane, and Chlorobenzene) and the like.
  • organic solvents such as toluene, heptane and dichloromethane are preferred. These solvents are preferably dried beforehand or anhydrous solvents.
  • the amount of these solvents used (L) is preferably about 0 to 20 times the capacity [L / kg], and 0.5 to 7 times the capacity [L / kg] of citronellal (kg). It is more preferable.
  • vinyl ethers, ketones, aldehydes, acid compounds and base compounds may be added in the sense of suppressing side reactions during the reaction.
  • vinyl ethers include methyl vinyl ether, ethyl vinyl ether, isobutyl vinyl ether and 3,4-dihydro-2H-pyran.
  • ketones include 1,1,1-trifluoroacetone, 1,1,1-trifluoroacetophenone, hexafluoroacetone, methyl pyruvate and ethyl pyruvate.
  • aldehydes include acetaldehyde, propionaldehyde, and chloral (trichloroacetaldehyde).
  • ketones include 1,1,1-trifluoroacetone, 1,1,1-trifluoroacetophenone, methyl pyruvate, ethyl pyruvate, and hexafluoroacetone.
  • aldehydes include acetaldehyde, propionaldehyde, and chloral.
  • the acid compound include, for example, mineral acids (such as phosphoric acid, hydrochloric acid and sulfuric acid), organic acids (such as formic acid, acetic acid, propionic acid, decanoic acid, citronellic acid, geranilic acid and neryl acid), organic acid anhydrides ( Acetic anhydride, propionic anhydride, pivalic anhydride, maleic anhydride, succinic anhydride, pivaloyl anhydride, benzoic anhydride, etc.).
  • the base compound include inorganic bases (such as lithium hydroxide, sodium hydroxide, potassium hydroxide, lithium carbonate, sodium carbonate and potassium carbonate) and organic bases (such as trimethylamine and triethylamine).
  • the amount of vinyl ethers, ketones, aldehydes, acid compounds and base compounds to be added is preferably 0.01 to 5 mol% with respect to citronellal (mol), preferably in the range of 0.05 to 2 mol%. More preferably.
  • the ring-closing reaction is preferably performed in an inert gas atmosphere such as nitrogen gas or argon gas for smooth progress of the ring-closing reaction.
  • optically active isopulegol obtained by Step B of Scheme 1 can be obtained simply by a treatment by distillation, or by cryogenic crystallization to obtain a highly pure optically active isopulegol.
  • the organoaluminum catalyst of the present invention for the organoaluminum catalyst that is hardly soluble in the solvent, after isopulegol produced by decanting the solution after completion of the reaction is removed, citronellal is further added to continuously perform the ring-closure reaction. be able to. Alternatively, it can be removed by filtration after completion of the ring closure reaction and used as it is in the next ring closure reaction.
  • the deactivated catalyst can be added to the reaction solution and used for the next ring closure reaction.
  • All ligands of organoaluminum compounds can be reused again as a catalyst by treating the catalyst layer with acid or alkali after catalyst deactivation and recovering by recrystallization.
  • Steps D-3, 4, 7, 8, 11, 12, 15 and 16 shown in Scheme 1 of the present invention crystallize the optically active isopulegol obtained in Step B at a low temperature (deep cooling crystallization). To produce an optically active isopulegol of higher chemical and optical purity.
  • Steps D-3, 4, 7, 8, 11, 12, 15 and 16 Cryogenic crystallization of optically active isopulegol> Cryogenic crystallization of optically active isopulegol is described in, for example, Japanese Patent No. 3241542 [incorporated herein by reference. ].
  • an optically active isopulegol having both chemical purity and optical purity of 99.7% or more can be obtained. .
  • the temperature of the crystallization of optically active isopulegol is preferably in the range of about ⁇ 60 to ⁇ 20 ° C., particularly preferably in the range of about ⁇ 50 to ⁇ 25 ° C. While gradually lowering the temperature, crystals of optically active isopulegol having both chemical purity and optical purity of 99.7% or more are precipitated, stirred and aged. In order to accelerate the precipitation of crystals, a small amount of crystals of optically active isopulegol having both chemical purity and optical purity of 99.7% or more can be added.
  • the crystallization time is preferably about 1 to 30 hours, more preferably about 10 to 20 hours.
  • the precipitated high-purity isopulegol is filtered by a centrifugal separator to produce a high-purity optically active isopulegol represented by steps D-3, 4, 7, 8, 11, 12, 15 and 16 in Scheme 1. can do.
  • aliphatic hydrocarbons hexane, heptane, octane, petroleum ether, etc.
  • alicyclic hydrocarbons cyclohexane, methylcyclohexane, etc.
  • aromatic hydrocarbons Benzene, toluene, xylene, etc.
  • ether diethyl ether, diisopropyl ether, dimethoxyethane, methyl tert-butyl ether, tetrahydrofuran, dioxane, dioxane, etc.
  • alcohol methanol, ethanol, isopropanol, etc.
  • ketone acetone, methyl ethyl ketone, etc.
  • organic solvents such as heptane, petroleum ether, and acetone are preferable. These solvents are preferably dried beforehand or anhydrous solvents.
  • the amount of these solvents used (L) is preferably about 0.5 to 5 times the volume [L / kg], preferably 1 to 3 times the volume [L / kg] of isopulegol (kg). It is more preferable.
  • high-purity optically active isopulegol which is odorless and has only a refreshing sensation
  • high purity optically active isopulegol having only odorless and refreshing feeling can be produced by simple distillation after deep cooling.
  • Steps C-1, 2, 5, 6, 9, 10, 13, 14 and Steps E-3, 4, 7, 8, 11, 12, 15, and 16 shown in Scheme 1 of the present invention are the steps B or This is achieved by producing optically active menthol by hydrogenating the optically active isopulegol obtained in Step D using a catalyst.
  • Steps C-1, 2, 5, 6, 9, 10, 13, 14 and Steps E-3, 4, 7, 8, 11, 12, 15, 16 Hydrogenation reaction of optically active isopulegol>
  • the method for hydrogenating the carbon-carbon double bond portion of the optically active isopulegol can be performed by a usual method. That is, an optically active menthol can be produced by putting a catalyst having hydrogenation ability such as Raney nickel or Pd / C into an autoclave and hydrogenating the optically active isopulegol without solvent or by applying hydrogen pressure in the presence of solvent. .
  • the hydrogenation temperature of the optically active isopulegol is preferably in the range of about 0 to 80 ° C, particularly preferably in the range of about 20 to 60 ° C.
  • the reaction time is preferably about 1 to 30 hours, more preferably about 3 to 15 hours.
  • the optically active menthol can be produced by filtering and distilling the optically active menthol.
  • aliphatic hydrocarbons hexane, heptane, octane, petroleum ether, etc.
  • alicyclic hydrocarbons cyclohexane, methylcyclohexane, etc.
  • aromatic hydrocarbons Benzene, toluene, xylene, etc.
  • ether diethyl ether, diisopropyl ether, dimethoxyethane, methyl tert-butyl ether, tetrahydrofuran, dioxane, dioxane, etc.
  • alcohol methanol, ethanol, isopropanol, etc.
  • ketone acetone, methyl ethyl ketone, etc.
  • organic solvents such as heptane, petroleum ether, and acetone are preferable. These solvents are preferably dried beforehand or anhydrous solvents.
  • the amount of these solvents used (L) is preferably about 0 to 5 times the volume [L / kg], and 0 to 3 times the volume [L / kg] of the optically active menthol (kg). It is more preferable.
  • citral an arbitrary proportion of geranial and neral
  • citral an arbitrary proportion of geranial and neral
  • optically active menthol from citral in a short process
  • the product was measured by gas chromatography (GLC). The conditions are as described below.
  • Analyzing instrument G2010 gas chromatograph column manufactured by Shimadzu Corporation: Citral conversion measurement ... DB-WAX (0.25 mm x 30 m) manufactured by Agilent Measurement of optical purity of citronellal: ⁇ -DEX-225 (0.25mm x 30m) manufactured by Spellco Optical purity measurement of isopulegol: ⁇ -DEX-325 (0.25 mm x 30 m) manufactured by Spellco Detector: FID 1 H-NMR: Varian Inc. 300MHz made
  • Example 10 Among the optically active cyclic nitrogen-containing compounds represented by the general formula (1), the compounds used in Examples 1 to 27 except Example 10 were synthesized by the following method. In Example 10, a compound manufactured by Aldrich was used.
  • Tetrahedron Asymmetry, Vol. 8, no. 1,149-153 (S) -2- (diphenylmethyl) pyrrolidine was synthesized. Under a nitrogen stream, 12.55 g (469 mmol) of magnesium and 50 mL of anhydrous THF were added to a 1 L reaction flask purged with nitrogen and stirred. To this solution, a solution of 100 g (469 mmol) of 4-t-butylphenylbromobenzene in 500 mL of THF was added dropwise and stirred at room temperature for 1 hour (synthesis of a Grignard compound).
  • the mixture was transferred to a separatory funnel, the organic layer was separated, the aqueous layer was re-extracted twice with 500 mL of toluene, and the organic layers were combined and washed twice with saturated brine.
  • the organic layer was dried over anhydrous sodium sulfate, the solvent was distilled off, and the resulting crystals were dissolved with heating in 1.2 L of toluene. After cooling, the obtained crystals were filtered, dried under reduced pressure, and then 65.8 g of (5R)-[3,3,0] -1-aza-2-oxo-3-oxa-4,4-bis- (4'-t-butylphenyl) -bicclooctane was obtained.
  • Tetrahedron Asymmetry, Vol. 8, no. 1,149-153 (S) -2- (diphenylmethyl) pyrrolidine was synthesized.
  • the mixture was transferred to a separatory funnel, the organic layer was separated, the aqueous layer was re-extracted twice with 100 mL of toluene, and the organic layers were combined and washed twice with saturated brine.
  • the organic layer was dried over anhydrous sodium sulfate, the solvent was distilled off, and the obtained crystals were dissolved with heating in 140 mL of ethyl acetate. After cooling, the obtained crystals were filtered, dried under reduced pressure, and 9.13 g of (5S)-[3,3,0] -1-aza-2-oxo-3-oxa-4,4-bis- (4'-t-butylphenyl) -bicclooctane was obtained.
  • Tetrahedron Asymmetry, Vol. 8, no. 1,149-153 (S) -2- (diphenylmethyl) pyrrolidine was synthesized.
  • the obtained organic layer was washed with 100 mL of saturated aqueous sodium hydrogen carbonate solution, 100 mL of water and 100 mL of saturated brine, and dried over anhydrous sodium sulfate. After filtering the desiccant, the filtrate was concentrated to obtain crude 1-methylcyclohexylbenzene.
  • the obtained crude 1-methylcyclohexylbenzene was purified by distillation under reduced pressure (110-113 ° C./10 mmHg) to obtain 40.2 g of the desired product. Yield 36.5%.
  • Synthesis Example 6-2 Synthesis of 4- (1′-Methylcyclohexyl) bromobenzene 20.0 g (115 mmol) of 1-methylcyclohexylbenzene obtained in the above (Synthesis Example 6-1) was added to 279 mg (5.00 mmol) of iron and 198 mg (0.78 mmol) of iodine was added, and 17.8 g (111 mmol) of bromine was slowly added dropwise at 0 ° C. over 1.5 hours, followed by stirring at that temperature for 1.5 hours and at room temperature for 20 hours. The reaction solution was cooled, quenched with 30 mL of saturated aqueous sodium sulfite solution, and extracted three times with 50 mL of hexane.
  • Tetrahedron Asymmetry, Vol. 8, no. 1,149-153 (S) -2- (diphenylmethyl) pyrrolidine was synthesized.
  • 0.591 g (24.3 mmol) of magnesium and 10 mL of anhydrous THF were added and stirred under a nitrogen stream.
  • a solution of 5.00 g (20.3 mmol) of p-1-adamantylphenylchlorobenzene in 30 mL of THF was added dropwise at room temperature, followed by stirring at room temperature for 1 hour (synthesis of a Grignard compound).
  • Tetrahedron Asymmetry, Vol. 8, no. 1,149-153 (S) -2- (diphenylmethyl) pyrrolidine was synthesized.
  • Tetrahedron Asymmetry, Vol. 8, no. 1,149-153 (S) -2- (diphenylmethyl) pyrrolidine was synthesized.
  • Into a nitrogen-substituted 300 mL reaction flask 2.13 g (87.5 mmol) of magnesium and 10 mL of anhydrous THF were added and stirred under a nitrogen stream.
  • a solution of 19.1 g (81.9 mmol) of p-bromobiphenyl in 54 mL of THF was added dropwise at room temperature, followed by stirring at room temperature for 1 hour (synthesis of a Grignard compound).
  • Tetrahedron Asymmetry, Vol. 8, no. 1,149-153 (S) -2- (diphenylmethyl) pyrrolidine was synthesized.
  • 2.41 g (99 mmol) of magnesium and 15 mL of anhydrous THF were added and stirred under a nitrogen stream.
  • a solution of 19.2 g (90 mmol) of 4-t-butylphenylbromobenzene in 75 mL of THF was added dropwise and stirred at room temperature for 1 hour (synthesis of a Grignard compound).
  • Tetrahedron Asymmetry, Vol. 8, no. 1,149-153 (S) -2- (diphenylmethyl) pyrrolidine was synthesized.
  • a nitrogen-substituted 500 mL reaction flask was charged with a 50 mL THF solution of 5.10 g (23 mmol) of (2R, 4R) -4-Hydroxypropyl-N-ethyl carbamate methyl ester obtained in Synthesis Example 11 under a nitrogen stream. Cooled to.
  • 64 mL of a 1.08 mol / L THF solution of phenylmagnesium bromide was added dropwise from a dropping funnel to cause a reaction.
  • the mixture was heated to reflux for 3 hours and then cooled, and the reaction solution was poured into 100 mL of a saturated aqueous ammonium chloride solution.
  • the concentrate was extracted twice with 200 mL of ethyl acetate, and the combined organic layer was washed twice with saturated brine. The organic layer was dried over anhydrous sodium sulfate, the solvent was distilled off, and the resulting concentrate was isolated and purified by silica gel chromatography to obtain 3.43 g of the desired product.
  • Example 1 In a 10 mL reaction flask, citral 2 g (13.14 mmol), 5 wt% Pd / barium sulfate 25 mg (1.25 wt% based on citral), (R) -2- (bis- (4′-t-butylphenyl) methyl) pyrrolidine 80 mg (0.23 mmol, 4.0% by weight with respect to citral), 26.1 mg (0.23 mmol) of trifluoroacetic acid, and 4 mL of 10% by weight water-containing t-BuOH were stirred and hydrogen atmosphere (0.1 MPa (Atmospheric pressure)). After stirring at 40 ° C. for 21 hours, the catalyst was filtered and analyzed by gas chromatography.
  • the conversion rate from citral to citronellal was 51%, and the obtained citronellal was d-form, and its optical purity was 84. 9% e. e. Met.
  • the mixing ratio of geranial: neral of citral used was 50:50 (molar ratio) (the same applies to the following examples).
  • Example 2 is a reaction at 25 ° C
  • Example 3 is a reaction at 50 ° C
  • Example 4 is a reaction at 60 ° C
  • Example 14 is a reaction in toluene at 25 ° C
  • other conditions are optically active.
  • the reaction was carried out in the same manner as in Example 1 except that the cyclic nitrogen-containing compound and the acid were changed.
  • the optically active cyclic nitrogen-containing compound was used in an amount of 80 mg, and the acid was used in the same mole with respect to the optically active cyclic nitrogen-containing compound.
  • Tables 3-6 The results are shown in Tables 3-6.
  • Example 15 In a 50 mL reaction flask, citral 2 g (13.14 mmol), 5 wt% Pd / barium sulfate 25 mg (2.5 wt% with respect to citral), (2R, 4R) -2- (bis- (4'-t- Butylphenyl) methyl) -4- (butylcarbamoyloxy) pyrrolidine 110 mg (0.24 mmol, 5.5 wt% with respect to citral), 27.0 mg (0.24 mmol) of trifluoroacetic acid, 2 mL of 10 wt% hydrous t-butanol The atmosphere was hydrogen. After stirring at 50 ° C.
  • the catalyst was filtered and analyzed by gas chromatography.
  • the conversion from citral to citronellal was 78.0%, and the obtained citronellal was d-form.
  • Optical purity is 90.3% e.e. e. Met.
  • Example 16 to 19 All reactions were carried out in the same manner as in Example 15 except that the optically active cyclic nitrogen-containing compound was changed.
  • the optically active cyclic nitrogen-containing compound was used in an amount of 110 mg, and the acid was used in the same mole with respect to the optically active cyclic nitrogen-containing compound. The results are shown in Table 7.
  • Example 20 In a 50 mL reaction flask, citral 2 g (13.14 mmol), 5 wt% Pd / barium sulfate 25 mg (2.5 wt% with respect to citral), (2R, 4R) -2- (bis- (4'-t- Butylphenyl) methyl) -4- (butylcarbamoyloxy) pyrrolidine 110 mg (0.24 mmol, 5.5 wt% with respect to citral), 27.0 mg (0.24 mmol) of trifluoroacetic acid, 2 mL of 10 wt% hydrous t-butanol The atmosphere was hydrogen. After stirring at 60 ° C.
  • the catalyst was filtered and analyzed by gas chromatography.
  • the conversion from citral to citronellal was 100%, and the obtained citronellal was d-form, and its optical purity Of 89.6% e.e. e. Met.
  • Example 21 to 25 The reaction was carried out in the same manner as in Example 20 except that the optically active cyclic nitrogen-containing compound was changed.
  • the optically active cyclic nitrogen-containing compound was used in an amount of 110 mg, and the acid was used in the same mole with respect to the optically active cyclic nitrogen-containing compound.
  • Tables 8 and 9 The results are shown in Tables 8 and 9.
  • Example 26 In a 50 mL reaction flask, citral 2 g (13.14 mmol), 5 wt% Pd / barium sulfate 25 mg (2.5 wt% with respect to citral), (2R, 4R) -2- (bis- (4'-t- Butylphenyl) methyl) -4- (butylcarbamoyloxy) pyrrolidine 50 mg (0.11 mmol, 2.5 wt% relative to citral), 12.3 mg (0.11 mmol) trifluoroacetic acid, 2 mL of 10 wt% water-containing t-butanol The atmosphere was hydrogen. After stirring at 60 ° C.
  • the catalyst was filtered and analyzed by gas chromatography.
  • the conversion from citral to citronellal was 98.9%, and the obtained citronellal was d-form.
  • the optical purity is 90.5% e.e. e. Met.
  • Example 27 The reaction was conducted in the same manner as in Example 26 except that the optically active cyclic nitrogen-containing compound was changed.
  • the optically active cyclic nitrogen-containing compound was used in an amount of 50 mg, and the acid was used in the same mole with respect to the optically active cyclic nitrogen-containing compound. The results are shown in Table 10.
  • Example 28-1 Preparation of organoaluminum catalyst Under a nitrogen atmosphere, 493 mg (2.0 mmol) of 2,6-diphenylphenol was placed in a 50 mL Schlenk tube and purged with nitrogen, and then 10 mL of heptane and a methylaluminoxane / toluene solution 0. 58 mL (10% by weight, 1.00 mmol) was sequentially added and stirred overnight at room temperature, and then the solvent was distilled off to obtain a white solid.
  • 1 shows a 1 H-NMR spectrum of 2,6-diphenylphenol and methylaluminoxane
  • FIG. 2 shows an enlarged view of the low magnetic field side of the 1 H-NMR spectrum of FIG. 1
  • FIG. 3 shows 2,6-diphenylphenol.
  • 1 H-NMR spectrum of the shows an enlarged view of low magnetic field side of the 1 H-NMR spectrum of Figure 3 in FIG.
  • Example 28-2 Synthesis of l-isopulegol ((1R, 2S, 5R) -isopulegol) To the organoaluminum compound synthesized according to Example 28-1 was added 4.6 mL of toluene in a nitrogen atmosphere. The temperature was cooled to 0 to 5 ° C., 1.54 g (10 mmol, optical purity 97.8% ee) of d-citronellal was added dropwise, and the mixture was stirred at 0 to 5 ° C. overnight. After completion of the reaction, 2 mL of water was added to this solution, and the organic layer was analyzed by gas chromatography. As a result, the substrate conversion was 70.5%, the isopulegol selectivity was 82.4%, and ln-isopulegol and other The ratio of isomers was 97.1: 2.9.
  • Example 29-2 Synthesis of l-isopulegol After cooling the catalyst solution obtained in Example 29-1 to 0 to 5 ° C., 3.09 g (20.0 mmol, optical purity 97.8%) of d-citronellal ee) was added dropwise and stirred at 0-5 ° C. overnight. After completion of the reaction, 2 mL of water was added to the solution, and the organic layer was analyzed by gas chromatography. As a result, the substrate conversion was 59.7%, the isopulegol selectivity was 87.0%, and ln-isopulegol and other The ratio of isomers was 98.1: 1.9.
  • Example 30-1 Preparation of organoaluminum catalyst Into a 50 mL Schlenk tube, 197 mg (0.60 mmol) of 2,6-diphenylphenol was placed and purged with nitrogen. Then, 4.6 mL of toluene and 0.17 mL of a methylaluminoxane / toluene solution ( 10% by weight, 0.30 mmol) was added sequentially and stirred at room temperature for 1 hour to obtain a catalyst solution.
  • a methylaluminoxane / toluene solution 10% by weight, 0.30 mmol
  • Example 30-2 Synthesis of l-isopulegol After cooling the catalyst solution obtained in Example 30-1 to 0 to 5 ° C, 1.54 g (10.0 mmol, optical purity 97.8%) of d-citronellal ee) was added dropwise and stirred at 0-5 ° C. overnight. After completion of the reaction, 2 mL of water was added to this solution, and the organic layer was analyzed by gas chromatography. As a result, the substrate conversion was 82.2%, the isopulegol selectivity was 71.5%, and ln-isopulegol and other The ratio of isomers was 95.5: 4.5.
  • Example 31-1 Preparation of organoaluminum catalyst Into a 50 mL Schlenk tube, 370 mg (1.50 mmol) of 2,6-diphenylphenol was placed and purged with nitrogen. Then, 4.6 mL of toluene and 0.17 mL of a methylaluminoxane / toluene solution ( 10% by weight, 0.30 mmol) was added sequentially and stirred at room temperature for 1 hour to obtain a catalyst solution.
  • a methylaluminoxane / toluene solution 10% by weight, 0.30 mmol
  • Example 31-2 Synthesis of l-isopulegol After cooling the catalyst solution obtained in Example 31-1 to 0 to 5 ° C., 1.54 g (10.0 mmol, optical purity 97.8%) of d-citronellal ee) was added dropwise and stirred at 0-5 ° C. overnight. After completion of the reaction, 2 mL of water was added to this solution, and the organic layer was analyzed by gas chromatography. As a result, the substrate conversion rate was 81.9% and the isopulegol selectivity was 82.0%. The ratio of isomers was 96.5: 3.5.
  • Example 32-2 Synthesis of l-isopulegol After cooling the catalyst solution obtained in Example 32-1 to 0 to 5 ° C., 1.54 g (10.0 mmol, optical purity 97.8%) of d-citronellal ee) was added dropwise and stirred at 0-5 ° C. overnight. After completion of the reaction, 2 mL of water was added to this solution, and the organic layer was analyzed by gas chromatography. As a result, the substrate conversion was 64.8% and the isopulegol selectivity was 84.8%. The ratio of isomers was 98.1: 1.9.
  • Example 33-1 Preparation of organoaluminum catalyst Into a 50 mL Schlenk tube, 370 mg (1.50 mmol) of 2,6-diphenylphenol was placed, and after nitrogen substitution, 4.6 mL of toluene, 0.17 mL of methylaluminoxane / toluene solution ( 10 wt%, 0.30 mmol) was added in order, and the mixture was stirred at 40 ° C. overnight to obtain a catalyst solution.
  • Example 33-2 Synthesis of l-isopulegol After cooling the catalyst solution obtained in Example 33-1 to 0 to 5 ° C., 1.54 g (10.0 mmol, optical purity 97.8%) of d-citronellal ee) was added dropwise and stirred at 0-5 ° C. overnight. After completion of the reaction, 2 mL of water was added to this solution, and the organic layer was analyzed by gas chromatography. As a result, the substrate conversion was 22.3% and the isopulegol selectivity was 84.2%. The ratio of isomers was 97.6: 2.4.
  • Example 34-2 Synthesis of d-isopulegol ((1S, 2R, 5S) -isopulegol) After cooling the catalyst solution obtained in Example 34-1 to 0 to 5 ° C., l-citronellal ((S ) -Citronellal) 1.54 g (10.0 mmol, optical purity 96.6% ee) was added dropwise and stirred at 0-5 ° C. overnight. After completion of the reaction, 2 mL of water was added to this solution, and the organic layer was analyzed by gas chromatography. As a result, the substrate conversion was 89.2%, the isopulegol selectivity was 88.1%, dn-isopulegol and other The ratio of isomers was 96.9: 3.1.
  • Example 35-2 Synthesis of l-isopulegol After cooling the catalyst solution obtained in Example 35-1 to 0 to 5 ° C., 1.54 g (10.0 mmol, optical purity 97.8%) of d-citronellal ee) was added dropwise and stirred at 0-5 ° C. overnight. After completion of the reaction, 2 mL of water was added to this solution, and the organic layer was analyzed by gas chromatography. As a result, the substrate conversion rate was 98.8%, the isopulegol selectivity was 93.3%, ln-isopulegol and other The ratio of isomers was 98.2: 1.8.
  • Example 36-2 Synthesis of l-isopulegol After cooling the catalyst solution obtained in Example 36-1 to 0 to 5 ° C., 3.09 g (20.0 mmol, optical purity 97.8%) of d-citronellal ee) was added dropwise and stirred at 0-5 ° C. overnight. After completion of the reaction, 2 mL of water was added to this solution, and the organic layer was analyzed by gas chromatography. As a result, the substrate conversion rate was 94.8% and the isopulegol selectivity was 91.8%. The ratio of isomers was 90.8: 9.2.
  • Example 37-2 Synthesis of l-Isopulegol After cooling the catalyst solution obtained in Example 37-1 to 0 to 5 ° C., 3.09 g (20.0 mmol, optical purity 97.8%) of d-citronellal ee) was added dropwise and stirred at 0-5 ° C. overnight. After completion of the reaction, 2 mL of water was added to this solution, and the organic layer was analyzed by gas chromatography. As a result, the substrate conversion rate was 83.7%, the isopulegol selectivity was 84.8%, and ln-isopulegol and other components were analyzed. The ratio of isomers was 87.8: 12.2.
  • organoaluminum catalyst was prepared according to Synlett No. 1; 1, P57-58, 1999. In a 200 mL reaction flask, Tetrahedron Letters No.
  • Example 38-2 Synthesis of l-isopulegol 10.05 g (13.2 mmol) of the catalyst obtained in Example 38-1 was placed in a 1 L reaction flask, purged with nitrogen, and then 463 mL of toluene was added under a nitrogen atmosphere. In addition, the system temperature was cooled to 0 to 5 ° C., and 154.3 g (1 mol, optical purity 97.8% ee) of d-citronellal was added dropwise, followed by stirring at 0 to 5 ° C. overnight. After completion of the reaction, 20 mL of water was added to this solution, and the organic layer was analyzed by gas chromatography. As a result, the substrate conversion rate was 93.5% and the isopulegol selectivity was 91.2%. The ratio of isomers was 98.5: 1.5.
  • organoaluminum catalyst was prepared according to Synlett No. 1; 1, P57-58, 1999. In a 1 L reaction flask, Tetrahedron Letters No. 47, P4241-4243, 1965, 3,3 ′, 5,5′-tetrabiphenyl-4,4′-diol 11.8 g (24.0 mmol) synthesized, and after purging with nitrogen, 93 mL of heptane, 11.7 mL (10 wt%, 20 mmol) of a methylaluminoxane / toluene solution was sequentially added, followed by ultrasonic irradiation for 2 hours at room temperature, and then the solvent was distilled off under reduced pressure to obtain a pale yellow solid.
  • Example 39-2 Synthesis of l-isopulegol 463 mL of toluene was added to the catalyst obtained in Example 39-1 under a nitrogen atmosphere to cool the system temperature to 0 to 5 ° C., and d-citronellal 154. 3 g (1 mol, optical purity 97.8% ee) was added dropwise and stirred at 0-5 ° C. overnight. After completion of the reaction, 20 mL of water was added to this solution, and the organic layer was analyzed by gas chromatography. As a result, the substrate conversion was 72.8%, the isopulegol selectivity was 89.2%, and ln-isopulegol and other The ratio of isomers was 96.8: 3.2.
  • Example 40-2 Synthesis of l-isopulegol 6 mL of heptane was added to the solid obtained in Example 40-1 under a nitrogen atmosphere to cool the system temperature to 0 to 5 ° C, and d-citronellal 1. 54 g (10 mmol, optical purity 97.8% ee) was added dropwise, and the mixture was stirred at 0 to 5 ° C. for 2 hours. The reaction solution was allowed to stand for about 30 minutes, and 4.5 mL of the supernatant was collected with a syringe, 2 mL of water was added, and the organic layer was analyzed by gas chromatography. As a result, the substrate conversion rate was 99.6% and the isopulegol selectivity Was 96.8%, and the ratio of ln-isopulegol to other isomers was 93.4: 6.6.
  • Example 40-3 As a second reaction, 4.5 mL of heptane was added to the residue in the Schlenk tube, and the system was again cooled to 0 to 5 ° C. while stirring was resumed. d-citronellal 1.54 g (10 mmol, optical purity 97.8% ee) was added dropwise, and after completion of the addition, a sample was collected and analyzed by gas chromatography, and further stirred at 0 to 5 ° C. for 3 hours. . The reaction solution was allowed to stand for about 30 minutes, 4.5 mL of the supernatant was collected with a syringe, 2 mL of water was added, and the organic layer was analyzed by gas chromatography.
  • the substrate conversion rate in the system immediately after dropping was 38.2%
  • the substrate conversion rate after 3 hours reaction was 97.8%
  • the isopulegol selectivity was 95.7%.
  • In-isopulegol and other isomers The body ratio was 94.8: 5.2.
  • Example 40-4 As the third reaction, the reaction was performed in the same manner as the second reaction. In the third reaction, the substrate conversion rate in the system immediately after dropping was 27.8%, the substrate conversion rate after 3 hours reaction was 96.9%, and the isopulegol selectivity was 95.4%. In-isopulegol and other isomers The body ratio was 95.1: 4.9.
  • Example 40-5 The reaction was performed in the same manner as the second reaction as the fourth reaction.
  • the substrate conversion rate in the system immediately after dropping was 31.1%
  • the substrate conversion rate after 5 hours reaction was 92.9%
  • the isopulegol selectivity was 94.8%
  • ln-isopulegol and other isomers The body ratio was 95.5: 4.5.
  • Example 40-6 The reaction was performed in the same manner as the second reaction as the fifth reaction.
  • the substrate conversion rate in the system immediately after the dropping was 25.4%
  • the substrate conversion rate after 7 hours reaction was 90.9%
  • the isopulegol selectivity was 92.9%
  • ln-isopulegol and other isomers The body ratio was 94.5: 5.5.
  • Example 41 Asymmetric hydrogenation of citral In a 3 L reaction flask, 500.0 g (3.28 mol) of citral was added to 2.50 g of 5 wt% Pd / barium sulfate (0.5 wt.
  • Example 42 Ring closure reaction of d-citronellal
  • 308.5 g (2.0 mol) of d-citronellal obtained in Example 41 in a nitrogen atmosphere is described in Patent Document 6.
  • 15.26 g (20 mmol) of tris (2,6-diphenylphenoxy) aluminum catalyst and 300 mL of toluene were added and stirred at 5 ° C. for 5 hours.
  • the reaction solution was distilled to give l-isopulegol (99.5% n-form, 90.6% ee) 276.5 g (1.79 mol, 89.6% yield) was obtained.
  • Example 43 Hydrogenation reaction of l-isopulegol, synthesis of l-menthol
  • 100.0 g (0.65 mol) of l-isopulegol obtained in Example 42 and Raney nickel were added in a nitrogen atmosphere. 4 g was charged, and hydrogenation was performed at a hydrogen pressure of 2.5 MPa and 70 ° C. for 10 hours.
  • the reaction solution was filtered and distilled to obtain 92.3 g (0.59 mol, 90.0% ee) of 1-menthol.
  • Example 44 Deep-Crystal Crystallization of l-Isopulegol
  • 154.3 g (1.00 mol) of l-isopulegol obtained in Example 42 and 154 mL of heptane were charged under a nitrogen atmosphere. After cooling, it was confirmed that crystals of isopulegol were precipitated at ⁇ 13 ° C., and further cooled to ⁇ 44 ° C. The precipitated crystals were separated by suction filtration, and the obtained crystals were dissolved, recovered by solvent, and distilled to obtain 117.3 g (0%) of high-purity l-isopulegol (100% n-form, 100% ee). .76 mol, 76.0% yield).
  • Example 45 Hydrogenation reaction of high-purity l-isopulegol, synthesis of high-purity l-menthol
  • 100.0 g (0.65 mol) of l-isopulegol obtained in Example 44 was obtained in a nitrogen atmosphere.
  • Raney nickel (0.4 g) was added and hydrogenation was performed at a hydrogen pressure of 2.5 MPa at 70 ° C. for 10 hours.
  • the reaction solution was filtered and distilled to obtain 94.8 g (0.61 mol, 100% ee) of 1-menthol.
  • the catalyst for asymmetric hydrogenation used in the present invention can be prepared by simply mixing a metal powder or a metal support, an optically active cyclic nitrogen-containing compound, and an acid, and geranial, neral or citral (arbitrary ratios of geranial and neral). Can be easily asymmetrically hydrogenated to produce optically active citronellal.
  • the citronellal ring-closure reaction catalyst used in the present invention can simply cyclize citronellal and optically active citronellal simply by mixing an alkylaluminum compound and a specific alcohol, and has high n-selectivity isopulegol and optical Active isopulegol can be produced.
  • optically active isopulegol is subjected to deep crystallization to hydrogenate the optically active isopulegol of high purity or the optically active isopulegol that does not undergo cold crystallization using a commonly used carbon-carbon double bond hydrogenation catalyst, Optically active menthol can be produced.
  • the optically active menthol production method of the present invention is composed of very short steps, and all the steps are composed of catalytic reaction steps. Therefore, this manufacturing method has less waste that pollutes the environment and can save manufacturing costs.
  • catalysts used in the present invention can be those that are not soluble in the reaction solution, a metal or a metal support, an optically active cyclic nitrogen-containing compound, a ring-closing catalyst, and a ligand for a ring-closing catalyst are used from within the reaction system. Can be easily recovered and reused, which is industrially advantageous.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

 本発明は、短い製造工程で、すべての工程が触媒反応の工程で成り立っているために、環境を汚染する廃棄物が少なく、製造経費も節約できるような、光学活性メントールを製造する方法を提供することを目的とする。本発明は、以下の工程を含む光学活性メントールの製造方法に関する;A-1)ゲラニアール及びネラールのうち少なくとも一方の不斉水素化により光学活性シトロネラールを得る。B-1)酸性触媒による光学活性シトロネラールの閉環反応によって光学活性イソプレゴールを得る。C-1)光学活性イソプレゴールを水素化し光学活性メントールを得る。

Description

光学活性メントールの製造方法
 本発明は、特に、経済的に有利な、短い工程で光学活性メントールを製造する方法に関する。具体的には、ゲラニアール、ネラール又はシトラール(任意の割合のゲラニアールとネラールとの混合物)のα,β-不飽和炭素-炭素二重結合を選択的に不斉水素化することにより、光学活性シトロネラールを得、得られた光学活性シトロネラールをアルミニウム触媒を用いて光学活性イソプレゴールとし、得られた光学活性イソプレゴールをそのまま又は深冷晶析した後水素化することにより、光学活性メントールを製造する方法に関する。
 メントールは最も重要な冷感作用のある香料物質の一つであるが、その大部分は依然として天然の供給源から晶析により単離されている。天然のメントールの他に、l-メントール((1R,2S,5R)-メントール)を工業規模で製造するためには、合成法の経済性を最大限に高める必要性がある。そのため、特に、安価なアキラル原料からのl-メントールの合成が課題となっている。
 l-メントールは、2つの方針に沿って合成することができる。一方では、たとえばチモールの水素化により得られるラセミ体メントールを、エステル化した後にラセミ体分割すること(結晶化または酵素的分割による)により製造されている(特許文献1、2参照)。
 他方では、S.Akutagawaは、触媒としてロジウム-BINAP(BINAP= 2,2’-ビス(ジフェニルホスフィノ)-1,1’-ビナフチル)を用いるアリルアミンからエナミンへのエナンチオ選択的異性化によるl-メントールの合成について記載している(非特許文献1参照)。
 一方、重要な段階としてピペリテノンのエナンチオ選択的水素化をおこなうl-メントールの不斉合成の方法が開示されている(特許文献3参照)。
 また、a)ゲラニオール、ネロール又はゲラニオールとネロールの混合物を不斉水素化して光学活性シトロネロールを得て、b)得られた光学活性シトロネロールを酸化して光学活性シトロネラールを得て、c)得られた光学活性シトロネラールを閉環して光学活性イソプレゴールを含有する混合物を得て、得られた混合物から光学活性イソプレゴールを取り出した後、d)これを水素化して光学活性メントールを得る方法による、ゲラニオール、ネロール又はゲラニオールとネロールの混合物から光学活性メントールを製造する方法が開示されている(特許文献4参照)。
 また、a)シトラール(ゲラニアールとネラールの混合物)を精密蒸留してゲラニアールまたはネラールを得て、b)ゲラニアールまたはネラールを不斉水素化して光学活性シトロネラールを得て、c)得られた光学活性シトロネラールを閉環して光学活性イソプレゴールを含有する混合物を得て、得られた混合物から光学活性イソプレゴールを取り出した後、d)これを水素化して光学活性メントールを得る方法による、ゲラニアール、ネラール又はゲラニアールとネラールの混合物から光学活性メントールを製造する方法が開示されている(特許文献5参照)。
 さらに、ラセミ体及び光学活性なメントールを合成するための重要な中間体がイソプレゴールであり、これは通常シトロネラールのオキソ-エン反応をルイス酸触媒の存在下で閉環することにより製造され、通常4種類のジアステレオマー、すなわちイソプレゴール、イソ-イソプレゴール、ネオ-イソプレゴール及びネオイソ-イソプレゴールの混合物として得られる。この中で重要なイソプレゴールを高選択的に得る方法としては、アルミニウム触媒でシトロネラールを閉環する方法が開示されている(特許文献6~10参照)。
欧州特許第0743295号明細書 欧州特許第0563611号明細書 米国特許第6342644号明細書 日本国特表2008-521763号公報 国際公開第2009/068444号 日本国特開2002-212121号公報 日本国特表2008-538101号公報 国際公開第2009/144906号 国際公開第2010/071227号 国際公開第2010/071231号
Topics in Calalysis 4 (1997) P271-274
 しかしながら、天然メントールは天候による影響が大きく、安定供給に問題がある。特許文献1、2に記載される、ラセミ体メントールを、分割することにおいては、l-メントールの含有量は少なく、残りのl-メントール以外の7種類の異性体からl-メントールを取り出す工程は複雑である。また、非特許文献1に記載される、ミルセンを原料とするl-メントールの製造方法においては、工程が長く、ジエチルゲラニルアミンを対応する光学活性エナミンに異性化する触媒に高価な均一系のロジウム錯体を使用する。さらに、特許文献3に記載される、ピペリテノンのエナンチオ選択的水素化をおこなうl-メントールの不斉合成方法においては、原料のピペリテノンが入手しにくいこと、ロジウム錯体、ルテニウム錯体のような高価な均一系の錯体を使用し、水素化反応の圧力は高い。
 また、特許文献4に記載される、a)ゲラニオール、ネロール又はゲラニオールとネロールの混合物を不斉水素化して光学活性シトロネロールを得て、b)得られた光学活性シトロネロールを酸化して光学活性シトロネラールを得て、c)得られた光学活性シトロネラールを閉環して光学活性イソプレゴールを含有する混合物を得て、得られた混合物から光学活性イソプレゴールを取り出した後、d)これを水素化して光学活性メントールを得る方法による、ゲラニオール、ネロール又はゲラニオールとネロールの混合物から光学活性メントールを製造する方法は、実際にはゲラニオールとネロールを精密蒸留によって分離しなければならず、l-メントール製造に必要な原料の、d-シトロネロール((R)-シトロネロール)を得るためにはゲラニオールとネロールそれぞれを不斉水素化する高価な均一系触媒は別々に調整しなければならなくなり工程数が増える。
 特許文献5に記載される、a)シトラール(ゲラニアールとネラールの混合物)を精密蒸留してゲラニアールまたはネラールを得て、b)ゲラニアールまたはネラールを不斉水素化して光学活性シトロネラールを得て、c)得られた光学活性シトロネラールを閉環して光学活性イソプレゴールを含有する混合物を得て、得られた混合物から光学活性イソプレゴールを取り出した後、d)これを水素化して光学活性メントールを得る方法においては、ゲラニアール、ネラール又はゲラニアールとネラールの混合物から、精密蒸留して高純度のネラール又はゲラニアールを取り出さなければならない。その後、l-メントール製造に必要な原料のd-シトロネラール((R)-シトロネラール)を得るためには、ネラールとゲラニアールそれぞれを不斉水素化するためのキラリティーの異なる高価なロジウム触媒を、別々に調整しなければならない。さらに、高い水素圧で不斉水素化を行わなければならない。従って工程数が増える。
 以上のように、どの方法においても問題点が存在し、さらに簡便で効率的な光学活性メントールの製造方法が求められていた。
 本発明の目的は、さらに短い製造工程で、すべての工程が触媒反応の工程で成り立っているために、環境を汚染する廃棄物が少なく、製造経費も節約できるような、光学活性メントールを製造する方法を提供することである。
 本発明者等は上記課題を解決するために鋭意検討を行った結果、下記方法を完成するに至った。
 すなわち本発明は以下の各発明を包含する。
[1]
 以下の工程を含む光学活性メントールの製造方法。
 A-1)ゲラニアール及びネラールのうち少なくとも一方の不斉水素化により光学活性シトロネラールを得る。
 B-1)酸性触媒による光学活性シトロネラールの閉環反応によって光学活性イソプレゴールを得る。
 C-1)光学活性イソプレゴールを水素化し光学活性メントールを得る。
[2]
 以下の工程を含む光学活性メントールの製造方法。
 A-2)ゲラニアールとネラールを90:10~10:90のモル比で含むシトラールの不斉水素化により光学活性シトロネラールを得る。
 B-2)酸性触媒による光学活性シトロネラールの閉環反応によって光学活性イソプレゴールを得る。
 C-2)光学活性イソプレゴールを水素化し光学活性メントールを得る。
[3]
 以下の工程を含む光学活性メントールの製造方法。
 A-3)ゲラニアール及びネラールのうち少なくとも一方の不斉水素化により光学活性シトロネラールを得る。
 B-3)酸性触媒による光学活性シトロネラールの閉環反応によって光学活性イソプレゴールを得る。
 D-3)光学活性イソプレゴールを深冷によって再結晶を行いさらに高い純度のイソプレゴールを得る。
 E-3)工程D-3で得た光学活性イソプレゴールを水素化し光学活性メントールを得る。
[4]
 以下の工程を含む光学活性メントールの製造方法。
 A-4)ゲラニアールとネラールを90:10~10:90のモル比で含むシトラールの不斉水素化により光学活性シトロネラールを得る。
 B-4)酸性触媒による光学活性シトロネラールの閉環反応によって光学活性イソプレゴールを得る。
 D-4)光学活性イソプレゴールを深冷によって再結晶を行いさらに高い純度のイソプレゴールを得る。
 E-4)工程D-4で得た光学活性イソプレゴールを水素化し光学活性メントールを得る。
[5]
 以下の工程を含む[1]に記載の光学活性メントールの製造方法。
 A-5)ゲラニアール及びネラールのうち少なくとも一方の不斉水素化により光学純度70~99%e.e.の光学活性シトロネラールを得る。
 B-5)酸性触媒による光学活性シトロネラールの閉環反応によって光学活性イソプレゴールを得る。
 C-5)光学活性イソプレゴールを水素化し光学活性メントールを得る。
[6]
 以下の工程を含む[2]に記載の光学活性メントールの製造方法。
 A-6)ゲラニアールとネラールを90:10~10:90のモル比で含むシトラールの不斉水素化により光学純度70~99%e.e.の光学活性シトロネラールを得る。
 B-6)酸性触媒による光学活性シトロネラールの閉環反応によって光学活性イソプレゴールを得る。
 C-6)光学活性イソプレゴールを水素化し光学活性メントールを得る。
[7]
 以下の工程を含む[3]に記載の光学活性メントールの製造方法。
 A-7)ゲラニアール及びネラールのうち少なくとも一方の不斉水素化により光学純度70~99%e.e.の光学活性シトロネラールを得る。
 B-7)酸性触媒による光学活性シトロネラールの閉環反応によって光学活性イソプレゴールを得る。
 D-7)光学活性イソプレゴールを深冷によって再結晶を行いさらに高い純度のイソプレゴールを得る。
 E-7)工程D-7で得た光学活性イソプレゴールを水素化し光学活性メントールを得る。
[8]
 以下の工程を含む[4]に記載の光学活性メントールの製造方法。
 A-8)ゲラニアールとネラールを90:10~10:90のモル比で含むシトラールの不斉水素化により光学純度70~99%e.e.の光学活性シトロネラールを得る。
 B-8)酸性触媒による光学活性シトロネラールの閉環反応によって光学活性イソプレゴールを得る。
 D-8)光学活性イソプレゴールを深冷によって再結晶を行いさらに高い純度のイソプレゴールを得る。
 E-8)工程D-8で得た光学活性イソプレゴールを水素化し光学活性メントールを得る。
[9]
 以下の工程を含む[1]に記載の光学活性メントールの製造方法。
 A-9)ゲラニアール及びネラールのうち少なくとも一方の不斉水素化によりd-シトロネラールを得る。
 B-9)酸性触媒によるd-シトロネラールの閉環反応によってl-イソプレゴールを得る。
 C-9)l-イソプレゴールを水素化しl-メントールを得る。
[10]
 以下の工程を含む[2]に記載の光学活性メントールの製造方法。
 A-10)ゲラニアールとネラールを90:10~10:90のモル比で含むシトラールの不斉水素化によりd-シトロネラールを得る。
 B-10)酸性触媒によるd-シトロネラールの閉環反応によってl-イソプレゴールを得る。
 C-10)l-イソプレゴールを水素化しl-メントールを得る。
[11]
 以下の工程を含む[3]に記載の光学活性メントールの製造方法。
 A-11)ゲラニアール及びネラールのうち少なくとも一方の不斉水素化によりd-シトロネラールを得る。
 B-11)酸性触媒によるd-シトロネラールの閉環反応によってl-イソプレゴールを得る。
 D-11)l-イソプレゴールを深冷によって再結晶を行いさらに高い純度のl-イソプレゴールを得る。
 E-11)工程D-11で得たl-イソプレゴールを水素化しl-メントールを得る。   
[12]
 以下の工程を含む[4]に記載の光学活性メントールの製造方法。
 A-12)ゲラニアールとネラールを90:10~10:90のモル比で含むシトラールの不斉水素化によりd-シトロネラールを得る。
 B-12)酸性触媒によるd-シトロネラールの閉環反応によってl-イソプレゴールを得る。
 D-12)l-イソプレゴールを深冷によって再結晶を行いさらに高い純度のl-イソプレゴールを得る。
 E-12)工程D-12)で得たl-イソプレゴールを水素化しl-メントールを得る。
[13]
 以下の工程を含む[1]に記載の光学活性メントールの製造方法。
 A-13)ゲラニアール及びネラールのうち少なくとも一方の不斉水素化により光学純度70~99%e.e.のd-シトロネラールを得る。
 B-13)酸性触媒によるd-シトロネラールの閉環反応によって光学純度70~99%e.e.のl-イソプレゴールを得る。
 C-13)l-イソプレゴールを水素化し光学純度70~99%e.e.のl-メントールを得る。
[14]
 以下の工程を含む[2]に記載の光学活性メントールの製造方法。
 A-14)ゲラニアールとネラールを90:10~10:90のモル比で含むシトラールの不斉水素化により光学純度70~99%e.e.のd-シトロネラールを得る。
 B-14)酸性触媒によるd-シトロネラールの閉環反応によって光学純度70~99%のl-イソプレゴールを得る。
 C-14)l-イソプレゴールを水素化し光学純度70~99%e.e.のl-メントールを得る。
[15]
 以下の工程を含む[3]に記載の光学活性メントールの製造方法。
 A-15)ゲラニアール及びネラールのうち少なくとも一方の不斉水素化により光学純度70~99%e.e.のd-シトロネラールを得る。
 B-15)酸性触媒によるd-シトロネラールの閉環反応によって光学純度70~99%e.e.のl-イソプレゴールを得る。
 D-15)l-イソプレゴールを深冷によって再結晶を行い光学純度98~100%e.e.のl-イソプレゴールを得る。
 E-15)工程D-15で得たl-イソプレゴールを水素化し光学純度98~100%e.e.のl-メントールを得る。
[16]
 以下の工程を含む[4]に記載の光学活性メントールの製造方法。
 A-16)ゲラニアールとネラールを90:10~10:90のモル比で含むシトラールの不斉水素化により光学純度70~99%e.e.のd-シトロネラールを得る。
 B-16)酸性触媒によるd-シトロネラールの閉環反応によって光学純度70~99%e.e.のl-イソプレゴールを得る。
 D-16)l-イソプレゴールを深冷によって再結晶を行い光学純度98~100%e.e.のl-イソプレゴールを得る。
 E-16)工程D-16で得たl-イソプレゴールを水素化し光学純度98~100%e.e.のl-メントールを得る。
[17]
 工程Aの不斉水素化反応において、水素ガス、及び少なくとも一種類の遷移金属と光学活性環状含窒素化合物と酸とを含む触媒を用いる、[1]~[16]のいずれか1項に記載の光学活性メントールの製造方法。
[18]
 工程Aの不斉水素化反応において、周期表における第8~10族金属より選ばれる少なくとも一種の金属の粉末又は第8~10族金属より選ばれる少なくとも一種の金属が担体に担持された金属担持物と、下記一般式(1)
Figure JPOXMLDOC01-appb-C000020
[式(1)中、環Aは3~7員環で、置換基を有してもよく、炭素、窒素、硫黄、酸素、及び燐からなる群より選ばれる少なくとも一種の原子を含む。環Aは縮環構造となっていてもよい。R及びRは、それぞれ独立して、水素原子、置換基を有してもよいアルキル基、置換基を有してもよいシクロアルキル基、置換基を有してもよいアルケニル基、置換基を有してもよいアリール基、置換基を有してもよいアラルキル基、置換基を有してもよいアルコキシ基、置換基を有してもよいカルボキシル基、置換基を有してもよいアルコキシカルボニル基、置換基を有してもよいアミド基、置換基を有してもよいシロキシ基、置換基を有してもよい芳香族複素環基、又は置換基を有してもよい脂肪族複素環基を表す。ただしRとRは同じ置換基になることはない。また、R又はRの一方が環Aと結合しさらに環を形成していてもよい。*は不斉炭素原子を表す。]で表される光学活性環状含窒素化合物と酸とを含む触媒を用いる、[1]~[16]のいずれか1項に記載の光学活性メントールの製造方法。
[19]
 工程Aの不斉水素化反応において、周期表における第8~10族金属より選ばれる少なくとも一種の金属の粉末又は第8~10族金属より選ばれる少なくとも一種の金属が担体に担持された金属担持物と、下記一般式(2)
Figure JPOXMLDOC01-appb-C000021
[式(2)中、R、R、R、R、R、R、R、R10、R11及びR12、は、それぞれ独立して水素原子、置換基を有してもよいアルキル基、置換基を有してもよいシクロアルキル基、置換基を有してもよいアルケニル基、置換基を有してもよいアリール基、置換基を有してもよいアラルキル基、置換基を有してもよいアルコキシ基、置換基を有してもよいカルボキシル基、置換基を有してもよいアルコキシカルボニル基、置換基を有してもよいアミド基、置換基を有してもよいシロキシ基、置換基を有してもよい芳香族複素環基、又は置換基を有してもよい脂肪族複素環基を表す。ただし、RとRは、互いに異なる置換基である。RとRは、互いに異なる置換基である。
 h、i、j、k、l及びmは0または1の整数を表す。nは0~3の整数を表す。*は不斉炭素原子を表す。
 Aは、n=0のとき、水素原子、置換基を有してもよいヘテロ原子、置換基を有してもよいアルキル基、置換基を有してもよいシクロアルキル基、置換基を有してもよいアルケニル基、置換基を有してもよいアリール基、置換基を有してもよいアラルキル基、置換基を有してもよいアルコキシ基、置換基を有してもよいカルボキシル基、置換基を有してもよいアルコキシカルボニル基、置換基を有してもよいアミド基、置換基を有してもよい芳香族複素環基、置換基を有してもよい脂肪族複素環基、オリゴマー鎖又はポリマー鎖を表し、n=1~3のとき、置換基を有してもよいヘテロ原子、置換基を有してもよいアルキレン基、アリーレン基を含み置換基を有してもよいアルキレン基、シクロアルキレン基を含み置換基を有してもよいアルキレン基、ヘテロ原子を含み置換基を有してもよいアルキレン基、置換基を有してもよい2価の脂肪族炭化水素環基、置換基を有してもよい2価の脂肪族複素環基、置換基を有してもよい2価の芳香族炭化水素環基、置換基を有してもよい2価の芳香族複素環基、オリゴマー鎖又はポリマー鎖を表す。
 RとR、RとA、又はRとAは、互いに結合して環をなしていてもよい。
 X、X、X、X、X及びXは、それぞれ独立して酸素原子、窒素原子、燐原子又は硫黄原子を表す。
 Y及びYは、それぞれ独立して炭素原子、珪素原子又は硫黄原子を表す。]で表される光学活性環状含窒素化合物と酸とを含む触媒を用いる、[1]~[16]のいずれか1項に記載の光学活性メントールの製造方法。
[20]
 前記金属がニッケル、ルテニウム、ロジウム、イリジウム、パラジウム及び白金からなる群から選ばれる[17]~[19]のいずれか1項に記載の光学活性メントールの製造方法。
[21]
 工程Bの光学活性シトロネラールの閉環反応における酸性触媒がルイス酸性のアルミニウム触媒である、[1]~[20]のいずれか1項に記載の光学活性メントールの製造方法。
[22]
 前記ルイス酸性のアルミニウム触媒が、
 下記一般式(3)で表されるトリアルキルアルミニウム類と、
 下記一般式(4)で表される2,6-ジフェニルフェノール、下記一般式(5)で表される2,6,2’,6’-テトラフェニル-ビフェニル-4,4’-ジオール、下記一般式(6)で表される光学活性であっても良い1,1’-ビナフチル-2,2’-ジオール、及び下記一般式(7)で表される光学活性であっても良い(2,2―ジメチル―1,3―ジオキソラン―4,5-ジイル)ビス(ジフェニルメタノール)から選ばれる少なくとも一種の化合物とを反応させて得られる有機アルミニウム化合物である[21]に記載の光学活性メントールの製造方法。
Figure JPOXMLDOC01-appb-C000022
[式(3)中、R13は炭素数1~8のアルキル基を表す。]
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
[23]
 前記ルイス酸性のアルミニウム触媒が、
 下記一般式(8)で表される鎖状アルミノキサン類、下記一般式(9)で表される環状アルミノキサン類及び式(10)で表されるビス(ジアルキルアルミニウムオキシ)アルキルボラン類から選ばれる少なくとも一種の有機アルミニウムオキシ化合物と、
 下記一般式(11)で表されるジアリールフェノール類、下記一般式(12)で表されるビス(ジアリールフェノール)類、下記一般式(13)で表されるビアリールジオール類、下記一般式(14)で表されるジメタノール類及び下記一般式(15)で表されるシラノール類から選ばれる少なくとも一種のヒドロキシ化合物とを反応させて得られる有機アルミニウム触媒である、[21]に記載の光学活性メントールの製造方法。
Figure JPOXMLDOC01-appb-C000027
[式(8)中、R14は、炭素数1乃至6のアルキル基、炭素数5乃至8の脂環式基、又は置換基を有してもよい炭素数7乃至12のアラルキル基であり、複数のR14はそれぞれ同一であっても異なっていてもよく;
 oは0~40の整数である。]
Figure JPOXMLDOC01-appb-C000028
[式(9)中、R15は、炭素数1乃至6のアルキル基、炭素数5乃至8の脂環式基、又は置換基を有してもよい炭素数7乃至12のアラルキル基であり;
 oは0~40の整数である。]
Figure JPOXMLDOC01-appb-C000029
[式(10)中、R16は、炭素数1乃至6のアルキル基、炭素数5乃至8の脂環式基、又は置換基を有してもよい炭素数7乃至12のアラルキル基であり、複数のR16はそれぞれ同一であっても異なっていてもよく;
 R17は、炭素数1乃至6のアルキル基、炭素数5乃至8の脂環式基、又は置換基を有してもよい炭素数7乃至12のアラルキル基である。]
Figure JPOXMLDOC01-appb-C000030
[式(11)中、Ar及びArは、それぞれ独立してそのいずれもが、置換基を有してもよい炭素数6乃至15のアリール基、又は置換基を有してもよい炭素数2乃至15のヘテロアリール基であり;
 R18、R19及びR20は、それぞれ独立してそのいずれもが、水素原子、炭素数1乃至8のアルキル基、炭素数5乃至8の脂環式基、炭素数1乃至4のパーフロロアルキル基、炭素数1乃至8のアルコキシ基、置換基を有してもよい炭素数7乃至12のアラルキル基、ハロゲン原子、オルガノシリル基、置換基を有してもよい炭素数6乃至15のアリール基、炭素数2乃至8のジアルキルアミノ基、炭素数1乃至4のチオアルコキシ基、ニトロ基又はポリマー鎖であり、R18とR19又はR19とR20とは互いに結合して各々独立に、縮合ベンゼン環、縮合置換ベンゼン環、トリメチレン基、テトラメチレン基、ペンタメチレン基、メチレンジオキシ基、エチレンジオキシ基又はトリメチレンジオキシ基を形成してもよい。]
Figure JPOXMLDOC01-appb-C000031
[式(12)中、Ar、Ar、Ar及びArは、それぞれ独立してそのいずれもが、置換基を有してもよい炭素数6乃至15アリール基、又は置換基を有してもよい炭素数2乃至15のヘテロアリール基であり;
 R21、R22、R23及びR24は、それぞれ独立してそのいずれもが、水素原子、炭素数1乃至8のアルキル基、炭素数5乃至8の脂環式基、炭素数1乃至4のパーフロロアルキル基、炭素数1乃至8のアルコキシ基、置換基を有してもよい炭素数7乃至12のアラルキル基、ハロゲン原子、オルガノシリル基、置換基を有してもよい炭素数6乃至15のアリール基、炭素数2乃至8のジアルキルアミノ基、炭素数1乃至4のチオアルコキシ基、ニトロ基又はポリマー鎖あり、R21とR22又はR23とR24とは互いに結合して各々独立に、縮合ベンゼン環、縮合置換ベンゼン環、トリメチレン基、テトラメチレン基、ペンタメチレン基、メチレンジオキシ基、エチレンジオキシ基又はトリメチレンジオキシ基を形成してもよく、R21若しくはR22及び/又はR23若しくはR24はA’と結合して芳香族環または非芳香族環を形成してもよく;
 A’は、(1)置換基及び不飽和結合のうち少なくとも一方を有してもよい炭素数1乃至25の直鎖状若しくは分岐状及び/又は環状の炭化水素基;(2)置換基を有してもよい炭素数6~15のアリーレン基;(3)置換基を有してもよい炭素数2~15のヘテロアリーレン基;(4)-O-、-S-、-N(R25)-、-S(O)-、-C(O)-、-S(O)-、-P(R25)-、-(R25)P(O)-及び-Si(R2627)-の群から選択される官能基またはヘテロ元素である(ここで、R25~R27は、それぞれ独立してそのいずれもが、炭素数1乃至6のアルキル基、炭素数5乃至8の脂環式基、置換基を有してもよい炭素数7~12のアラルキル基、又は置換基を有してもよい炭素数6~10のアリール基である。)。]
Figure JPOXMLDOC01-appb-C000032
[式(13)中、R28、R29、R30、R31、R32、R33、R34及びR35
は、それぞれ独立してそのいずれもが、水素原子、炭素数1乃至8のアルキル基、炭素数1乃至4のパーフロロアルキル基、炭素数1乃至8のアルコキシ基、炭素数5乃至8の脂環式基、置換基を有してもよい炭素数7乃至12のアラルキル基、ハロゲン原子、オルガノシリル基、置換基を有してもよい炭素数6乃至15のアリール基、炭素数2乃至8のジアルキルアミノ基、炭素数1乃至4のチオアルコキシ基、ニトロ基又はポリマー鎖であり、R28とR29、R29とR30、R30とR31、R31とR35、R32とR33、R33とR34又はR34とR35とは互いに結合して各々独立に、縮合ベンゼン環、縮合置換ベンゼン環、トリメチレン基、テトラメチレン基、ペンタメチレン基、メチレンジオキシ基、エチレンジオキシ基又はトリメチレンジオキシ基を形成してもよい。]
Figure JPOXMLDOC01-appb-C000033
[式(14)中、R36、R37、R38、及びR39は、それぞれ独立してそのいずれもが、水素原子、炭素数1乃至8のアルキル基、炭素数5乃至8の脂環式基、炭素数1乃至8のパーハロゲノアルキル基、炭素数1乃至8のアルコキシ基、置換基を有してもよい炭素数7乃至12のアラルキル基、ハロゲン原子、オルガノシリル基、置換基を有してもよい炭素数6乃至15のアリール基、置換基を有してもよい炭素数2乃至15のヘテロアリール基、炭素数2乃至8のジアルキルアミノ基、炭素数1乃至4のチオアルコキシ基、ニトロ基又はポリマー鎖であり、R36とR37及びR38とR39とは互いに結合して各々独立にヘテロ元素を有してもよい3~9員環を形成してもよく;
 環Bはヘテロ元素を有してもよい3~8員環である。]
Figure JPOXMLDOC01-appb-C000034
[式(15)中、R40、R41、及びR42は、それぞれ独立してそのいずれもが、炭素数1乃至10のアルキル基、炭素数5乃至8の脂環式基、炭素数7乃至12のアラルキル基、置換基を有してもよい炭素数6乃至10のアリール基、置換基を有してもよい炭素数2乃至15のヘテロアリール基又はポリマー鎖である。]
[24]
 前記ルイス酸性のアルミニウム触媒が、
 下記一般式(8)で表される鎖状アルミノキサン類と、
 下記一般式(4)で表される2,6-ジフェニルフェノール類、下記一般式(5)で表される2,6,2’,6’-テトラフェニル-ビフェニル-4,4’-ジオール、及び下記一般式(6)で表される光学活性であっても良い1,1’-ビナフチル-2,2’-ジオールから選ばれる少なくとも一種の化合物とを反応させて得られる有機アルミニウム触媒である、[21]に記載の光学活性メントールの製造方法。
Figure JPOXMLDOC01-appb-C000035
[式(8)中、R14は、炭素数1乃至6のアルキル基、炭素数5乃至8の脂環式基、又は置換基を有してもよい炭素数7乃至12のアラルキル基であり、複数のR14はそれぞれ同一であっても異なっていてもよく;oは0~40の整数である。]
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
 本発明は光学活性メントールを得るために、第一段階の工程として、ゲラニアール、ネラール又はシトラールの不斉水素化反応における触媒として、金属粉末又は金属担持物と共に、エナンチオ選択性に寄与する添加物として光学活性環状含窒素化合物、及び酸を用いることが好ましい。
 本発明における不斉水素化触媒は、従来の不斉水素化触媒のように、触媒を調製するための反応工程を必要としない。単に、原料化合物、光学活性環状含窒素化合物、金属粉末又は金属担持物、及び酸を混合して不斉水素化するものである。このように操作も簡便であり、また、金属粉末又は金属担持物、及び光学活性環状含窒素化合物は回収して再使用でき、工業的にも有利である。
 本発明の製造方法では、第一段階の工程としてゲラニアール、ネラール又はこれらの混合物であるシトラールを不斉水素化することにより、光学活性シトロネラールを得るが、シトラールのα位とβ位の二重結合においてZ配置(ネラール)及びE配置の化合物(ゲラニアール)のいずれを基質として使用した場合においても、生成する光学活性シトロネラールの立体配置は、触媒として使用する光学活性環状含窒素化合物の立体配置に依存する。そのため、本発明では、ゲラニアールのみ、又はネラールのみを基質として使用した場合はもちろん、ネラールとゲラニアールとの任意の比率の混合物を基質として使用した場合においても、同じ立体配置の光学活性シトロネラールを製造することができる。
 本発明中の不斉水素化反応は、以前開示されている報告(特許文献5)と異なり、シトラールをゲラニアールとネラールに精密蒸留にて分離して、ゲラニアールまたはネラールを不斉水素化に供する必要がなくなるため、工程の短縮化が可能である。
 第二段階の工程として、第一段階の工程で得られた光学活性シトロネラールをアルミニウム触媒で閉環することにより、光学活性イソプレゴールを4種類の異性体の中から高選択的に製造することができる。
 第三段階の任意の工程として、第二段階の工程で得られた光学活性イソプレゴールを低温で深冷晶析することによって、さらに高い化学純度、光学純度で光学活性シトロネラールを製造することができる。
 第四段階の工程として、第二段階の工程で得られた光学活性シトロネラール又は第三段階で得られた光学活性シトロネラールを一般にある水素化触媒を用いて水素化することにより光学活性メントールを製造することができる。
 その結果、化学合成される光学活性メントール製造方法としては、原料から最短の工程で光学活性メントールが製造できる。また、深冷晶析以外の製造工程のすべてが触媒を用いた工程であり、環境を汚染する廃棄物が少なく、製造経費も節約できる。
2,6-ジフェニルフェノールとメチルアルミノキサン反応物のH-NMRスペクトルを示す図である。 2,6-ジフェニルフェノールとメチルアルミノキサン反応物のH-NMRスペクトルの低磁場側を拡大した図である。 2,6-ジフェニルフェノールのH-NMRスペクトルを示す図である。 2,6-ジフェニルフェノールのH-NMRスペクトルの低磁場側を拡大した図である。
 以下、本発明について詳細に説明する。
 本願において“重量%”及び“重量部”は、それぞれ“質量%”及び“質量部”と同義である。
 本発明である光学活性メントールの製造方法はScheme1に示した方法で行われる。*は不斉炭素を表わす。
Figure JPOXMLDOC01-appb-C000039
<工程A> 
 本発明のスキーム1に示した工程Aはシトラール(ゲラニアールとネラールの混合物)、ゲラニアール又はネラールを、不斉水素化触媒を用いて不斉水素化することにより、光学活性シトロネラールを製造することにより成り立つ。
Figure JPOXMLDOC01-appb-C000040
 シトラールにおけるゲラニアールとネラールの混合割合は任意であり特に限定されないが、ゲラニアール:ネラールのモル比が90:10~10:90の範囲内にあることが好ましい。
<工程A:不斉水素化触媒>
 次に、不斉水素化反応において使用されることが好ましい不斉水素化触媒について説明する。
 本発明における不斉水素化用触媒は、周期表における第8~10族金属より選ばれる少なくとも一種の金属の粉末又は第8~10族金属より選ばれる少なくとも一種の金属が担体に担持された金属担持物と、光学活性環状含窒素化合物と、酸とを含むα,β-不飽和カルボニル化合物の不斉水素化用触媒である。
 周期表における第8~10族金属より選ばれる少なくとも一種の金属粉末又は第8~10族金属より選ばれる少なくとも一種の金属が担体に担持された金属担持物について説明する。
 周期表における第8~10族の金属としては、Ni(ニッケル)、Ru(ルテニウム)、Rh(ロジウム)、Ir(イリジウム)、Pd(パラジウム)及びPt(白金)が好ましく、特に好ましい金属はPdである。
 金属粉末としては、例えば、Pdブラック、Ptブラック等が挙げられる。
 金属担持物としては、上記の金属が担体に担持されたものが用いられ、これらの金属がカーボン、シリカ、アルミナ、シリカ-アルミナ、ゼオライト、金属酸化物、金属ハロゲン化物、金属硫化物、金属スルホン酸塩、金属硝酸塩、金属炭酸塩、金属リン酸塩等の担体に担持されているものが好適に用いられる。これらの中でも、パラジウム又は白金が担体に担持されているものが好ましい。
 具体的な金属担持物としては、ラネーニッケル、Ru/C、Rh/C、Pd/C、Ir/C、Pt/C、Pd/C(en)(パラジウム炭素―エチレンジアミン複合体)、Pd/Fib(パラジウム-フィブロイン)、Pd/PEI(パラジウム-ポリエチレンイミン)、Pd/Al、Pd/SiO、Pd/TiO、Pd/ZrO、Pd/CeO、Pd/ZnO、Pd/CdO、Pd/TiO、Pd/SnO、Pd/PbO、Pd/As、Pd/Bi、Pd/Sb、Pd/V、Pd/Nb、Pd/Cr、Pd/MoO、Pd/WO、Pd/BeO、Pd/MgO、Pd/CaO、Pd/SrO、Pd/BaO、Pd/Y、Pd/La、Pd/NaO、Pd/KO、Pd/CdS、Pd/ZnS、Pd/MgSO、Pd/CaSO、Pd/SrSO、Pd/BaSO、Pd/CuSO、Pd/ZnSO、Pd/CdSO、Pd/Al(SO、Pd/FeSO、Pd/Fe(SO、Pd/CoSO、Pd/NiSO、Pd/Cr(SO、Pd/KHSO、Pd/KSO、Pd/(NHSO、Pd/Zn(NO、Pd/Ca(NO、Pd/Bi(NO、Pd/Fe(NO、Pd/NaCO、Pd/KCO、Pd/KHCO、Pd/KNaCO、Pd/CaCO、Pd/SrCO、Pd/BaCO、Pd/(NHCO、Pd/NaWO・2HO、Pd/KCN、Pd/BPO、Pd/AlPO、Pd/CrPO、Pd/FePO、Pd/Cu(PO、Pd/Zn(PO、Pd/Mg(PO、Pd/Ti(PO、Pd/Zr(PO、Pd/Ni(PO、Pd/AgCl、Pd/CuCl、Pd/CaCl、Pd/AlCl、Pd/TiCl、Pd/SnCl、Pd/CaF、Pd/BaF、Pd/AgClO、Pd/Mg(ClO、Pd/Zeolite、Pd/SiO-Al、Pd/SiO-TiO、Pd/SiO-ZrO、Pd/SiO-BeO、Pd/SiO-MgO、Pd/SiO-CaO、Pd/SiO-SrO、Pd/SiO-BaO、Pd/SiO-ZnO、Pd/SiO-TiO、Pd/SiO-ZrO、Pd/SiO-Ga、Pd/SiO-Y、Pd/SiO-La、Pd/SiO-MoO、Pd/SiO-WO、Pd/SiO-V、Pd/SiO-ThO、Pd/Al-MgO、Pd/Al-ZnO、Pd/Al-CdO、Pd/Al-B、Pd/Al-ThO、Pd/Al-TiO、Pd/Al-ZrO、Pd/Al-V、Pd/Al-MoO、Pd/Al-WO、Pd/Al-Cr、Pd/Al-Mn、Pd/Al-Fe、Pd/Al-Co、Pd/Al-NiO、Pd/TiO-CuO、Pd/TiO-MgO、Pd/TiO-ZnO、Pd/TiO-CdO、Pd/TiO-ZrO、Pd/TiO-SnO、Pd/TiO-Bi、Pd/TiO-Sb、Pd/TiO-V、Pd/TiO-Cr、Pd/TiO-MoO、Pd/TiO-WO、Pd/TiO-Mn、Pd/TiO-Fe、Pd/TiO-Co、Pd/TiO-NiO、Pd/ZrO-CdO、Pd/ZnO-MgO、Pd/ZnO-Fe、Pd/MoO-CoO-Al、Pd/MoO-NiO-Al、Pd/TiO-SiO-MgO、Pd/MoO-Al-MgO、Pd/heteropolyacids、Pt/SiO、Pt/Al、Pt/Zeolite、Rh/Al等が挙げられる。
(光学活性環状含窒素化合物)
 続いて、一般式(1)及び一般式(2)で表される光学活性環状含窒素化合物について説明する。
 光学活性環状含窒素化合物としては、例えば、一般式(1)で表される光学活性環状含窒素化合物があげられる。
Figure JPOXMLDOC01-appb-C000041
 式(1)中、環Aは3~7員環で、置換基を有してもよく、炭素、窒素、硫黄、酸素、及び燐からなる群より選ばれる少なくとも一種の原子を含み、該原子から構成されることが好ましい。環Aは縮環構造となっていてもよい。
 R及びRは、それぞれ独立して、水素原子、置換基を有してもよいアルキル基、置換基を有してもよいシクロアルキル基、置換基を有してもよいアルケニル基、置換基を有してもよいアリール基、置換基を有してもよいアラルキル基、置換基を有してもよいアルコキシ基、置換基を有してもよいカルボキシル基、置換基を有してもよいアルコキシカルボニル基、置換基を有してもよいアミド基、置換基を有してもよいシロキシ基、置換基を有してもよい芳香族複素環基、又は置換基を有してもよい脂肪族複素環基を表す。ただしRとRは同じ置換基になることはない。また、R又はRの一方が環Aと結合しさらに環を形成していてもよい。*は不斉炭素原子を表す。
 環Aは、基本骨格としては、例えば、アジリジン骨格、アゼチジン骨格、ピロリジン骨格、ピロリン骨格、ピラゾリジン骨格、イミダゾリジン骨格、イミダゾリジノン骨格、ピラゾリン骨格、チアゾリジン骨格、ピペリジン骨格、ピペラジン骨格、モルホリン骨格、チオモルホリン骨格等が挙げられる。これらの基本骨格に置換基が存在してもよい。
 環Aが、ベンゼン環などにより縮環構造となる場合の基本骨格としては、例えば、インドリン骨格、ジヒドロキノキサリン骨格、テトラヒドロイソキノリン骨格、ジヒドロキノキサリノン骨格等が挙げられる。これらの基本骨格に置換基が存在してもよい。
 置換基としては、水酸基、オキソ基、ハロゲン基、アルキル基、アルコキシ基、アミノ基、アルコキシカルボニル基、アシル基、アリール基、アラルキル基、芳香族複素環基、脂肪族複素環基が挙げられる。アルキル基、アルコキシ基、アルコキシカルボニル基、アリール基、アラルキル基、芳香族複素環基、及び脂肪族複素環基としては、R及びRの説明で列挙する基が挙げられる。ハロゲン原子としては、例えばフッ素原子、塩素原子、臭素原子及びヨウ素原子等が挙げられる。アシル基としては、例えば、アセチル基、プロパノイル基、ブタノイル基、オクタノイル基、ベンゾイル基、トルオイル基、キシロイル基、ナフトイル基、フェナンスロイル基、アントラノイル基等が挙げられる。
 環A及び縮環した環Aとしては、これらの中でも、置換基を有してもよいピロリジン骨格、置換基を有してもよいイミダゾリジノン骨格、及び置換基を有してもよいジヒドロキノキサリノン骨格類が好ましい。
 環A及び縮環した環Aの置換基の好ましい例としては、置換基を有していてもよいアルキル基、置換基を有していてもよいアラルキル基、置換基を有してもよい芳香族複素環基が挙げられる。
 次に、R及びRで表される基である、アルキル基、シクロアルキル基、アルケニル基、アリール基、アラルキル基、アルコキシ基、カルボキシル基、アルコキシカルボニル基、アミド基、シロキシ基、芳香族複素環基、脂肪族複素環基について説明する。これらの基はいずれも置換基を有してもよい。
 アルキル基としては、鎖状又は分岐状の例えば炭素数1~30、好ましくは炭素数1~10のアルキル基が挙げられ、具体的にはメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、2-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、2-ペンチル基、3-ペンチル基、tert-ペンチル基、2-メチルブチル基、3-メチルブチル基、2,2-ジメチルプロピル基、1,2-ジメチルプロピル基、n-ヘキシル基、2-ヘキシル基、3-ヘキシル基、2-メチルペンチル基、3-メチルペンチル基、4-メチルペンチル基、1,1-ジメチルブチル基、1,2-ジメチルブチル基、1,3-ジメチルブチル基、2,2-ジメチルブチル基、2,3-ジメチルブチル基、3,3-ジメチルブチル基、2-エチルブチル基、1,1,2-トリメチルプロピル基、1,2,2-トリメチルプロピル基、1-エチル-1-メチルプロピル基、1-エチル-2-メチルプロピル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、イコシル基、ヘンイコシル基及びドコシル基等が挙げられる。
 また、これらアルキル基は置換基を有してもよく、該アルキル基の置換基としては、例えばアルケニル基、アルキニル基、アリール基、脂肪族複素環基、芳香族複素環基、アルコキシ基、トリアルキルシロキシ基、アルキレンジオキシ基、アリールオキシ基、アラルキルオキシ基、ヘテロアリールオキシ基、置換アミノ基、ハロゲン化アルキル基、シクロアルキル基、水酸基及びハロゲン原子等が挙げられる。
 アルキル基の置換基としてのアルケニル基としては、直鎖状でも分岐状でもよい、例えば炭素数2~20、好ましくは炭素数2~10、より好ましくは炭素数2~6のアルケニル基が挙げられ、具体的にはビニル基、プロペニル基、1-ブテニル基、ペンテニル基及びヘキセニル基等が挙げられる。
 アルキル基に置換するアルキニル基としては、直鎖状でも分岐状でもよい、例えば炭素数2~15、好ましくは炭素数2~10、より好ましくは炭素数2~6のアルキニル基が挙げられ、具体的にはエチニル基、1-プロピニル基、2-プロピニル基、1-ブチニル基、3-ブチニル基、ペンチニル基及びヘキシニル基等が挙げられる。
 アルキル基の置換基としてのアリール基としては、例えば炭素数6~20のアリール基が挙げられ、具体的にはフェニル基、トリル基、イソプロピルフェニル基、キシリル基、t-ブチルフェニル基、シクロヘキシル基、1-メチルシクロヘキシル基、アダマンチルフェニル基、トリフロロメチルフェニル基、ナフチル基、アントラニル基、フェナンスリル基、ビフェニル基、4-(2’-p-トリルプロピル)フェニル基、メシチル基、メトキシフェニル基、ジメトキシフェニル基、4-(3’,4’,5’,6’,7’,8’,9’,10’-ヘプタデカフロロデシル)フェニル基及びフルオロフェニル基等が挙げられる。
 アルキル基の置換基としての脂肪族複素環基としては、例えば炭素数2~14であり、異種原子として少なくとも1個、好ましくは1~3個の例えば窒素原子、酸素原子、又は硫黄原子等のヘテロ原子を含んでいる基があげられる。好ましくは、5又は6員の単環の脂肪族複素環基、及び多環又は縮合環の脂肪族複素環基が挙げられる。脂肪族複素環基の具体例としては、例えば、2-オキソ-1-ピロリジニル基、ピペリジノ基、ピペラジニル基、モルホリノ基、テトラヒドロフリル基、テトラヒドロピラニル基及びテトラヒドロチエニル基等が挙げられる。
 アルキル基の置換基としての芳香族複素環基としては、例えば炭素数2~15であり、異種原子として少なくとも1個、好ましくは1~3個の窒素原子、酸素原子、又は硫黄原子等の異種原子を含んでいる基があげられる。好ましくは、5又は6員の単環の芳香族複素環基、及び多環又は縮合環の芳香族複素環基が挙げられる。芳香族複素環基の具体例としては、例えば、フリル基、メチルフリル基、チエニル基、ピリジル基、ピリミジニル基、ピラジニル基、ピリダジニル基、ピラゾリニル基、イミダゾリル基、オキサゾリニル基、チアゾリニル基、ベンゾフリル基、ベンゾチエニル基、キノリル基、イソキノリル基、キノキサリニル基、フタラジニル基、キナゾリニル基、ナフチリジニル基、シンノリニル基、ベンゾイミダゾリル基、ベンゾオキサゾリル基及びベンゾチアゾリル基等が挙げられる。
 アルキル基の置換基としてのアルコキシ基としては、直鎖状又は分岐状の、例えば炭素数1~8のアルコキシ基が挙げられ、具体的にはメトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、2-ブトキシ基、イソブトキシ基、tert-ブトキシ基、n-ペンチロキシ基、2-メチルブトキシ基、3-メチルブトキシ基、2,2-ジメチルプロポキシ基、n-ヘキシロキシ基、2-メチルペンチロキシ基、3-メチルペンチロキシ基、4-メチルペンチロキシ基、5-メチルペンチロキシ基、シクロペンチロキシ基及びシクロヘキシロキシ基等が挙げられる。
 アルキル基の置換基としてのトリアルキルシロキシ基としては、例えばトリメチルシロキシ基、トリエチルシロキシ基、ジメチルtert-ブチルシロキシ基等が挙げられる。
 アルキル基の置換基としてのアルキレンジオキシ基としては、例えば炭素数1~3のアルキレンジオキシ基が挙げられ、具体的にはメチレンジオキシ基、エチレンジオキシ基、プロピレンジオキシ基及びイソプロピリデンジオキシ基等が挙げられる。
 アルキル基の置換基としてのアリールオキシ基としては、例えば炭素数6~15のアリールオキシ基が挙げられ、具体的にはフェノキシ基、ナフチロキシ基、アンスリロキシ基、トリルオキシ基、キシリルオキシ基、4-フェニルフェノキシ基、3,5-ジフェニルフェノキシ基、4-メシチルフェノキシ基及び3,5-ビス(トリフロロメチル)フェノキシ基等が挙げられる。
 アルキル基の置換基としてのアラルキルオキシ基としては、例えば炭素数7~12のアラルキルオキシ基が挙げられ、具体的にはベンジロキシ基、2-フェニルエトキシ基、1-フェニルプロポキシ基、2-フェニルプロポキシ基、3-フェニルプロポキシ基、1-フェニルブトキシ基、2-フェニルブトキシ基、3-フェニルブトキシ基、4-フェニルブトキシ基、1-フェニルペンチロキシ基、2-フェニルペンチロキシ基、3-フェニルペンチロキシ基、4-フェニルペンチロキシ基、5-フェニルペンチロキシ基、1-フェニルヘキシロキシ基、2-フェニルヘキシロキシ基、3-フェニルヘキシロキシ基、4-フェニルヘキシロキシ基、5-フェニルヘキシロキシ基及び6-フェニルヘキシロキシ基等が挙げられる。
 アルキル基の置換基としてのヘテロアリールオキシ基としては、例えば、異種原子として少なくとも1個、好ましくは1~3個の窒素原子、酸素原子、硫黄原子等の異種原子を含んでいる、炭素数2~14のヘテロアリールオキシ基が挙げられ、具体的には、2-ピリジルオキシ基、2-ピラジルオキシ基、2-ピリミジルオキシ基及び2-キノリルオキシ基等が挙げられる。
 アルキル基の置換基としての置換アミノ基としては、例えば、N-メチルアミノ基、N,N-ジメチルアミノ基、N,N-ジエチルアミノ基、N,N-ジイソプロピルアミノ基、N-シクロヘキシルアミノ基、ピロリジル基、ピペリジル基及びモルホリル基等のモノ又はジアルキルアミノ基;N-フェニルアミノ基、N,N-ジフェニルアミノ基、N-ナフチルアミノ基、N-ナフチル-N-フェニルアミノ基等のモノ又はジアリールアミノ基、N-ベンジルアミノ基、N,N-ジベンジルアミノ基等のモノ又はジアラルキルアミノ基等が挙げられる。
 アルキル基に置換するハロゲン化アルキル基としては、パーハロゲノアルキル基が好ましく、例えば、トリフロロメチル基、ペンタフロロエチル基、ヘプタフロロプロピル基、ウンデカフロロペンチル基、ヘプタデカフロロオクチル基、ウンデカフロロシクロヘキシル基、ジクロロメチル基等が挙げられる。
 アルキル基に置換するシクロアルキル基としては、例えばシクロプロピル基、シクロブチル基、シクロペンチル基及びシクロヘキシル基等が挙げられる。
 アルキル基に置換するハロゲン原子としては、例えばフッ素原子、塩素原子、臭素原子及びヨウ素原子等が挙げられる。
 シクロアルキル基としては、例えばシクロプロピル基、シクロブチル基、シクロペンチル基及びシクロヘキシル基等が挙げられる。
 これらシクロアルキル基は置換基を有してもよく、該置換基としては、前記のアルキル基の置換基の説明で述べたような置換基が挙げられる。
 アルケニル基としては、鎖状又分岐状あるいは環状の、例えば炭素数2~20、好ましくは炭素数2~10のアルケニル基が挙げられる。具体的なアルケニル基としては、例えばビニル基、1-プロペニル基、2-プロペニル基、1-ブテニル基、2-ブテニル基、3-ブテニル基、1-ペンテニル基、2-ペンテニル基、3-ペンテニル基、4-ペンテニル基、1-シクロペンテニル基、3-シクロペンテニル基、1-ヘキセニル基、2-ヘキセニル基、3-ヘキセニル基、4-ヘキセニル基、5-ヘキセニル基、4-メチル-3-ペンテニル基、4,8-ジメチル-3,7-ノナジエニル基、1-シクロヘキセニル基及び3-シクロヘキセニル基等が挙げられる。
 これらアルケニル基は置換基を有してもよく、該置換基としては、前記のアルキル基の置換基の説明で述べたような基が挙げられる。
 アリール基としては、例えば炭素数6~20のアリール基が挙げられ、具体的にはフェニル基、トリル基、イソプロピルフェニル基、キシリル基、t-ブチルフェニル基、シクロヘキシル基、1-メチルシクロヘキシル基、アダマンチルフェニル基、トリフロロメチルフェニル基、ナフチル基、アントラニル基、フェナンスリル基、ビフェニル基、4-(2’-p-トリルプロピル)フェニル基、メシチル基、メトキシフェニル基、ジメトキシフェニル基、4-(3’,4’,5’,6’,7’,8’,9’,10’-ヘプタデカフロロデシル)フェニル基及びフルオロフェニル基等が挙げられる。
 これらアリール基は置換基を有してもよく、該置換基としてはアルキル基の置換基の説明で述べたような基が挙げられる。
 アラルキル基としては、例えば炭素数7~45のアラルキル基が好ましく、具体的にはベンジル基、トリルメチル基、キシリルメチル基、メシチルメチル基、4-フェニルフェニルメチル基、3-フェニルフェニルメチル基、2-フェニルフェニルメチル基、4-メシチルフェニルメチル基、1-ナフチルメチル基、2-ナフチルメチル基、9-アントラニルメチル基、9-フェナントリルメチル基、3,5-ジフェニルフェニルメチル基、2-フェニルエチル基、1-フェニルプロピル基、3-ナフチルプロピル基、ジフェニルメチル基、ジトリルメチル基、ジキシリルメチル基、ジメシチルメチル基、ジ(4-フェニルフェニル)メチル基、ジ(3-フェニルフェニル)メチル基、ジ(2-フェニルフェニル)メチル基、ジ(4-メシチルフェニル)メチル基、ジ(1-ナフチル)メチル基、ジ(2-ナフチル)メチル基、ジ(9-アントラニル)メチル基、ジ(9-フェナントリル)メチル基、ビス(3,5-ジフェニルフェニル)メチル基、トリフェニルメチル基、トリトリルメチル基、トリキシリルメチル基、トリメシチルメチル基、トリ(4-フェニルフェニル)メチル基、トリ(3-フェニルフェニル)メチル基、トリ(2-フェニルフェニル)メチル基、トリ(4-メシチルフェニル)メチル基、トリ(1-ナフチル)メチル基、トリ(2-ナフチル)メチル基、トリ(9-アントラニル)メチル基、トリ(9-フェナントリル)メチル基、トリス(3,5-ジフェニルフェニル)メチル基、トリメチルシロキシフェニルメチル基、トリメチルシロキシジフェニルメチル基、トリメチルシロキシジトリルメチル基、トリメチルシロキシジ(4-t-ブチルフェニル)メチル基、トリメチルシロキシジキシリルメチル基、トリメチルシロキシジ(2-フェニルフェニル)メチル基、トリメチルシロキシジ(3-フェニルフェニル)メチル基、トリメチルシロキシジ(4-フェニルフェニル)メチル基、トリメチルシロキシビス(3,5-ジフェニルフェニル)メチル基、トリメチルシロキシジ(4-メシチルフェニル)メチル基及びトリメチルシロキシビス(3,5-ジトリフロロメチルフェニル)メチル基等が挙げられる。
 これらアラルキル基は置換基を有してもよく、該置換基としてはアルキル基の説明で述べたような基が挙げられる。
 アルコキシ基としては、たとえば炭素数1~30のアルコキシ基が好ましく、具体的にはメトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、2-ブトキシ基、イソブトキシ基、tert-ブトキシ基、n-ペンチロキシ基、2-メチルブトキシ基、3-メチルブトキシ基、2,2-ジメチルプロポキシ基、n-ヘキシロキシ基、2-メチルペンチロキシ基、3-メチルペンチロキシ基、4-メチルペンチロキシ基、5-メチルペンチロキシ基、シクロペンチロキシ基、シクロヘキシロキシ基、ジシクロペンチルメトキシ基、ジシクロヘキシルメトキシ基、トリシクロペンチルメトキシ基、トリシクロヘキシルメトキシ基、フェニルメトキシ基、ジフェニルメトキシ基及びトリフェニルメトキシ基等が挙げられる。
 これらアルコキシ基は置換基を有してもよく、該置換基としてはアルキル基の説明で述べたような基が挙げられる。
 カルボキシル基としては、例えば炭素数1~30のカルボキシル基が好ましく、具体的にはアセトキシ基、n-プロパノイロキシ基、イソプロパノイロキシ基、n-ブタノイロキシ基、2-ブタノイロキシ基、イソブタノイロキシ基、tert-ブタノイロキシ基、n-ペンタノイロキシ基、2-メチルブタノイロキシ基、3-メチルブタノイロキシ基、2,2-ジメチルプロパノイロキシ基、n-ヘキサノイロキシ基、2-メチルペンタノイロキシ基、3-メチルペンタノイロキシ基、4-メチルペンタノイロキシ基、5-メチルペンタノイロキシ基、シクロペンタノイロキシ基、シクロヘキサノイロキシ基、ジシクロペンチルアセトキシ基、ジシクロヘキシルアセトキシ基、トリシクロペンチルアセトキシ基、トリシクロヘキシルアセトキシ基、フェニルアセトキシ基、ジフェニルアセトキシ基、トリフェニルアセトキシ基、ベンゾイロキシ基、ナフトイロキシ基等が挙げられる。
 これらカルボキシ基は置換基を有してもよく、該置換基としてはアルキル基の説明で述べたような基が挙げられる。
 アルコキシカルボニル基としては、たとえば炭素数1~30のアルコキシカルボニル基が好ましく、具体的にはメトキシカルボニル基、エトキシカルボニル基、n-プロポキシカルボニル基、イソプロポキシカルボニル基、n-ブトキシカルボニル基、2-ブトキシカルボニル基、イソブトキシカルボニル基、tert-ブトキシカルボニル基、n-ペンチロキシカルボニル基、2-メチルブトキシカルボニル基、3-メチルブトキシカルボニル基、2,2-ジメチルプロポキシカルボニル基、n-ヘキシロキシカルボニル基、2-メチルペンチロキシカルボニル基、3-メチルペンチロキシカルボニル基、4-メチルペンチロキシカルボニル基、5-メチルペンチロキシカルボニル基、シクロペンチロキシカルボニル基、シクロヘキシロキシカルボニル基、ジシクロペンチルメトキシカルボニル基、ジシクロヘキシルメトキシカルボニル基、トリシクロペンチルメトキシカルボニル基、トリシクロヘキシルメトキシカルボニル基、フェニルメトキシカルボニル基、ジフェニルメトキシカルボニル基及びトリフェニルメトキシカルボニル基等が挙げられる。
 これらアルコキシカルボニル基は置換基を有してもよく、該置換基としてはアルキル基の説明で述べたような基が挙げられる。
 アミド基としては、例えば炭素数1~30のアミド基が好ましく具体的にはアセトアミド基、n-プロピオンアミド基、イソプロピオンアミド基、n-ブタナミド基、2-ブタナミド基、イソブタナミド基、tert-ブタナミド基、n-ペンタナミド基、2-メチルブタナミド基、3-メチルブタナミド基、2,2-ジメチルプロピオンアミド基、n-ヘキサナミド基、2-メチルペンタナミド基、3-メチルペンタナミド基、4-メチルペンタナミド基、5-メチルペンタナミド基、シクロペンタナミド基、シクロヘキサナミド基、ジシクロペンチルアセトアミド基、ジシクロヘキシルアセトアミド基、トリシクロペンチルアセトアミド基、トリシクロヘキシルアセトアミド基、フェニルアセトアミド基、ジフェニルアセトアミド基、トリフェニルアセトアミド基、ベンズアミド基、ナフタレンアミド基等が挙げられる。
 これらアミド基は置換基を有してもよく、該置換基としてはアルキル基の説明で述べたような基が挙げられる。
 シロキシ基としては、例えばトリメチルシロキシ基、トリエチルシロキシ基、ジメチルtert-ブチルシロキシ基等が挙げられる。
 これらシロキシ基は置換基を有してもよく、該置換基としてはアルキル基の説明で述べたような基が挙げられる。
 芳香族複素環基としては、例えば炭素数2~15であり、異種原子として少なくとも1個、好ましくは1~3個の窒素原子、酸素原子、又は硫黄原子等の異種原子を含んでいる基が挙げられる。好ましくは、5又は6員の単環の芳香族複素環基、及び多環又は縮合環の芳香族複素環基が挙げられる。芳香族複素環基の具体例としては、例えば、フリル基、メチルフリル基、チエニル基、ピリジル基、ピリミジニル基、ピラジニル基、ピリダジニル基、ピラゾリニル基、イミダゾリル基、オキサゾリニル基、チアゾリニル基、ベンゾフリル基、ベンゾチエニル基、キノリル基、イソキノリル基、キノキサリニル基、フタラジニル基、キナゾリニル基、ナフチリジニル基、シンノリニル基、ベンゾイミダゾリル基、ベンゾオキサゾリル基及びベンゾチアゾリル基等が挙げられる。
 これら芳香族複素環基は置換基を有してもよく、該置換基としてはアルキル基の説明で述べたような基が挙げられる。
 脂肪族複素環基としては、例えば炭素数2~14であり、異種原子として少なくとも1個、好ましくは1~3個の例えば窒素原子、酸素原子、又は硫黄原子等のヘテロ原子を含んでいる基があげられる。好ましくは、5又は6員の単環の脂肪族複素環基、及び多環又は縮合環の脂肪族複素環基が挙げられる。脂肪族複素環基の具体例としては、例えば、2-オキソ-1-ピロリジニル基、ピペリジノ基、ピペラジニル基、モルホリノ基、テトラヒドロフリル基、テトラヒドロピラニル基及びテトラヒドロチエニル基等が挙げられる。これら脂肪族複素環基は置換基を有してもよく、該置換基としてはアルキル基の説明で述べたような基が挙げられる。
 R及びRで表される基の好ましい例としては、水素、置換基を有してもよいアルキル基、置換基を有してもよいアラルキル基が挙げられる。
 なお、本発明の光学活性環状窒素化合物としては、アミノ酸は該当しない。
 さらに、光学活性環状含窒素化合物としては、例えば、一般式(2)で表される光学活性環状含窒素化合物があげられる。
Figure JPOXMLDOC01-appb-C000042
 式(2)中、R、R、R、R、R、R、R、R10、R11及びR12、は、それぞれ独立して水素原子、置換基を有してもよいアルキル基、置換基を有してもよいシクロアルキル基、置換基を有してもよいアルケニル基、置換基を有してもよいアリール基、置換基を有してもよいアラルキル基、置換基を有してもよいアルコキシ基、置換基を有してもよいカルボキシル基、置換基を有してもよいアルコキシカルボニル基、置換基を有してもよいアミド基、置換基を有してもよいシロキシ基、置換基を有してもよい芳香族複素環基、又は置換基を有してもよい脂肪族複素環基を表す。ただし、RとRは、互いに異なる置換基である。RとRは、互いに異なる置換基である。
 h、i、j、k、l及びmは0または1の整数を表す。nは0~3の整数を表す。*は不斉炭素原子を表す。
 Aは、n=0のとき、水素原子、置換基を有してもよいヘテロ原子、置換基を有してもよいアルキル基、置換基を有してもよいシクロアルキル基、置換基を有してもよいアルケニル基、置換基を有してもよいアリール基、置換基を有してもよいアラルキル基、置換基を有してもよいアルコキシ基、置換基を有してもよいカルボキシル基、置換基を有してもよいアルコキシカルボニル基、置換基を有してもよいアミド基、置換基を有してもよい芳香族複素環基、置換基を有してもよい脂肪族複素環基、オリゴマー鎖又はポリマー鎖を表し、n=1~3のとき、置換基を有してもよいヘテロ原子、置換基を有してもよいアルキレン基、アリーレン基を含み置換基を有してもよいアルキレン基、シクロアルキレン基を含み置換基を有してもよいアルキレン基、ヘテロ原子を含み置換基を有してもよいアルキレン基、置換基を有してもよい2価の脂肪族炭化水素環基、置換基を有してもよい2価の脂肪族複素環基、置換基を有してもよい2価の芳香族炭化水素環基、置換基を有してもよい2価の芳香族複素環基、オリゴマー鎖又はポリマー鎖を表す。
 RとR、RとA、又はRとAは、互いに結合して環をなしていてもよい。
 X、X、X、X、X及びXは、それぞれ独立して酸素原子、窒素原子、燐原子又は硫黄原子を表す。
 Y及びYは、それぞれ独立して炭素原子、珪素原子又は硫黄原子を表す。
 R、R、R、R、R、R、R、R10、R11及びR12で表される基である、アルキル基、シクロアルキル基、アルケニル基、アリール基、アラルキル基、アルコキシ基、カルボキシル基、アルコキシカルボニル基、アミド基、シロキシ基、芳香族複素環基、脂肪族複素環基としては、一般式(1)で表わされる光学活性環状含窒素化合物におけるR、Rの説明で列挙した基が挙げられる。また、これらの基はいずれも置換基を有してもよく、具体的にはR、Rのアルキル基の置換基の説明で列挙した置換基が挙げられる。
 これらの中でも、R~Rとしては、水素原子、置換基を有してもよいアリール基が好ましく、とくに水素原子、置換基を有してもよいフェニル基が好ましい。
 また、これらの中でも、R~R12としては、水素原子、置換基を有してもよいアルキル基、置換基を有してもよいシクロアルキル基、置換基を有してもよいアリール基が好ましく、とくに水素原子、置換基を有してもよいフェニル基、置換基を有してもよいシクロヘキシル基が好ましい。
 次に、Aについて説明する。
 Aは、n=0のとき、水素原子、置換基を有してもよいヘテロ原子、置換基を有してもよいアルキル基、置換基を有してもよいシクロアルキル基、置換基を有してもよいアルケニル基、置換基を有してもよいアリール基、置換基を有してもよいアラルキル基、置換基を有してもよいアルコキシ基、置換基を有してもよいカルボキシル基、置換基を有してもよいアルコキシカルボニル基、置換基を有してもよいアミド基、置換基を有してもよい芳香族複素環基、置換基を有してもよい脂肪族複素環基、オリゴマー鎖又はポリマー鎖である。
 ヘテロ原子としては、酸素原子、窒素原子、珪素原子等が挙げられる。
 これらのヘテロ原子は置換基を有してもよく、該置換基としては、水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、脂肪族複素環基、芳香族複素環基があげられ、これらの具体例としては、R、Rの説明で列挙した基やR、Rの説明で述べたアルキル基の置換基で列挙した基が挙げられる。
 置換基を有してもよいアルキル基、置換基を有してもよいシクロアルキル基、置換基を有してもよいアルケニル基、置換基を有してもよいアリール基、置換基を有してもよいアラルキル基、置換基を有してもよいアルコキシ基、置換基を有してもよいカルボキシル基、置換基を有してもよいアルコキシカルボニル基、置換基を有してもよいアミド基、置換基を有してもよい芳香族複素環基、置換基を有してもよい脂肪族複素環基は、R、Rの説明で述べたような基が挙げられる。
 オリゴマー鎖としては、一般に使用されるものであれば使用できる。例えば、ポリスチレン、ポリエチレングリコール、ポリアクリレート、ポリメタクリレート、ポリエステル、ポリアミド、ポリエチレン、ポリプロピレン、ポリカーボネート、ポリウレタン、ポリペプチド等のオリゴマー鎖及びそれらの共重合体等が挙げられる。
 ポリマー鎖としては、一般に使用されるものであれば使用できる。例えば、ポリスチレン、ポリエチレングリコール、ポリアクリレート、ポリメタクリレート、ポリエステル、ポリアミド、ポリエチレン、ポリプロピレン、ポリカーボネート、ポリウレタン、ポリペプチド等のポリマー鎖及びそれらの共重合体等が挙げられる。
 これらの中でも、水素原子、置換基を有してもよいアルキル基、置換基を有してもよいシクロアルキル基、置換基を有してもよいアリール基が好ましく、とくに水素原子、置換基を有してもよいアルキル基が好ましい。
 n=1~3のときのAである、ヘテロ原子、アルキレン基、アリーレン基を含むアルキレン基、シクロアルキレン基を含むアルキレン基、ヘテロ原子を含むアルキレン基、2価の脂肪族炭化水素環基、2価の脂肪族複素環基、2価の芳香族炭化水素環基、2価の芳香族複素環基、オリゴマー鎖又はポリマー鎖について説明する。これらの基は置換基を有してもよい。
 ヘテロ原子としては、酸素原子、窒素原子、珪素原子等が挙げられる。
 これらのヘテロ原子は置換基を有してもよく、該置換基としては、水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、脂肪族複素環基、芳香族複素環基が挙げられ、これらの具体例としては、R、Rの説明で列挙した基やR、Rの説明で述べたアルキル基の置換基で列挙した基が挙げられる。
 アルキレン基としては、鎖状又は分岐状の例えば炭素数1~30、好ましくは炭素数1~10のアルキル基より水素原子を1つ除いたものが挙げられる。具体的には、R、Rの説明で述べたアルキル基より水素原子を1つ除いたものが挙げられる。
 これらのアルキレン基は置換基を有してもよく、該置換基としてはR、Rの説明で述べたアルキル基の置換基が挙げられる。
 アリーレン基を含むアルキレン基としては、例えば、前記したアルキレン基にアリーレン基が含まれているものが挙げられる。ここで言うアリーレン基とは、後述する2価の芳香族炭化水素環基が挙げられる。アリーレン基には置換基を有してもよく、該置換基としてはR、Rの説明で述べたアルキル基の置換基が挙げられる。
 これらのアリーレン基を含むアルキレン基は置換基を有してもよく、該置換基としてはR、Rの説明で述べたアルキル基の置換基が挙げられる。
 シクロアルキレン基を含むアルキレン基としては、例えば、前記したアルキレン基にシクロアルキレン基が含まれているものが挙げられる。ここでいうシクロアルキレン基とは、後述する2価の脂肪族炭化水素環基が挙げられる。シクロアルキレン基には置換基を有してもよく、該置換基としてはR、Rの説明で述べたアルキル基の置換基が挙げられる。
 これらのシクロアルキレン基を含むアルキレン基は置換基を有してもよく、該置換基としてはR~R12の説明で述べたアルキル基の置換基が挙げられる。
 ヘテロ原子を含むアルキレン基としては、前記したアルキレン基にヘテロ原子が含まれているものが挙げられる。ここでいうヘテロ原子とは、酸素原子、窒素原子、珪素原子が挙げられる。
 これらのヘテロ原子を含むアルキレン基は置換基を有してもよく、該置換基としてはR、Rの説明で述べたアルキル基の置換基が挙げられる。
 2価の脂肪族炭化水素環基としては、R、Rの説明で述べたシクロアルキル基から誘導される2価の基が挙げられる。
 これらの2価の脂肪族炭化水素環基は置換基を有してもよく、該置換基としては該置換基としてはR、Rの説明で述べたアルキル基の置換基が挙げられる。
 2価の脂肪族複素環基としては、R、Rの説明で述べた脂肪族複素環基から誘導される2価の基が挙げられる。
 これらの2価の脂肪族複素環基は置換基を有してもよく、該置換基としてはR、Rの説明で述べたアルキル基の置換基が挙げられる。
 2価の芳香族炭化水素環基としては、R、Rの説明で述べたアリール基から誘導される2価の基が挙げられる。
 これらの2価の芳香族炭化水素基は置換基を有してもよく、該置換基としてはR、Rの説明で述べたアルキル基の置換基が挙げられる。
 2価の芳香族複素環基としては、R、Rの説明で述べた芳香族複素環基から誘導される2価の基が挙げられる。
 これらの2価の芳香族複素環基は置換基を有してもよく、該置換基としてはR、Rの説明で述べたアルキル基の置換基が挙げられる。
 2価の脂肪族炭化水素環基、2価の脂肪族複素環基、2価の芳香族炭化水素環基、及び2価の芳香族複素環基は、多環構造をとっていてもよい。
 Aは、アルキレン基、アリーレン基を含むアルキレン基、シクロアルキレン基を含むアルキレン基、ヘテロ原子を含むアルキレン基、2価の脂肪族炭化水素環基、2価の脂肪族複素環基、2価の芳香族炭化水素環基、および2価の芳香族複素環基が連結されていてもよい。
 n=1~3の場合のAは、これらの中でも、アルキレン基、アリーレン基を含むアルキレン基、シクロアルキレン基を含むアルキレン基、2価の脂肪族炭化水素環基、2価の芳香族炭化水素環基が好ましい。さらには、アルキレン基、シクロへキシレン基を含むアルキレン基、フェニレン基を含むアルキレン基、フェニレン基、ナフチレン基、多環のフェニレン基、フェニレン基がアルキレン基で連結されている基、シクロへキシレン基がアルキレン基で連結されている基がとくに好ましい。
 オリゴマー鎖としては、一般に使用されるものであれば使用できる。例えば、ポリスチレン、ポリエチレングリコール、ポリアクリレート、ポリメタクリレート、ポリエステル、ポリアミド、ポリエチレン、ポリプロピレン、ポリカーボネート、ポリウレタン、ポリペプチド等のオリゴマー鎖及びそれらの共重合体等が挙げられる。
 ポリマー鎖としては、一般に使用されるものであれば使用できる。例えば、ポリスチレン、ポリエチレングリコール、ポリアクリレート、ポリメタクリレート、ポリエステル、ポリアミド、ポリエチレン、ポリプロピレン、ポリカーボネート、ポリウレタン、ポリペプチド等のポリマー鎖及びそれらの共重合体等が挙げられる。
 次に、X、X、X、X、X及びXについて説明する。X、X、X、X、X及びXは、それぞれ独立して酸素原子、窒素原子、燐原子、又は硫黄原子を表す。
 次に、Y、及びYについて説明する。Y及びYは、それぞれ独立して炭素原子、珪素原子、又は硫黄原子を表す。
 X、Y、X、及びXの好ましい組み合わせとしては、例えば以下の表1に示すものが挙げられる。
Figure JPOXMLDOC01-appb-T000043
 これらの中でも、より好ましくは例1、2、5、6、7、8、11、及び12であり、さらに好ましくは例1である。
 X、Y、X、及びXの好ましい組み合わせとしては、例えば以下の表2に示すものが挙げられる。
Figure JPOXMLDOC01-appb-T000044
 具体的な光学活性環状含窒素化合物としては、例えば以下のような化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
 本発明で使用する光学活性環状含窒素化合物は、市販品を使用することができ、また合成することもできる。光学活性環状含窒素化合物のうち、光学活性ジアリールメチルピロリジン化合物の製造方法について説明する。
 光学活性ジアリールメチルピロリジン化合物は、例えば、Tetrahedron 1993,49,5127-5132、及びTetrahedron:Asymmetry 1997,8,149-153に記載されている方法に従って合成することができる。該方法は、以下のScheme2及び3で表すことができる。
Figure JPOXMLDOC01-appb-C000047
 Scheme2及び3中、化合物17は、Tetrahedron 1993,49,5127-5132に記載されている方法に従って合成することができる。
 化合物17の合成は、(R)-又は(S)-プロリン(化合物16)と一般式MCOで表されるアルカリ金属化合物とを一般式R44OHで表されるアルコール化合物に溶解した溶液に、一般式ClCO43で表されるクロロ炭酸エステル化合物を0~30℃の範囲で滴下して行うことができる。溶媒の使用量(L)は、基質である(R)-又は(S)-プロリンの重量(kg)に対して例えば1~30倍容量〔L/kg〕、好ましくは5~20倍容量〔L/kg〕である。
 上記のようにして得られた化合物17は、例えば抽出、再結晶、各種クロマトグラフィー等の通常用いられる操作により、単離精製を行うことができる。
 化合物21の合成は、(R)-又は(S)-ヒドロキシプロリン(化合物20)と一般式MCOで表されるアルカリ金属化合物とを一般式R44OHで表されるアルコール化合物に溶解した溶液に、一般式ClCO43で表されるクロロ炭酸エステル化合物を0~30℃の範囲で滴下して行うことができる。溶媒の使用量(L)は、基質である(R)-又は(S)-ヒドロキシプロリンの重量(kg)に対して例えば1~30倍容量〔L/kg〕、好ましくは5~20倍容量〔L/kg〕である。
 上記のようにして得られた化合物21は、例えば抽出、再結晶、各種クロマトグラフィー等の通常用いられる操作により、単離精製を行うことができる。
 一般式ClCO43で表されるクロロ炭酸エステル化合物において、R43で表される基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基等の炭素数1~8のアルキル基;シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘプチル基、シクロオクチル基等の炭素数1~8の環状アルキル基;ベンジル基、p-メチルベンジル基等の炭素数7~10のアラルキル基等が挙げられる。
 一般式MCOで表されるアルカリ金属化合物において、Mで表される金属としては、リチウム、ナトリウム、カリウム、セシウム等が挙げられる。
 一般式R44OHで表されるアルコール化合物において、R44で表される基としては、前記R43の説明で列挙するアルキル基が挙げられる。
 化合物18は、Tetrahedron:Asymmetry 1997,8,149-153に記載されている方法に従って合成することができる。
 化合物18の合成は、化合物17のテトラヒドロフラン(以下THFと略す)等のエーテル溶液に、一般式ArMg(halogen)で表されるグリニヤ化合物のTHF等のエーテル溶液を不活性気体雰囲気下、-5~20℃で滴下し、反応温度を最終的に70℃程度にまで上げ3~6時間の範囲で保持して行われる。溶媒の使用量(L)は、基質である化合物17の重量(kg)に対して例えば1~40倍容量〔L/kg〕、好ましくは5~25倍容量〔L/kg〕である。
 上記のようにして得られた化合物18は、例えば抽出、再結晶、各種クロマトグラフィー等の通常用いられる操作により、単離精製を行うことができる。
 化合物22は、Tetrahedron:Asymmetry 1997,8,149-153に記載されている方法に従って合成することができる。
 化合物22の合成は、化合物21のTHF等のエーテル溶液に、一般式ArMg(halogen)で表されるグリニヤ化合物のTHF等のエーテル溶液を不活性気体雰囲気下、-5~20℃で滴下し、反応温度を最終的に70℃程度にまで上げ3~6時間の範囲で保持して行われる。溶媒の使用量(L)は、基質である化合物21の重量(kg)に対して例えば1~40倍容量〔L/kg〕、好ましくは5~25倍容量〔L/kg〕である。
 上記のようにして得られた化合物22は、例えば抽出、再結晶、各種クロマトグラフィー等の通常用いられる操作により、単離精製を行うことができる。
 一般式ArMg(halogen)で表されるグリニヤ化合物において、Arで表されるアリール基としては、例えば炭素数6~20の置換基を有しても良いアリール基が挙げられる。
 アリール基の具体例としては、一般式(1)及び一般式(2)で表される光学活性環状含窒素化合物のR~R12の説明で列挙するアリール基が挙げられる。
 アリール基に置換する置換基の具体例としては、一般式(1)及び一般式(2)で表される光学活性環状含窒素化合物のR~R12の説明で列挙するアルキル基の置換基の説明で述べたような基が挙げられる。 
 アリール基としては、例えばフェニル基、トリル基、イソプロピルフェニル基、キシリル基、t-ブチルフェニル基、シクロヘキシル基、1-メチルシクロヘキシル基、アダマンチルフェニル基、トリフロロメチルフェニル基、ナフチル基、アンスリル基、フェナンスリル基、ビフェニル基、4-(2’-p-トリルプロピル)フェニル基等が挙げられる。
 一般式ArMg(halogen)で表されるグリニヤ化合物において、halogenで表されるハロゲン原子としては、例えば塩素、臭素、ヨウ素が挙げられる。
 化合物23で表される化合物は、一般的な方法、例えば、化合物22をRNCOで表されるイソシアナート類に付加させる方法で容易に合成することができる。
 化合物23の合成は、化合物22のN,N-ジメチルホルムアミド(以下DMFと略す)等の非プロトン性極性溶液に、塩化銅(I)などのルイス酸触媒存在下、一般式RNCOで表されるイソシアネート化合物を不活性気体雰囲気下、室温付近で滴下し、1~24時間撹拌することで行われる。溶媒の使用量(L)は、基質である化合物6の重量(kg)に対して例えば1~20倍容量〔L/kg〕、好ましくは3~10倍容量〔L/kg〕である。
 上記のようにして得られた化合物23は、例えば抽出、再結晶、各種クロマトグラフィー等の通常用いられる操作により、単離精製を行うことができる。
 一般式RNCOで表されるイソシアネート化合物において、Rで表される置換基としては、例えば、一般式(1)及び一般式(2)で表される光学活性環状含窒素化合物のR~R12の説明で列挙する置換基やポリマー鎖が挙げられる。 
 置換基としては、アルキル基、シクロアルキル基、アルケニル基、アリール基、アラルキル基、カルボキシル基、アルコキシカルボニル基、アミド基、芳香族複素環基、脂肪族複素環基が挙げられる。これらの基はいずれも置換基を有してもよい。
 化合物19で表される光学活性ジアリールメチルピロリジン化合物は、Tetrahedron:Asymmetry 1997,8,149-153に記載されている方法に従って合成することができる。
 化合物19の合成は、化合物18を、化合物18に対して0.1~40重量%のパラジウム触媒存在下、前記R44OHで表されるアルコール溶媒、THF、またはこれらの混合溶媒中、20~80℃で0.1MPa~1MPa程度の水素雰囲気下で1日~10日、脱ベンジル化をすることによって行われる。溶媒の使用量(L)は、基質である化合物7の重量(kg)に対して、例えば1~50倍容量〔L/kg〕、好ましくは5~40倍容量〔L/kg〕である。
 上記のようにして得られた化合物19の光学活性ジアリールメチルピロリジン化合物は、例えば抽出、再結晶、各種クロマトグラフィー等の通常用いられる操作により、単離精製を行うことができる。
 化合物24の合成は、化合物23を、化合物23に対して0.1~40重量%のパラジウム触媒存在下、R44OHで表されるアルコール溶媒、THF、またはこれらの混合溶媒中、20~80℃で0.1MPa~1MPa程度の水素雰囲気下で1日~10日、脱ベンジル化をすることによって行われる。溶媒の使用量(L)は、基質である化合物7の重量(kg)に対して、例えば5~50倍容量〔L/kg〕、好ましくは20~40倍容量〔L/kg〕である。
 上記のようにして得られた化合物24の光学活性ジアリールメチルピロリジン化合物は、例えば抽出、再結晶、各種クロマトグラフィー等の通常用いられる操作により、単離精製を行うことができる。
 一般式Pd cat.で表されるパラジウム触媒は、Pd/Cのような脱ベンジル触媒から選ばれる。
 なおScheme2及び3中、*は不斉炭素原子を表す。
(酸)
 更に、本発明の工程A:シトラールの不斉水素化触媒においてはもう一つの触媒成分として酸を含む。
 酸としては有機酸又は無機酸を用いることができるが、有機酸が好ましい。
 具体的な有機酸の例としては、酢酸、クロロ酢酸、ジフロロ酢酸、トリフロロ酢酸、トリクロロ酢酸、トリブロモ酢酸、安息香酸、2,4-ジニトロ安息香酸、パラトルエンスルホン酸、メタンスルホン酸、L-乳酸、DL-トロパ酸、DL-リンゴ酸、L-リンゴ酸、D-リンゴ酸、DL-酒石酸、D-酒石酸、L-酒石酸、L-ジベンゾイル酒石酸、D-ジベンゾイル酒石酸、DL-マンデル酸、L-マンデル酸、D-マンデル酸及びトリフロロメタンスルホン酸等が挙げられる。
 具体的な無機酸の例としては、弗酸、塩酸、臭酸、ヨウ酸、硫酸、過塩素酸、燐酸及び硝酸等が挙げられる。
<工程A:不斉水素化反応>
 本発明では、前記した触媒の存在下にゲラニアール、ネラール又はシトラールを不斉水素化反応させることにより、光学活性シトロネラールが得られる。
 本発明の不斉水素化触媒の成分として用いられる金属粉末及び金属担持物の使用量は、種々の反応条件により異なるが、基質であるゲラニアール、ネラール又はシトラールの重量に対して、金属粉末の全重量及び金属担持物の全重量が、例えば0.01~10重量%であり、好ましくは0.02~5重量%用いることができる。
 本発明の触媒の成分として用いられる光学活性環状含窒素化合物の使用量は、種々の反応条件により異なるが、基質であるゲラニアール、ネラール又はシトラールに対して、例えば0.01~20重量%であり、好ましくは0.04~10重量%用いることができる。
 本発明の触媒の成分として用いられる酸の使用量は、種々の反応条件により異なるが、光学活性環状含窒素化合物に対して、例えば、0.01~10倍モルであり、好ましくは0.2~4倍モル用いることができる。
 本発明の触媒を用いてゲラニアール、ネラール又はシトラールを不斉水素化し光学活性カルボニル化合物を製造する際には、溶媒の存在下又は非存在下で行うことができるが、溶媒存在下で行うことが好ましい。
 使用される具体的な溶媒としては、ヘキサン、ヘプタン、オクタン等の脂肪族炭化水素系有機溶媒;シクロヘキサン、メチルシクロヘキサン等の脂環式炭化水素系有機溶媒;ベンゼン、トルエン、キシレン等の芳香族炭化水素系有機溶媒;ジエチルエーテル、ジイソプロピルエーテル、ジメトキシエタン、テトラヒドロフラン、ジオキサン、ジオキソランなどのエーテル系有機溶媒;水;メタノール、エタノール、プロパノール、イソプロパノール、ターシャリーブタノール等のアルコール系有機溶媒;ジクロロメタン、ジクロロエタン、クロロベンゼン、ブロモトルエン等のハロゲン化炭化水素系有機溶媒;ジメチルホルムアミド、アセトニトリル等が好ましく、必要に応じこれらの溶媒の混合溶媒を用いることもできる。これら溶媒の中でも、ヘプタン、トルエン、テトラヒドロフラン、t-ブタノール、含水t-ブタノールが特に好ましい。
 溶媒の使用量(L)は、反応条件等により適宜選択することができるが、基質であるゲラニアール、ネラール又はシトラールの重量(kg)に対して例えば0~20倍容量〔(L/kg)〕、好ましくは0~5倍容量〔(L/kg)〕である。
 本発明の方法は、水素ガスを水素源として行うが、その水素圧は、0.01MPa~10MPaであり、好ましくは0.1MPa~1MPaである。また、水素ガスは、窒素、ヘリウム及びアルゴンのような不活性気体との混合気体も使用できる。
 反応温度は、-78~100℃であり、好ましくは10~70℃である。反応時間は、反応条件により異なるが、通常1~30時間である。
 上記のようにして得られた光学活性シトロネラールは、例えば蒸留等の通常用いられる操作により、単離精製を行うことができる。また、得られる光学活性シトロネラールの立体配置は、光学活性環状含窒素化合物の立体配置を適宜選択することによって、d体又はl体(R体又はS体)を製造することができる。
<工程B>
 本発明のスキーム1に示した工程Bは工程Aで得られた光学活性シトロネラールを閉環することにより、光学活性イソプレゴールを製造することにより成り立つ。
Figure JPOXMLDOC01-appb-C000048
<工程B:光学活性シトロネラールの閉環触媒>
(有機アルミニウム触媒)
 スキーム1の工程B:シトロネラール閉環触媒としては、アルミニウム触媒を用いることが好ましい。このアルミニウム触媒は、有機アルミニウム化合物とヒドロキシ化合物とを反応させて得られる。
 アルミニウム触媒を製造するために使用される有機アルミニウム化合物は、一般式(3)で表されるトリアルキルアルミニウム類、又は、一般式(8)で表される枝分かれしていても良い鎖状アルミノキサン類、一般式(9)で表される枝分かれしていても良い環状アルミノキサン類及び一般式(10)で表されるビス(ジアルキルアルミニウムオキシ)アルキルボラン類から選ばれる少なくとも一種の有機アルミニウムオキシ化合物から選ばれることが好ましい。
Figure JPOXMLDOC01-appb-C000049
 一般式(3)中、R13は炭素数1~8のアルキル基を表す。
 炭素数1乃至8のアルキル基としては、例えば、メチル基、エチル基、n-プルピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、オクチル基などが例示される。
Figure JPOXMLDOC01-appb-C000050
 一般式(8)中、R14は、炭素数1乃至6のアルキル基、炭素数5乃至8の脂環式基、又は置換基を有してもよい炭素数7乃至12のアラルキル基であり、複数のR14はそれぞれ同一であっても異なっていてもよく;oは0~40の整数である。
Figure JPOXMLDOC01-appb-C000051
 一般式(9)中、R15は、炭素数1乃至6のアルキル基、炭素数5乃至8の脂環式基、又は置換基を有してもよい炭素数7乃至12のアラルキル基であり;oは0~40の整数である。
Figure JPOXMLDOC01-appb-C000052
 一般式(10)中、R16は、炭素数1乃至6のアルキル基、炭素数5乃至8の脂環式基、又は置換基を有してもよい炭素数7乃至12のアラルキル基であり、複数のR16はそれぞれ同一であっても異なっていてもよく;R17は、炭素数1乃至6のアルキル基、炭素数5乃至8の脂環式基、又は置換基を有していてもよい炭素数7乃至12のアラルキル基である。
 上記一般式(8)~(10)で表される有機アルミニウムオキシ化合物における特定の置換基は以下の例として挙げることができる。
 炭素数1乃至6のアルキル基としては、例えば、メチル基、エチル基、n-プルピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基及びヘキシル基等が挙げられる。
 炭素数5乃至8の脂環式基としては、例えば、シクロペンチル基、シクロヘキシル基、メチルシクロヘキシル基、シクロヘプチル基及びシクロオクチル基等が挙げられる。
 置換基を有していてもよい炭素数7乃至12のアラルキル基としては、例えば、ベンジル基、1-フェニルエチル基、2-フェニルエチル基、α-ナフチルメチル基及びβ-ナフチルメチル基等が挙げられる。
 前記置換基としては、例えば、メチル基、エチル基、n-プルピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基及びヘキシル基などの炭素数1乃至6のアルキル基;シクロペンチル基、シクロヘキシル基及びシクロヘプチル基などの炭素数5乃至8の脂環式基;トリフロロメチル基、ペンタフロロエチル基、ヘプタフロロプロピル基及びノナフロロブチル基などの炭素数1乃至4のパーフロロアルキル基;メトキシ基、エトキシ基、n-プロポキシル基、イソプロポキシ基、n-ブトキシ基、イソブトキシ基、sec-ブトキシ基及びtert-ブトキシ基などの炭素数1乃至4のアルコキシ基;フッ素原子、塩素原子、臭素原子及びヨウ素原子などのハロゲン原子;ベンジル基、フェニルエチル基及びナフチルメチル基などの炭素数7乃至12のアラルキル基;トリメチルシリル基、トリエチルシリル基、トリイソプロピルシリル基、ジメチルイソプロピルシリル基、ジエチルイソプロピルシリル基、ジメチル(2,3-ジメチル-2-ブチル)シリル基、tert-ブチルジメチルシリル基及びジメチルヘキシルシリル基などのトリ-炭素数1乃至6アルキルシリル基;ジメチルアミノ基、ジエチルアミノ基及びジブチルアミノ基などの炭素数2乃至8のジアルキルアミノ基等が挙げられる。
 また、oは0~40、好ましくは2~30の整数である。
 一般式(8)及び(9)で表される有機アルミニウムオキシ化合物は、アルミノキサンとも称される化合物である。アルミノキサンの中では、メチルアルミノキサン、エチルアルミノキサン、イソブチルアルミノキサン及びメチルイソブチルアルミノキサンが好ましく、メチルアルミノキサンが特に好ましい。上記のアルミノキサンは、各群内および各群間で複数種併用することも可能である。そして、上記のアルミノキサンは公知の様々な条件下に調製することが出来る。
 一般式(10)で表される有機アルミニウムオキシ化合物は、(R13Alで表される一種類のトリアルキルアルミニウム又は二種類以上のトリアルキルアルミニウムと、一般式R17B(OH)で表されるアルキルボロン酸との10:1~1:1(モル比)の反応により得ることが出来る。
 有機アルミニウム化合物を製造するために使用されるヒドロキシ化合物は、一般式(4)で表される2,6-ジフェニルフェノール、一般式(5)で表される2,6,2’,6’-テトラフェニル-ビフェニル-4,4’-ジオール、一般式(6)で表される1,1’-ビナフチル-2,2’-ジオール、一般式(7)で表される(2,2―ジメチル―1,3―ジオキソラン―4,5-ジイル)ビス(ジフェニルメタノール)、次の一般式(11)で表されるジアリールフェノール類、一般式(12)で表されるビス(ジアリールフェノール)類、一般式(13)で表されるビアリールジオール類、一般式(14)で表されるジメタノール類及び一般式(15)で表されるシラノール類から選ばれる少なくとも一種のヒドロキシ化合物が好ましい。
Figure JPOXMLDOC01-appb-C000053
 一般式(6)で表される1,1’-ビナフチル-2,2’-ジオール、一般式(7)で表される(2,2―ジメチル―1,3―ジオキソラン―4,5-ジイル)ビス(ジフェニルメタノール)は、光学活性であってもよい。
Figure JPOXMLDOC01-appb-C000054
 一般式(11)中、Ar及びArは、それぞれ独立してそのいずれもが、置換基を有してもよい炭素数6乃至15のアリール基、置換基を有してもよい炭素数2乃至15のヘテロアリール基であり;R18、R19及びR20は、それぞれ独立してそのいずれもが、水素原子、炭素数1乃至8のアルキル基、炭素数5乃至8の脂環式基、炭素数1乃至4のパーフロロアルキル基、炭素数1乃至8のアルコキシ基、置換基を有してもよい炭素数7乃至12のアラルキル基、ハロゲン原子、オルガノシリル基、置換基を有してもよい炭素数6乃至15のアリール基、炭素数2乃至8のジアルキルアミノ基、炭素数1乃至4のチオアルコキシ基、ニトロ基又はポリマー鎖であり、R18とR19又はR19とR20とは互いに結合して各々独立に、縮合ベンゼン環、縮合置換ベンゼン環、トリメチレン基、テトラメチレン基、ペンタメチレン基、メチレンジオキシ基、エチレンジオキシ基又はトリメチレンジオキシ基を形成してもよい。
Figure JPOXMLDOC01-appb-C000055
 一般式(12)中、Ar、Ar、Ar及びArは、それぞれ独立してそのいずれもが、置換基を有してもよい炭素数6乃至15アリール基、置換基を有してもよい炭素数2乃至15のヘテロアリール基であり;
 R21、R22、R23及びR24は、それぞれ独立してそのいずれもが、水素原子、炭素数1乃至8のアルキル基、炭素数5乃至8の脂環式基、炭素数1乃至4のパーフロロアルキル基、炭素数1乃至8のアルコキシ基、置換基を有していてもよい炭素数7乃至12のアラルキル基、ハロゲン原子、オルガノシリル基、置換基を有していてもよい炭素数6乃至15のアリール基、炭素数2乃至8のジアルキルアミノ基、炭素数1乃至4のチオアルコキシ基、ニトロ基又はポリマー鎖であり、R21とR22又はR23とR24とは互いに結合し各々独立に、縮合ベンゼン環、縮合置換ベンゼン環、トリメチレン基、テトラメチレン基、ペンタメチレン基、メチレンジオキシ基、エチレンジオキシ基又はトリメチレンジオキシ基を形成してもよく、R21若しくはR22及び/又はR23若しくはR24はA’と結合して芳香族環または非芳香族環を形成してもよく;
 A’は、(1)置換基及び/又は不飽和結合を有してもよい炭素数1乃至25の直鎖状若しくは分岐状及び/又は環状の炭化水素基;(2)置換基を有してもよい炭素数6~15のアリーレン基;(3)置換基を有していてもよい炭素数2~15のヘテロアリーレン基;(5)-O-、-S-、-N(R25)-、-S(O)-、-C(O)-、-S(O)-、-P(R25)-、-(R25)P(O)-及び-Si(R2627)-の群から選択される官能基またはヘテロ元素である(ここで、R25~R27は、それぞれ独立してそのいずれもが、炭素数1乃至6のアルキル基、炭素数5乃至8の脂環式基、置換基を有してもよい炭素数7~12のアラルキル基、又は置換基を有していてもよい炭素数6~10のアリール基である。)
Figure JPOXMLDOC01-appb-C000056
 一般式(13)中、R28、R29、R30、R31、R32、R33、R34及びR
35は、それぞれ独立してそのいずれもが、水素原子、炭素数1乃至8のアルキル基、炭素数1乃至4のパーフロロアルキル基、炭素数1乃至8のアルコキシ基、炭素数5乃至8の脂環式基、置換基を有してもよい炭素数7乃至12のアラルキル基、ハロゲン原子、オルガノシリル基、置換基を有してもよい炭素数6乃至15のアリール基、炭素数2乃至8のジアルキルアミノ基、炭素数1乃至4のチオアルコキシ基、ニトロ基又はポリマー鎖であり、R28とR29、R29とR30、R30とR31、R31とR35、R32とR33、R33とR34又はR34とR35とは互いに結合して各々独立に、縮合ベンゼン環、縮合置換ベンゼン環、トリメチレン基、テトラメチレン基、ペンタメチレン基、メチレンジオキシ基、エチレンジオキシ基又はトリメチレンジオキシ基を形成してもよい。
Figure JPOXMLDOC01-appb-C000057
 一般式(14)中、R36、R37、R38、及びR39は、それぞれ独立してそのいずれもが、水素原子、炭素数1乃至8のアルキル基、炭素数5乃至8の脂環式基、炭素数1乃至8のパーハロゲノアルキル基、炭素数1乃至8のアルコキシ基、置換基を有してもよい炭素数7乃至12のアラルキル基、ハロゲン原子、オルガノシリル基、置換基を有してもよい炭素数6乃至15のアリール基、置換基を有してもよい炭素数2乃至15のヘテロアリール基、炭素数2乃至8のジアルキルアミノ基、炭素数1乃至4のチオアルコキシ基、ニトロ基又はポリマー鎖であり、R36とR37及びR38とR39とは互いに結合して各々独立にヘテロ元素を有していてもよい3~9員環を形成してもよく;環Bはヘテロ元素を有していてもよい3~8員環である。
Figure JPOXMLDOC01-appb-C000058
 一般式(15)中、R40、R41、及びR42は、それぞれ独立してそのいずれもが、炭素数1乃至10のアルキル基、炭素数5乃至8の脂環式基、炭素数7乃至12のアラルキル基、置換基を有してもよい炭素数6乃至10のアリール基、置換基を有してもよい炭素数2乃至15のヘテロアリール基又はポリマー鎖である。
 上記一般式(11)~(15)で表されるヒドロキシ化合物における特定の置換基は以下の例として挙げることができる。
 置換基を有してもよい炭素数6乃至15のアリール基としては、例えば、ベンジル基、α-ナフチル基及びβ-ナフチル基等が挙げられる。
 ここで置換基としては、例えば、メチル基、エチル基、n-プルピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基及びペンチル基、ヘキシル基などの炭素数1乃至6のアルキル基;シクロペンチル基、シクロヘキシル基及びシクロヘプチル基などの炭素数5乃至8の脂環式基;トリフロロメチル基、ペンタフロロエチル基、ヘプタフロロプロピル基及びノナフロロブチル基などの炭素数1乃至4のパーフロロアルキル基;メトキシ基、エトキシ基、n-プロポキシル基、イソプロポキシ基、n-ブトキシ基、イソブトキシ基、sec-ブトキシ基及びtert-ブトキシ基などの炭素数1乃至4のアルコキシ基;フッ素原子、塩素原子、臭素原子及びヨウ素原子などのハロゲン原子;ベンジル基、フェニルエチル基及びナフチルメチル基などの炭素数7乃至12のアラルキル基;トリメチルシリル基、トリエチルシリル基、トリイソプロピルシリル基、ジメチルイソプロピルシリル基、ジエチルイソプロピルシリル基、ジメチル(2,3-ジメチル-2-ブチル)シリル基、tert-ブチルジメチルシリル基及びジメチルヘキシルシリル基などのトリ-炭素数1乃至6アルキルシリル基;ジメチルアミノ基、ジエチルアミノ基及びジブチルアミノ基などの炭素数2乃至8のジアルキルアミノ基等が挙げられ、さらに6,6-ナイロン鎖、ビニルポリマー鎖及びスチレンポリマー鎖などのポリマー鎖が挙げられる。
 置換基を有してもよい炭素数2乃至15のヘテロアリール基としては、例えば、フリル基、チエニル基、ピロニル基、ベンゾフリル基、イゾベンゾフリル基、ベンゾチエニル基、インドリル基、イソインドリル基、カルバゾイル基、ピリジル基、キノリル基、イソキノリル基、ピラジル基及びフェロセニル基等が挙げられる。ここで置換基としては、前記アリール基で挙げられたものと同様の置換基が挙げられる。
 炭素数1乃至8のアルキル基としては、例えば、メチル基、エチル基、n-プルピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、ヘプチル基及びオクチル基等が挙げられる。
 炭素数5乃至8の脂環式基としては、例えば、シクロペンチル基、シクロヘキシル基、メチルシクロヘキシル基、シクロヘプチル基及びシクロオクチル基等が挙げられる。
 炭素数1乃至4のパーフロロアルキル基としては、例えば、トリフロロメチル基、ペンタフロロエチル基、ヘプタフロロプロピル基及びノナフロロブチル基等が挙げられる。
 炭素数1乃至8のアルコキシ基としては、メトキシ基、エトキシ基、n-プロポキシル基、イソプロポキシ基、n-ブトキシ基、イソブトキシ基、sec-ブトキシ基、tert-ブトキシ基、ペントキシ基、ヘキソキシ基、ヘプトキシ基及びオクトキシ基等が挙げられる。
 置換基を有してもよい炭素数7乃至12のアラルキル基としては、例えば、ベンジル基、1-フェニルエチル基、2-フェニルエチル基、α-ナフチルメチル基及びβ-ナフチルメチル基等が挙げられる。ここで置換基としては、前記アリール基で挙げられたものと同様の置換基が挙げられる。
 ハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子及びヨウ素原子等が挙げられる。
 オルガノシリル基としては、トリ置換シリル基が挙げられる。該置換基としては、炭素数1乃至6アルキル基、炭素数6~18アリール基及び炭素数7~19アラルキルシリル基から選ばれる3つの置換基であり、これらは互いに同一であっても異なっていてもよい。炭素数1乃至6アルキル基としては、例えば、メチル基、エチル基、イソプロピル基、2,3-ジメチル-2-ブチル基、ヘキシル基及びtert-ブチル基が挙げられる。炭素数6~18アリール基としては、例えば、フェニル基及びナフチル基が挙げられる。炭素数7~19のアラルキル基としては、例えば、ベンジル基及びp-キシリル基が挙げられる。
 オルガノシリル基としては、例えば、トリメチルシリル基、トリエチルシリル基、トリイソプロピルシリル基、ジメチルイソプロピルシリル基、ジエチルイソプロピルシリル基、ジメチル(2,3-ジメチル-2-ブチル)シリル基、tert-ブチルジメチルシリル基及びジメチルヘキシルシリル基などのトリ-炭素数1乃至6アルキルシリル基、ジメチルクミルシリル基などのジ-炭素数1乃至6アルキル-炭素数6乃至18アリールシリル基、tert-ブチルジフェニルシリル基及びジフェニルメチルシリル基などのジ-炭素数6乃至18アリール-炭素数1乃至6アルキルシリル基、トリフェニルシリル基などのトリ-炭素数6~18アリールシリル基、トリベンジルシリル基及びトリ-p-キシリルシリル基などのトリ-炭素数7~19アラルキルシリル基等のトリ置換シリル基等が挙げられる。
 炭素数2乃至8のジアルキルアミノ基としては、例えば、ジメチルアミノ基、ジエチルアミノ基、ジプロピルアミノ基、ジイソプロピルアミノ基及びジブチルアミノ基等が挙げられる。
 炭素数1乃至4のチオアルキル基としては、例えば、メチルチオ基、エチルチオ基、n-プロピルチオ基、イソプロピルチオ基、n-ブチルチオ基、イソブチルチオ基、sec-ブチルチオ基及びtert-ブチルチオ基等が挙げられる。
 ポリマー鎖としては、例えば、6,6-ナイロン鎖、ビニルポリマー鎖及びスチレンポリマー鎖等が挙げられる。
 一般式(11)において、R18とR19又はR19とR20とは互いに結合して各々独立に、縮合ベンゼン環、縮合置換ベンゼン環、トリメチレン基、テトラメチレン基、ペンタメチレン基、メチレンジオキシ基、エチレンジオキシ基又はトリメチレンジオキシ基を形成してもよい。
 また、一般式(12)において、R21とR22又はR23とR24とは互いに結合して各々独立に、縮合ベンゼン環、縮合置換ベンゼン環、トリメチレン基、テトラメチレン基、ペンタメチレン基、メチレンジオキシ基、エチレンジオキシ基又はトリメチレンジオキシ基を形成してもよい。
 さらに、一般式(13)において、R28とR29、R29とR30、R30とR31、R31とR35、R32とR33、R33とR34又はR34とR35とは互いに結合して各々独立に、、縮合ベンゼン環、縮合置換ベンゼン環、トリメチレン基、テトラメチレン基、ペンタメチレン基、メチレンジオキシ基、エチレンジオキシ基又はトリメチレンジオキシ基を形成してもよい。
 前記縮合ベンゼン環、縮合置換ベンゼン環、トリメチレン基、テトラメチレン基、ペンタメチレン基、メチレンジオキシ基、エチレンジオキシ基又はトリメチレンジオキシ基には、不活性な官能基を置換基としてもよく、好ましくは0~4個の範囲で置換基を有してもよい。ここで置換基としては、前記アリール基で例示されたものと同様の置換基が挙げられる。
 縮合ベンゼン環、縮合置換ベンゼン環、トリメチレン基、テトラメチレン基、ペンタメチレン基、メチレンジオキシ基、エチレンジオキシ基又はトリメチレンジオキシ基に存在する置換基や炭素鎖を介して、一般式(11)、一般式(12)及び一般式(13)で表されるヒドロキシ化合物から選ばれる少なくとも一種がポリマーを形成してもよい。
 一般式(12)において、R21若しくはR22及び/又はR23若しくはR24はA’と一緒になって環状芳香族または非芳香族環を形成してもよい。この場合は、本発明で使用される一般式(12)で表されるビス(ジアリールフェノール)類は、三環式基本構造、例えば、一般式(12a)を有するアントラセン基本構造または一般式(12b)の基本構造を有する。
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000060
 一般式(12a)及び一般式(12b)において、基本構造中にヘテロ元素を有する三環式基本構造であってもよい。
 上述したように、一般式(12)において、A’は、(1)置換基及び/又は不飽和結合を有していてもより炭素数1乃至25の直鎖状若しくは分岐状及び/又は環状の炭化水素基;(2)置換基を有してもよい炭素数6~15のアリール基;(3)置換基を有してもよい炭素数2~15のヘテロアリール基;(4)-O-、-S-、-N(R25)-、-S(O)-、-C(O)-、-S(O)-、-P(R25)-、-(R25)P(O)-及び-Si(R2627)-の群から選択される官能基またはヘテロ元素である[ここで、R25~R27は、それぞれ独立してそのいずれもが、炭素数1乃至6のアルキル基、炭素数5乃至8の脂環式基、置換基を有していてもよい炭素数7~12のアラルキル基、又は置換基を有してもよい炭素数6~10のアリール基である。
 一般式(12)における、(1)置換基及び/又は不飽和結合を有してもよい炭素数1乃至25の直鎖状若しくは分岐状及び/又は環状の炭化水素基の、A’の例としては、例えば、以下の構造1~44などを例示することができる。なお、波線は、本明細書中に開示されている一般式(12)の構造の残り部位に対する結合部位を表す。
Figure JPOXMLDOC01-appb-C000061
 上記で表されている構造1~44は、置換基を有してもよく、ここで置換基としては、前記アリール基で例示されたものと同様の置換基が挙げられる。
 一般式(12)における、(2)置換基を有してもよい炭素数6~15のアリーレン基の、A’の例としては、例えば、フェニレン基、ナフチレン基及びアントラセニレン基等が挙げられる。
 一般式(12)における、(3)置換基を有してもよい炭素数2~15のヘテロアリーレン基の、A’の例としては、例えば、フリレン基、チエニレン基、ピロニレン基、ベンゾフリレン基、イゾベンゾフリレン基、ベンゾチエニレン基、インドリレン基、イソインドリレン基、カルバゾイレン基、ピリジレン基、キノリレン基、イソキノリレン基、ピラジレン基及びフェロセニレン基などが例示される。
 上記アリーレン基およびヘテロアリーレン基は、置換基を有してもよく、ここで置換基としては、前記アリール基で例示されたものと同様の置換基が挙げられる。
 一般式(12)における、A’としては、(4)-O-、-S-、-N(R25)-、-S(O)-、-C(O)-、-S(O)-、-P(R25)-、-(R25)P(O)-及び-Si(R2627)-の群から選択される官能基またはヘテロ元素である[ここで、R25~R27は、それぞれ独立してそのいずれもが、炭素数1乃至6のアルキル基、炭素数5乃至8の脂環式基、置換基を有してもよい炭素数7~12のアラルキル基、又は置換基を有してもよい炭素数6~10のアリール基である。]。ここで、A’としては、-O-、-S-、-S(O)-、-S(O)-及び-Si(R2627)-が好ましい。
 一般式(14)において、R36とR37及びR38とR39とは結合してヘテロ元素を有してもよい3~9員環を形成してもよい。この場合、ヘテロ元素としては、例えば、酸素、窒素、リン、硫黄、ホウ素及びケイ素、並びにメタロサイクルを形成可能な金属元素などが挙げられる。ヘテロ元素は、環B中に複数存在してもよく、その場合は同一のヘテロ元素でもよいし、異なるヘテロ元素でもよい。環Bには、置換基が存在してもよく、またヘテロ元素に置換基が存在してもよい。
 ヘテロ元素を有してもよい3~9員環の具体例としては、例えば、シクロプロパン環、シクロブタン環、シクロペンタン環、シクロヘキサン環、シクロヘプタン環、シクロオクタン環、ベンゼン環、ナフタレン環、ノルボルナン環、ノルボルネン環、デカリン環、フラン環、テトラヒドロフラン環、ジオキソラン環、ジオキサン環、ジオキサシクロヘプタン環、トリオキサシクロヘプタン環、ラクトン環、ラクタム環、モルホリン環、ピロピジン環、ピペリジン環、ピラジン環、チオフェン環及びテトラヒドロヒオフェン環等が挙げられる。
 ここで置換基としては、前記アリール基で挙げられたものと同様の置換基が挙げられる。
 また、前記形成された3~9員環形成に存在する置換基や炭素鎖を介して、一般式(14)で表されるヒドロキシ化合物がポリマーを形成してもよい。
 一般式(14)において、環Bはヘテロ元素を有してもよい3~8員環である。この場合、ヘテロ元素としては、例えば、酸素、窒素、リン、硫黄、ホウ素及びケイ素、並びにメタロサイクルを形成可能な金属元素等が挙げられる。ヘテロ元素は、環B中に複数存在していてもよく、その場合は同一のヘテロ元素でもよいし、異なるヘテロ元素でもよい。環Bには、置換基が存在してもよく、またヘテロ元素に置換基が存在してもよい。
 環Bの具体例としては、例えば、シクロプロパン環、シクロブタン環、シクロペンタン環、シクロヘキサン環、シクロヘプタン環、シクロオクタン環、ベンゼン環、ナフタレン環、ノルボルナン環、ノルボルネン環、デカリン環、フラン環、テトラヒドロフラン環、ジオキソラン環、ジオキサン環、ジオキサシクロヘプタン環、トリオキサシクロヘプタン環、ラクトン環、ラクタム環、モルホリン環、ピロピジン環、ピペリジン環、ピラジン環、チオフェン環及びテトラヒドロヒオフェン環な等が挙げられる。
 ここで置換基としては、前記アリール基で挙げられたものと同様の置換基が挙げられる。
 また、環Bに存在する置換基や炭素鎖を介して、一般式(14)で表されるヒドロキシ化合物がポリマーを形成してもよい。
 一般式(11)のジアリールフェノール類は、例えば、特許文献7に記載にされている。
 好ましい一般式(11)のジアリールフェノール類としては、例えば、2,6-ジフェニルフェノール、2,6-ジ(4-フロロフェニル)フェノール、2,6-ジ(3,4-ジフロロフェニル)フェノール、2,6-ジ(3,4,5-トリフロロフェニル)フェノール、2,6-ジフェニル-4-メチルフェノール、2,6-ジフェニル-3,5-ジメチルフェノール、2,6-ジ(2-メチルフェニル)-3,5-ジメチルフェノール、2,6-ジ(2-イソプロピルフェニル)-3,5-ジメチルフェノール、2,6-ジ(α-ナフチル)-3,5-ジメチルフェノール、3-フェニル-1,1’-ビナフチル-2-オール、3-(4-フロロフェニル)-1,1’-ビナフチル-2-オール及び1,3-ジフェニル-2-ナフトール、3,3’,5,5’-テトラフェニルビフェニル-4,4’ジオール)等が挙げられる。
 一般式(12)のビス(ジアリールフェノール)類は、例えば、特許文献8に記載にされている[参照により、本明細書に組み込むものとする。]。
 一般式(12)のビス(ジアリールフェノール)類において、好ましいR21、R22、R23及びR24としては、例えば、水素原子、メチル基、エチル基、イソプロピル基、ヘロゲン原子(フッ素原子、塩素原子)、トリフルオロメチル基、フェニル基、メトキシ基及びニトロ基等が挙げられる。より好ましくは、R21、R22、R23及びR24が同一であり、特に水素原子が好ましい。
 また、好ましいAr、Ar、Ar及びArは、例えば、フェニル基、ナフチル基、4-フェルオロフェニル基、4-クロロフェニル基、3-クロロフェニル基、3,5-ジクロロフェニル基、4-メチルフェニル基、3-トリフルオロメチルフェニル基及び4-トリフルオロメチルフェニル基であり、より好ましくは、Ar、Ar、Ar及びArが同一であり、特にフェニル基が好ましい。
 また、好ましいA’としては、例えば、単結合及び前記した構造1~44を挙げることができる。より好ましくは、前記した構造1~5である。
 一般式(13)のビアリールジオール類は、例えば、特許文献8に記載にされている[参照により、本明細書に組み込むものとする。]。
 好ましい一般式(13)のジアリールフェノール類としては、例えば、以下の化合物が挙げられるが、これらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000063
 一般式(14)のジメタノール類は、例えば、米国特許第6166260号明細書及びSynlett,1998,pp.1291-1293;Tetrahedron:Asymmetry,1991、Vol.2,No.12、pp.1295-1304;CROATIA CHEMICA ACTA,1996,69,pp.459-484;Russian Chemical Bulletin,2000,49,pp.460-465に記載にされている[参照により、本明細書に組み込むものとする。]。
 好ましい一般式(14)のジメタノール類としては、例えば、2,2-ジメチル-α,α,α’,α’-テトラフェニル-1,3-ジオキソラン-4,5-ジメタノール(TADDOL)及び2,2-ジメチル-α,α,α’,α’-テトラ(1-ナフチル)-1,3-ジオキソラン-4,5-ジメタノール(NAPHTADDOL)が挙げられるが、これらに限定されるものではない。
 一般式(15)のシラノール類は、例えば、国際公開第2007/039342号及び国際公開第2007/039366号に記載にされている[参照により、本明細書に組み込むものとする。]。
 好ましい一般式(15)のシラノール類としては、例えば、トリメチルシラノール、トリエチルシラノール、tert-ブチルジメチルシラノール、トリフェニルシラノール及びトリナフチルシラノールが挙げられるが、これらに限定されるものではない。
 本発明の工程Bで使用される有機アルミニウム触媒は、一般式(3)で表されるトリアルキルアルミニウム又は一般式(8)~(10)で表される有機アルニウムオキシ化合物から選ばれる少なくとも一種と、一般式(4)~(7)及び(11)~(15)で表されるヒドロキシ化合物から選ばれる少なくとも一種とを反応させることにより得られる。
 その際、一般式(3)で表されるトリアルキルアルミニウム又は一般式(8)~(10)で表される有機アルニウムオキシ化合物から選ばれる少なくとも一種に対し、一般式(4)~(7)及び(11)~(15)で表されるヒドロキシ化合物から選ばれる少なくとも一種を好ましくは0.25~10等量、より好ましくは0.5~4等量の割合(アルミニウム原子:化合物比)で不活性ガス雰囲気中で反応させることが好ましい。
 上記反応は、不活性溶媒存在下で行うことができる。当該溶媒としては、例えば、脂肪族炭化水素(ヘキサン、ヘプタン及びオクタンなど)、脂環式炭化水素(シクロヘキサン及びメチルシクロヘキサンなど)、芳香族炭化水素(ベンゼン、トルエン及びキシレンなど)、エーテル(ジエチルエーテル、ジイソプロピルエーテル、ジメトキシエタン、メチルtert-ブチルエーテル、テトラヒドロフラン、ジオキサン及びジオキアオランなど)、ハロゲン化炭化水素(ジクロロメタン、ジクロロエタン及びクロロベンゼン)等が挙げられる。これらのうちで好ましくは、トルエン、ヘプタン及びジクロロメタン等の有機溶媒である。これら溶媒は、予め乾燥されたものか、または無水溶媒を用いることが好ましい。
 また、前記溶媒の使用量(L)は、ヒドロキシ化合物(kg)に対して、好ましくは1~10000倍容量〔L/kg〕、より好ましくは20~400倍容量〔L/kg〕の範囲である。アルミノキサンの重合度は2以上が好ましい。
 反応の温度は、約-60~100℃程度の範囲とすることが好ましく、約-30~50℃程度の範囲とすることがより好ましく、約-5~30℃程度とすることが特に好ましい。前記の温度を保ちながら好ましくは約0.25~30時間、より好ましくは約0.5~10時間反応させることによって、有機アルミニム触媒を円滑に製造することができる。
 本発明の有機アルミニウム触媒は、シトロネラールの閉環反応を行うにあたり触媒として優れた効果を有する。
<工程B:光学活性シトロネラールの閉環反応>
 本発明では、前記した触媒の存在下に光学活性シトロネラールを閉環反応させることにより、光学活性イソプレゴールが得られる。
 原料化合物である光学活性シトロネラールは工程Aによって製造されたものを使用する。
 工程Bにおける光学活性シトロネラールの閉環反応に触媒として使用する有機アルミニウム触媒の量は、シトロネラールに対して約0.05~10モル%程度の範囲とすることが好ましく、約0.1~2モル%程度の範囲とすることがより好ましい。
 本発明におけるシトロネラールの閉環反応に用いる触媒は、a)予め、反応系中において一般式(3)及び(8)~(10)で表される有機アルニウム化合物から選ばれる少なくとも一種と、一般式(4)~(7)及び(11)~(15)で表されるヒドロキシ化合物その中でも特に(4)~(7)から選ばれる少なくとも一種とを混合して触媒(有機アルミニウム化合物)を調製した後、シトロネラールを仕込む方法、b)予め、該有機アルニウム化合物と該ヒドロキシ化合物とを混合して調製した有機アルミニウム触媒を、閉環反応時に、シトロネラールとそれぞれ単独に仕込む方法;何れかの方法によっても同等の結果が得られる。
 シトロネラールの閉環反応の温度は、約-60~100℃程度の範囲とすることが好ましく、約-30~50℃程度の範囲とすることがより好ましく、約-5~20℃程度とすることが特に好ましい。前記の温度を保ちながら好ましくは約0.25~30時間、より好ましくは約0.5~20時間反応させることによって、スキーム1の工程Bで表されるイソプレゴールを円滑に製造することができる。
 本発明におけるシトロネラールの閉環反応は、無溶媒条件下、または、不活性溶媒存在下で行うことができる。
 使用される溶媒としては、本反応を著しく阻害しない溶媒であればよく、特に限定するものではないが、例えば脂肪族炭化水素(ヘキサン、ヘプタン及びオクタンなど)、脂環式炭化水素(シクロヘキサン及びメチルシクロヘキサンなど)、芳香族炭化水素(ベンゼン、トルエン及びキシレンなど)、エーテル(ジエチルエーテル、ジイソプロピルエーテル、ジメトキシエタン、メチルtert-ブチルエーテル、テトラヒドロフラン、ジオキサン及びジオキアオランなど)及びハロゲン化炭化水素(ジクロロメタン、ジクロロエタン及びクロロベンゼン)等を挙げることができる。これらのうちで好ましくは、トルエン、ヘプタン及びジクロロメタン等の有機溶媒である。これら溶媒は、予め乾燥されたものかまたは無水溶媒を用いることが好ましい。
 これら溶媒の使用量(L)は、シトロネラール(kg)に対して約0~20倍容量〔L/kg〕とすることが好ましく、0.5~7倍容量〔L/kg〕の範囲とすることがより好ましい。
 また、反応の際に副反応を抑える意味において、ビニルエーテル類、ケトン類、アルデヒド類、酸化合物や塩基化合物を加えてもよい。
 ビニルエーテル類の具体例としては、メチルビニルエーテル、エチルビニルエーテル、イソブチルビニルエーテル及び3,4-ジヒドロ-2H-ピランを挙げることができる。ケトン類の具体例としては、1,1,1-トリフロロアセトン、1,1,1-トリフロロアセトフェノン、ヘキサフロロアセトン、ピルビン酸メチル及びピルビン酸エチルを挙げることができる。アルデヒド類の具体例としてはアセトアルデヒド、プロピオンアルデヒド及びクロラール(トリクロロアセトアルデヒド)が挙げられる。
 ケトン類の具体例としては、1,1,1-トリフロロアセトン、1,1,1-トリフロロアセトフェノン、ピルビン酸メチル、ピルビン酸エチル及びヘキサフロロアセトンが挙げられる。
 アルデヒド類の具体例としては、アセトアルデヒド、プロピオンアルデヒド及びクロラールが挙げられる。
 酸化合物の具体例としては、例えば、鉱酸(燐酸、塩酸及び硫酸など)、有機酸(ギ酸、酢酸、プロピオン酸、デカン酸、シトロネリル酸、ゲラニル酸及びネリル酸など)、有機酸無水物(無水酢酸、無水プロピオン酸、無水ピバル酸、無水マレイン酸、無水コハク酸、無水ピバロイル酸及び無水安息香酸など)等が挙げられる。塩基化合物の具体例としては、無機塩基(水酸化リチウム、水酸化ナトリウム、水酸化カリウム、炭酸リチウム、炭酸ナトリウム及び炭酸カリウムなど)及び有機塩基(トリメチルアミン及びトリエチルアミンなど)等が挙げられる。
 これら添加するビニルエーテル類、ケトン類、アルデヒド類、酸化合物や塩基化合物の使用量は、シトロネラール(mol)に対して0.01~5mol%とすることが好ましく、0.05~2mol%の範囲とすることがより好ましい。
 閉環反応は、窒素ガスまたはアルゴンガスなどのような不活性ガス雰囲気下で行うことが、閉環反応の円滑な進行のために好ましい。
 反応の終了後は、通常の後処理を行うことができる。また、スキーム1の工程Bによって得られた光学活性イソプレゴールの精製は、単に蒸留による処理によって得るか、又は深冷晶析を行って、高純度の光学活性イソプレゴールを得ることができる。
 一方、本発明の有機アルミニウム触媒において、溶媒に溶けにくい有機アルミニウム触媒については、反応終了後の溶液をデカンテーションして生成したイソプレゴールを除いた後、さらにシトロネラールを投入し連続して閉環反応を行うことができる。又は、閉環反応終了後ろ過して取り除き、そのまま、次の閉環反応に使用することもできる。
 また、部分的に有機アルミニウム触媒が失活した場合は、反応溶液に失活した分の触媒を加えて次の閉環反応に使用することができる。
 全ての有機アルミニウム化合物の配位子においては、触媒失活後に触媒層を酸又はアルカリで処理し、再結晶で回収することにより再び触媒へと再利用することが出来る。
<工程D>
 本発明のスキーム1に示した工程D-3,4,7,8,11,12,15及び16は工程Bで得られた光学活性イソプレゴールを、低温で晶析(深冷晶析)することにより、より高い化学純度、光学純度の光学活性イソプレゴールを製造することにより成り立つ。
Figure JPOXMLDOC01-appb-C000064
<工程D-3,4,7,8,11,12,15及び16:光学活性イソプレゴールの深冷晶析>
 光学活性イソプレゴールの深冷晶析は、例えば、日本国特許第3241542号公報に記載にされている[参照により、本明細書に組み込むものとする。]。
 工程Bで得られた光学活性イソプレゴールを有機溶媒中に溶かした溶液を低温で晶析する(深冷晶析)ことにより化学純度及び光学純度がともに99.7%以上の光学活性イソプレゴールが得られる。
 光学活性イソプレゴールの深冷晶析の温度は、約-60~-20℃程度の範囲とすることが好ましく、約-50~-25℃程度の範囲とすることが特に好ましい。前記の温度を徐々に下げながら、化学純度及び光学純度がともに99.7%以上の光学活性イソプレゴールの結晶を析出させ攪拌し熟成する。結晶の析出を速くするために化学純度及び光学純度がともに99.7%以上の光学活性イソプレゴールの結晶を少量加えることもできる。
 晶析時間は好ましくは約1~30時間、より好ましくは約10~20時間反応させる。その後、析出した高純度イソプレゴールを遠心分離機によりろ過することによって、スキーム1の工程D-3,4,7,8,11,12,15及び16で表される高純度の光学活性イソプレゴールを製造することができる。
 使用される溶媒としては、特に限定するものではないが、例えば脂肪族炭化水素(ヘキサン、ヘプタン、オクタン及び石油エーテルなど)、脂環式炭化水素(シクロヘキサン及びメチルシクロヘキサンなど)、芳香族炭化水素(ベンゼン、トルエン及びキシレンなど)、エーテル(ジエチルエーテル、ジイソプロピルエーテル、ジメトキシエタン、メチルtert-ブチルエーテル、テトラヒドロフラン、ジオキサン及びジオキアオランなど)、アルコール(メタノール、エタノール、イソプロパノールなど)及びケトン(アセトン、メチルエチルケトンなど)、あるいはそれらの混合溶媒が挙げられる。これらのうちで好ましくは、ヘプタン、石油エーテル、アセトン等の有機溶媒である。これら溶媒は、予め乾燥されたものかまたは無水溶媒を用いることが好ましい。
 これら溶媒の使用量(L)は、イソプレゴール(kg)に対して約0.5~5倍容量〔L/kg〕とすることが好ましく、1~3倍容量〔L/kg〕の範囲とすることがより好ましい。
 また、無臭で清涼感のみを持つ高純度光学活性イソプレゴールは、理論段数5~50段の精密蒸留等で製品化可能である。あるいは、深冷晶析の前に光学活性イソプレゴールを精密蒸留する場合には、深冷後は単蒸留するのみで、無臭で清涼感のみを持つ高純度光学活性イソプレゴールを製造可能である。
<工程C及び工程E>
 本発明のスキーム1に示した工程C-1,2,5,6,9,10,13,14及び工程E-3,4,7,8,11,12,15,16は、工程Bまたは工程Dで得られた光学活性イソプレゴールを、触媒を用いて水素化することにより、光学活性メントールを製造することにより成り立つ。
Figure JPOXMLDOC01-appb-C000065
<工程C-1,2,5,6,9,10,13,14及び工程E-3,4,7,8,11,12,15,16:光学活性イソプレゴールの水素化反応>
 光学活性イソプレゴールの炭素―炭素二重結合部分を水素化する方法は、通常の方法でできる。すなわち、ラネーニッケル、Pd/C等の水素化能力のある触媒を、オートクレーブ中に投入し、光学活性イソプレゴールを無溶媒あるいは、溶媒存在化水素圧をかけて、水素化を行い光学活性メントールを製造できる。
 光学活性イソプレゴールの水素化の温度は、約0~80℃程度の範囲とすることが好ましく、約20~60℃程度の範囲とすることが特に好ましい。反応時間は好ましくは約1~30時間、より好ましくは約3~15時間反応させる。その後、光学活性メントールをろ過し、蒸留することによって、光学活性メントールを製造することができる。
 使用される溶媒としては、特に限定するものではないが、例えば脂肪族炭化水素(ヘキサン、ヘプタン、オクタン及び石油エーテルなど)、脂環式炭化水素(シクロヘキサン及びメチルシクロヘキサンなど)、芳香族炭化水素(ベンゼン、トルエン及びキシレンなど)、エーテル(ジエチルエーテル、ジイソプロピルエーテル、ジメトキシエタン、メチルtert-ブチルエーテル、テトラヒドロフラン、ジオキサン及びジオキアオランなど)、アルコール(メタノール、エタノール、イソプロパノールなど)及びケトン(アセトン、メチルエチルケトンなど)、あるいはそれらの混合溶媒が挙げられる。これらのうちで好ましくは、ヘプタン、石油エーテル、アセトン等の有機溶媒である。これら溶媒は、予め乾燥されたものかまたは無水溶媒を用いることが好ましい。
 これら溶媒の使用量(L)は、光学活性メントール(kg)に対して約0~5倍容量〔L/kg〕とすることが好ましく、0~3倍容量〔L/kg〕の範囲とすることがより好ましい。
 上記のように、本発明の製造方法によれば、a)特定の金属粉末又は金属担持物、特定の光学活性環状含窒素化合物、及び酸を用いることにより、シトラール(任意の割合のゲラニアールとネラールとの混合物)から高純度のゲラニアール又は高純度のネラールを取り出すことなく大気圧程度の低い水素圧で不斉水素化し、対応する光学活性シトロネラールが得られ、b)得られた光学活性シトロネラールを特定のアルミニウム触媒を用いることにより閉環し、光学活性イソプレゴールを得て、あるいは光学活性イソプレゴールをさらに深冷晶析することによって高純度光学活性イソプレゴールを得て、c)これらを水素化して光学活性メントールを得ること、つまりシトラールから短い工程で光学活性メントールを製造することができる。
 以下、本発明を実施例及び比較例により具体的に説明するが、本発明はこれらにより何ら限定されるものではない。
 生成物の測定は、ガスクロマトグラフィー法(GLC)により行った。条件は以下に述べる通りである。
使用分析機器:島津製作所製G2010ガスクロマトグラフ
カラム:
 シトラールの転化率測定…Agilent社製DB-WAX(0.25mm x30m)
 シトロネラールの光学純度測定…スペルコ社製β-DEX-225(0.25mm x 30m)
 イソプレゴールの光学純度測定…スペルコ社製β-DEX-325(0.25mm x 30m)
検出器:FID
H-NMR:Varian Inc.製300MHz
 一般式(1)で表される光学活性環状含窒素化合物のうち、実施例10を除く実施例1~27で使用した化合物は下記方法により合成した。実施例10ではアルドリッチ社製の化合物を使用した。
Figure JPOXMLDOC01-appb-C000066
(合成例1)
(R)-Proline-N-ethyl carbamate methyl esterの合成
Figure JPOXMLDOC01-appb-C000067
 Tetrahedron,Vol.49,No.23,5127-5132の合成法に従って行った。
 2Lの四つ口フラスコに、(R)-プロリン35.54g(0.3mol)、無水メタノール600mL、炭酸カリウム41.46gを投入し攪拌した。氷冷下、この溶液にクロロ炭酸エチル71.62g(0.66mmol)を25℃以下で滴下し、0℃で12時間攪拌した。その後、メタノールを留去し水300mLを投入し、クロロホルム450mLで抽出、さらに水層をクロロホルム450mLで2回抽出した。得られた有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥、ろ過後溶媒を留去し、52.85g、87.5%の収率で目的物を得た。
(合成例2)
(S)-Proline-N-ethyl carbamate methyl esterの合成
Figure JPOXMLDOC01-appb-C000068
 Tetrahedron,Vol.49,No.23,5127-5132の合成法に従って行った。
 1Lの四つ口フラスコに、(S)-プロリン23.03g(0.2mol)、無水メタノール400mL、炭酸カリウム27.64gを投入し攪拌した。氷冷下、この溶液にクロロ炭酸エチル47.75g(0.44mmol)を25℃以下で滴下し、0℃で12時間攪拌した。その後、メタノールを留去し水200mLを投入し、クロロホルム300mLで抽出、さらに水層をクロロホルム300mLで2回抽出した。得られた有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥、ろ過後溶媒を留去し、35.85g、89.1%の収率で目的物を得た。
(合成例3)
(R)-2-(bis-(4’-t-butylphenyl)methyl)pyrrolidineの合成(実施例1~6の光学活性環状含窒素化合物の合成)
Figure JPOXMLDOC01-appb-C000069
 Tetrahedron: Asymmetry,Vol.8,No.1,149-153の(S)-2-(diphenylmethyl)pyrrolidineの合成法に従って合成した。
 窒素置換した1L反応フラスコに、窒素気流下、マグネシウム12.55g(469mmol)、無水THF50mLを投入し攪拌した。室温にてこの溶液に4-t-ブチルフェニルブロモベンゼン100g(469mmol)のTHF500mL溶液を滴下し、室温で1時間攪拌した(グリニヤ化合物の合成)。
 次に、上記溶液を5℃以下に冷却し、この溶液に合成例1で得られた、(R)-Proline-N-ethyl carbamate methyl ester 47.2g(235mmol)のTHF200mL溶液を10℃以下にて滴下して反応させた。その後、3時間加熱還流したのち冷却し、飽和アンモニウムクロライド水溶液500mLに反応液を投入し、抽出用トルエンを500mL投入、1時間攪拌した。分液ろうとに移し、有機層を分離、水層をトルエン500mLで2回再抽出を行い、有機層を合わせて、飽和食塩水で2回洗浄した。有機層を無水硫酸ナトリウムで乾燥後、溶媒を留去し、得られた結晶をトルエン1.2Lにて加熱溶解した。冷却後、得られた結晶をろ過し、減圧下乾燥後、65.8gの(5R)-[3,3,0]-1-aza-2-oxo-3-oxa-4,4-bis-(4’-t-butylphenyl)-bicyclooctaneを得た。
 得られた(5R)-[3,3,0]-1-aza-2-oxo-3-oxa-4,4-bis-(4’-t-butylphenyl)-bicyclooctaneに、メタノール460mL、THF460mL、10重量%Pd/C 2.63gを投入し攪拌、水素置換した。そのまま10日間室温で反応した後、Pd/Cをろ過にて除去、濃縮を行い、シリカゲルカラムクロマトグラフィーにて精製し、無色結晶の目的物を43.6g,74.3%の収率で得た。
 H-NMR(CDOD):δ=1.10~1.50、m、19H δ=1.60~1.85、m、3H δ=2.65~2.80、m、1H δ=2.80~2.95、m、1H δ=3.65、d、1H δ=3.70~3.85、m、1H δ=7.10~7.35、m、8H
(合成例4)
(S)-2-(bis-(4’-t-butylphenyl)methyl)pyrrolidineの合成(実施例7の光学活性環状含窒素化合物の合成)
Figure JPOXMLDOC01-appb-C000070
 Tetrahedron: Asymmetry,Vol.8,No.1,149-153の(S)-2-(diphenylmethyl)pyrrolidineの合成法に従って合成した。
 窒素置換した300mL反応フラスコに、窒素気流下、マグネシウム2.55g(105mmol)、無水THF50mLを投入し攪拌した。室温にてこの溶液に4-t-ブチルフェニルブロモベンゼン21.31g(100mmol)のTHF30mL溶液を滴下し、室温で1時間攪拌した(グリニヤ化合物の合成)。
 次に、上記溶液を5℃以下に冷却し、この溶液に合成例2で得られた、(S)-Proline-N-ethyl carbamate methyl ester 10.05g(50mmol)を10℃以下にて滴下して反応させた。その後、3時間加熱還流したのち冷却し、飽和アンモニウムクロライド水溶液100mLに反応液を投入し、抽出用トルエンを100mL投入、1時間攪拌した。分液ろうとに移し、有機層を分離、水層をトルエン100mLで2回再抽出を行い、有機層を合わせて、飽和食塩水で2回洗浄した。有機層を無水硫酸ナトリウムで乾燥後、溶媒を留去し、得られた結晶を酢酸エチル140mLにて加熱溶解した。冷却後、得られた結晶をろ過し、減圧下乾燥後、9.13gの(5S)-[3,3,0]-1-aza-2-oxo-3-oxa-4,4-bis-(4’-t-butylphenyl)-bicyclooctaneを得た。
 得られた(5S)-[3,3,0]-1-aza-2-oxo-3-oxa-4,4-bis-(4’-t-butylphenyl)-bicyclooctaneに、メタノール100mL、THF100mL、10重量%Pd/C 365mgを投入し攪拌、水素置換した。そのまま4日間室温で反応した後、Pd/Cをろ過にて除去、濃縮を行い、シリカゲルカラムクロマトグラフィーにて精製し、無色結晶の目的物を3.48g,19.93%の収率で得た。
 H-NMR(CDOD):δ=1.10~1.50、m、19H δ=1.60~1.85、m、3H δ=2.65~2.80、m、1H δ=2.80~2.95、m、1H δ=3.65、d、1H δ=3.70~3.85、m、1H δ=7.10~7.35、m、8H
(合成例5) 
(S)-2-(bis-(4’-i-propylphenyl)methyl)pyrrolidineの合成(実施例8の光学活性環状含窒素化合物の合成)
Figure JPOXMLDOC01-appb-C000071
 Tetrahedron: Asymmetry,Vol.8,No.1,149-153の(S)-2-(diphenylmethyl)pyrrolidineの合成法に従って合成した。
 窒素置換した300mL反応フラスコに、窒素気流下、マグネシウム2.55g(105mmol)、無水THF50mLを投入し攪拌した。室温にてこの溶液に4-i-プロピルフェニルブロモベンゼン19.91g(100mmol)のTHF30mL溶液を滴下し、室温で1時間攪拌した(グリニヤ化合物の合成)。
 次に、上記溶液を5℃以下に冷却し、この溶液に合成例2で得られた、(S)-Proline-N-ethyl carbamate methyl ester 10.05g(50mmol)を10℃以下にて滴下して反応させた。その後、3時間加熱還流したのち冷却し、飽和アンモニウムクロライド水溶液100mLに反応液を投入し、抽出用トルエンを100mL投入、1時間攪拌した。分液ろうとに移し、有機層を分離、飽和食塩水で2回洗浄した。有機層を無水硫酸ナトリウムで乾燥後、溶媒を留去し、16.22gの(5S)-[3,3,0]-1-aza-2-oxo-3-oxa-4,4-bis-(4’-i-propylphenyl)-bicyclooctaneを得た。
 得られた(5S)-[3,3,0]-1-aza-2-oxo-3-oxa-4,4-bis-(4’-i-propylphenyl)-bicyclooctaneに、メタノール100mL、THF50mL、10重量%Pd/C 650mgを投入し攪拌、水素置換した。そのまま4日間室温で反応したのち、Pd/Cをろ過にて除去、濃縮を行い、シリカゲルカラムクロマトグラフィーにて精製し、無色結晶の目的物を2.71g,16.86%の収率で得た。
 H-NMR(CDOD):δ=1.05~1.20、m、12H δ=1.20~1.35、m、1H δ=1.60~1.80、m、3H δ=2.65~2.95、m、4H δ=3.60、d、1H δ=3.70~3.85、m、1H δ=7.00~7.30、m、8H
(合成例6)
(R)-2-(bis-(4’-(1’’-Methylcyclohexyl)phenyl)methyl)pyrrolidineの合成(実施例9の光学活性環状含窒素化合物の合成)
Figure JPOXMLDOC01-appb-C000072
(合成例6-1)1-Methylcyclohexylbenzeneの合成
 硫酸231g (2.36mol)のベンゼン溶液225.6mL(2.53mol)に、0℃にて1-メチル-1-シクロヘキセン75.0mL(632mmol)と ベンゼン56.4mL(632mmol)の混合溶液を1.5時間かけて滴下し、0℃にて1.5時間撹拌した。反応液に水300mLを加えてクエンチし、水層を分離した。得られた有機層を飽和炭酸水素ナトリウム水溶液100mL、水100mLおよび飽和食塩水100mLで洗浄し、無水硫酸ナトリウムで乾燥した。乾燥剤をろ過後、ろ液を濃縮して粗1-メチルシクロヘキシルベンゼンを得た。得られた粗1-メチルシクロヘキシルベンゼンを減圧蒸留(110-113℃/10mmHg)で精製し、40.2g の目的物を得た。収率36.5%。
 H-NMR(CDCl):δ=1.20、s、3H δ=1.30~1.70、m、8H δ=1.90~2.10、m、2H δ=7.10~7.40、m、5H
(合成例6-2)4-(1’-Methylcyclohexyl)bromobenzeneの合成
 上記(合成例6-1)で得られた1-メチルシクロヘキシルベンゼン20.0g(115mmol)に鉄279mg(5.00mmol)およびヨウ素198mg(0.78mmol)を加え0℃にて臭素17.8g(111mmol)を1.5時間かけてゆっくり滴下し、その温度で1.5時間、室温で20時間撹拌した。反応液を冷却後、飽和亜硫酸ナトリウム水溶液30mLでクエンチし、ヘキサン50mLにて3回抽出した。合わせた有機層を亜硫酸ナトリウム水溶液30mLおよび水30mLで洗浄し、無水硫酸ナトリウムで乾燥した。乾燥剤をろ過後、溶媒を減圧回収して粗ブロミド27.9g を得た。得られた粗ブロミドを減圧蒸留(117-120℃/2mmHg)で精製し、収率 80.3%で目的物を得た。
 H-NMR(CDCl):δ=1.15、s、3H δ=1.30~1.70、m、8H δ=1.90~2.10、m、2H 2H δ=7.15~7.50、m、4H
(合成例6-3)(R)-2-(bis-(4’-(1’’-Methylcyclohexyl)phenyl)methyl)pyrrolidineの合成
 Tetrahedron: Asymmetry,Vol.8,No.1,149-153の(S)-2-(diphenylmethyl)pyrrolidineの合成法に従って合成した。
 窒素置換した100mL反応フラスコに、窒素気流下、マグネシウム535mg(22.0mmol)、無水THF4mLを投入し攪拌した。室温にて、この溶液に上記(合成例6-2)で得られた4-(1’-メチルシクロヘキシル)ブロモベンゼン5.06g(20mmol)のTHF25mL溶液を滴下し、室温で1時間攪拌した(グリニヤ化合物の合成)。
 次に、上記溶液を5℃以下に冷却し、この溶液に合成例1で得られた(R)-Proline-N-ethyl carbamate methyl ester2.01g(10mmol)のTHF16mL溶液を10℃以下にて滴下して反応させた。その後、3時間加熱還流したのち冷却し、飽和アンモニウムクロライド水溶液25mLに反応液を投入し、抽出用クロロホルムを50mL投入、1時間攪拌した。分液ろうとに移し、有機層を分離、飽和食塩水で2回洗浄した。有機層を無水硫酸ナトリウムで乾燥後、溶媒を留去し、4.76gの濃縮物を得た。酢酸エチル中から再結晶し、2.37gの(5R)-[3,3,0]-1-aza-2-oxo-3-oxa-4,4-bis-(4’-(1’’-Methylcyclohexyl)phenyl)-bicyclooctaneを得た。
 得られた(5R)-[3,3,0]-1-aza-2-oxo-3-oxa-4,4-bis-(4’-(1’’-Methylcyclohexyl)phenyl)-bicyclooctaneに、メタノール35mL、THF35mL、10重量%Pd/C 1.10gを投入し攪拌、水素置換した。50℃で7.5時間反応した後、Pd/Cをろ過にて除去、濃縮を行い、シリカゲルカラムクロマトグラフィーにて精製し、無色結晶の目的物を1.50g,35.0%の収率で得た。
 H-NMR(CDCl):δ=1.10~1.20、s、6H δ=1.25~2.20、m、24H δ=2.70~3.00、m、2H δ=3.70~3.95、m、2H δ=7.10~7.40、m、8H
(合成例7)
(R)-2-(bis-(p-1’-adamantylphenyl)methyl)pyrrolidineの合成(実施例11の光学活性環状含窒素化合物の合成)
Figure JPOXMLDOC01-appb-C000073
 Tetrahedron: Asymmetry,Vol.8,No.1,149-153の(S)-2-(diphenylmethyl)pyrrolidineの合成法に従って合成した。
 窒素置換した200mL反応フラスコに、窒素気流下、マグネシウム0.591g(24.3mmol)、無水THF10mLを投入し攪拌した。室温にてこの溶液にp-1-アダマンチルフェニルクロロベンゼン5.00g(20.3mmol)のTHF30mL溶液を滴下し、室温で1時間攪拌した(グリニヤ化合物の合成)。
 次に、上記溶液を5℃以下に冷却し、この溶液に合成例1で得られた(R)-Proline-N-ethyl carbamate methyl ester 2.04g(10.1mmol)を10℃以下にて滴下して反応させた。その後、3時間加熱還流したのち冷却し、飽和アンモニウムクロライド水溶液100mLに反応液を投入し、抽出用THFを300mL投入、1時間攪拌した。分液ろうとに移し、有機層を分離、飽和食塩水で1回洗浄した。有機層を無水硫酸ナトリウムで乾燥後、溶媒を留去し、2.37gの(5R)-[3,3,0]-1-aza-2-oxo-3-oxa-4,4-bis-(p-1’-adamantylphenyl)-bicyclooctaneを得た。
 得られた(5R)-[3,3,0]-1-aza-2-oxo-3-oxa-4,4-bis-(p-1’-adamantylphenyl)-bicyclooctaneに、メタノール36mL、THF36mL、10%重量Pd/C 1.18gを投入し攪拌、水素置換した。50~60℃で70時間反応した後、Pd/Cをろ過にて除去、濃縮を行い、アルミナカラムクロマトグラフィーにて精製し、無色結晶の目的物を1.45g,31.6%の収率で得た。
 H-NMR(CDCl):δ=1.40~2.20、m、30H δ=2.60~2.80、br、1H δ=3.05~3.90、m、2H δ=4.10~4.90、m、2H δ=7.00~7.50、m、8H
(合成例8)
(R)-2-(bis-(4’-(2’’-p-tolylpropyl)phenyl)methyl)pyrrolidineの合成(実施例12の光学活性環状窒素化合物の合成)
Figure JPOXMLDOC01-appb-C000074
(合成例8-1)4-(2’-p-Tolylpropyl)chlorobenzeneの合成
 硫酸44.1g(450mmol)のトルエン溶液59.9mL(470mmol)に、0℃にてp-クロロメチルスチレン21.5mL(150mmol)と トルエン20mL(280mmol)の混合溶液を1時間かけて滴下し、0℃にて2.0時間撹拌した。反応液に水100mLを加えてクエンチし、水層を分離した。得られた有機層を飽和炭酸水素ナトリウム水溶液50mLおよび水50mLで洗浄し、無水硫酸ナトリウムで乾燥した。乾燥剤をろ過後、ろ液を濃縮して粗クロリドを得た。得られた粗クロリドを減圧蒸留(120-130℃/1mmHg)で精製し、31.8g の目的物を得た。収率86.7%。
 H-NMR(CDCl):δ=1.80、s、6H δ=2.45、s、3H δ=7.20~7.45、m、8H
(合成例8-2)(R)-2-(bis-(4’-(2’’-p-tolylpropyl)phenyl)methyl)pyrrolidineの合成
 Tetrahedron: Asymmetry,Vol.8,No.1,149-153の(S)-2-(diphenylmethyl)pyrrolidineの合成法に従って合成した。
 窒素置換した100mL反応フラスコに、窒素気流下、マグネシウム535mg(22.0mmol)、無水THF4mLを投入し攪拌した。室温にて、この溶液に上記(合成例8-1)で得られた4-(2’-p-トリルプロピル)クロロベンゼン4.90g(20mmol)のTHF20mL溶液を還流条件下でゆっくり滴下し、還流条件下で6時間攪拌した(グリニヤ化合物の合成)。
 次に、上記溶液を5℃以下に冷却し、この溶液に合成例1で得られた(R)-Proline-N-ethyl carbamate methyl ester 2.01g(10mmol)のTHF16mL溶液を10℃以下にて滴下し反応させた。その後、3時間加熱還流したのち冷却し、飽和アンモニウムクロライド水溶液25mLに反応液を投入し、抽出用クロロホルムを50mL投入、1時間攪拌した。分液ろうとに移し、有機層を分離、飽和食塩水で2回洗浄した。有機層を無水硫酸ナトリウムで乾燥後、溶媒を留去し、目的物を含む濃縮物を得た。ヘキサン/酢酸エチル混合溶媒中から再結晶し、2.90gの(5R)-[3,3,0]-1-aza-2-oxo-3-oxa-4,4-bis-(4’-(2’’-p-tolylpropyl)phenyl)-bicyclooctaneを得た。
 得られた(5R)-[3,3,0]-1-aza-2-oxo-3-oxa-4,4-bis-(4’-(2’’-p-tolylpropyl)phenyl)-bicyclooctaneに、メタノール29mL、THF29mL、10%重量Pd/C 1.45gを投入し攪拌、水素置換した。50℃で15時間反応した後、Pd/Cをろ過にて除去、濃縮を行い、シリカゲルカラムクロマトグラフィーにて精製し、無色結晶の目的物を1.86g,24.7%の収率で得た。
 H-NMR(CDCl):δ=1.30~2.00、m、4H δ=1.60、s、12H δ=2.30、s、6H δ=2.70~3.00、m、2H δ=3.75~3.90、m、2H δ=7.00~7.30、m、16H
(合成例9)
(S)-2-(bis-(4’-trifloromethylphenyl)methyl)pyrrolidineの合成(実施例13の光学活性環状窒素化合物の合成)
Figure JPOXMLDOC01-appb-C000075
 Tetrahedron: Asymmetry,Vol.8,No.1,149-153の(S)-2-(diphenylmethyl)pyrrolidineの合成法に従って合成した。
 窒素置換した300mL反応フラスコに、窒素気流下、マグネシウム2.55g(105mmol)、無水THF50mLを投入し攪拌した。室温にてこの溶液に4-トリフルオロメチルフェニルブロモベンゼン22.5g(100mmol)のTHF30mL溶液を滴下し、室温で1時間攪拌した(グリニヤ化合物の合成)。
 次に、上記溶液を5℃以下に冷却し、この溶液に合成例2で得られた(S)-Proline-N-ethyl carbamate methyl ester 10.05g(50mmol)を10℃以下にて滴下し反応させた。その後、3時間加熱還流したのち冷却し、飽和アンモニウムクロライド水溶液100mLに反応液を投入し、抽出用トルエンを100mL投入、1時間攪拌した。分液ろうとに移し、有機層を分離、飽和食塩水で2回洗浄した。有機層を無水硫酸ナトリウムで乾燥後、溶媒を留去し、12.87gの(5S)-[3,3,0]-1-aza-2-oxo-3-oxa-4,4-bis-(4’-trifloromethylphenyl)-bicyclooctaneを得た。
 得られた(5S)-[3,3,0]-1-aza-2-oxo-3-oxa-4,4-bis-(4’-trifloromethylphenyl)-bicyclooctaneに、メタノール130mL、10%重量Pd/C 514mgを投入し攪拌、水素置換した。そのまま4日間室温で反応した後、Pd/Cをろ過にて除去、濃縮を行い、シリカゲルカラムクロマトグラフィーにて精製し、淡黄色オイル状の目的物を6.74g,36.11%の収率で得た。
 H-NMR(CDOD):δ=1.25~1.50、m、1H δ=1.70~1.95、m、3H δ=2.80~2.90、m、1H δ=2.90~3.05、m、1H δ=3.90~4.05、m、1H δ=7.45~7.65、m、8H
(合成例10)
(S)-2-(bis-(p-biphenyl)methyl)pyrrolidineの合成(実施例14の光学活性環状窒素化合物の合成)
Figure JPOXMLDOC01-appb-C000076
 Tetrahedron: Asymmetry,Vol.8,No.1,149-153の(S)-2-(diphenylmethyl)pyrrolidineの合成法に従って合成した。
 窒素置換した300mL反応フラスコに、窒素気流下、マグネシウム2.13g(87.5mmol)、無水THF10mLを投入し攪拌した。室温にてこの溶液にp-ブロモビフェニル19.1g(81.9mmol)のTHF54mL溶液を滴下し、室温で1時間攪拌した(グリニヤ化合物の合成)。
 次に、上記溶液を5℃以下に冷却し、この溶液に合成例2で得られた(S)-Proline-N-ethyl carbamate methyl ester 8.00g(39.8mmol)を10℃以下にて滴下し反応させた。その後、3時間加熱還流したのち冷却し、飽和アンモニウムクロライド水溶液100mLに反応液を投入し、抽出用トルエンを100mL投入、1時間攪拌した。分液ろうとに移し、有機層を分離、飽和食塩水で2回洗浄した。有機層を無水硫酸ナトリウムで乾燥後、溶媒を留去し、6.71gの(5S)-[3,3,0]-1-aza-2-oxo-3-oxa-4,4-bis-(p-biphenyl)-bicyclooctaneを得た。
 得られた(5S)-[3,3,0]-1-aza-2-oxo-3-oxa-4,4-bis-(p-biphenyl)-bicyclooctaneに、メタノール130mL、10%重量Pd/C 335mgを投入し攪拌、水素置換した。そのまま4日間室温で反応した後、Pd/Cをろ過にて除去、濃縮を行い、シリカゲルカラムクロマトグラフィーにて精製し、無色結晶の目的物を1.52g,25.1%の収率で得た。
 H-NMR(CDCl):δ=1.43~1.89、m、5H δ=2.86~3.12、m、2H δ=3.85~3.89、m、2H δ=7.25~7.56、m、18H
(合成例11)
(2R,4R)-4-Hydoxyproline-N-ethyl carbamate methyl esterの合成
Figure JPOXMLDOC01-appb-C000077
 Tetrahedron,Vol.49,No.23,5127-5132の合成法に従って行った。
 300mLの四つ口フラスコに、(2R,4R)-ヒドロキシプロリン(渡辺化学工業株式会社製)25.0g(191mmol)、無水メタノール150mL、炭酸カリウム26.4g(191mmol)を投入し攪拌した。氷冷下、この溶液にクロロ炭酸エチル40.2mL(420mmol)を25℃以下で滴下し、0℃で24時間攪拌した。反応液をろ過後、メタノールを留去し水150mLを投入し、クロロホルム150mLで抽出、さらに水層をクロロホルム150mLで2回抽出した。得られた有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥、ろ過後溶媒を留去し、36.5g、94.0%の収率で目的物を得た。
(合成例12)
(5R,7R)-[3,3,0]-1-aza-2-oxo-3-oxa-4,4-bis-(4’-t-butylphenyl)-7-hydroxybicyclooctaneの合成
Figure JPOXMLDOC01-appb-C000078
 Tetrahedron: Asymmetry,Vol.8,No.1,149-153の(S)-2-(diphenylmethyl)pyrrolidineの合成法に従って合成した。
 窒素置換した500mL反応フラスコに、窒素気流下、マグネシウム2.41g(99mmol)、無水THF15mLを投入し攪拌した。室温にてこの溶液に4-t-ブチルフェニルブロモベンゼン19.2g(90mmol)のTHF75mL溶液を滴下し、室温で1時間攪拌した(グリニヤ化合物の合成)。
 次に、上記溶液を5℃以下に冷却し、この溶液に合成例11で得られた(2R,4R)-4-Hydoxyproline-N-ethyl carbamate methyl ester 6.10g(30mmol)のTHF125mL溶液を10℃以下にて滴下して反応させた。その後、3時間加熱還流したのち冷却し、飽和アンモニウムクロライド水溶液100mLに反応液を投入した。THFを回収後、濃縮物を酢酸エチル200mLで2回抽出し、合わせた有機層を飽和食塩水で2回洗浄した。有機層を無水硫酸ナトリウムで乾燥後、溶媒を留去し、得られた濃縮物を酢酸エチル・ヘキサン中から再結晶し、8.24gの目的物を得た。
(合成例13)
(5R,7R)-[3,3,0]-1-aza-2-oxo-3-oxa-4,4-bis-(4’-t-butylphenyl)-7-(butylcarbamoyloxy)bicyclooctaneの合成
Figure JPOXMLDOC01-appb-C000079
 50mLの四つ口フラスコに、合成例2で得られた(5R,7R)-[3,3,0]-1-aza-2-oxo-3-oxa-4,4-bis-(4’-t-butylphenyl)-7-hydroxybicyclooctane 900mg(2.21mmol)、無水DMF9mL、塩化銅(I)110mg(1.11mmol)を投入し攪拌した。室温下、n-ブチルイソシアネート0.37mL(3.32mmol)を滴下し、室温で4時間攪拌した。反応液に水とトルエンを加えて抽出後、合わせた有機層を水および飽和食塩水で洗浄した。溶媒を留去後、シリカゲルカラムクロマトグラフィーにて精製し、無色油状の目的物を1.10g,98.2%の収率で得た。
(合成例14)
(2R,4R)-2-(bis-(4’-t-butylphenyl)methyl)-4-(butylcarbamoyloxy)pyrrolidineの合成(実施例15,20及び26で使用した光学活性環状含窒素化合物の合成)
Figure JPOXMLDOC01-appb-C000080
 合成例13で得られた(5R,7R)-[3,3,0]-1-aza-2-oxo-3-oxa-4,4-bis-(4’-t-butylphenyl)-7-(butylcarbamoyloxy)bicyclooctane 1.08g(2.13mmol)に、メタノール10.8mL、THF10.8mL、10%重量Pd/C 135mgを投入し攪拌、水素置換した。水素雰囲気下、3日間室温で反応した後、Pd/Cをろ過にて除去、濃縮を行い、シリカゲルカラムクロマトグラフィーにて精製し、無色油状の目的物を720mg,72.7%の収率で得た。
 H-NMR(CDOD):δ=0.80~0.95、t、3H δ=1.20~1.30、s、18H δ=1.15~1.55、m、6H δ=2.05~2.20、m、1H δ=2.90~3.10、m、4H δ=3.70~3.95、m、2H δ=4.90~5.05、bs、1H δ=7.10~7.35、m、8H
 (合成例15)
(5R,7R)-[3,3,0]-1-aza-2-oxo-3-oxa-4,4-bis-(4’-t-butylphenyl)-7-(t-butylcarbamoyloxy)bicyclooctaneの合成
Figure JPOXMLDOC01-appb-C000081
 50mLの四つ口フラスコに、合成例12で得られた(5R,7R)-[3,3,0]-1-aza-2-oxo-3-oxa-4,4-bis-(4’-t-butylphenyl)-7-hydroxybicyclooctane 900mg(2.21mmol)、無水DMF9mL、塩化銅(I)110mg(1.11mmol)を投入し攪拌した。室温下、この溶液にt-ブチルイソシアネート0.39mL(3.32mmol)を滴下し、室温で4時間攪拌した。反応液に水とトルエンを加えて抽出後、合わせた有機層を水および飽和食塩水で洗浄した。溶媒を留去後、シリカゲルカラムクロマトグラフィーにて精製し、無色油状の目的物を1.09g,97.3%の収率で得た。
 (合成例16)
(2R,4R)-2-(bis-(4’-t-butylphenyl)methyl)-4-(t-butylcarbamoyloxy)pyrrolidineの合成(実施例21及び27で使用した光学活性環状含窒素化合物の合成)
Figure JPOXMLDOC01-appb-C000082
 合成例15で得られた(5R,7R)-[3,3,0]-1-aza-2-oxo-3-oxa-4,4-bis-(4’-t-butylphenyl)-7-(t-butylcarbamoyloxy)bicyclooctane 1.08g(2.13mmol)に、メタノール10.8mL、THF10.8mL、10%重量Pd/C 135mgを投入し攪拌、水素置換した。水素雰囲気下、3日間室温で反応した後、Pd/Cをろ過にて除去、濃縮を行い、シリカゲルカラムクロマトグラフィーにて精製し、無色油状の目的物を690mg,60.1%の収率で得た。
 H-NMR(CDCl):δ=1.20、s、9H δ=1.22、s、9H δ=1.25、s、9H δ=1.20~1.30、m、1H δ=1.50~1.65、m、1H δ=2.10~2.30、m、1H δ=2.90~3.00、m、2H δ=3.70~3.40、m、2H δ=5.00~5.20、bs、1H δ=7.10~7.40、m、8H
(合成例17)
(5R,7R)-[3,3,0]-1-aza-2-oxo-3-oxa-4,4-bis-(4’-t-butylphenyl)-7-(ethylcarbamoyloxy)bicyclooctaneの合成
Figure JPOXMLDOC01-appb-C000083
 50mLの四つ口フラスコに、合成例12で得られた(5R,7R)-[3,3,0]-1-aza-2-oxo-3-oxa-4,4-bis-(4’-t-butylphenyl)-7-hydroxybicyclooctane 900mg(2.21mmol)、無水DMF9mL、塩化銅(I)110mg(1.11mmol)を投入し攪拌した。室温下、この溶液にエチルイソシアネート0.26mL(3.32mmol)を滴下し、室温で4時間攪拌した。反応液に水とトルエンを加えて抽出後、合わせた有機層を水および飽和食塩水で洗浄した。溶媒を留去後、シリカゲルカラムクロマトグラフィーにて精製し、無色油状の目的物を680mg,64.3%の収率で得た。
 (合成例18)
(2R,4R)-2-(bis-(4’-t-butylphenyl)methyl)-4-(ethylcarbamoyloxy)pyrrolidineの合成(実施例16及び22で使用した光学活性環状含窒素化合物の合成)
Figure JPOXMLDOC01-appb-C000084
 合成例17で得られた(5R,7R)-[3,3,0]-1-aza-2-oxo-3-oxa-4,4-bis-(4’-t-butylphenyl)-7-(ethylcarbamoyloxy)bicyclooctane 1.08g(2.13mmol)に、メタノール10.8mL、THF10.8mL、10重量%Pd/C 135mgを投入し攪拌、水素置換した。水素雰囲気下、3日間室温で反応した後、Pd/Cをろ過にて除去、濃縮を行い、シリカゲルカラムクロマトグラフィーにて精製し、無色油状の目的物を480mg,80.8%の収率で得た。
 H-NMR(CDCl):δ=1.05~1.20、t、3H δ=1.25、s、18H δ=1.30~1.60、m、2H δ=2.15~2.30、m、1H δ=2.95~3.25、m、4H δ=3.80、bs、2H δ=4.60、bs、1H δ=5.10、bs、1H δ=7.10~7.30、m、8H
 (合成例19)
(5R,7R)-[3,3,0]-1-aza-2-oxo-3-oxa-4,4-bis-(4’-t-butylphenyl)-7-(octylcarbamoyloxy)bicyclooctaneの合成
Figure JPOXMLDOC01-appb-C000085
 50mLの四つ口フラスコに、合成例12で得られた(5R,7R)-[3,3,0]-1-aza-2-oxo-3-oxa-4,4-bis-(4’-t-butylphenyl)-7-hydroxybicyclooctane 900mg(2.21mmol)、無水DMF9mL、塩化銅(I)110mg(1.11mmol)を投入し攪拌した。室温下、この溶液にオクチルイソシアネート0.59mL(3.32mmol)を滴下し、室温で4時間攪拌した。反応液に水とトルエンを加えて抽出後、合わせた有機層を水および飽和食塩水で洗浄した。溶媒を留去後、シリカゲルカラムクロマトグラフィーにて精製し、無色油状の目的物を1.08g,86.8%の収率で得た。
 (合成例20)
(2R,4R)-2-(bis-(4’-t-butylphenyl)methyl)-4-(octylcarbamoyloxy)pyrrolidineの合成(実施例17及び23で使用した光学活性環状含窒素化合物の合成)
Figure JPOXMLDOC01-appb-C000086
 合成例19で得られた(5R,7R)-[3,3,0]-1-aza-2-oxo-3-oxa-4,4-bis-(4’-t-butylphenyl)-7-(octylcarbamoyloxy)bicyclooctane 1.08g(2.13mmol)に、メタノール10.8mL、THF10.8mL、10重量%Pd/C 135mgを投入し攪拌、水素置換した。水素雰囲気下、3日間室温で反応した後、Pd/Cをろ過にて除去、濃縮を行い、シリカゲルカラムクロマトグラフィーにて精製し、無色油状の目的物を540mg,58.3%の収率で得た。
 H-NMR(CDOD):δ=0.80~0.95、t、3H δ=1.00~1.60、m、14H δ=1.10、s、18H δ=2.00~2.20、m、1H δ=2.90~3.20、m、4H δ=3.70~4.00、m、2H δ=5.00~5.10、bs、1H δ=7.10~7.40、m、8H
 (合成例21)
(5R,7R)-[3,3,0]-1-aza-2-oxo-3-oxa-4,4-bis-(4’-t-butylphenyl)-7-(diphenylcarbamoyloxy)bicyclooctaneの合成
Figure JPOXMLDOC01-appb-C000087
 50mLの四つ口フラスコに、合成例12で得られた(5R,7R)-[3,3,0]-1-aza-2-oxo-3-oxa-4,4-bis-(4’-t-butylphenyl)-7-hydroxybicyclooctane 1.00g(2.45mmol)、無水DMF10mL、水素化ナトリウム118mg(4.90mmol)を投入し攪拌した。氷冷下、この溶液にジフェニルカルバモイルクロリド626mg(2.70mmol)を投入し、室温で2時間攪拌した。反応液に水とトルエンを加えて抽出後、合わせた有機層を水および飽和食塩水で洗浄した。溶媒を留去後、シリカゲルカラムクロマトグラフィーにて精製し、無色油状の目的物を920mg,62.3%の収率で得た。
(合成例22)
(2R,4R)-2-(bis-(4’-t-butylphenyl)methyl)-4-(diphenylcarbamoyloxy)pyrrolidineの合成(実施例18及び24で使用した光学活性環状含窒素化合物の合成)
Figure JPOXMLDOC01-appb-C000088
 合成例21で得られた(5R,7R)-[3,3,0]-1-aza-2-oxo-3-oxa-4,4-bis-(4’-t-butylphenyl)-7-(diphenylcarbamoyloxy)bicyclooctane 920mg(1.53mmol)に、メタノール18.4mL、THF18.4mL、10重量%Pd/C 115mgを投入し攪拌、水素置換した。水素雰囲気下、5日間室温で反応した後、Pd/Cをろ過にて除去、濃縮を行い、シリカゲルカラムクロマトグラフィーにて精製し、無色油状の目的物を680mg,79.3%の収率で得た。
 H-NMR(CDOD):δ=δ=1.20~1.35、s、18H δ=1.45~1.60、m、1H δ=2.00~2.20、m、1H δ=2.90~3.00、m、1H δ=3.10~3.20、m、1H δ=3.35~3.45、m、1H δ=3.85~4.00、m、1H δ=5.15~5.25、m、1H δ=6.90~7.50、m、18H
(合成例23)
(5R,7R)-[3,3,0]-1-aza-2-oxo-3-oxa-4,4-diphenyl-7-hydroxybicyclooctaneの合成
Figure JPOXMLDOC01-appb-C000089
 Tetrahedron: Asymmetry,Vol.8,No.1,149-153の(S)-2-(diphenylmethyl)pyrrolidineの合成法に従って合成した。
 窒素置換した500mL反応フラスコに、窒素気流下、合成例11で得られた(2R,4R)-4-Hydoxyproline-N-ethyl carbamate methyl ester 5.10g(23mmol)のTHF50mL溶液を投入し10℃以下に冷却した。この溶液に、滴下漏斗よりフェニルマグネシウムブロミドの1.08mol/L THF溶液64mLを滴下して反応させた。その後、3時間加熱還流したのち冷却し、飽和アンモニウムクロライド水溶液100mLに反応液を投入した。THFを回収後、濃縮物を酢酸エチル200mLで2回抽出し、合わせた有機層を飽和食塩水で2回洗浄した。有機層を無水硫酸ナトリウムで乾燥後、溶媒を留去し、得られた濃縮物をシリカゲルクロマトグラフィーで単離精製し、3.43gの目的物を得た。
(合成例24)
(5R,7R)-[3,3,0]-1-aza-2-oxo-3-oxa-4,4-diphenyl-7-(butylcarbamoyloxy)bicyclooctaneの合成
Figure JPOXMLDOC01-appb-C000090
 100mLの四つ口フラスコに、合成例23で得られた(5R,7R)-[3,3,0]-1-aza-2-oxo-3-oxa-4,4-bis-diphenyl-7-hydroxybicyclooctane 3.43g(11.6mmol)、無水DMF17mL、塩化銅(I)115mg(1.16mmol)を投入し攪拌した。室温下、この溶液にn-ブチルイソシアネート1.55mL(1.39mmol)を滴下し、室温で4時間攪拌した。反応液に水とトルエンを加えて抽出後、合わせた有機層を水および飽和食塩水で洗浄した。溶媒を留去後、シリカゲルカラムクロマトグラフィーにて精製し、無色油状の目的物を1.91g,41.9%の収率で得た。
(合成例25)
(2R,4R)-2-diphenylmethyl-4-(butylcarbamoyloxy)pyrrolidineの合成(実施例19及び25で使用した光学活性環状含窒素化合物の合成)
Figure JPOXMLDOC01-appb-C000091
 合成例24で得られた(5R,7R)-[3,3,0]-1-aza-2-oxo-3-oxa-4,4-diphenyl-7-(butylcarbamoyloxy)bicyclooctane 1.91g(4.87mmol)に、メタノール19mL、10重量%Pd/C 95.6mgを投入し攪拌、水素置換した。水素雰囲気下、3日間40℃で反応した後、Pd/Cをろ過にて除去、濃縮を行い、シリカゲルカラムクロマトグラフィーにて精製し、無色油状の目的物を690mg,40.3%の収率で得た。
 H-NMR(CDOD):δ=0.90~0.96、t、3H δ=1.30~1.59、m、5H δ=2.10~2.21、qui、1H δ=3.00~3.11、m、4H δ=3.86~4.05、m、2H δ=5.00~5.05、m、1H δ=7.14~7.41、m、10H
(実施例1)
 10mL反応フラスコに、シトラール2g(13.14mmol)、5重量%Pd/硫酸バリウム 25mg(シトラールに対して1.25重量%)、(R)-2-(bis-(4’-t-butylphenyl)methyl)pyrrolidine 80mg(0.23mmol。シトラールに対して4.0重量%)、トリフルオロ酢酸26.1mg(0.23mmol)、10重量%含水t-BuOH4mLを入れ攪拌し、水素雰囲気(0.1MPa(大気圧))とした。40℃にて21時間攪拌した後、触媒をろ過後、ガスクロマトグラフィ-で分析したところ、シトラールからシトロネラールへの転化率は51%で、得られたシトロネラールはd体であり、その光学純度は84.9%e.e.であった。
 なお、使用したシトラールのゲラニアール:ネラールの混合割合は50:50(モル比)であった(以降の実施例も同様)。
(実施例2~14)
 実施例2は25℃での反応、実施例3は50℃での反応、実施例4は60℃での反応、実施例14は25℃でトルエン中での反応とし、その他条件は、光学活性環状含窒素化合物、酸を変更した以外は、全て実施例1と同様に反応を行なった。なお、光学活性環状含窒素化合物は80mg、酸は光学活性環状含窒素化合物に対して同モルを使用した。結果を表3~6に示す。
Figure JPOXMLDOC01-appb-T000092
Figure JPOXMLDOC01-appb-T000093
Figure JPOXMLDOC01-appb-T000094
Figure JPOXMLDOC01-appb-T000095
(実施例15)
 50mL反応フラスコに、シトラール2g(13.14mmol)、5重量%Pd/硫酸バリウム 25mg(シトラールに対して2.5重量%)、(2R,4R)-2-(bis-(4’-t-butylphenyl)methyl)-4-(butylcarbamoyloxy)pyrrolidine110mg(0.24mmol。シトラールに対して5.5重量%)、トリフルオロ酢酸27.0mg(0.24mmol)、10重量%含水t-ブタノール2mLをいれ攪拌し、水素雰囲気とした。50℃にて21時間攪拌した後、触媒をろ過後、ガスクロマトグラフィ-で分析したところ、シトラールからシトロネラールへの転化率は78.0%で、得られたシトロネラ-ルはd体であり、その光学純度は90.3%e.e.であった。
(実施例16~19)
 光学活性環状含窒素化合物を変更した以外は、全て実施例15と同様に反応を行なった。なお、光学活性環状含窒素化合物は110mg、酸は光学活性環状含窒素化合物に対して同モルを使用した。結果を表7に示す。
Figure JPOXMLDOC01-appb-T000096
(実施例20)
 50mL反応フラスコに、シトラール2g(13.14mmol)、5重量%Pd/硫酸バリウム 25mg(シトラールに対して2.5重量%)、(2R,4R)-2-(bis-(4’-t-butylphenyl)methyl)-4-(butylcarbamoyloxy)pyrrolidine110mg(0.24mmol。シトラールに対して5.5重量%)、トリフルオロ酢酸27.0mg(0.24mmol)、10重量%含水t-ブタノール2mLをいれ攪拌し、水素雰囲気とした。60℃にて21時間攪拌した後、触媒をろ過後、ガスクロマトグラフィ-で分析したところ、シトラールからシトロネラールへの転化率は100%で、得られたシトロネラ-ルはd体であり、その光学純度は89.6%e.e.であった。
(実施例21~25)
 光学活性環状含窒素化合物を変更した以外は、全て実施例20と同様に反応を行なった。なお、光学活性環状含窒素化合物は110mg、酸は光学活性環状含窒素化合物に対して同モルを使用した。結果を表8及び9に示す。
Figure JPOXMLDOC01-appb-T000097
Figure JPOXMLDOC01-appb-T000098
(実施例26)
 50mL反応フラスコに、シトラール2g(13.14mmol)、5重量%Pd/硫酸バリウム 25mg(シトラールに対して2.5重量%)、(2R,4R)-2-(bis-(4’-t-butylphenyl)methyl)-4-(butylcarbamoyloxy)pyrrolidine50mg(0.11mmol、シトラールに対して2.5重量%)、トリフルオロ酢酸12.3mg(0.11mmol)、10重量%含水t-ブタノール2mLをいれ攪拌し、水素雰囲気とした。60℃にて21時間攪拌した後、触媒をろ過後、ガスクロマトグラフィ-で分析したところ、シトラールからシトロネラールへの転化率は98.9%で、得られたシトロネラ-ルはd体であり、その光学純度は90.5%e.e.であった。
(実施例27)
 光学活性環状含窒素化合物を変更した以外は、全て実施例26と同様に反応を行なった。なお、光学活性環状含窒素化合物は50mg、酸は光学活性環状含窒素化合物に対して同モルを使用した。結果を表10に示す。
Figure JPOXMLDOC01-appb-T000099
(実施例28-1)有機アルミニウム触媒の調製
 窒素雰囲気下、50mLシュレンク管に2,6-ジフェニルフェノール493mg(2.0mmol)を入れ、窒素置換した後、ヘプタン10mL、メチルアルミノキサン・トルエン溶液0.58mL(10重量%、1.00mmol)を順次加え、室温にて終夜攪拌した後、溶媒を留去して白色固体を得た。
 図1に2,6-ジフェニルフェノールとメチルアルミノキサンのH-NMRスペクトルを、図2に図1のH-NMRスペクトルの低磁場側を拡大した図を、図3に2,6-ジフェニルフェノールのH-NMRスペクトルを、図4に図3のH-NMRスペクトルの低磁場側を拡大した図を示す。
(実施例28-2)l-イソプレゴール((1R,2S,5R)-イソプレゴール)の合成
 実施例28-1に従って合成した有機アルミニウム化合物に、窒素雰囲気下にてトルエン4.6mLを加えて系内温度を0~5℃に冷却し、d-シトロネラール1.54g(10mmol、光学純度97.8%e.e.)を滴下し、0~5℃で終夜撹拌した。反応終了後、この溶液に水2mLを加えて、有機層をガスクロマトグラフィーで分析した結果、基質転化率70.5%、イソプレゴール選択率は82.4%で、l-n-イソプレゴールとその他の異性体の比率は97.1:2.9であった。
(実施例29-1)有機アルミニウム触媒の調製
 50mLシュレンク管に2,6-ジフェニルフェノール197mg(0.80mmol)を入れ、窒素置換した後、トルエン9.3mL、メチルアルミノキサン・トルエン溶液0.12mL(10重量%、0.20mmol)を順次加え、室温にて1時間撹拌して触媒溶液を得た。
(実施例29-2)l-イソプレゴールの合成
 実施例29-1で得られた触媒溶液を0~5℃に冷却した後、d-シトロネラール3.09g(20.0mmol、光学純度97.8%e.e.)を滴下し、0~5℃で終夜撹拌した。反応終了後、この溶液に水2mLを加えて、有機層をガスクロマトグラフィーで分析した結果、基質転化率59.7%、イソプレゴール選択率は87.0%で、l-n-イソプレゴールとその他の異性体の比率は98.1:1.9であった。
(実施例30-1)有機アルミニウム触媒の調製
 50mLシュレンク管に2,6-ジフェニルフェノール197mg(0.60mmol)を入れ、窒素置換した後、トルエン4.6mL、メチルアルミノキサン・トルエン溶液0.17mL(10重量%、0.30mmol)を順次加え、室温にて1時間撹拌して触媒溶液を得た。
(実施例30-2)l-イソプレゴールの合成
 実施例30-1で得られた触媒溶液を0~5℃に冷却した後、d-シトロネラール1.54g(10.0mmol、光学純度97.8%e.e.)を滴下し、0~5℃で終夜撹拌した。反応終了後、この溶液に水2mLを加えて、有機層をガスクロマトグラフィーで分析した結果、基質転化率82.2%、イソプレゴール選択率は71.5%で、l-n-イソプレゴールとその他の異性体の比率は95.5:4.5であった。
(実施例31-1)有機アルミニウム触媒の調製
 50mLシュレンク管に2,6-ジフェニルフェノール370mg(1.50mmol)を入れ、窒素置換した後、トルエン4.6mL、メチルアルミノキサン・トルエン溶液0.17mL(10重量%、0.30mmol)を順次加え、室温にて1時間撹拌して触媒溶液を得た。
(実施例31-2)l-イソプレゴールの合成
 実施例31-1で得られた触媒溶液を0~5℃に冷却した後、d-シトロネラール1.54g(10.0mmol、光学純度97.8%e.e.)を滴下し、0~5℃で終夜撹拌した。反応終了後、この溶液に水2mLを加えて、有機層をガスクロマトグラフィーで分析した結果、基質転化率81.9%、イソプレゴール選択率は82.0%で、l-n-イソプレゴールとその他の異性体の比率は96.5:3.5であった。
(実施例32-1)有機アルミニウム触媒の調製
 50mLシュレンク管に2,6-ジフェニルフェノール148mg(0.60mmol)を入れ、窒素置換した後、トルエン4.6mL、メチルアルミノキサン・トルエン溶液0.17mL(10重量%、0.30mmol)を順次加え、40℃にて終夜撹拌して触媒溶液を得た。
(実施例32-2)l-イソプレゴールの合成
 実施例32-1で得られた触媒溶液を0~5℃に冷却した後、d-シトロネラール1.54g(10.0mmol、光学純度97.8%e.e.)を滴下し、0~5℃で終夜撹拌した。反応終了後、この溶液に水2mLを加えて、有機層をガスクロマトグラフィーで分析した結果、基質転化率64.8%、イソプレゴール選択率は84.8%で、l-n-イソプレゴールとその他の異性体の比率は98.1:1.9であった。
(実施例33-1)有機アルミニウム触媒の調製
 50mLシュレンク管に2,6-ジフェニルフェノール370mg(1.50mmol)を入れ、窒素置換した後、トルエン4.6mL、メチルアルミノキサン・トルエン溶液0.17mL(10重量%、0.30mmol)を順次加え、40℃にて終夜撹拌して触媒溶液を得た。
(実施例33-2)l-イソプレゴールの合成
 実施例33-1で得られた触媒溶液を0~5℃に冷却した後、d-シトロネラール1.54g(10.0mmol、光学純度97.8%e.e.)を滴下し、0~5℃で終夜撹拌した。反応終了後、この溶液に水2mLを加えて、有機層をガスクロマトグラフィーで分析した結果、基質転化率22.3%、イソプレゴール選択率は84.2%で、l-n-イソプレゴールとその他の異性体の比率は97.6:2.4であった。
(実施例34-1)有機アルミニウム触媒の調製
 50mLシュレンク管に2,6-ジフェニルフェノール148mg(0.60mmol)を入れ、窒素置換した後、トルエン4.6mL、メチルアルミノキサン・トルエン溶液0.17mL(10重量%、0.30mmol)を順次加え、室温にて1時間撹拌して触媒溶液を得た。
(実施例34-2)d-イソプレゴール((1S,2R,5S)-イソプレゴール)の合成
 実施例34-1で得られた触媒溶液を0~5℃に冷却した後、l-シトロネラール((S)-シトロネラール)1.54g(10.0mmol、光学純度96.6%e.e.)を滴下し、0~5℃で終夜撹拌した。反応終了後、この溶液に水2mLを加えて、有機層をガスクロマトグラフィーで分析した結果、基質転化率89.2%、イソプレゴール選択率は88.1%で、d-n-イソプレゴールとその他の異性体の比率は96.9:3.1であった。
(実施例35-1)有機アルミニウム触媒の調製
 50mLシュレンク管に2,6-ジフェニルフェノール148mg(0.60mmol)を入れ、窒素置換した後、塩化メチレン4.6mL、メチルアルミノキサン・トルエン溶液0.17mL(10重量%、0.30mmol)を順次加え、40℃にて終夜撹拌して触媒溶液を得た。
(実施例35-2)l-イソプレゴールの合成
 実施例35-1で得られた触媒溶液を0~5℃に冷却した後、d-シトロネラール1.54g(10.0mmol、光学純度97.8%e.e.)を滴下し、0~5℃で終夜撹拌した。反応終了後、この溶液に水2mLを加えて、有機層をガスクロマトグラフィーで分析した結果、基質転化率98.8%、イソプレゴール選択率は93.3%で、l-n-イソプレゴールとその他の異性体の比率は98.2:1.8であった。
(実施例36-1)有機アルミニウム触媒の調製
 50mLシュレンク管に(S,S)-2,2-ジメチル-α,α,α’,α’-テトラ(1-ナフチル)-1,3-ジオキソラン-4,5-ジメタノール(以下、(S,S)-1-ナフチルタドール又は(S,S)-1-NAPHTADDOLともいう)400mg(0.60mmol)を入れ、窒素置換した後、トルエン9.3mL、メチルアルミノキサン・トルエン溶液0.35mL(10重量%、0.60mmol)を順次加え、室温にて1時間撹拌して触媒溶液を得た。
(実施例36-2)l-イソプレゴールの合成
 実施例36-1で得られた触媒溶液を0~5℃に冷却した後、d-シトロネラール3.09g(20.0mmol、光学純度97.8%e.e.)を滴下し、0~5℃で終夜撹拌した。反応終了後、この溶液に水2mLを加えて、有機層をガスクロマトグラフィーで分析した結果、基質転化率94.8%、イソプレゴール選択率は91.8%で、l-n-イソプレゴールとその他の異性体の比率は90.8:9.2であった。
(実施例37-1)有機アルミニウム触媒の調製
 50mLシュレンク管に(R)-2,2’-ジヒドロキシ-1,1’-ビナフチル(以下、(R)-BINOL)ともいう)275mg(1.60mmol)を入れ、窒素置換した後、トルエン9.3mL、メチルアルミノキサン・トルエン溶液0.35mL(10重量%、0.60mmol)を順次加え、40℃にて終夜撹拌して触媒溶液を得た。
(実施例37-2)l-イソプレゴールの合成
 実施例37-1で得られた触媒溶液を0~5℃に冷却した後、d-シトロネラール3.09g(20.0mmol、光学純度97.8%e.e.)を滴下し、0~5℃で終夜撹拌した。反応終了後、この溶液に水2mLを加えて、有機層をガスクロマトグラフィーで分析した結果、基質転化率83.7%、イソプレゴール選択率は84.8%で、l-n-イソプレゴールとその他の異性体の比率は87.8:12.2であった。
(実施例38-1)有機アルミニウム触媒の調製
 有機アルミニウム触媒の調製はSynlett No.1,P57-58,1999の方法に従い行った。
 200mL反応フラスコに、Tetrahedron Letters No.47,P4241-4243,1965の方法に従って合成した3,3‘,5,5’-テトラビフェニル-4,4‘-ジオール9.81g(20.0mmol)を入れ、窒素置換した後、トルエン93mL、トリエチルアルミニウム・トルエン溶液12.1mL(15重量%、1.1mol/L、13.3mmol)を順次加え、20分程室温にて超音波照射した後、濾過して淡黄色固体を得た。
(実施例38-2)l-イソプレゴールの合成
 1L反応フラスコに実施例38-1で得られた触媒を10.05g(13.2mmol)入れ、窒素置換した後、窒素雰囲気下にてトルエン463mLを加えて系内温度を0~5℃に冷却し、d-シトロネラール154.3g(1mol、光学純度97.8%e.e.)を滴下し、0~5℃で終夜撹拌した。反応終了後、この溶液に水20mLを加えて、有機層をガスクロマトグラフィーで分析した結果、基質転化率93.5%、イソプレゴール選択率は91.2%で、l-n-イソプレゴールとその他の異性体の比率は98.5:1.5であった。
(実施例39-1)有機アルミニウム触媒の調製
 有機アルミニウム触媒の調製はSynlett No.1,P57-58,1999の方法に従い行った。
 1L反応フラスコに、Tetrahedron Letters No.47,P4241-4243,1965の方法に従って合成した3,3‘,5,5’-テトラビフェニル-4,4‘-ジオール11.8g(24.0mmol)を入れ、窒素置換した後、ヘプタン93mL、メチルアルミノキサン・トルエン溶液11.7mL(10重量%、20mmol)を順次加え、2時間室温にて超音波照射した後、溶媒を減圧留去して淡黄色固体を得た。
(実施例39-2)l-イソプレゴールの合成
 実施例39-1で得られた触媒に窒素雰囲気下にてトルエン463mLを加えて系内温度を0~5℃に冷却し、d-シトロネラール154.3g(1mol、光学純度97.8%e.e.)を滴下し、0~5℃で終夜撹拌した。反応終了後、この溶液に水20mLを加えて、有機層をガスクロマトグラフィーで分析した結果、基質転化率72.8%、イソプレゴール選択率は89.2%で、l-n-イソプレゴールとその他の異性体の比率は96.8:3.2であった。
(実施例40-1)有機アルミニウム触媒の調製
 窒素雰囲気、50mLシュレンク管に(R)-BINOL286mg(1.00mmol)を入れ、窒素置換した後、ヘプタン11mL、メチルアルミノキサン・トルエン溶液0.58mL(10重量%、1.00mmol)を順次加え、40℃にて16時間撹拌した後、溶媒を留去して白色固体(有機アルミニウム化合物)を得た。
(実施例40-2)l-イソプレゴールの合成
 実施例40-1で得られた固体に窒素雰囲気下にてヘプタン6mLを加えて系内温度を0~5℃に冷却し、d-シトロネラール1.54g(10mmol、光学純度97.8%e.e.)を滴下し、0~5℃で2時間撹拌した。反応液を30分程静置させ、上澄み液をシリンジにて4.5mL採取後、水2mLを加えて、有機層をガスクロマトグラフィーで分析した結果、基質転化率99.6%、イソプレゴール選択率は96.8%で、l-n-イソプレゴールとその他の異性体の比率は93.4:6.6であった。
(実施例40-3)
 二回目の反応としてシュレンク管内の残渣にヘプタンを4.5mL添加し、攪拌を再開しつつ系内を再び0~5℃に冷却した。d-シトロネラール1.54g(10mmol、光学純度97.8%e.e.)を滴下し、滴下終了後サンプルを採取してガスクロマトグラフィーにて分析し、更に0~5℃で3時間撹拌した。反応液を30分程静置させ、上澄み液をシリンジにて4.5mL採取後、水2mLを加えて、有機層をガスクロマトグラフィーで分析した。
 二回目反応において滴下直後の系内における基質転化率38.2%、3時間反応後の基質転化率97.8%、イソプレゴール選択率は95.7%で、l-n-イソプレゴールとその他の異性体の比率は94.8:5.2であった。
(実施例40-4)
 三回目の反応として二回目と同様の方法で反応を行った。
 三回目反応において滴下直後の系内における基質転化率27.8%、3時間反応後の基質転化率96.9%、イソプレゴール選択率は95.4%で、l-n-イソプレゴールとその他の異性体の比率は95.1:4.9であった。
(実施例40-5)
 四回目の反応として二回目と同様の方法で反応を行った。
 四回目反応において滴下直後の系内における基質転化率31.1%、5時間反応後の基質転化率92.9%、イソプレゴール選択率は94.8%で、l-n-イソプレゴールとその他の異性体の比率は95.5:4.5であった。
(実施例40-6)
 五回目の反応として二回目と同様の方法で反応を行った。
 五回目反応において滴下直後の系内における基質転化率25.4%、7時間反応後の基質転化率90.9%、イソプレゴール選択率は92.9%で、l-n-イソプレゴールとその他の異性体の比率は94.5:5.5であった。
(実施例41)シトラールの不斉水素化
 3L反応フラスコに、窒素雰囲気下、シトラール500.0g(3.28mol)を、5重量%Pd/硫酸バリウム2.50g(シトラールに対して0.5重量%)、(2R,4R)-2-(bis-(4’-t-butylphenyl)methyl)-4-(ethylcarbamoyloxy)pyrrolidine10.0g(22.9mmol、シトラールに対して2.0重量%)、トリフルオロ酢酸2.6g(22.9mmol)、10重量%含水t-ブタノール500mLをいれ攪拌し、水素雰囲気(0.1MPa(大気圧))とした。60℃にて21時間攪拌した後、触媒をろ過後、ガスクロマトグラフィ-で分析したところ、シトラールからシトロネラールへの転化率は99.4%で、その光学純度は90.9%e.e.であった。得られた粗d-シトロネラールを蒸留して純度98%のd-シトロネラールを398g(2.58mol、78.6%収率)得た。
(実施例42)d-シトロネラールの閉環反応
 1L四つ口フラスコに、窒素雰囲気下、実施例41で得られたd-シトロネラール308.5g(2.0mol)と、特許文献6に記載されているトリス(2,6-ジフェニルフェノキシ)アルミニウム触媒15.26g(20mmol)、トルエン300mLを加え、5℃で、5時間撹拌し、反応溶液を蒸留してl-イソプレゴール(99.5%n-体、90.6%e.e.)276.5g(1.79mol、89.6%収率)を得た。
(実施例43)l-イソプレゴールの水素化反応、l-メントールの合成
 500mLのオートクレーブに、窒素雰囲気下、実施例42で得られたl-イソプレゴール100.0g(0.65mol)と、ラネーニッケル0.4gを投入し、水素圧2.5MPa、70℃で10時間水素化を行った。反応液をろ過し、蒸留をすることによってl-メントール92.3g(0.59mol、90.0%e.e.)を得た。
(実施例44)l-イソプレゴールの深冷晶析
 1Lセパラブルフラスコに、窒素雰囲気下、実施例42で得られたl-イソプレゴール154.3g(1.00mol)とヘプタン154mLを投入し、徐々に冷却し-13℃でイソプレゴールの結晶が析出するのを確認、さらに冷却し-44℃まで冷却した。析出した結晶を吸引ろ過にて分離し、得られた結晶を溶解、溶媒回収、蒸留することにより、高純度l-イソプレゴール(100%n-体、100%e.e.)117.3g(0.76mol、76.0%収率)を得た。
(実施例45)高純度l-イソプレゴールの水素化反応、高純度l-メントールの合成
 500mLのオートクレーブに、窒素雰囲気下、実施例44で得られたl-イソプレゴール100.0g(0.65mol)と、ラネーニッケル0.4gを投入し、水素圧2.5MPa、70℃で10時間水素化を行った。反応液をろ過し、蒸留をすることによってl-メントール94.8g(0.61mol、100%e.e.)を得た。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は2010年12月1日出願の日本特許出願(特願2010-268633)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明において用いられる不斉水素化用触媒は、金属粉末又は金属担持物、光学活性環状含窒素化合物、及び酸を単に混合するだけで、ゲラニアール、ネラール又はシトラール(任意の割合のゲラニアールとネラールとの混合物)を簡便に不斉水素化し、光学活性シトロネラールを製造することができる。
 また、本発明において用いられるシトロネラールの閉環反応触媒は、アルキルアルミニウム化合物と特定のアルコール類を混合するだけで、シトロネラール、及び光学活性シトロネラールを簡便に閉環し、高いn-選択性のイソプレゴール、及び光学活性イソプレゴールを製造することができる。
 得られた光学活性イソプレゴールを深冷晶析して高純度の光学活性イソプレゴール、又は、深冷晶析しない光学活性イソプレゴールを通常用いられる炭素-炭素二重結合の水素化触媒を用いて水素化し、光学活性メントールを製造することができる。
 以上のように、本発明の光学活性メントールの製造方法は、非常に短い工程で成り立っており、すべての工程が触媒反応の工程で成り立っている。従って、この製造方法は、環境を汚染する廃棄物が少なく、製造経費も節約できる。
 さらに、本発明に使用するすべての触媒は、反応溶液に可溶性ではないものが使用できるため、反応系内から金属又は金属担持物、光学活性環状含窒素化合物、閉環触媒及び閉環触媒用配位子を容易に回収して再利用でき工業的にも有利である。

Claims (24)

  1.  以下の工程を含む光学活性メントールの製造方法。
     A-1)ゲラニアール及びネラールのうち少なくとも一方の不斉水素化により光学活性シトロネラールを得る。
     B-1)酸性触媒による光学活性シトロネラールの閉環反応によって光学活性イソプレゴールを得る。
     C-1)光学活性イソプレゴールを水素化し光学活性メントールを得る。
  2.  以下の工程を含む光学活性メントールの製造方法。
     A-2)ゲラニアールとネラールを90:10~10:90のモル比で含むシトラールの不斉水素化により光学活性シトロネラールを得る。
     B-2)酸性触媒による光学活性シトロネラールの閉環反応によって光学活性イソプレゴールを得る。
     C-2)光学活性イソプレゴールを水素化し光学活性メントールを得る。
  3.  以下の工程を含む光学活性メントールの製造方法。
     A-3)ゲラニアール及びネラールのうち少なくとも一方の不斉水素化により光学活性シトロネラールを得る。
     B-3)酸性触媒による光学活性シトロネラールの閉環反応によって光学活性イソプレゴールを得る。
     D-3)光学活性イソプレゴールを深冷によって再結晶を行いさらに高い純度のイソプレゴールを得る。
     E-3)工程D-3で得た光学活性イソプレゴールを水素化し光学活性メントールを得る。
  4.  以下の工程を含む光学活性メントールの製造方法。
     A-4)ゲラニアールとネラールを90:10~10:90のモル比で含むシトラールの不斉水素化により光学活性シトロネラールを得る。
     B-4)酸性触媒による光学活性シトロネラールの閉環反応によって光学活性イソプレゴールを得る。
     D-4)光学活性イソプレゴールを深冷によって再結晶を行いさらに高い純度のイソプレゴールを得る。
     E-4)工程D-4で得た光学活性イソプレゴールを水素化し光学活性メントールを得る。
  5.  以下の工程を含む請求項1に記載の光学活性メントールの製造方法。
     A-5)ゲラニアール及びネラールのうち少なくとも一方の不斉水素化により光学純度70~99%e.e.の光学活性シトロネラールを得る。
     B-5)酸性触媒による光学活性シトロネラールの閉環反応によって光学活性イソプレゴールを得る。
     C-5)光学活性イソプレゴールを水素化し光学活性メントールを得る。
  6.  以下の工程を含む請求項2に記載の光学活性メントールの製造方法。
     A-6)ゲラニアールとネラールを90:10~10:90のモル比で含むシトラールの不斉水素化により光学純度70~99%e.e.の光学活性シトロネラールを得る。
     B-6)酸性触媒による光学活性シトロネラールの閉環反応によって光学活性イソプレゴールを得る。
     C-6)光学活性イソプレゴールを水素化し光学活性メントールを得る。
  7.  以下の工程を含む請求項3に記載の光学活性メントールの製造方法。
     A-7)ゲラニアール及びネラールのうち少なくとも一方の不斉水素化により光学純度70~99%e.e.の光学活性シトロネラールを得る。
     B-7)酸性触媒による光学活性シトロネラールの閉環反応によって光学活性イソプレゴールを得る。
     D-7)光学活性イソプレゴールを深冷によって再結晶を行いさらに高い純度のイソプレゴールを得る。
     E-7)工程D-7で得た光学活性イソプレゴールを水素化し光学活性メントールを得る。
  8.  以下の工程を含む請求項4に記載の光学活性メントールの製造方法。
     A-8)ゲラニアールとネラールを90:10~10:90のモル比で含むシトラールの不斉水素化により光学純度70~99%e.e.の光学活性シトロネラールを得る。
     B-8)酸性触媒による光学活性シトロネラールの閉環反応によって光学活性イソプレゴールを得る。
     D-8)光学活性イソプレゴールを深冷によって再結晶を行いさらに高い純度のイソプレゴールを得る。
     E-8)工程D-8で得た光学活性イソプレゴールを水素化し光学活性メントールを得る。
  9.  以下の工程を含む請求項1に記載の光学活性メントールの製造方法。
     A-9)ゲラニアール及びネラールのうち少なくとも一方の不斉水素化によりd-シトロネラールを得る。
     B-9)酸性触媒によるd-シトロネラールの閉環反応によってl-イソプレゴールを得る。
     C-9)l-イソプレゴールを水素化しl-メントールを得る。
  10.  以下の工程を含む請求項2に記載の光学活性メントールの製造方法。
     A-10)ゲラニアールとネラールを90:10~10:90のモル比で含むシトラールの不斉水素化によりd-シトロネラールを得る。
     B-10)酸性触媒によるd-シトロネラールの閉環反応によってl-イソプレゴールを得る。
     C-10)l-イソプレゴールを水素化しl-メントールを得る。
  11.  以下の工程を含む請求項3に記載の光学活性メントールの製造方法。
     A-11)ゲラニアール及びネラールのうち少なくとも一方の不斉水素化によりd-シトロネラールを得る。
     B-11)酸性触媒によるd-シトロネラールの閉環反応によってl-イソプレゴールを得る。
     D-11)l-イソプレゴールを深冷によって再結晶を行いさらに高い純度のl-イソプレゴールを得る。
     E-11)工程D-11で得たl-イソプレゴールを水素化しl-メントールを得る。
  12.  以下の工程を含む請求項4に記載の光学活性メントールの製造方法。
     A-12)ゲラニアールとネラールを90:10~10:90のモル比で含むシトラールの不斉水素化によりd-シトロネラールを得る。
     B-12)酸性触媒によるd-シトロネラールの閉環反応によってl-イソプレゴールを得る。
     D-12)l-イソプレゴールを深冷によって再結晶を行いさらに高い純度のl-イソプレゴールを得る。
     E-12)工程D-12)で得たl-イソプレゴールを水素化しl-メントールを得る。
  13.  以下の工程を含む請求項1に記載の光学活性メントールの製造方法。
     A-13)ゲラニアール及びネラールのうち少なくとも一方の不斉水素化により光学純度70~99%e.e.のd-シトロネラールを得る。
     B-13)酸性触媒によるd-シトロネラールの閉環反応によって光学純度70~99%e.e.のl-イソプレゴールを得る。
     C-13)l-イソプレゴールを水素化し光学純度70~99%e.e.のl-メントールを得る。
  14.  以下の工程を含む請求項2に記載の光学活性メントールの製造方法。
     A-14)ゲラニアールとネラールを90:10~10:90のモル比で含むシトラールの不斉水素化により光学純度70~99%e.e.のd-シトロネラールを得る。
     B-14)酸性触媒によるd-シトロネラールの閉環反応によって光学純度70~99%e.e.のl-イソプレゴールを得る。
     C-14)l-イソプレゴールを水素化し光学純度70~99%e.e.のl-メントールを得る。
  15.  以下の工程を含む請求項3に記載の光学活性メントールの製造方法。
     A-15)ゲラニアール及びネラールのうち少なくとも一方の不斉水素化により光学純度70~99%e.e.のd-シトロネラールを得る。
     B-15)酸性触媒によるd-シトロネラールの閉環反応によって光学純度70~99%e.e.のl-イソプレゴールを得る。
     D-15)l-イソプレゴールを深冷によって再結晶を行い光学純度98~100%e.e.のl-イソプレゴールを得る。
     E-15)工程D-15で得たl-イソプレゴールを水素化し光学純度98~100%e.e.のl-メントールを得る。
  16.  以下の工程を含む請求項4に記載の光学活性メントールの製造方法。
     A-16)ゲラニアールとネラールを90:10~10:90のモル比で含むシトラールの不斉水素化により光学純度70~99%e.e.のd-シトロネラールを得る。
     B-16)酸性触媒によるd-シトロネラールの閉環反応によって光学純度70~99%e.e.のl-イソプレゴールを得る。
     D-16)l-イソプレゴールを深冷によって再結晶を行い光学純度98~100%e.e.のl-イソプレゴールを得る。
     E-16)工程D-16で得たl-イソプレゴールを水素化し光学純度98~100%e.e.のl-メントールを得る。
  17.  工程Aの不斉水素化反応において、水素ガス、及び少なくとも一種類の遷移金属と光学活性環状含窒素化合物と酸とを含む触媒を用いる、請求項1~16のいずれか1項に記載の光学活性メントールの製造方法。
  18.  工程Aの不斉水素化反応において、周期表における第8~10族金属より選ばれる少なくとも一種の金属の粉末又は第8~10族金属より選ばれる少なくとも一種の金属が担体に担持された金属担持物と、下記一般式(1)
    Figure JPOXMLDOC01-appb-C000001
    [式(1)中、環Aは3~7員環で、置換基を有してもよく、炭素、窒素、硫黄、酸素、及び燐からなる群より選ばれる少なくとも一種の原子を含む。環Aは縮環構造となっていてもよい。R及びRは、それぞれ独立して、水素原子、置換基を有してもよいアルキル基、置換基を有してもよいシクロアルキル基、置換基を有してもよいアルケニル基、置換基を有してもよいアリール基、置換基を有してもよいアラルキル基、置換基を有してもよいアルコキシ基、置換基を有してもよいカルボキシル基、置換基を有してもよいアルコキシカルボニル基、置換基を有してもよいアミド基、置換基を有してもよいシロキシ基、置換基を有してもよい芳香族複素環基、又は置換基を有してもよい脂肪族複素環基を表す。ただしRとRは同じ置換基になることはない。また、R又はRの一方が環Aと結合しさらに環を形成していてもよい。*は不斉炭素原子を表す。]で表される光学活性環状含窒素化合物と酸とを含む触媒を用いる、請求項1~16のいずれか1項に記載の光学活性メントールの製造方法。
  19.  工程Aの不斉水素化反応において、周期表における第8~10族金属より選ばれる少なくとも一種の金属の粉末又は第8~10族金属より選ばれる少なくとも一種の金属が担体に担持された金属担持物と、下記一般式(2)
    Figure JPOXMLDOC01-appb-C000002
    [式(2)中、R、R、R、R、R、R、R、R10、R11及びR12、は、それぞれ独立して水素原子、置換基を有してもよいアルキル基、置換基を有してもよいシクロアルキル基、置換基を有してもよいアルケニル基、置換基を有してもよいアリール基、置換基を有してもよいアラルキル基、置換基を有してもよいアルコキシ基、置換基を有してもよいカルボキシル基、置換基を有してもよいアルコキシカルボニル基、置換基を有してもよいアミド基、置換基を有してもよいシロキシ基、置換基を有してもよい芳香族複素環基、又は置換基を有してもよい脂肪族複素環基を表す。ただし、RとRは、互いに異なる置換基である。RとRは、互いに異なる置換基である。
     h、i、j、k、l及びmは0または1の整数を表す。nは0~3の整数を表す。*は不斉炭素原子を表す。
     Aは、n=0のとき、水素原子、置換基を有してもよいヘテロ原子、置換基を有してもよいアルキル基、置換基を有してもよいシクロアルキル基、置換基を有してもよいアルケニル基、置換基を有してもよいアリール基、置換基を有してもよいアラルキル基、置換基を有してもよいアルコキシ基、置換基を有してもよいカルボキシル基、置換基を有してもよいアルコキシカルボニル基、置換基を有してもよいアミド基、置換基を有してもよい芳香族複素環基、置換基を有してもよい脂肪族複素環基、オリゴマー鎖又はポリマー鎖を表し、n=1~3のとき、置換基を有してもよいヘテロ原子、置換基を有してもよいアルキレン基、アリーレン基を含み置換基を有してもよいアルキレン基、シクロアルキレン基を含み置換基を有してもよいアルキレン基、ヘテロ原子を含み置換基を有してもよいアルキレン基、置換基を有してもよい2価の脂肪族炭化水素環基、置換基を有してもよい2価の脂肪族複素環基、置換基を有してもよい2価の芳香族炭化水素環基、置換基を有してもよい2価の芳香族複素環基、オリゴマー鎖又はポリマー鎖を表す。
     RとR、RとA、又はRとAは、互いに結合して環をなしていてもよい。
     X、X、X、X、X及びXは、それぞれ独立して酸素原子、窒素原子、燐原子又は硫黄原子を表す。
     Y及びYは、それぞれ独立して炭素原子、珪素原子又は硫黄原子を表す。]で表される光学活性環状含窒素化合物と酸とを含む触媒を用いる、請求項1~16のいずれか1項に記載の光学活性メントールの製造方法。
  20.  前記金属がニッケル、ルテニウム、ロジウム、イリジウム、パラジウム及び白金からなる群から選ばれる請求項17~19のいずれか1項に記載の光学活性メントールの製造方法。
  21.  工程Bの光学活性シトロネラールの閉環反応における酸性触媒がルイス酸性のアルミニウム触媒である、請求項1~20のいずれか1項に記載の光学活性メントールの製造方法。
  22.  前記ルイス酸性のアルミニウム触媒が、
     下記一般式(3)で表されるトリアルキルアルミニウム類と、
     下記一般式(4)で表される2,6-ジフェニルフェノール、下記一般式(5)で表される2,6,2’,6’-テトラフェニル-ビフェニル-4,4’-ジオール、下記一般式(6)で表される光学活性であっても良い1,1’-ビナフチル-2,2’-ジオール、及び下記一般式(7)で表される光学活性であっても良い(2,2―ジメチル―1,3―ジオキソラン―4,5-ジイル)ビス(ジフェニルメタノール)から選ばれる少なくとも一種の化合物とを反応させて得られる有機アルミニウム化合物である請求項21に記載の光学活性メントールの製造方法。
    Figure JPOXMLDOC01-appb-C000003
    [式(3)中、R13は炭素数1~8のアルキル基を表す。]
    Figure JPOXMLDOC01-appb-C000004
    Figure JPOXMLDOC01-appb-C000005
    Figure JPOXMLDOC01-appb-C000006
    Figure JPOXMLDOC01-appb-C000007
  23.  前記ルイス酸性のアルミニウム触媒が、
     下記一般式(8)で表される鎖状アルミノキサン類、下記一般式(9)で表される環状アルミノキサン類及び式(10)で表されるビス(ジアルキルアルミニウムオキシ)アルキルボラン類から選ばれる少なくとも一種の有機アルミニウムオキシ化合物と、
     下記一般式(11)で表されるジアリールフェノール類、下記一般式(12)で表されるビス(ジアリールフェノール)類、下記一般式(13)で表されるビアリールジオール類、下記一般式(14)で表されるジメタノール類及び下記一般式(15)で表されるシラノール類から選ばれる少なくとも一種のヒドロキシ化合物とを反応させて得られる有機アルミニウム触媒である、請求項21に記載の光学活性メントールの製造方法。
    Figure JPOXMLDOC01-appb-C000008
    [式(8)中、R14は、炭素数1乃至6のアルキル基、炭素数5乃至8の脂環式基、又は置換基を有してもよい炭素数7乃至12のアラルキル基であり、複数のR14はそれぞれ同一であっても異なっていてもよく;
     oは0~40の整数である。]
    Figure JPOXMLDOC01-appb-C000009
    [式(9)中、R15は、炭素数1乃至6のアルキル基、炭素数5乃至8の脂環式基、又は置換基を有してもよい炭素数7乃至12のアラルキル基であり;
     oは0~40の整数である。]
    Figure JPOXMLDOC01-appb-C000010
    [式(10)中、R16は、炭素数1乃至6のアルキル基、炭素数5乃至8の脂環式基、又は置換基を有してもよい炭素数7乃至12のアラルキル基であり、複数のR16はそれぞれ同一であっても異なっていてもよく;
     R17は、炭素数1乃至6のアルキル基、炭素数5乃至8の脂環式基、又は置換基を有してもよい炭素数7乃至12のアラルキル基である。]
    Figure JPOXMLDOC01-appb-C000011
    [式(11)中、Ar及びArは、それぞれ独立してそのいずれもが、置換基を有してもよい炭素数6乃至15のアリール基、又は置換基を有してもよい炭素数2乃至15のヘテロアリール基であり;
     R18、R19及びR20は、それぞれ独立してそのいずれもが、水素原子、炭素数1乃至8のアルキル基、炭素数5乃至8の脂環式基、炭素数1乃至4のパーフロロアルキル基、炭素数1乃至8のアルコキシ基、置換基を有してもよい炭素数7乃至12のアラルキル基、ハロゲン原子、オルガノシリル基、置換基を有してもよい炭素数6乃至15のアリール基、炭素数2乃至8のジアルキルアミノ基、炭素数1乃至4のチオアルコキシ基、ニトロ基又はポリマー鎖であり、R18とR19又はR19とR20とは互いに結合して各々独立に、縮合ベンゼン環、縮合置換ベンゼン環、トリメチレン基、テトラメチレン基、ペンタメチレン基、メチレンジオキシ基、エチレンジオキシ基又はトリメチレンジオキシ基を形成してもよい。]
    Figure JPOXMLDOC01-appb-C000012
    [式(12)中、Ar、Ar、Ar及びArは、それぞれ独立してそのいずれもが、置換基を有してもよい炭素数6乃至15アリール基、又は置換基を有してもよい炭素数2乃至15のヘテロアリール基であり;
     R21、R22、R23及びR24は、それぞれ独立してそのいずれもが、水素原子、炭素数1乃至8のアルキル基、炭素数5乃至8の脂環式基、炭素数1乃至4のパーフロロアルキル基、炭素数1乃至8のアルコキシ基、置換基を有してもよい炭素数7乃至12のアラルキル基、ハロゲン原子、オルガノシリル基、置換基を有してもよい炭素数6乃至15のアリール基、炭素数2乃至8のジアルキルアミノ基、炭素数1乃至4のチオアルコキシ基、ニトロ基又はポリマー鎖あり、R21とR22又はR23とR24とは互いに結合して各々独立に、縮合ベンゼン環、縮合置換ベンゼン環、トリメチレン基、テトラメチレン基、ペンタメチレン基、メチレンジオキシ基、エチレンジオキシ基又はトリメチレンジオキシ基を形成してもよく、R21若しくはR22及び/又はR23若しくはR24はA’と結合して芳香族環または非芳香族環を形成してもよく;
     A’は、(1)置換基及び不飽和結合のうち少なくとも一方を有してもよい炭素数1乃至25の直鎖状若しくは分岐状及び/又は環状の炭化水素基;(2)置換基を有してもよい炭素数6~15のアリーレン基;(3)置換基を有してもよい炭素数2~15のヘテロアリーレン基;(4)-O-、-S-、-N(R25)-、-S(O)-、-C(O)-、-S(O)-、-P(R25)-、-(R25)P(O)-及び-Si(R2627)-の群から選択される官能基またはヘテロ元素である(ここで、R25~R27は、それぞれ独立してそのいずれもが、炭素数1乃至6のアルキル基、炭素数5乃至8の脂環式基、置換基を有してもよい炭素数7~12のアラルキル基、又は置換基を有してもよい炭素数6~10のアリール基である。)。]
    Figure JPOXMLDOC01-appb-C000013
    [式(13)中、R28、R29、R30、R31、R32、R33、R34及びR35は、それぞれ独立してそのいずれもが、水素原子、炭素数1乃至8のアルキル基、炭素数1乃至4のパーフロロアルキル基、炭素数1乃至8のアルコキシ基、炭素数5乃至8の脂環式基、置換基を有してもよい炭素数7乃至12のアラルキル基、ハロゲン原子、オルガノシリル基、置換基を有してもよい炭素数6乃至15のアリール基、炭素数2乃至8のジアルキルアミノ基、炭素数1乃至4のチオアルコキシ基、ニトロ基又はポリマー鎖であり、R28とR29、R29とR30、R30とR31、R31とR35、R32とR33、R33とR34又はR34とR35とは互いに結合して各々独立に、縮合ベンゼン環、縮合置換ベンゼン環、トリメチレン基、テトラメチレン基、ペンタメチレン基、メチレンジオキシ基、エチレンジオキシ基又はトリメチレンジオキシ基を形成してもよい。]
    Figure JPOXMLDOC01-appb-C000014
    [式(14)中、R36、R37、R38、及びR39は、それぞれ独立してそのいずれもが、水素原子、炭素数1乃至8のアルキル基、炭素数5乃至8の脂環式基、炭素数1乃至8のパーハロゲノアルキル基、炭素数1乃至8のアルコキシ基、置換基を有してもよい炭素数7乃至12のアラルキル基、ハロゲン原子、オルガノシリル基、置換基を有してもよい炭素数6乃至15のアリール基、置換基を有してもよい炭素数2乃至15のヘテロアリール基、炭素数2乃至8のジアルキルアミノ基、炭素数1乃至4のチオアルコキシ基、ニトロ基又はポリマー鎖であり、R36とR37及びR38とR39とは互いに結合して各々独立にヘテロ元素を有してもよい3~9員環を形成してもよく;
     環Bはヘテロ元素を有してもよい3~8員環である。]
    Figure JPOXMLDOC01-appb-C000015
    [式(15)中、R40、R41、及びR42は、それぞれ独立してそのいずれもが、炭素数1乃至10のアルキル基、炭素数5乃至8の脂環式基、炭素数7乃至12のアラルキル基、置換基を有してもよい炭素数6乃至10のアリール基、置換基を有してもよい炭素数2乃至15のヘテロアリール基又はポリマー鎖である。]
  24.  前記ルイス酸性のアルミニウム触媒が、
     下記一般式(8)で表される鎖状アルミノキサン類と、
     下記一般式(4)で表される2,6-ジフェニルフェノール類、下記一般式(5)で表される2,6,2’,6’-テトラフェニル-ビフェニル-4,4’-ジオール、及び下記一般式(6)で表される光学活性であっても良い1,1’-ビナフチル-2,2’-ジオールから選ばれる少なくとも一種の化合物とを反応させて得られる有機アルミニウム触媒である、請求項21に記載の光学活性メントールの製造方法。
    Figure JPOXMLDOC01-appb-C000016
    [式(8)中、R14は、炭素数1乃至6のアルキル基、炭素数5乃至8の脂環式基、又は置換基を有してもよい炭素数7乃至12のアラルキル基であり、複数のR14はそれぞれ同一であっても異なっていてもよく;oは0~40の整数である。]
    Figure JPOXMLDOC01-appb-C000017
    Figure JPOXMLDOC01-appb-C000018
    Figure JPOXMLDOC01-appb-C000019
PCT/JP2011/077857 2010-12-01 2011-12-01 光学活性メントールの製造方法 WO2012074075A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/990,872 US9061959B2 (en) 2010-12-01 2011-12-01 Method for manufacturing optically active menthol
EP11844547.7A EP2647616A4 (en) 2010-12-01 2011-12-01 PROCESS FOR PRODUCING OPTICALLY ACTIVE MENTHOL

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010268633 2010-12-01
JP2010-268633 2010-12-01

Publications (1)

Publication Number Publication Date
WO2012074075A1 true WO2012074075A1 (ja) 2012-06-07

Family

ID=46172000

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/077857 WO2012074075A1 (ja) 2010-12-01 2011-12-01 光学活性メントールの製造方法

Country Status (4)

Country Link
US (1) US9061959B2 (ja)
EP (1) EP2647616A4 (ja)
JP (1) JP5780933B2 (ja)
WO (1) WO2012074075A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014077323A1 (ja) 2012-11-15 2014-05-22 高砂香料工業株式会社 光学活性イソプレゴールおよび光学活性メントールの製造方法
JP2017502990A (ja) * 2014-01-15 2017-01-26 ローズ テクノロジーズ 改良されたオキシモルホン合成のための方法
CN114014745A (zh) * 2021-12-07 2022-02-08 万华化学集团股份有限公司 一种低色号l-薄荷醇的及其制备方法
CN115417740A (zh) * 2022-09-01 2022-12-02 石家庄学院 一种(r)-13-甲基二十七烷的制备方法
CN115739188A (zh) * 2022-11-07 2023-03-07 山东新和成药业有限公司 一种环化多相催化剂、其制备方法及其在r-香茅醛制备l-异胡薄荷醇中的应用

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112015000944A2 (pt) 2012-07-16 2019-10-15 Rhodes Tech processo para síntese melhorada de opioide
EA029925B1 (ru) 2012-07-16 2018-05-31 Родс Текнолоджис Способ усовершенствованного синтеза опиоидов
CN103724170A (zh) * 2013-12-26 2014-04-16 广东省食品工业研究所 一种不对称合成右旋香茅醛的方法
AU2015207733A1 (en) 2014-01-15 2016-07-14 Rhodes Technologies Process for improved oxycodone synthesis
MX2018013563A (es) * 2016-05-06 2019-03-14 Basf Se Ligandos p-quirales de fosfina y su uso para sintesis asimetrica.
US10492522B2 (en) 2017-05-03 2019-12-03 R.J. Reynolds Tobacco Company Flavored menthol-containing objects for application to smoking article components
CN107188781B (zh) * 2017-06-02 2020-07-24 万华化学集团股份有限公司 一种由香茅醛制备异胡薄荷醇的方法
CN107115862B (zh) * 2017-06-22 2020-03-10 中国天辰工程有限公司 一种加氢催化剂及其制备方法
JP7401426B2 (ja) 2018-04-11 2023-12-19 高砂香料工業株式会社 新規ラクトン化合物及び新規エーテル化合物
CN111056932A (zh) * 2019-12-09 2020-04-24 万华化学集团股份有限公司 一种制备光学活性香茅醛的方法
CN110872217A (zh) * 2019-12-09 2020-03-10 万华化学集团股份有限公司 一种光学活性的香茅醛的制备方法
CN111004102B (zh) * 2019-12-23 2022-11-04 万华化学集团股份有限公司 一种制备光学活性香茅醛的方法及用于该方法的催化剂
CN111056933B (zh) * 2019-12-24 2022-11-08 万华化学集团股份有限公司 一种制备光学活性香茅醛的方法及用于该方法的催化剂体系
CN112321389B (zh) * 2020-10-28 2022-04-22 万华化学集团股份有限公司 一种耐黄变l-薄荷醇的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008515843A (ja) * 2004-10-11 2008-05-15 ビーエーエスエフ ソシエタス・ヨーロピア 光学活性カルボニル化合物の製造方法
WO2009068444A2 (de) * 2007-11-30 2009-06-04 Basf Se Verfahren zur herstellung von optisch aktivem und racemischem menthol
WO2009144906A1 (ja) * 2008-05-26 2009-12-03 高砂香料工業株式会社 アルミニウム錯体とその使用
WO2010140636A1 (ja) * 2009-06-03 2010-12-09 高砂香料工業株式会社 不斉水素化触媒
JP2011246366A (ja) * 2010-05-25 2011-12-08 Takasago Internatl Corp 有機アルミニウム化合物

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4208443A1 (de) 1992-03-17 1993-09-23 Bayer Ag Verfahren zur herstellung von d,1-menthol
JP3241542B2 (ja) * 1994-07-29 2001-12-25 高砂香料工業株式会社 (−)−n−イソプレゴールの精製方法及びその方法で得られた(−)−n−イソプレゴールを含有するシトラス系香料組成物
DE19518023A1 (de) 1995-05-17 1996-11-21 Bayer Ag Verfahren zur Herstellung von d,l-Menthol aus d-Menthol
US6887820B1 (en) * 1995-12-06 2005-05-03 Japan Science And Technology Corporation Method for producing optically active compounds
US6342644B1 (en) 2000-05-10 2002-01-29 Takasago International Corporation Method for producing 1-menthol
JP4676617B2 (ja) 2001-01-18 2011-04-27 高砂香料工業株式会社 イソプレゴールの製造方法
US7323604B2 (en) * 2004-11-19 2008-01-29 California Institute Of Technology Hydride reduction of α,β-unsaturated carbonyl compounds using chiral organic catalysts
DE102004057277A1 (de) 2004-11-26 2006-06-01 Basf Ag Verfahren zur Herstellung von Menthol
JP5279275B2 (ja) 2005-03-03 2013-09-04 ビーエーエスエフ ソシエタス・ヨーロピア ジアリールフェノキシアルミニウム化合物
DE102006009518A1 (de) * 2006-03-01 2007-09-06 Studiengesellschaft Kohle Mbh Organische Salze sowie Verfahren zur Herstellung von chiralen organischen Verbindungen
JPWO2010061909A1 (ja) * 2008-11-27 2012-04-26 高砂香料工業株式会社 不斉水素化触媒
EP2376411B1 (en) 2008-12-17 2014-11-12 Takasago International Corporation Aluminium complexes and use thereof as a catalyst in intramolecular ring closure reactions
JP2012512136A (ja) 2008-12-17 2012-05-31 高砂香料工業株式会社 アルミニウム錯体と分子内閉環反応における触媒としてのその使用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008515843A (ja) * 2004-10-11 2008-05-15 ビーエーエスエフ ソシエタス・ヨーロピア 光学活性カルボニル化合物の製造方法
WO2009068444A2 (de) * 2007-11-30 2009-06-04 Basf Se Verfahren zur herstellung von optisch aktivem und racemischem menthol
WO2009144906A1 (ja) * 2008-05-26 2009-12-03 高砂香料工業株式会社 アルミニウム錯体とその使用
WO2010140636A1 (ja) * 2009-06-03 2010-12-09 高砂香料工業株式会社 不斉水素化触媒
JP2011246366A (ja) * 2010-05-25 2011-12-08 Takasago Internatl Corp 有機アルミニウム化合物

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
GEIGER C. ET AL.: "COBALT(II)-AZABIS(OXAZOLINE)-CATALYZED CONJUGATE REDUCTION OF ALPHA,BETA-UNSATURATED CARBONYL COMPOUNDS", ADVANCED SYNTHESIS & CATALYSIS, vol. 347, no. 2+3, 2005, pages 249 - 254, XP002394981 *
See also references of EP2647616A4 *
TRASARTI A.F. ET AL.: "Design of catalyst systems for the one-pot synthesis of menthols from citral", JOURNAL OF CATALYSIS, vol. 247, no. 2, 2007, pages 155 - 165, XP022005868 *
VIRTANEN P. ET AL.: "Towards one-pot synthesis of menthols from citral: Modifying Supported Ionic Liquid Catalysts (SILCAs) with Lewis and Bronsted acids", JOURNAL OF CATALYSIS, vol. 263, no. 2, 2009, pages 209 - 219, XP026043758 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014077323A1 (ja) 2012-11-15 2014-05-22 高砂香料工業株式会社 光学活性イソプレゴールおよび光学活性メントールの製造方法
JP2017502990A (ja) * 2014-01-15 2017-01-26 ローズ テクノロジーズ 改良されたオキシモルホン合成のための方法
CN114014745A (zh) * 2021-12-07 2022-02-08 万华化学集团股份有限公司 一种低色号l-薄荷醇的及其制备方法
CN115417740A (zh) * 2022-09-01 2022-12-02 石家庄学院 一种(r)-13-甲基二十七烷的制备方法
CN115417740B (zh) * 2022-09-01 2023-08-29 石家庄学院 一种(r)-13-甲基二十七烷的制备方法
CN115739188A (zh) * 2022-11-07 2023-03-07 山东新和成药业有限公司 一种环化多相催化剂、其制备方法及其在r-香茅醛制备l-异胡薄荷醇中的应用
CN115739188B (zh) * 2022-11-07 2024-02-13 山东新和成药业有限公司 一种环化多相催化剂、其制备方法及其在r-香茅醛制备l-异胡薄荷醇中的应用

Also Published As

Publication number Publication date
US9061959B2 (en) 2015-06-23
JP5780933B2 (ja) 2015-09-16
EP2647616A4 (en) 2015-08-19
US20130253228A1 (en) 2013-09-26
EP2647616A1 (en) 2013-10-09
JP2012131785A (ja) 2012-07-12

Similar Documents

Publication Publication Date Title
JP5780933B2 (ja) 光学活性メントールの製造方法
JP5663791B2 (ja) 不斉水素化触媒
JP5913352B2 (ja) 不斉水素化触媒、およびそれを用いた光学活性カルボニル化合物の製造方法
Seebach et al. TADDOLs, their derivatives, and TADDOL analogues: versatile chiral auxiliaries
EP2492275A1 (en) Novel ruthenium carbonyl complex having a tridentate ligand and manufacturing method and usage therefor
Okano Synthesis and application of chiral hydrobenzoin
JP5648240B2 (ja) 有機アルミニウム化合物
JP5432895B2 (ja) アルミニウム錯体とその使用
Tanaka et al. Reductive amination of ketonic compounds catalyzed by Cp* Ir (III) complexes bearing a picolinamidato ligand
Morris et al. Extending the range of pentasubstituted cyclopentadienyl compounds: The synthesis of a series of tetramethyl (alkyl or aryl) cyclopentadienes (Cp∗ R), their iridium complexes and their catalytic activity for asymmetric transfer hydrogenation
Ohta et al. α‐Amino acid: an effective ligand for asymmetric catalysis of transfer hydrogenation of ketones
Wang et al. Chiral Spiro Dienes Derived Boranes for Asymmetric Hydrosilylation of Ketones
JP5564506B2 (ja) アルミニウム錯体と分子内閉環反応における触媒としてのその使用
JPWO2010061909A1 (ja) 不斉水素化触媒
JP3710846B2 (ja) ケトイソホロン誘導体類の不斉水素化
JP5560464B2 (ja) 不斉水素化触媒
JPH07206768A (ja) 光学活性コハク酸又はその誘導体の製造法
Hu Organocatalysis Inspired Chemistry of Aldehydes
Erdem Asymmetric synthesis of norbornene based 1, 4-Aminoalcohol derivatives and applications in asymmetric diethylzinc reactions
JP2000007597A (ja) 光学活性アルコールの立体選択的製造方法
JP2016098207A (ja) 光学活性アルコールの製造方法
WO2016047388A1 (ja) アルコール類の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11844547

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2011844547

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011844547

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13990872

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE